Spring Data Cassandra - Reference
Documentation

David Webb, Matthew Adams

Version 1.4.0.M1, 2016-02-12

Table of Contents

=3 (P 1
1. Project Metadataovuiuin i e 2
INtrOdUCTION ..ottt e i 2
2. REQUITEIMEIITS . . oottt i e 4
3. Additional Help RESOUICES vuuit ittt it 5
T B 0 0 5
3.1.1. QUESTIONS & ANISWETS. . . . ottt ettt ettt e e et e e e et e et e e et iae e 5
3.1.2. Professional SUPPOTt. e 5

3.2. Following Developmentottt 5

4. Working with Spring Data Repositories. 6
s I 00 I o0 1 o130 6
4.2.QUuery Methodso 8
4.3. Defining repository INterfacesot e 9
4.3.1. Fine-tuning repository definitiono it 10

4.4. Defining query methods e 10
4.4.1. Query loOKUP Strategles oottt 11
4.4.2. QUETY CTEATION ..\ttt ettt ettt ettt 11
4.4.3. PrOPErty @XPIeSSIOIIS ...ttt ittt ittt ettt ettt 12
4.4.4. Special parameter handling ... 13
4.4.5. LImiting qUEery TeSUltsottt i 14
4.4.6. Streaming qUETY resUltS.ttt 14
4.4.7. ASYNC QUETY TeSULLS . . . oottt 15

4.5. Creating reposSitory INSTAINICESo v v vttt ettt it eeaa 16
4.5.1. XML configuration.ooin e 16
4.5.2.JavaContigt e 17
4.5.3. Standalone USAZEottt 17

4.6. Custom implementations for Spring Data repositoriesccoiiiiiiiinn.. 18
4.6.1. Adding custom behavior to single repositoriesttt 18
4.6.2. Adding custom behavior to all repositorieso 20

4.7. Spring Data eXtenSIONS.ottt e 21
4.7.1. WED SUPPOTIT oottt ettt e 21
4.7.2. RepoSitory POPULAtOrS.o ottt e 28
4.7.3. Legacy Webh SUPPOItttt e 30
Reference DOCUMENtAtIONutttt ittt et 32
5. CasSandra SUPPOTTttt ittt ittt ettt ettt ettt e 33
5.1, Getting Startedttt e 33
5.2. EXamples RePOSItOTYttt 37

5.3. Connecting to Cassandra with Spring.......... ..ot 37

5.3.1. Externalize Connection Propertiesouuiniitiiine i iinneeennnnn. 37

5.3.2. XML CONfigUratiOnttt ettt ettt et 37
5.3.3.Java Configurationttt e 38

5.4. General auditing configurationoiuuiiitiiine ittt 40
5.5. Introduction to CassandraTemplateootuuinitiiir i et 40
5.5.1. Instantiating CassandraTemplateouuiiiiiiiinnetiiiniiinneeennnnn. 40

5.6. Saving, Updating, and RemOVINg ROWSouuuiitiiie i iiie i 41
5.6.1. How the Composite Primary Key fields are handled in the mapping layer 41
5.6, 2. TYPE AP PG . o v ettt ettt et e e e e e e et e 45
5.6.3. Methods for saving and INSErtiNg TOWSouuirt ettt iiiiee e, 45
5.6.4. Updatingrowsina CQL tablet e 47
5.6.5. Methods for remOVING FOWSttt et e et e i 47
5.6.6. Methods for truncating tables i e 48
5.7.Querying CQL Tablesttt et ettt e 48
5.8. Overriding default mapping with custom CONVertersc.covvviiiinneeennnnnnn 50
5.8.1. Saving using a registered Spring CONVErtercc.uiieiiiineeernnnneennnn.. 50
5.8.2. Reading using a SPring CONVEITerttt ittt iee e iiae i 50
5.8.3. Registering Spring Converters with the CassandraConverter 50
5.8.4. Converter disambiguation.ottt it e 50

5.9. EXecuting COMMANASottt ettt ettt ettt e e e e e e e ii e i 50
5.9.1. Methods for executing commands.oouuirtttiiin it 50
5.10. Exception Translationuoiuin ittt et 51

6. CasSaANAra FePOSITIOTIES . . o v\ttt ettt ettt e e et e e e et e e e e 52
6.1. INtrOdUCHION . . oo ettt e e e e e 52
8. 2. U, o . ittt e e 52
6.3. QUETrY Methods.ot e 52
6.3.1. Repository delete qUEeTIeS.vvtr it e e 52

6.4. MISCELIANeOUS oottt e 52
6.4.1. CDIINteGration . .« ..ottt ettt et et et e e e e e e it 52

80 =1 0]) 1 4 P 53
7.1. Convention based MapPPing. . ..« vvuttt ittt ettt 53
7.1.1. How the CQL Composite Primary Key fields are handled in the mapping layer 53
7.1.2. Mapping Configurationutteiuin ettt eiiae e 53

2N 0 13 4 Lo 1 - 54
Appendix A: Namespace FefereNCettt ettt et et 55
The <repositories /> elementttt e e et e 55
Appendix B: Populators namespace referenceoouuiiiiiiinneiiineeeeninnaann 56
The <populator /> elementttt e e 56
Appendix C: Repository query KeyWordsouuuninittiee it iiiee i 57
Supported qQUEry KEYWOTIASttt ettt e e e 57

Appendix D: Repository qUETY FetUIT tYPeS . o oottt t ettt et e et e iee et iiee e iaeeens 59

Supported query return types

© 2008-2015 The original author(s).

Copies of this document may be made for your own use and for
distribution to others, provided that you do not charge any fee for
such copies and further provided that each copy contains this
Copyright Notice, whether distributed in print or electronically.

NOTE

Preface

The Spring Data Cassandra project applies core Spring concepts to the development of solutions
using the Cassandra Columnar data store. We provide a "template" as a high-level abstraction for
storing and querying documents. You will notice similarities to the JDBC support in the Spring
Framework.

Chapter 1. Project Metadata

 Version Control - https://github.com/spring-projects/spring-data-cassandra
* Bugtacker - https://jira.spring.io/browse/DATACASS
* Release repository - https://repo.springsource.org/libs-release

» Milestone repository - https://repo.springsource.org/libs-milestone

Snapshot repository - https://repo.springsource.org/libs-snapshot

Introduction

This document is the reference guide for Spring Data - Cassandra Support. It explains Cassandra
module concepts and semantics and the syntax for various stores namespaces.

This section provides some basic introduction to Spring and the Cassandra database. The rest of the
document refers only to Spring Data Cassandra features and assumes the user is familiar with
Cassandra as well as Spring concepts.

Knowing Spring

Spring Data uses Spring framework’s core functionality, such as the IoC container, type conversion
system, expression language, JMX integration, and portable DAO exception hierarchy. While it is
not important to know the Spring APIs, understanding the concepts behind them is. At a minimum,
the idea behind IoC should be familiar for whatever IoC container you choose to use.

The core functionality of the Cassandra support can be used directly, with no need to invoke the IoC
services of the Spring Container. This is much like JdbcTemplate which can be used 'standalone’
without any other services of the Spring container. To leverage all the features of Spring Data
Cassandra, such as the repository support, you will need to configure some parts of the library
using Spring.

To learn more about Spring, you can refer to the comprehensive (and sometimes disarming)
documentation that explains in detail the Spring Framework. There are a lot of articles, blog entries
and books on the matter - take a look at the Spring framework home page for more information.

Knowing NoSQL and Cassandra

NoSQL stores have taken the storage world by storm. It is a vast domain with a plethora of
solutions, terms and patterns (to make things worth even the term itself has multiple meanings).
While some of the principles are common, it is crucial that the user is familiar to some degree with
the Cassandra Columnar NoSQL Datastore supported by DATACASS. The best way to get acquainted
to this solutions is to read their documentation and follow their examples - it usually doesn’t take
more then 5-10 minutes to go through them and if you are coming from an RDMBS-only
background many times these exercises can be an eye opener.

The jumping off ground for learning about Cassandra is cassandra.apache.org/. Here is a list of

https://github.com/spring-projects/spring-data-cassandra
https://jira.spring.io/browse/DATACASS
https://repo.springsource.org/libs-release
https://repo.springsource.org/libs-milestone
https://repo.springsource.org/libs-snapshot
http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/spring-core.html
http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/beans.html
http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/validation.html#core-convert
http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/validation.html#core-convert
http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/expressions.html
http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/jmx.html
http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/dao.html#dao-exceptions
http://spring.io/docs
http://www.google.com/search?q=nosoql+acronym
http://cassandra.apache.org/

other useful resources.
* The Planet Cassandra site has many valuable resources for Cassandra best practices.

The DataStax site offers commercial support and many resources.

http://planetcassandra.org/
http://datastax.com/

Chapter 2. Requirements

Spring Data Cassandra 1.x binaries requires JDK level 6.0 and above, and Spring Framework 3.2.X

and above.

Currently we support Cassandra 2.X using the DataStax Java Driver (2.0.X)

http://spring.io/docs

Chapter 3. Additional Help Resources

Learning a new framework is not always straight forward. In this section, we try to provide what
we think is an easy to follow guide for starting with Spring Data Cassandra module. However, if you
encounter issues or you are just looking for an advice, feel free to use one of the links below:

3.1. Support

There are a few support options available:

3.1.1. Questions & Answers

Developers post questions and answers on Stack Overflow. The two key tags to search for related
answers to this project are:

* spring-data

* spring-data-cassandra

3.1.2. Professional Support

Professional, from-the-source support, with guaranteed response time, is available from Pivotal
Support.

3.2. Following Development

For information on the Spring Data Cassandra source code repository, nightly builds and snapshot
artifacts please see the Spring Data Cassandra homepage.

To follow developer activity look for the mailing list information on the Spring Data Cassandra
homepage.

If you encounter a bug or want to suggest an improvement, please create a ticket on the Spring Data
issue tracker.

http://stackoverflow.com/questions/tagged/spring-data
http://stackoverflow.com/questions/tagged/spring-data-cassandra
http://www.pivotal.io/support
http://www.pivotal.io/support
http://projects.spring.io/spring-data-cassandra/
https://jira.spring.io/browse/DATACASS

Chapter 4. Working with Spring Data
Repositories

The goal of Spring Data repository abstraction is to significantly reduce the amount of boilerplate
code required to implement data access layers for various persistence stores.

