Spring Data Commons - Reference
Documentation

1.0.0.M4

Copyright © 2010 Mark Pollack, Thomas Risberg, Oliver Gierke

Copies of this document may be made for your own use and for distribution to others, provided that you do not
charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether
distributed in print or electronically.



[ REFEIBINCE ...ttt 1
L REPOSITONES ...ttt ettt e e ettt e e e e e e st e e e ek et e e s bn e e e e e s b et e e e annrr e e e e as 2
L2 INEFOTUCTION ..ttt ettt e et e et e e e s e e nnnee e 2

1.2, COrE CONCEPES ....ueeeireeeeeee e e ettt e e e e s e st e et e e e e e s et e et e e e e e s s s snb b e e e e e e e e e sannbbrnneeeaeeeaaans 2

1.3, QUENY MELNOUS ... .. s nnannnnnnnnnnnnnns 3
1.3.1. Defining repository iNtEITACES .........eeiiiieiiieiiiiiee e 4

1.3.2. Defining query MEthOOS ..........ueeiiiieeiiiiieiee e e 4

1.3.3. Creating rePOSItOry INSIANCES ...vvvviiieeei it e e s e e e e e e e e e e e eaneeees 6

1.4, Custom imMPIEMENLELIONS ........veeeeiiiiiiee ettt e et e e e e et e e e s annneeas 7
1.4.1. Adding behaviour to SINgle rePOSItONES ......eevvieeiiiiiiiiieeee e 7

1.4.2. Adding custom behaviour to all rePOSITONES .........coccvviiiiiiiiiie e 9

Spring Data Commons (1.0.0.M4)



Preface

The Spring Data Commons project applies core Spring concepts to the development of solutions using many
non-relational data stores.

Spring Data Commons (1.0.0.M4) ii



Part |. Reference

This part of the reference documentation detailsthe ...

Spring Data Commons (1.0.0.M4)



Chapter 1. Repositories

1.1. Introduction

Implementing a data access layer of an application has been cumbersome for quite a while. Too much
boilerplate code had to be written. Domain classes were anemic and haven't been designed in a real object
oriented or domain driven manner.

Using both of these technologies makes developers life alot easier regarding rich domain model's persistence.
Nevertheless the amount of boilerplate code to implement repositories especialy is till quite high. So the goal
of the repository abstraction of Spring Data is to reduce the effort to implement data access layers for various
persistence stores significantly

The following chapters will introduce the core concepts and interfaces of Spring Data repositories.

1.2. Core concepts

The central interface in Spring Data repository abstraction is Repository (probably not that much of a
surprise). It is typeable to the domain class to manage as well as the id type of the domain class and provides
some sophisticated functionality around CRUD for the entity managed.

Example 1.1. Repository interface

public interface Repository<T, |ID extends Serializable> {

T save(T entity); O
T findByld(ID primaryKey); O
List<T> findAll(); 0
Page<T> findAl | (Pageabl e pageabl e); O
Long count (); O
void delete(T entity); O
bool ean exi sts(ID primaryKey); O

// ...nore functionality omtted.

Saves the given entity.

Returns the entity identified by the given id.
Returns all entities.

Returns a page of entities.

Returns the number of entities.

Deletes the given entity.

Returns whether an entity with the given id exists.

I |

Usually we will have persistence technology specific sub-interfaces to include additional technology specific
methods. We will now ship implementations for a variety of Spring Data modules that implement that interface.

Spring Data Commons (1.0.0.M4) 2



Repositories

On top of the Repository there is a PagingAndSortingRepository abstraction that adds additional methods to
ease paginated access to entities:

Example 1.2. PagingAndSortingRepository

public interface Pagi ngAndSortingRepository<T, |D extends Serializabl e> extends Repository<T, |D> {
Li st<T> findAl |l (Sort sort);

Page<T> fi ndAl | (Pageabl e pageabl e);

Accessing the second page of User by a page size of 20 you could simply do something like this:

Pagi ngAndSort i ngReposi t ory<User, Long> repository = // ...get access to a bean
Page<User > users = repository.findAl |l (new PageRequest (1, 20);

