Spring Data for Apache Cassandra -
Reference Documentation

David Webb, Matthew Adams, John Blum, Mark Paluch

Version 1.5.9.RELEASE, 2017-11-27

Table of Contents

Preface

1.

Knowing Spring

2. Knowing NoSQL and Cassandra
3.
4. Additional Help Resources

Requirements

4.1. Support
4.1.1. Community Forum
4.1.2. Professional Support
4.2. Following Development
4.3. Project Metadata

. New & Noteworthy

5.1. What’s new in Spring Data for Apache Cassandra 1.5

. Dependencies

6.1. Dependency management with Spring Boot
6.2. Spring Framework

. Working with Spring Data Repositories

7.1. Core concepts
7.2. Query methods
7.3. Defining repository interfaces
7.3.1. Fine-tuning repository definition

7.3.2. Using Repositories with multiple Spring Data modules

7.4. Defining query methods
7.4.1. Query lookup strategies
7.4.2. Query creation
7.4.3. Property expressions
7.4.4. Special parameter handling
7.4.5. Limiting query results
7.4.6. Streaming query results
7.4.7. Async query results
7.5. Creating repository instances
7.5.1. XML configuration
7.5.2. JavaConfig
7.5.3. Standalone usage
7.6. Custom implementations for Spring Data repositories
7.6.1. Adding custom behavior to single repositories
7.6.2. Adding custom behavior to all repositories
7.7. Publishing events from aggregate roots
7.8. Spring Data extensions

© 00 00 O O O O O O U1 b= W N

W DD NN DN DN DN NN DN DNDNDNDDNDNDN R =R 2R R m R =
O O 00 O O U1 U1 & b W NN RO O O 0 Ul Ul kW R =, O O

7.8.1. Querydsl Extension
7.8.2. Web support

7.8.3. Repository populators
7.8.4. Legacy web support

Reference Documentation

8. Cassandra support

8.1. Spring CQL and Spring Data for Apache Cassandra modules
8.1.1. Choosing an approach for Cassandra database access
8.2. Getting Started
8.3. Examples Repository
8.4. Connecting to Cassandra with Spring
8.4.1. Registering a Session instance using Java based metadata
8.4.2. XML Configuration
8.5. Schema Management
8.5.1. Keyspaces and Lifecycle scripts
8.5.2. Tables and User-defined types
8.6. Introduction to CassandraTemplate
8.6.1. Instantiating CassandraTemplate
8.7. Saving, Updating, and Removing Rows
8.7.1. Working with Primary Keys
8.7.2. Type mapping
8.7.3. Methods for saving and inserting rows
8.7.4. Updating rows in a CQL table
8.7.5. Methods for removing rows
8.7.6. Methods for truncating tables
8.8. Querying CQL Tables
8.9. Overriding default mapping with custom converters
8.9.1. Saving using a registered Spring Converter

8.9.2. Reading using a Spring Converter

8.9.3. Registering Spring Converters with the CassandraConverter

8.9.4. Converter disambiguation
8.10. Executing Commands
8.10.1. Methods for executing commands

8.11. Exception Translation

9. Cassandra repositories

9.1. Introduction

9.2. Usage

9.3. Query methods
9.3.1. Projections

9.4. Miscellaneous
9.4.1. CDI Integration

30
31
38
40
43
44
44
45
45
49
49
49
52
35
35
58
39
60
60
61
64
65
66
66
67
67
69
69
69
70
70
71
71
72
73
73
73
75
77
82
83

10. Mapping
10.1. Convention based Mapping
10.2. Data mapping and type conversion
10.2.1. Mapping Configuration
10.3. Metadata based Mapping
10.3.1. Mapping annotation overview
10.3.2. Overriding Mapping with explicit Converters
Appendix
Appendix A: Namespace reference
The <repositories /> element
Appendix B: Populators namespace reference
The <populator /> element
Appendix C: Repository query keywords
Supported query keywords
Appendix D: Repository query return types
Supported query return types

86
86
86
88
89
89
92
94
95
95
96
96
97
97
98
98

© 2008-2016 The original author(s).

Copies of this document may be made for your own use and for distribution to
others, provided that you do not charge any fee for such copies and further
provided that each copy contains this Copyright Notice, whether distributed in print
or electronically.

NOTE

Preface

The Spring Data for Apache Cassandra project applies core Spring concepts to the development of
solutions using the Cassandra Columnar data store. A "template" is provided as a high-level
abstraction for storing and querying documents. You will notice similarities to the JDBC support in
the core Spring Framework.

This document is the reference guide for Spring Data support for Cassandra. It explains Cassandra
module concepts, semantics and the syntax for various stores namespaces.

This section provides a basic introduction to Spring, Spring Data and the Cassandra database. The
rest of the document refers only to Spring Data for Apache Cassandra features and assumes the
user is familiar with Cassandra as well as core Spring concepts.

http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#jdbc

Chapter 1. Knowing Spring

Spring Data uses the Spring Framework’s core functionality, such as the IoC container, validation,
type conversion and data binding, expression language, AOP, JMX integration, DAO support, and
specifically the DAO Exception Hierarchy.

While it is not important to know the Spring APIs, understanding the concepts behind them is. At a
minimum, the idea behind IoC should be familiar no matter what IoC container you choose to use.

The core functionality of the Cassandra support can be used directly, with no need to invoke the IoC
services of the Spring container. This is much like JdbcTemplate, which can be used 'standalone’
without any other services of the Spring container. To leverage all the features of Spring Data for
Apache Cassandra, such as the repository support, you will need to configure some parts of the
library using Spring.

To learn more about Spring, you can refer to the comprehensive (and sometimes disarming)
documentation that explains in detail the Spring Framework. There are a lot of articles, blog entries
and books on the matter. Take a look at the Spring Framework home page for more information.

http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#beans
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#validation
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#validation
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#expressions
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#aop
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#jmx
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#dao
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#dao-exceptions
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/
http://projects.spring.io/spring-framework/

Chapter 2. Knowing NoSQL and Cassandra

NoSQL stores have taken the storage world by storm. It is a vast domain with a plethora of
solutions, terms and patterns (to make things worse, even the term itself has multiple meanings).
While some of the principles are common, it is crucial that the user is familiar to some degree with
the Cassandra Columnar NoSQL Datastore supported by Spring Data for Apache Cassandra. The
best way to get acquainted with Cassandra is to read the documentation and follow the examples. It
usually doesn’t take more then 5-10 minutes to go through them and if you are coming from a
RDBMS background, many times these exercises can be an eye opener.

The starting ground for learning about Cassandra is cassandra.apache.org. Also, here is a list of
other useful resources:
» Planet Cassandra site has many valuable resources for Cassandra best practices.

» The DataStax site offers commercial support and many resources, including, but not limited to,
documentation, DataStax Academy, a Tech Blog and so on.

* The Cassandra Quick Start provides a convenient way to interact with a Apache Cassandra
instance in combination with the online shell.

http://www.google.com/search?q=nosoql+acronym
http://cassandra.apache.org/
http://planetcassandra.org/
http://datastax.com/
http://www.datastax.com/what-we-offer/products-services/support
http://docs.datastax.com/en/landing_page/doc/landing_page/current.html
http://docs.datastax.com/en/landing_page/doc/landing_page/current.html
http://www.datastax.com/dev/blog
http://www.planetcassandra.org/try-cassandra/

Chapter 3. Requirements

Spring Data for Apache Cassandra 1.x binaries require JDK level 6.0 and above, and Spring
Framework 4.3.13.RELEASE and above.

In terms of Cassandra at least 2.0.

http://spring.io/docs
http://spring.io/docs
http://cassandra.apache.org/

Chapter 4. Additional Help Resources

Learning a new framework is not always straight forward. In this section, we try to provide what
we think is an easy to follow guide for starting with Spring Data for Apache Cassandra module.
However, if you encounter issues or you are just looking for an advice, feel free to use one of the
links below:

4.1. Support

There are a few support options available:

4.1.1. Community Forum

Spring Data on Stackoverflow is a tag for all Spring Data (not just Cassandra) users to share
information and help each other. Note that registration is needed only for posting.

Developers post questions and answers on . The two Kkey tags to search for related answers to this
project are:
* spring-data

* spring-data-cassandra

4.1.2. Professional Support

Professional, from-the-source support, with guaranteed response time, is available from Pivotal
Sofware, Inc., the company behind Spring Data and Spring.

4.2. Following Development

For information on the Spring Data for Apache Cassandra source code repository, nightly builds
and snapshot artifacts please see the Spring Data for Apache Cassandra homepage. You can help
make Spring Data best serve the needs of the Spring community by interacting with developers
through the Community on Stackoverflow. To follow developer activity look for the mailing list
information on the Spring Data for Apache Cassandra homepage. If you encounter a bug or want to
suggest an improvement, please create a ticket on the Spring Data issue tracker. To stay up to date
with the latest news and announcements in the Spring eco system, subscribe to the Spring
Community Portal. Lastly, you can follow the Spring blog or the project team on Twitter (
SpringData).

4.3. Project Metadata

» Version Control - https://github.com/spring-projects/spring-data-cassandra
* Bugtracker - https://jira.spring.io/browse/DATACASS
* Release repository - https://repo.spring.io/libs-release

* Milestone repository - https://repo.spring.io/libs-milestone

http://stackoverflow.com/questions/tagged/spring-data
http://stackoverflow.com/questions/tagged/spring-data
http://stackoverflow.com/questions/tagged/spring-data-cassandra
http://pivotal.io/
http://pivotal.io/
http://projects.spring.io/spring-data-cassandra/
http://stackoverflow.com/questions/tagged/spring-data
https://jira.spring.io/browse/DATACASS
http://spring.io
http://spring.io/blog
http://twitter.com/SpringData
https://github.com/spring-projects/spring-data-cassandra
https://jira.spring.io/browse/DATACASS
https://repo.spring.io/libs-release
https://repo.spring.io/libs-milestone

* Snapshot repository - https://repo.spring.io/libs-snapshot

https://repo.spring.io/libs-snapshot

Chapter 5. New & Noteworthy

5.1. What’s new in Spring Data for Apache Cassandra
1.5

» Assert compatibility with Cassandra 3.0 and Cassandra Java Driver 3.0.

* Configurable ProtocolVersion and QueryOptions on Cluster level.

 Support for Optional as query method result and argument.

* Declarative query methods using query derivation

» Support for User-Defined types and mapped User-Defined types using @UserDefinedType.

* The following annotations have been enabled to build own, composed annotations: @Table,
@UserDefinedType, @PrimaryKey, @PrimaryKeyClass, @PrimaryKeyColumn, @Column, @Query,
@CassandraType.

Chapter 6. Dependencies

Due to different inception dates of individual Spring Data modules, most of them carry different
major and minor version numbers. The easiest way to find compatible ones is by relying on the
Spring Data Release Train BOM we ship with the compatible versions defined. In a Maven project
youw’d declare this dependency in the <dependencyManagement /> section of your POM:

Example 1. Using the Spring Data release train BOM

<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-releasetrain</artifactId>
<version>${release-train}</version>
<scope>import</scope>
<type>pom</type>
</dependency>
</dependencies>
</dependencyManagement>

The current release train version is Ingalls-SR9. The train names are ascending alphabetically and
currently available ones are listed here. The version name follows the following pattern: ${name}-
${release} where release can be one of the following:

BUILD-SNAPSHOT - current snapshots

M1, M2 etc. - milestones

RCT, RC2 etc. - release candidates

RELEASE - GA release

SR1, SR2 etc. - service releases

A working example of using the BOMs can be found in our Spring Data examples repository. If
that’s in place declare the Spring Data modules you’d like to use without a version in the
<dependencies /> block.

Example 2. Declaring a dependency to a Spring Data module

<dependencies>
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-jpa</artifactld>
</dependency>
<dependencies>

https://github.com/spring-projects/spring-data-commons/wiki/Release-planning
https://github.com/spring-projects/spring-data-examples/tree/master/bom

6.1. Dependency management with Spring Boot

Spring Boot already selects a very recent version of Spring Data modules for you. In case you want
to upgrade to a newer version nonetheless, simply configure the property spring-data-
releasetrain.version to the train name and iteration you’d like to use.

6.2. Spring Framework

The current version of Spring Data modules require Spring Framework in version 4.3.13.RELEASE
or better. The modules might also work with an older bugfix version of that minor version.
However, using the most recent version within that generation is highly recommended.

10

Chapter 7. Working with Spring Data
Repositories

The goal of Spring Data repository abstraction is to significantly reduce the amount of boilerplate
code required to implement data access layers for various persistence stores.

Spring Data repository documentation and your module

This chapter explains the core concepts and interfaces of Spring Data
repositories. The information in this chapter is pulled from the Spring Data
Commons module. It uses the configuration and code samples for the Java
Persistence API (JPA) module. Adapt the XML namespace declaration and the

IMPORTANT types to be extended to the equivalents of the particular module that you are
using. Namespace reference covers XML configuration which is supported
across all Spring Data modules supporting the repository API, Repository
query keywords covers the query method keywords supported by the
repository abstraction in general. For detailed information on the specific
features of your module, consult the chapter on that module of this
document.

7.1. Core concepts

The central interface in Spring Data repository abstraction is Repository (probably not that much of
a surprise). It takes the domain class to manage as well as the id type of the domain class as type
arguments. This interface acts primarily as a marker interface to capture the types to work with
and to help you to discover interfaces that extend this one. The CrudRepository provides
sophisticated CRUD functionality for the entity class that is being managed.

11

Example 3. CrudRepository interface

public interface CrudRepository<T, ID extends Serializable>
extends Repository<T, ID> {

<S extends T> S save(S entity); @D
T findOne(ID primaryKey);

Iterable<T> findA11();

@
®
Long count(); @
void delete(T entity); ®

®

boolean exists(ID primaryKey);

// -+ more functionality omitted.

@ Saves the given entity.

@ Returns the entity identified by the given id.
® Returns all entities.

@ Returns the number of entities.

® Deletes the given entity.

® Indicates whether an entity with the given id exists.

We also provide persistence technology-specific abstractions like e.g. JpaRepository
or MongoRepository. Those interfaces extend CrudRepository and expose the
capabilities of the underlying persistence technology in addition to the rather
generic persistence technology-agnostic interfaces like e.g. CrudRepository.

NOTE

On top of the CrudRepository there is a PagingAndSortingRepository abstraction that adds additional
methods to ease paginated access to entities:

Example 4. PagingAndSortingRepository

public interface PagingAndSortingRepository<T, ID extends Serializable>
extends CrudRepository<T, ID> {

Iterable<T> findA11l(Sort sort);

Page<T> findAl1(Pageable pageable);
}

12

Accessing the second page of User by a page size of 20 you could simply do something like this:

PagingAndSortingRepository<User, Long> repository = // -+ get access to a bean
Page<User> users = repository.findAll(new PageRequest(1, 20));

In addition to query methods, query derivation for both count and delete queries, is available.

