
Spring Data Couchbase - Reference
Documentation

Michael Nitschinger, Oliver Gierke

Version 1.4.0.RC1, 2015-08-04

Table of Contents
Preface . 1

1. Project Information . 2

Reference Documentation . 2

2. Installation & Configuration . 3

2.1. Installation. 3

2.2. Annotation-based Configuration ("JavaConfig") . 4

2.3. XML-based Configuration . 5

3. Modeling Entities . 6

3.1. Documents and Fields . 6

3.2. Datatypes and Converters . 8

3.3. Optimistic Locking . 14

3.4. Validation . 14

4. Working with Spring Data Repositories . 16

4.1. Core concepts . 16

4.2. Query methods . 18

4.3. Defining repository interfaces . 20

4.3.1. Fine-tuning repository definition. 20

4.4. Defining query methods. 21

4.4.1. Query lookup strategies . 21

4.4.2. Query creation . 22

4.4.3. Property expressions. 23

4.4.4. Special parameter handling . 24

4.4.5. Limiting query results. 24

4.4.6. Streaming query results . 25

4.5. Creating repository instances . 26

4.5.1. XML configuration . 26

4.5.2. JavaConfig . 27

4.5.3. Standalone usage . 28

4.6. Custom implementations for Spring Data repositories . 28

4.6.1. Adding custom behavior to single repositories . 28

4.6.2. Adding custom behavior to all repositories . 30

4.7. Spring Data extensions . 32

4.7.1. Web support . 32

4.7.2. Repository populators . 36

4.7.3. Legacy web support . 38

5. Couchbase repositories . 41

5.1. Configuration . 41

5.2. Usage . 41

5.3. Backing Views . 43

6. Template & direct operations . 46

6.1. Supported operations . 46

7. Caching. 47

7.1. Configuration & Usage . 47

Appendix . 48

Appendix A: Namespace reference . 49

The <repositories /> element . 49

Appendix B: Populators namespace reference. 50

The <populator /> element . 50

Appendix C: Repository query keywords. 51

Supported query keywords . 51

Appendix D: Repository query return types . 53

Supported query return types . 53

© 2014-2015 The original author(s).

NOTE

Copies of this document may be made for your own use and for

distribution to others, provided that you do not charge any fee for

such copies and further provided that each copy contains this

Copyright Notice, whether distributed in print or electronically.

Preface
This reference documentation describes the general usage of the Spring Data Couchbase library.

Chapter 1. Project Information
• Version control - https://github.com/spring-projects/spring-data-couchbase

• Bugtracker - https://jira.springsource.org/browse/DATACOUCH

• Release repository - https://repo.spring.io/libs-release

• Milestone repository - https://repo.spring.io/libs-milestone

• Snapshot repository - https://repo.spring.io/libs-snapshot

Reference Documentation

https://github.com/spring-projects/spring-data-couchbase
https://jira.springsource.org/browse/DATACOUCH
https://repo.spring.io/libs-release
https://repo.spring.io/libs-milestone
https://repo.spring.io/libs-snapshot

Chapter 2. Installation & Configuration
This chapter describes the common installation and configuration steps needed when working with

the library.

2.1. Installation

All versions intented for production use are distributed across Maven Central and the Spring release

repository. As a result, the library can be included like any other maven dependency:

Example 1. Including the dependency through maven

<dependency>
 <groupId>org.springframework.data</groupId>
 <artifactId>spring-data-couchbase</artifactId>
 <version>1.0.0.RELEASE</version>
</dependency>

This will pull in several dependencies, including the underlying Couchbase Java SDK, common Spring

dependencies and also Jackson as the JSON mapping infrastructure.