1.3. Query methods

Next to standard CRUD functionality repositories are usually query the underlying datastore. With Spring Data
declaring those queries becomes a four-step process (we use the JPA based module as example but that works
the same way for other stores):

1. Declare an interface extending the technology specific Repository sub-interface and type it to the domain
classit shall handle.

public interface PersonRepository extends JpaRepository<User, Long> { ...}

2. Declare query methods on the interface.

Li st <Person> findByLastnane(String | astnane);

3. Setup Spring to create proxy instances for those interfaces.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans: beans xm ns: beans="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns="http://ww. springfranework. org/ schema/ dat a/ j pa
xsi : schemaLocati on="http://ww. spri ngfranewor k. or g/ schema/ beans
http://ww. spri ngframework. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. spri ngframework. or g/ schena/ dat a/ j pa
http://ww. spri ngframework. or g/ schenma/ dat a/ j pa/ spri ng-j pa. xsd" >

<reposi tories base-package="com acre.repositories" />

</ beans>

4. Get the repository instance injected and use it.

public class Sonedient {

@\ut owi r ed
private PersonRepoyitory repository;

public void doSonething() {
Li st <Person> persons = repository.findByLastname("Mtthews");

Spring Data Commons (1.0.0.M4) 3



Repositories

At this stage we barely scratched the surface of what's possible with the repositories but the general approach
should be clear. Let's go through each of these steps and and figure out details and various options that you
have at each stage.

1.3.1. Defining repository interfaces

As avery first step you define a domain class specific repository interface to start with. It's got to be typed to
the domain class and an ID type so that you get CRUD methods of the Reposi t ory interface tailored toit.

1.3.2. Defining query methods

1.3.2.1. Query lookup strategies

The next thing we have to discuss is the definition of query methods. There's roughly two main ways how the
repository proxy is generally able to come up with the store specific query from the method name. The first
option is to derive the quer from the method name directly, the second is using some kind of additionally
created query. What detailed options are available pretty much depends on the actual store. However there's got
to be some algorithm the decision which actual query to is made.

There's three strategies for the repository infrastructure to resolve the query. The strategy to be used can be
configured at the namespace through the query- 1 ookup- st rat egy attribute. However might be the case that
some of the strategies are not supported for the specific datastore. Here are your options:

CREATE

This strategy will try to construct a store specific query from the query method's name. The general approach is
to remove a given set of well-known prefixes from the method name and parse the rest of the method. Read
more about query construction in ???.

USE_DECLARED_QUERY

This strategy tries to find a declared query which will be used for execution first. The query could be defined
by an annotation somwhere or declared by other means. Please consult the documentation of the specific store
to find out what options are available for that store. If the repository infrastructure does not find a declared
query for the method at bootstrap time it will fail.

CREATE_IF_NOT_FOUND (default)

This strategy is actually a combination of the both mentioned above. It will try to lookup a declared query first
but create a custom method name based query if no declared query was found. This is default lookup strategy
and thus will be used if you don't configure anything explicitly. It allows quick query definition by method
names but also custom tuning of these queries by introducing declared queries for those who need explicit
tuning.

1.3.2.2. Query creation

The query builder mechanism built into Spring Data repository infrastructue is useful to build constraining
queries over entities of the repository. We will strip the prefixes fi ndBy, fi nd, readBy, r ead, get By as well as

Spring Data Commons (1.0.0.M4) 4



Repositories

get from the method and start parsing the rest of it. At avery basic level you can define conditions on entity
properties and concatenate them with AND and OR.

Example 1.3. Query creation from method names

public interface PersonRepository extends JpaRepository<User, Long> {

Li st <Per son> fi ndByEnai | Addr essAndLast nane( Enai | Addr ess enui | Address, String |astnane);

}

The actual result of parsing that method will of course depend on the persistence store we create the query for.
However there are some general things to notice. The expression are usualy property traversals combined with
operators that can be concatenated. As you can see in the example you can combine property expressions with
And and Or. Beyond that you will get support for various operators like Bet ween, LessThan, Gr eat er Than,
Li ke for the property expressions. As the operators supported can vary from datastore to datastore please
consult the according part of the reference documentation.