Example 5. Derived Count Query

public interface UserRepository extends CrudRepository<User, Long> {

Long countBylLastname(String lastname);

}

Example 6. Derived Delete Query

public interface UserRepository extends CrudRepository<User, Long> {
Long deleteBylLastname(String lastname);

List<User> removeBylLastname(String lastname);

7.2. Query methods

Standard CRUD functionality repositories usually have queries on the underlying datastore. With
Spring Data, declaring those queries becomes a four-step process:

1. Declare an interface extending Repository or one of its subinterfaces and type it to the domain
class and ID type that it will handle.

interface PersonRepository extends Repository<Person, Long> { - }
2. Declare query methods on the interface.

interface PersonRepository extends Repository<Person, Long> {
List<Person> findByLastname(String lastname);

}

3. Set up Spring to create proxy instances for those interfaces. Either via JavaConfig:

13

import org.springframework.data.jpa.repository.config.Enable]paRepositories;

@EnablelpaRepositories
class Config {}

or via XML configuration:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:jpa="http://www.springframework.org/schema/data/jpa"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/data/jpa
http://www.springframework.org/schema/data/jpa/spring-jpa.xsd">

<jpa:repositories base-package="com.acme.repositories"/>

</beans>

The JPA namespace is used in this example. If you are using the repository abstraction for any
other store, you need to change this to the appropriate namespace declaration of your store
module which should be exchanging jpa in favor of, for example, mongodb.

Also, note that the JavaConfig variant doesn’t configure a package explictly as the package of the
annotated class is used by default. To customize the package to scan use one of the
basePackage: - attribute of the data-store specific repository @Enable::--annotation.

4. Get the repository instance injected and use it.

public class SomeClient {

@Autowired
private PersonRepository repository;

public void doSomething() {
List<Person> persons = repository.findByLastname("Matthews");
}
}

The sections that follow explain each step in detail.

7.3. Defining repository interfaces

As a first step you define a domain class-specific repository interface. The interface must extend
Repository and be typed to the domain class and an ID type. If you want to expose CRUD methods

14

for that domain type, extend CrudRepository instead of Repository.

7.3.1. Fine-tuning repository definition

Typically, your repository interface will extend Repository, CrudRepository or
PagingAndSortingRepository. Alternatively, if you do not want to extend Spring Data interfaces, you
can also annotate your repository interface with @RepositoryDefinition. Extending CrudRepository
exposes a complete set of methods to manipulate your entities. If you prefer to be selective about
the methods being exposed, simply copy the ones you want to expose from CrudRepository into your
domain repository.

NOTE This allows you to define your own abstractions on top of the provided Spring Data
Repositories functionality.

Example 7. Selectively exposing CRUD methods

interface MyBaseRepository<T, ID extends Serializable> extends Repository<T, ID> {
T findOne(ID id);

T save(T entity);
}

interface UserRepository extends MyBaseRepository<User, Long> {
User findByEmailAddress(EmailAddress emailAddress);

}

In this first step you defined a common base interface for all your domain repositories and exposed
findOne(---) as well as save(::r).These methods will be routed into the base repository
implementation of the store of your choice provided by Spring Data ,e.g. in the case if JPA
SimpleJpaRepository, because they are matching the method signatures in CrudRepository. So the
UserRepository will now be able to save users, and find single ones by id, as well as triggering a
query to find Users by their email address.

Note, that the intermediate repository interface is annotated with
NOTE @NoRepositoryBean. Make sure you add that annotation to all repository interfaces
that Spring Data should not create instances for at runtime.

7.3.2. Using Repositories with multiple Spring Data modules

Using a unique Spring Data module in your application makes things simple hence, all repository
interfaces in the defined scope are bound to the Spring Data module. Sometimes applications
require using more than one Spring Data module. In such case, it’s required for a repository
definition to distinguish between persistence technologies. Spring Data enters strict repository
configuration mode because it detects multiple repository factories on the class path. Strict

15

configuration requires details on the repository or the domain class to decide about Spring Data
module binding for a repository definition:

1. If the repository definition extends the module-specific repository, then it’s a valid candidate for
the particular Spring Data module.

2. If the domain class is annotated with the module-specific type annotation, then it’s a valid
candidate for the particular Spring Data module. Spring Data modules accept either 3rd party
annotations (such as JPA’s @Entity) or provide own annotations such as @Document for Spring
Data MongoDB/Spring Data Elasticsearch.

Example 8. Repository definitions using Module-specific Interfaces

interface MyRepository extends JpaRepository<User, Long> { }

@NoRepositoryBean

interface MyBaseRepository<T, ID extends Serializable> extends JpaRepository<T,
ID> {

}

interface UserRepository extends MyBaseRepository<User, Long> {

}

MyRepository and UserRepository extend JpaRepository in their type hierarchy. They are valid
candidates for the Spring Data JPA module.

16

Example 9. Repository definitions using generic Interfaces

interface AmbiguousRepository extends Repository<User, Long> {

}

@NoRepositoryBean
interface MyBaseRepository<T, ID extends Serializable> extends CrudRepository<T,
ID> {

}

interface AmbiguousUserRepository extends MyBaseRepository<User, Long> {

}

AmbiguousRepository and AmbiguousUserRepository extend only Repository and CrudRepository in
their type hierarchy. While this is perfectly fine using a unique Spring Data module, multiple
modules cannot distinguish to which particular Spring Data these repositories should be
bound

Example 10. Repository definitions using Domain Classes with Annotations

interface PersonRepository extends Repository<Person, Long> {

}

@Entity
public class Person {

}

interface UserRepository extends Repository<User, Long> {

}

@Document
public class User {

}

PersonRepository references Person which is annotated with the JPA annotation @Entity so this
repository clearly belongs to Spring Data JPA. UserRepository uses User annotated with Spring
Data MongoDB’s @Document annotation.

17

Example 11. Repository definitions using Domain Classes with mixed Annotations

interface JpaPersonRepository extends Repository<Person, Long> {

}

interface MongoDBPersonRepository extends Repository<Person, Long> {

}

public class Person {

}

This example shows a domain class using both JPA and Spring Data MongoDB annotations. It
defines two repositories, JpaPersonRepository and MongoDBPersonRepository. One is intended for
JPA and the other for MongoDB usage. Spring Data is no longer able to tell the repositories
apart which leads to undefined behavior.

Repository type details and identifying domain class annotations are used for strict repository
configuration identify repository candidates for a particular Spring Data module. Using multiple
persistence technology-specific annotations on the same domain type is possible to reuse domain
types across multiple persistence technologies, but then Spring Data is no longer able to determine
a unique module to bind the repository.

The last way to distinguish repositories is scoping repository base packages. Base packages define
the starting points for scanning for repository interface definitions which implies to have
repository definitions located in the appropriate packages. By default, annotation-driven
configuration uses the package of the configuration class. The base package in XML-based
configuration is mandatory.

Example 12. Annotation-driven configuration of base packages

(basePackages = "com.acme.repositories.jpa")
(basePackages = "com.acme.repositories.mongo")
interface Configuration { }

7.4. Defining query methods

The repository proxy has two ways to derive a store-specific query from the method name. It can
derive the query from the method name directly, or by using a manually defined query. Available
options depend on the actual store. However, there’s got to be a strategy that decides what actual
query is created. Let’s have a look at the available options.

18

7.4.1. Query lookup strategies

The following strategies are available for the repository infrastructure to resolve the query. You can
configure the strategy at the namespace through the query-lookup-strategy attribute in case of XML
configuration or via the querylLookupStrategy attribute of the Enable${store}Repositories annotation
in case of Java config. Some strategies may not be supported for particular datastores.

» CREATE attempts to construct a store-specific query from the query method name. The general
approach is to remove a given set of well-known prefixes from the method name and parse the
rest of the method. Read more about query construction in Query creation.

» USE_DECLARED_QUERY tries to find a declared query and will throw an exception in case it can’t
find one. The query can be defined by an annotation somewhere or declared by other means.
Consult the documentation of the specific store to find available options for that store. If the
repository infrastructure does not find a declared query for the method at bootstrap time, it
fails.

o CREATE_IF_NOT_FOUND (default) combines CREATE and USE_DECLARED_QUERY. It looks up a declared
query first, and if no declared query is found, it creates a custom method name-based query.
This is the default lookup strategy and thus will be used if you do not configure anything
explicitly. It allows quick query definition by method names but also custom-tuning of these
queries by introducing declared queries as needed.

7.4.2. Query creation

The query builder mechanism built into Spring Data repository infrastructure is useful for building
constraining queries over entities of the repository. The mechanism strips the prefixes find---By,
read---By, query:--By, count---By, and get:--By from the method and starts parsing the rest of it. The
introducing clause can contain further expressions such as a Distinct to set a distinct flag on the
query to be created. However, the first By acts as delimiter to indicate the start of the actual criteria.
At a very basic level you can define conditions on entity properties and concatenate them with And
and Or.

19

Example 13. Query creation from method names

public interface PersonRepository extends Repository<User, Long> {

List<Person> findByEmailAddressAndLastname(EmailAddress emailAddress, String
lastname);

// Enables the distinct flag for the query

List<Person> findDistinctPeopleBylLastnameOrFirstname(String lastname, String
firstname);

List<Person> findPeopleDistinctBylLastnameOrFirstname(String lastname, String
firstname);

// Enabling ignoring case for an individual property

List<Person> findByLastnameIgnoreCase(String lastname);

// Enabling ignoring case for all suitable properties

List<Person> findBylLastnameAndFirstnameAllIgnoreCase(String lastname, String
firstname);

// Enabling static ORDER BY for a query
List<Person> findByLastnameOrderByFirstnameAsc(String lastname);
List<Person> findByLastnameOrderByFirstnameDesc(String lastname);

}

The actual result of parsing the method depends on the persistence store for which you create the
query. However, there are some general things to notice.

* The expressions are usually property traversals combined with operators that can be
concatenated. You can combine property expressions with AND and OR. You also get support for
operators such as Between, LessThan, GreaterThan, Like for the property expressions. The
supported operators can vary by datastore, so consult the appropriate part of your reference
documentation.

* The method parser supports setting an IgnoreCase flag for individual properties (for example,
findByLastnameIgnoreCase(::+)) or for all properties of a type that support ignoring case (usually
String instances, for example, findByLastnameAndFirstnameAllIgnoreCase(::+)). Whether ignoring
cases is supported may vary by store, so consult the relevant sections in the reference
documentation for the store-specific query method.

* You can apply static ordering by appending an OrderBy clause to the query method that
references a property and by providing a sorting direction (Asc or Desc). To create a query
method that supports dynamic sorting, see Special parameter handling.

7.4.3. Property expressions

Property expressions can refer only to a direct property of the managed entity, as shown in the
preceding example. At query creation time you already make sure that the parsed property is a
property of the managed domain class. However, you can also define constraints by traversing
nested properties. Assume a Person has an Address with a ZipCode. In that case a method name of

20

List<Person> findByAddressZipCode(ZipCode zipCode);

creates the property traversal x.address.zipCode. The resolution algorithm starts with interpreting
the entire part (AddressZipCode) as the property and checks the domain class for a property with
that name (uncapitalized). If the algorithm succeeds it uses that property. If not, the algorithm splits
up the source at the camel case parts from the right side into a head and a tail and tries to find the
corresponding property, in our example, AddressZip and Code. If the algorithm finds a property with
that head it takes the tail and continue building the tree down from there, splitting the tail up in the
way just described. If the first split does not match, the algorithm move the split point to the left
(Address, ZipCode) and continues.

Although this should work for most cases, it is possible for the algorithm to select the wrong
property. Suppose the Person class has an addressZip property as well. The algorithm would match
in the first split round already and essentially choose the wrong property and finally fail (as the
type of addressZip probably has no code property).

To resolve this ambiguity you can use _ inside your method name to manually define traversal
points. So our method name would end up like so:

List<Person> findByAddress_ZipCode(ZipCode zipCode);

As we treat underscore as a reserved character we strongly advise to follow standard Java naming
conventions (i.e. not using underscores in property names but camel case instead).

7.4.4. Special parameter handling

To handle parameters in your query you simply define method parameters as already seen in the
examples above. Besides that the infrastructure will recognize certain specific types like Pageable
and Sort to apply pagination and sorting to your queries dynamically.

Example 14. Using Pageable, Slice and Sort in query methods

Page<User> findByLastname(String lastname, Pageable pageable);
Slice<User> findByLastname(String lastname, Pageable pageable);
List<User> findBylLastname(String lastname, Sort sort);

List<User> findByLastname(String lastname, Pageable pageable);

The first method allows you to pass an org.springframework.data.domain.Pageable instance to the
query method to dynamically add paging to your statically defined query. A Page knows about the
total number of elements and pages available. It does so by the infrastructure triggering a count
query to calculate the overall number. As this might be expensive depending on the store used,
Slice can be used as return instead. A Slice only knows about whether there’s a next Slice

21

available which might be just sufficient when walking through a larger result set.

Sorting options are handled through the Pageable instance too. If you only need sorting, simply add
an org.springframework.data.domain.Sort parameter to your method. As you also can see, simply
returning a List is possible as well. In this case the additional metadata required to build the actual
Page instance will not be created (which in turn means that the additional count query that would
have been necessary not being issued) but rather simply restricts the query to look up only the
given range of entities.

To find out how many pages you get for a query entirely you have to trigger an
NOTE additional count query. By default this query will be derived from the query you
actually trigger.

7.4.5. Limiting query results

The results of query methods can be limited via the keywords first or top, which can be used
interchangeably. An optional numeric value can be appended to top/first to specify the maximum
result size to be returned. If the number is left out, a result size of 1 is assumed.

Example 15. Limiting the result size of a query with Top and First

User findFirstByOrderBylLastnameAsc();

User findTopByOrderByAgeDesc();

Page<User> queryFirst10ByLastname(String lastname, Pageable pageable);
Slice<User> findTop3BylLastname(String lastname, Pageable pageable);
List<User> findFirst10BylLastname(String lastname, Sort sort);

List<User> findTop10ByLastname(String lastname, Pageable pageable);

The limiting expressions also support the Distinct keyword. Also, for the queries limiting the result
set to one instance, wrapping the result into an Optional is supported.

If pagination or slicing is applied to a limiting query pagination (and the calculation of the number
of pages available) then it is applied within the limited result.

Note that limiting the results in combination with dynamic sorting via a Sort
NOTE parameter allows to express query methods for the 'K' smallest as well as for the 'K'
biggest elements.

7.4.6. Streaming query results

The results of query methods can be processed incrementally by using a Java 8 Stream<T> as return
type. Instead of simply wrapping the query results in a Stream data store specific methods are used

22

to perform the streaming.

Example 16. Stream the result of a query with Java 8 Stream<T>

("select u from User u")
Stream<User> findA11ByCustomQueryAndStream();

Stream<User> readAl1ByFirstnameNotNull();

("select u from User u")
Stream<User> streamAl1Paged(Pageable pageable);

A Stream potentially wraps underlying data store specific resources and must
NOTE therefore be closed after usage. You can either manually close the Stream using the
close() method or by using a Java 7 try-with-resources block.

Example 17. Working with a Stream<T> result in a try-with-resources block

try (Stream<User> stream = repository.findA11ByCustomQueryAndStream()) {
stream.forEach(:+);

}

NOTE Not all Spring Data modules currently support Stream<T> as a return type.

7.4.7. Async query results

Repository queries can be executed asynchronously using Spring’s asynchronous method execution
capability. This means the method will return immediately upon invocation and the actual query
execution will occur in a task that has been submitted to a Spring TaskExecutor.

Future<User> findByFirstname(String firstname); @)

CompletableFuture<User> findOneByFirstname(String firstname); @

ListenableFuture<User> findOneBylLastname(String lastname); ®

@ Use java.util.concurrent.Future as return type.
@ Use a Java 8 java.util.concurrent.CompletableFuture as return type.

