
Spring Data Commons - Reference
Documentation

Copyright © 2010 Mark Pollack, Thomas Risberg, Oliver Gierke

Copies of this document may be made for your own use and for distribution to others, provided that you do not
charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether

distributed in print or electronically.

Preface .. iii
I. Reference .. 1

1. Repositories .. 2
1.1. Introduction ... 2
1.2. Core concepts .. 2
1.3. Query methods ... 3

1.3.1. Defining repository interfaces .. 4
1.3.2. Defining query methods ... 5
1.3.3. Creating repository instances .. 7

1.4. Custom implementations .. 8
1.4.1. Adding behaviour to single repositories .. 8
1.4.2. Adding custom behaviour to all repositories .. 10

1.5. Extensions ... 12
1.5.1. Domain class web binding for Spring MVC .. 12
1.5.2. Web pagination ... 13
1.5.3. Repository populators .. 14

Spring Data Commons () ii

Preface
The Spring Data Commons project applies core Spring concepts to the development of solutions using many
non-relational data stores.

Spring Data Commons () iii

Part I. Reference
This part of the reference documentation details the ...

Spring Data Commons () 1

Chapter 1. Repositories

1.1. Introduction

Implementing a data access layer of an application has been cumbersome for quite a while. Too much
boilerplate code had to be written. Domain classes were anemic and not designed in a real object oriented or
domain driven manner.

Using both of these technologies makes developers life a lot easier regarding rich domain model's persistence.
Nevertheless the amount of boilerplate code to implement repositories especially is still quite high. So the goal
of the repository abstraction of Spring Data is to reduce the effort to implement data access layers for various
persistence stores significantly.

The following chapters will introduce the core concepts and interfaces of Spring Data repositories in general for
detailled information on the specific features of a particular store consult the later chapters of this document.

Note

As this part of the documentation is pulled in from Spring Data Commons we have to decide for a
particular module to be used as example. The configuration and code samples in this chapter are
using the JPA module. Make sure you adapt e.g. the XML namespace declaration, types to be
extended to the equivalents of the module you're actually using.

1.2. Core concepts

The central interface in Spring Data repository abstraction is Repository (probably not that much of a
surprise). It is typeable to the domain class to manage as well as the id type of the domain class. This interface
mainly acts as marker interface to capture the types to deal with and help us when discovering interfaces that
extend this one. Beyond that there's CrudRepository which provides some sophisticated functionality around
CRUD for the entity being managed.

Example 1.1. CrudRepository interface

public interface CrudRepository<T, ID extends Serializable>
extends Repository<T, ID> {

❶
T save(T entity);

❷
T findOne(ID primaryKey);

❸
Iterable<T> findAll();

Long count();
❹

void delete(T entity);
❺

boolean exists(ID primaryKey);
❻

// … more functionality omitted.
}

❶ Saves the given entity.
❷ Returns the entity identified by the given id.

Spring Data Commons () 2

❸ Returns all entities.
❹ Returns the number of entities.
❺ Deletes the given entity.
❻ Returns whether an entity with the given id exists.

Usually we will have persistence technology specific sub-interfaces to include additional technology specific
methods. We will now ship implementations for a variety of Spring Data modules that implement this interface.

On top of the CrudRepository there is a PagingAndSortingRepository abstraction that adds additional
methods to ease paginated access to entities:

Example 1.2. PagingAndSortingRepository

public interface PagingAndSortingRepository<T, ID extends Serializable> extends CrudRepository<T, ID> {

Iterable<T> findAll(Sort sort);

Page<T> findAll(Pageable pageable);
}

Accessing the second page of User by a page size of 20 you could simply do something like this:

PagingAndSortingRepository<User, Long> repository = // … get access to a bean
Page<User> users = repository.findAll(new PageRequest(1, 20));

1.3. Query methods

Next to standard CRUD functionality repositories are usually queries on the underlying datastore. With Spring
Data declaring those queries becomes a four-step process:

1. Declare an interface extending Repository or one of its sub-interfaces and type it to the domain class it shall
handle.

public interface PersonRepository extends Repository<User, Long> { … }

2. Declare query methods on the interface.

List<Person> findByLastname(String lastname);