1.3.2.2.1. Property expressions

Property expressions can just refer to a direct property of the managed entity (as you just saw in the example
above. On query creation time we aready make sure that the parsed property is at a property of the managed
domain class. However you can also traverse nested properties to define constraints on. Assume Per sons have
Addr esseswith zi pCodes. In that case a method name of

Li st <Person> fi ndByAddr essZi pCode(Zi pCode zi pCode);

will create the property traversal x. addr ess. zi pCode. The resolution agorithm starts with interpreting the
entire part (Addresszi pCode) as property and checks the domain class for a property with that name
(uncapitalized). If it succeeds it just uses that. If not it starts splitting up the source at the camel case parts from
the right side into a head and a tail and tries to find the according property, €.g. Addr esszi p and Code. If we
find a property with that head we take the tail and continue building the tree down from there. Asin our case
thefirst split does not match we move the split point to the left (Addr ess, zi pCode).

Now although this should work for most cases, there might be cases where the algorithm could select the wrong
property. Suppose our Per son class has aaddr esszi p property as well. Then our algorithm would match in the
first split round already and essentialy choose the wrong property and finally fail (as the type of addresszip
probably has no code property). To resolve this ambiguity you can use _ inside your method name to manually
define traversal points. So our method hame would end up like so:

Li st <Person> fi ndByAddr ess_Zi pCode( Zi pCode zi pCode);

1.3.2.3. Special parameter handling

To hand parameters to your query you simply define method parameters as already seen in in examples above.
Besides that we will recognizes certain specific types to apply pagination and sorting to your queries
dynamically.

Example 1.4. Using Pageable and Sort in query methods

Page<User > findByLast name(String | ast nane, Pageabl e pageabl e);

Spring Data Commons (1.0.0.M4) 5



Repositories

Li st <User> findByLastnane(String | astnane, Sort sort);

Li st <User > findByLastname(String | astnane, Pageabl e pageabl e);

The first method allows you to pass a Pageabl e instance to the query method to dynamically add paging to
your statically defined query. Sorting options are handed via the Pageabl e instance, too. If you only need
sorting, simply add a Sort parameter to your method. As you also can see, simply returning a Li st is possible
as well. We will then not retrieve the additional metadata required to build the actual Page instance but rather
simply restrict the query to lookup only the given range of entities.

Note

To find out how many pages you get for a query entirely we have to trigger an additional count
query. Thiswill be derived from the query you actually trigger by default.

1.3.3. Creating repository instances

So now the question is how to create instances and bean definitions for the repository interfaces defined.

1.3.3.1. Spring

The easiest way to do so is by using the Spring namespace that is shipped with each Spring Data module that
supports the repository mechanism. Each of those includes a repositories element that allows you to simply
define a base packge Spring shall scan for you.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans: beans xm ns: beans="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns="http://ww. springfranework. org/ schema/ dat a/ j pa
xsi : schemaLocati on="http://ww. spri ngfranmewor k. or g/ schema/ beans
http://ww. spri ngframework. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. spri ngframework. or g/ schena/ dat a/ j pa
http://ww. spri ngframework. or g/ schenma/ dat a/ j pa/ spri ng-j pa. xsd" >

<reposi tories base-package="com acre.repositories" />

</ beans: beans>

In this case we instruct Spring to scan com.acme.repositories and all it's sub packages for interfaces extending
the appropriate Reposi t ory sub-interface (in this case JpaReposi t or y). For each interface found it will register
the presistence technology specific Fact or yBean to create the according proxies that handle invocations of the
query methods. Each of these beans will be registered under a bean name that is derived from the interface
name, so an interface of User Repository would be registered under user Repository. The base- package
attribute allows to use wildcards, so that you can have a pattern of packages parsed.