Spring Data repository documentation and your module

This chapter explains the core concepts and interfaces of Spring Data
repositories. The information in this chapter is pulled from the Spring Data
Commons module. It uses the configuration and code samples for the Java
Persistence API (JPA) module. Adapt the XML namespace declaration and the

IMPORTANT types to be extended to the equivalents of the particular module that you are
using. Namespace reference covers XML configuration which is supported
across all Spring Data modules supporting the repository API, Repository
query keywords covers the query method keywords supported by the
repository abstraction in general. For detailed information on the specific
features of your module, consult the chapter on that module of this
document.

4.1. Core concepts

The central interface in Spring Data repository abstraction is Repository (probably not that much of
a surprise). It takes the domain class to manage as well as the id type of the domain class as type
arguments. This interface acts primarily as a marker interface to capture the types to work with
and to help you to discover interfaces that extend this one. The CrudRepository provides
sophisticated CRUD functionality for the entity class that is being managed.

Example 1. CrudRepository interface
public interface CrudRepository<T, ID extends Serializable>

extends Repository<T, ID> {

<S extends T> S save(S entity); @
T findOne(ID primaryKey); @
Iterable<T> findAl1l(); ©
Long count(); @
void delete(T entity); ®
boolean exists(ID primaryKey); ®

// -+ more functionality omitted.

@ Saves the given entity.

@ Returns the entity identified by the given id.
® Returns all entities.

@ Returns the number of entities.

® Deletes the given entity.

® Indicates whether an entity with the given id exists.

We also provide persistence technology-specific abstractions like e.g. JpaRepository
or MongoRepository. Those interfaces extend CrudRepository and expose the
capabilities of the underlying persistence technology in addition to the rather
generic persistence technology-agnostic interfaces like e.g. CrudRepository.

NOTE

On top of the CrudRepository there is a PagingAndSortingRepository abstraction that adds additional
methods to ease paginated access to entities:

Example 2. PagingAndSortingRepository
public interface PagingAndSortingRepository<T, ID extends Serializable>
extends CrudRepository<T, ID> {
Iterable<T> findAl1l(Sort sort);

Page<T> findAl1(Pageable pageable);
}

Accessing the second page of User by a page size of 20 you could simply do something like this:

PagingAndSortingRepository<User, Long> repository = // -+ get access to a bean
Page<User> users = repository.findAll(new PageRequest(1, 20));

In addition to query methods, query derivation for both count and delete queries, is available.

Example 3. Derived Count Query

public interface UserRepository extends CrudRepository<User, Long> {

Long countBylLastname(String lastname);

}

Example 4. Derived Delete Query

public interface UserRepository extends CrudRepository<User, Long> {
Long deleteBylLastname(String lastname);

List<User> removeBylLastname(String lastname);

4.2. Query methods

Standard CRUD functionality repositories usually have queries on the underlying datastore. With

Spring Data, declaring those queries becomes a four-step process:

1. Declare an interface extending Repository or one of its subinterfaces and type it to the domain

class and ID type that it will handle.

interface PersonRepository extends Repository<Person, Long> { -+ }

2. Declare query methods on the interface.

interface PersonRepository extends Repository<Person, Long> {
List<Person> findByLastname(String lastname);

}

3. Set up Spring to create proxy instances for those interfaces. Either via JavaConfig:

import org.springframework.data.jpa.repository.config.Enable]paRepositories;

@EnablelpaRepositories
class Config {}

or via XML configuration:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:jpa="http://www.springframework.org/schema/data/jpa"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/data/jpa
http://www.springframework.org/schema/data/jpa/spring-jpa.xsd">

<jpa:repositories base-package="com.acme.repositories"/>

</beans>

The JPA namespace is used in this example. If you are using the repository abstraction for any
other store, you need to change this to the appropriate namespace declaration of your store
module which should be exchanging jpa in favor of, for example, mongodb.

Also, note that the JavaConfig variant doesn’t configure a package explictly as the package of the
annotated class is used by default. To customize the package to scan use one of the
basePackage: - attribute of the data-store specific repository @Enable::--annotation.

4. Get the repository instance injected and use it.

public class SomeClient {

@Autowired
private PersonRepository repository;

public void doSomething() {
List<Person> persons = repository.findByLastname("Matthews");
}
}

The sections that follow explain each step in detail.

4.3. Defining repository interfaces

As a first step you define a domain class-specific repository interface. The interface must extend
Repository and be typed to the domain class and an ID type. If you want to expose CRUD methods

for that domain type, extend CrudRepository instead of Repository.

4.3.1. Fine-tuning repository definition

Typically, your repository interface will extend Repository, CrudRepository or
PagingAndSortingRepository. Alternatively, if you do not want to extend Spring Data interfaces, you
can also annotate your repository interface with @RepositoryDefinition. Extending CrudRepository
exposes a complete set of methods to manipulate your entities. If you prefer to be selective about
the methods being exposed, simply copy the ones you want to expose from CrudRepository into your
domain repository.

NOTE This allows you to define your own abstractions on top of the provided Spring Data
Repositories functionality.

Example 5. Selectively exposing CRUD methods

interface MyBaseRepository<T, ID extends Serializable> extends Repository<T, ID> {
T findOne(ID id);

T save(T entity);
}

interface UserRepository extends MyBaseRepository<User, Long> {
User findByEmailAddress(EmailAddress emailAddress);
}

In this first step you defined a common base interface for all your domain repositories and exposed
findOne(---) as well as save(::r).These methods will be routed into the base repository
implementation of the store of your choice provided by Spring Data ,e.g. in the case if JPA
SimpleJpaRepository, because they are matching the method signatures in CrudRepository. So the
UserRepository will now be able to save users, and find single ones by id, as well as triggering a
query to find Users by their email address.

Note, that the intermediate repository interface is annotated with @NoRepositoryBean.
NOTE Make sure you add that annotation to all repository interfaces that Spring Data
should not create instances for at runtime.

4.4. Defining query methods

The repository proxy has two ways to derive a store-specific query from the method name. It can
derive the query from the method name directly, or by using a manually defined query. Available
options depend on the actual store. However, there’s got to be a strategy that decides what actual
query is created. Let’s have a look at the available options.

10

4.4.1. Query lookup strategies

The following strategies are available for the repository infrastructure to resolve the query. You can
configure the strategy at the namespace through the query-lookup-strategy attribute in case of XML
configuration or via the querylLookupStrategy attribute of the Enable${store}Repositories annotation
in case of Java config. Some strategies may not be supported for particular datastores.

» CREATE attempts to construct a store-specific query from the query method name. The general
approach is to remove a given set of well-known prefixes from the method name and parse the
rest of the method. Read more about query construction in Query creation.

» USE_DECLARED_QUERY tries to find a declared query and will throw an exception in case it can’t
find one. The query can be defined by an annotation somewhere or declared by other means.
Consult the documentation of the specific store to find available options for that store. If the
repository infrastructure does not find a declared query for the method at bootstrap time, it
fails.

o CREATE_IF_NOT_FOUND (default) combines CREATE and USE_DECLARED_QUERY. It looks up a declared
query first, and if no declared query is found, it creates a custom method name-based query.
This is the default lookup strategy and thus will be used if you do not configure anything
explicitly. It allows quick query definition by method names but also custom-tuning of these
queries by introducing declared queries as needed.

4.4.2. Query creation

The query builder mechanism built into Spring Data repository infrastructure is useful for building
constraining queries over entities of the repository. The mechanism strips the prefixes find---By,
read---By, query---By, count--'By, and get::-By from the method and starts parsing the rest of it. The
introducing clause can contain further expressions such as a Distinct to set a distinct flag on the
query to be created. However, the first By acts as delimiter to indicate the start of the actual criteria.
At a very basic level you can define conditions on entity properties and concatenate them with And
and Or.

11

Example 6. Query creation from method names

public interface PersonRepository extends Repository<User, Long> {

List<Person> findByEmailAddressAndLastname(EmailAddress emailAddress, String
lastname);

// Enables the distinct flag for the query

List<Person> findDistinctPeopleBylLastnameOrFirstname(String lastname, String
firstname);

List<Person> findPeopleDistinctBylLastnameOrFirstname(String lastname, String
firstname);

// Enabling ignoring case for an individual property

List<Person> findByLastnameIgnoreCase(String lastname);

// Enabling ignoring case for all suitable properties

List<Person> findByLastnameAndFirstnameAllIgnoreCase(String lastname, String
firstname);

// Enabling static ORDER BY for a query
List<Person> findByLastnameOrderByFirstnameAsc(String lastname);
List<Person> findByLastnameOrderByFirstnameDesc(String lastname);

}

The actual result of parsing the method depends on the persistence store for which you create the
query. However, there are some general things to notice.

* The expressions are usually property traversals combined with operators that can be
concatenated. You can combine property expressions with AND and OR. You also get support for
operators such as Between, LessThan, GreaterThan, Like for the property expressions. The
supported operators can vary by datastore, so consult the appropriate part of your reference
documentation.

* The method parser supports setting an IgnoreCase flag for individual properties (for example,
findByLastnameIgnoreCase(::+)) or for all properties of a type that support ignoring case (usually
String instances, for example, findByLastnameAndFirstnameAllIgnoreCase(::-)). Whether ignoring
cases is supported may vary by store, so consult the relevant sections in the reference
documentation for the store-specific query method.

* You can apply static ordering by appending an OrderBy clause to the query method that
references a property and by providing a sorting direction (Asc or Desc). To create a query
method that supports dynamic sorting, see Special parameter handling.