3. Setup Spring to create proxy instances for those interfaces.

<?xml version="1.0" encoding="UTF-8"?>
<beans:beans xmlns:beans="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://www.springframework.org/schema/data/jpa"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/data/jpa
http://www.springframework.org/schema/data/jpa/spring-jpa.xsd">

<repositories base-package="com.acme.repositories" />

</beans>

Repositories

Spring Data Commons () 3

Note

Note that we use the JPA namespace here just by example. If you're using the repository
abstraction for any other store you need to change this to the appropriate namespace declaration
of your store module which should be exchanging jpa in favor of e.g. mongodb.

4. Get the repository instance injected and use it.

public class SomeClient {

@Autowired
private PersonRepository repository;

public void doSomething() {
List<Person> persons = repository.findByLastname("Matthews");

}

At this stage we barely scratched the surface of what's possible with the repositories but the general approach
should be clear. Let's go through each of these steps and figure out details and various options that you have at
each stage.

1.3.1. Defining repository interfaces

As a very first step you define a domain class specific repository interface. It's got to extend Repository and be
typed to the domain class and an ID type. If you want to expose CRUD methods for that domain type, extend
CrudRepository instead of Repository.

1.3.1.1. Fine tuning repository definition

Usually you will have your repository interface extend Repository, CrudRepository or
PagingAndSortingRepository. If you don't like extending Spring Data interfaces at all you can also annotate
your repository interface with @RepositoryDefinition. Extending CrudRepository will expose a complete set
of methods to manipulate your entities. If you would rather be selective about the methods being exposed,
simply copy the ones you want to expose from CrudRepository into your domain repository.

Example 1.3. Selectively exposing CRUD methods

interface MyBaseRepository<T, ID extends Serializable> extends Repository<T, ID> {
T findOne(ID id);
T save(T entity);

}

interface UserRepository extends MyBaseRepository<User, Long> {

User findByEmailAddress(EmailAddress emailAddress);
}

In the first step we define a common base interface for all our domain repositories and expose findOne(…) as
well as save(…).These methods will be routed into the base repository implementation of the store of your
choice because they are matching the method signatures in CrudRepository. So our UserRepository will now
be able to save users, find single ones by id as well as triggering a query to find Users by their email address.

Repositories

Spring Data Commons () 4

1.3.2. Defining query methods

1.3.2.1. Query lookup strategies

The next thing we have to discuss is the definition of query methods. There are two main ways that the
repository proxy is able to come up with the store specific query from the method name. The first option is to
derive the query from the method name directly, the second is using some kind of additionally created query.
What detailed options are available pretty much depends on the actual store, however, there's got to be some
algorithm that decides what actual query is created.

There are three strategies available for the repository infrastructure to resolve the query. The strategy to be used
can be configured at the namespace through the query-lookup-strategy attribute. However, It might be the
case that some of the strategies are not supported for specific datastores. Here are your options:

CREATE

This strategy will try to construct a store specific query from the query method's name. The general approach is
to remove a given set of well-known prefixes from the method name and parse the rest of the method. Read
more about query construction in Section 1.3.2.2, “Query creation”.

USE_DECLARED_QUERY

This strategy tries to find a declared query which will be used for execution first. The query could be defined
by an annotation somewhere or declared by other means. Please consult the documentation of the specific store
to find out what options are available for that store. If the repository infrastructure does not find a declared
query for the method at bootstrap time it will fail.

CREATE_IF_NOT_FOUND (default)

This strategy is actually a combination of CREATE and USE_DECLARED_QUERY. It will try to lookup a declared
query first but create a custom method name based query if no declared query was found. This is the default
lookup strategy and thus will be used if you don't configure anything explicitly. It allows quick query definition
by method names but also custom tuning of these queries by introducing declared queries as needed.

1.3.2.2. Query creation

The query builder mechanism built into Spring Data repository infrastructure is useful to build constraining
queries over entities of the repository. We will strip the prefixes findBy, find, readBy, read, getBy as well as
get from the method and start parsing the rest of it. At a very basic level you can define conditions on entity
properties and concatenate them with AND and OR.