You can also grab snapshots from the spring snapshot repository and milestone releases from the

milestone repository. Here is an example on how to use the current SNAPSHOT dependency:

Example 2. Using a snapshot version

<dependency>
 <groupId>org.springframework.data</groupId>
 <artifactId>spring-data-couchbase</artifactId>
 <version>1.1.0.BUILD-SNAPSHOT</version>
</dependency>

<repository>
 <id>spring-libs-snapshot</id>
 <name>Spring Snapshot Repository</name>
 <url>https://repo.spring.io/libs-snapshot</url>
</repository>

Once you have all needed dependencies on the classpath, you can start configuring it. Both Java and

XML config are supported. The next sections describe both approaches in detail.

http://repo.spring.io/libs-snapshot
http://repo.spring.io/libs-milestone

2.2. Annotation-based Configuration ("JavaConfig")

The annotation based configuration approach is getting more and more popular. It allows you to get

rid of XML configuration and treat configuration as part of your code directly. To get started, all you

need to do is sublcass the AbstractCouchbaseConfiguration and implement the abstract methods.

Please make sure to have cglib support in the classpath so that the annotation based configuration

works.

Example 3. Extending the AbstractCouchbaseConfiguration

@Configuration
public class Config extends AbstractCouchbaseConfiguration {

 @Override
 protected List<String> bootstrapHosts() {
 return Collections.singletonList("127.0.0.1");
 }

 @Override
 protected String getBucketName() {
 return "beer-sample";
 }

 @Override
 protected String getBucketPassword() {
 return "";
 }
}

All you need to provide is a list of Couchbase nodes to bootstrap into (without any ports, just the IP

address or hostname). Please note that while one host is sufficient in development, it is recommended

to add 3 to 5 bootstrap nodes here. Couchbase will pick up all nodes from the cluster automatically, but

it could be the case that the only node you’ve provided is experiencing issues while you are starting the

application.

The bucketName and password should be the same as configured in Couchbase Server itself. In the

example given, we are connecting to the beer-sample bucket which is one of the sample buckets

shipped with Couchbase Server and has no password set by default.

Depending on how your environment is setup, the configuration will be automatically picked up by the

context or you need to instantiate your own one. How to manage configurations is not scope of this

manual, please refer to the spring documentation for more information on that topic.

While not immediately obvious, much more things can be customized and overridden as custom beans

from this configuration - we’ll touch them in the individual manual sections as needed (for example

repositories, validation and custom converters).

2.3. XML-based Configuration

The library provides a custom namespace that you can use in your XML configuration:

Example 4. Basic XML configuration

<?xml version="1.0" encoding="UTF-8"?>
<beans:beans xmlns:beans="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://www.springframework.org/schema/data/couchbase
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/data/couchbase
 http://www.springframework.org/schema/data/couchbase/spring-couchbase.xsd">

 <couchbase:couchbase bucket="beer-sample" password="" host="127.0.0.1" />

</beans:beans>

This code is equivalent to the java configuration approach shown above. It is also possible to configure

templates and repositories, which is shown in the appropriate sections.

If you start your application, you should see Couchbase INFO level logging in the logs, indicating that

the underlying Couchbase Java SDK is connecting to the database. If any errors are reported, make

sure that the given credentials and host information is correct.

Chapter 3. Modeling Entities
This chapter describes how to model Entities and explains their counterpart representation in

Couchbase Server itself.

3.1. Documents and Fields

All entities should be annotated with the @Document annotation. Also, every field in the entity should be

annotated with the @Field annotation. While this is - strictly speaking - optional, it helps to reduce edge

cases and clearly shows the intent and design of the entity.

There is also a special @Id annotation which needs to be always in place. Best practice is to also name

the property id. Here is a very simple User entity:

Example 5. A simple Document with Fields

import org.springframework.data.annotation.Id;
import org.springframework.data.couchbase.core.mapping.Document;
import org.springframework.data.couchbase.core.mapping.Field;

@Document
public class User {

 @Id
 private String id;

 @Field
 private String firstname;

 @Field
 private String lastname;

 public User(String id, String firstname, String lastname) {
 this.id = id;
 this.firstname = firstname;
 this.lastname = lastname;
 }

 public String getId() {
 return id;
 }

 public String getFirstname() {
 return firstname;
 }

 public String getLastname() {
 return lastname;
 }
}

Couchbase Server supports automatic expiration for documents. The library implements support for it

through the @Document annotation. You can set a expiry value which translates to the number of seconds

until the document gets removed automatically. If you want to make it expire in 10 seconds after

mutation, set it like @Document(expiry = 10).

