

 PREFACE

The Spring Data for Apache Cassandra project applies core Spring concepts to the development of solutions using
the Cassandra Columnar data store. A "template" is provided as a high-level abstraction for storing
and querying documents. You will notice similarities to the JDBC support
in the core Spring Framework.

This document is the reference guide for Spring Data support for Cassandra. It explains Cassandra module concepts,
semantics and the syntax for various stores namespaces.

This section provides a basic introduction to Spring, Spring Data and the Cassandra database. The rest of the document
refers only to Spring Data for Apache Cassandra features and assumes the user is familiar with Cassandra as well as
core Spring concepts.

Knowing Spring

Spring Data uses the Spring Framework’s core
functionality, such as the IoC container,
validation, type conversion and data binding,
expression language,
AOP,
JMX integration,
DAO support, and specifically
the DAO Exception Hierarchy.

While it is not important to know the Spring APIs, understanding the concepts behind them is. At a minimum, the idea
behind IoC should be familiar no matter what IoC container you choose to use.

The core functionality of the Cassandra support can be used directly, with no need to invoke the IoC services
of the Spring container. This is much like JdbcTemplate, which can be used 'standalone' without any other services
of the Spring container. To leverage all the features of Spring Data for Apache Cassandra, such as the repository support,
you will need to configure some parts of the library using Spring.

To learn more about Spring, you can refer to the comprehensive (and sometimes disarming) documentation
that explains in detail the Spring Framework. There are a lot of articles, blog entries and books on the matter.
Take a look at the Spring Framework home page for more information.

Knowing NoSQL and Cassandra

NoSQL stores have taken the storage world by storm. It is a vast domain with a plethora of solutions, terms and patterns
(to make things worse, even the term itself has multiple meanings).
While some of the principles are common, it is crucial that the user is familiar to some degree with
the Cassandra Columnar NoSQL Datastore supported by Spring Data for Apache Cassandra. The best way to get acquainted with Cassandra
is to read the documentation and follow the examples. It usually doesn’t take more then 5-10 minutes to go through them
and if you are coming from a RDBMS background, many times these exercises can be an eye opener.

The starting ground for learning about Cassandra is cassandra.apache.org. Also, here is
a list of other useful resources:

	
Planet Cassandra site has many valuable resources for Cassandra best practices.

	
The DataStax site offers commercial support
and many resources, including, but not limited to, documentation,
DataStax Academy, a Tech Blog
and so on.

	
The Cassandra Quick Start provides a convenient way to interact
with a Apache Cassandra instance in combination with the online shell.

Requirements

Spring Data for Apache Cassandra 1.x binaries require JDK level 6.0 and above, and Spring Framework 4.3.14.RELEASE and above.

In terms of Cassandra at least 2.0.

Additional Help Resources

Learning a new framework is not always straight forward. In this section, we try to provide what we
think is an easy to follow guide for starting with Spring Data for Apache Cassandra module.
However, if you encounter issues or you are just looking for an advice, feel free to use one of the links below:

Support

There are a few support options available:

Community Forum

Spring Data on Stackoverflow is a
tag for all Spring Data (not just Cassandra) users to share information and help each other.
Note that registration is needed only for posting.

Developers post questions and answers on . The two key tags to search for related answers to
this project are:

	
spring-data

	
spring-data-cassandra

Professional Support

Professional, from-the-source support, with guaranteed response time, is available from
Pivotal Sofware, Inc., the company behind Spring Data and Spring.

Following Development

For information on the Spring Data for Apache Cassandra source code repository, nightly builds and snapshot artifacts
please see the Spring Data for Apache Cassandra homepage.
You can help make Spring Data best serve the needs of the Spring community by interacting with developers
through the Community on Stackoverflow.
To follow developer activity look for the mailing list information on the Spring Data for Apache Cassandra homepage.
If you encounter a bug or want to suggest an improvement, please create a ticket on the Spring Data issue
tracker. To stay up to date with the latest news and announcements
in the Spring eco system, subscribe to the Spring Community Portal.
Lastly, you can follow the Spring blog or the project team on Twitter (SpringData).

Project Metadata

	
Version Control - https://github.com/spring-projects/spring-data-cassandra

	
Bugtracker - https://jira.spring.io/browse/DATACASS

	
Release repository - https://repo.spring.io/libs-release

	
Milestone repository - https://repo.spring.io/libs-milestone

	
Snapshot repository - https://repo.spring.io/libs-snapshot

 NEW & NOTEWORTHY

What’s new in Spring Data for Apache Cassandra 1.5

	
Assert compatibility with Cassandra 3.0 and Cassandra Java Driver 3.0.

	
Configurable ProtocolVersion and QueryOptions on Cluster level.

	
Support for Optional as query method result and argument.

	
Declarative query methods using query derivation

	
Support for User-Defined types and mapped User-Defined types using @UserDefinedType.

	
The following annotations have been enabled to build own, composed annotations: @Table, @UserDefinedType, @PrimaryKey, @PrimaryKeyClass, @PrimaryKeyColumn, @Column, @Query, @CassandraType.

 DEPENDENCIES

Due to different inception dates of individual Spring Data modules, most of them carry different major and minor version numbers. The easiest way to find compatible ones is by relying on the Spring Data Release Train BOM we ship with the compatible versions defined. In a Maven project you’d declare this dependency in the <dependencyManagement /> section of your POM:

Using the Spring Data release train BOM

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.springframework.data</groupId>
 <artifactId>spring-data-releasetrain</artifactId>
 <version>${release-train}</version>
 <scope>import</scope>
 <type>pom</type>
 </dependency>
 </dependencies>
</dependencyManagement>

The current release train version is Ingalls-SR10. The train names are ascending alphabetically and currently available ones are listed here. The version name follows the following pattern: ${name}-${release} where release can be one of the following:

	
BUILD-SNAPSHOT - current snapshots

	
M1, M2 etc. - milestones

	
RC1, RC2 etc. - release candidates

	
RELEASE - GA release

	
SR1, SR2 etc. - service releases

A working example of using the BOMs can be found in our Spring Data examples repository. If that’s in place declare the Spring Data modules you’d like to use without a version in the <dependencies /> block.

Declaring a dependency to a Spring Data module

<dependencies>
 <dependency>
 <groupId>org.springframework.data</groupId>
 <artifactId>spring-data-jpa</artifactId>
 </dependency>
<dependencies>

Dependency management with Spring Boot

Spring Boot already selects a very recent version of Spring Data modules for you. In case you want to upgrade to a newer version nonetheless, simply configure the property spring-data-releasetrain.version to the train name and iteration you’d like to use.

Spring Framework

The current version of Spring Data modules require Spring Framework in version 4.3.14.RELEASE or better. The modules might also work with an older bugfix version of that minor version. However, using the most recent version within that generation is highly recommended.

 WORKING WITH SPRING DATA REPOSITORIES

The goal of Spring Data repository abstraction is to significantly reduce the amount of boilerplate code required to implement data access layers for various persistence stores.

Spring Data repository documentation and your module

This chapter explains the core concepts and interfaces of Spring Data repositories. The information in this chapter is pulled from the Spring Data Commons module. It uses the configuration and code samples for the Java Persistence API (JPA) module. Adapt the XML namespace declaration and the types to be extended to the equivalents of the particular module that you are using. [repositories.namespace-reference] covers XML configuration which is supported across all Spring Data modules supporting the repository API, [repository-query-keywords] covers the query method keywords supported by the repository abstraction in general. For detailed information on the specific features of your module, consult the chapter on that module of this document.

Core concepts

The central interface in Spring Data repository abstraction is Repository (probably not that much of a surprise). It takes the domain class to manage as well as the id type of the domain class as type arguments. This interface acts primarily as a marker interface to capture the types to work with and to help you to discover interfaces that extend this one. The CrudRepository provides sophisticated CRUD functionality for the entity class that is being managed.

CrudRepository interface

public interface CrudRepository<T, ID extends Serializable>
 extends Repository<T, ID> {

 <S extends T> S save(S entity); ①

 T findOne(ID primaryKey); ②

 Iterable<T> findAll(); ③

 Long count(); ④

 void delete(T entity); ⑤

 boolean exists(ID primaryKey); ⑥

 // … more functionality omitted.
}

	① Saves the given entity.

	② Returns the entity identified by the given id.

	③ Returns all entities.

	④ Returns the number of entities.

	⑤ Deletes the given entity.

	⑥ Indicates whether an entity with the given id exists.

We also provide persistence technology-specific abstractions like e.g. JpaRepository or MongoRepository. Those interfaces extend CrudRepository and expose the capabilities of the underlying persistence technology in addition to the rather generic persistence technology-agnostic interfaces like e.g. CrudRepository.

On top of the CrudRepository there is a PagingAndSortingRepository abstraction that adds additional methods to ease paginated access to entities:

PagingAndSortingRepository

public interface PagingAndSortingRepository<T, ID extends Serializable>
 extends CrudRepository<T, ID> {

 Iterable<T> findAll(Sort sort);

 Page<T> findAll(Pageable pageable);
}

Accessing the second page of User by a page size of 20 you could simply do something like this:

PagingAndSortingRepository<User, Long> repository = // … get access to a bean
Page<User> users = repository.findAll(new PageRequest(1, 20));

In addition to query methods, query derivation for both count and delete queries, is available.

Derived Count Query

public interface UserRepository extends CrudRepository<User, Long> {

 Long countByLastname(String lastname);
}

Derived Delete Query

public interface UserRepository extends CrudRepository<User, Long> {

 Long deleteByLastname(String lastname);

 List<User> removeByLastname(String lastname);

}

Query methods

Standard CRUD functionality repositories usually have queries on the underlying datastore. With Spring Data, declaring those queries becomes a four-step process:

	
Declare an interface extending Repository or one of its subinterfaces and type it to the domain class and ID type that it will handle.

interface PersonRepository extends Repository<Person, Long> { … }

	
Declare query methods on the interface.

interface PersonRepository extends Repository<Person, Long> {
 List<Person> findByLastname(String lastname);
}

	
Set up Spring to create proxy instances for those interfaces. Either via JavaConfig:

import org.springframework.data.jpa.repository.config.EnableJpaRepositories;

@EnableJpaRepositories
class Config {}

or via XML configuration:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jpa="http://www.springframework.org/schema/data/jpa"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/data/jpa
 http://www.springframework.org/schema/data/jpa/spring-jpa.xsd">

 <jpa:repositories base-package="com.acme.repositories"/>

</beans>

The JPA namespace is used in this example. If you are using the repository abstraction for any other store, you need to change this to the appropriate namespace declaration of your store module which should be exchanging jpa in favor of, for example, mongodb.

Also, note that the JavaConfig variant doesn’t configure a package explictly as the package of the annotated class is used by default. To customize the package to scan use one of the basePackage… attribute of the data-store specific repository @Enable…-annotation.

	
Get the repository instance injected and use it.

public class SomeClient {

 @Autowired
 private PersonRepository repository;

 public void doSomething() {
 List<Person> persons = repository.findByLastname("Matthews");
 }
}

The sections that follow explain each step in detail.

Defining repository interfaces

As a first step you define a domain class-specific repository interface. The interface must extend Repository and be typed to the domain class and an ID type. If you want to expose CRUD methods for that domain type, extend CrudRepository instead of Repository.

Fine-tuning repository definition

Typically, your repository interface will extend Repository, CrudRepository or PagingAndSortingRepository. Alternatively, if you do not want to extend Spring Data interfaces, you can also annotate your repository interface with @RepositoryDefinition. Extending CrudRepository exposes a complete set of methods to manipulate your entities. If you prefer to be selective about the methods being exposed, simply copy the ones you want to expose from CrudRepository into your domain repository.

This allows you to define your own abstractions on top of the provided Spring Data Repositories functionality.

Selectively exposing CRUD methods

@NoRepositoryBean
interface MyBaseRepository<T, ID extends Serializable> extends Repository<T, ID> {

 T findOne(ID id);

 T save(T entity);
}

interface UserRepository extends MyBaseRepository<User, Long> {
 User findByEmailAddress(EmailAddress emailAddress);
}

In this first step you defined a common base interface for all your domain repositories and exposed findOne(…) as well as save(…).These methods will be routed into the base repository implementation of the store of your choice provided by Spring Data ,e.g. in the case if JPA SimpleJpaRepository, because they are matching the method signatures in CrudRepository. So the UserRepository will now be able to save users, and find single ones by id, as well as triggering a query to find Users by their email address.

Note, that the intermediate repository interface is annotated with @NoRepositoryBean. Make sure you add that annotation to all repository interfaces that Spring Data should not create instances for at runtime.

Using Repositories with multiple Spring Data modules

Using a unique Spring Data module in your application makes things simple hence, all repository interfaces in the defined scope are bound to the Spring Data module. Sometimes applications require using more than one Spring Data module. In such case, it’s required for a repository definition to distinguish between persistence technologies. Spring Data enters strict repository configuration mode because it detects multiple repository factories on the class path. Strict configuration requires details on the repository or the domain class to decide about Spring Data module binding for a repository definition:

	
If the repository definition extends the module-specific repository, then it’s a valid candidate for the particular Spring Data module.

	
If the domain class is annotated with the module-specific type annotation, then it’s a valid candidate for the particular Spring Data module. Spring Data modules accept either 3rd party annotations (such as JPA’s @Entity) or provide own annotations such as @Document for Spring Data MongoDB/Spring Data Elasticsearch.

Repository definitions using Module-specific Interfaces

interface MyRepository extends JpaRepository<User, Long> { }

@NoRepositoryBean
interface MyBaseRepository<T, ID extends Serializable> extends JpaRepository<T, ID> {
 …
}

interface UserRepository extends MyBaseRepository<User, Long> {
 …
}

MyRepository and UserRepository extend JpaRepository in their type hierarchy. They are valid candidates for the Spring Data JPA module.

Repository definitions using generic Interfaces

interface AmbiguousRepository extends Repository<User, Long> {
 …
}

@NoRepositoryBean
interface MyBaseRepository<T, ID extends Serializable> extends CrudRepository<T, ID> {
 …
}

interface AmbiguousUserRepository extends MyBaseRepository<User, Long> {
 …
}

AmbiguousRepository and AmbiguousUserRepository extend only Repository and CrudRepository in their type hierarchy. While this is perfectly fine using a unique Spring Data module, multiple modules cannot distinguish to which particular Spring Data these repositories should be bound.