® Use a org.springframework.util.concurrent.ListenableFuture as return type.

23

http://docs.spring.io/spring/docs/current/spring-framework-reference/html#scheduling
http://docs.spring.io/spring/docs/current/spring-framework-reference/html#scheduling

7.5. Creating repository instances

In this section you create instances and bean definitions for the repository interfaces defined. One
way to do so is using the Spring namespace that is shipped with each Spring Data module that
supports the repository mechanism although we generally recommend to use the Java-Config style
configuration.

7.5.1. XML configuration

Each Spring Data module includes a repositories element that allows you to simply define a base
package that Spring scans for you.

Example 18. Enabling Spring Data repositories via XML

<?xml version="1.0" encoding="UTF-8"7>
<beans:beans xmlns:beans="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://www.springframework.org/schema/data/jpa"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/data/jpa
http://www.springframework.org/schema/data/jpa/spring-jpa.xsd">

<repositories base-package="com.acme.repositories" />

</beans:beans>

In the preceding example, Spring is instructed to scan com.acme.repositories and all its sub-
packages for interfaces extending Repository or one of its sub-interfaces. For each interface found,
the infrastructure registers the persistence technology-specific FactoryBean to create the
appropriate proxies that handle invocations of the query methods. Each bean is registered under a
bean name that is derived from the interface name, so an interface of UserRepository would be
registered under userRepository. The base-package attribute allows wildcards, so that you can define
a pattern of scanned packages.

Using filters

By default the infrastructure picks up every interface extending the persistence technology-specific
Repository sub-interface located under the configured base package and creates a bean instance for
it. However, you might want more fine-grained control over which interfaces bean instances get
created for. To do this you use <include-filter /> and <exclude-filter /> elements inside
<repositories />. The semantics are exactly equivalent to the elements in Spring’s context
namespace. For details, see Spring reference documentation on these elements.

For example, to exclude certain interfaces from instantiation as repository, you could use the
following configuration:

24

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/beans.html#beans-scanning-filters

Example 19. Using exclude-filter element

<repositories base-package="com.acme.repositories">
<context:exclude-filter type="regex" expression=".*SomeRepository" />
</repositories>

This example excludes all interfaces ending in SomeRepository from being instantiated.

7.5.2. JavaConfig

The repository infrastructure can also be triggered using a store-specific
@Enable${store}Repositories annotation on a JavaConfig class. For an introduction into Java-based
configuration of the Spring container, see the reference documentation. [1: JavaConfig in the Spring
reference documentation]

A sample configuration to enable Spring Data repositories looks something like this.

Example 20. Sample annotation based repository configuration

("com.acme.repositories")
class ApplicationConfiguration {

public EntityManagerFactory entityManagerFactory() {

}
}

The sample uses the JPA-specific annotation, which you would change according to
the store module you actually use. The same applies to the definition of the
EntityManagerFactory bean. Consult the sections covering the store-specific
configuration.

NOTE

7.5.3. Standalone usage

You can also use the repository infrastructure outside of a Spring container, e.g. in CDI
environments. You still need some Spring libraries in your classpath, but generally you can set up
repositories programmatically as well. The Spring Data modules that provide repository support
ship a persistence technology-specific RepositoryFactory that you can use as follows.

25

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/beans.html#beans-java
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/beans.html#beans-java

Example 21. Standalone usage of repository factory

RepositoryFactorySupport factory = -+ // Instantiate factory here
UserRepository repository = factory.getRepository(UserRepository.class);

7.6. Custom implementations for Spring Data
repositories

Often it is necessary to provide a custom implementation for a few repository methods. Spring Data
repositories easily allow you to provide custom repository code and integrate it with generic CRUD
abstraction and query method functionality.

7.6.1. Adding custom behavior to single repositories

To enrich a repository with custom functionality you first define an interface and an
implementation for the custom functionality. Use the repository interface you provided to extend
the custom interface.

Example 22. Interface for custom repository functionality

interface UserRepositoryCustom {
public void someCustomMethod(User user);

}

Example 23. Implementation of custom repository functionality

class UserRepositoryImpl implements UserRepositoryCustom {

public void someCustomMethod(User user) {
// Your custom implementation

}
}

NOTE The most important bit for the class to be found is the Impl postfix of the name on it
compared to the core repository interface (see below).

The implementation itself does not depend on Spring Data and can be a regular Spring bean. So you

can use standard dependency injection behavior to inject references to other beans like a

JdbcTemplate, take part in aspects, and so on.

26

Example 24. Changes to the your basic repository interface

interface UserRepository extends CrudRepository<User, Long>, UserRepositoryCustom

{

// Declare query methods here

}

Let your standard repository interface extend the custom one. Doing so combines the CRUD and
custom functionality and makes it available to clients.

Configuration

If you use namespace configuration, the repository infrastructure tries to autodetect custom
implementations by scanning for classes below the package we found a repository in. These classes
need to follow the naming convention of appending the namespace element’s attribute repository-
impl-postfix to the found repository interface name. This postfix defaults to Impl.

Example 25. Configuration example

<repositories base-package="com.acme.repository" />

<repositories base-package="com.acme.repository" repository-impl-postfix="FooBar"
/>

The first configuration example will try to look up a class com.acme.repository.UserRepositoryImpl
to act as custom repository implementation, whereas the second example will try to lookup
com.acme.repository.UserRepositoryFooBar.

Manual wiring

The approach just shown works well if your custom implementation uses annotation-based
configuration and autowiring only, as it will be treated as any other Spring bean. If your custom
implementation bean needs special wiring, you simply declare the bean and name it after the
conventions just described. The infrastructure will then refer to the manually defined bean
definition by name instead of creating one itself.

Example 26. Manual wiring of custom implementations

<repositories base-package="com.acme.repository" />
<beans:bean id="userRepositoryImpl" class="---">

<!-- further configuration -->
</beans:bean>

27

7.6.2. Adding custom behavior to all repositories

The preceding approach is not feasible when you want to add a single method to all your repository
interfaces. To add custom behavior to all repositories, you first add an intermediate interface to
declare the shared behavior.

Example 27. An interface declaring custom shared behavior

public interface MyRepository<T, ID extends Serializable>
extends PagingAndSortingRepository<T, ID> {

void sharedCustomMethod(ID id);
}

Now your individual repository interfaces will extend this intermediate interface instead of the
Repository interface to include the functionality declared. Next, create an implementation of the
intermediate interface that extends the persistence technology-specific repository base class. This
class will then act as a custom base class for the repository proxies.

Example 28. Custom repository base class

public class MyRepositoryImpl<T, ID extends Serializable>
extends SimpleJpaRepository<T, ID> implements MyRepository<T, ID> {

private final EntityManager entityManager;

public MyRepositoryImpl(JpaEntityInformation entityInformation,
EntityManager entityManager) {
super(entityInformation, entityManager);

// Keep the EntityManager around to used from the newly introduced methods.
this.entityManager = entityManager;

}

public void sharedCustomMethod(ID id) {
// implementation goes here

}
}
The class needs to have a constructor of the super class which the store-
specific repository factory implementation is using. In case the repository base
WARNING class has multiple constructors, override the one taking an EntityInformation
plus a store specific infrastructure object (e.g. an EntityManager or a template
class).

28

The default behavior of the Spring <repositories /> namespace is to provide an implementation for
all interfaces that fall under the base-package. This means that if left in its current state, an
implementation instance of MyRepository will be created by Spring. This is of course not desired as it
is just supposed to act as an intermediary between Repository and the actual repository interfaces
you want to define for each entity. To exclude an interface that extends Repository from being
instantiated as a repository instance, you can either annotate it with @NoRepositoryBean (as seen
above) or move it outside of the configured base-package.

The final step is to make the Spring Data infrastructure aware of the customized repository base
class. In JavaConfig this is achieved by using the repositoryBaseClass attribute of the @Enable
---Repositories annotation:

Example 29. Configuring a custom repository base class using JavaConfig

(repositoryBaseClass = MyRepositoryImpl.class)
class ApplicationConfiguration { -+ }

A corresponding attribute is available in the XML namespace.

Example 30. Configuring a custom repository base class using XML

<repositories base-package="com.acme.repository"
base-class="+--.MyRepositoryImpl" />

7.7. Publishing events from aggregate roots

Entities managed by repositories are aggregate roots. In a Domain-Driven Design application, these
aggregate roots usually publish domain events. Spring Data provides an annotation @DomainEvents
you can use on a method of your aggregate root to make that publication as easy as possible.

29

Example 31. Exposing domain events from an aggregate root

class AnAggregateRoot {

@
Collection<Object> domainEvents() {
// -+ return events you want to get published here

}

@
void callbackMethod() {
// -+ potentially clean up domain events list

}

® The method using @DomainEvents can either return a single event instance or a collection of
events. It must not take any arguments.

@ After all events have been published, a method annotated with
@AfterDomainEventsPublication. It e.g. can be used to potentially clean the list of events to be
published.

The methods will be called every time one of a Spring Data repository’s save(::-) methods is called.

7.8. Spring Data extensions

This section documents a set of Spring Data extensions that enable Spring Data usage in a variety of
contexts. Currently most of the integration is targeted towards Spring MVC.

7.8.1. Querydsl Extension

Querydsl is a framework which enables the construction of statically typed SQL-like queries via its
fluent APL

Several Spring Data modules offer integration with Querydsl via QueryDs1PredicateExecutor.

30

http://www.querydsl.com/

Example 32. QueryDslPredicateExecutor interface

public interface QueryDslPredicateExecutor<T> {
T findOne(Predicate predicate);
Iterable<T> findAl1l(Predicate predicate);

long count(Predicate predicate);

® © ©® O

boolean exists(Predicate predicate);

// -+ more functionality omitted.

@ Finds and returns a single entity matching the Predicate.
@ Finds and returns all entities matching the Predicate.
® Returns the number of entities matching the Predicate.

@ Returns if an entity that matches the Predicate exists.

To make use of Querydsl support simply extend QueryDslPredicateExecutor on your repository
interface.

Example 33. Querydsl integration on repositories

interface UserRepository extends CrudRepository<User, Long>,
QueryDs1PredicateExecutor<User> {

}

The above enables to write typesafe queries using Querydsl Predicate s.

Predicate predicate = user.firstname.equalsIgnoreCase("dave")
.and(user.lastname.startsWithIgnoreCase("mathews"));

userRepository.findAll(predicate);

7.8.2. Web support

This section contains the documentation for the Spring Data web support as it is
implemented as of Spring Data Commons in the 1.6 range. As it the newly
introduced support changes quite a lot of things we kept the documentation of the
former behavior in Legacy web support.

NOTE

31

Spring Data modules ships with a variety of web support if the module supports the repository
programming model. The web related stuff requires Spring MVC JARs on the classpath, some of
them even provide integration with Spring HATEOAS [2: Spring HATEOAS - https://github.com/
SpringSource/spring-hateoas]. In general, the integration support is enabled by using the
@EnableSpringDataWebSupport annotation in your JavaConfig configuration class.

Example 34. Enabling Spring Data web support

@Configuration
@EnableWebMvc
@EnableSpringDataWebSupport
class WebConfiguration { }

The @EnableSpringDatallebSupport annotation registers a few components we will discuss in a bit. It
will also detect Spring HATEOAS on the classpath and register integration components for it as well
if present.

Alternatively, if you are using XML configuration, register either SpringDatallebSupport or
HateoasAwareSpringDataWebSupport as Spring beans:

Example 35. Enabling Spring Data web support in XML

<bean class="org.springframework.data.web.config.SpringDataWebConfiguration" />

<!-- If you're using Spring HATEOAS as well register this one *instead* of the
former -->

<bean class=
"org.springframework.data.web.config.HateoasAwareSpringDataWebConfiguration" />

Basic web support

The configuration setup shown above will register a few basic components:

* A DomainClassConverter to enable Spring MVC to resolve instances of repository managed
domain classes from request parameters or path variables.

* HandlerMethodArgumentResolver implementations to let Spring MVC resolve Pageable and Sort
instances from request parameters.

DomainClassConverter

The DomainClassConverter allows you to use domain types in your Spring MVC controller method
signatures directly, so that you don’t have to manually lookup the instances via the repository:

32

https://github.com/SpringSource/spring-hateoas
https://github.com/SpringSource/spring-hateoas

Example 36. A Spring MVC controller using domain types in method signatures

("/users")
public class UserController {

(ll/{_id}")
public String showUserForm(("id") User user, Model model) {

model.addAttribute("user", user);
return "userForm";

}
}

As you can see the method receives a User instance directly and no further lookup is necessary. The
instance can be resolved by letting Spring MVC convert the path variable into the id type of the
domain class first and eventually access the instance through calling findOne(::-) on the repository
instance registered for the domain type.

Currently the repository has to implement CrudRepository to be eligible to be

NOTE
discovered for conversion.

HandlerMethodArgumentResolvers for Pageable and Sort

The configuration snippet above also registers a PageableHandlerMethodArgumentResolver as well as
an instance of SortHandlerMethodArgumentResolver. The registration enables Pageable and Sort being
valid controller method arguments

Example 37. Using Pageable as controller method argument

("/users")
public class UserController {

UserRepository repository;

public String showUsers(Model model, Pageable pageable) {

model.addAttribute("users", repository.findAll(pageable));
return "users";

}
}

This method signature will cause Spring MVC try to derive a Pageable instance from the request
parameters using the following default configuration:

33

Table 1. Request parameters evaluated for Pageable instances

Page Page you want to retrieve, 0 indexed and defaults to 0.
size Size of the page you want to retrieve, defaults to 20.

sort Properties that should be sorted by in the format property,property(,ASC|DESC). Default sort
direction is ascending. Use multiple sort parameters if you want to switch directions, e.g.
?sort=firstname&sort=1astname,asc.

To customize this behavior extend either SpringDataWebConfiguration or the HATEOAS-enabled
equivalent and override the pageableResolver() or sortResolver() methods and import your
customized configuration file instead of using the @Enable-annotation.

In case you need multiple Pageable or Sort instances to be resolved from the request (for multiple
tables, for example) you can use Spring’s @Qualifier annotation to distinguish one from another.
The request parameters then have to be prefixed with $§{qualifier}_. So for a method signature like
this:

public String showUsers(Model model,
("foo") Pageable first,
("bar") Pageable second) { '+ }

you have to populate foo_page and bar_page etc.

The default Pageable handed into the method is equivalent to a new PageRequest(@, 20) but can be
customized using the @PageableDefault annotation on the Pageable parameter.

Hypermedia support for Pageables

Spring HATEOAS ships with a representation model class PagedResources that allows enriching the
content of a Page instance with the necessary Page metadata as well as links to let the clients easily
navigate the pages. The conversion of a Page to a PagedResources is done by an implementation of
the Spring HATEOAS ResourceAssembler interface, the PagedResourcesAssembler.

34

Example 38. Using a PagedResourcesAssembler as controller method argument

class PersonController {
PersonRepository repository;

(value = "/persons", method = RequestMethod.GET)
HttpEntity<PagedResources<Person>> persons(Pageable pageable,
PagedResourcesAssembler assembler) {

Page<Person> persons = repository.findAll(pageable);
return new ResponseEntity<>(assembler.toResources(persons), HttpStatus.0K);

}
}

Enabling the configuration as shown above allows the PagedResourcesAssembler to be used as
controller method argument. Calling toResources(:-+) on it will cause the following:

» The content of the Page will become the content of the PagedResources instance.