4.4.3. Property expressions

Property expressions can refer only to a direct property of the managed entity, as shown in the
preceding example. At query creation time you already make sure that the parsed property is a
property of the managed domain class. However, you can also define constraints by traversing
nested properties. Assume a Person has an Address with a ZipCode. In that case a method name of

12

List<Person> findByAddressZipCode(ZipCode zipCode);

creates the property traversal x.address.zipCode. The resolution algorithm starts with interpreting
the entire part (AddressZipCode) as the property and checks the domain class for a property with
that name (uncapitalized). If the algorithm succeeds it uses that property. If not, the algorithm splits
up the source at the camel case parts from the right side into a head and a tail and tries to find the
corresponding property, in our example, AddressZip and Code. If the algorithm finds a property with
that head it takes the tail and continue building the tree down from there, splitting the tail up in the
way just described. If the first split does not match, the algorithm move the split point to the left
(Address, ZipCode) and continues.

Although this should work for most cases, it is possible for the algorithm to select the wrong
property. Suppose the Person class has an addressZip property as well. The algorithm would match
in the first split round already and essentially choose the wrong property and finally fail (as the
type of addressZip probably has no code property).

To resolve this ambiguity you can use _ inside your method name to manually define traversal
points. So our method name would end up like so:

List<Person> findByAddress_ZipCode(ZipCode zipCode);

As we treat underscore as a reserved character we strongly advise to follow standard Java naming
conventions (i.e. not using underscores in property names but camel case instead).

4.4.4. Special parameter handling

To handle parameters in your query you simply define method parameters as already seen in the
examples above. Besides that the infrastructure will recognize certain specific types like Pageable
and Sort to apply pagination and sorting to your queries dynamically.

Example 7. Using Pageable, Slice and Sort in query methods

Page<User> findBylLastname(String lastname, Pageable pageable);
Slice<User> findByLastname(String lastname, Pageable pageable);
List<User> findByLastname(String lastname, Sort sort);

List<User> findBylLastname(String lastname, Pageable pageable);

The first method allows you to pass an org.springframework.data.domain.Pageable instance to the
query method to dynamically add paging to your statically defined query. A Page knows about the
total number of elements and pages available. It does so by the infrastructure triggering a count
query to calculate the overall number. As this might be expensive depending on the store used,
Slice can be used as return instead. A Slice only knows about whether there’s a next Slice

13

available which might be just sufficient when walking thought a larger result set.

Sorting options are handled through the Pageable instance too. If you only need sorting, simply add
an org.springframework.data.domain.Sort parameter to your method. As you also can see, simply
returning a List is possible as well. In this case the additional metadata required to build the actual
Page instance will not be created (which in turn means that the additional count query that would
have been necessary not being issued) but rather simply restricts the query to look up only the
given range of entities.

To find out how many pages you get for a query entirely you have to trigger an
NOTE additional count query. By default this query will be derived from the query you
actually trigger.

4.4.5. Limiting query results

The results of query methods can be limited via the keywords first or top, which can be used
interchangeably. An optional numeric value can be appended to top/first to specify the maximum
result size to be returned. If the number is left out, a result size of 1 is assumed.

Example 8. Limiting the result size of a query with Top and First

User findFirstByOrderByLastnameAsc();

User findTopByOrderByAgeDesc();

Page<User> queryFirst10ByLastname(String lastname, Pageable pageable);
Slice<User> findTop3BylLastname(String lastname, Pageable pageable);
List<User> findFirst10BylLastname(String lastname, Sort sort);

List<User> findTop10ByLastname(String lastname, Pageable pageable);

The limiting expressions also support the Distinct keyword. Also, for the queries limiting the result
set to one instance, wrapping the result into an Optional is supported.

If pagination or slicing is applied to a limiting query pagination (and the calculation of the number
of pages available) then it is applied within the limited result.

Note that limiting the results in combination with dynamic sorting via a Sort
NOTE parameter allows to express query methods for the 'K' smallest as well as for the 'K'
biggest elements.

4.4.6. Streaming query results

The results of query methods can be processed incrementally by using a Java 8 Stream<T> as return
type. Instead of simply wrapping the query results in a Stream data store specific methods are used

14

to perform the streaming.

Example 9. Stream the result of a query with Java 8 Stream<T>

("select u from User u")
Stream<User> findA11ByCustomQueryAndStream();

Stream<User> readAl1ByFirstnameNotNull();

("select u from User u")
Stream<User> streamAl1Paged(Pageable pageable);

A Stream potentially wraps underlying data store specific resources and must
NOTE therefore be closed after usage. You can either manually close the Stream using the
close() method or by using a Java 7 try-with-resources block.

Example 10. Working with a Stream<T> result in a try-with-resources block

try (Stream<User> stream = repository.findA11ByCustomQueryAndStream()) {
stream.forEach(::);

}

NOTE Not all Spring Data modules currently support Stream<T> as a return type.

4.4.7. Async query results

Repository queries can be executed asynchronously using Spring’s asynchronous method execution
capability. This means the method will return immediately upon invocation and the actual query
execution will occur in a task that has been submitted to a Spring TaskExecutor.

Future<User> findByFirstname(String firstname); ©)
CompletableFuture<User> findOneByFirstname(String firstname); @

ListenableFuture<User> findOneBylLastname(String lastname); ®

@ Use java.util.concurrent.Future as return type.
@ Use aJava 8 java.util.concurrent.CompletableFuture as return type.

® Use aorg.springframework.util.concurrent.ListenableFuture as return type.

15

http://docs.spring.io/spring/docs/current/spring-framework-reference/html#scheduling
http://docs.spring.io/spring/docs/current/spring-framework-reference/html#scheduling

4.5. Creating repository instances

In this section you create instances and bean definitions for the repository interfaces defined. One
way to do so is using the Spring namespace that is shipped with each Spring Data module that
supports the repository mechanism although we generally recommend to use the Java-Config style
configuration.

4.5.1. XML configuration

Each Spring Data module includes a repositories element that allows you to simply define a base
package that Spring scans for you.

Example 11. Enabling Spring Data repositories via XML

<?xml version="1.0" encoding="UTF-8"7>
<beans:beans xmlns:beans="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://www.springframework.org/schema/data/jpa"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/data/jpa
http://www.springframework.org/schema/data/jpa/spring-jpa.xsd">

<repositories base-package="com.acme.repositories" />

</beans:beans>

In the preceding example, Spring is instructed to scan com.acme.repositories and all its sub-
packages for interfaces extending Repository or one of its sub-interfaces. For each interface found,
the infrastructure registers the persistence technology-specific FactoryBean to create the
appropriate proxies that handle invocations of the query methods. Each bean is registered under a
bean name that is derived from the interface name, so an interface of UserRepository would be
registered under userRepository. The base-package attribute allows wildcards, so that you can define
a pattern of scanned packages.

Using filters

By default the infrastructure picks up every interface extending the persistence technology-specific
Repository sub-interface located under the configured base package and creates a bean instance for
it. However, you might want more fine-grained control over which interfaces bean instances get
created for. To do this you use <include-filter /> and <exclude-filter /> elements inside
<repositories />. The semantics are exactly equivalent to the elements in Spring’s context
namespace. For details, see Spring reference documentation on these elements.

For example, to exclude certain interfaces from instantiation as repository, you could use the
following configuration:

16

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/beans.html#beans-scanning-filters

Example 12. Using exclude-filter element

<repositories base-package="com.acme.repositories">
<context:exclude-filter type="regex" expression=".*SomeRepository" />
</repositories>

This example excludes all interfaces ending in SomeRepository from being instantiated.

4.5.2. JavaConfig

The repository infrastructure can also be triggered using a store-specific
@Enable§{store}Repositories annotation on a JavaConfig class. For an introduction into Java-based
configuration of the Spring container, see the reference documentation. [1: JavaConfig in the Spring
reference documentation]

A sample configuration to enable Spring Data repositories looks something like this.

Example 13. Sample annotation based repository configuration

("com.acme.repositories")
class ApplicationConfiguration {

public EntityManagerFactory entityManagerFactory() {
/]
}
¥

The sample uses the JPA-specific annotation, which you would change according to
the store module you actually use. The same applies to the definition of the
EntityManagerFactory bean. Consult the sections covering the store-specific
configuration.

NOTE

4.5.3. Standalone usage

You can also use the repository infrastructure outside of a Spring container, e.g. in CDI
environments. You still need some Spring libraries in your classpath, but generally you can set up
repositories programmatically as well. The Spring Data modules that provide repository support
ship a persistence technology-specific RepositoryFactory that you can use as follows.

17

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/beans.html#beans-java
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/beans.html#beans-java

Example 14. Standalone usage of repository factory

RepositoryFactorySupport factory = --+ // Instantiate factory here
UserRepository repository = factory.getRepository(UserRepository.class);

4.6. Custom implementations for Spring Data
repositories

Often it is necessary to provide a custom implementation for a few repository methods. Spring Data
repositories easily allow you to provide custom repository code and integrate it with generic CRUD
abstraction and query method functionality.

4.6.1. Adding custom behavior to single repositories

To enrich a repository with custom functionality you first define an interface and an
implementation for the custom functionality. Use the repository interface you provided to extend
the custom interface.

Example 15. Interface for custom repository functionality

interface UserRepositoryCustom {
public void someCustomMethod(User user);

}

Example 16. Implementation of custom repository functionality

class UserRepositoryImpl implements UserRepositoryCustom {

public void someCustomMethod(User user) {
// Your custom implementation

}
}

NOTE The most important bit for the class to be found is the Impl postfix of the name on it
compared to the core repository interface (see below).

The implementation itself does not depend on Spring Data and can be a regular Spring bean. So you

can use standard dependency injection behavior to inject references to other beans like a

JdbTemplate, take part in aspects, and so on.

18

Example 17. Changes to the your basic repository interface

interface UserRepository extends CrudRepository<User, Long>, UserRepositoryCustom

{

// Declare query methods here

}

Let your standard repository interface extend the custom one. Doing so combines the CRUD and
custom functionality and makes it available to clients.

Configuration

If you use namespace configuration, the repository infrastructure tries to autodetect custom
implementations by scanning for classes below the package we found a repository in. These classes
need to follow the naming convention of appending the namespace element’s attribute repository-
impl-postfix to the found repository interface name. This postfix defaults to Impl.