Repository definitions using Domain Classes with Annotations

interface PersonRepository extends Repository<Person, Long> {
 …
}

@Entity
public class Person {
 …
}

interface UserRepository extends Repository<User, Long> {
 …
}

@Document
public class User {
 …
}

PersonRepository references Person which is annotated with the JPA annotation @Entity so this repository clearly belongs to Spring Data JPA. UserRepository uses User annotated with Spring Data MongoDB’s @Document annotation.

Repository definitions using Domain Classes with mixed Annotations

interface JpaPersonRepository extends Repository<Person, Long> {
 …
}

interface MongoDBPersonRepository extends Repository<Person, Long> {
 …
}

@Entity
@Document
public class Person {
 …
}

This example shows a domain class using both JPA and Spring Data MongoDB annotations. It defines two repositories, JpaPersonRepository and MongoDBPersonRepository. One is intended for JPA and the other for MongoDB usage. Spring Data is no longer able to tell the repositories apart which leads to undefined behavior.

Repository type details and identifying domain class annotations are used for strict repository configuration identify repository candidates for a particular Spring Data module. Using multiple persistence technology-specific annotations on the same domain type is possible to reuse domain types across multiple persistence technologies, but then Spring Data is no longer able to determine a unique module to bind the repository.

The last way to distinguish repositories is scoping repository base packages. Base packages define the starting points for scanning for repository interface definitions which implies to have repository definitions located in the appropriate packages. By default, annotation-driven configuration uses the package of the configuration class. The base package in XML-based configuration is mandatory.

Annotation-driven configuration of base packages

@EnableJpaRepositories(basePackages = "com.acme.repositories.jpa")
@EnableMongoRepositories(basePackages = "com.acme.repositories.mongo")
interface Configuration { }

Defining query methods

The repository proxy has two ways to derive a store-specific query from the method name. It can derive the query from the method name directly, or by using a manually defined query. Available options depend on the actual store. However, there’s got to be a strategy that decides what actual query is created. Let’s have a look at the available options.

Query lookup strategies

The following strategies are available for the repository infrastructure to resolve the query. You can configure the strategy at the namespace through the query-lookup-strategy attribute in case of XML configuration or via the queryLookupStrategy attribute of the Enable${store}Repositories annotation in case of Java config. Some strategies may not be supported for particular datastores.

	
CREATE attempts to construct a store-specific query from the query method name. The general approach is to remove a given set of well-known prefixes from the method name and parse the rest of the method. Read more about query construction in Query creation.

	
USE_DECLARED_QUERY tries to find a declared query and will throw an exception in case it can’t find one. The query can be defined by an annotation somewhere or declared by other means. Consult the documentation of the specific store to find available options for that store. If the repository infrastructure does not find a declared query for the method at bootstrap time, it fails.

	
CREATE_IF_NOT_FOUND (default) combines CREATE and USE_DECLARED_QUERY. It looks up a declared query first, and if no declared query is found, it creates a custom method name-based query. This is the default lookup strategy and thus will be used if you do not configure anything explicitly. It allows quick query definition by method names but also custom-tuning of these queries by introducing declared queries as needed.

Query creation

The query builder mechanism built into Spring Data repository infrastructure is useful for building constraining queries over entities of the repository. The mechanism strips the prefixes find…By, read…By, query…By, count…By, and get…By from the method and starts parsing the rest of it. The introducing clause can contain further expressions such as a Distinct to set a distinct flag on the query to be created. However, the first By acts as delimiter to indicate the start of the actual criteria. At a very basic level you can define conditions on entity properties and concatenate them with And and Or.

Query creation from method names

public interface PersonRepository extends Repository<User, Long> {

 List<Person> findByEmailAddressAndLastname(EmailAddress emailAddress, String lastname);

 // Enables the distinct flag for the query
 List<Person> findDistinctPeopleByLastnameOrFirstname(String lastname, String firstname);
 List<Person> findPeopleDistinctByLastnameOrFirstname(String lastname, String firstname);

 // Enabling ignoring case for an individual property
 List<Person> findByLastnameIgnoreCase(String lastname);
 // Enabling ignoring case for all suitable properties
 List<Person> findByLastnameAndFirstnameAllIgnoreCase(String lastname, String firstname);

 // Enabling static ORDER BY for a query
 List<Person> findByLastnameOrderByFirstnameAsc(String lastname);
 List<Person> findByLastnameOrderByFirstnameDesc(String lastname);
}

The actual result of parsing the method depends on the persistence store for which you create the query. However, there are some general things to notice.

	
The expressions are usually property traversals combined with operators that can be concatenated. You can combine property expressions with AND and OR. You also get support for operators such as Between, LessThan, GreaterThan, Like for the property expressions. The supported operators can vary by datastore, so consult the appropriate part of your reference documentation.

	
The method parser supports setting an IgnoreCase flag for individual properties (for example, findByLastnameIgnoreCase(…)) or for all properties of a type that support ignoring case (usually String instances, for example, findByLastnameAndFirstnameAllIgnoreCase(…)). Whether ignoring cases is supported may vary by store, so consult the relevant sections in the reference documentation for the store-specific query method.

	
You can apply static ordering by appending an OrderBy clause to the query method that references a property and by providing a sorting direction (Asc or Desc). To create a query method that supports dynamic sorting, see Special parameter handling.

Property expressions

Property expressions can refer only to a direct property of the managed entity, as shown in the preceding example. At query creation time you already make sure that the parsed property is a property of the managed domain class. However, you can also define constraints by traversing nested properties. Assume a Person has an Address with a ZipCode. In that case a method name of

List<Person> findByAddressZipCode(ZipCode zipCode);

creates the property traversal x.address.zipCode. The resolution algorithm starts with interpreting the entire part (AddressZipCode) as the property and checks the domain class for a property with that name (uncapitalized). If the algorithm succeeds it uses that property. If not, the algorithm splits up the source at the camel case parts from the right side into a head and a tail and tries to find the corresponding property, in our example, AddressZip and Code. If the algorithm finds a property with that head it takes the tail and continue building the tree down from there, splitting the tail up in the way just described. If the first split does not match, the algorithm move the split point to the left (Address, ZipCode) and continues.

Although this should work for most cases, it is possible for the algorithm to select the wrong property. Suppose the Person class has an addressZip property as well. The algorithm would match in the first split round already and essentially choose the wrong property and finally fail (as the type of addressZip probably has no code property).

To resolve this ambiguity you can use _ inside your method name to manually define traversal points. So our method name would end up like so:

List<Person> findByAddress_ZipCode(ZipCode zipCode);

As we treat underscore as a reserved character we strongly advise to follow standard Java naming conventions (i.e. not using underscores in property names but camel case instead).

Special parameter handling

To handle parameters in your query you simply define method parameters as already seen in the examples above. Besides that the infrastructure will recognize certain specific types like Pageable and Sort to apply pagination and sorting to your queries dynamically.

Using Pageable, Slice and Sort in query methods

Page<User> findByLastname(String lastname, Pageable pageable);

Slice<User> findByLastname(String lastname, Pageable pageable);

List<User> findByLastname(String lastname, Sort sort);

List<User> findByLastname(String lastname, Pageable pageable);

The first method allows you to pass an org.springframework.data.domain.Pageable instance to the query method to dynamically add paging to your statically defined query. A Page knows about the total number of elements and pages available. It does so by the infrastructure triggering a count query to calculate the overall number. As this might be expensive depending on the store used, Slice can be used as return instead. A Slice only knows about whether there’s a next Slice available which might be just sufficient when walking through a larger result set.

Sorting options are handled through the Pageable instance too. If you only need sorting, simply add an org.springframework.data.domain.Sort parameter to your method. As you also can see, simply returning a List is possible as well. In this case the additional metadata required to build the actual Page instance will not be created (which in turn means that the additional count query that would have been necessary not being issued) but rather simply restricts the query to look up only the given range of entities.

To find out how many pages you get for a query entirely you have to trigger an additional count query. By default this query will be derived from the query you actually trigger.

Limiting query results

The results of query methods can be limited via the keywords first or top, which can be used interchangeably. An optional numeric value can be appended to top/first to specify the maximum result size to be returned.
If the number is left out, a result size of 1 is assumed.

Limiting the result size of a query with Top and First

User findFirstByOrderByLastnameAsc();

User findTopByOrderByAgeDesc();

Page<User> queryFirst10ByLastname(String lastname, Pageable pageable);

Slice<User> findTop3ByLastname(String lastname, Pageable pageable);

List<User> findFirst10ByLastname(String lastname, Sort sort);

List<User> findTop10ByLastname(String lastname, Pageable pageable);

The limiting expressions also support the Distinct keyword. Also, for the queries limiting the result set to one instance, wrapping the result into an Optional is supported.

If pagination or slicing is applied to a limiting query pagination (and the calculation of the number of pages available) then it is applied within the limited result.

Note that limiting the results in combination with dynamic sorting via a Sort parameter allows to express query methods for the 'K' smallest as well as for the 'K' biggest elements.

Streaming query results

The results of query methods can be processed incrementally by using a Java 8 Stream<T> as return type. Instead of simply wrapping the query results in a Stream data store specific methods are used to perform the streaming.

Stream the result of a query with Java 8 Stream<T>

@Query("select u from User u")
Stream<User> findAllByCustomQueryAndStream();

Stream<User> readAllByFirstnameNotNull();

@Query("select u from User u")
Stream<User> streamAllPaged(Pageable pageable);

A Stream potentially wraps underlying data store specific resources and must therefore be closed after usage. You can either manually close the Stream using the close() method or by using a Java 7 try-with-resources block.

Working with a Stream<T> result in a try-with-resources block

try (Stream<User> stream = repository.findAllByCustomQueryAndStream()) {
 stream.forEach(…);
}

Not all Spring Data modules currently support Stream<T> as a return type.

Async query results

Repository queries can be executed asynchronously using Spring’s asynchronous method execution capability. This means the method will return immediately upon invocation and the actual query execution will occur in a task that has been submitted to a Spring TaskExecutor.

@Async
Future<User> findByFirstname(String firstname); ①

@Async
CompletableFuture<User> findOneByFirstname(String firstname); ②

@Async
ListenableFuture<User> findOneByLastname(String lastname); ③

	① Use java.util.concurrent.Future as return type.

	② Use a Java 8 java.util.concurrent.CompletableFuture as return type.

	③ Use a org.springframework.util.concurrent.ListenableFuture as return type.

Creating repository instances

In this section you create instances and bean definitions for the repository interfaces defined. One way to do so is using the Spring namespace that is shipped with each Spring Data module that supports the repository mechanism although we generally recommend to use the Java-Config style configuration.

XML configuration

Each Spring Data module includes a repositories element that allows you to simply define a base package that Spring scans for you.

Enabling Spring Data repositories via XML

<?xml version="1.0" encoding="UTF-8"?>
<beans:beans xmlns:beans="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://www.springframework.org/schema/data/jpa"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/data/jpa
 http://www.springframework.org/schema/data/jpa/spring-jpa.xsd">

 <repositories base-package="com.acme.repositories" />

</beans:beans>

In the preceding example, Spring is instructed to scan com.acme.repositories and all its sub-packages for interfaces extending Repository or one of its sub-interfaces. For each interface found, the infrastructure registers the persistence technology-specific FactoryBean to create the appropriate proxies that handle invocations of the query methods. Each bean is registered under a bean name that is derived from the interface name, so an interface of UserRepository would be registered under userRepository. The base-package attribute allows wildcards, so that you can define a pattern of scanned packages.

Using filters

By default the infrastructure picks up every interface extending the persistence technology-specific Repository sub-interface located under the configured base package and creates a bean instance for it. However, you might want more fine-grained control over which interfaces bean instances get created for. To do this you use <include-filter /> and <exclude-filter /> elements inside <repositories />. The semantics are exactly equivalent to the elements in Spring’s context namespace. For details, see Spring reference documentation on these elements.

For example, to exclude certain interfaces from instantiation as repository, you could use the following configuration:

Using exclude-filter element

<repositories base-package="com.acme.repositories">
 <context:exclude-filter type="regex" expression=".*SomeRepository" />
</repositories>

This example excludes all interfaces ending in SomeRepository from being instantiated.

JavaConfig

The repository infrastructure can also be triggered using a store-specific @Enable${store}Repositories annotation on a JavaConfig class. For an introduction into Java-based configuration of the Spring container, see the reference documentation.[1]

A sample configuration to enable Spring Data repositories looks something like this.

Sample annotation based repository configuration

@Configuration
@EnableJpaRepositories("com.acme.repositories")
class ApplicationConfiguration {

 @Bean
 public EntityManagerFactory entityManagerFactory() {
 // …
 }
}

The sample uses the JPA-specific annotation, which you would change according to the store module you actually use. The same applies to the definition of the EntityManagerFactory bean. Consult the sections covering the store-specific configuration.

Standalone usage

You can also use the repository infrastructure outside of a Spring container, e.g. in CDI environments. You still need some Spring libraries in your classpath, but generally you can set up repositories programmatically as well. The Spring Data modules that provide repository support ship a persistence technology-specific RepositoryFactory that you can use as follows.

Standalone usage of repository factory

RepositoryFactorySupport factory = … // Instantiate factory here
UserRepository repository = factory.getRepository(UserRepository.class);

Custom implementations for Spring Data repositories

Often it is necessary to provide a custom implementation for a few repository methods. Spring Data repositories easily allow you to provide custom repository code and integrate it with generic CRUD abstraction and query method functionality.

Adding custom behavior to single repositories

To enrich a repository with custom functionality you first define an interface and an implementation for the custom functionality. Use the repository interface you provided to extend the custom interface.

Interface for custom repository functionality

interface UserRepositoryCustom {
 public void someCustomMethod(User user);
}

Implementation of custom repository functionality

class UserRepositoryImpl implements UserRepositoryCustom {

 public void someCustomMethod(User user) {
 // Your custom implementation
 }
}

The most important bit for the class to be found is the Impl postfix of the name on it compared to the core repository interface (see below).

The implementation itself does not depend on Spring Data and can be a regular Spring bean. So you can use standard dependency injection behavior to inject references to other beans like a JdbcTemplate, take part in aspects, and so on.

Changes to the your basic repository interface

interface UserRepository extends CrudRepository<User, Long>, UserRepositoryCustom {

 // Declare query methods here
}

Let your standard repository interface extend the custom one. Doing so combines the CRUD and custom functionality and makes it available to clients.

Configuration

If you use namespace configuration, the repository infrastructure tries to autodetect custom implementations by scanning for classes below the package we found a repository in. These classes need to follow the naming convention of appending the namespace element’s attribute repository-impl-postfix to the found repository interface name. This postfix defaults to Impl.