* The PagedResources will get a PageMetadata instance attached populated with information form
the Page and the underlying PageRequest.

* The PagedResources gets prev and next links attached depending on the page’s state. The links
will point to the URI the method invoked is mapped to. The pagination parameters added to the
method will match the setup of the PageableHandlerMethodArgumentResolver to make sure the
links can be resolved later on.

Assume we have 30 Person instances in the database. You can now trigger a request GET
http://localhost:8080/persons and youw’ll see something similar to this:

{ "links" : [{ "rel" : "next",
"href" : "http://localhost:8080/persons?page=1&size=20 }
1,
"content" : [
=+ // 20 Person instances rendered here
I,
"pageMetadata"” : {
"size" : 20,
"totalElements" : 30,
"totalPages" : 2,
"number" : 0

You see that the assembler produced the correct URI and also picks up the default configuration
present to resolve the parameters into a Pageable for an upcoming request. This means, if you

35

http://localhost:8080/persons
http://localhost:8080/persons
http://localhost:8080/persons

change that configuration, the links will automatically adhere to the change. By default the
assembler points to the controller method it was invoked in but that can be customized by handing
in a custom Link to be used as base to build the pagination links to overloads of the
PagedResourcesAssembler.toResource(') method.

Querydsl web support

For those stores having QueryDSL integration it is possible to derive queries from the attributes
contained in a Request query string.

This means that given the User object from previous samples a query string

?firstname=Dave&lastname=Matthews

can be resolved to

QUser.user.firstname.eq("Dave").and(QUser.user.lastname.eq("Matthews"))

using the Queryds1PredicateArgumentResolver.

NOTE The feature will be automatically enabled along @EnableSpringDataWebSupport when
Querydsl is found on the classpath.

Adding a @QuerydslPredicate to the method signature will provide a ready to use Predicate which

can be executed via the QueryDs1PredicateExecutor.

Type information is typically resolved from the methods return type. Since those

TIP information does not necessarily match the domain type it might be a good idea to use
the root attribute of Queryds1Predicate.

36

http://www.querydsl.com/

@Controller
class UserController {

@Autowired UserRepository repository;

@RequestMapping(value = "/", method = RequestMethod.GET)

String index(Model model, @QuerydsliPredicate(root = User.class) Predicate
predicate, @

Pageable pageable, @RequestParam MultiValueMap<String, String>
parameters) {

model.addAttribute("users", repository.findAll(predicate, pageable));

return "index";
}
}

@ Resolve query string arguments to matching Predicate for User.

The default binding is as follows:

* Object on simple properties as eq.
* Object on collection like properties as contains.

* Collection on simple properties as in.

Those bindings can be customized via the bindings attribute of @Queryds1Predicate or by making use
of Java 8 default methods adding the Queryds1BinderCustomizer to the repository interface.

37

interface UserRepository extends CrudRepository<User, String>,
QueryDs1PredicateExecutor<User>,

@

Queryds1BinderCustomizer<QUser> {

@

default public void customize(QuerydslBindings bindings, QUser user) {

bindings.bind(user.username).first((path, value) -> path.contains(value))

®
bindings.bind(String.class)
.first((StringPath path, String value) -> path.containsIgnoreCase(value));
@
bindings.excluding(user.password);
}
}

@ QueryDs1PredicateExecutor provides access to specific finder methods for Predicate.

@ Queryds1BinderCustomizer defined on the repository interface will be automatically picked
up and shortcuts @QuerydslPredicate(bindings=+--).

® Define the binding for the username property to be a simple contains binding.
@ Define the default binding for String properties to be a case insensitive contains match.

® Exclude the password property from Predicate resolution.

7.8.3. Repository populators

If you work with the Spring JDBC module, you probably are familiar with the support to populate a
DataSource using SQL scripts. A similar abstraction is available on the repositories level, although it
does not use SQL as the data definition language because it must be store-independent. Thus the
populators support XML (through Spring’s OXM abstraction) and JSON (through Jackson) to define
data with which to populate the repositories.

Assume you have a file data. json with the following content:

Example 39. Data defined in J[SON

[{ "_class" : "com.acme.Person",
"firstname" : "Dave",

"lastname" : "Matthews" },

{ "_class" : "com.acme.Person",
"firstname" : "Carter",

"lastname" : "Beauford" }]

38

You can easily populate your repositories by using the populator elements of the repository
namespace provided in Spring Data Commons. To populate the preceding data to your
PersonRepository, do the following:

Example 40. Declaring a Jackson repository populator

<?xml version="1.0" encoding="UTF-8"7>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:repository="http://www.springframework.org/schema/data/repository"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/data/repository
http://www.springframework.org/schema/data/repository/spring-repository.xsd">

<repository:jackson2-populator locations="classpath:data.json" />

</beans>

This declaration causes the data.json file to be read and deserialized via a Jackson ObjectMapper.

The type to which the JSON object will be unmarshalled to will be determined by inspecting the
_class attribute of the JSON document. The infrastructure will eventually select the appropriate
repository to handle the object just deserialized.

To rather use XML to define the data the repositories shall be populated with, you can use the
unmarshaller-populator element. You configure it to use one of the XML marshaller options Spring
OXM provides you with. See the Spring reference documentation for details.

39

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/oxm.html

Example 41. Declaring an unmarshalling repository populator (using JAXB)

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:repository="http://www.springframework.org/schema/data/repository"
xmlns:oxm="http://www.springframework.org/schema/oxm"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/data/repository
http://www.springframework.org/schema/data/repository/spring-repository.xsd
http://www.springframework.org/schema/oxm
http://www.springframework.org/schema/oxm/spring-oxm.xsd">

<repository:unmarshaller-populator locations="classpath:data.json"
unmarshaller-ref="unmarshaller" />

<oxm:jaxb2-marshaller contextPath="com.acme" />

</beans>

7.8.4. Legacy web support

Domain class web binding for Spring MVC

Given you are developing a Spring MVC web application you typically have to resolve domain class
ids from URLs. By default your task is to transform that request parameter or URL part into the
domain class to hand it to layers below then or execute business logic on the entities directly. This
would look something like this:

40

@Controller
@RequestMapping("/users")
public class UserController {

private final UserRepository userRepository;

@Autowired

public UserController(UserRepository userRepository) {
Assert.notNull(repository, "Repository must not be null!");
this.userRepository = userRepository;

}

@RequestMapping("/{id}")
public String showUserForm(@PathVariable("id") Long id, Model model) {

// Do null check for id
User user = userRepository.findOne(id);
// Do null check for user

model.addAttribute("user", user);
return "user";

First you declare a repository dependency for each controller to look up the entity managed by the
controller or repository respectively. Looking up the entity is boilerplate as well, as it’s always a
findOne(---) call. Fortunately Spring provides means to register custom components that allow
conversion between a String value to an arbitrary type.

PropertyEditors

For Spring versions before 3.0 simple Java PropertyEditors had to be used. To integrate with that,
Spring Data offers a DomainClassPropertyEditorRegistrar, which looks up all Spring Data
repositories registered in the ApplicationContext and registers a custom PropertyEditor for the
managed domain class.

<bean class=":--.web.servlet.mvc.annotation.AnnotationMethodHandlerAdapter">
<property name="webBindingInitializer">
<bean class="++-.web.bind.support.ConfigurableWebBindingInitializer">

<property name="propertyEditorRegistrars">
<bean class=
"org.springframework.data.repository.support.DomainClassPropertyEditorRegistrar" />
</property>
</bean>
</property>
</bean>

If you have configured Spring MVC as in the preceding example, you can configure your controller

41

as follows, which reduces a lot of the clutter and boilerplate.

@Controller
@RequestMapping("/users")
public class UserController {

@RequestMapping("/{id}")
public String showUserForm(@PathVariable("id") User user, Model model) {

model.addAttribute("user", user);
return "userForm";

}
}

42

Reference Documentation

Document Structure

This part of the reference documentation explains the core functionality offered by Spring Data for
Apache Cassandra.

Cassandra support introduces the Cassandra module feature set.

Cassandra repositories introduces the repository support for Cassandra.

43

Chapter 8. Cassandra support

The Cassandra support contains a wide range of features which are summarized below.
» Spring configuration support using Java-based @Configuration classes or the XML namespace to
create a Cassandra instance with replica sets using the driver.

* CassandraTemplate helper class that increases productivity by handling common Cassandra
operations properly. Includes integrated object mapping between CQL Tables and POJOs.

» Exception translation into Spring’s portable Data Access Exception Hierarchy.

 Feature rich object mapping integrated with Spring’s Conversion Service.

* Annotation-based mapping metadata but extensible to support other metadata formats.

* Persistence and mapping lifecycle events.

* Java-based Query, Criteria, and Update DSLs.

* Automatic implementation of Repository interfaces including support for custom finder

methods.

For most data oriented tasks you will use the CassandraTemplate or the Repository support, which
leverage the rich mapping functionality. CassandraTemplate is commonly used to increment counters
or perform ad-hoc CRUD operations. CassandraTemplate also provides callback methods making it
easy to get a hold of low-level API objects such as com.datastax.driver.core.Session allowing you to
communicate directly with Cassandra. Spring Data for Apache Cassandra uses consistent naming
conventions on objects in various APIs to those found in the DataStax Java Driver so that they are
familiar and so you can map your existing knowledge onto the Spring APIs.

8.1. Spring CQL and Spring Data for Apache Cassandra
modules

Spring Data for Apache Cassandra comes with two modules: Spring CQL and Spring Data
Cassandra.

The value-add provided by the Spring Data Cassandra abstraction is perhaps best shown by the
sequence of actions outlined in the table below. The table shows what actions Spring will take care
of and which actions are the responsibility of you, the application developer.

Table 2. Spring CQL - who does what?

Action Spring You
Define connection parameters. X
Open the connection. X

Specify the CQL statement. X
Declare parameters and X
provide parameter values

Prepare and execute the X

statement.

44

http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#dao-exceptions
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#core-convert

Action Spring You

Set up the loop to iterate X

through the results (if any).

Do the work for each iteration. X
Process any exception. X

Close the Session. X

Spring CQL takes care of all the low-level details that can make Cassandra and CQL such a tedious
API to develop with. Spring Data Cassandra adds schema generation, object mapping and
Repository support.

8.1.1. Choosing an approach for Cassandra database access

You can choose among several approaches to form the basis for your Cassandra database access.
Spring’s support for Apache Cassandra comes in different flavors. Once you start using one of these
approaches, you can still mix and match to include a feature from a different approach.

* CqlTemplate is the classic Spring CQL approach and the most popular. This is the "lowest level”
approach and all others use a CqlTemplate under the covers.

* CassandraTemplate wraps a CqlTemplate to provide query result to object mapping and the use
of SELECT, INSERT, UPDATE and DELETE methods instead of writing CQL statements. This
approach provides better documentation and ease of use.

* Repository Abstraction allows you to create Repository declarations in your data access layer.
The goal of Spring Data’s Repository abstraction is to significantly reduce the amount of
boilerplate code required to implement data access layers for various persistence stores.

8.2. Getting Started

Spring Apache Cassandra support requires Apache Cassandra 2.1 or higher, Datastax Java Driver
3.0 or higher and Java SE 6 or higher. An easy way to bootstrap setting up a working environment is
to create a Spring-based project in STS.

First you need to set up a running Apache Cassandra server. Refer to the Apache Cassandra Quick
Start guide for an explanation on how to startup Apache Cassandra. Once installed starting

Cassandra is typically a matter of executing the following command: CASSANDRA_HOME/bin/cassandra
-f

To create a Spring project in STS go to File -~ New — Spring Template Project — Simple Spring
Utility Project — press Yes when prompted. Then enter a project and a package name such as

org.spring.cassandra.example.

Then add the following to pom.xml dependencies section.

45

http://spring.io/tools/sts
http://cassandra.apache.org/doc/latest/getting_started/index.html
http://cassandra.apache.org/doc/latest/getting_started/index.html

<dependencies>
<!-- other dependencies omitted -->

<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-cassandra</artifactId>
<version>1.5.9.RELEASE</version>

</dependency>

</dependencies>

Also change the version of Spring in the pom.xml to be

<spring.framework.version>4.3.13.RELEASE</spring.framework.version>

If using a milestone release instead of a GA release, you will also need to add the location of the
Spring Milestone repository for Maven to your pom.xml which is at the same level of your
<dependencies/> element.

<repositories>
<repository>
<id>spring-milestone</id>
<name>Spring Maven MILESTONE Repository</name>
<url>http://repo.spring.io/libs-milestone</url>
</repository>
</repositories>

The repository is also browseable here.
You can also browse the Spring repositories here.

Now we will create a simple Java application that stores and reads a domain object to/from
Cassandra.

First, create a simple domain object class to persist.

46

http://repo.spring.io/milestone/org/springframework/data/
https://repo.spring.io/webapp/#/home

package org.spring.data.cassandra.example;

import org.springframework.data.cassandra.mapping.PrimaryKey;
import org.springframework.data.cassandra.mapping.Table;

@Table
public class Person {

@PrimaryKey
private final String id;

private final String name;
private final int age;

public Person(String id, String name, int age) {
this.id = id;
this.name = name;
this.age = age;

}

public String getId() {
return id;

}

public String getName() {
return name;

}

public int getAge() {
return age;

}

@0verride
public String toString() {
return String.format("{ @type = %1%s, id = %2%s, name = %3%s, age = %4%d }",
getClass().getName(), getId(), getName(), getAge());

Next, create the main application to run.

47

package org.spring.data.cassandra.example;

import java.io.Closeable;
import java.util.UUID;

import org.s1f4j.Logger;

import org.s1f4j.LoggerFactory;

import org.springframework.data.cassandra.core.CassandraOperations;
import org.springframework.data.cassandra.core.CassandraTemplate;

import com.datastax.driver.core.Cluster;

import com.datastax.driver.core.Session;

import com.datastax.driver.core.querybuilder.QueryBuilder;
import com.datastax.driver.core.querybuilder.Select;

public class CassandraApplication {

private static final Logger LOGGER = LoggerFactory.getlLogger(CassandraApplication
.class);

protected static Person newPerson(String name, int age) {
return newPerson(UUID.randomUUID().toString(), name, age);
}

protected static Person newPerson(String id, String name, int age) {
return new Person(id, name, age);

}

public static void main(String[] args) {

Cluster cluster = Cluster.builder().addContactPoints("localhost").build();
Session session = cluster.connect("mykeyspace");

CassandraOperations template = new CassandraTemplate(session);
Person jonDoe = template.insert(newPerson("Jon Doe", 40));

Select selectStatement = QueryBuilder.select().from("person");
selectStatement.where(QueryBuilder.eq("id", jonDoe.getId()));

LOGGER.info(template.queryForObject(selectStatement, Person.class).getId());
template.truncate("person");

session.close();
cluster.close();

Even in this simple example, there are a few things to observe.

48

* You can create an instance of CassandraTemplate with a Cassandra Session, derived from a
Cluster.

* You must annotate your POJO as a Cassandra @Table and also annotate the @PrimaryKey.
Optionally, you can override these mapping names to match your Cassandra database table and
column names.

* You can either use a CQL String or the DataStax QueryBuilder API to construct you queries.

8.3. Examples Repository

There is a Github repository with several examples that you can download and play around with to
get a feel for how the library works.