Example 18. Configuration example

<repositories base-package="com.acme.repository" />

<repositories base-package="com.acme.repository" repository-impl-postfix="FooBar"
/>

The first configuration example will try to look up a class com.acme.repository.UserRepositoryImpl
to act as custom repository implementation, whereas the second example will try to lookup
com.acme.repository.UserRepositoryFooBar.

Manual wiring

The approach just shown works well if your custom implementation uses annotation-based
configuration and autowiring only, as it will be treated as any other Spring bean. If your custom
implementation bean needs special wiring, you simply declare the bean and name it after the
conventions just described. The infrastructure will then refer to the manually defined bean
definition by name instead of creating one itself.

Example 19. Manual wiring of custom implementations

<repositories base-package="com.acme.repository" />
<beans:bean id="userRepositoryImpl" class="--+">

<!-- further configuration -->
</beans:bean>

19

4.6.2. Adding custom behavior to all repositories

The preceding approach is not feasible when you want to add a single method to all your repository
interfaces. To add custom behavior to all repositories, you first add an intermediate interface to
declare the shared behavior.

Example 20. An interface declaring custom shared behavior

public interface MyRepository<T, ID extends Serializable>
extends PagingAndSortingRepository<T, ID> {

void sharedCustomMethod(ID id);
}

Now your individual repository interfaces will extend this intermediate interface instead of the
Repository interface to include the functionality declared. Next, create an implementation of the
intermediate interface that extends the persistence technology-specific repository base class. This
class will then act as a custom base class for the repository proxies.

Example 21. Custom repository base class

public class MyRepositoryImpl<T, ID extends Serializable>
extends SimpleJpaRepository<T, ID> implements MyRepository<T, ID> {

private final EntityManager entityManager;

public MyRepositoryImpl(JpaEntityInformation entityInformation,
EntityManager entityManager) {
super(entityInformation, entityManager);

// Keep the EntityManager around to used from the newly introduced methods.
this.entityManager = entityManager;

}

public void sharedCustomMethod(ID id) {
// implementation goes here
}
}

The class needs to have a constructor of the super class which the store-specific
repository factory implementation is using. In case the repository base class
has multiple constructors, override the one taking an EntityInformation plus a
store specific infrastructure object (e.g. an EntityManager or a template class).

WARNING

The default behavior of the Spring <repositories /> namespace is to provide an implementation for

20

all interfaces that fall under the base-package. This means that if left in its current state, an
implementation instance of MyRepository will be created by Spring. This is of course not desired as it
is just supposed to act as an intermediary between Repository and the actual repository interfaces
you want to define for each entity. To exclude an interface that extends Repository from being
instantiated as a repository instance, you can either annotate it with @NoRepositoryBean (as seen
above) or move it outside of the configured base-package.

The final step is to make the Spring Data infrastructure aware of the customized repository base
class. In JavaConfig this is achieved by using the repositoryBaseClass attribute of the @Enable
---Repositories annotation:

Example 22. Configuring a custom repository base class using JavaConfig

(repositoryBaseClass = MyRepositoryImpl.class)
class ApplicationConfiguration { -+ }

A corresponding attribute is available in the XML namespace.
Example 23. Configuring a custom repository base class using XML

<repositories base-package="com.acme.repository"
repository-base-class=":--.MyRepositoryImpl" />

4.7. Spring Data extensions

This section documents a set of Spring Data extensions that enable Spring Data usage in a variety of
contexts. Currently most of the integration is targeted towards Spring MVC.

4.7.1. Web support

This section contains the documentation for the Spring Data web support as it is
implemented as of Spring Data Commons in the 1.6 range. As it the newly
introduced support changes quite a lot of things we kept the documentation of the
former behavior in Legacy web support.

NOTE

Spring Data modules ships with a variety of web support if the module supports the repository
programming model. The web related stuff requires Spring MVC JARs on the classpath, some of
them even provide integration with Spring HATEOAS [2: Spring HATEOAS -
https://github.com/SpringSource/spring-hateoas]. In general, the integration support is enabled by
using the @EnableSpringDatallebSupport annotation in your JavaConfig configuration class.

21

https://github.com/SpringSource/spring-hateoas

Example 24. Enabling Spring Data web support

@Configuration
@EnableWebMvc
@EnableSpringDataWebSupport
class WebConfiguration { }

The @EnableSpringDataWebSupport annotation registers a few components we will discuss in a bit. It
will also detect Spring HATEOAS on the classpath and register integration components for it as well
if present.

Alternatively, if you are using XML configuration, register either SpringDataWebSupport or
HateoasAwareSpringDataWebSupport as Spring beans:

Example 25. Enabling Spring Data web support in XML

<bean class="org.springframework.data.web.config.SpringDataWebConfiguration" />

<!-- If you're using Spring HATEOAS as well register this one *instead* of the
former -->

<bean class=
"org.springframework.data.web.config.HateoasAwareSpringDataWebConfiguration" />

Basic web support

The configuration setup shown above will register a few basic components:

* A DomainClassConverter to enable Spring MVC to resolve instances of repository managed
domain classes from request parameters or path variables.

* HandlerMethodArgumentResolver implementations to let Spring MVC resolve Pageable and Sort
instances from request parameters.

DomainClassConverter

The DomainClassConverter allows you to use domain types in your Spring MVC controller method
signatures directly, so that you don’t have to manually lookup the instances via the repository:

22

Example 26. A Spring MVC controller using domain types in method signatures

("/users")
public class UserController {

(ll/{_id}")
public String showUserForm(("id") User user, Model model) {

model.addAttribute("user", user);
return "userForm";

}
}

As you can see the method receives a User instance directly and no further lookup is necessary. The
instance can be resolved by letting Spring MVC convert the path variable into the id type of the
domain class first and eventually access the instance through calling findOne(::+) on the repository
instance registered for the domain type.

Currently the repository has to implement CrudRepository to be eligible to be

NOTE
discovered for conversion.

HandlerMethodArgumentResolvers for Pageable and Sort

The configuration snippet above also registers a PageableHandlerMethodArgumentResolver as well as
an instance of SortHandlerMethodArgumentResolver. The registration enables Pageable and Sort being
valid controller method arguments

Example 27. Using Pageable as controller method argument

("/users")
public class UserController {

UserRepository repository;

public String showUsers(Model model, Pageable pageable) {

model.addAttribute("users", repository.findAll(pageable));
return "users";

}
}

This method signature will cause Spring MVC try to derive a Pageable instance from the request
parameters using the following default configuration:

23

Table 1. Request parameters evaluated for Pageable instances
P3age Page you want to retrieve, 0 indexed and defaults to 0.
size Size of the page you want to retrieve, defaults to 20.

sort Properties that should be sorted by in the format property,property(,ASC|DESC). Default sort
direction is ascending. Use multiple sort parameters if you want to switch directions, e.g.
?sort=firstname&sort=1astname,asc.

To customize this behavior extend either SpringDataWebConfiguration or the HATEOAS-enabled
equivalent and override the pageableResolver() or sortResolver() methods and import your
customized configuration file instead of using the @Enable-annotation.

In case you need multiple Pageable or Sort instances to be resolved from the request (for multiple
tables, for example) you can use Spring’s @Qualifier annotation to distinguish one from another.
The request parameters then have to be prefixed with ${qualifier}_. So for a method signature like
this:

public String showUsers(Model model,
("foo") Pageable first,
("bar") Pageable second) { '+ }

you have to populate foo_page and bar_page etc.

The default Pageable handed into the method is equivalent to a new PageRequest(@, 20) but can be
customized using the @PageableDefaults annotation on the Pageable parameter.

Hypermedia support for Pageables

Spring HATEOAS ships with a representation model class PagedResources that allows enriching the
content of a Page instance with the necessary Page metadata as well as links to let the clients easily
navigate the pages. The conversion of a Page to a PagedResources is done by an implementation of
the Spring HATEOAS ResourceAssembler interface, the PagedResourcesAssembler.

24

Example 28. Using a PagedResourcesAssembler as controller method argument

class PersonController {
PersonRepository repository;

(value = "/persons", method = RequestMethod.GET)
HttpEntity<PagedResources<Person>> persons(Pageable pageable,
PagedResourcesAssembler assembler) {

Page<Person> persons = repository.findAll(pageable);
return new ResponseEntity<>(assembler.toResources(persons), HttpStatus.0K);

}
}

Enabling the configuration as shown above allows the PagedResourcesAssembler to be used as
controller method argument. Calling toResources(::) on it will cause the following:

» The content of the Page will become the content of the PagedResources instance.

* The PagedResources will get a PageMetadata instance attached populated with information form
the Page and the underlying PageRequest.

* The PagedResources gets prev and next links attached depending on the page’s state. The links
will point to the URI the method invoked is mapped to. The pagination parameters added to the
method will match the setup of the PageableHandlerMethodArgumentResolver to make sure the
links can be resolved later on.

Assume we have 30 Person instances in the database. You can now trigger a request GET
http://localhost:8080/persons and youwll see something similar to this:

{ "links" : [{ "rel" : "next",
"href" : "http://localhost:8080/persons?page=1&size=20 }

1),
"content" : [

=+ // 20 Person instances rendered here
Il
"pageMetadata” : {

"size" : 20,

"totalElements" : 30,

"totalPages" : 2,

"number" : 0

You see that the assembler produced the correct URI and also picks up the default configuration
present to resolve the parameters into a Pageable for an upcoming request. This means, if you

25

http://localhost:8080/persons

change that configuration, the links will automatically adhere to the change. By default the
assembler points to the controller method it was invoked in but that can be customized by handing
in a custom Link to be used as base to build the pagination links to overloads of the
PagedResourcesAssembler.toResource(') method.

QueryDSL web support

For those stores having QueryDSL integration it is possible to derive queries from the attributes
contained in a Request query string.

This means that given the User object from previous samples a query string

?firstname=Dave&lastname=Matthews

can be resolved to

QUser.user.firstname.eq("Dave").and(QUser.user.lastname.eq("Matthews"))

using the Queryds1PredicateArgumentResolver.

NOTE The feature will be automatically enabled along @EnableSpringDataWebSupport when
Querydsl is found on the classpath.

Adding a @QuerydslPredicate to the method signature will provide a ready to use Predicate which

can be executed via the QueryDs1PredicateExecutor.