Example 1.4. Query creation from method names

public interface PersonRepository extends Repository<User, Long> {

List<Person> findByEmailAddressAndLastname(EmailAddress emailAddress, String lastname);
}

The actual result of parsing that method will of course depend on the persistence store we create the query for,
however, there are some general things to notice. The expressions are usually property traversals combined
with operators that can be concatenated. As you can see in the example you can combine property expressions

Repositories

Spring Data Commons () 5

with And and Or. Beyond that you also get support for various operators like Between, LessThan, GreaterThan,
Like for the property expressions. As the operators supported can vary from datastore to datastore please
consult the according part of the reference documentation.

1.3.2.2.1. Property expressions

Property expressions can just refer to a direct property of the managed entity (as you just saw in the example
above). On query creation time we already make sure that the parsed property is at a property of the managed
domain class. However, you can also define constraints by traversing nested properties. Assume Persons have
Addresses with ZipCodes. In that case a method name of

List<Person> findByAddressZipCode(ZipCode zipCode);

will create the property traversal x.address.zipCode. The resolution algorithm starts with interpreting the
entire part (AddressZipCode) as property and checks the domain class for a property with that name
(uncapitalized). If it succeeds it just uses that. If not it starts splitting up the source at the camel case parts from
the right side into a head and a tail and tries to find the according property, e.g. AddressZip and Code. If we
find a property with that head we take the tail and continue building the tree down from there. As in our case
the first split does not match we move the split point to the left (Address, ZipCode).

Although this should work for most cases, there might be cases where the algorithm could select the wrong
property. Suppose our Person class has an addressZip property as well. Then our algorithm would match in
the first split round already and essentially choose the wrong property and finally fail (as the type of
addressZip probably has no code property). To resolve this ambiguity you can use _ inside your method name
to manually define traversal points. So our method name would end up like so:

List<Person> findByAddress_ZipCode(ZipCode zipCode);

1.3.2.3. Special parameter handling

To hand parameters to your query you simply define method parameters as already seen in the examples above.
Besides that we will recognizes certain specific types to apply pagination and sorting to your queries
dynamically.

Example 1.5. Using Pageable and Sort in query methods

Page<User> findByLastname(String lastname, Pageable pageable);

List<User> findByLastname(String lastname, Sort sort);

List<User> findByLastname(String lastname, Pageable pageable);

The first method allows you to pass a Pageable instance to the query method to dynamically add paging to
your statically defined query. Sorting options are handed via the Pageable instance too. If you only need
sorting, simply add a Sort parameter to your method. As you also can see, simply returning a List is possible
as well. We will then not retrieve the additional metadata required to build the actual Page instance but rather
simply restrict the query to lookup only the given range of entities.

Note

To find out how many pages you get for a query entirely we have to trigger an additional count

Repositories

Spring Data Commons () 6

query. This will be derived from the query you actually trigger by default.

1.3.3. Creating repository instances

So now the question is how to create instances and bean definitions for the repository interfaces defined.

1.3.3.1. XML Configuration

The easiest way to do so is by using the Spring namespace that is shipped with each Spring Data module that
supports the repository mechanism. Each of those includes a repositories element that allows you to simply
define a base package that Spring will scan for you.

<?xml version="1.0" encoding="UTF-8"?>
<beans:beans xmlns:beans="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://www.springframework.org/schema/data/jpa"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/data/jpa
http://www.springframework.org/schema/data/jpa/spring-jpa.xsd">

<repositories base-package="com.acme.repositories" />

</beans:beans>

In this case we instruct Spring to scan com.acme.repositories and all its sub packages for interfaces extending
Repository or one of its sub-interfaces. For each interface found it will register the persistence technology
specific FactoryBean to create the according proxies that handle invocations of the query methods. Each of
these beans will be registered under a bean name that is derived from the interface name, so an interface of
UserRepository would be registered under userRepository. The base-package attribute allows the use of
wildcards, so that you can have a pattern of scanned packages.

