Spring Data Commons - Reference
Documentation

1.2.0.M1

Copyright © 2010 Mark Pollack, Thomas Risberg, Oliver Gierke

Copies of this document may be made for your own use and for distribution to others, provided that you do not
charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether
distributed in print or electronically.

[REFEIBINCE ...ttt 1
L REPOSITONES ...ttt ettt e e ettt e e e e e e st e e e ek et e e s bn e e e e e s b et e e e annrr e e e e as 2
L2 INEFOTUCTION ..ttt ettt e et e et e e e s e e nnnee e 2

1.2, COrE CONCEPESueeeireeeeeee e e ettt e e e e s e st e et e e e e e s et e et e e e e e s s s snb b e e e e e e e e e sannbbrnneeeaeeeaaans 2

1.3, QUENY MELNOUS s nnannnnnnnnnnnnnns 3
1.3.1. Defining repository iNtEITACESeeiiiieiiieiiiiiee e 4

1.3.2. Defining query MEthOOSueeiiiieeiiiiieiee e e 4

1.3.3. Creating rePOSItOry INSIANCES ...vvvviiieeei it e e s e e e e e e e e e e e eaneeees 6

1.4, Custom imMPIEMENLELIONSveeeeiiiiiiee ettt e et e e e e et e e e s annneeas 8
1.4.1. Adding behaviour to SINgle rePOSItONESeevvieeiiiiiiiiieeee e 8

1.4.2. Adding custom behaviour to all rePOSITONEScoccvviiiiiiiiiie e 9

Spring Data Commons (1.2.0.M 1)

Preface

The Spring Data Commons project applies core Spring concepts to the development of solutions using many
non-relational data stores.

Spring Data Commons (1.2.0.M 1) ii

Part |. Reference

This part of the reference documentation detailsthe ...

Spring Data Commons (1.2.0.M 1)

Chapter 1. Repositories

1.1. Introduction

Implementing a data access layer of an application has been cumbersome for quite a while. Too much
boilerplate code had to be written. Domain classes were anemic and not designed in a real object oriented or
domain driven manner.

Using both of these technologies makes developers life alot easier regarding rich domain model's persistence.
Nevertheless the amount of boilerplate code to implement repositories especialy is till quite high. So the goal
of the repository abstraction of Spring Data is to reduce the effort to implement data access layers for various
persistence stores significantly.

The following chapters will introduce the core concepts and interfaces of Spring Data repositories.

1.2. Core concepts

The central interface in Spring Data repository abstraction is Repository (probably not that much of a
surprise). It is typeable to the domain class to manage as well as the id type of the domain class. This interface
mainly acts as marker interface to capture the types to deal with and help us when discovering interfaces that
extend this one. Beyond that there's cr udReposi t ory which provides some sophisticated functionality around
CRUD for the entity being managed.

Example 1.1. Repository interface

public interface CrudRepository<T, ID extends Serializabl e>
ext ends Repository<T, |D> {

T save(T entity);

T findOne(l D primaryKey);
I'terabl e<T> findAll();

Long count ();

void delete(T entity);

bool ean exi sts(ID primaryKey);

// ...nmore functionality omtted.

Saves the given entity.

Returns the entity identified by the given id.
Returns all entities.

Returns the number of entities.

Deletes the given entity.

Returns whether an entity with the given id exists.

I

Usually we will have persistence technology specific sub-interfaces to include additional technology specific
methods. We will now ship implementations for avariety of Spring Data modules that implement this interface.

Spring Data Commons (1.2.0.M 1) 2

Repositories

On top of the CrudRepository there is a Pagi ngAndSorti ngRepository abstraction that adds additional
methods to ease paginated access to entities:

Example 1.2. PagingAndSortingRepository

public interface Pagi ngAndSortingRepository<T, |D extends Serializabl e> extends CrudRepository<T, |D> {
Iterabl e<T> findAll (Sort sort);

Page<T> fi ndAl | (Pageabl e pageabl e);

Accessing the second page of user by a page size of 20 you could simply do something like this:

Pagi ngAndSort i ngReposi t ory<User, Long> repository = // ...get access to a bean
Page<User > users = repository.findAl |l (new PageRequest (1, 20);

1.3. Query methods

Next to standard CRUD functionality repositories are usually queries on the underlying datastore. With Spring
Data declaring those queries becomes a four-step process:

1. Declare an interface extending Reposi t ory or one of its sub-interfaces and type it to the domain classit shall
handle.

public interface PersonRepository extends Repository<User, Long> { ...}

2. Declare query methods on the interface.

Li st <Person> findByLast nane(String | astnane);

3. Setup Spring to create proxy instances for those interfaces.

<?xm version="1.0" encodi ng="UTF-8"?>
<beans: beans xm ns: beans="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns="http://ww. springfranework. org/ schema/ dat a/ j pa
xsi : schemaLocati on="htt p://ww. spri ngfranmewor k. or g/ schema/ beans
http: //ww. spri ngfranewor k. or g/ schena/ beans/ spri ng- beans. xsd
http://ww. springframework. or g/ scherma/ dat a/ j pa
http://ww. spri ngframework. or g/ schena/ dat a/ j pa/ spri ng-j pa. xsd" >

<reposi tori es base-package="com acne.repositories" />

</ beans>

4. Get the repository instance injected and use it.

public class Somedient {

@\ut owi r ed
private PersonRepository repository;

public void doSonething() {
Li st <Per son> persons = repository.findByLastnane("Matthews");
}

Spring Data Commons (1.2.0.M 1) 3

Repositories

At this stage we barely scratched the surface of what's possible with the repositories but the general approach
should be clear. Let's go through each of these steps and figure out details and various options that you have at
each stage.

1.3.1. Defining repository interfaces

Asavery first step you define adomain class specific repository interface. It's got to extend Reposi t ory and be
typed to the domain class and an ID type. If you want to expose CRUD methods for that domain type, extend
CrudReposi t ory instead of Reposi tory.

1.3.1.1. Fine tuning repository definition

Usually you will have your repository interfface extend Repository, CrudRepository Of
Pagi ngAndSor t i ngReposi tory. If you don't like extending Spring Data interfaces at all you can also annotate
your repository interface with @eposi t or yDef i ni ti on. Extending Cr udReposi t ory Will expose a complete set
of methods to manipulate your entities. If you would rather be selective about the methods being exposed,
simply copy the ones you want to expose from Cr udReposi t ory into your domain repository.

Example 1.3. Selectively exposing CRUD methods

i nterface MyBaseRepository<T, |ID extends Serializabl e> extends Repository<T, |ID> {
T findOne(ID id);
T save(T entity);

}

interface UserRepository extends MyBaseRepository<User, Long> {

User findByEnail Address(Enai |l Address enai | Address);
}

In the first step we define a common base interface for al our domain repositories and expose fi ndone(..) as
well as save(..) .These methods will be routed into the base repository implementation of the store of your
choice because they are matching the method signatures in Cr udReposi t ory. SO OUr User Reposi t ory Will now
be able to save users, find single ones by id as well astriggering a query to find User s by their email address.

1.3.2. Defining query methods

1.3.2.1. Query lookup strategies

The next thing we have to discuss is the definition of query methods. There are two main ways that the
repository proxy is able to come up with the store specific query from the method name. The first option isto
derive the query from the method name directly, the second is using some kind of additionally created query.
What detailed options are available pretty much depends on the actual store, however, there's got to be some
algorithm that decides what actual query is created.

There are three strategies available for the repository infrastructure to resolve the query. The strategy to be used
can be configured at the namespace through the query- 1 ookup- st rat egy attribute. However, It might be the
case that some of the strategies are not supported for specific datastores. Here are your options:

CREATE

This strategy will try to construct a store specific query from the query method's name. The general approach is

Spring Data Commons (1.2.0.M 1) 4

Repositories

to remove a given set of well-known prefixes from the method name and parse the rest of the method. Read
more about query construction in Section 1.3.2.2, “Query creation”.

USE_DECLARED_QUERY

This strategy tries to find a declared query which will be used for execution first. The query could be defined
by an annotation somewhere or declared by other means. Please consult the documentation of the specific store
to find out what options are available for that store. If the repository infrastructure does not find a declared
query for the method at bootstrap time it will fail.

CREATE_IF_NOT_FOUND (default)

This strategy is actualy a combination of CREATE and USE_DECLARED QUERY. It will try to lookup a declared
query first but create a custom method name based query if no declared query was found. This is the default
lookup strategy and thus will be used if you don't configure anything explicitly. It allows quick query definition
by method names but also custom tuning of these queries by introducing declared queries as needed.