Type information is typically resolved from the methods return type. Since those

TIP information does not necessarily match the domain type it might be a good idea to use
the root attribute of Queryds1Predicate.

26

http://www.querydsl.com/

@Controller
class UserController {

@Autowired UserRepository repository;

@RequestMapping(value = "/", method = RequestMethod.GET)

String index(Model model, @QuerydsliPredicate(root = User.class) Predicate
predicate, @

Pageable pageable, @RequestParam MultiValueMap<String, String>
parameters) {

model.addAttribute("users", repository.findAll(predicate, pageable));

return "index";
}
}

@ Resolve query string arguments to matching Predicate for User.

The default binding is as follows:

* Object on simple properties as eq.
* Object on collection like properties as contains.

* Collection on simple properties as in.

Those bindings can be customized via the bindings attribute of @Queryds1Predicate or by making use
of Java 8 default methods adding the Queryds1BinderCustomizer to the repository interface.

27

interface UserRepository extends CrudRepository<User, String>,
QueryDs1PredicateExecutor<User>,

@

Queryds1BinderCustomizer<QUser> {

@

default public void customize(QuerydslBindings bindings, QUser user) {

bindings.bind(user.username).first((path, value) -> path.contains(value))

®
bindings.bind(String.class)
.first((StringPath path, String value) -> path.containsIgnoreCase(value));
@
bindings.excluding(user.password);
}
}

@ QueryDs1PredicateExecutor provides access to specific finder methods for Predicate.

@ Queryds1BinderCustomizer defined on the repository interface will be automatically picked
up and shortcuts @QuerydslPredicate(bindings=---).

® Define the binding for the username property to be a simple contains binding.
@ Define the default binding for String properties to be a case insensitive contains match.

® Exclude the password property from Predicate resolution.

4.7.2. Repository populators

If you work with the Spring JDBC module, you probably are familiar with the support to populate a
DataSource using SQL scripts. A similar abstraction is available on the repositories level, although it
does not use SQL as the data definition language because it must be store-independent. Thus the
populators support XML (through Spring’s OXM abstraction) and JSON (through Jackson) to define
data with which to populate the repositories.

Assume you have a file data. json with the following content:

Example 29. Data defined in JSON

[{ "_class" : "com.acme.Person",
"firstname" : "Dave",

"lastname" : "Matthews" },

{ " class" : "com.acme.Person",
"firstname" : "Carter",

"lastname" : "Beauford" }]

28

You can easily populate your repositories by using the populator elements of the repository
namespace provided in Spring Data Commons. To populate the preceding data to your
PersonRepository, do the following:

Example 30. Declaring a Jackson repository populator

<?xml version="1.0" encoding="UTF-8"7>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:repository="http://www.springframework.org/schema/data/repository"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/data/repository
http://www.springframework.org/schema/data/repository/spring-repository.xsd">

<repository:jackson2-populator locations="classpath:data.json" />

</beans>

This declaration causes the data. json file to be read and deserialized via a Jackson ObjectMapper.

The type to which the JSON object will be unmarshalled to will be determined by inspecting the
_class attribute of the JSON document. The infrastructure will eventually select the appropriate
repository to handle the object just deserialized.

To rather use XML to define the data the repositories shall be populated with, you can use the
unmarshaller-populator element. You configure it to use one of the XML marshaller options Spring
OXM provides you with. See the Spring reference documentation for details.

29

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/oxm.html

Example 31. Declaring an unmarshalling repository populator (using JAXB)

<?xml version="1.0" encoding="UTF-8"7>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xmlns:repository="http://www.springframework.org/schema/data/repository"
xmlns:oxm="http://www.springframework.org/schema/oxm"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/data/repository
http://www.springframework.org/schema/data/repository/spring-repository.xsd
http://www.springframework.org/schema/oxm
http://www.springframework.org/schema/oxm/spring-oxm.xsd">

<repository:unmarshaller-populator locations="classpath:data.json"
unmarshaller-ref="unmarshaller" />

<oxm:jaxb2-marshaller contextPath="com.acme" />

</beans>

4.7.3. Legacy web support

Domain class web binding for Spring MVC

Given you are developing a Spring MVC web application you typically have to resolve domain class
ids from URLs. By default your task is to transform that request parameter or URL part into the
domain class to hand it to layers below then or execute business logic on the entities directly. This
would look something like this:

30

@Controller
@RequestMapping("/users")
public class UserController {

private final UserRepository userRepository;

@Autowired

public UserController(UserRepository userRepository) {
Assert.notNull(repository, "Repository must not be null!");
this.userRepository = userRepository;

}

@RequestMapping("/{id}")
public String showUserForm(@PathVariable("id") Long id, Model model) {

// Do null check for id
User user = userRepository.findOne(id);
// Do null check for user

model.addAttribute("user", user);
return "user";

First you declare a repository dependency for each controller to look up the entity managed by the
controller or repository respectively. Looking up the entity is boilerplate as well, as it’s always a
findOne(---) call. Fortunately Spring provides means to register custom components that allow
conversion between a String value to an arbitrary type.

PropertyEditors

For Spring versions before 3.0 simple Java PropertyEditors had to be used. To integrate with that,
Spring Data offers a DomainClassPropertyEditorRegistrar, which looks up all Spring Data
repositories registered in the ApplicationContext and registers a custom PropertyEditor for the
managed domain class.

<bean class=":--.web.servlet.mvc.annotation.AnnotationMethodHandlerAdapter">
<property name="webBindingInitializer">
<bean class="++-.web.bind.support.ConfigurableWebBindingInitializer">

<property name="propertyEditorRegistrars">
<bean class=
"org.springframework.data.repository.support.DomainClassPropertyEditorRegistrar" />
</property>
</bean>
</property>
</bean>

If you have configured Spring MVC as in the preceding example, you can configure your controller

31

as follows, which reduces a lot of the clutter and boilerplate.

("/users")
public class UserController {

("/{id}")
public String showUserForm(("id") User user, Model model) {

model.addAttribute("user", user);
return "userForm";

}
}

Reference Documentation

Document Structure

This part of the reference documentation explains the core functionality offered by Spring Data
Cassandra.

Cassandra support introduces the Cassandra module feature set.

Cassandra repositories introduces the repository support for Cassandra.

32

Chapter 5. Cassandra support

The Cassandra support contains a wide range of features which are summarized below.
» Spring configuration support using Java based @Configuration classes or an XML namespace
for a Cassandra driver instance and replica sets

* CassandraTemplate helper class that increases productivity performing common Cassandra
operations. Includes integrated object mapping between CQL Tables and PO]JOs.

» Exception translation into Spring’s portable Data Access Exception hierarchy

» Feature Rich Object Mapping integrated with Spring’s Conversion Service

* Annotation based mapping metadata but extensible to support other metadata formats

* Persistence and mapping lifecycle events

 Java based Query, Criteria, and Update DSLs

* Automatic implementation of Repository interfaces including support for custom finder

methods.

For most tasks you will find yourself using CassandraTemplate or the Repository support that both
leverage the rich mapping functionality. CassandraTemplate is the place to look for accessing
functionality such as incrementing counters or ad-hoc CRUD operations. CassandraTemplate also
provides callback methods so that it is easy for you to get a hold of the low level API artifacts such
as com.datastax.driver.core.Session to communicate directly with Cassandra. The goal with
naming conventions on various API artifacts is to copy those in the base DataStax Java driver so you
can easily map your existing knowledge onto the Spring APIs.

5.1. Getting Started

Spring Data Cassandra uses the DataStax Java Driver version 2.X, which supports DataStax
Enterprise 4/Cassandra 2.0, and Java SE 6 or higher. The latest commercial release (2.X as of this
writing) is recommended. An easy way to bootstrap setting up a working environment is to create a
Spring based project in STS.

First you need to set up a running Cassandra server.

To create a Spring project in STS go to File - New - Spring Template Project — Simple Spring
Utility Project — press Yes when prompted. Then enter a project and a package name such as
org.spring.cassandra.example.

Then add the following to pom.xml dependencies section.

33

http://spring.io/tools/sts

<dependencies>
<!-- other dependency elements omitted -->

<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-cassandra</artifactId>
<version>1.0.0.RELEASE</version>

</dependency>

</dependencies>

Also change the version of Spring in the pom.xml to be

<spring.framework.version>3.2.8.RELEASE</spring.framework.version>

You will also need to add the location of the Spring Milestone repository for maven to your
pom.xml which is at the same level of your <dependencies/> element

<repositories>
<repository>
<id>spring-milestone</id>
<name>Spring Maven MILESTONE Repository</name>
<url>http://repo.spring.io/libs-milestone</url>
</repository>
</repositories>

The repository is also browseable here.

Create a simple Employee class to persist.

34

http://shrub.appspot.com/maven.springframework.org/milestone/org/springframework/data/

package org.spring.cassandra.example;

import org.springframework.data.cassandra.mapping.PrimaryKey;
import org.springframework.data.cassandra.mapping.Table;

@Table
public class Person {

@PrimaryKey
private String id;

private String name;
private int age;

public Person(String id, String name, int age) {
this.id = id;

this.name = name;

this.age = age;

}

public String getId() {
return id;

}

public String getName() {
return name;

}

public int getAge() {
return age;

}

@0verride
public String toString() {
return "Person [id=" + id +

}

, name=" + name + ", age='

+ age + n]n;

And a main application to run

35

package org.spring.cassandra.example;

import java.net.InetAddress;
import java.net.UnknownHostException;

import org.s1f4j.Logger;

import org.s1f4j.LoggerFactory;

import org.springframework.data.cassandra.core.CassandraOperations;
import org.springframework.data.cassandra.core.CassandraTemplate;

import com.datastax.driver.core.Cluster;

import com.datastax.driver.core.Session;

import com.datastax.driver.core.querybuilder.QueryBuilder;

import com.datastax.driver.core.querybuilder.Select;

public class CassandraApp {

private static final Logger LOG = LoggerFactory.getLogger(CassandraApp.class);

private static Cluster cluster;
private static Session session;

public static void main(String[] args) {

try {
cluster = Cluster.builder().addContactPoints(InetAddress.getLocalHost()).build();
session = cluster.connect("mykeyspace");

CassandraOperations cassandraOps = new CassandraTemplate(session);
cassandralps.insert(new Person("1234567890", "David", 40));

Select s = QueryBuilder.select().from("person");
s.where(QueryBuilder.eq("id", "1234567890"));

L0G.info(cassandralps.queryForObject(s, Person.class).getId());
cassandraOps.truncate("person");
} catch (UnknownHostException e) {

e.printStackTrace();
}

Even in this simple example, there are a few things to observe.