Using filters

By default we will pick up every interface extending the persistence technology specific Repository

sub-interface located underneath the configured base package and create a bean instance for it. However, you
might want finer grained control over which interfaces bean instances get created for. To do this we support the
use of <include-filter /> and <exclude-filter /> elements inside <repositories />. The semantics are
exactly equivalent to the elements in Spring's context namespace. For details see Spring reference
documentation on these elements.

E.g. to exclude certain interfaces from instantiation as repository, you could use the following configuration:

Example 1.6. Using exclude-filter element

<repositories base-package="com.acme.repositories">
<context:exclude-filter type="regex" expression=".*SomeRepository" />

</repositories>

This would exclude all interfaces ending in SomeRepository from being instantiated.

1.3.3.2. JavaConfig

Repositories

Spring Data Commons () 7

http://static.springsource.org/spring/docs/2.5.x/reference/beans.html#beans-scanning-filters
http://static.springsource.org/spring/docs/2.5.x/reference/beans.html#beans-scanning-filters

1JavaConfig in the Spring reference documentation -
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/beans.html#beans-java

The repository infrastructure can also be triggered using a store-specific @Enable${store}Repositories

annotation on a JavaConfig class. For an introduction into Java based configuration of the Spring container
please have a look at the reference documentation.1

A sample configuration to enable Spring Data repositories would look something like this.

Example 1.7. Sample annotation based repository configuration

@Configuration
@EnableJpaRepositories("com.acme.repositories")
class ApplicationConfiguration {

@Bean
public EntityManagerFactory entityManagerFactory() {
// …

}
}

Note that the sample uses the JPA specific annotation which would have to be exchanged dependingon which
store module you actually use. The same applies to the definition of the EntityManagerFactory bean. Please
consult the sections covering the store-specific configuration.

1.3.3.3. Standalone usage

You can also use the repository infrastructure outside of a Spring container usage. You will still need to have
some of the Spring libraries on your classpath but you can generally setup repositories programmatically as
well. The Spring Data modules providing repository support ship a persistence technology specific
RepositoryFactory that can be used as follows:

Example 1.8. Standalone usage of repository factory

RepositoryFactorySupport factory = … // Instantiate factory here
UserRepository repository = factory.getRepository(UserRepository.class);

1.4. Custom implementations

1.4.1. Adding behaviour to single repositories

Often it is necessary to provide a custom implementation for a few repository methods. Spring Data
repositories easily allow you to provide custom repository code and integrate it with generic CRUD abstraction
and query method functionality. To enrich a repository with custom functionality you have to define an
interface and an implementation for that functionality first and let the repository interface you provided so far
extend that custom interface.

Repositories

Spring Data Commons () 8

http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/beans.html#beans-java

Example 1.9. Interface for custom repository functionality

interface UserRepositoryCustom {

public void someCustomMethod(User user);
}

Example 1.10. Implementation of custom repository functionality

class UserRepositoryImpl implements UserRepositoryCustom {

public void someCustomMethod(User user) {
// Your custom implementation

}
}

Note that the implementation itself does not depend on Spring Data and can be a regular Spring bean. So you
can use standard dependency injection behaviour to inject references to other beans, take part in aspects and so
on.

Example 1.11. Changes to the your basic repository interface

public interface UserRepository extends CrudRepository<User, Long>, UserRepositoryCustom {

// Declare query methods here
}

Let your standard repository interface extend the custom one. This makes CRUD and custom functionality
available to clients.

Configuration

If you use namespace configuration the repository infrastructure tries to autodetect custom implementations by
looking up classes in the package we found a repository using the naming conventions appending the
namespace element's attribute repository-impl-postfix to the classname. This suffix defaults to Impl.

Example 1.12. Configuration example

<repositories base-package="com.acme.repository" />

<repositories base-package="com.acme.repository" repository-impl-postfix="FooBar" />

The first configuration example will try to lookup a class com.acme.repository.UserRepositoryImpl to act as
custom repository implementation, where the second example will try to lookup
com.acme.repository.UserRepositoryFooBar.

Manual wiring

Repositories

Spring Data Commons () 9

The approach above works perfectly well if your custom implementation uses annotation based configuration
and autowiring entirely as it will be treated as any other Spring bean. If your custom implementation bean
needs some special wiring you simply declare the bean and name it after the conventions just described. We
will then pick up the custom bean by name rather than creating an instance.