8.4. Connecting to Cassandra with Spring

One of the first tasks when using Apache Cassandra and Spring is to create a
com.datastax.driver.core.Session object using the Spring IoC container. There are two main ways
to do this, either using Java-based bean metadata or XML-based bean metadata. These are discussed
in the following sections.

For those not familiar with how to configure the Spring container using Java-based
NOTE bean metadata instead of XML-based metadata, see the high-level introduction in
the reference docs here as well as the detailed documentation here.

8.4.1. Registering a Session instance using Java based metadata

An example of wusing Java-based bean metadata to register an instance of a
com.datastax.driver.core.Session is shown below.

Example 42. Registering a com.datastax.driver.core.Session object using Java based bean metadata

public class AppConfig {

/*
* Use the standard Cassandra driver API to create a
com.datastax.driver.core.Session instance.
*/
public Session session() {
Cluster cluster = Cluster.builder().addContactPoints("localhost").build();
return cluster.connect("mykeyspace");
}
}

This approach allows you to use the standard com.datastax.driver.core.Session API that you may
already be used to using.

49

https://github.com/spring-projects/spring-data-examples
http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/new-in-3.0.html#new-java-configuration
http://docs.spring.io/spring/docs/4.3.13.RELEASE/spring-framework-reference/html/beans.html#beans-java-instantiating-container

An alternative is to register an instance of com.datastax.driver.core.Session instance with the
container using Spring’s CassandraCqlSessionFactoryBean and CassandraCqlClusterFactoryBean. As
compared to instantiating a com.datastax.driver.core.Session instance directly, the FactoryBean
approach has the added advantage of also providing the container with an ExceptionTranslator
implementation that translates Cassandra exceptions to exceptions in Spring’s portable
DataAccessException hierarchy for data access classes annotated. This hierarchy and use of
@Repository is described in Spring’s DAO support features.

An example of a Java-based bean metadata that supports exception translation on @Repository
annotated classes is shown below:

Example 43. Registering a com.datastax.driver.core.Session object using Spring’s
CassandraCqlSessionFactoryBean and enabling Spring’s exception translation support

@Configuration
public class AppConfig {

/*

* Factory bean that creates the com.datastax.driver.core.Session instance
*/

public @Bean CassandraCqlClusterFactoryBean cluster() {

CassandraCqlClusterFactoryBean cluster = new CassandraCqlClusterFactoryBean();
cluster.setContactPoints("localhost");

return cluster;

}

/*

* Factory bean that creates the com.datastax.driver.core.Session instance

*/

public @Bean CassandraCqlSessionFactoryBean session() {
CassandraCqlSessionFactoryBean session = new CassandraCqlSessionFactoryBean();
session.setCluster(cluster().getObject());

session.setKeyspaceName("mykeyspace");

return session;

Using CassandraTemplate with object mapping and Repository support requires a CassandraTemplate,
CassandraMappingContext, CassandraConverter and enabling Repository support.

50

http://docs.spring.io/spring/docs/4.3.13.RELEASE/spring-framework-reference/html/dao.html

Example 44. Registering components to configure object mapping and repository support

(basePackages = { "org.spring.cassandra.example.repo”
}

public class CassandraConfig {

public CassandraClusterFactoryBean cluster() {

CassandraClusterFactoryBean cluster = new CassandraClusterFactoryBean();
cluster.setContactPoints("localhost");

return cluster;

}

public CassandraMappingContext mappingContext() {

BasicCassandraMappingContext mappingContext = new
BasicCassandraMappingContext();

mappingContext.setUserTypeResolver(new SimpleUserTypeResolver(cluster()
.getObject(), "mykeyspace"));

return mappingContext;

}

public CassandraConverter converter() {
return new MappingCassandraConverter(mappingContext());

}

public CassandraSessionFactoryBean session() throws Exception {

CassandraSessionFactoryBean session = new CassandraSessionFactoryBean();
session.setCluster(cluster().getObject());
session.setKeyspaceName("mykeyspace");
session.setConverter(converter());
session.setSchemaAction(SchemaAction.NONE);

return session;

public CassandraOperations cassandraTemplate() throws Exception {
return new CassandraTemplate(session().getObject());
}
}

51

Creating configuration classes registering Spring Data for Apache Cassandra components can be an
exhausting challenge so Spring Data for Apache Cassandra comes with a prebuilt configuration
support class. Classes extending from AbstractCassandraConfiguration will register beans for Spring
Data for Apache Cassandra use. AbstractCassandraConfiguration lets you provide various
configuration options such as initial entities, default query options, pooling options, socket options
and much more. AbstractCassandraConfiguration will support you also with schema generation
based on initial entities, if any are provided. Extending from AbstractCassandraConfiguration
requires you to at least provide the Keyspace name by implementing the getKeyspaceName method.

Example 45. Registering Spring Data for Apache Cassandra beans using AbstractCassandraConfiguration

public class AppConfig extends AbstractCassandraConfiguration {

/*
* Provide a contact point to the configuration.
*/
public String getContactPoints() {
return "localhost";

}

/*
* Provide a keyspace name to the configuration.
*/
public getKeyspaceName() {
return "mykeyspace";
}
¥

8.4.2. XML Configuration

Externalize Connection Properties

Create a properties file containing the information needed to connect to Cassandra. contactpoints
and keyspace are required fields; port has been added for clarity.

We will call this properties file, cassandra.properties.

cassandra.contactpoints=10.1.55.80,10.1.55.81
cassandra.port=9042
cassandra.keyspace=showcase

We will use Spring to load these properties into the Spring context in the next two examples.

Registering a Session instance using XML based metadata

While you can use Spring’s traditional <beans/> XML namespace to register an instance of

52

com.datastax.driver.core.Session with the container, the XML can be quite verbose as it is general
purpose. XML namespaces are a better alternative to configuring commonly used objects such as
the Session instance. The cql and cassandra namespaces allow you to create a Session instance.

To use the Cassandra namespace elements you will need to reference the Cassandra schema:

Example 46. XML schema to configure Cassandra using the cql namespace

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:cql="http://www.springframework.org/schema/data/cql"
xsi:schemalocation="
http://www.springframework.org/schema/cql
http://www.springframework.org/schema/cql/spring-cql.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<!-- Default bean name is 'cassandraCluster' -->
<cql:cluster contact-points="localhost" port="9042">

<cql:keyspace action="CREATE_DROP" name="mykeyspace" />
</cql:cluster>

<!-- Default bean name is 'cassandraSession' -->
<cql:session keyspace-name="mykeyspace" />

</beans>

53

Example 47. XML schema to configure Cassandra using the cassandra namespace

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:cassandra="http://www.springframework.org/schema/data/cassandra"”
xsi:schemalocation="
http://www.springframework.org/schema/data/cassandra
http://www.springframework.org/schema/data/cassandra/spring-cassandra.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<!-- Default bean name is 'cassandraCluster' -->
<cassandra:cluster contact-points="localhost" port="9042">

<cassandra:keyspace action="CREATE_DROP" name="mykeyspace" />
</cassandra:cluster>

<!-- Default bean name is 'cassandraSession' -->
<cassandra:session keyspace-name="${cassandra.keyspace}" schema-action="NONE" />

</beans>

You may have noticed the slight difference between namespaces: cql and cassandra.
NOTE Using the cql namespace is limited to low-level CQL support while cassandra
extends the cql namespace with object mapping and schema generation support.

The XML configuration elements for more advanced Cassandra configuration are shown below.
These elements all use default bean names to keep the configuration code clean and readable.

While this example shows how easy it is to configure Spring to connect to Cassandra, there are
many other options. Basically, any option available with the DataStax Java Driver is also available
in the Spring Data for Apache Cassandra configuration. This is including, but not limited to
Authentication, Load Balancing Policies, Retry Policies and Pooling Options. All of the Spring Data
for Apache Cassandra method names and XML elements are named exactly (or as close as possible)
like the configuration options on the driver so mapping any existing driver configuration should be
straight forward.

54

Example 48. Configuring Spring Data Components via XML

<!-- Loads the properties into the Spring Context and uses them to fill
in placeholders in the bean definitions -->
<context:property-placeholder location="classpath:cassandra.properties" />

<!-- REQUIRED: The Cassandra Cluster -->
<cassandra:cluster contact-points="${cassandra.contactpoints}"
port="${cassandra.port}" />

<!-- REQUIRED: The Cassandra Session, built from the Cluster, and attaching
to a keyspace -->
<cassandra:session keyspace-name="${cassandra.keyspace}" />

<!-- REQUIRED: The Default Cassandra Mapping Context used by CassandraConverter
-->
<cassandra:mapping>

<cassandra:user-type-resolver keyspace-name="${cassandra.keyspace}" />
</cassandra:mapping>

<!-- REQUIRED: The Default Cassandra Converter used by CassandraTemplate -->
<cassandra:converter />

<!-- REQUIRED: The Cassandra Template is the building block of all Spring
Data (Cassandra -->
<cassandra:template id="cassandraTemplate" />

<!-- OPTIONAL: If you are using Spring Data for Apache Cassandra Repositories, add
your base packages to scan here -->
<cassandra:repositories base-package="org.spring.cassandra.example.repo” />

8.5. Schema Management

Apache Cassandra is a data store that requires a schema definition prior to any data interaction.
Spring Data for Apache Cassandra can support you with this task.

8.5.1. Keyspaces and Lifecycle scripts

The very first thing to start with is a Cassandra Keyspace. A Keyspace is a logical grouping of tables
that share the same replication factor and replication strategy. Keyspace management is located in
the Cluster configuration, which has the notion of KeyspaceSpecification and startup/shutdown
CQL script execution.

Declaring a Keyspace with a specification allows creating/dropping of the Keyspace. It will derive
CQL from the specification so you’re not required to write CQL yourself.

55

Example 49. Specifying a Cassandra Keyspace via XML

<cql:cluster>
<cql:keyspace action="CREATE_DROP" durable-writes="true" name="my_keyspace">

<cql:replication class="NETWORK_TOPOLOGY_STRATEGY">
<cql:data-center name="foo" replication-factor="1" />
<cql:data-center name="bar" replication-factor="2" />
</cql:replication>
</cql:keyspace>

</cql:cluster>

Example 50. Specifying a Cassandra Keyspace via JavaConfig

@Configuration
public abstract class AbstractCassandraConfiguration extends
AbstractClusterConfiguration

implements BeanClasslLoaderAware {

@0verride
protected List<CreateKeyspaceSpecification> getKeyspaceCreations() {

CreateKeyspaceSpecification specification = CreateKeyspaceSpecification
.createKeyspace("my_keyspace")
.with(KeyspaceOption.DURABLE_WRITES, true)
.withNetworkReplication(DataCenterReplication.dcr("foo", 1),
DataCenterReplication.der("bar", 2));

return Arrays.asList(specification);

}

@0verride
protected List<DropKeyspaceSpecification> getKeyspaceDrops() {
return Arrays.asList(DropKeyspaceSpecification.dropKeyspace("my_keyspace"));

}

/] ...

Startup/shutdown CQL execution follows a slightly different approach that is bound to the Cluster
lifecycle. You can provide arbitrary CQL that is executed on Cluster initialization and shutdown in
the SYSTEM keyspace.

56

Example 51. Specifying Startup/Shutdown scripts via XML

<cql:cluster>
<cql:startup-cql><![CDATAL
CREATE KEYSPACE IF NOT EXISTS my_other_keyspace WITH durable_writes = true AND
replication = { 'replication_factor' : 1, 'class' : 'SimpleStrategy' };
11></cql:startup-cql>
<cql:shutdown-cql><![CDATA[
DROP KEYSPACE my_other_keyspace;
11></cql:shutdown-cql>
</cql:cluster>

Example 52. Specifying a Startup/Shutdown scripts via JavaConfig

@Configuration
public class CassandraConfiguration extends AbstractCassandraConfiguration {

@0verride
protected List<String> getStartupScripts() {

String script = "CREATE KEYSPACE IF NOT EXISTS my_other_keyspace "
+ "WITH durable writes = true "
+ "AND replication = { 'replication_factor' : 1, 'class' : 'SimpleStrategy'

b

return Arrays.asList(script);

}

@0verride
protected List<String> getShutdownScripts() {
return Arrays.asList("DROP KEYSPACE my_other_keyspace;");

}
/] ...
}
NOTE KeyspaceSpecifications and lifecycle CQL scripts are available with the cql and
cassandra namespaces.
Keyspace creation allows rapid bootstrapping without the need of external
NOTE Keyspace management. This can be useful for certain scenarios but should be used

with care. Dropping a Keyspace on application shutdown will remove the Keyspace
and all data stored inside the tables.

57

8.5.2. Tables and User-defined types

Spring Data for Apache Cassandra’s approaches data access with mapped entity classes that fit your
data model. These entity classes can be used to create Cassandra table specifications and user type
definitions.

Schema creation is tied to Session initialization with SchemaAction. Following actions are supported:

» SchemaAction.NONE: No tables/types will be created or dropped. This is the default setting.

» SchemaAction.CREATE: Create tables and user-defined types from entities annotated with @Table
and types annotated with @UserDefinedType. Existing tables/types will cause an error if the type
is attempted to be created.

» SchemaAction.CREATE_IF_NOT_EXISTS: Like SchemaAction.CREATE but with IF NOT EXISTS applied.
Existing tables/types won’t cause any errors but may remain stale.

* SchemaAction.RECREATE: Drops and recreate existing tables and types that are known to be used.
Tables and types that are not configured in the application are not dropped.

» SchemaAction.RECREATE_DROP_UNUSED: Drop all tables and types and recreate only known tables
and types.

SchemaAction.RECREATE/SchemaAction.RECREATE_DROP_UNUSED will drop your tables and
NOTE you will experience data loss. RECREATE_DROP_UNUSED also drops tables and types that
are not know to the application.

Enabling Tables and User-Defined Types for Schema Management

Metadata based Mapping explains object mapping using conventions and annotations. Schema
management is only active for entities annotated with @Table and user-defined types annotated
with @UserDefinedType to prevent unwanted classes from being created as table/type. Entities are
discovered by scanning the class path. Entity scanning requires one or more base packages.

Example 53. Specifying Entity Base Packages via XML

<cassandra:mapping entity-base-packages="com.foo,com.bar"/>

58

Example 54. Specifying Entity Base Packages via JavaConfig

public class CassandraConfiguration extends AbstractCassandraConfiguration {

public String[] getEntityBasePackages() {
return new String[] { "com.foo", "com.bar" };

}

/] ...

8.6. Introduction to CassandraTemplate

The CassandraTemplate class, located in the package org.springframework.data.cassandra, is the
central class in Spring’s Cassandra support providing a rich feature set to interact with the
database. The template offers convenience operations to create, update, delete and query
Cassandra and provides a mapping between your domain objects and Cassandra rows.

NOTE Once configured, CassandraTemplate is Thread-safe and can be reused across
multiple instances.

The mapping between Cassandra rows and domain classes is done by delegating to an

implementation of the (assandraConverter interface. Spring provides a default implementation,

MappingCassandraConverter, but you can also write your own converter. Please refer to the section

on Cassandra conversion for more detailed information.