Configuration example

<repositories base-package="com.acme.repository" />

<repositories base-package="com.acme.repository" repository-impl-postfix="FooBar" />

The first configuration example will try to look up a class com.acme.repository.UserRepositoryImpl to act as custom repository implementation, whereas the second example will try to lookup com.acme.repository.UserRepositoryFooBar.

Manual wiring

The approach just shown works well if your custom implementation uses annotation-based configuration and autowiring only, as it will be treated as any other Spring bean. If your custom implementation bean needs special wiring, you simply declare the bean and name it after the conventions just described. The infrastructure will then refer to the manually defined bean definition by name instead of creating one itself.

Manual wiring of custom implementations

<repositories base-package="com.acme.repository" />

<beans:bean id="userRepositoryImpl" class="…">
 <!-- further configuration -->
</beans:bean>

Adding custom behavior to all repositories

The preceding approach is not feasible when you want to add a single method to all your repository interfaces. To add custom behavior to all repositories, you first add an intermediate interface to declare the shared behavior.

An interface declaring custom shared behavior

@NoRepositoryBean
public interface MyRepository<T, ID extends Serializable>
 extends PagingAndSortingRepository<T, ID> {

 void sharedCustomMethod(ID id);
}

Now your individual repository interfaces will extend this intermediate interface instead of the Repository interface to include the functionality declared. Next, create an implementation of the intermediate interface that extends the persistence technology-specific repository base class. This class will then act as a custom base class for the repository proxies.

Custom repository base class

public class MyRepositoryImpl<T, ID extends Serializable>
 extends SimpleJpaRepository<T, ID> implements MyRepository<T, ID> {

 private final EntityManager entityManager;

 public MyRepositoryImpl(JpaEntityInformation entityInformation,
 EntityManager entityManager) {
 super(entityInformation, entityManager);

 // Keep the EntityManager around to used from the newly introduced methods.
 this.entityManager = entityManager;
 }

 public void sharedCustomMethod(ID id) {
 // implementation goes here
 }
}

The class needs to have a constructor of the super class which the store-specific repository factory implementation is using. In case the repository base class has multiple constructors, override the one taking an EntityInformation plus a store specific infrastructure object (e.g. an EntityManager or a template class).

The default behavior of the Spring <repositories /> namespace is to provide an implementation for all interfaces that fall under the base-package. This means that if left in its current state, an implementation instance of MyRepository will be created by Spring. This is of course not desired as it is just supposed to act as an intermediary between Repository and the actual repository interfaces you want to define for each entity. To exclude an interface that extends Repository from being instantiated as a repository instance, you can either annotate it with @NoRepositoryBean (as seen above) or move it outside of the configured base-package.

The final step is to make the Spring Data infrastructure aware of the customized repository base class. In JavaConfig this is achieved by using the repositoryBaseClass attribute of the @Enable…Repositories annotation:

Configuring a custom repository base class using JavaConfig

@Configuration
@EnableJpaRepositories(repositoryBaseClass = MyRepositoryImpl.class)
class ApplicationConfiguration { … }

A corresponding attribute is available in the XML namespace.

Configuring a custom repository base class using XML

<repositories base-package="com.acme.repository"
 base-class="….MyRepositoryImpl" />

Publishing events from aggregate roots

Entities managed by repositories are aggregate roots.
In a Domain-Driven Design application, these aggregate roots usually publish domain events.
Spring Data provides an annotation @DomainEvents you can use on a method of your aggregate root to make that publication as easy as possible.

Exposing domain events from an aggregate root

class AnAggregateRoot {

 @DomainEvents ①
 Collection<Object> domainEvents() {
 // … return events you want to get published here
 }

 @AfterDomainEventsPublication ②
 void callbackMethod() {
 // … potentially clean up domain events list
 }
}

	① The method using @DomainEvents can either return a single event instance or a collection of events. It must not take any arguments.

	② After all events have been published, a method annotated with @AfterDomainEventsPublication. It e.g. can be used to potentially clean the list of events to be published.

The methods will be called every time one of a Spring Data repository’s save(…) methods is called.

Spring Data extensions

This section documents a set of Spring Data extensions that enable Spring Data usage in a variety of contexts. Currently most of the integration is targeted towards Spring MVC.

Querydsl Extension

Querydsl is a framework which enables the construction of statically typed SQL-like queries via its fluent API.

Several Spring Data modules offer integration with Querydsl via QueryDslPredicateExecutor.

QueryDslPredicateExecutor interface

public interface QueryDslPredicateExecutor<T> {

 T findOne(Predicate predicate); ①

 Iterable<T> findAll(Predicate predicate); ②

 long count(Predicate predicate); ③

 boolean exists(Predicate predicate); ④

 // … more functionality omitted.
}

	① Finds and returns a single entity matching the Predicate.

	② Finds and returns all entities matching the Predicate.

	③ Returns the number of entities matching the Predicate.

	④ Returns if an entity that matches the Predicate exists.

To make use of Querydsl support simply extend QueryDslPredicateExecutor on your repository interface.

Querydsl integration on repositories

interface UserRepository extends CrudRepository<User, Long>, QueryDslPredicateExecutor<User> {

}

The above enables to write typesafe queries using Querydsl Predicate s.

Predicate predicate = user.firstname.equalsIgnoreCase("dave")
 .and(user.lastname.startsWithIgnoreCase("mathews"));

userRepository.findAll(predicate);

Web support

This section contains the documentation for the Spring Data web support as it is implemented as of Spring Data Commons in the 1.6 range. As it the newly introduced support changes quite a lot of things we kept the documentation of the former behavior in Legacy web support.

Spring Data modules ships with a variety of web support if the module supports the repository programming model. The web related stuff requires Spring MVC JARs on the classpath, some of them even provide integration with Spring HATEOAS [2]. In general, the integration support is enabled by using the @EnableSpringDataWebSupport annotation in your JavaConfig configuration class.

Enabling Spring Data web support

@Configuration
@EnableWebMvc
@EnableSpringDataWebSupport
class WebConfiguration { }

The @EnableSpringDataWebSupport annotation registers a few components we will discuss in a bit. It will also detect Spring HATEOAS on the classpath and register integration components for it as well if present.

Alternatively, if you are using XML configuration, register either SpringDataWebSupport or HateoasAwareSpringDataWebSupport as Spring beans:

Enabling Spring Data web support in XML

<bean class="org.springframework.data.web.config.SpringDataWebConfiguration" />

<!-- If you're using Spring HATEOAS as well register this one *instead* of the former -->
<bean class="org.springframework.data.web.config.HateoasAwareSpringDataWebConfiguration" />

Basic web support

The configuration setup shown above will register a few basic components:

	
A DomainClassConverter to enable Spring MVC to resolve instances of repository managed domain classes from request parameters or path variables.

	
HandlerMethodArgumentResolver implementations to let Spring MVC resolve Pageable and Sort instances from request parameters.

DomainClassConverter

The DomainClassConverter allows you to use domain types in your Spring MVC controller method signatures directly, so that you don’t have to manually lookup the instances via the repository:

A Spring MVC controller using domain types in method signatures

@Controller
@RequestMapping("/users")
public class UserController {

 @RequestMapping("/{id}")
 public String showUserForm(@PathVariable("id") User user, Model model) {

 model.addAttribute("user", user);
 return "userForm";
 }
}

As you can see the method receives a User instance directly and no further lookup is necessary. The instance can be resolved by letting Spring MVC convert the path variable into the id type of the domain class first and eventually access the instance through calling findOne(…) on the repository instance registered for the domain type.

Currently the repository has to implement CrudRepository to be eligible to be discovered for conversion.

HandlerMethodArgumentResolvers for Pageable and Sort

The configuration snippet above also registers a PageableHandlerMethodArgumentResolver as well as an instance of SortHandlerMethodArgumentResolver. The registration enables Pageable and Sort being valid controller method arguments

Using Pageable as controller method argument

@Controller
@RequestMapping("/users")
public class UserController {

 @Autowired UserRepository repository;

 @RequestMapping
 public String showUsers(Model model, Pageable pageable) {

 model.addAttribute("users", repository.findAll(pageable));
 return "users";
 }
}

This method signature will cause Spring MVC try to derive a Pageable instance from the request parameters using the following default configuration:

Table 1. Request parameters evaluated for Pageable instances

	page

	Page you want to retrieve, 0 indexed and defaults to 0.

	size

	Size of the page you want to retrieve, defaults to 20.

	sort

	Properties that should be sorted by in the format property,property(,ASC|DESC). Default sort direction is ascending. Use multiple sort parameters if you want to switch directions, e.g. ?sort=firstname&sort=lastname,asc.

To customize this behavior extend either SpringDataWebConfiguration or the HATEOAS-enabled equivalent and override the pageableResolver() or sortResolver() methods and import your customized configuration file instead of using the @Enable-annotation.

In case you need multiple Pageable or Sort instances to be resolved from the request (for multiple tables, for example) you can use Spring’s @Qualifier annotation to distinguish one from another. The request parameters then have to be prefixed with ${qualifier}_. So for a method signature like this:

public String showUsers(Model model,
 @Qualifier("foo") Pageable first,
 @Qualifier("bar") Pageable second) { … }

you have to populate foo_page and bar_page etc.

The default Pageable handed into the method is equivalent to a new PageRequest(0, 20) but can be customized using the @PageableDefault annotation on the Pageable parameter.

Hypermedia support for Pageables

Spring HATEOAS ships with a representation model class PagedResources that allows enriching the content of a Page instance with the necessary Page metadata as well as links to let the clients easily navigate the pages. The conversion of a Page to a PagedResources is done by an implementation of the Spring HATEOAS ResourceAssembler interface, the PagedResourcesAssembler.

Using a PagedResourcesAssembler as controller method argument

@Controller
class PersonController {

 @Autowired PersonRepository repository;

 @RequestMapping(value = "/persons", method = RequestMethod.GET)
 HttpEntity<PagedResources<Person>> persons(Pageable pageable,
 PagedResourcesAssembler assembler) {

 Page<Person> persons = repository.findAll(pageable);
 return new ResponseEntity<>(assembler.toResources(persons), HttpStatus.OK);
 }
}

Enabling the configuration as shown above allows the PagedResourcesAssembler to be used as controller method argument. Calling toResources(…) on it will cause the following:

	
The content of the Page will become the content of the PagedResources instance.

	
The PagedResources will get a PageMetadata instance attached populated with information form the Page and the underlying PageRequest.

	
The PagedResources gets prev and next links attached depending on the page’s state. The links will point to the URI the method invoked is mapped to. The pagination parameters added to the method will match the setup of the PageableHandlerMethodArgumentResolver to make sure the links can be resolved later on.

Assume we have 30 Person instances in the database. You can now trigger a request GET http://localhost:8080/persons and you’ll see something similar to this:

{ "links" : [{ "rel" : "next",
 "href" : "http://localhost:8080/persons?page=1&size=20 }
],
 "content" : [
 … // 20 Person instances rendered here
],
 "pageMetadata" : {
 "size" : 20,
 "totalElements" : 30,
 "totalPages" : 2,
 "number" : 0
 }
}

You see that the assembler produced the correct URI and also picks up the default configuration present to resolve the parameters into a Pageable for an upcoming request. This means, if you change that configuration, the links will automatically adhere to the change. By default the assembler points to the controller method it was invoked in but that can be customized by handing in a custom Link to be used as base to build the pagination links to overloads of the PagedResourcesAssembler.toResource(…) method.

Web databinding support

Spring Data projections – generally described in [projections] – can be used to bind incoming request payloads by either using JSONPath expressions (requires Jayway JasonPath or XPath expressions (requires XmlBeam).

HTTP payload binding using JSONPath or XPath expressions

@ProjectedPayload
public interface UserPayload {

 @XBRead("//firstname")
 @JsonPath("$..firstname")
 String getFirstname();

 @XBRead("/lastname")
 @JsonPath({ "$.lastname", "$.user.lastname" })
 String getLastname();
}

The type above can be used as Spring MVC handler method argument or via ParameterizedTypeReference on one of RestTemplate's methods.
The method declarations above would try to find firstname anywhere in the given document.
The lastname XML looup is performed on the top-level of the incoming document.
The JSON variant of that tries a top-level lastname first but also tries lastname nested in a user sub-document in case the former doesn’t return a value.
That way changes if the structure of the source document can be mitigated easily without having to touch clients calling the exposed methods (usually a drawback of class-based payload binding).

Nested projections are supported as described in [projections].
If the method returns a complex, non-interface type, a Jackson ObjectMapper is used to map the final value.

For Spring MVC, the necessary converters are registered automatically, as soon as @EnableSpringDataWebSupport is active and the required dependencies are available on the classpath.
For usage with RestTemplate register a ProjectingJackson2HttpMessageConverter (JSON) or XmlBeamHttpMessageConverter manually.

For more information, see the web projection example in the canonical Spring Data Examples repository.

Querydsl web support

For those stores having QueryDSL integration it is possible to derive queries from the attributes contained in a Request query string.

This means that given the User object from previous samples a query string

?firstname=Dave&lastname=Matthews

can be resolved to

QUser.user.firstname.eq("Dave").and(QUser.user.lastname.eq("Matthews"))

using the QuerydslPredicateArgumentResolver.

The feature will be automatically enabled along @EnableSpringDataWebSupport when Querydsl is found on the classpath.

Adding a @QuerydslPredicate to the method signature will provide a ready to use Predicate which can be executed via the QueryDslPredicateExecutor.

Type information is typically resolved from the methods return type. Since those information does not necessarily match the domain type it might be a good idea to use the root attribute of QuerydslPredicate.

@Controller
class UserController {

 @Autowired UserRepository repository;

 @RequestMapping(value = "/", method = RequestMethod.GET)
 String index(Model model, @QuerydslPredicate(root = User.class) Predicate predicate, ①
 Pageable pageable, @RequestParam MultiValueMap<String, String> parameters) {

 model.addAttribute("users", repository.findAll(predicate, pageable));

 return "index";
 }
}

	① Resolve query string arguments to matching Predicate for User.

The default binding is as follows:

	
Object on simple properties as eq.

	
Object on collection like properties as contains.

	
Collection on simple properties as in.

Those bindings can be customized via the bindings attribute of @QuerydslPredicate or by making use of Java 8 default methods adding the QuerydslBinderCustomizer to the repository interface.

interface UserRepository extends CrudRepository<User, String>,
 QueryDslPredicateExecutor<User>, ①
 QuerydslBinderCustomizer<QUser> { ②

 @Override
 default public void customize(QuerydslBindings bindings, QUser user) {

 bindings.bind(user.username).first((path, value) -> path.contains(value)) ③
 bindings.bind(String.class)
 .first((StringPath path, String value) -> path.containsIgnoreCase(value)); ④
 bindings.excluding(user.password); ⑤
 }
}

	① QueryDslPredicateExecutor provides access to specific finder methods for Predicate.