1.3.2.2. Query creation

The query builder mechanism built into Spring Data repository infrastructure is useful to build constraining
queries over entities of the repository. We will strip the prefixes fi ndBy, fi nd, readBy, r ead, get By as well as
get from the method and start parsing the rest of it. At avery basic level you can define conditions on entity
properties and concatenate them with AND and CR.

Example 1.4. Query creation from method names

public interface PersonRepository extends Repository<User, Long> {

Li st <Per son> fi ndByEnai | Addr essAndLast nane(Enai | Addr ess enui | Address, String | astnane);

}

The actual result of parsing that method will of course depend on the persistence store we create the query for,
however, there are some general things to notice. The expressions are usually property traversals combined
with operators that can be concatenated. As you can see in the example you can combine property expressions
with And and Or. Beyond that you also get support for various operators like Bet ween, LessThan, G eat er Than,
Li ke for the property expressions. As the operators supported can vary from datastore to datastore please
consult the according part of the reference documentation.

1.3.2.2.1. Property expressions

Property expressions can just refer to a direct property of the managed entity (as you just saw in the example
above). On query creation time we already make sure that the parsed property is at a property of the managed
domain class. However, you can also define constraints by traversing nested properties. Assume Per sons have
Addr esseswith zi pCodes. In that case a method name of

Li st <Per son> fi ndByAddr essZi pCode(Zi pCode zi pCode) ;

will create the property traversal x. addr ess. zi pCode. The resolution agorithm starts with interpreting the
entire part (Addresszi pCode) as property and checks the domain class for a property with that name
(uncapitalized). If it succeeds it just uses that. If not it starts splitting up the source at the camel case parts from
the right side into a head and a tail and tries to find the according property, €.g. Addr esszi p and Code. If we

Spring Data Commons (1.2.0.M 1) 5

Repositories

find a property with that head we take the tail and continue building the tree down from there. Asin our case
the first split does not match we move the split point to the left (Addr ess, zi pCode).

Although this should work for most cases, there might be cases where the algorithm could select the wrong
property. Suppose our Per son class has an addr esszi p property as well. Then our algorithm would match in
the first split round aready and essentially choose the wrong property and finaly fail (as the type of
addr essZzi p probably has no code property). To resolve this ambiguity you can use _ inside your method name
to manually define traversal points. So our method name would end up like so:

Li st <Per son> fi ndByAddr ess_Zi pCode(Zi pCode zi pCode) ;

1.3.2.3. Special parameter handling

To hand parameters to your query you simply define method parameters as already seen in the examples above.
Besides that we will recognizes certain specific types to apply pagination and sorting to your queries
dynamically.

Example 1.5. Using Pageable and Sort in query methods

Page<User > findByLastname(String | ast nane, Pageabl e pageabl e);
Li st <User > findByLastname(String | astname, Sort sort);

Li st <User > findByLastname(String | ast nane, Pageabl e pageabl e);

The first method allows you to pass a Pageabl e instance to the query method to dynamically add paging to
your statically defined query. Sorting options are handed via the Pageabl e instance too. If you only need
sorting, simply add a Sort parameter to your method. As you also can see, simply returning a Li st is possible
as well. We will then not retrieve the additional metadata required to build the actual Page instance but rather
simply restrict the query to lookup only the given range of entities.

Note

To find out how many pages you get for a query entirely we have to trigger an additional count
query. Thiswill be derived from the query you actually trigger by default.

1.3.3. Creating repository instances

So now the question is how to create instances and bean definitions for the repository interfaces defined.

1.3.3.1. Spring

The easiest way to do so is by using the Spring namespace that is shipped with each Spring Data module that
supports the repository mechanism. Each of those includes a repositories element that allows you to simply
define a base package that Spring will scan for you.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans: beans xm ns: beans="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns="http://ww. springfranework. org/ schema/ dat a/ j pa
xsi : schemaLocati on="http://ww. spri ngframewor k. or g/ schenma/ beans
http://ww. spri ngfranmework. or g/ schema/ beans/ spri ng- beans. xsd
ht t p: // ww. spri ngf ranewor k. or g/ schena/ dat a/ j pa
http://ww. springframework. or g/ schena/ dat a/ j pa/ spri ng-j pa. xsd" >

Spring Data Commons (1.2.0.M 1) 6

Repositories

<reposi tories base-package="com acne.repositories" />

</ beans: beans>

In this case we instruct Spring to scan com.acme.repositories and all its sub packages for interfaces extending
Reposi tory or one of its sub-interfaces. For each interface found it will register the persistence technology
specific Fact oryBean to create the according proxies that handle invocations of the query methods. Each of
these beans will be registered under a bean name that is derived from the interface name, so an interface of
User Reposi tory would be registered under user Reposi t ory. The base- package attribute allows the use of
wildcards, so that you can have a pattern of scanned packages.