The CassandraTemplate class implements the interface CassandraOperations. In as much as possible,
the methods on CassandraOperations are named after methods available with Cassandra to make the
API familiar to existing Cassandra developers who are familiar with Cassandra. For example, you
will find methods such as "select", "insert", "delete"”, and "update". The design goal was to make it as
easy as possible to transition between the use of the base Cassandra driver and
CassandraOperations. A major difference in between the two APIs is that CassandraOperations can be
passed domain objects instead of CQL and query objects.

NOTE The preferred way to reference operations on a CassandraTemplate instance is via its
interface, CassandraOperations.

The default converter implementation used by CassandraTemplate is MappingCassandraConverter.

While the MappingCassandraConverter can make use of additional metadata to specify the mapping of

objects to rows it is also capable of converting objects that contain no additional metadata by using

some conventions for the mapping of fields and table names. These conventions as well as the use

of mapping annotations is explained in the Mapping chapter.

Another central feature of CassandraTemplate is exception translation of exceptions thrown in the

59

Cassandra Java driver into Spring’s portable Data Access Exception hierarchy. Refer to the section
on exception translation for more information.

Now let’s look at a examples of how to work with the CassandraTemplate in the context of the Spring
container.

8.6.1. Instantiating CassandraTemplate

CassandraTemplate should always be configured as a Spring Bean, although we show an example
above where you can instantiate it directly. But for the purposes of this being a Spring module, lets
assume we are using the Spring Container.

CassandraTemplate is an implementation of CassandraOperations. You should always assign your
CassandraTemplate to its interface definition, CassandraOperations.

There are 2 easy ways to get a (assandraTemplate, depending on how you load you Spring
Application Context.

AutoWiring

private CassandraOperations cassandraOperations;

Like all Spring Autowiring, this assumes there is only one bean of type CassandraOperations in the
ApplicationContext. If you have multiple CassandraTemplate beans (which will be the case if you are
working with multiple keyspaces in the same project), then use the "@Qualifier "annotation to
designate which bean you want to Autowire.

("myTemplateBeanId")
private CassandraOperations cassandraOperations;

Bean Lookup with ApplicationContext

You can also just lookup the CassandraTemplate bean from the ApplicationContext.

CassandraOperations cassandraOperations = applicationContext.getBean(
"cassandraTemplate”, CassandraOperations.class);

8.7. Saving, Updating, and Removing Rows

CassandraTemplate provides a simple way for you to save, update, and delete your domain objects,
and map those objects to tables managed in Cassandra.

60

8.7.1. Working with Primary Keys

Cassandra requires at least one partition key field for a CQL Table. A table can declare additionally
one or more clustering key fields. When your CQL Table has a composite primary key, you must
create a @PrimaryKeyClass to define the structure of the composite primary key. In this context,
composite primary key means one or more partition columns optionally combined with one or
more clustering columns.

Primary keys can make use of any singular simple Cassandra type or mapped User-Defined Type.
Collection-typed primary keys are not supported.

Simple Primary Key

A simple primary key consists of one partition key field within an entity class. Since it’s one field
only, we safely can assume it’s a partition key.

Example 55. CQL Table defined in Cassandra

CREATE TABLE user (
user_id text,
firstname text,
lastname text,

PRIMARY KEY (user_id))

’

Example 56. Annotated Entity
(value = "login_event")
public class LoginEvent {

("user_id")
private String userId;

private String firstname;
private String lastname;

// getters and setters omitted for brevity

Composite Key

Composite primary keys (or compound keys) consist of more than one primary key fields. That said,
a composite primary key can consist of multiple partition keys, a partition key and a clustering key,
or a multitude of primary key fields.

61

Composite keys can be represented in two ways with Spring Data for Apache Cassandra:

1. Embedded in an entity.

2. By using @PrimaryKeyClass.
The simplest form of a composite key is a key with one partition key and one clustering key.

Here is an example of a CQL Table, and the corresponding POJOs that represent the table and it’s
composite key.

Example 57. CQL Table with a Composite Primary Key

CREATE TABLE login_event(
person_id text,
event_code int,
event_time timestamp,
ip_address text,
PRIMARY KEY (person_id, event_code, event_time))
WITH CLUSTERING ORDER BY (event_time DESC)

Flat Composite Primary Key

Flat composite primary keys are embedded inside the entity as flat fields. Primary key fields are
annotated with @PrimaryKeyColumn along with other fields in the entity. Selection requires either a
query to contain predicates for the individual fields or the use of MapId.

62

Example 58. Using a flat Composite Primary Key

(value = "login_event")
public class LoginEvent {

(name = "person_id", ordinal = 0, type = PrimaryKeyType
.PARTITIONED)
private String personld;

(name = "event_code", ordinal = 1, type = PrimaryKeyType
.PARTITIONED)
private int eventCode;
(name = "event_time", ordinal = 2, type = PrimaryKeyType

.CLUSTERED, ordering = Ordering.DESCENDING)
private Date eventTime;

("ip_address)
private String ipAddress;

// getters and setters omitted for brevity
}

Primary Key Class

A primary key class is a composite primary key class that is mapped to multiple fields or properties
of the entity. It’s annotated with @PrimaryKeyClass and defines equals and hashCode methods. The
semantics of value equality for these methods should be consistent with the database equality for
the database types to which the key is mapped. Primary key classes can be used with Repositories
(as the Id type) and to represent an entities' identity in a single complex object.

63

Example 59. Composite Primary Key Class

@PrimaryKeyClass
public class LoginEventKey implements Serializable {

@PrimaryKeyColumn(name = "person_id", ordinal = @, type = PrimaryKeyType
.PARTITIONED)
private String personld;

@PrimaryKeyColumn(name = "event_code", ordinal = 1, type = PrimaryKeyType
.PARTITIONED)

private int eventCode;

@PrimaryKeyColumn(name = "event_time", ordinal = 2, type = PrimaryKeyType

.CLUSTERED, ordering = Ordering.DESCENDING)
private Date eventTime;

// other methods omitted for brevity
}

Example 60. Using a Composite Primary Key

@Table(value = "login_event")
public class LoginEvent {

@PrimaryKey
private LoginEventKey key;

@Column("ip_address)
private String ipAddress;

// getters and setters omitted for brevity

}
NOTE PrimaryKeyClass must implement Serializable and should provide implementations
of hashCode() and equals().
8.7.2. Type mapping

Spring Data for Apache Cassandra relies on the DataStax Java Driver’s CodecRegistry to ensure type
support. As types are added or changed, the Spring Data for Apache Cassandra module will
continue to function without requiring changes. See CQL data types and Data mapping and type
conversion for the current type mapping matrix.

64

https://docs.datastax.com/en/cql/3.3/cql/cql_reference/cql_data_types_c.html

8.7.3. Methods for saving and inserting rows

Single records inserts

To insert one row at a time, there are many options. At this point you should already have a
cassandraTemplate available to you so we will just how the relevant code for each section, omitting
the template setup.

Insert a record with an annotated POJO.
cassandraOperations.insert(new Person("123123123", "Alison", 39));
Insert a row using the QueryBuilder.Insert object that is part of the DataStax Java Driver.

Insert insert = QueryBuilder.insertInto("person");
insert.setConsistencylLevel(ConsistencylLevel.ONE);
insert.value("id", "123123123");
insert.value("name", "Alison");
insert.value("age", 39);

cassandralperations.execute(insert);

Then, there is always the old fashioned way. You can write your own CQL statements.

String cql = "insert into person (id, name, age) values ('123123123', 'Alison', 39)";

cassandraOperations.execute(cql);

Multiple inserts for high speed ingestion

CqlOperations, which is extended by CassandralOperations is a low-level Template that you can use
for just about anything you need to accomplish with Cassandra. CqlOperations includes several
overloaded methods named ingest().

Use these methods to pass a CQL String with Bind Markers, and your preferred flavor of data set
(Object[][] and List<List<T>>).

The ingest method takes advantage of static PreparedStatements that are only prepared once for
performance. Each record in your data set is bound to the same PreparedStatement, then executed
asynchronously for high performance.

65

String cqlIngest = "insert into person (id, name, age) values (?, ?, 7)";

List<Object> person1 = new ArrayList<Object>();
person.add("10000");

personl.add("David");

persont.add(40);

List<Object> person2 = new ArraylList<Object>();
person2.add("10001");

person2.add("Roger");

person2.add(65);

List<List<?>> people
people.add(personl);
people.add(person2);

new ArraylList<List<?>>();

cassandraOperations.ingest(cqlIngest, people);

8.7.4. Updating rows in a CQL table

Much like inserting, there are several flavors of update from which you can choose.

Update a record with an annotated POJO.
cassandraOperations.update(new Person("123123123", "Alison", 35));
Update a row using the QueryBuilder.Update object that is part of the DataStax Java Driver.

Update update = QueryBuilder.update("person");
update.setConsistencylLevel(ConsistencylLevel.ONE);
update.with(QueryBuilder.set("age", 35));
update.where(QueryBuilder.eq("id", "123123123"));

cassandralperations.execute(update);
Then, there is always the old fashioned way. You can write your own CQL statements.

String cql = "update person set age = 35 where id = '123123123"";

cassandralperations.execute(cql);

8.7.5. Methods for removing rows
Much like inserting, there are several flavors of delete from which you can choose.

Delete a record with an annotated PO]JO.

66

cassandraOperations.delete(new Person("123123123", null, 0));
Delete a row using the QueryBuilder.Delete object that is part of the DataStax Java Driver.

Delete delete = QueryBuilder.delete().from("person");
delete.where(QueryBuilder.eq("id", "123123123"));

cassandraOperations.execute(delete);
Then, there is always the old fashioned way. You can write your own CQL statements.

String cql = "delete from person where id = '123123123'";

cassandraOperations.execute(cql);

8.7.6. Methods for truncating tables
Much like inserting, there are several flavors of truncate from which you can choose.

Truncate a table using the truncate() method.
cassandraOperations.truncate("person");
Truncate a table using the QueryBuilder.Truncate object that is part of the DataStax Java Driver.

Truncate truncate = QueryBuilder.truncate("person");

cassandralperations.execute(truncate);
Then, there is always the old fashioned way. You can write your own CQL statements.

String cql = "truncate person";

cassandralperations.execute(cql);

8.8. Querying CQL Tables

There are several flavors of select and query from which you can choose. Please see the
CassandraTemplate API documentation for all overloads available.

Query a table for multiple rows and map the results to a POJO.

67

String cqlAll = "select * from person";

List<Person> results = cassandraOperations.select(cqlAll, Person.class);
for (Person p : results) {
L0G.info(String.format("Found People with Name [%s] for id [%s]", p.getName(), p
.getld()));
}

Query a table for a single row and map the result to a POJO.

String cqlOne = "select * from person where id = '123123123"";

Person p = cassandraOperations.selectOne(cqlOne, Person.class);
L0G.info(String.format("Found Person with Name [%s] for id [%s]", p.getName(), p.
getld()));

Query a table using the QueryBuilder.Select object that is part of the DataStax Java Driver.

Select select = QueryBuilder.select().from("person");
select.where(QueryBuilder.eq("id", "123123123"));

Person p = cassandraOperations.selectOne(select, Person.class);
L0G.info(String.format("Found Person with Name [%s] for id [%s]", p.getName(), p.
getId()));

Then, there is always the old fashioned way. You can write your own CQL statements, and there are
several callback handlers for mapping the results. The example uses the RowMapper interface.

String cqlAll = "select * from person”;
List<Person> results = cassandraOperations.query(cqlAll, new RowMapper<Person>() {

public Person mapRow(Row row, int rowNum) throws DriverException {
Person p = new Person(row.getString("id"), row.getString("name"), row.getInt(
"age"));
return p;
Iy
3

for (Person p : results) {

L0G.info(String.format("Found People with Name [%s] for id [%s]", p.getName(), p
.getId()));
}

68

8.9. Overriding default mapping with custom
converters

In order to have more fine grained control over the mapping process you can register Spring
converters with the CassandraConverter implementations such as the MappingCassandraConverter.

The MappingCassandraConverter checks to see if there are any Spring converters that can handle a
specific class before attempting to map the object itself. To 'hijack' the normal mapping strategies of
the MappingCassandraConverter, perhaps for increased performance or other custom mapping needs,
you first need to create an implementation of the Spring Converter interface and then register it
with the MappingCassandraConverter.

NOTE For more information on the Spring type conversion service see the reference docs
here.

8.9.1. Saving using a registered Spring Converter

An example implementation of the Converter that converts a Person object to a java.lang.String
using Jackson 2 is shown below:

import org.springframework.core.convert.converter.Converter;

import org.springframework.util.StringUtils;
import org.codehaus.jackson.map.0bjectMapper;

static class PersonWriteConverter implements Converter<Person, String> {

public String convert(Person source) {

try {
return new ObjectMapper().writeValueAsString(source);
} catch (IOException e) {
throw new IllegalStateException(e);
}
}
}

8.9.2. Reading using a Spring Converter

An example implementation of the Converter that converts a java.lang.String into a Person object
using Jackson 2 is shown below:

69

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/validation.html#core-convert

import org.springframework.core.convert.converter.Converter;

import org.springframework.util.StringUtils;
import org.codehaus.jackson.map.0bjectMapper;

static class PersonReadConverter implements Converter<String, Person> {
public Person convert(String source) {

if (StringUtils.hasText(source)) {
try {
return new ObjectMapper().readValue(source, Person.class);
} catch (IOException e) {
throw new IllegalStateException(e);
}
}

return null;

}
}

8.9.3. Registering Spring Converters with the CassandraConverter

The Spring Data for Apache Cassandra Java Config provides a convenient way to register Spring
Converter's with the ‘MappingCassandraConverter. The configuration snippet below shows how to
manually register converters as well as configuring the CustomConversions.

public static class Config extends AbstractCassandraConfiguration {

public CustomConversions customConversions() {

List<Converter<?, ?>> converters = new ArraylList<Converter<?, 7?>>();
converters.add(new PersonReadConverter());
converters.add(new PersonWriteConverter());

return new CustomConversions(converters);

// other methods omitted...
}

8.9.4. Converter disambiguation

Generally, we inspect the Converter implementations for both source and target types they convert
from and to. Depending on whether one of those is a type Cassandra can handle natively, Spring
Data will register the Converter instance as a reading or writing one. Have a look at the following

70

samples:

// Write converter as only the target type is one cassandra can handle natively
class MyConverter implements Converter<Person, String> { -+ }

// Read converter as only the source type is one cassandra can handle natively
class MyConverter implements Converter<String, Person> { -+ }

In case you write a Converter whose source and target type are native Cassandra types there’s no
way for Spring Data to determine whether we should consider it as reading or writing Converter.
Registering the Converter instance as both might lead to unwanted results.

E.g. a Converter<String, Long> is ambiguous although it probably does not make sense to try to
convert all String instances into Long instances when writing. To be generally able to force the
infrastructure to register a Converter for one way only we provide @ReadingConverter as well as
@WritingConverter to be used as the appropriate Converter implementation.

8.10. Executing Commands

8.10.1. Methods for executing commands

The CassandraTemplate has many overloads for execute() and executeAsync(). Pass in the CQL
command you wish to execute and handle the appropriate response.