	② QuerydslBinderCustomizer defined on the repository interface will be automatically picked up and shortcuts @QuerydslPredicate(bindings=…​).

	③ Define the binding for the username property to be a simple contains binding.

	④ Define the default binding for String properties to be a case insensitive contains match.

	⑤ Exclude the password property from Predicate resolution.

Repository populators

If you work with the Spring JDBC module, you probably are familiar with the support to populate a DataSource using SQL scripts. A similar abstraction is available on the repositories level, although it does not use SQL as the data definition language because it must be store-independent. Thus the populators support XML (through Spring’s OXM abstraction) and JSON (through Jackson) to define data with which to populate the repositories.

Assume you have a file data.json with the following content:

Data defined in JSON

[{ "_class" : "com.acme.Person",
 "firstname" : "Dave",
 "lastname" : "Matthews" },
 { "_class" : "com.acme.Person",
 "firstname" : "Carter",
 "lastname" : "Beauford" }]

You can easily populate your repositories by using the populator elements of the repository namespace provided in Spring Data Commons. To populate the preceding data to your PersonRepository , do the following:

Declaring a Jackson repository populator

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:repository="http://www.springframework.org/schema/data/repository"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/data/repository
 http://www.springframework.org/schema/data/repository/spring-repository.xsd">

 <repository:jackson2-populator locations="classpath:data.json" />

</beans>

This declaration causes the data.json file to
be read and deserialized via a Jackson ObjectMapper.

The type to which the JSON object will be unmarshalled to will be determined by inspecting the _class attribute of the JSON document. The infrastructure will eventually select the appropriate repository to handle the object just deserialized.

To rather use XML to define the data the repositories shall be populated with, you can use the unmarshaller-populator element. You configure it to use one of the XML marshaller options Spring OXM provides you with. See the Spring reference documentation for details.

Declaring an unmarshalling repository populator (using JAXB)

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:repository="http://www.springframework.org/schema/data/repository"
 xmlns:oxm="http://www.springframework.org/schema/oxm"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/data/repository
 http://www.springframework.org/schema/data/repository/spring-repository.xsd
 http://www.springframework.org/schema/oxm
 http://www.springframework.org/schema/oxm/spring-oxm.xsd">

 <repository:unmarshaller-populator locations="classpath:data.json"
 unmarshaller-ref="unmarshaller" />

 <oxm:jaxb2-marshaller contextPath="com.acme" />

</beans>

Legacy web support

Domain class web binding for Spring MVC

Given you are developing a Spring MVC web application you typically have to resolve domain class ids from URLs. By default your task is to transform that request parameter or URL part into the domain class to hand it to layers below then or execute business logic on the entities directly. This would look something like this:

@Controller
@RequestMapping("/users")
public class UserController {

 private final UserRepository userRepository;

 @Autowired
 public UserController(UserRepository userRepository) {
 Assert.notNull(repository, "Repository must not be null!");
 this.userRepository = userRepository;
 }

 @RequestMapping("/{id}")
 public String showUserForm(@PathVariable("id") Long id, Model model) {

 // Do null check for id
 User user = userRepository.findOne(id);
 // Do null check for user

 model.addAttribute("user", user);
 return "user";
 }
}

First you declare a repository dependency for each controller to look up the entity managed by the controller or repository respectively. Looking up the entity is boilerplate as well, as it’s always a findOne(…) call. Fortunately Spring provides means to register custom components that allow conversion between a String value to an arbitrary type.

PropertyEditors

For Spring versions before 3.0 simple Java PropertyEditors had to be used. To integrate with that, Spring Data offers a DomainClassPropertyEditorRegistrar, which looks up all Spring Data repositories registered in the ApplicationContext and registers a custom PropertyEditor for the managed domain class.

<bean class="….web.servlet.mvc.annotation.AnnotationMethodHandlerAdapter">
 <property name="webBindingInitializer">
 <bean class="….web.bind.support.ConfigurableWebBindingInitializer">
 <property name="propertyEditorRegistrars">
 <bean class="org.springframework.data.repository.support.DomainClassPropertyEditorRegistrar" />
 </property>
 </bean>
 </property>
</bean>

If you have configured Spring MVC as in the preceding example, you can configure your controller as follows, which reduces a lot of the clutter and boilerplate.

@Controller
@RequestMapping("/users")
public class UserController {

 @RequestMapping("/{id}")
 public String showUserForm(@PathVariable("id") User user, Model model) {

 model.addAttribute("user", user);
 return "userForm";
 }
}

1 JavaConfig in the Spring reference documentation

2 Spring HATEOAS - https://github.com/SpringSource/spring-hateoas

 UNTITLED

Document Structure

This part of the reference documentation explains the core functionality offered by Spring Data for Apache Cassandra.

[cassandra.core] introduces the Cassandra module feature set.

[cassandra.repositories] introduces the repository support for Cassandra.

 CASSANDRA SUPPORT

The Cassandra support contains a wide range of features which are summarized below.

	
Spring configuration support using Java-based @Configuration classes or the XML namespace to create
a Cassandra instance with replica sets using the driver.

	
CassandraTemplate helper class that increases productivity by handling common Cassandra operations properly.
Includes integrated object mapping between CQL Tables and POJOs.

	
Exception translation into Spring’s portable Data Access Exception Hierarchy.

	
Feature rich object mapping integrated with Spring’s Conversion Service.

	
Annotation-based mapping metadata but extensible to support other metadata formats.

	
Persistence and mapping lifecycle events.

	
Java-based Query, Criteria, and Update DSLs.

	
Automatic implementation of Repository interfaces including support for custom finder methods.

For most data oriented tasks you will use the CassandraTemplate or the Repository support, which leverage the
rich mapping functionality. CassandraTemplate is commonly used to increment counters or perform ad-hoc CRUD
operations. CassandraTemplate also provides callback methods making it easy to get a hold of low-level API objects
such as com.datastax.driver.core.Session allowing you to communicate directly with Cassandra. Spring Data for Apache Cassandra
uses consistent naming conventions on objects in various APIs to those found in the DataStax Java Driver so that they
are familiar and so you can map your existing knowledge onto the Spring APIs.

Spring CQL and Spring Data for Apache Cassandra modules

Spring Data for Apache Cassandra comes with two modules: Spring CQL and Spring Data Cassandra.

The value-add provided by the Spring Data Cassandra abstraction is perhaps best shown by the sequence of actions
outlined in the table below. The table shows what actions Spring will take care of and which actions are
the responsibility of you, the application developer.

Table 1. Spring CQL - who does what?

	Action
	Spring
	You

	Define connection parameters.

	
	X

	Open the connection.

	X

	

	Specify the CQL statement.

	
	X

	Declare parameters and provide parameter values

	
	X

	Prepare and execute the statement.

	X

	

	Set up the loop to iterate through the results (if any).

	X

	

	Do the work for each iteration.

	
	X

	Process any exception.

	X

	

	Close the Session.

	X

	

Spring CQL takes care of all the low-level details that can make Cassandra and CQL such a tedious API to develop with.
Spring Data Cassandra adds schema generation, object mapping and Repository support.

Choosing an approach for Cassandra database access

You can choose among several approaches to form the basis for your Cassandra database access. Spring’s support
for Apache Cassandra comes in different flavors. Once you start using one of these approaches, you can still mix
and match to include a feature from a different approach.

	
CqlTemplate is the classic Spring CQL approach and the most popular. This is the "lowest level" approach
and all others use a CqlTemplate under the covers.

	
CassandraTemplate wraps a CqlTemplate to provide query result to object mapping and the use of SELECT, INSERT,
UPDATE and DELETE methods instead of writing CQL statements. This approach provides better documentation and ease of use.

	
Repository Abstraction allows you to create Repository declarations in your data access layer. The goal of
Spring Data’s Repository abstraction is to significantly reduce the amount of boilerplate code required to implement
data access layers for various persistence stores.

Getting Started

Spring Apache Cassandra support requires Apache Cassandra 2.1 or higher, Datastax Java Driver 3.0 or higher
and Java SE 6 or higher. An easy way to bootstrap setting up a working environment is to create a Spring-based project
in STS.

First you need to set up a running Apache Cassandra server. Refer to
the Apache Cassandra Quick Start guide
for an explanation on how to startup Apache Cassandra. Once installed starting Cassandra is typically a matter of
executing the following command: CASSANDRA_HOME/bin/cassandra -f

To create a Spring project in STS go to File → New → Spring Template Project → Simple Spring Utility Project →
press Yes when prompted. Then enter a project and a package name such as org.spring.cassandra.example.

Then add the following to pom.xml dependencies section.

<dependencies>

 <!-- other dependencies omitted -->

 <dependency>
 <groupId>org.springframework.data</groupId>
 <artifactId>spring-data-cassandra</artifactId>
 <version>1.5.10.RELEASE</version>
 </dependency>

</dependencies>

Also change the version of Spring in the pom.xml to be

<spring.framework.version>4.3.14.RELEASE</spring.framework.version>

If using a milestone release instead of a GA release, you will also need to add the location of the Spring Milestone
repository for Maven to your pom.xml which is at the same level of your <dependencies/> element.

<repositories>
 <repository>
 <id>spring-milestone</id>
 <name>Spring Maven MILESTONE Repository</name>
 <url>http://repo.spring.io/libs-milestone</url>
 </repository>
</repositories>

The repository is also browseable here.

You can also browse the Spring repositories here.

Now we will create a simple Java application that stores and reads a domain object to/from Cassandra.

First, create a simple domain object class to persist.

package org.spring.data.cassandra.example;

import org.springframework.data.cassandra.mapping.PrimaryKey;
import org.springframework.data.cassandra.mapping.Table;

@Table
public class Person {

 @PrimaryKey
 private final String id;

 private final String name;
 private final int age;

 public Person(String id, String name, int age) {
 this.id = id;
 this.name = name;
 this.age = age;
 }

 public String getId() {
 return id;
 }

 public String getName() {
 return name;
 }

 public int getAge() {
 return age;
 }

 @Override
 public String toString() {
 return String.format("{ @type = %1$s, id = %2$s, name = %3$s, age = %4$d }",
 getClass().getName(), getId(), getName(), getAge());
 }
}

Next, create the main application to run.

package org.spring.data.cassandra.example;

import java.io.Closeable;
import java.util.UUID;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.data.cassandra.core.CassandraOperations;
import org.springframework.data.cassandra.core.CassandraTemplate;

import com.datastax.driver.core.Cluster;
import com.datastax.driver.core.Session;
import com.datastax.driver.core.querybuilder.QueryBuilder;
import com.datastax.driver.core.querybuilder.Select;

public class CassandraApplication {

 private static final Logger LOGGER = LoggerFactory.getLogger(CassandraApplication.class);

 protected static Person newPerson(String name, int age) {
 return newPerson(UUID.randomUUID().toString(), name, age);
 }

 protected static Person newPerson(String id, String name, int age) {
 return new Person(id, name, age);
 }

 public static void main(String[] args) {

 Cluster cluster = Cluster.builder().addContactPoints("localhost").build();
 Session session = cluster.connect("mykeyspace");

 CassandraOperations template = new CassandraTemplate(session);

 Person jonDoe = template.insert(newPerson("Jon Doe", 40));

 Select selectStatement = QueryBuilder.select().from("person");
 selectStatement.where(QueryBuilder.eq("id", jonDoe.getId()));

 LOGGER.info(template.queryForObject(selectStatement, Person.class).getId());

 template.truncate("person");
 session.close();
 cluster.close();
 }
}

Even in this simple example, there are a few things to observe.

	
You can create an instance of CassandraTemplate with a Cassandra Session, derived from a Cluster.

	
You must annotate your POJO as a Cassandra @Table and also annotate the @PrimaryKey. Optionally, you can
override these mapping names to match your Cassandra database table and column names.

	
You can either use a CQL String or the DataStax QueryBuilder API to construct you queries.

Examples Repository

There is a Github repository with several examples that you
can download and play around with to get a feel for how the library works.

Connecting to Cassandra with Spring

One of the first tasks when using Apache Cassandra and Spring is to create a com.datastax.driver.core.Session object
using the Spring IoC container. There are two main ways to do this, either using Java-based bean metadata or XML-based
bean metadata. These are discussed in the following sections.

For those not familiar with how to configure the Spring container using Java-based bean metadata instead of
XML-based metadata, see the high-level introduction in the reference docs
here
as well as the detailed documentation here.

Registering a Session instance using Java based metadata

An example of using Java-based bean metadata to register an instance of a com.datastax.driver.core.Session
is shown below.

Registering a com.datastax.driver.core.Session object using Java based bean metadata

@Configuration
public class AppConfig {

 /*
 * Use the standard Cassandra driver API to create a com.datastax.driver.core.Session instance.
 */
 public @Bean Session session() {
 Cluster cluster = Cluster.builder().addContactPoints("localhost").build();
 return cluster.connect("mykeyspace");
 }
}

This approach allows you to use the standard com.datastax.driver.core.Session API that you may already be used
to using.

An alternative is to register an instance of com.datastax.driver.core.Session instance with the container
using Spring’s CassandraCqlSessionFactoryBean and CassandraCqlClusterFactoryBean. As compared to instantiating
a com.datastax.driver.core.Session instance directly, the FactoryBean approach has the added advantage of also
providing the container with an ExceptionTranslator implementation that translates Cassandra exceptions to exceptions
in Spring’s portable DataAccessException hierarchy for data access classes annotated. This hierarchy and use of
@Repository is described in Spring’s DAO support features.

An example of a Java-based bean metadata that supports exception translation on @Repository annotated classes
is shown below:

Registering a com.datastax.driver.core.Session object using Spring’s CassandraCqlSessionFactoryBean and enabling Spring’s exception translation support

@Configuration
public class AppConfig {

 /*
 * Factory bean that creates the com.datastax.driver.core.Session instance
 */
 public @Bean CassandraCqlClusterFactoryBean cluster() {

 CassandraCqlClusterFactoryBean cluster = new CassandraCqlClusterFactoryBean();
 cluster.setContactPoints("localhost");

 return cluster;
 }

 /*
 * Factory bean that creates the com.datastax.driver.core.Session instance
 */
 public @Bean CassandraCqlSessionFactoryBean session() {

 CassandraCqlSessionFactoryBean session = new CassandraCqlSessionFactoryBean();
 session.setCluster(cluster().getObject());
 session.setKeyspaceName("mykeyspace");

 return session;
 }
}

Using CassandraTemplate with object mapping and Repository support requires a CassandraTemplate,
CassandraMappingContext, CassandraConverter and enabling Repository support.