Using filters

By default we will pick up every interface extending the persistence technology specific Repository
sub-interface located underneath the configured base package and create a bean instance for it. However, you
might want to gain finer grained control over which interfaces bean instances get created for. To do this we
support the use of <include-filter /> and <exclude-filter /> elementsinside <repositories />. The
semantics are exactly equivalent to the elements in Spring's context namespace. For details see Spring reference
documentation on these elements.

Spring Data Commons (1.0.0.M4) 6


http://static.springsource.org/spring/docs/2.5.x/reference/beans.html#beans-scanning-filters
http://static.springsource.org/spring/docs/2.5.x/reference/beans.html#beans-scanning-filters

Repositories

E.g. to exclude certain interfaces from instantiation as repository, you could use the following configuration:

Example 1.5. Using exclude-filter element

<reposi tories base-package="com acne. repositories">
<cont ext:exclude-filter type="regex" expression=".*SoneRepository" />
</repositories>

Thiswould exclude all interface ending on SoneReposi t ory from being instantiated.

Manual configuration

If you'd rather like to manually define which repository instances to create you can do this with nested
<repository /> elements.

<reposi tories base-package="com acne. repositories">
<repository id="userRepository" />
</repositories>

1.3.3.2. Standalone usage

You can aso use the repository infrastructure outside of a Spring container usage. You will still need to have
some of the Spring libraries on your classpath but you can generally setup repositories programatically as well.
The Spring Data modules providing repository support ship a persistence technology specific
RepositoryFactory that can be used as follows:

Example 1.6. Standalone usage of repository factory

Reposi t oryFact orySupport factory = ...// Instantiate factory here
User Repository repository = factory. get Repository(UserRepository.class);

1.4. Custom implementations

1.4.1. Adding behaviour to single repositories

Often it is necessary to provide a custom implementation for a few repository methods. Spring Data
repositories easily alow provide custom repository code and integrate it with generic CRUD abstraction and
query method functionality. To enrich a repository with custom functionality you have to define an interface
and an implementation for that functionality first and let the repository interface you provided so far extend that
custom interface.

Example 1.7. Interface for custom repository functionality

i nterface User RepositoryCustom {

public void sonmeCust om\vet hod( User user);
}

Spring Data Commons (1.0.0.M4) 7



Repositories

Example 1.8. Implementation of custom repository functionality

cl ass UserRepositorylnpl inplenents User RepositoryCustom {

public void soneCust omvet hod( User user) {
/1 Your custom i nplenentation

}
}

Note that the implementation itself does not depend on Spring Data and can be a regular Spring bean. So you
can either use standard dependency injection behaviour to inject references to other beans, take part in aspects
and so on.

Example 1.9. Changesto the your basic repository interface

public interface UserRepository extends JpaRepository<User, Long>, UserRepositoryCustom {

/! Decl are query met hods here

}

Let your standard repository interface extend the custom one. This makes CRUD and custom functionality
availableto clients.

Configuration

If you use namespace configuration the repository infrastructure tries to autodetect custom implementations by
looking up classes in the package we found a repository using the naming conventions appending the
namespace element's attribute r eposi t or y- i npl - post f i x to the classname. This suffix defaultsto | npl .

Example 1.10. Configuration example

<reposi tories base-package="com acne. repository">
<repository id="userRepository" />
</ repositories>

<reposi tori es base-package="com acne. repository" repository-inpl-postfix="FooBar">
<repository id="userRepository" />
</repositories>

Thefirst configuration example will try to lookup a class com acne. reposi t ory. User Reposi t oryl mpl to act as
custom  repository  implementation, where the second example will try to lookup
com acne. reposi tory. User Reposi t or yFooBar .

Manual wiring

The approach above works perfectly well if your custom implementation uses annotation based configuration
and autowring entirely as will be trated as any other Spring bean. If your customly implemented bean needs
some specia wiring you simply declare the bean and name it after the conventions just descibed. We will then
pick up the custom bean by name rather than creating an own instance.