This example uses the basic AsynchronousQueryListener that comes with Spring Data for Apache
Cassandra. Please see the API documentation for all the options. There should be nothing you
cannot perform in Cassandra with the execute() and executeAsync() methods.

cassandraOperations.executeAsynchronously("delete from person where id = '123123123"",
new AsynchronousQueryListener() {

public void onQueryComplete(ResultSetFuture rsf) {
L0G.info("Async Query Completed");
}
1)

This example shows how to create and drop a table, using different API objects, all passed to the
execute() methods.

cassandraOperations.execute("CREATE TABLE test_table (id uuid primary key, event
text)");

DropTableSpecification dropper = DropTableSpecification.dropTable("test_table");
cassandraOperations.execute(dropper);

71

8.11. Exception Translation

The Spring Framework provides exception translation for a wide variety of database and mapping
technologies. This has traditionally been for JDBC and JPA. The Spring support for Apache
Cassandra extends this feature to Apache Cassandra by providing an implementation of the
org.springframework.dao.support.PersistenceExceptionTranslator interface.

The motivation behind mapping to Spring’s consistent data access exception hierarchy is that you
are then able to write portable and descriptive exception handling code without resorting to coding
against Cassandra Exceptions. All of Spring’s data access exceptions are inherited from the root,
DataAccessException class so you can be sure that you will be able to catch all database related
exception within a single try-catch block.

72

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/dao.html#dao-exceptions

Chapter 9. Cassandra repositories

9.1. Introduction

This chapter covers the details of the Spring Data Repository support for Apache Cassandra.
Cassandra’s Repository support builds on the core Repository support explained in Working with
Spring Data Repositories. So make sure you understand of the basic concepts explained there
before proceeding.

9.2. Usage

To access domain entities stored in Apache Cassandra, you can leverage Spring Data’s sophisticated
Repository support that eases implementing DAOs quite significantly. To do so, simply create an
interface for your Repository:

Example 61. Sample Person entity

public class Person {

private String id;
private String firstname;
private String lastname;

// -+ getters and setters omitted

We have a simple domain object here. Note that the entity has a property named id of type String.
The default serialization mechanism used in CassandraTemplate (which is backing the Repository
support) regards properties named id as row id.

Example 62. Basic Repository interface to persist Person entities

public interface PersonRepository extends CrudRepository<Person, String> {

// additional custom finder methods go here

}

Right now this interface simply serves typing purposes, but we will add additional methods to it
later. In your Spring configuration simply add:

73

Example 63. General Cassandra repository Spring configuration

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:cassandra="http://www.springframework.org/schema/data/cassandra"”
xsi:schemalocation="
http://www.springframework.org/schema/data/cassandra
http://www.springframework.org/schema/data/cassandra/spring-cassandra.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<cassandra:cluster port="9042"/>
<cassandra:session keyspace-name="keyspaceName"/>

<cassandra:mapping
entity-base-packages="com.acme.*.entities">
</cassandra:mapping>

<cassandra:converter/>
<cassandra:template/>

<cassandra:repositories base-package="com.acme.*.entities"/>
</beans>

The cassandra:repositories namespace element will cause the base packages to be scanned for
interfaces extending CrudRepository and create Spring beans for each one found. By default, the
Repositories will be wired with a CassandraTemplate Spring bean called cassandraTemplate, so you
only need to configure cassandra-template-ref explicitly if you deviate from this convention.

If you’d rather like to go with JavaConfig use the @EnableCassandraRepositories annotation. The
annotation carries the same attributes as the namespace element. If no base package is configured
the infrastructure will scan the package of the annotated configuration class.

74

Example 64. JavaConfig for repositories

class ApplicationConfig extends AbstractCassandraConfiguration {

protected String getKeyspaceName() {
return "keyspace";

}

public String[] getEntityBasePackages() {
return new String[] { "com.oreilly.springdata.cassandra" };
}
}

As our domain Repository extends CrudRepository it provides you with basic CRUD operations.
Working with the Repository instance is just a matter of injecting the Repository as a dependency
into a client.

Example 65. Paging access to Person entities

(SpringJUnit4ClassRunner.class)
public class PersonRepositoryTests {

PersonRepository repository;

public void readsPersonTableCorrectly() {

List<Person> persons = repository.findAll();
assertThat(persons.isEmpty()).isFalse();
}

The sample creates an application context with Spring’s unit test support, which will perform
annotation-based dependency injection into the test class. Inside the test cases (test methods) we
simply use the Repository to query the data store. We invoke the Repository query method that
requests the all Person instances.

9.3. Query methods

Most of the data access operations you usually trigger on a Repository result in a query being
executed against the Apache Cassandra database. Defining such a query is just a matter of declaring

75

a method on the Repository interface.

Example 66. PersonRepository with query methods

public interface PersonRepository extends CrudRepository<Person, String> {
List<Person> findByLastname(String lastname); ©)
List<Person> findByFirstname(String firstname, Sort sort);

Person findByShippingAddress(Address address);

® © ©

Stream<Person> findA11By();

@ The method shows a query for all people with the given lastname. The query will be derived
from parsing the method name for constraints which can be concatenated with And. Thus
the method name will result in a query expression of SELECT * from person WHERE lastname
= 'lastname’.

@ Applies dynamic sorting to a query. Just add a Sort parameter to your method signature and
Spring Data will automatically apply ordering to the query accordingly.

® Shows that you can query based on properties which are not a primitive type using
registered Converter’s in ‘CustomConversions.

@ Uses a Java 8 Stream which reads and converts individual elements while iterating the
stream.

NOTE Querying non-primary key properties requires secondary indexes.

Table 3. Supported keywords for query methods

Keyword Sample Logical result
After findByBirthdateAfter(Date birthdate > date
date)

GreaterThan findByAgeGreaterThan(int age) age > age
GreaterThanEqu findByAgeGreaterThanEqual(int age >= age

al age)
Before findByBirthdateBefore(Date birthdate < date
date)
LessThan findByAgeLessThan(int age) age < age
LessThanEqual findByAgelessThanEqual(int age < age
age)
In findByAgeIn(Collection ages) age IN (ages'+)
Like, findByFirstnamelLike(String firstname LIKE (name as like expression)
StartingWith, name)
EndingWith
Containing on findByFirstnameContaining(Stri firstname LIKE (name as like expression)
String ng name)

76

Keyword Sample Logical result

Containingon findByAddressesContaining(Addr addresses CONTAINING address
Collection ess address)

(No keyword) findByFirstname(String name) firstname = name

IsTrue, True findByActiveIsTrue() active = true

IsFalse, False findByActivelsFalse() active = false

9.3.1. Projections

Spring Data query methods usually return one or multiple instances of the aggregate root managed
by the repository. However, it might sometimes be desirable to rather project on certain attributes
of those types. Spring Data allows to model dedicated return types to more selectively retrieve
partial views onto the managed aggregates.

Imagine a sample repository and aggregate root type like this:

Example 67. A sample aggregate and repository

class Person {

UUID id;
String firstname, lastname;
Address address;

static class Address {
String zipCode, city, street;
}
}

interface PersonRepository extends Repository<Person, UUID> {

Collection<Person> findBylLastname(String lastname);

}

Now imagine we’d want to retrieve the person’s name attributes only. What means does Spring
Data offer to achieve this?

Interface-based projections

The easiest way to limit the result of the queries to expose the name attributes only is by declaring
an interface that will expose accessor methods for the properties to be read:

77

Example 68. A projection interface to retrieve a subset of attributes

interface NamesOnly {

String getFirstname();
String getLastname();
}

The important bit here is that the properties defined here exactly match properties in the aggregate
root. This allows a query method to be added like this:

Example 69. A repository using an interface based projection with a query method

interface PersonRepository extends Repository<Person, UUID> {

Collection<NamesOnly> findBylLastname(String lastname);

}

The query execution engine will create proxy instances of that interface at runtime for each
element returned and forward calls to the exposed methods to the target object.

Projections can be used recursively. If you wanted to include some of the Address information as
well, create a projection interface for that and return that interface from the declaration of
getAddress().

Example 70. A projection interface to retrieve a subset of attributes

interface PersonSummary {

String getFirstname();
String getlLastname();
AddressSummary getAddress();

interface AddressSummary {
String getCity();
}
}

On method invocation, the address property of the target instance will be obtained and wrapped
into a projecting proxy in turn.

Closed projections

A projection interface whose accessor methods all match properties of the target aggregate are

78

considered closed projections.

Example 71. A closed projection

interface NamesOnly {

String getFirstname();
String getlLastname();

}

If a closed projection is used, Spring Data modules can even optimize the query execution as we
exactly know about all attributes that are needed to back the projection proxy. For more details on
that, please refer to the module specific part of the reference documentation.

Open projections

Accessor methods in projection interfaces can also be used to compute new values by using the
@Value annotation on it:

Example 72. An Open Projection

interface NamesOnly {

("#{target.firstname + ' ' + target.lastname}")

String getFullName();

The aggregate root backing the projection is available via the target variable. A projection interface
using @Value an open projection. Spring Data won’t be able to apply query execution optimizations
in this case as the SpEL expression could use any attributes of the aggregate root.

The expressions used in @Value shouldn’t become too complex as you’d want to avoid programming
in Strings. For very simple expressions, one option might be to resort to default methods:

79

Example 73. A projection interface using a default method for custom logic

interface NamesOnly {

String getFirstname();
String getLastname();

default String getFullName() {
return getFirstname.concat(" "
}
}

).concat(getLastname());

This approach requires you to be able to implement logic purely based on the other accessor
methods exposed on the projection interface. A second, more flexible option is to implement the
custom logic in a Spring bean and then simply invoke that from the SpEL expression:

Example 74. Sample Person object

class MyBean {
String getFullName(Person person) {

}
}

interface NamesOnly {

("#{oemyBean.getFullName(target)}")
String getFullName();

Note, how the SpEL expression refers to myBean and invokes the getFullName(::-) method forwarding
the projection target as method parameter. Methods backed by SpEL expression evaluation can also
use method parameters which can then be referred to from the expression. The method parameters
are available via an Object array named args.

80

Example 75. Sample Person object

interface NamesOnly {

("#{args[0] + ' ' + target.firstname + '!'}")
String getSalutation(String prefix);
¥

Again, for more complex expressions rather use a Spring bean and let the expression just invoke a
method as described above.

Class-based projections (DTOs)

Another way of defining projections is using value type DTOs that hold properties for the fields that
are supposed to be retrieved. These DTO types can be used exactly the same way projection
interfaces are used, except that no proxying is going on here and no nested projections can be
applied.

In case the store optimizes the query execution by limiting the fields to be loaded, the ones to be
loaded are determined from the parameter names of the constructor that is exposed.

Example 76. A projecting DTO

class NamesOnly {
private final String firstname, lastname;
NamesOnly(String firstname, String lastname) {

this.firstname = firstname;
this.lastname = lastname;

}

String getFirstname() {
return this.firstname;

}

String getLastname() {
return this.lastname;

}

// equals(:++) and hashCode() implementations

81

Avoiding boilerplate code for projection DTOs

The code that needs to be written for a DTO can be dramatically simplified using
Project Lombok, which provides an @Value annotation (not to mix up with Spring’s
@Value annotation shown in the interface examples above). The sample DTO above
would become this:

TIP

class NamesOnly {
String firstname, lastname;

}

Fields are private final by default, the class exposes a constructor taking all fields and
automatically gets equals(::-) and hashCode() methods implemented.

Dynamic projections
So far we have used the projection type as the return type or element type of a collection. However,

it might be desirable to rather select the type to be used at invocation time. To apply dynamic
projections, use a query method like this:

Example 77. A repository using a dynamic projection parameter

interface PersonRepository extends Repository<Person, UUID> {

Collection<T> findBylLastname(String lastname, Class<T> type);
b

This way the method can be used to obtain the aggregates as is, or with a projection applied:

Example 78. Using a repository with dynamic projections

void someMethod(PersonRepository people) {

Collection<Person> aggregates =
people.findByLastname("Matthews", Person.class);

Collection<NamesOnly> aggregates =
people.findByLastname("Matthews", NamesOnly.class);

9.4. Miscellaneous

82

https://projectlombok.org

9.4.1. CDI Integration

Instances of the Repository interfaces are usually created by a container, and the Spring container
is the most natural choice when working with Spring Data. Spring Data for Apache Cassandra ships
with a custom CDI extension that allows using the repository abstraction in CDI environments. The
extension is part of the JAR so all you need to do to activate it is dropping the Spring Data for
Apache Cassandra JAR into your classpath. You can now set up the infrastructure by implementing
a CDI Producer for the CassandraTemplate:

83

class CassandraTemplateProducer {

public Cluster createCluster() throws Exception {
CassandraConnectionProperties properties = new CassandraConnectionProperties(

Cluster cluster = Cluster.builder().addContactPoint(properties
.getCassandraHost())
.withPort(properties.getCassandraPort()).build();
return cluster;

public Session createSession(Cluster cluster) throws Exception {
return cluster.connect();

}

public CassandraOperations createCassandraOperations(Session session) throws
Exception {

MappingCassandraConverter cassandraConverter = new MappingCassandraConverter(
)

cassandraConverter.setUserTypeResolver(new SimpleUserTypeResolver(session
.getCluster(), session.getlLoggedKeyspace()));

CassandraAdminTemplate cassandraTemplate = new CassandraAdminTemplate(session,
cassandraConverter);
return cassandraTemplate;

}

public void close(Session session) {
session.close();

}

public void close(Cluster cluster) {
cluster.close();

}

The Spring Data for Apache Cassandra CDI extension will pick up CassandraOperations available as
CDI bean and create a proxy for a Spring Data Repository whenever an bean of a Repository type is
requested by the container. Thus obtaining an instance of a Spring Data Repository is a matter of
declaring an @Inject-ed property:

84

class RepositoryClient {

@Inject
PersonRepository repository;

public void businessMethod() {
List<Person> people = repository.findAll();
}
}

85

Chapter 10. Mapping

Rich mapping support is provided by the MappingCassandraConverter . MappingCassandraConverter has
a rich metadata model that provides a complete feature set of functionality to map domain objects
to CQL Tables. The mapping metadata model is populated using annotations on your domain
objects. However, the infrastructure is not limited to using annotations as the only source of
metadata. The MappingCassandraConverter also allows you to map domain objects to tables without
providing any additional metadata, by following a set of conventions.

In this section we will describe the features of the MappingCassandraConverter, how to use
conventions for mapping domain objects to tables and how to override those conventions with
annotation-based mapping metadata.

10.1. Convention based Mapping

MappingCassandraConverter uses a few conventions for mapping domain objects to CQL Tables when
no additional mapping metadata is provided. The conventions are:

* The short Java class name is mapped to the table name in the following manner. The class
com.bigbank.SavingsAccount maps to savingsaccount table name.

* The converter will use any registered Spring Converters to override the default mapping of
object properties to tables fields.

* The properties of an object are used to convert to and from properties in the table.

10.2. Data mapping and type conversion

This section explains how types are mapped to an Apache Cassandra representation and vice versa.

Spring Data for Apache Cassandra supports several types that are provided by Apache Cassandra.
In addition to these types, Spring Data for Apache Cassandra provides a set of built-in converters to
map additional types. You can provide your own converters to adjust type conversion, see
Overriding Mapping with explicit Converters for further details.