Example 1.13. Manual wiring of custom implementations (I)

<repositories base-package="com.acme.repository" />

<beans:bean id="userRepositoryImpl" class="…">
<!-- further configuration -->

</beans:bean>

1.4.2. Adding custom behaviour to all repositories

In other cases you might want to add a single method to all of your repository interfaces. So the approach just
shown is not feasible. The first step to achieve this is adding and intermediate interface to declare the shared
behaviour

Example 1.14. An interface declaring custom shared behaviour

public interface MyRepository<T, ID extends Serializable>
extends JpaRepository<T, ID> {

void sharedCustomMethod(ID id);
}

Now your individual repository interfaces will extend this intermediate interface instead of the Repository

interface to include the functionality declared. The second step is to create an implementation of this interface
that extends the persistence technology specific repository base class which will then act as a custom base class
for the repository proxies.

Note

The default behaviour of the Spring <repositories /> namespace is to provide an implementation
for all interfaces that fall under the base-package. This means that if left in it's current state, an
implementation instance of MyRepository will be created by Spring. This is of course not desired
as it is just supposed to act as an intermediary between Repository and the actual repository
interfaces you want to define for each entity. To exclude an interface extending Repository from
being instantiated as a repository instance it can either be annotate it with @NoRepositoryBean or
moved out side of the configured base-package.

Example 1.15. Custom repository base class

public class MyRepositoryImpl<T, ID extends Serializable>
extends SimpleJpaRepository<T, ID> implements MyRepository<T, ID> {

private EntityManager entityManager;

Repositories

Spring Data Commons () 10

// There are two constructors to choose from, either can be used.
public MyRepositoryImpl(Class<T> domainClass, EntityManager entityManager) {
super(domainClass, entityManager);

// This is the recommended method for accessing inherited class dependencies.
this.entityManager = entityManager;

}

public void sharedCustomMethod(ID id) {
// implementation goes here

}
}

The last step is to create a custom repository factory to replace the default RepositoryFactoryBean that will in
turn produce a custom RepositoryFactory. The new repository factory will then provide your
MyRepositoryImpl as the implementation of any interfaces that extend the Repository interface, replacing the
SimpleJpaRepository implementation you just extended.

Example 1.16. Custom repository factory bean

public class MyRepositoryFactoryBean<R extends JpaRepository<T, I>, T, I extends Serializable>
extends JpaRepositoryFactoryBean<R, T, I> {

protected RepositoryFactorySupport createRepositoryFactory(EntityManager entityManager) {

return new MyRepositoryFactory(entityManager);
}

private static class MyRepositoryFactory<T, I extends Serializable> extends JpaRepositoryFactory {

private EntityManager entityManager;

public MyRepositoryFactory(EntityManager entityManager) {
super(entityManager);

this.entityManager = entityManager;
}

protected Object getTargetRepository(RepositoryMetadata metadata) {

return new MyRepositoryImpl<T, I>((Class<T>) metadata.getDomainClass(), entityManager);
}

protected Class<?> getRepositoryBaseClass(RepositoryMetadata metadata) {

// The RepositoryMetadata can be safely ignored, it is used by the JpaRepositoryFactory
//to check for QueryDslJpaRepository's which is out of scope.
return MyRepository.class;

}
}

}

Finally you can either declare beans of the custom factory directly or use the factory-class attribute of the
Spring namespace to tell the repository infrastructure to use your custom factory implementation.

Example 1.17. Using the custom factory with the namespace

<repositories base-package="com.acme.repository"
factory-class="com.acme.MyRepositoryFactoryBean" />

Repositories

Spring Data Commons () 11

1.5. Extensions

This chapter documents a set of Spring Data extensions that enable Spring Data usage in a variety of contexts.
Currently most of the integration is targeted towards Spring MVC.