Registering components to configure object mapping and repository support

@Configuration
@EnableCassandraRepositories(basePackages = { "org.spring.cassandra.example.repo" })
public class CassandraConfig {

 @Bean
 public CassandraClusterFactoryBean cluster() {

 CassandraClusterFactoryBean cluster = new CassandraClusterFactoryBean();
 cluster.setContactPoints("localhost");

 return cluster;
 }

 @Bean
 public CassandraMappingContext mappingContext() {

 BasicCassandraMappingContext mappingContext = new BasicCassandraMappingContext();
 mappingContext.setUserTypeResolver(new SimpleUserTypeResolver(cluster().getObject(), "mykeyspace"));

 return mappingContext;
 }

 @Bean
 public CassandraConverter converter() {
 return new MappingCassandraConverter(mappingContext());
 }

 @Bean
 public CassandraSessionFactoryBean session() throws Exception {

 CassandraSessionFactoryBean session = new CassandraSessionFactoryBean();
 session.setCluster(cluster().getObject());
 session.setKeyspaceName("mykeyspace");
 session.setConverter(converter());
 session.setSchemaAction(SchemaAction.NONE);

 return session;
 }

 @Bean
 public CassandraOperations cassandraTemplate() throws Exception {
 return new CassandraTemplate(session().getObject());
 }
}

Creating configuration classes registering Spring Data for Apache Cassandra components can be an exhausting challenge
so Spring Data for Apache Cassandra comes with a prebuilt configuration support class. Classes extending from
AbstractCassandraConfiguration will register beans for Spring Data for Apache Cassandra use.
AbstractCassandraConfiguration lets you provide various configuration options such as initial entities,
default query options, pooling options, socket options and much more. AbstractCassandraConfiguration will support
you also with schema generation based on initial entities, if any are provided. Extending from
AbstractCassandraConfiguration requires you to at least provide the Keyspace name by implementing
the getKeyspaceName method.

Registering Spring Data for Apache Cassandra beans using AbstractCassandraConfiguration

@Configuration
public class AppConfig extends AbstractCassandraConfiguration {

 /*
 * Provide a contact point to the configuration.
 */
 public String getContactPoints() {
 return "localhost";
 }

 /*
 * Provide a keyspace name to the configuration.
 */
 public String getKeyspaceName() {
 return "mykeyspace";
 }
}

XML Configuration

Externalize Connection Properties

Create a properties file containing the information needed to connect to Cassandra. contactpoints and keyspace
are required fields; port has been added for clarity.

We will call this properties file, cassandra.properties.

cassandra.contactpoints=10.1.55.80,10.1.55.81
cassandra.port=9042
cassandra.keyspace=showcase

We will use Spring to load these properties into the Spring context in the next two examples.

Registering a Session instance using XML based metadata

While you can use Spring’s traditional <beans/> XML namespace to register an instance of
com.datastax.driver.core.Session with the container, the XML can be quite verbose as it is general purpose.
XML namespaces are a better alternative to configuring commonly used objects such as the Session instance.
The cql and cassandra namespaces allow you to create a Session instance.

To use the Cassandra namespace elements you will need to reference the Cassandra schema:

XML schema to configure Cassandra using the cql namespace

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:cql="http://www.springframework.org/schema/data/cql"
 xsi:schemaLocation="
 http://www.springframework.org/schema/cql
 http://www.springframework.org/schema/cql/spring-cql.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <!-- Default bean name is 'cassandraCluster' -->
 <cql:cluster contact-points="localhost" port="9042">
 <cql:keyspace action="CREATE_DROP" name="mykeyspace" />
 </cql:cluster>

 <!-- Default bean name is 'cassandraSession' -->
 <cql:session keyspace-name="mykeyspace" />

</beans>

XML schema to configure Cassandra using the cassandra namespace

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:cassandra="http://www.springframework.org/schema/data/cassandra"
 xsi:schemaLocation="
 http://www.springframework.org/schema/data/cassandra
 http://www.springframework.org/schema/data/cassandra/spring-cassandra.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <!-- Default bean name is 'cassandraCluster' -->
 <cassandra:cluster contact-points="localhost" port="9042">
 <cassandra:keyspace action="CREATE_DROP" name="mykeyspace" />
 </cassandra:cluster>

 <!-- Default bean name is 'cassandraSession' -->
 <cassandra:session keyspace-name="${cassandra.keyspace}" schema-action="NONE" />

</beans>

You may have noticed the slight difference between namespaces: cql and cassandra. Using the cql namespace
is limited to low-level CQL support while cassandra extends the cql namespace with object mapping
and schema generation support.

The XML configuration elements for more advanced Cassandra configuration are shown below. These elements all use
default bean names to keep the configuration code clean and readable.

While this example shows how easy it is to configure Spring to connect to Cassandra, there are many other options.
Basically, any option available with the DataStax Java Driver is also available in the Spring Data for Apache Cassandra
configuration. This is including, but not limited to Authentication, Load Balancing Policies, Retry Policies
and Pooling Options. All of the Spring Data for Apache Cassandra method names and XML elements are named exactly
(or as close as possible) like the configuration options on the driver so mapping any existing driver configuration
should be straight forward.

Configuring Spring Data Components via XML

<!-- Loads the properties into the Spring Context and uses them to fill
in placeholders in the bean definitions -->
<context:property-placeholder location="classpath:cassandra.properties" />

<!-- REQUIRED: The Cassandra Cluster -->
<cassandra:cluster contact-points="${cassandra.contactpoints}"
port="${cassandra.port}" />

<!-- REQUIRED: The Cassandra Session, built from the Cluster, and attaching
to a keyspace -->
<cassandra:session keyspace-name="${cassandra.keyspace}" />

<!-- REQUIRED: The Default Cassandra Mapping Context used by CassandraConverter -->
<cassandra:mapping>
 <cassandra:user-type-resolver keyspace-name="${cassandra.keyspace}" />
</cassandra:mapping>

<!-- REQUIRED: The Default Cassandra Converter used by CassandraTemplate -->
<cassandra:converter />

<!-- REQUIRED: The Cassandra Template is the building block of all Spring
Data Cassandra -->
<cassandra:template id="cassandraTemplate" />

<!-- OPTIONAL: If you are using Spring Data for Apache Cassandra Repositories, add
your base packages to scan here -->
<cassandra:repositories base-package="org.spring.cassandra.example.repo" />

Schema Management

Apache Cassandra is a data store that requires a schema definition prior to any data interaction.
Spring Data for Apache Cassandra can support you with this task.

Keyspaces and Lifecycle scripts

The very first thing to start with is a Cassandra Keyspace. A Keyspace is a logical grouping of tables that share
the same replication factor and replication strategy. Keyspace management is located in the Cluster configuration,
which has the notion of KeyspaceSpecification and startup/shutdown CQL script execution.

Declaring a Keyspace with a specification allows creating/dropping of the Keyspace. It will derive CQL from
the specification so you’re not required to write CQL yourself.

Specifying a Cassandra Keyspace via XML

<cql:cluster>

 <cql:keyspace action="CREATE_DROP" durable-writes="true" name="my_keyspace">

 <cql:replication class="NETWORK_TOPOLOGY_STRATEGY">
 <cql:data-center name="foo" replication-factor="1" />
 <cql:data-center name="bar" replication-factor="2" />
 </cql:replication>
 </cql:keyspace>

</cql:cluster>

Specifying a Cassandra Keyspace via JavaConfig

@Configuration
public abstract class AbstractCassandraConfiguration extends AbstractClusterConfiguration
 implements BeanClassLoaderAware {

 @Override
 protected List<CreateKeyspaceSpecification> getKeyspaceCreations() {

 CreateKeyspaceSpecification specification = CreateKeyspaceSpecification.createKeyspace("my_keyspace")
 .with(KeyspaceOption.DURABLE_WRITES, true)
 .withNetworkReplication(DataCenterReplication.dcr("foo", 1), DataCenterReplication.dcr("bar", 2));

 return Arrays.asList(specification);
 }

 @Override
 protected List<DropKeyspaceSpecification> getKeyspaceDrops() {
 return Arrays.asList(DropKeyspaceSpecification.dropKeyspace("my_keyspace"));
 }

 // ...
}

Startup/shutdown CQL execution follows a slightly different approach that is bound to the Cluster lifecycle. You can provide arbitrary CQL that is executed on Cluster initialization and shutdown in the SYSTEM keyspace.

Specifying Startup/Shutdown scripts via XML

<cql:cluster>
 <cql:startup-cql><![CDATA[
CREATE KEYSPACE IF NOT EXISTS my_other_keyspace WITH durable_writes = true AND replication = { 'replication_factor' : 1, 'class' : 'SimpleStrategy' };
]]></cql:startup-cql>
 <cql:shutdown-cql><![CDATA[
DROP KEYSPACE my_other_keyspace;
]]></cql:shutdown-cql>
</cql:cluster>

Specifying a Startup/Shutdown scripts via JavaConfig

@Configuration
public class CassandraConfiguration extends AbstractCassandraConfiguration {

 @Override
 protected List<String> getStartupScripts() {

 String script = "CREATE KEYSPACE IF NOT EXISTS my_other_keyspace "
 + "WITH durable_writes = true "
 + "AND replication = { 'replication_factor' : 1, 'class' : 'SimpleStrategy' };";

 return Arrays.asList(script);
 }

 @Override
 protected List<String> getShutdownScripts() {
 return Arrays.asList("DROP KEYSPACE my_other_keyspace;");
 }

 // ...
}

KeyspaceSpecifications and lifecycle CQL scripts are available with the cql and cassandra namespaces.

Keyspace creation allows rapid bootstrapping without the need of external Keyspace management. This can be useful
for certain scenarios but should be used with care. Dropping a Keyspace on application shutdown will remove the Keyspace
and all data stored inside the tables.

Tables and User-defined types

Spring Data for Apache Cassandra’s approaches data access with mapped entity classes that fit your data model.
These entity classes can be used to create Cassandra table specifications and user type definitions.

Schema creation is tied to Session initialization with SchemaAction. Following actions are supported:

	
SchemaAction.NONE: No tables/types will be created or dropped. This is the default setting.

	
SchemaAction.CREATE: Create tables and user-defined types from entities annotated with @Table and types annotated with @UserDefinedType. Existing tables/types will cause an error if the type is attempted to be created.

	
SchemaAction.CREATE_IF_NOT_EXISTS: Like SchemaAction.CREATE but with IF NOT EXISTS applied. Existing tables/types won’t cause any errors but may remain stale.

	
SchemaAction.RECREATE: Drops and recreate existing tables and types that are known to be used. Tables and types that are not configured in the application are not dropped.

	
SchemaAction.RECREATE_DROP_UNUSED: Drop all tables and types and recreate only known tables and types.

SchemaAction.RECREATE/SchemaAction.RECREATE_DROP_UNUSED will drop your tables and you will experience data loss. RECREATE_DROP_UNUSED also drops tables and types that are not know to the application.

Enabling Tables and User-Defined Types for Schema Management

[mapping.usage] explains object mapping using conventions and annotations. Schema management is only active for entities annotated with @Table and user-defined types annotated with @UserDefinedType to prevent unwanted classes from being created as table/type. Entities are discovered by scanning the class path. Entity scanning requires one or more base packages.

Specifying Entity Base Packages via XML

<cassandra:mapping entity-base-packages="com.foo,com.bar"/>

Specifying Entity Base Packages via JavaConfig

@Configuration
public class CassandraConfiguration extends AbstractCassandraConfiguration {

 @Override
 public String[] getEntityBasePackages() {
 return new String[] { "com.foo", "com.bar" };
 }

 // ...
}

Introduction to CassandraTemplate

The CassandraTemplate class, located in the package org.springframework.data.cassandra, is the central class
in Spring’s Cassandra support providing a rich feature set to interact with the database. The template offers
convenience operations to create, update, delete and query Cassandra and provides a mapping between your domain objects
and Cassandra rows.

Once configured, CassandraTemplate is Thread-safe and can be reused across multiple instances.

The mapping between Cassandra rows and domain classes is done by delegating to an implementation
of the CassandraConverter interface. Spring provides a default implementation, MappingCassandraConverter,
but you can also write your own converter. Please refer to the section on Cassandra conversion
for more detailed information.

The CassandraTemplate class implements the interface CassandraOperations. In as much as possible, the methods
on CassandraOperations are named after methods available with Cassandra to make the API familiar to
existing Cassandra developers who are familiar with Cassandra. For example, you will find methods such as "select",
"insert", "delete", and "update". The design goal was to make it as easy as possible to transition between the use
of the base Cassandra driver and CassandraOperations. A major difference in between the two APIs is that
CassandraOperations can be passed domain objects instead of CQL and query objects.

The preferred way to reference operations on a CassandraTemplate instance is via its interface,
CassandraOperations.

The default converter implementation used by CassandraTemplate is MappingCassandraConverter.
While the MappingCassandraConverter can make use of additional metadata to specify the mapping of objects
to rows it is also capable of converting objects that contain no additional metadata by using some conventions
for the mapping of fields and table names. These conventions as well as the use of mapping annotations is explained
in the Mapping chapter.

Another central feature of CassandraTemplate is exception translation of exceptions thrown in the Cassandra
Java driver into Spring’s portable Data Access Exception hierarchy. Refer to the section on
exception translation for more information.

Now let’s look at a examples of how to work with the CassandraTemplate in the context of the Spring container.

Instantiating CassandraTemplate

CassandraTemplate should always be configured as a Spring Bean, although we show an example above where you can instantiate it directly. But for the purposes of this being a Spring module, lets assume we are using the Spring Container.

CassandraTemplate is an implementation of CassandraOperations. You should always assign your CassandraTemplate to its interface definition, CassandraOperations.

There are 2 easy ways to get a CassandraTemplate, depending on how you load you Spring Application Context.

AutoWiring

@Autowired
private CassandraOperations cassandraOperations;

Like all Spring Autowiring, this assumes there is only one bean of type CassandraOperations in the ApplicationContext.
If you have multiple CassandraTemplate beans (which will be the case if you are working with multiple keyspaces
in the same project), then use the `@Qualifier`annotation to designate which bean you want to Autowire.

@Autowired
@Qualifier("myTemplateBeanId")
private CassandraOperations cassandraOperations;

Bean Lookup with ApplicationContext

You can also just lookup the CassandraTemplate bean from the ApplicationContext.