Using filters

By default we will pick up every interface extending the persistence technology specific Repository
sub-interface located underneath the configured base package and create a bean instance for it. However, you
might want finer grained control over which interfaces bean instances get created for. To do this we support the
use of <include-filter /> and <exclude-filter /> elementsinside <repositories />. The semantics are
exactly equivalent to the elements in Spring's context namespace. For details see Spring reference
documentation on these elements.

E.g. to exclude certain interfaces from instantiation as repository, you could use the following configuration:

Example 1.6. Using exclude-filter element

<reposi tories base-package="com acrne.repositories">
<cont ext: exclude-filter type="regex" expression=".*SonmeRepository" />
</repositories>

Thiswould exclude all interfaces ending in SoneReposi t ory from being instantiated.

Manual configuration

If youd rather like to manually define which repository instances to create you can do this with nested
<repository /> elements.

<repositories base-package="com acne.repositories">
<repository id="userRepository" />
</repositories>

1.3.3.2. Standalone usage

You can aso use the repository infrastructure outside of a Spring container usage. You will still need to have
some of the Spring libraries on your classpath but you can generally setup repositories programmaticaly as
well. The Spring Data modules providing repository support ship a persistence technology specific
Reposi t or yFact ory that can be used as follows:

Example 1.7. Standalone usage of repository factory

Reposi t oryFact orySupport factory = ...// Instantiate factory here
User Repository repository = factory. get Repository(UserRepository.class);

Spring Data Commons (1.2.0.M 1) 7

http://static.springsource.org/spring/docs/2.5.x/reference/beans.html#beans-scanning-filters
http://static.springsource.org/spring/docs/2.5.x/reference/beans.html#beans-scanning-filters

Repositories

1.4. Custom implementations

1.4.1. Adding behaviour to single repositories

Often it is necessary to provide a custom implementation for a few repository methods. Spring Data
repositories easily allow you to provide custom repository code and integrate it with generic CRUD abstraction
and query method functionality. To enrich a repository with custom functionality you have to define an
interface and an implementation for that functionality first and let the repository interface you provided so far
extend that custom interface.

Example 1.8. Interface for custom repository functionality

i nterface User RepositoryCustom {

public void someCust om\vet hod(User user);
}

Example 1.9. Implementation of custom repository functionality

cl ass UserRepositoryl nmpl inplenments User RepositoryCustom {

public void someCust omVet hod(User user) {
/1 Your custominpl enmentation

}
}

Note that the implementation itself does not depend on Spring Data and can be a regular Spring bean. So you
can use standard dependency injection behaviour to inject references to other beans, take part in aspects and so
on.

Example 1.10. Changesto the your basic repository interface

public interface User Repository extends CrudRepository<User, Long> UserRepositoryCustom {

/'l Decl are query met hods here

}

Let your standard repository interface extend the custom one. This makes CRUD and custom functionality
availableto clients.

Configuration

If you use namespace configuration the repository infrastructure tries to autodetect custom implementations by
looking up classes in the package we found a repository using the naming conventions appending the
namespace element's attribute r eposi t ory- i npl - post f i x to the classname. This suffix defaultsto | npl .

Example 1.11. Configuration example

Spring Data Commons (1.2.0.M 1) 8

Repositories

<reposi tori es base-package="com acne. repository">
<repository id="userRepository" />
</repositories>

<repositories base-package="com acne. repository" repository-inpl-postfix="FooBar">
<repository id="userRepository" />
</repositories>

The first configuration example will try to lookup a class com acne. reposi t ory. User Reposi t oryl mpl to act as
custom repository implementation, where the second example will try to lookup
com acne. reposi tory. User Reposi t or yFooBar .

Manual wiring

The approach above works perfectly well if your custom implementation uses annotation based configuration
and autowiring entirely as it will be treated as any other Spring bean. If your custom implementation bean
needs some special wiring you simply declare the bean and name it after the conventions just described. We
will then pick up the custom bean by name rather than creating an instance.