1.5.1. Domain class web binding for Spring MVC

Given you are developing a Spring MVC web applications you typically have to resolve domain class ids from
URLs. By default it's your task to transform that request parameter or URL part into the domain class to hand it
layers below then or execute business logic on the entities directly. This should look something like this:

@Controller
@RequestMapping("/users")
public class UserController {

private final UserRepository userRepository;

public UserController(UserRepository userRepository) {
userRepository = userRepository;

}

@RequestMapping("/{id}")
public String showUserForm(@PathVariable("id") Long id, Model model) {

// Do null check for id
User user = userRepository.findOne(id);
// Do null check for user
// Populate model
return "user";

}
}

First you pretty much have to declare a repository dependency for each controller to lookup the entity managed
by the controller or repository respectively. Beyond that looking up the entity is boilerplate as well as it's
always a findOne(…) call. Fortunately Spring provides means to register custom converting components that
allow conversion between a String value to an arbitrary type.

PropertyEditors

For versions up to Spring 3.0 simple Java PropertyEditors had to be used. Thus, we offer a
DomainClassPropertyEditorRegistrar, that will look up all Spring Data repositories registered in the
ApplicationContext and register a custom PropertyEditor for the managed domain class

<bean class="….web.servlet.mvc.annotation.AnnotationMethodHandlerAdapter">
<property name="webBindingInitializer">
<bean class="….web.bind.support.ConfigurableWebBindingInitializer">
<property name="propertyEditorRegistrars">

<bean class="org.springframework.data.repository.support.DomainClassPropertyEditorRegistrar" />
</property>

</bean>
</property>

</bean>

If you have configured Spring MVC like this you can turn your controller into the following that reduces a lot
of the clutter and boilerplate.

@Controller
@RequestMapping("/users")
public class UserController {

@RequestMapping("/{id}")
public String showUserForm(@PathVariable("id") User user, Model model) {

Repositories

Spring Data Commons () 12

// Do null check for user
// Populate model
return "userForm";

}
}

ConversionService

As of Spring 3.0 the PropertyEditor support is superseeded by a new conversion infrstructure that leaves all
the drawbacks of PropertyEditors behind and uses a stateless X to Y conversion approach. We now ship with
a DomainClassConverter that pretty much mimics the behaviour of DomainClassPropertyEditorRegistrar.
To register the converter you have to declare ConversionServiceFactoryBean, register the converter and tell
the Spring MVC namespace to use the configured conversion service:

<mvc:annotation-driven conversion-service="conversionService" />

<bean id="conversionService" class="….context.support.ConversionServiceFactoryBean">
<property name="converters">
<list>
<bean class="org.springframework.data.repository.support.DomainClassConverter">

<constructor-arg ref="conversionService" />
</bean>

</list>
</property>

</bean>

1.5.2. Web pagination

@Controller
@RequestMapping("/users")
public class UserController {

// DI code omitted

@RequestMapping
public String showUsers(Model model, HttpServletRequest request) {

int page = Integer.parseInt(request.getParameter("page"));
int pageSize = Integer.parseInt(request.getParameter("pageSize"));
model.addAttribute("users", userService.getUsers(pageable));
return "users";

}
}

As you can see the naive approach requires the method to contain an HttpServletRequest parameter that has
to be parsed manually. We even omitted an appropriate failure handling which would make the code even more
verbose. The bottom line is that the controller actually shouldn't have to handle the functionality of extracting
pagination information from the request. So we include a PageableArgumentResolver that will do the work for
you.

<bean class="….web.servlet.mvc.annotation.AnnotationMethodHandlerAdapter">
<property name="customArgumentResolvers">
<list>
<bean class="org.springframework.data.web.PageableArgumentResolver" />

</list>
</property>

</bean>

This configuration allows you to simplify controllers down to something like this:

@Controller
@RequestMapping("/users")

Repositories

Spring Data Commons () 13

public class UserController {

@RequestMapping
public String showUsers(Model model, Pageable pageable) {

model.addAttribute("users", userDao.readAll(pageable));
return "users";

}
}

The PageableArgumentResolver will automatically resolve request parameters to build a PageRequest

instance. By default it will expect the following structure for the request parameters:

Table 1.1. Request parameters evaluated by PageableArgumentResolver

page The page you want to retrieve

page.size The size of the page you want to retrieve

page.sort The property that should be sorted by

page.sort.dir The direction that should be used for sorting

In case you need multiple Pageables to be resolved from the request (for multiple tables e.g.) you can use
Spring's @Qualifier annotation to distinguish one from another. The request parameters then have to be
prefixed with ${qualifier}_. So a method signature like this:

public String showUsers(Model model,
@Qualifier("foo") Pageable first,
@Qualifier("bar") Pageable second) { … }

you'd have to populate foo_page and bar_page and the according subproperties.