If you want a different representation of the field name inside the document in contrast to the field

name used in your entity, you can set a different name on the @Field annotation. For example if you

want to keep your documents small you can set the firstname field to @Field("fname"). In the JSON

document, you’ll see {"fname": ".."} instead of {"firstname": ".."}.

The @Id annotation needs to be present because every document in Couchbase needs a unique key. This

key needs to be any string with a length of maximum 250 characters. Feel free to use whatever fits

your use case, be it a UUID, an email address or anything else.

3.2. Datatypes and Converters

The storage format of choice is JSON. It is great, but like many data representations it allows less

datatypes than you could express in Java directly. Therefore, for all non-primitive types some form of

conversion to and from supported types needs to happen.

For the following entity field types, you don’t need to add special handling:

Table 1. Primitive Types

Java Type JSON Representation

string string

boolean boolean

byte number

short number

int number

long number

float number

double number

null Ignored on write

Since JSON supports objects ("maps") and lists, Map and List types can be converted naturally. If they

only contain primitive field types from the last paragraph, you don’t need to add special handling too.

Here is an example:

Example 6. A Document with Map and List

@Document
public class User {

 @Id
 private String id;

 @Field
 private List<String> firstnames;

 @Field
 private Map<String, Integer> childrenAges;

 public User(String id, List<String> firstnames, Map<String, Integer>
childrenAges) {
 this.id = id;
 this.firstnames = firstnames;
 this.childrenAges = childrenAges;
 }

}

Storing a user with some sample data could look like this as a JSON representation:

Example 7. A Document with Map and List - JSON

{
 "_class": "foo.User",
 "childrenAges": {
 "Alice": 10,
 "Bob": 5
 },
 "firstnames": [
 "Foo",
 "Bar",
 "Baz"
]
}

You don’t need to break everything down to primitive types and Lists/Maps all the time. Of course, you

can also compose other objects out of those primitive values. Let’s modify the last example so that we

want to store a List of Children:

Example 8. A Document with composed objects

@Document
public class User {

 @Id
 private String id;

 @Field
 private List<String> firstnames;

 @Field
 private List<Child> children;

 public User(String id, List<String> firstnames, List<Child> children) {
 this.id = id;
 this.firstnames = firstnames;
 this.children = children;
 }

 static class Child {
 private String name;
 private int age;

 Child(String name, int age) {
 this.name = name;
 this.age = age;
 }

 }

}

A populated object can look like:

Example 9. A Document with composed objects - JSON

{
 "_class": "foo.User",
 "children": [
 {
 "age": 4,
 "name": "Alice"
 },
 {
 "age": 3,
 "name": "Bob"
 }
],
 "firstnames": [
 "Foo",
 "Bar",
 "Baz"
]
}

Most of the time, you also need to store a temporal value like a Date. Since it can’t be stored directly in

JSON, a conversion needs to happen. The library implements default converters for Date, Calendar and

JodaTime types (if on the classpath). All of those are represented by default in the document as a unix

timestamp (number). You can always override the default behavior with custom converters as shown

later. Here is an example:

Example 10. A Document with Date and Calendar

@Document
public class BlogPost {

 @Id
 private String id;

 @Field
 private Date created;

 @Field
 private Calendar updated;

 @Field
 private String title;

 public BlogPost(String id, Date created, Calendar updated, String title) {
 this.id = id;
 this.created = created;
 this.updated = updated;
 this.title = title;
 }

}

A populated object can look like:

Example 11. A Document with Date and Calendar - JSON

{
 "title": "a blog post title",
 "_class": "foo.BlogPost",
 "updated": 1394610843,
 "created": 1394610843897
}

If you want to override a converter or implement your own one, this is also possible. The library

implements the general Spring Converter pattern. You can plug in custom converters on bean creation

time in your configuration. Here’s how you can configure it (in your overriden

AbstractCouchbaseConfiguration):

Example 12. Custom Converters

@Override
public CustomConversions customConversions() {
 return new CustomConversions(Arrays.asList(FooToBarConverter.INSTANCE,
BarToFooConverter.INSTANCE));
}