CassandraOperations cassandraOperations = applicationContext.getBean("cassandraTemplate", CassandraOperations.class);

Saving, Updating, and Removing Rows

CassandraTemplate provides a simple way for you to save, update, and delete your domain objects, and map those objects
to tables managed in Cassandra.

Working with Primary Keys

Cassandra requires at least one partition key field for a CQL Table. A table can declare additionally one or more
clustering key fields. When your CQL Table has a composite primary key, you must create a @PrimaryKeyClass to define
the structure of the composite primary key. In this context, composite primary key means one or more partition columns
optionally combined with one or more clustering columns.

Primary keys can make use of any singular simple Cassandra type or mapped User-Defined Type.
Collection-typed primary keys are not supported.

Simple Primary Key

A simple primary key consists of one partition key field within an entity class. Since it’s one field only,
we safely can assume it’s a partition key.

CQL Table defined in Cassandra

CREATE TABLE user (
 user_id text,
 firstname text,
 lastname text,
 PRIMARY KEY (user_id))
;

Annotated Entity

@Table(value = "login_event")
public class LoginEvent {

 @PrimaryKey("user_id")
 private String userId;

 private String firstname;
 private String lastname;

 // getters and setters omitted for brevity

}

Composite Key

Composite primary keys (or compound keys) consist of more than one primary key fields. That said, a composite primary key
can consist of multiple partition keys, a partition key and a clustering key, or a multitude of primary key fields.

Composite keys can be represented in two ways with Spring Data for Apache Cassandra:

	
Embedded in an entity.

	
By using @PrimaryKeyClass.

The simplest form of a composite key is a key with one partition key and one clustering key.

Here is an example of a CQL Table, and the corresponding POJOs that represent the table and it’s composite key.

CQL Table with a Composite Primary Key

CREATE TABLE login_event(
 person_id text,
 event_code int,
 event_time timestamp,
 ip_address text,
 PRIMARY KEY (person_id, event_code, event_time))
 WITH CLUSTERING ORDER BY (event_time DESC)
;

Flat Composite Primary Key

Flat composite primary keys are embedded inside the entity as flat fields. Primary key fields are annotated with
@PrimaryKeyColumn along with other fields in the entity. Selection requires either a query to contain predicates
for the individual fields or the use of MapId.

Using a flat Composite Primary Key

@Table(value = "login_event")
public class LoginEvent {

 @PrimaryKeyColumn(name = "person_id", ordinal = 0, type = PrimaryKeyType.PARTITIONED)
 private String personId;

 @PrimaryKeyColumn(name = "event_code", ordinal = 1, type = PrimaryKeyType.PARTITIONED)
 private int eventCode;

 @PrimaryKeyColumn(name = "event_time", ordinal = 2, type = PrimaryKeyType.CLUSTERED, ordering = Ordering.DESCENDING)
 private Date eventTime;

 @Column("ip_address)
 private String ipAddress;

 // getters and setters omitted for brevity
}

Primary Key Class

A primary key class is a composite primary key class that is mapped to multiple fields or properties of the entity.
It’s annotated with @PrimaryKeyClass and defines equals and hashCode methods. The semantics of value equality
for these methods should be consistent with the database equality for the database types to which the key is mapped.
Primary key classes can be used with Repositories (as the Id type) and to represent an entities' identity
in a single complex object.

Composite Primary Key Class

@PrimaryKeyClass
public class LoginEventKey implements Serializable {

 @PrimaryKeyColumn(name = "person_id", ordinal = 0, type = PrimaryKeyType.PARTITIONED)
 private String personId;

 @PrimaryKeyColumn(name = "event_code", ordinal = 1, type = PrimaryKeyType.PARTITIONED)
 private int eventCode;

 @PrimaryKeyColumn(name = "event_time", ordinal = 2, type = PrimaryKeyType.CLUSTERED, ordering = Ordering.DESCENDING)
 private Date eventTime;

 // other methods omitted for brevity
}

Using a Composite Primary Key

@Table(value = "login_event")
public class LoginEvent {

 @PrimaryKey
 private LoginEventKey key;

 @Column("ip_address)
 private String ipAddress;

 // getters and setters omitted for brevity
}

PrimaryKeyClass must implement Serializable and should provide implementations of hashCode() and equals().

Type mapping

Spring Data for Apache Cassandra relies on the DataStax Java Driver’s CodecRegistry to ensure type support. As types
are added or changed, the Spring Data for Apache Cassandra module will continue to function without requiring changes.
See CQL data types
and [mapping-conversion] for the current type mapping matrix.

Methods for saving and inserting rows

Single records inserts

To insert one row at a time, there are many options. At this point you should already have a cassandraTemplate
available to you so we will just how the relevant code for each section, omitting the template setup.

Insert a record with an annotated POJO.

cassandraOperations.insert(new Person("123123123", "Alison", 39));

Insert a row using the QueryBuilder.Insert object that is part of the DataStax Java Driver.

Insert insert = QueryBuilder.insertInto("person");
insert.setConsistencyLevel(ConsistencyLevel.ONE);
insert.value("id", "123123123");
insert.value("name", "Alison");
insert.value("age", 39);

cassandraOperations.execute(insert);

Then, there is always the old fashioned way. You can write your own CQL statements.

String cql = "insert into person (id, name, age) values ('123123123', 'Alison', 39)";

cassandraOperations.execute(cql);

Multiple inserts for high speed ingestion

CqlOperations, which is extended by CassandraOperations is a low-level Template that you can use
for just about anything you need to accomplish with Cassandra. CqlOperations includes several overloaded methods
named ingest().

Use these methods to pass a CQL String with Bind Markers, and your preferred flavor of data set
(Object[][] and List<List<T>>).

The ingest method takes advantage of static PreparedStatements that are only prepared once for performance.
Each record in your data set is bound to the same PreparedStatement, then executed asynchronously for high performance.

String cqlIngest = "insert into person (id, name, age) values (?, ?, ?)";

List<Object> person1 = new ArrayList<Object>();
person1.add("10000");
person1.add("David");
person1.add(40);

List<Object> person2 = new ArrayList<Object>();
person2.add("10001");
person2.add("Roger");
person2.add(65);

List<List<?>> people = new ArrayList<List<?>>();
people.add(person1);
people.add(person2);

cassandraOperations.ingest(cqlIngest, people);

Updating rows in a CQL table

Much like inserting, there are several flavors of update from which you can choose.

Update a record with an annotated POJO.

cassandraOperations.update(new Person("123123123", "Alison", 35));

Update a row using the QueryBuilder.Update object that is part of the DataStax Java Driver.

Update update = QueryBuilder.update("person");
update.setConsistencyLevel(ConsistencyLevel.ONE);
update.with(QueryBuilder.set("age", 35));
update.where(QueryBuilder.eq("id", "123123123"));

cassandraOperations.execute(update);

Then, there is always the old fashioned way. You can write your own CQL statements.

String cql = "update person set age = 35 where id = '123123123'";

cassandraOperations.execute(cql);

Methods for removing rows

Much like inserting, there are several flavors of delete from which you can choose.

Delete a record with an annotated POJO.

cassandraOperations.delete(new Person("123123123", null, 0));

Delete a row using the QueryBuilder.Delete object that is part of the DataStax Java Driver.

Delete delete = QueryBuilder.delete().from("person");
delete.where(QueryBuilder.eq("id", "123123123"));

cassandraOperations.execute(delete);

Then, there is always the old fashioned way. You can write your own CQL statements.

String cql = "delete from person where id = '123123123'";

cassandraOperations.execute(cql);

Methods for truncating tables

Much like inserting, there are several flavors of truncate from which you can choose.

Truncate a table using the truncate() method.

cassandraOperations.truncate("person");

Truncate a table using the QueryBuilder.Truncate object that is part of the DataStax Java Driver.

Truncate truncate = QueryBuilder.truncate("person");

cassandraOperations.execute(truncate);

Then, there is always the old fashioned way. You can write your own CQL statements.

String cql = "truncate person";

cassandraOperations.execute(cql);

Querying CQL Tables

There are several flavors of select and query from which you can choose. Please see the CassandraTemplate API
documentation for all overloads available.

Query a table for multiple rows and map the results to a POJO.

String cqlAll = "select * from person";

List<Person> results = cassandraOperations.select(cqlAll, Person.class);
for (Person p : results) {
 LOG.info(String.format("Found People with Name [%s] for id [%s]", p.getName(), p.getId()));
}

Query a table for a single row and map the result to a POJO.

String cqlOne = "select * from person where id = '123123123'";

Person p = cassandraOperations.selectOne(cqlOne, Person.class);
LOG.info(String.format("Found Person with Name [%s] for id [%s]", p.getName(), p.getId()));

Query a table using the QueryBuilder.Select object that is part of the DataStax Java Driver.

Select select = QueryBuilder.select().from("person");
select.where(QueryBuilder.eq("id", "123123123"));

Person p = cassandraOperations.selectOne(select, Person.class);
LOG.info(String.format("Found Person with Name [%s] for id [%s]", p.getName(), p.getId()));

Then, there is always the old fashioned way. You can write your own CQL statements, and there are several
callback handlers for mapping the results. The example uses the RowMapper interface.

String cqlAll = "select * from person";
List<Person> results = cassandraOperations.query(cqlAll, new RowMapper<Person>() {

 public Person mapRow(Row row, int rowNum) throws DriverException {
 Person p = new Person(row.getString("id"), row.getString("name"), row.getInt("age"));
 return p;
 }
});

for (Person p : results) {
 LOG.info(String.format("Found People with Name [%s] for id [%s]", p.getName(), p.getId()));
}

Overriding default mapping with custom converters

In order to have more fine grained control over the mapping process you can register Spring converters with
the CassandraConverter implementations such as the MappingCassandraConverter.

The MappingCassandraConverter checks to see if there are any Spring converters that can handle a specific class
before attempting to map the object itself. To 'hijack' the normal mapping strategies of the MappingCassandraConverter,
perhaps for increased performance or other custom mapping needs, you first need to create an implementation of
the Spring Converter interface and then register it with the MappingCassandraConverter.

For more information on the Spring type conversion service see the reference docs
here.

Saving using a registered Spring Converter

An example implementation of the Converter that converts a Person object to a java.lang.String
using Jackson 2 is shown below:

import org.springframework.core.convert.converter.Converter;

import org.springframework.util.StringUtils;
import org.codehaus.jackson.map.ObjectMapper;

static class PersonWriteConverter implements Converter<Person, String> {

 public String convert(Person source) {

 try {
 return new ObjectMapper().writeValueAsString(source);
 } catch (IOException e) {
 throw new IllegalStateException(e);
 }
 }
}

Reading using a Spring Converter

An example implementation of the Converter that converts a java.lang.String into a Person object
using Jackson 2 is shown below:

import org.springframework.core.convert.converter.Converter;

import org.springframework.util.StringUtils;
import org.codehaus.jackson.map.ObjectMapper;

static class PersonReadConverter implements Converter<String, Person> {

 public Person convert(String source) {

 if (StringUtils.hasText(source)) {
 try {
 return new ObjectMapper().readValue(source, Person.class);
 } catch (IOException e) {
 throw new IllegalStateException(e);
 }
 }

 return null;
 }
}

Registering Spring Converters with the CassandraConverter

The Spring Data for Apache Cassandra Java Config provides a convenient way to register Spring Converter`s with
the `MappingCassandraConverter. The configuration snippet below shows how to manually register converters as well as
configuring the CustomConversions.

@Configuration
public static class Config extends AbstractCassandraConfiguration {

 @Override
 public CustomConversions customConversions() {

 List<Converter<?, ?>> converters = new ArrayList<Converter<?, ?>>();
 converters.add(new PersonReadConverter());
 converters.add(new PersonWriteConverter());

 return new CustomConversions(converters);
 }

 // other methods omitted...
}

Converter disambiguation

Generally, we inspect the Converter implementations for both source and target types they convert from and to.
Depending on whether one of those is a type Cassandra can handle natively, Spring Data will register the Converter
instance as a reading or writing one. Have a look at the following samples:

// Write converter as only the target type is one cassandra can handle natively
class MyConverter implements Converter<Person, String> { … }

// Read converter as only the source type is one cassandra can handle natively
class MyConverter implements Converter<String, Person> { … }

In case you write a Converter whose source and target type are native Cassandra types there’s no way for Spring Data
to determine whether we should consider it as reading or writing Converter. Registering the Converter instance
as both might lead to unwanted results.

E.g. a Converter<String, Long> is ambiguous although it probably does not make sense to try to convert all String
instances into Long instances when writing. To be generally able to force the infrastructure to register a Converter
for one way only we provide @ReadingConverter as well as @WritingConverter to be used as the appropriate
Converter implementation.

Executing Commands

Methods for executing commands

The CassandraTemplate has many overloads for execute() and executeAsync(). Pass in the CQL command you wish to
execute and handle the appropriate response.

This example uses the basic AsynchronousQueryListener that comes with Spring Data for Apache Cassandra. Please see
the API documentation for all the options. There should be nothing you cannot perform in Cassandra with
the execute() and executeAsync() methods.

cassandraOperations.executeAsynchronously("delete from person where id = '123123123'",
 new AsynchronousQueryListener() {

 public void onQueryComplete(ResultSetFuture rsf) {
 LOG.info("Async Query Completed");
 }
 });

This example shows how to create and drop a table, using different API objects, all passed to the execute() methods.

cassandraOperations.execute("CREATE TABLE test_table (id uuid primary key, event text)");

DropTableSpecification dropper = DropTableSpecification.dropTable("test_table");
cassandraOperations.execute(dropper);

Exception Translation

The Spring Framework provides exception translation for a wide variety of database and mapping technologies.
This has traditionally been for JDBC and JPA. The Spring support for Apache Cassandra extends this feature
to Apache Cassandra by providing an implementation of the org.springframework.dao.support.PersistenceExceptionTranslator
interface.

The motivation behind mapping to Spring’s consistent data access exception hierarchy
is that you are then able to write portable and descriptive exception handling code without resorting to coding
against Cassandra Exceptions. All of Spring’s data access exceptions are inherited from the root, DataAccessException
class so you can be sure that you will be able to catch all database related exception within a single try-catch block.

 CASSANDRA REPOSITORIES

Introduction

This chapter covers the details of the Spring Data Repository support for Apache Cassandra.
Cassandra’s Repository support builds on the core Repository support explained in [repositories].
So make sure you understand of the basic concepts explained there before proceeding.