36

* You can create an instance of CassandraTemplate with a Cassandra Session, derived from the
Cluster.

* You must annotate your POJO as a Cassandra @Table, and also annotate the @PrimaryKey.
Optionally you can override these mapping names to match your Cassandra database table and
column names.

* You can use CQL String, or the DataStax QueryBuilder to construct you queries.

5.2. Examples Repository

After the initial release of Spring Data Cassandra 1.0.0, we will start working on a showcase
repository with full examples.

5.3. Connecting to Cassandra with Spring

5.3.1. Externalize Connection Properties

Create a properties file with the information you need to connect to Cassandra. The contact points
are keyspace are the minimal required fields, but port is added here for clarity.

We will call this cassandra.properties

cassandra.contactpoints=10.1.55.80,10.1.55.81
cassandra.port=9042
cassandra.keyspace=showcase

We will use spring to load these properties into the Spring Context in the next two examples.

5.3.2. XML Configuration

The XML Configuration elements for a basic Cassandra configuration are shown below. These
elements all use default bean names to keep the configuration code clean and readable.

While this example show how easy it is to configure Spring to connect to Cassandra, there are many
other options. Basically, any option available with the DataStax Java Driver is also available in the
Spring Data Cassandra configuration. This is including, but not limited to Authentication, Load
Balancing Policies, Retry Policies and Pooling Options. All of the Spring Data Cassandra method
names and XML elements are named exactly (or as close as possible) like the configuration options
on the driver so mapping any existing driver configuration should be straight forward.

37

<?xml version='1.0"'?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xmlns:cassandra=
"http://www.springframework.org/schema/data/cassandra”
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemalocation="http://www.springframework.org/schema/cql
http://www.springframework.org/schema/cql/spring-cql-1.0.xsd
http://www.springframework.org/schema/data/cassandra
http://www.springframework.org/schema/data/cassandra/spring-cassandra-1.0.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-3.2.xsd">

<!-- Loads the properties into the Spring Context and uses them to fill
in placeholders in the bean definitions -->
<context:property-placeholder location="classpath:cassandra.properties" />

<!-- REQUIRED: The Cassandra Cluster -->
<cassandra:cluster contact-points="${cassandra.contactpoints}"
port="${cassandra.port}" />

<!-- REQUIRED: The Cassandra Session, built from the Cluster, and attaching
to a keyspace -->
<cassandra:session keyspace-name="${cassandra.keyspace}" />

<!-- REQUIRED: The Default Cassandra Mapping Context used by CassandraConverter -->
<cassandra:mapping />

<!-- REQUIRED: The Default Cassandra Converter used by CassandraTemplate -->
<cassandra:converter />

<!-- REQUIRED: The Cassandra Template is the building block of all Spring
Data Cassandra -->

<cassandra:template id="cassandraTemplate" />

<!-- OPTIONAL: If you are using Spring Data Cassandra Repositories, add
your base packages to scan here -->

<cassandra:repositories base-package="org.spring.cassandra.example.repo” />

</beans>

5.3.3. Java Configuration

The following class show a basic and minimal Cassandra configuration using the
AnnotationConfigApplicationContext (aka JavaConfig).

package org.spring.cassandra.example.config;

38

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.

s1f4j.Logger;

s1f4j.LoggerFactory;
beans.factory.annotation.Autowired;
context.annotation.Bean;
context.annotation.Configuration;
context.annotation.PropertySource;
core.env.Environment;

springframework.
springframework.
springframework.
springframework.
springframework.
springframework.
springframework.
springframework.
springframework.
springframework.
springframework.
springframework.
springframework.
springframework.

data.cassandra.
.config.CassandraSessionFactoryBean;
data.cassandra.
.convert.CassandraConverter;
data.cassandra.
data.cassandra.
data.cassandra.
data.cassandra.
data.cassandra.

data.cassandra

data.cassandra

config.CassandraClusterFactoryBean;
config.SchemaAction;

convert.MappingCassandraConverter;
core.Cassandralperations;
core.CassandraTemplate;
mapping.BasicCassandraMappingContext;
mapping.CassandraMappingContext;

org.springframework.data.cassandra.repository.config.EnableCassandraRepositories;

(value = { "classpath:cassandra.properties" })

(basePackages

public class CassandraConfig {

= { "org.spring.cassandra.example.repo” })

private static final Logger LOG = LoggerFactory.getlLogger(CassandraConfig.class);

private Environment env;

public CassandraClusterFactoryBean cluster() {

CassandraClusterFactoryBean cluster =
cluster.setContactPoints(env.getProperty("cassandra.contactpoints"));
cluster.setPort(Integer.parselnt(env.getProperty(“cassandra.port")));

return cluster;

new CassandraClusterFactoryBean();

public CassandraMappingContext mappingContext() {
return new BasicCassandraMappingContext();

}

public CassandraConverter converter() {
return new MappingCassandraConverter(mappingContext());

}

public CassandraSessionFactoryBean session() throws Exception {

39

CassandraSessionFactoryBean session = new CassandraSessionFactoryBean();
session.setCluster(cluster().getObject());
session.setKeyspaceName(env.getProperty("cassandra.keyspace"));
session.setConverter(converter());
session.setSchemaAction(SchemaAction.NONE);

return session;

public CassandraOperations cassandraTemplate() throws Exception {
return new CassandraTemplate(session().getObject());

}
}

5.4. General auditing configuration

Auditing support is not available in the current version.

5.5. Introduction to CassandraTemplate

5.5.1. Instantiating CassandraTemplate

CassandraTemplate should always be configured as a Spring Bean, although we show an example
above where you can instantiate it directly. But for the purposes of this being a Spring module, lets
assume we are using the Spring Container.

CassandraTemplate is an implementation of CassandraOperations. You should always assign your
CassandraTemplate to its interface definition, CassandraOperations.

There are 2 easy ways to get a (assandraTemplate, depending on how you load you Spring
Application Context.

AutoWiring

private CassandraOperations cassandraOperations;

Like all Spring Autowiring, this assumes there is only one bean of type CassandraOperations in the
ApplicationContext. If you have multiple CassandraTemplate beans (which will be the case if you are
working with multiple keyspaces in the same project), use the ~@Qualifier "annotation to designate
which bean you want to Autowire.

40

("myTemplateBeanId")
private CassandraOperations cassandraOperations;

Bean Lookup with ApplicationContext

You can also just lookup the CassandraTemplate bean from the ApplicationContext.

CassandraOperations cassandraOperations = applicationContext.getBean(
"cassandraTemplate”, CassandralOperations.class);

5.6. Saving, Updating, and Removing Rows

CassandraTemplate provides a simple way for you to save, update, and delete your domain objects
and map those objects to documents stored in Cassandra.

5.6.1. How the Composite Primary Key fields are handled in the mapping
layer

Cassandra requires that you have at least 1 Partition Key field for a CQL Table. Alternately, you can
have one or more Clustering Key fields. When your CQL Table has a composite Primary Key field
you must create a @PrimaryKeyClass to define the structure of the composite PK. In this context,
composite PK means one or more partition columns, or 1 partition column plus one or more
clustering columns.

Simplest Composite Key

The simplest for of a Composite key is a key with one partition key and one clustering key. Here is
an example of a CQL Table, and the corresponding POJOs that represent the table and it’s composite
key.

CQL Table defined in Cassandra

create table login_event(
person_id text,
event_time timestamp,
event_code int,
ip_address text,
primary key (person_id, event_time))
with CLUSTERING ORDER BY (event_time DESC)

Class defining the Composite Primary Key.

41

42

PrimaryKeyClass must implement Serializable and provide implementation of

NOTE
hashCode() and equals() just like the example.

package org.spring.cassandra.example;

import java.io.Serializable;
import java.util.Date;

import org.springframework.cassandra.core.Ordering;

import org.springframework.cassandra.core.PrimaryKeyType;

import org.springframework.data.cassandra.mapping.PrimaryKeyClass;
import org.springframework.data.cassandra.mapping.PrimaryKeyColumn;

public class LoginEventKey implements Serializable {

(name = "person_id", ordinal = 0, type = PrimaryKeyType.
PARTITIONED)
private String personld;

(name = "event_time", ordinal = 1, type = PrimaryKeyType.CLUSTERED,
ordering = Ordering.DESCENDING)
private Date eventTime;

public String getPersonId() {
return personld;

}

public void setPersonId(String personld) {
this.personld = personld;

}

public Date getEventTime() {
return eventTime;

}

public void setEventTime(Date eventTime) {
this.eventTime = eventTime;

}

public int hashCode() {
final int prime = 31;
int result = 1;
result = prime * result + ((eventTime == null) ? O : eventTime.hashCode());
result = prime * result + ((personld == null) ? @ : personId.hashCode());
return result;

public boolean equals(Object obj) {
if (this == obj)
return true;
if (obj == null)
return false;
if (getClass() != obj.getClass())
return false;
LoginEventKey other = (LoginEventKey) obj;
if (eventTime == null) {
if (other.eventTime != null)
return false;
} else if (leventTime.equals(other.eventTime))
return false;
if (personld == null) {
if (other.personld != null)
return false;
} else if (!personld.equals(other.personld))
return false;
return true;
}
}

Class defining the CQL Table, having the Composite Primary Key as an attribute and annotated as
the PrimaryKey.