Example 1.12. Manual wiring of custom implementations (1)

<reposi tories base-package="com acrne. repository">
<repository id="userRepository" />
</repositories>

<beans: bean i d="user Repositorylnpl" class="..">
<!-- further configuration -->
</ beans: bean>

This also works if you use automatic repository lookup without defining single <reposi tory /> elements.

In case you are not in control of the implementation bean name (e.g. if you wrap a generic repository facade
around an existing repository implementation) you can explicitly tell the <r eposi tory /> element which bean
to use as custom implementation by using ther eposi tory-i npl - ref attribute.

Example 1.13. Manual wiring of custom implementations (1)

<reposi tories base-package="com acrne. repository">
<repository id="userRepository" repository-inpl-ref="custonRepositorylnpl enmentation" />
</repositories>

<bean i d="cust onReposi toryl npl enment ati on" class="..">
<!-- further configuration -->
</ bean>

1.4.2. Adding custom behaviour to all repositories

In other cases you might want to add a single method to all of your repository interfaces. So the approach just
shown is not feasible. The first step to achieve this is adding and intermediate interface to declare the shared
behaviour

Spring Data Commons (1.2.0.M 1) 9

Repositories

Example 1.14. An interface declaring custom shared behaviour

public interface MyRepository<T, |ID extends Serializabl e>
ext ends JpaRepository<T, D> {

voi d shar edCust omvet hod(I D id);
}

Now your individual repository interfaces will extend this intermediate interface to include the functionality
declared. The second step is to create an implementation of this interface that extends the persistence

technology specific repository base class which will act as custom base class for the repository proxies then.

Note

If you're using automatic repository interface detection using the Spring namespace using the
interface just as is will cause Spring to create an instance of MyReposi tory. Thisis of course not
desired as it just acts as intermediary between Reposi t ory and the actual repository interfaces you
want to define for each entity. To exclude an interface extending Repository from being

instantiated as repository instance annotate it with @oReposi t or yBean.

Example 1.15. Custom repository base class

public class M/Repositoryl npl <T, |ID extends Serializabl e>
extends Si npl eJpaRepository<T, |D> inplenments MyRepository<T, |D> {

public void sharedCustomvethod(ID id) {
// inplenentation goes here
}
}

The last step to get this implementation used as base class for Spring Data repositories is replacing the standard
Reposi t or yFact or yBean With a custom one using a custom Reposi t or yFact ory that in turn creates instances

of your MyReposi t oryl npl class.

Example 1.16. Custom repository factory bean

public class MyRepositoryFactoryBean<T extends JpaRepository<?, ?>
ext ends JpaReposit oryFact or yBean<T> {

prot ect ed RepositoryFactorySupport getRepositoryFactory(..) {
return new MyRepositoryFactory(..);
}

private static class MyRepositoryFactory extends JpaRepositoryFactory{

public MyRepositoryl npl get Target Repository(..) {
return new MyRepositorylnpl (.);
}

public C ass<? extends RepositorySupport> getRepositoryd ass() {
return MyRepositorylnpl.class;
}
}
}

Spring Data Commons (1.2.0.M 1)

10

Repositories

Finally you can either declare beans of the custom factory directly or use the f act ory- ¢l ass attribute of the
Spring namespace to tell the repository infrastructure to use your custom factory implementation.

Example 1.17. Using the custom factory with the namespace

<repositories base-package="com acne. reposi tory"
factory-cl ass="com acne. M/Reposi t or yFact or yBean" />

Spring Data Commons (1.2.0.M 1) 11

	Spring Data Commons - Reference Documentation
	Table of Contents
	Preface
	Part I. Reference
	Chapter 1. Repositories
	1.1. Introduction
	1.2. Core concepts
	1.3. Query methods
	1.3.1. Defining repository interfaces
	1.3.1.1. Fine tuning repository definition

	1.3.2. Defining query methods
	1.3.2.1. Query lookup strategies
	1.3.2.2. Query creation
	1.3.2.2.1. Property expressions

	1.3.2.3. Special parameter handling

	1.3.3. Creating repository instances
	1.3.3.1. Spring
	1.3.3.2. Standalone usage

	1.4. Custom implementations
	1.4.1. Adding behaviour to single repositories
	1.4.2. Adding custom behaviour to all repositories