Defaulting

The PageableArgumentResolver will use a PageRequest with the first page and a page size of 10 by default
and will use that in case it can't resolve a PageRequest from the request (because of missing parameters e.g.).
You can configure a global default on the bean declaration directly. In case you might need controller method
specific defaults for the Pageable simply annotate the method parameter with @PageableDefaults and specify
page and page size as annotation attributes:

public String showUsers(Model model,
@PageableDefaults(pageNumber = 0, value = 30) Pageable pageable) { … }

1.5.3. Repository populators

If you have been working with the JDBC module of Spring you're probably familiar with the support to
populate a DataSource using SQL scripts. A similar abstraction is available on the repositories level although
we don't use SQL as data definition language as we need to be store independent of course. Thus the populators
support XML (through Spring's OXM abstraction) and JSON (through Jackson) to define data for the
repositories to be populated with.

Assume you have a file data.json with the following content:

Repositories

Spring Data Commons () 14

Example 1.18. Data defined in JSON

[{ "_class" : "com.acme.Person",
"firstname" : "Dave",
"lastname" : "Matthews" },
{ "_class" : "com.acme.Person",
"firstname" : "Carter",
"lastname" : "Beauford" }]

You can easily populate you repositories by using the populator elements of the repository namespace provided
in Spring Data Commons. To get the just shown data be populated to your PersonRepository all you need to
do is the following:

Example 1.19. Declaring a Jackson repository populator

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:repository="http://www.springframework.org/schema/data/repository"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/data/repository
http://www.springframework.org/schema/data/repository/spring-repository.xsd">

<repository:jackson-populator location="classpath:data.json" />

</beans>

This declaration causes the data.json file being read, deserialized by a Jackson ObjectMapper. The type the
JSON object will be unmarshalled to will be determined by inspecting the _class attribute of the JSON
document. We will eventually select the appropriate repository being able to handle the object just deserialized.

To rather use XML to define the repositories shall be populated with you can use the unmarshaller-populator
you hand one of the marshaller options Spring OXM provides you with.

Example 1.20. Declaring an unmarshalling repository populator (using JAXB)

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:repository="http://www.springframework.org/schema/data/repository"
xmlns:oxm="http://www.springframework.org/schema/oxm"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/data/repository
http://www.springframework.org/schema/data/repository/spring-repository.xsd
http://www.springframework.org/schema/oxm
http://www.springframework.org/schema/oxm/spring-oxm.xsd">

<repository:unmarshaller-populator location="classpath:data.json" unmarshaller-ref="unmarshaller" />

<oxm:jaxb2-marshaller contextPath="com.acme" />

</beans>

Repositories

Spring Data Commons () 15

	Spring Data Commons - Reference Documentation
	Table of Contents
	Preface
	Part I. Reference
	Chapter 1. Repositories
	1.1. Introduction
	1.2. Core concepts
	1.3. Query methods
	1.3.1. Defining repository interfaces
	1.3.1.1. Fine tuning repository definition

	1.3.2. Defining query methods
	1.3.2.1. Query lookup strategies
	1.3.2.2. Query creation
	1.3.2.2.1. Property expressions

	1.3.2.3. Special parameter handling

	1.3.3. Creating repository instances
	1.3.3.1. XML Configuration
	1.3.3.2. JavaConfig
	1.3.3.3. Standalone usage

	1.4. Custom implementations
	1.4.1. Adding behaviour to single repositories
	1.4.2. Adding custom behaviour to all repositories

	1.5. Extensions
	1.5.1. Domain class web binding for Spring MVC
	1.5.2. Web pagination
	1.5.3. Repository populators