Table 4. Type

Type Cassandra types
String text (default), varchar, ascii
double, Double double

float, Float float

long, Long bigint (default), counter
int, Integer int

short, Short smallint

byte, Byte tinyint

boolean, Boolean boolean

BigInteger varint

86

Type Cassandra types

BigDecimal decimal

java.util.Date timestamp

com.datastax.driver.core.lLocalDate date

InetAddress inet

ByteBuffer blob

java.util.UUID timeuuid

UDTValue, mapped User-Defined types user type

java.util.Map<K, V> map

java.util.List<E> list

java.util.Set<E> set

Enum text (default), bigint, varint, int,
smallint, tinyint

LocalDate date

(Joda, Java 8, JSR310-BackPort)

LocalDateTime, LocalTime, Instant timestamp

(Joda, Java 8, JSR310-BackPort)

DateMidnight (Joda) date

Zoneld (Java 8, JSR310-BackPort) text

Each supported type maps to a default Cassandra data type. Java types can be mapped to other
Cassandra types by using @CassandraType.

.Enum Mapping to Numeric types

@Table
public class EnumToOrdinalMapping {

@PrimaryKey String id;

@Cassandralype(type = Name.INT) Condition asOrdinal;
}

public enum Condition {
NEW, USED
}

Enum mapping using ordinal values requires at least Spring 4.3.0. Using earlier

NOTE . . .
Spring versions require custom converters for each Enum type.

87

https://docs.datastax.com/en/cql/3.3/cql/cql_reference/cql_data_types_c.html

10.2.1. Mapping Configuration

Unless explicitly configured, an instance of MappingCassandraConverter is created by default when
creating a CassandraTemplate. You can create your own instance of the MappingCassandraConverter so
as to tell it where to scan the classpath at startup for your domain classes in order to extract
metadata and construct indexes.

Also, by creating your own instance you can register Spring Converters to use for mapping specific
classes to and from the database.

Example 79. @Configuration class to configure Cassandra mapping support

public static class Config extends AbstractCassandraConfiguration {

protected String getKeyspaceName() {
return "bigbank";

}

// the following are optional

public CustomConversions customConversions() {

List<Converter<?, ?>> converters = new ArraylList<Converter<?, 7?>>();
converters.add(new PersonReadConverter());
converters.add(new PersonWriteConverter());

return new CustomConversions(converters);

public SchemaAction getSchemaAction() {
return SchemaAction.RECREATE;
}

// other methods omitted...
}

AbstractCassandraConfiguration requires you to implement methods that define a keyspace.
AbstractCassandraConfiqguration also has a method you <can override named
getEntityBasePackages(:--) which tells the Converter where to scan for classes annotated with the
@Table annotation.

You can add additional converters to the Converter by overriding the method customConversions.

88

AbstractCassandraConfiguration will create a CassandraTemplate instance and

NOTE . o .
register it with the container under the name cassandraTemplate.

10.3. Metadata based Mapping

To take full advantage of the object mapping functionality inside the Spring Data for Apache
Cassandra support, you should annotate your mapped objects with the @Table annotation. It allows
the classpath scanner to find and pre-process your domain objects to extract the necessary
metadata. Only annotated entities will be used to perform schema actions. In the worst case, a
SchemaAction.RECREATE_DROP_UNUSED will drop your tables and you will experience data loss.

Example 80. Example domain object

package com.mycompany.domain;
public class Person {

private String id;

(type = Name.VARINT)
private Integer ssn;

private String firstName;

private String lastName;

}

The @Id annotation tells the mapper which property you want to use for the
IMPORTANT Cassandra primary key. Composite primary keys can require a slightly
different data model.

10.3.1. Mapping annotation overview

The MappingCassandraConverter can use metadata to drive the mapping of objects to rows. An
overview of the annotations is provided below:
» @Id - applied at the field or property level to mark the property used for identity purpose.

* @Table - applied at the class level to indicate this class is a candidate for mapping to the
database. You can specify the name of the table where the object will be stored.

* @PrimaryKey - Similar to @Id but allows you to specify the column name.

* @PrimaryKeyColumn - Cassandra-specific annotation for primary key columns that allows you to
specify primary key column attributes such as for clustered/partitioned. Can be used on single
and multiple attributes to indicate either a single or a compound primary key.

89

* @PrimaryKeyClass - applied at the class level to indicate this class is a compound primary key
class. Requires to be referenced with @PrimaryKey.

* @Transient - by default all private fields are mapped to the row, this annotation excludes the
field where it is applied from being stored in the database.

» @Column - applied at the field level. Describes the column name as it will be represented in the
Cassandra table thus allowing the name to be different than the field name of the class.

» @CassandraType - applied at the field level to specify a Cassandra data type. Types are derived
from the declaration by default.

» @UserDefinedType - applied at the type level to specify a Cassandra user-defined data type (UDT).
Types are derived from the declaration by default.

The mapping metadata infrastructure is defined in the separate, spring-data-commons project that
is technology agnostic.

Here is an example of a more complex mapping.

Example 81. Mapped Person class

("my_person")
public class Person {

public static class Key implements Serializable {

0, type = PrimaryKeyType.PARTITIONED)

(ordinal
private String type;

(ordinal = 1, type
private String value;

PrimaryKeyType.PARTITIONED)

(name = "correlated_type", ordinal = 2, type =
PrimaryKeyType.CLUSTERED)
private String correlatedType;

// other getters/setters ommitted
}
private Person.Key key;

(type = Name.VARINT)
private Integer ssn;

("f_name")
private String firstName;

(forceQuote = true)
private String lastName;

90

private Address address;

@CassandraType(type = Name.UDT, userTypeName = "myusertype")
private UDTValue usertype;

@Transient
private Integer accountTotal;

@Cassandralype(type = Name.SET, typeArquments = Name.BIGINT)
private Set<lLong> timestamps;

private Map<String, InetAddress> sessions;

public Person(Integer ssn) {
this.ssn = ssn;

}

public String getId() {
return id;

}

// no setter for Id. (getter is only exposed for some unit testing)

public Integer getSsn() {
return ssn;

}

// other getters/setters ommitted

91

Example 82. Mapped User-Defined type Address

@UserDefinedType("address")
public class Address {

private String city;

@CassandraType(type = Name.VARCHAR)
private String street;

private Set<String> zipcodes;

@CassandraType(type = Name.SET, typeArguments = Name.BIGINT)
private List<Long> timestamps;

// other getters/setters ommitted

Working with User-Defined Types requires a UserTypeResolver configured with the
NOTE mapping context. See the configuration chapter for how to configure a
UserTypeResolver.

10.3.2. Overriding Mapping with explicit Converters

When storing and querying your objects it is convenient to have a CassandraConverter instance
handle the mapping of all Java types to Rows. However, sometimes you may want the
CassandraConverter to do most of the work but still allow you to selectively handle the conversion
for a particular type, or to optimize performance.

To selectively handle the conversion yourself, register one or more
org.springframework.core.convert.converter.Converter instances with the CassandraConverter.

Spring 3.0 introduced a o.s.core.convert package that provides a general type
NOTE conversion system. This is described in detail in the Spring reference

documentation section entitled Spring Type Conversion.

Below is an example of a Spring Converter implementation that converts from a Row to a Person
PO]JO.

92

http://docs.spring.io/spring/docs/4.3.13.RELEASE/spring-framework-reference/html/validation.html#core-convert

@ReadingConverter
public class PersonReadConverter implements Converter<Row, Person> {

public Person convert(Row source) {
Person p = new Person(row.getString("id"));
p.setAge(source.getInt("age");
return p;
}
}

93

Appendix

94

Appendix A: Namespace reference

The <repositories /> element

The <repositories /> element triggers the setup of the Spring Data repository infrastructure. The
most important attribute is base-package which defines the package to scan for Spring Data
repository interfaces. [3: see XML configuration]

Table 5. Attributes

Name

base-package

repository-impl-
postfix

query-lookup-strategy

named-queries-location

consider-nested-
repositories

Description

Defines the package to be used to be scanned for repository interfaces
extending *Repository (actual interface is determined by specific Spring
Data module) in auto detection mode. All packages below the configured
package will be scanned, too. Wildcards are allowed.

Defines the postfix to autodetect custom repository implementations.
Classes whose names end with the configured postfix will be considered
as candidates. Defaults to Impl.

Determines the strategy to be used to create finder queries. See Query
lookup strategies for details. Defaults to create-if-not-found.

Defines the location to look for a Properties file containing externally
defined queries.

Controls whether nested repository interface definitions should be
considered. Defaults to false.

95

Appendix B: Populators namespace
reference

The <populator /> element

The <populator /> element allows to populate the a data store via the Spring Data repository
infrastructure. [4: see XML configuration]

Table 6. Attributes

Name Description
locations Where to find the files to read the objects from the repository shall be
populated with.

96

Appendix C: Repository query keywords
Supported query keywords

The following table lists the keywords generally supported by the Spring Data repository query
derivation mechanism. However, consult the store-specific documentation for the exact list of
supported keywords, because some listed here might not be supported in a particular store.

Table 7. Query keywords

Logical keyword Keyword expressions

AND And

OR Or

AFTER After, IsAfter

BEFORE Before, IsBefore

CONTAINING Containing, IsContaining, Contains
BETWEEN Between, IsBetween

ENDING_WITH EndingWith, IsEndingWith, EndsWith
EXISTS Exists

FALSE

GREATER_THAN

GREATER_THAN_EQUALS

False, IsFalse
GreaterThan, IsGreaterThan

GreaterThanEqual, IsGreaterThanEqual

IN In, IsIn

IS Is, Equals, (or no keyword)
IS_NOT_NULL NotNull, IsNotNull

IS_NULL Null, IsNull

LESS_THAN LessThan, IsLessThan

LESS_THAN_EQUAL

LessThanEqual, IsLessThanEqual

LIKE Like, IsLike

NEAR Near, IsNear

NOT Not, IsNot

NOT_IN NotIn, IsNotIn

NOT_LIKE NotLike, IsNotLike

REGEX Regex, MatchesRegex, Matches
STARTING_WITH StartingWith, IsStartingWith, StartsWith
TRUE True, IsTrue

WITHIN

Within, IsWithin

97

Appendix D: Repository query return types

Supported query return types

The following table lists the return types generally supported by Spring Data repositories. However,
consult the store-specific documentation for the exact list of supported return types, because some
listed here might not be supported in a particular store.

NOTE

Geospatial types like (GeoResult, GeoResults, GeoPage) are only available for data

stores that support geospatial queries.

Table 8. Query return types

Return type
void

Primitives
Wrapper types
I

Iterator<T>
Collection<T>
List<T>
Optional<T>

Option<T>

Stream<T>

Future<T>

CompletableFuture<T>

ListenableFuture

Slice

Page<T>

GeoResult<T>

98

Description

Denotes no return value.
Java primitives.

Java wrapper types.

An unique entity. Expects the query method to return one result at most.
In case no result is found null is returned. More than one result will
trigger an IncorrectResultSizeDataAccessException.

An Iterator.
A Collection.
A List.

A Java 8 or Guava Optional. Expects the query method to return one
result at most. In case no result is found Optional.empty()
/Optional.absent() is returned. More than one result will trigger an
IncorrectResultSizeDataAccessException.

An either Scala or JavaSlang Option type. Semantically same behavior as
Java 8’s Optional described above.

AJava 8 Stream.

A Future. Expects method to be annotated with @Async and requires
Spring’s asynchronous method execution capability enabled.

AJava 8 CompletableFuture. Expects method to be annotated with @Async
and requires Spring’s asynchronous method execution capability
enabled.

Aorg.springframework.util.concurrent.ListenableFuture. Expects method
to be annotated with @Async and requires Spring’s asynchronous method
execution capability enabled.

A sized chunk of data with information whether there is more data
available. Requires a Pageable method parameter.

A Slice with additional information, e.g. the total number of results.
Requires a Pageable method parameter.

A result entry with additional information, e.g. distance to a reference
location.

Return type

GeoResults<T>

GeoPage<T>

Description

A list of GeoResult<T> with additional information, e.g. average distance to
a reference location.

A Page with GeoResult<T>, e.g. average distance to a reference location.

99

	Spring Data for Apache Cassandra - Reference Documentation
	Table of Contents
	Preface
	Chapter 1. Knowing Spring
	Chapter 2. Knowing NoSQL and Cassandra
	Chapter 3. Requirements
	Chapter 4. Additional Help Resources
	4.1. Support
	4.1.1. Community Forum
	4.1.2. Professional Support

	4.2. Following Development
	4.3. Project Metadata

	Chapter 5. New & Noteworthy
	5.1. What’s new in Spring Data for Apache Cassandra 1.5

	Chapter 6. Dependencies
	6.1. Dependency management with Spring Boot
	6.2. Spring Framework

	Chapter 7. Working with Spring Data Repositories
	7.1. Core concepts
	7.2. Query methods
	7.3. Defining repository interfaces
	7.3.1. Fine-tuning repository definition
	7.3.2. Using Repositories with multiple Spring Data modules

	7.4. Defining query methods
	7.4.1. Query lookup strategies
	7.4.2. Query creation
	7.4.3. Property expressions
	7.4.4. Special parameter handling
	7.4.5. Limiting query results
	7.4.6. Streaming query results
	7.4.7. Async query results

	7.5. Creating repository instances
	7.5.1. XML configuration
	7.5.2. JavaConfig
	7.5.3. Standalone usage

	7.6. Custom implementations for Spring Data repositories
	7.6.1. Adding custom behavior to single repositories
	7.6.2. Adding custom behavior to all repositories

	7.7. Publishing events from aggregate roots
	7.8. Spring Data extensions
	7.8.1. Querydsl Extension
	7.8.2. Web support
	7.8.3. Repository populators
	7.8.4. Legacy web support

	Reference Documentation
	Chapter 8. Cassandra support
	8.1. Spring CQL and Spring Data for Apache Cassandra modules
	8.1.1. Choosing an approach for Cassandra database access

	8.2. Getting Started
	8.3. Examples Repository
	8.4. Connecting to Cassandra with Spring
	8.4.1. Registering a Session instance using Java based metadata
	8.4.2. XML Configuration

	8.5. Schema Management
	8.5.1. Keyspaces and Lifecycle scripts
	8.5.2. Tables and User-defined types

	8.6. Introduction to CassandraTemplate
	8.6.1. Instantiating CassandraTemplate

	8.7. Saving, Updating, and Removing Rows
	8.7.1. Working with Primary Keys
	8.7.2. Type mapping
	8.7.3. Methods for saving and inserting rows
	8.7.4. Updating rows in a CQL table
	8.7.5. Methods for removing rows
	8.7.6. Methods for truncating tables

	8.8. Querying CQL Tables
	8.9. Overriding default mapping with custom converters
	8.9.1. Saving using a registered Spring Converter
	8.9.2. Reading using a Spring Converter
	8.9.3. Registering Spring Converters with the CassandraConverter
	8.9.4. Converter disambiguation

	8.10. Executing Commands
	8.10.1. Methods for executing commands

	8.11. Exception Translation

	Chapter 9. Cassandra repositories
	9.1. Introduction
	9.2. Usage
	9.3. Query methods
	9.3.1. Projections

	9.4. Miscellaneous
	9.4.1. CDI Integration

	Chapter 10. Mapping
	10.1. Convention based Mapping
	10.2. Data mapping and type conversion
	10.2.1. Mapping Configuration

	10.3. Metadata based Mapping
	10.3.1. Mapping annotation overview
	10.3.2. Overriding Mapping with explicit Converters

	Appendix
	Appendix A: Namespace reference
	The <repositories /> element

	Appendix B: Populators namespace reference
	The <populator /> element

	Appendix C: Repository query keywords
	Supported query keywords

	Appendix D: Repository query return types
	Supported query return types