@WritingConverter
public static enum FooToBarConverter implements Converter<Foo, Bar> {
 INSTANCE;

 @Override
 public Bar convert(Foo source) {
 return /* do your conversion here */;
 }

}

@ReadingConverter
public static enum BarToFooConverter implements Converter<Bar, Foo> {
 INSTANCE;

 @Override
 public Foo convert(Bar source) {
 return /* do your conversion here */;
 }

}

There are a few things to keep in mind with custom conversions:

• To make it unambiguous, always use the @WritingConverter and @ReadingConverter annotations on

your converters. Especially if you are dealing with primitive type conversions, this will help to

reduce possible wrong conversions.

• If you implement a writing converter, make sure to decode into primitive types, maps and lists

only. If you need more complex object types, use the CouchbaseDocument and CouchbaseList types,

which are also understood by the underlying translation engine. Your best bet is to stick with as

simple as possible conversions.

• Always put more special converters before generic converters to avoid the case where the wrong

converter gets executed.

3.3. Optimistic Locking

Couchbase Server does not support multi-document transactions or rollback. To implement optimistic

locking, Couchbase uses a CAS (compare and swap) approach. When a document is mutated, the CAS

value also changes. The CAS is opaque to the client, the only thing you need to know is that it changes

when the content or a meta information changes too.

In other datastores, similar behavior can be achieved through an arbitrary version field whith a

incrementing counter. Since Couchbase supports this in a much better fashion, it is easy to implement.

If you want automatic optimistic locking support, all you need to do is add a @Version annotation on a

long field like this:

Example 13. A Document with optimistic locking.

@Document
public class User {

 @Version
 private long version;

 // constructor, getters, setters...
}

If you load a document through the template or repository, the version field will be automatically

populated with the current CAS value. It is important to note that you shouldn’t access the field or even

change it on your own. Once you save the document back, it will either succeed or fail with a

OptimisticLockingFailureException. If you get such an exception, the further approach depends on

what you want to achieve application wise. You should either retry the complete load-update-write

cycle or propagate the error to the upper layers for proper handling.

3.4. Validation

The library supports JSR 303 validation, which is based on annotations directly in your entities. Of

course you can add all kinds of validation in your service layer, but this way its nicely coupled to your

actual entities.

To make it work, you need to include two additional dependencies. JSR 303 and a library that

implements it, like the one supported by hibernate:

Example 14. Validation dependencies

<dependency>
 <groupId>javax.validation</groupId>
 <artifactId>validation-api</artifactId>
</dependency>
<dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-validator</artifactId>
</dependency>

Now you need to add two beans to your configuration:

Example 15. Validation beans

@Bean
public LocalValidatorFactoryBean validator() {
 return new LocalValidatorFactoryBean();
}

@Bean
public ValidatingCouchbaseEventListener validationEventListener() {
 return new ValidatingCouchbaseEventListener(validator());
}

Now you can annotate your fields with JSR303 annotations. If a validation on save() fails, a

ConstraintViolationException is thrown.

Example 16. Sample Validation Annotation

@Size(min = 10)
@Field
private String name;

Chapter 4. Working with Spring Data

Repositories
The goal of Spring Data repository abstraction is to significantly reduce the amount of boilerplate code

required to implement data access layers for various persistence stores.

IMPORTANT

Spring Data repository documentation and your module

This chapter explains the core concepts and interfaces of Spring Data

repositories. The information in this chapter is pulled from the Spring Data

Commons module. It uses the configuration and code samples for the Java

Persistence API (JPA) module. Adapt the XML namespace declaration and the

types to be extended to the equivalents of the particular module that you are

using. Namespace reference covers XML configuration which is supported

across all Spring Data modules supporting the repository API, Repository query

keywords covers the query method keywords supported by the repository

abstraction in general. For detailed information on the specific features of your

module, consult the chapter on that module of this document.

4.1. Core concepts

The central interface in Spring Data repository abstraction is Repository (probably not that much of a

surprise). It takes the domain class to manage as well as the id type of the domain class as type

arguments. This interface acts primarily as a marker interface to capture the types to work with and to

help you to discover interfaces that extend this one. The CrudRepository provides sophisticated CRUD

functionality for the entity class that is being managed.