43

package org.spring.cassandra.example;

import org.springframework.data.cassandra.mapping.Column;
import org.springframework.data.cassandra.mapping.PrimaryKey;
import org.springframework.data.cassandra.mapping.Table;

(value = "login_event")
public class LoginEvent {

private LoginEventKey pk;

(value = "event_code")
private int eventCode;

(value = "ip_address")
private String ipAddress;

public LoginEventKey getPk() {
return pk;

}

public void setPk(LoginEventKey pk) {
this.pk = pk;
}

public int getEventCode() {
return eventCode;

}

public void setEventCode(int eventCode) {
this.eventCode = eventCode;

}

public String getIpAddress() {
return ipAddress;

}

public void setIpAddress(String ipAddress) {
this.ipAddress = ipAddress;
}

Complex Composite Primary Key

The annotations provided with Spring Data Cassandra can handle any key combination available in
Cassandra. Here is one more example of a Composite Primary Key with 5 columns, 2 of which are a
composite partition key, and the remaining 3 are ordered clustering keys. The getters/setters,

44

hashCode and equals are omitted for brevity.

package org.spring.cassandra.example;

import java.io.Serializable;
import java.util.Date;

import org.springframework.cassandra.core.Ordering;

import org.springframework.cassandra.core.PrimaryKeyType;

import org.springframework.data.cassandra.mapping.PrimaryKeyClass;
import org.springframework.data.cassandra.mapping.PrimaryKeyColumn;

public class DetailedLoginEventKey implements Serializable {

(name = "person_id", ordinal = 0, type = PrimaryKeyType.
PARTITIONED)
private String personld;

(name = "wks_id", ordinal = 1, type = PrimaryKeyType.PARTITIONED)
private String workstationId;

(ordinal = 2, type = PrimaryKeyType.CLUSTERED, ordering = Ordering
.ASCENDING)
private Date application;

(name = "event_code", ordinal = 3, type = PrimaryKeyType.CLUSTERED,
ordering = Ordering.ASCENDING)
private Date eventCode;
(name = "event_time", ordinal = 4, type = PrimaryKeyType.CLUSTERED,

ordering = Ordering.DESCENDING)
private Date eventTime;

5.6.2. Type mapping

Spring Data Cassandra relies on the DataStax Java Driver type mapping component. This approach
ensures that as types are added or changed, the Spring Data Cassandra module will continue to
function without requiring changes. For more information on the DataStax CQL3 to Java Type
mappings, please see their Documentation here.

5.6.3. Methods for saving and inserting rows

45

http://www.datastax.com/documentation/developer/java-driver/2.0/java-driver/reference/javaClass2Cql3Datatypes_r.html

Single records inserts

To insert one row at a time, there are many options. At this point you should already have a
cassandraTemplate available to you so we will just how the relevant code for each section, omitting
the template setup.

Insert a record with an annotated POJO.

cassandraOperations.insert(new Person("123123123", "Alison", 39));

Insert a row using the QueryBuilder.Insert object that is part of the DataStax Java Driver.

Insert insert = QueryBuilder.insertInto("person");
insert.setConsistencylevel(ConsistencylLevel.ONE);
insert.value("id", "123123123");
insert.value("name", "Alison");
insert.value("age", 39);

cassandralperations.execute(insert);

Then there is always the old fashioned way. You can write your own CQL statements.

String cql = "insert into person (id, name, age) values ('123123123', 'Alison', 39)";

cassandraOperations.execute(cql);

Multiple inserts for high speed ingestion

CQLOperations, which is extended by CassandraOperations is a lower level Template that you can
use for just about anything you need to accomplish with Cassandra. CqlOperations includes several
overloaded methods named ingest().

Use these methods to pass a CQL String with Bind Markers, and your preferred flavor of data set
(Object[][] and List<List<T>>).

The ingest method takes advantage of static PreparedStatements that are only prepared once for
performance. Each record in your data list is bound to the same PreparedStatement, then executed
asynchronously for high performance.

46

String cqlIngest = "insert into person (id, name, age) values (?, ?, 7)";

List<Object> person1 = new ArrayList<Object>();
person.add("10000");

personl.add("David");

persont.add(40);

List<Object> person2 = new ArraylList<Object>();
person2.add("10001");

person2.add("Roger");

person2.add(65);

List<List<?>> people
people.add(personl);
people.add(person2);

new ArraylList<List<?>>();

cassandraOperations.ingest(cqlIngest, people);

5.6.4. Updating rows in a CQL table

Much like inserting, there are several flavors of update from which you can choose.

Update a record with an annotated POJO.
cassandraOperations.update(new Person("123123123", "Alison", 35));
Update a row using the QueryBuilder.Update object that is part of the DataStax Java Driver.

Update update = QueryBuilder.update("person");
update.setConsistencylLevel(ConsistencylLevel.ONE);
update.with(QueryBuilder.set("age", 35));
update.where(QueryBuilder.eq("id", "123123123"));

cassandralperations.execute(update);
Then there is always the old fashioned way. You can write your own CQL statements.

String cql = "update person set age = 35 where id = '123123123"";

cassandralperations.execute(cql);

5.6.5. Methods for removing rows
Much like inserting, there are several flavors of delete from which you can choose.

Delete a record with an annotated PO]JO.

47

cassandraOperations.delete(new Person("123123123", null, 0));
Delete a row using the QueryBuilder.Delete object that is part of the DataStax Java Driver.

Delete delete = QueryBuilder.delete().from("person");
delete.where(QueryBuilder.eq("id", "123123123"));

cassandraOperations.execute(delete);
Then there is always the old fashioned way. You can write your own CQL statements.

String cql = "delete from person where id = '123123123'";

cassandraOperations.execute(cql);

5.6.6. Methods for truncating tables

Much like inserting, there are several flavors of truncate from which you can choose.

Truncate a table using the truncate() method.
cassandraOperations.truncate("person");
Truncate a table using the QueryBuilder.Truncate object that is part of the DataStax Java Driver.

Truncate truncate = QueryBuilder.truncate("person");

cassandralperations.execute(truncate);
Then there is always the old fashioned way. You can write your own CQL statements.

String cql = "truncate person";

cassandralperations.execute(cql);

5.7. Querying CQL Tables

Tthere are several flavors of select and query from which you can choose. Please see the
CassandraTemplate API documentation for all overloads available.

Query a table for multiple rows and map the results to a POJO.

48

String cqlAll = "select * from person";

List<Person> results = cassandraOperations.select(cqlAll, Person.class);
for (Person p : results) {
L0G.info(String.format("Found People with Name [%s] for id [%s]", p.getName(), p
.getld()));
}

Query a table for a single row and map the result to a POJO.

String cqlOne = "select * from person where id = '123123123"";

Person p = cassandraOperations.selectOne(cqlOne, Person.class);
L0G.info(String.format("Found Person with Name [%s] for id [%s]", p.getName(), p.
getld()));

Query a table using the QueryBuilder.Select object that is part of the DataStax Java Driver.

Select select = QueryBuilder.select().from("person");
select.where(QueryBuilder.eq("id", "123123123"));

Person p = cassandraOperations.selectOne(select, Person.class);
L0G.info(String.format("Found Person with Name [%s] for id [%s]", p.getName(), p.
getId()));

Then there is always the old fashioned way. You can write your own CQL statements, and there are

several callback handlers for mapping the results. The example uses the RowMapper interface.

String cqlAll = "select * from person”;
List<Person> results = cassandraOperations.query(cqlAll, new RowMapper<Person>() {

public Person mapRow(Row row, int rowNum) throws DriverException {
Person p = new Person(row.getString("id"), row.getString("name"), row.getInt(
"age"));
return p;
Iy
3

for (Person p : results) {

L0G.info(String.format("Found People with Name [%s] for id [%s]", p.getName(), p
.getId()));
}

5.8. Overriding default mapping with custom
converters

In order to have more fine grained control over the mapping process you can register Spring
converters with the CassandraConverter implementations such as the MappingCassandraConverter.

The MappingCassandraConverter checks to see if there are any Spring converters that can handle a
specific class before attempting to map the object itself. To 'hijack' the normal mapping strategies of
the MappingCassandraConverter, perhaps for increased performance or other custom mapping needs,
you first need to create an implementation of the Spring Converter interface and then register it
with the MappingConverter.

For more information on the Spring type conversion service see the reference docs

NOTE
here.

5.8.1. Saving using a registered Spring Converter

Coming Soon!

5.8.2. Reading using a Spring Converter

Coming Soon!

5.8.3. Registering Spring Converters with the CassandraConverter

Coming Soon!

5.8.4. Converter disambiguation

Coming Soon!

5.9. Executing Commands

5.9.1. Methods for executing commands

The CassandraTemplate has many overloads for execute() and executeAsync(). Pass in the CQL
command you wish to be executed, and handle the appropriate response.

This example uses the basic AsynchronousQueryListener that comes with Spring Data Cassandra.
Please see the API documentation for all the options. There should be nothing you cannot perform
in Cassandra with the execute() and executeAsync() methods.

50

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/validation.html#core-convert

cassandralperations.executeAsynchronously("delete from person where id = '123123123"'",
new AsynchronousQueryListener() {

public void onQueryComplete(ResultSetFuture rsf) {
LOG.info("Async Query Completed");
}
1)

This example shows how to create and drop a table, using different API objects, all passed to the
execute() methods.

cassandraOperations.execute("create table test_table (id uuid primary key, event
text)");

DropTableSpecification dropper = DropTableSpecification.dropTable("test_table");
cassandralperations.execute(dropper);

5.10. Exception Translation

The Spring framework provides exception translation for a wide variety of database and mapping
technologies. This has traditionally been for JDBC and JPA. The Spring support for Cassandra
extends this feature to the Cassandra Database by providing an implementation of the
org.springframework.dao.support.PersistenceExceptionTranslator interface.

The motivation behind mapping to Spring’s consistent data access exception hierarchy is that you
are then able to write portable and descriptive exception handling code without resorting to coding
against Cassandra Exceptions. All of Spring’s data access exceptions are inherited from the root
DataAccessException class so you can be sure that you will be able to catch all database related
exception within a single try-catch block.

51

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/dao.html#dao-exceptions

Chapter 6. Cassandra repositories

6.1. Introduction

This chapter will point out the specialties for repository support for Cassandra. This builds on the
core repository support explained in Working with Spring Data Repositories. So make sure you’ve
got a sound understanding of the basic concepts explained there.