Spring Data Commons (1.0.0.M4) 8



Repositories

Example 1.11. Manual wiring of custom implementations (1)

<repositories base-package="com acne. repository">
<repository id="userRepository" />
</repositories>

<beans: bean i d="user Repositorylnpl" class="..">
<!-- further configuration -->
</ beans: bean>

This also works if you use automatic repository lookup without defining single <r eposi tory /> elements.

In case you are not in control of the implementation bean name (e.g. if you wrap a generic repository facade
around an existing repository implementation) you can explicitly tell the <r eposi tory /> element which bean
to use as custom implementation by using ther eposi tory-i npl - ref attribute.

Example 1.12. Manual wiring of custom implementations (1)

<repositories base-package="com acne. repository">
<repository id="userRepository" repository-inpl-ref="custonRepositorylnplenmentation" />
</repositories>

<bean i d="cust onReposi toryl npl ement ati on" class="..">
<!-- further configuration -->
</ bean>

1.4.2. Adding custom behaviour to all repositories

In other cases you might want to add a single method to all of your repository interfaces. So the approach just
shown is not feasible. The first step to achieve this is adding and intermediate interface to declare the shared
behaviour

Example 1.13. An interface declaring custom shared behaviour

public interface M/Repository<T, |D extends Serializabl e>
ext ends JpaRepository<T, D> {

voi d shar edCust omvet hod(I D id);
}

Now your individual repository interfaces will extend this intermediate interface to include the functionality
declared. The second step is to create an implementation of this interface that extends the persistence
technology specific repository base class which will act as custom base class for the repository proxies then.

Note

If you're using automatic repository interface detection using the Spring namespace using the
interface just asiswill cause Spring trying to create an instance of MyReposi t ory. Thisis of course
not desired as it just acts as indermediate between Reposi t ory and the actual repository interfaces

Spring Data Commons (1.0.0.M4) 9



Repositories

you want to define for each entity. To exclude an interface extending Repository from being
instantiated as repository instance annotate it with @oReposi t or yBean.

Example 1.14. Custom repository base class

public class M/Repositoryl npl <T, |ID extends Serializabl e>
extends Si npl eJpaRepository<T, |D> inplements MyRepository<T, |D> {

public void sharedCustomvet hod(ID id) {
/1 inplenmentation goes here
}
}

The last step to get this implementation used as base class for Spring Data repositores is replacing the standard
Reposi t or yFact or yBean With a custom one using a custom Reposi t or yFact ory that in turn creates instances
of your MyReposi t oryl npl class.

Example 1.15. Custom repository factory bean

public class MyRepositoryFactoryBean<T extends JpaRepository<?, ?>
ext ends JpaReposit or yFact or yBean<T> {

protect ed RepositoryFactorySupport getRepositoryFactory(.) {
return new MyRepositoryFactory(..);
}

private static class M/RepositoryFactory extends JpaRepositoryFactory{

public MyRepositoryl npl get Target Repository(..) {
return new MyRepositorylnpl (.);
}

public C ass<? extends RepositorySupport> getRepositoryd ass() {
return MyRepositorylnpl.class;
}
}
}

Finally you can either declare beans of the custom factory directly or use the f act ory-cl ass attribute of the
Spring namespace to tell the repository infrastructure to use your custom factory implementation.

Example 1.16. Using the custom factory with the namespace

<reposi tori es base-package="com acne. repository"
factory-cl ass="com acne. M/Reposi t or yFact or yBean" />

Spring Data Commons (1.0.0.M4) 10



	Spring Data Commons - Reference Documentation
	Table of Contents
	Preface
	Part I. Reference
	Chapter 1. Repositories
	1.1. Introduction
	1.2. Core concepts
	1.3. Query methods
	1.3.1. Defining repository interfaces
	1.3.2. Defining query methods
	1.3.2.1. Query lookup strategies
	1.3.2.2. Query creation
	1.3.2.2.1. Property expressions

	1.3.2.3. Special parameter handling

	1.3.3. Creating repository instances
	1.3.3.1. Spring
	1.3.3.2. Standalone usage


	1.4. Custom implementations
	1.4.1. Adding behaviour to single repositories
	1.4.2. Adding custom behaviour to all repositories