Usage

To access domain entities stored in Apache Cassandra, you can leverage Spring Data’s sophisticated Repository support
that eases implementing DAOs quite significantly. To do so, simply create an interface for your Repository:

Sample Person entity

@Table
public class Person {

 @Id
 private String id;
 private String firstname;
 private String lastname;

 // … getters and setters omitted
}

We have a simple domain object here. Note that the entity has a property named id of type String.
The default serialization mechanism used in CassandraTemplate (which is backing the Repository support)
regards properties named id as row id.

Basic Repository interface to persist Person entities

public interface PersonRepository extends CrudRepository<Person, String> {

 // additional custom finder methods go here
}

Right now this interface simply serves typing purposes, but we will add additional methods to it later.
In your Spring configuration simply add:

General Cassandra repository Spring configuration

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:cassandra="http://www.springframework.org/schema/data/cassandra"
 xsi:schemaLocation="
 http://www.springframework.org/schema/data/cassandra
 http://www.springframework.org/schema/data/cassandra/spring-cassandra.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <cassandra:cluster port="9042"/>
 <cassandra:session keyspace-name="keyspaceName"/>

 <cassandra:mapping
 entity-base-packages="com.acme.*.entities">
 </cassandra:mapping>

 <cassandra:converter/>

 <cassandra:template/>

 <cassandra:repositories base-package="com.acme.*.entities"/>
</beans>

The cassandra:repositories namespace element will cause the base packages to be scanned for interfaces
extending CrudRepository and create Spring beans for each one found. By default, the Repositories will be
wired with a CassandraTemplate Spring bean called cassandraTemplate, so you only need to configure
cassandra-template-ref explicitly if you deviate from this convention.

If you’d rather like to go with JavaConfig use the @EnableCassandraRepositories annotation. The annotation carries
the same attributes as the namespace element. If no base package is configured the infrastructure will scan
the package of the annotated configuration class.

JavaConfig for repositories

@Configuration
@EnableCassandraRepositories
class ApplicationConfig extends AbstractCassandraConfiguration {

 @Override
 protected String getKeyspaceName() {
 return "keyspace";
 }

 public String[] getEntityBasePackages() {
 return new String[] { "com.oreilly.springdata.cassandra" };
 }
}

As our domain Repository extends CrudRepository it provides you with basic CRUD operations.
Working with the Repository instance is just a matter of injecting the Repository as a dependency into a client.

Paging access to Person entities

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration
public class PersonRepositoryTests {

 @Autowired PersonRepository repository;

 @Test
 public void readsPersonTableCorrectly() {

 List<Person> persons = repository.findAll();
 assertThat(persons.isEmpty()).isFalse();
 }
}

The sample creates an application context with Spring’s unit test support, which will perform annotation-based
dependency injection into the test class. Inside the test cases (test methods) we simply use the Repository to query
the data store. We invoke the Repository query method that requests the all Person instances.

Query methods

Most of the data access operations you usually trigger on a Repository result in a query being executed against
the Apache Cassandra database. Defining such a query is just a matter of declaring a method on the Repository interface.

PersonRepository with query methods

public interface PersonRepository extends CrudRepository<Person, String> {

 List<Person> findByLastname(String lastname); ①

 List<Person> findByFirstname(String firstname, Sort sort); ②

 Person findByShippingAddress(Address address); ③

 Stream<Person> findAllBy(); ④
}

	① The method shows a query for all people with the given lastname. The query will be derived from parsing
the method name for constraints which can be concatenated with And. Thus the method name will result in
a query expression of SELECT * from person WHERE lastname = 'lastname'.

	② Applies dynamic sorting to a query. Just add a Sort parameter to your method signature and Spring Data
will automatically apply ordering to the query accordingly.

	③ Shows that you can query based on properties which are not a primitive type using registered Converter’s
in `CustomConversions.

	④ Uses a Java 8 Stream which reads and converts individual elements while iterating the stream.

Querying non-primary key properties requires secondary indexes.

Table 1. Supported keywords for query methods

	Keyword
	Sample
	Logical result

	After

	findByBirthdateAfter(Date date)

	birthdate > date

	GreaterThan

	findByAgeGreaterThan(int age)

	age > age

	GreaterThanEqual

	findByAgeGreaterThanEqual(int age)

	age >= age

	Before

	findByBirthdateBefore(Date date)

	birthdate < date

	LessThan

	findByAgeLessThan(int age)

	age < age

	LessThanEqual

	findByAgeLessThanEqual(int age)

	age ⇐ age

	In

	findByAgeIn(Collection ages)

	age IN (ages…​)

	Like, StartingWith, EndingWith

	findByFirstnameLike(String name)

	firstname LIKE (name as like expression)

	Containing on String

	findByFirstnameContaining(String name)

	firstname LIKE (name as like expression)

	Containing on Collection

	findByAddressesContaining(Address address)

	addresses CONTAINING address

	(No keyword)

	findByFirstname(String name)

	firstname = name

	IsTrue, True

	findByActiveIsTrue()

	active = true

	IsFalse, False

	findByActiveIsFalse()

	active = false

Projections

Spring Data query methods usually return one or multiple instances of the aggregate root managed by the repository.
However, it might sometimes be desirable to rather project on certain attributes of those types.
Spring Data allows to model dedicated return types to more selectively retrieve partial views onto the managed aggregates.

Imagine a sample repository and aggregate root type like this:

A sample aggregate and repository

class Person {

 @Id UUID id;
 String firstname, lastname;
 Address address;

 static class Address {
 String zipCode, city, street;
 }
}

interface PersonRepository extends Repository<Person, UUID> {

 Collection<Person> findByLastname(String lastname);
}

Now imagine we’d want to retrieve the person’s name attributes only.
What means does Spring Data offer to achieve this?

Interface-based projections

The easiest way to limit the result of the queries to expose the name attributes only is by declaring an interface that will expose accessor methods for the properties to be read:

A projection interface to retrieve a subset of attributes

interface NamesOnly {

 String getFirstname();
 String getLastname();
}

The important bit here is that the properties defined here exactly match properties in the aggregate root.
This allows a query method to be added like this:

A repository using an interface based projection with a query method

interface PersonRepository extends Repository<Person, UUID> {

 Collection<NamesOnly> findByLastname(String lastname);
}

The query execution engine will create proxy instances of that interface at runtime for each element returned and forward calls to the exposed methods to the target object.

Projections can be used recursively. If you wanted to include some of the Address information as well, create a projection interface for that and return that interface from the declaration of getAddress().

A projection interface to retrieve a subset of attributes

interface PersonSummary {

 String getFirstname();
 String getLastname();
 AddressSummary getAddress();

 interface AddressSummary {
 String getCity();
 }
}

On method invocation, the address property of the target instance will be obtained and wrapped into a projecting proxy in turn.

Closed projections

A projection interface whose accessor methods all match properties of the target aggregate are considered closed projections.

A closed projection

interface NamesOnly {

 String getFirstname();
 String getLastname();
}

If a closed projection is used, Spring Data modules can even optimize the query execution as we exactly know about all attributes that are needed to back the projection proxy.
For more details on that, please refer to the module specific part of the reference documentation.

Open projections

Accessor methods in projection interfaces can also be used to compute new values by using the @Value annotation on it:

An Open Projection

interface NamesOnly {

 @Value("#{target.firstname + ' ' + target.lastname}")
 String getFullName();
 …
}

The aggregate root backing the projection is available via the target variable.
A projection interface using @Value an open projection.
Spring Data won’t be able to apply query execution optimizations in this case as the SpEL expression could use any attributes of the aggregate root.

The expressions used in @Value shouldn’t become too complex as you’d want to avoid programming in Strings.
For very simple expressions, one option might be to resort to default methods:

A projection interface using a default method for custom logic

interface NamesOnly {

 String getFirstname();
 String getLastname();

 default String getFullName() {
 return getFirstname.concat(" ").concat(getLastname());
 }
}

This approach requires you to be able to implement logic purely based on the other accessor methods exposed on the projection interface.
A second, more flexible option is to implement the custom logic in a Spring bean and then simply invoke that from the SpEL expression:

Sample Person object

@Component
class MyBean {

 String getFullName(Person person) {
 …
 }
}

interface NamesOnly {

 @Value("#{@myBean.getFullName(target)}")
 String getFullName();
 …
}

Note, how the SpEL expression refers to myBean and invokes the getFullName(…) method forwarding the projection target as method parameter.
Methods backed by SpEL expression evaluation can also use method parameters which can then be referred to from the expression.
The method parameters are available via an Object array named args.

Sample Person object

interface NamesOnly {

 @Value("#{args[0] + ' ' + target.firstname + '!'}")
 String getSalutation(String prefix);
}

Again, for more complex expressions rather use a Spring bean and let the expression just invoke a method as described above.

Class-based projections (DTOs)

Another way of defining projections is using value type DTOs that hold properties for the fields that are supposed to be retrieved.
These DTO types can be used exactly the same way projection interfaces are used, except that no proxying is going on here and no nested projections can be applied.

In case the store optimizes the query execution by limiting the fields to be loaded, the ones to be loaded are determined from the parameter names of the constructor that is exposed.

A projecting DTO

class NamesOnly {

 private final String firstname, lastname;

 NamesOnly(String firstname, String lastname) {

 this.firstname = firstname;
 this.lastname = lastname;
 }

 String getFirstname() {
 return this.firstname;
 }

 String getLastname() {
 return this.lastname;
 }

 // equals(…) and hashCode() implementations
}

Avoiding boilerplate code for projection DTOs

The code that needs to be written for a DTO can be dramatically simplified using Project Lombok, which provides an @Value annotation (not to mix up with Spring’s @Value annotation shown in the interface examples above).
The sample DTO above would become this:

@Value
class NamesOnly {
 String firstname, lastname;
}

Fields are private final by default, the class exposes a constructor taking all fields and automatically gets equals(…) and hashCode() methods implemented.

Dynamic projections

So far we have used the projection type as the return type or element type of a collection.
However, it might be desirable to rather select the type to be used at invocation time.
To apply dynamic projections, use a query method like this:

A repository using a dynamic projection parameter

interface PersonRepository extends Repository<Person, UUID> {

 Collection<T> findByLastname(String lastname, Class<T> type);
}

This way the method can be used to obtain the aggregates as is, or with a projection applied:

Using a repository with dynamic projections

void someMethod(PersonRepository people) {

 Collection<Person> aggregates =
 people.findByLastname("Matthews", Person.class);

 Collection<NamesOnly> aggregates =
 people.findByLastname("Matthews", NamesOnly.class);
}

Miscellaneous

CDI Integration

Instances of the Repository interfaces are usually created by a container, and the Spring container is
the most natural choice when working with Spring Data. Spring Data for Apache Cassandra ships with
a custom CDI extension that allows using the repository abstraction in CDI environments. The extension
is part of the JAR so all you need to do to activate it is dropping the Spring Data for Apache Cassandra JAR
into your classpath. You can now set up the infrastructure by implementing a CDI Producer for the CassandraTemplate:

class CassandraTemplateProducer {

 @Produces
 @Singleton
 public Cluster createCluster() throws Exception {
 CassandraConnectionProperties properties = new CassandraConnectionProperties();

 Cluster cluster = Cluster.builder().addContactPoint(properties.getCassandraHost())
 .withPort(properties.getCassandraPort()).build();
 return cluster;
 }

 @Produces
 @Singleton
 public Session createSession(Cluster cluster) throws Exception {
 return cluster.connect();
 }

 @Produces
 @ApplicationScoped
 public CassandraOperations createCassandraOperations(Session session) throws Exception {

 MappingCassandraConverter cassandraConverter = new MappingCassandraConverter();
 cassandraConverter.setUserTypeResolver(new SimpleUserTypeResolver(session.getCluster(), session.getLoggedKeyspace()));

 CassandraAdminTemplate cassandraTemplate = new CassandraAdminTemplate(session, cassandraConverter);
 return cassandraTemplate;
 }

 public void close(@Disposes Session session) {
 session.close();
 }

 public void close(@Disposes Cluster cluster) {
 cluster.close();
 }
}

The Spring Data for Apache Cassandra CDI extension will pick up CassandraOperations available as CDI bean
and create a proxy for a Spring Data Repository whenever an bean of a Repository type is requested by the container.
Thus obtaining an instance of a Spring Data Repository is a matter of declaring an @Inject-ed property:

class RepositoryClient {

 @Inject
 PersonRepository repository;

 public void businessMethod() {
 List<Person> people = repository.findAll();
 }
}

 MAPPING

Rich mapping support is provided by the MappingCassandraConverter . MappingCassandraConverter has a rich
metadata model that provides a complete feature set of functionality to map domain objects to CQL Tables.
The mapping metadata model is populated using annotations on your domain objects. However, the infrastructure
is not limited to using annotations as the only source of metadata. The MappingCassandraConverter also allows you
to map domain objects to tables without providing any additional metadata, by following a set of conventions.

In this section we will describe the features of the MappingCassandraConverter, how to use conventions for
mapping domain objects to tables and how to override those conventions with annotation-based mapping metadata.

Convention based Mapping

MappingCassandraConverter uses a few conventions for mapping domain objects to CQL Tables when no additional
mapping metadata is provided. The conventions are:

	
The short Java class name is mapped to the table name in the following manner. The class com.bigbank.SavingsAccount
maps to savingsaccount table name.

	
The converter will use any registered Spring Converters to override the default mapping of object properties to
tables fields.

	
The properties of an object are used to convert to and from properties in the table.

Data mapping and type conversion

This section explains how types are mapped to an Apache Cassandra representation and vice versa.

Spring Data for Apache Cassandra supports several types that are provided by Apache Cassandra. In addition to
these types, Spring Data for Apache Cassandra provides a set of built-in converters to map additional types.
You can provide your own converters to adjust type conversion, see Overriding Mapping with explicit Converters
for further details.

Table 1. Type

	Type
	Cassandra types

	String

	text (default), varchar, ascii

	double, Double

	double

	float, Float

	float

	long, Long

	bigint (default), counter

	int, Integer

	int

	short, Short

	smallint

	byte, Byte

	tinyint

	boolean, Boolean

	boolean

	BigInteger

	varint

	BigDecimal

	decimal

	java.util.Date

	timestamp

	com.datastax.driver.core.LocalDate

	date

	InetAddress

	inet

	ByteBuffer

	blob

	java.util.UUID

	timeuuid

	UDTValue, mapped User-Defined types

	user type

	java.util.Map<K, V>

	map

	java.util.List<E>

	list

	java.util.Set<E>

	set

	Enum

	text (default), bigint, varint, int, smallint, tinyint

	LocalDate

(Joda, Java 8, JSR310-BackPort)

	date

	LocalDateTime, LocalTime, Instant

(Joda, Java 8, JSR310-BackPort)

	timestamp

	DateMidnight (Joda)

	date

	ZoneId (Java 8, JSR310-BackPort)

	text

Each supported type maps to a default
Cassandra data type.
Java types can be mapped to other Cassandra types by using @CassandraType.