6.2. Usage

To access domain entities stored in a Cassandra you can leverage our sophisticated repository
support that eases implementing those quite significantly. To do so, simply create an interface for
your repository:

TODO

6.3. Query methods

6.3.1. Repository delete queries

6.4. Miscellaneous

6.4.1. CDI Integration

The Spring Data Cassandra CDI extension will pick up the CassandraTemplate available as CDI bean
and create a proxy for a Spring Data repository whenever an bean of a repository type is requested
by the container. Thus obtaining an instance of a Spring Data repository is a matter of declaring an
@Inject-ed property:

class RepositoryClient {

PersonRepository repository;
public void businessMethod() {

List<Person> people = repository.findA11();
Iy
}

52

Chapter 7. Mapping

Rich mapping support is provided by the CassandraMappingConverter . CassandraMappingConverter has
a rich metadata model that provides a full feature set of functionality to map domain objects to CQL
Tables. The mapping metadata model is populated using annotations on your domain objects.
However, the infrastructure is not limited to using annotations as the only source of metadata
information. The CassandraMappingConverter also allows you to map objects to documents without
providing any additional metadata, by following a set of conventions.

In this section we will describe the features of the CassandraMappingConverter. How to use
conventions for mapping objects to documents and how to override those conventions with
annotation based mapping metadata.

7.1. Convention based Mapping

CassandraMappingConverter has a few conventions for mapping objects to CQL Tables when no
additional mapping metadata is provided. The conventions are:

* The short Java class name is mapped to the table name in the following manner. The class
com.bigbank.SavingsAccount maps to savings_account table name.

* The converter will use any Spring Converters registered with it to override the default mapping
of object properties to document field/values.

» The fields of an object are used to convert to and from fields in the document. Public JavaBean
properties are not used.

7.1.1. How the CQL Composite Primary Key fields are handled in the
mapping layer

TODO

7.1.2. Mapping Configuration

Unless explicitly configured, an instance of CassandraMappingConverter is created by default when
creating a CassandraTemplate . You can create your own instance of the MappingCassandraConverter so
as to tell it where to scan the classpath at startup your domain classes in order to extract metadata
and construct indexes. Also, by creating your own instance you can register Spring converters to
use for mapping specific classes to and from the database.

You can configure the CassandraMappingConverter and CassandraTemplate either using Java or XML
based metadata. Here is an example using Spring’s Java based configuration

Example 32. @Configuration class to configure Cassandra mapping support

TODO

53

Example 33. XML schema to configure Cassandra mapping support

TODO

Appendix

54

Appendix A: Namespace reference

The <repositories /> element

The <repositories /> element triggers the setup of the Spring Data repository infrastructure. The
most important attribute is base-package which defines the package to scan for Spring Data
repository interfaces. [3: see XML configuration]

Table 2. Attributes

Name

base-package

repository-impl-
postfix

query-Llookup-strategy

named-queries-location

consider-nested-
repositories

Description

Defines the package to be used to be scanned for repository interfaces
extending *Repository (actual interface is determined by specific Spring
Data module) in auto detection mode. All packages below the configured
package will be scanned, too. Wildcards are allowed.

Defines the postfix to autodetect custom repository implementations.
Classes whose names end with the configured postfix will be considered
as candidates. Defaults to Impl.

Determines the strategy to be used to create finder queries. See Query
lookup strategies for details. Defaults to create-if-not-found.

Defines the location to look for a Properties file containing externally
defined queries.

Controls whether nested repository interface definitions should be
considered. Defaults to false.

55

Appendix B: Populators namespace
reference

The <populator /> element

The <populator /> element allows to populate the a data store via the Spring Data repository
infrastructure. [4: see XML configuration]

Table 3. Attributes

Name Description
locations Where to find the files to read the objects from the repository shall be
populated with.

56

Appendix C: Repository query keywords
Supported query keywords

The following table lists the keywords generally supported by the Spring Data repository query
derivation mechanism. However, consult the store-specific documentation for the exact list of
supported keywords, because some listed here might not be supported in a particular store.

Table 4. Query keywords

Logical keyword Keyword expressions

AND And

OR Or

AFTER After, IsAfter

BEFORE Before, IsBefore

CONTAINING Containing, IsContaining, Contains
BETWEEN

ENDING_WITH

EXISTS
FALSE

GREATER_THAN

GREATER_THAN_EQUALS

Between, IsBetween

EndingWith, IsEndingWith, EndsWith
Exists

False, IsFalse

GreaterThan, IsGreaterThan

GreaterThanEqual, IsGreaterThanEqual

IN In, IsIn

IS Is, Equals, (or no keyword)
IS_NOT_NULL NotNull, IsNotNull

IS_NULL Null, IsNull

LESS_THAN

LESS_THAN_EQUAL

LessThan, IsLessThan

LessThanEqual, IsLessThanEqual

LIKE Like, IsLike

NEAR Near, IsNear

NOT Not, IsNot

NOT_IN NotIn, IsNotIn
NOT_LIKE NotLike, IsNotLike
REGEX

STARTING_WITH

TRUE

Regex, MatchesRegex, Matches
StartingWith, IsStartingWith, StartsWith

True, IsTrue

57

Logical keyword
WITHIN

58

Keyword expressions

Within, IsWithin

Appendix D: Repository query return types

Supported query return types

The following table lists the return types generally supported by Spring Data repositories. However,
consult the store-specific documentation for the exact list of supported return types, because some
listed here might not be supported in a particular store.

NOTE

Geospatial types like (GeoResult, GeoResults, GeoPage) are only available for data

stores that support geospatial queries.

Table 5. Query return types

Return type
void

Primitives
Wrapper types
-

Iterator<T>
Collection<T>
List<T>

Optional<T>

Stream<T>

Future<T>

CompletableFuture<T>

ListenableFuture

Slice

Page<T>

Description

Denotes no return value.
Java primitives.

Java wrapper types.

An unique entity. Expects the query method to return one result at most.
In case no result is found null is returned. More than one result will
trigger an IncorrectResultSizeDataAccessException.

An Iterator.
A Collection.
A List.

A Java 8 or Guava Optional. Expects the query method to return one
result at most. In case no result is found Optional.empty()
/Optional.absent() is returned. More than one result will trigger an
IncorrectResultSizeDataAccessException.

AJava 8 Stream.

A Future. Expects method to be annotated with @Async and requires
Spring’s asynchronous method execution capability enabled.

AJava 8 CompletableFuture. Expects method to be annotated with @Async
and requires Spring’s asynchronous method execution capability
enabled.

A org.springframework.util.concurrent.ListenableFuture. Expects method
to be annotated with @Async and requires Spring’s asynchronous method
execution capability enabled.

A sized chunk of data with information whether there is more data
available. Requires a Pageable method parameter.

A Slice with additional information, e.g. the total number of results.
Requires a Pageable method parameter.

59

Return type Description

GeoResult<T> A result entry with additional information, e.g. distance to a reference
location.
GeoResults<T> A list of GeoResult<T> with additional information, e.g. average distance to

a reference location.

GeoPage<T> A Page with GeoResult<T>, e.g. average distance to a reference location.

60

	Spring Data Cassandra - Reference Documentation
	Table of Contents
	Preface
	Chapter 1. Project Metadata

	Introduction
	Chapter 2. Requirements
	Chapter 3. Additional Help Resources
	3.1. Support
	3.1.1. Questions & Answers
	3.1.2. Professional Support

	3.2. Following Development

	Chapter 4. Working with Spring Data Repositories
	4.1. Core concepts
	4.2. Query methods
	4.3. Defining repository interfaces
	4.3.1. Fine-tuning repository definition

	4.4. Defining query methods
	4.4.1. Query lookup strategies
	4.4.2. Query creation
	4.4.3. Property expressions
	4.4.4. Special parameter handling
	4.4.5. Limiting query results
	4.4.6. Streaming query results
	4.4.7. Async query results

	4.5. Creating repository instances
	4.5.1. XML configuration
	4.5.2. JavaConfig
	4.5.3. Standalone usage

	4.6. Custom implementations for Spring Data repositories
	4.6.1. Adding custom behavior to single repositories
	4.6.2. Adding custom behavior to all repositories

	4.7. Spring Data extensions
	4.7.1. Web support
	4.7.2. Repository populators
	4.7.3. Legacy web support

	Reference Documentation
	Chapter 5. Cassandra support
	5.1. Getting Started
	5.2. Examples Repository
	5.3. Connecting to Cassandra with Spring
	5.3.1. Externalize Connection Properties
	5.3.2. XML Configuration
	5.3.3. Java Configuration

	5.4. General auditing configuration
	5.5. Introduction to CassandraTemplate
	5.5.1. Instantiating CassandraTemplate

	5.6. Saving, Updating, and Removing Rows
	5.6.1. How the Composite Primary Key fields are handled in the mapping layer
	5.6.2. Type mapping
	5.6.3. Methods for saving and inserting rows
	5.6.4. Updating rows in a CQL table
	5.6.5. Methods for removing rows
	5.6.6. Methods for truncating tables

	5.7. Querying CQL Tables
	5.8. Overriding default mapping with custom converters
	5.8.1. Saving using a registered Spring Converter
	5.8.2. Reading using a Spring Converter
	5.8.3. Registering Spring Converters with the CassandraConverter
	5.8.4. Converter disambiguation

	5.9. Executing Commands
	5.9.1. Methods for executing commands

	5.10. Exception Translation

	Chapter 6. Cassandra repositories
	6.1. Introduction
	6.2. Usage
	6.3. Query methods
	6.3.1. Repository delete queries

	6.4. Miscellaneous
	6.4.1. CDI Integration

	Chapter 7. Mapping
	7.1. Convention based Mapping
	7.1.1. How the CQL Composite Primary Key fields are handled in the mapping layer
	7.1.2. Mapping Configuration

	Appendix
	Appendix A: Namespace reference
	The <repositories /> element

	Appendix B: Populators namespace reference
	The <populator /> element

	Appendix C: Repository query keywords
	Supported query keywords

	Appendix D: Repository query return types
	Supported query return types