.Enum Mapping to Numeric types

@Table
public class EnumToOrdinalMapping {

 @PrimaryKey String id;

 @CassandraType(type = Name.INT) Condition asOrdinal;
}

public enum Condition {
 NEW, USED
}

Enum mapping using ordinal values requires at least Spring 4.3.0. Using earlier Spring versions require
custom converters for each Enum type.

Mapping Configuration

Unless explicitly configured, an instance of MappingCassandraConverter is created by default when creating
a CassandraTemplate. You can create your own instance of the MappingCassandraConverter so as to tell it
where to scan the classpath at startup for your domain classes in order to extract metadata and construct indexes.

Also, by creating your own instance you can register Spring Converters to use for mapping specific classes
to and from the database.

@Configuration class to configure Cassandra mapping support

@Configuration
public static class Config extends AbstractCassandraConfiguration {

 @Override
 protected String getKeyspaceName() {
 return "bigbank";
 }

 // the following are optional

 @Override
 public CustomConversions customConversions() {

 List<Converter<?, ?>> converters = new ArrayList<Converter<?, ?>>();
 converters.add(new PersonReadConverter());
 converters.add(new PersonWriteConverter());

 return new CustomConversions(converters);
 }

 @Override
 public SchemaAction getSchemaAction() {
 return SchemaAction.RECREATE;
 }

 // other methods omitted...
}

AbstractCassandraConfiguration requires you to implement methods that define a keyspace.
AbstractCassandraConfiguration also has a method you can override named getEntityBasePackages(…)
which tells the Converter where to scan for classes annotated with the @Table annotation.

You can add additional converters to the Converter by overriding the method customConversions.

AbstractCassandraConfiguration will create a CassandraTemplate instance and register it with the container
under the name cassandraTemplate.

Metadata based Mapping

To take full advantage of the object mapping functionality inside the Spring Data for Apache Cassandra support,
you should annotate your mapped objects with the @Table annotation. It allows the classpath scanner to find
and pre-process your domain objects to extract the necessary metadata. Only annotated entities will be used
to perform schema actions. In the worst case, a SchemaAction.RECREATE_DROP_UNUSED will drop your tables
and you will experience data loss.

Example domain object

package com.mycompany.domain;

@Table
public class Person {

 @Id
 private String id;

 @CassandraType(type = Name.VARINT)
 private Integer ssn;

 private String firstName;

 private String lastName;
}

The @Id annotation tells the mapper which property you want to use for the Cassandra primary key.
Composite primary keys can require a slightly different data model.

Mapping annotation overview

The MappingCassandraConverter can use metadata to drive the mapping of objects to rows. An overview of the annotations
is provided below:

	
@Id - applied at the field or property level to mark the property used for identity purpose.

	
@Table - applied at the class level to indicate this class is a candidate for mapping to the database.
You can specify the name of the table where the object will be stored.

	
@PrimaryKey - Similar to @Id but allows you to specify the column name.

	
@PrimaryKeyColumn - Cassandra-specific annotation for primary key columns that allows you to specify
primary key column attributes such as for clustered/partitioned. Can be used on single and multiple attributes
to indicate either a single or a compound primary key.

	
@PrimaryKeyClass - applied at the class level to indicate this class is a compound primary key class. Requires to
be referenced with @PrimaryKey.

	
@Transient - by default all private fields are mapped to the row, this annotation excludes the field
where it is applied from being stored in the database.

	
@Column - applied at the field level. Describes the column name as it will be represented in the Cassandra table
thus allowing the name to be different than the field name of the class.

	
@CassandraType - applied at the field level to specify a Cassandra data type. Types are derived from
the declaration by default.

	
@UserDefinedType - applied at the type level to specify a Cassandra user-defined data type (UDT). Types are derived
from the declaration by default.

The mapping metadata infrastructure is defined in the separate, spring-data-commons project that is technology agnostic.

Here is an example of a more complex mapping.

Mapped Person class

@Table("my_person")
public class Person {

 @PrimaryKeyClass
 public static class Key implements Serializable {

 @PrimaryKeyColumn(ordinal = 0, type = PrimaryKeyType.PARTITIONED)
 private String type;

 @PrimaryKeyColumn(ordinal = 1, type = PrimaryKeyType.PARTITIONED)
 private String value;

 @PrimaryKeyColumn(name = "correlated_type", ordinal = 2, type = PrimaryKeyType.CLUSTERED)
 private String correlatedType;

 // other getters/setters ommitted
 }

 @PrimaryKey
 private Person.Key key;

 @CassandraType(type = Name.VARINT)
 private Integer ssn;

 @Column("f_name")
 private String firstName;

 @Column(forceQuote = true)
 private String lastName;

 private Address address;

 @CassandraType(type = Name.UDT, userTypeName = "myusertype")
 private UDTValue usertype;

 @Transient
 private Integer accountTotal;

 @CassandraType(type = Name.SET, typeArguments = Name.BIGINT)
 private Set<Long> timestamps;

 private Map<String, InetAddress> sessions;

 public Person(Integer ssn) {
 this.ssn = ssn;
 }

 public String getId() {
 return id;
 }

 // no setter for Id. (getter is only exposed for some unit testing)

 public Integer getSsn() {
 return ssn;
 }

 // other getters/setters ommitted
}

Mapped User-Defined type Address

@UserDefinedType("address")
public class Address {

 private String city;

 @CassandraType(type = Name.VARCHAR)
 private String street;

 private Set<String> zipcodes;

 @CassandraType(type = Name.SET, typeArguments = Name.BIGINT)
 private List<Long> timestamps;

 // other getters/setters ommitted
}

Working with User-Defined Types requires a UserTypeResolver configured with the mapping context.
See the configuration chapter for how to configure a UserTypeResolver.

Overriding Mapping with explicit Converters

When storing and querying your objects it is convenient to have a CassandraConverter instance handle the mapping
of all Java types to Rows. However, sometimes you may want the CassandraConverter to do most of the work but
still allow you to selectively handle the conversion for a particular type, or to optimize performance.

To selectively handle the conversion yourself, register one or more org.springframework.core.convert.converter.Converter
instances with the CassandraConverter.

Spring 3.0 introduced a o.s.core.convert package that provides a general type conversion system.
This is described in detail in the Spring reference documentation section entitled
Spring Type Conversion.

Below is an example of a Spring Converter implementation that converts from a Row to a Person POJO.

@ReadingConverter
 public class PersonReadConverter implements Converter<Row, Person> {

 public Person convert(Row source) {
 Person p = new Person(row.getString("id"));
 p.setAge(source.getInt("age");
 return p;
 }
}

 NAMESPACE REFERENCE

The <repositories /> element

The <repositories /> element triggers the setup of the Spring Data repository infrastructure. The most important attribute is base-package which defines the package to scan for Spring Data repository interfaces.[1]

Table 1. Attributes

	Name
	Description

	base-package

	Defines the package to be used to be scanned for repository interfaces extending *Repository (actual interface is determined by specific Spring Data module) in auto detection mode. All packages below the configured package will be scanned, too. Wildcards are allowed.

	repository-impl-postfix

	Defines the postfix to autodetect custom repository implementations. Classes whose names end with the configured postfix will be considered as candidates. Defaults to Impl.

	query-lookup-strategy

	Determines the strategy to be used to create finder queries. See [repositories.query-methods.query-lookup-strategies] for details. Defaults to create-if-not-found.

	named-queries-location

	Defines the location to look for a Properties file containing externally defined queries.

	consider-nested-repositories

	Controls whether nested repository interface definitions should be considered. Defaults to false.

1 see [repositories.create-instances.spring]

 POPULATORS NAMESPACE REFERENCE

The <populator /> element

The <populator /> element allows to populate the a data store via the Spring Data repository infrastructure.[1]

Table 1. Attributes

	Name
	Description

	locations

	Where to find the files to read the objects from the repository shall be populated with.

1 see [repositories.create-instances.spring]

 REPOSITORY QUERY KEYWORDS

Supported query keywords

The following table lists the keywords generally supported by the Spring Data repository query derivation mechanism. However, consult the store-specific documentation for the exact list of supported keywords, because some listed here might not be supported in a particular store.

Table 1. Query keywords

	Logical keyword
	Keyword expressions

	AND

	And

	OR

	Or

	AFTER

	After, IsAfter

	BEFORE

	Before, IsBefore

	CONTAINING

	Containing, IsContaining, Contains

	BETWEEN

	Between, IsBetween

	ENDING_WITH

	EndingWith, IsEndingWith, EndsWith

	EXISTS

	Exists

	FALSE

	False, IsFalse

	GREATER_THAN

	GreaterThan, IsGreaterThan

	GREATER_THAN_EQUALS

	GreaterThanEqual, IsGreaterThanEqual

	IN

	In, IsIn

	IS

	Is, Equals, (or no keyword)

	IS_NOT_NULL

	NotNull, IsNotNull

	IS_NULL

	Null, IsNull

	LESS_THAN

	LessThan, IsLessThan

	LESS_THAN_EQUAL

	LessThanEqual, IsLessThanEqual

	LIKE

	Like, IsLike

	NEAR

	Near, IsNear

	NOT

	Not, IsNot

	NOT_IN

	NotIn, IsNotIn

	NOT_LIKE

	NotLike, IsNotLike

	REGEX

	Regex, MatchesRegex, Matches

	STARTING_WITH

	StartingWith, IsStartingWith, StartsWith

	TRUE

	True, IsTrue

	WITHIN

	Within, IsWithin

 REPOSITORY QUERY RETURN TYPES

Supported query return types

The following table lists the return types generally supported by Spring Data repositories. However, consult the store-specific documentation for the exact list of supported return types, because some listed here might not be supported in a particular store.

Geospatial types like (GeoResult, GeoResults, GeoPage) are only available for data stores that support geospatial queries.

Table 1. Query return types

	Return type
	Description

	void

	Denotes no return value.

	Primitives

	Java primitives.

	Wrapper types

	Java wrapper types.

	T

	An unique entity. Expects the query method to return one result at most. In case no result is found null is returned. More than one result will trigger an IncorrectResultSizeDataAccessException.

	Iterator<T>

	An Iterator.

	Collection<T>

	A Collection.

	List<T>

	A List.

	Optional<T>

	A Java 8 or Guava Optional. Expects the query method to return one result at most. In case no result is found Optional.empty()/Optional.absent() is returned. More than one result will trigger an IncorrectResultSizeDataAccessException.

	Option<T>

	An either Scala or JavaSlang Option type. Semantically same behavior as Java 8’s Optional described above.

	Stream<T>

	A Java 8 Stream.

	Future<T>

	A Future. Expects method to be annotated with @Async and requires Spring’s asynchronous method execution capability enabled.

	CompletableFuture<T>

	A Java 8 CompletableFuture. Expects method to be annotated with @Async and requires Spring’s asynchronous method execution capability enabled.

	ListenableFuture

	A org.springframework.util.concurrent.ListenableFuture. Expects method to be annotated with @Async and requires Spring’s asynchronous method execution capability enabled.

	Slice

	A sized chunk of data with information whether there is more data available. Requires a Pageable method parameter.

	Page<T>

	A Slice with additional information, e.g. the total number of results. Requires a Pageable method parameter.

	GeoResult<T>

	A result entry with additional information, e.g. distance to a reference location.

	GeoResults<T>

	A list of GeoResult<T> with additional information, e.g. average distance to a reference location.

	GeoPage<T>

	A Page with GeoResult<T>, e.g. average distance to a reference location.

OEBPS/images/jacket/cover.png
Asciidoctor EPUB3

OEBPS/nav.xhtml

Spring Data for Apache Cassandra - Reference Documentation

Table of Contents

		Preface

		Knowing Spring

		Knowing NoSQL and Cassandra

		Requirements

		Additional Help Resources

		Support

		Community Forum

		Professional Support

		Following Development

		Project Metadata

		Untitled

		New & Noteworthy

		What’s new in Spring Data for Apache Cassandra 1.5

		Untitled

		Dependencies

		Dependency management with Spring Boot

		Spring Framework

		Untitled

		Working with Spring Data Repositories

		Core concepts

		Query methods

		Defining repository interfaces

		Fine-tuning repository definition

		Using Repositories with multiple Spring Data modules

		Defining query methods

		Query lookup strategies

		Query creation

		Property expressions

		Special parameter handling

		Limiting query results

		Streaming query results

		Async query results

		Creating repository instances

		XML configuration

		JavaConfig

		Standalone usage

		Custom implementations for Spring Data repositories

		Adding custom behavior to single repositories

		Adding custom behavior to all repositories

		Publishing events from aggregate roots

		Spring Data extensions

		Querydsl Extension

		Web support

		Repository populators

		Legacy web support

		Untitled

		Untitled

		Cassandra support

		Spring CQL and Spring Data for Apache Cassandra modules

		Choosing an approach for Cassandra database access

		Getting Started

		Examples Repository

		Connecting to Cassandra with Spring

		Registering a Session instance using Java based metadata

		XML Configuration

		Schema Management

		Keyspaces and Lifecycle scripts

		Tables and User-defined types

		Introduction to CassandraTemplate

		Instantiating CassandraTemplate

		Saving, Updating, and Removing Rows

		Working with Primary Keys

		Type mapping

		Methods for saving and inserting rows

		Updating rows in a CQL table

		Methods for removing rows

		Methods for truncating tables

		Querying CQL Tables

		Overriding default mapping with custom converters

		Saving using a registered Spring Converter

		Reading using a Spring Converter

		Registering Spring Converters with the CassandraConverter

		Converter disambiguation

		Executing Commands

		Methods for executing commands

		Exception Translation

		Untitled

		Cassandra repositories

		Introduction

		Usage

		Query methods

		Projections

		Interface-based projections

		Closed projections

		Open projections

		Class-based projections (DTOs)

		Dynamic projections

		Miscellaneous

		CDI Integration

		Untitled

		Mapping

		Convention based Mapping

		Data mapping and type conversion

		Mapping Configuration

		Metadata based Mapping

		Mapping annotation overview

		Overriding Mapping with explicit Converters

		Untitled

		Namespace reference

		The <repositories /> element

		Untitled

		Populators namespace reference

		The <populator /> element

		Untitled

		Repository query keywords

		Supported query keywords

		Untitled

		Repository query return types

		Supported query return types