Example 17. CrudRepository interface

public interface CrudRepository<T, ID extends Serializable>
 extends Repository<T, ID> {

 <S extends T> S save(S entity); ①

 T findOne(ID primaryKey); ②

 Iterable<T> findAll(); ③

 Long count(); ④

 void delete(T entity); ⑤

 boolean exists(ID primaryKey); ⑥

 // … more functionality omitted.
}

① Saves the given entity.

② Returns the entity identified by the given id.

③ Returns all entities.

④ Returns the number of entities.

⑤ Deletes the given entity.

⑥ Indicates whether an entity with the given id exists.

NOTE

We also provide persistence technology-specific abstractions like e.g. JpaRepository or

MongoRepository. Those interfaces extend CrudRepository and expose the capabilities of

the underlying persistence technology in addition to the rather generic persistence

technology-agnostic interfaces like e.g. CrudRepository.

On top of the CrudRepository there is a PagingAndSortingRepository abstraction that adds additional

methods to ease paginated access to entities:

Example 18. PagingAndSortingRepository

public interface PagingAndSortingRepository<T, ID extends Serializable>
 extends CrudRepository<T, ID> {

 Iterable<T> findAll(Sort sort);

 Page<T> findAll(Pageable pageable);
}

Accessing the second page of User by a page size of 20 you could simply do something like this:

PagingAndSortingRepository<User, Long> repository = // … get access to a bean
Page<User> users = repository.findAll(new PageRequest(1, 20));

In addition to query methods, query derivation for both count and delete queries, is available.

Example 19. Derived Count Query

public interface UserRepository extends CrudRepository<User, Long> {

 Long countByLastname(String lastname);
}

Example 20. Derived Delete Query

public interface UserRepository extends CrudRepository<User, Long> {

 Long deleteByLastname(String lastname);

 List<User> removeByLastname(String lastname);

}

4.2. Query methods

Standard CRUD functionality repositories usually have queries on the underlying datastore. With

Spring Data, declaring those queries becomes a four-step process:

1. Declare an interface extending Repository or one of its subinterfaces and type it to the domain class

and ID type that it will handle.

interface PersonRepository extends Repository<User, Long> { … }

2. Declare query methods on the interface.

interface PersonRepository extends Repository<User, Long> {
 List<Person> findByLastname(String lastname);
}

3. Set up Spring to create proxy instances for those interfaces. Either via JavaConfig:

import org.springframework.data.jpa.repository.config.EnableJpaRepositories;

@EnableJpaRepositories
class Config {}

or via XML configuration:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jpa="http://www.springframework.org/schema/data/jpa"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/data/jpa
 http://www.springframework.org/schema/data/jpa/spring-jpa.xsd">

 <jpa:repositories base-package="com.acme.repositories"/>

</beans>

The JPA namespace is used in this example. If you are using the repository abstraction for any

other store, you need to change this to the appropriate namespace declaration of your store module

which should be exchanging jpa in favor of, for example, mongodb.

Also, note that the JavaConfig variant doesn’t configure a package explictly as the package of the

annotated class is used by default. To customize the package to scan use one of the basePackage…
attribute of the data-store specific repository @Enable…-annotation.

1. Get the repository instance injected and use it.

public class SomeClient {

 @Autowired
 private PersonRepository repository;

 public void doSomething() {
 List<Person> persons = repository.findByLastname("Matthews");
 }
}

The sections that follow explain each step in detail.

4.3. Defining repository interfaces

As a first step you define a domain class-specific repository interface. The interface must extend

Repository and be typed to the domain class and an ID type. If you want to expose CRUD methods for

that domain type, extend CrudRepository instead of Repository.

4.3.1. Fine-tuning repository definition

Typically, your repository interface will extend Repository, CrudRepository or

PagingAndSortingRepository. Alternatively, if you do not want to extend Spring Data interfaces, you can

also annotate your repository interface with @RepositoryDefinition. Extending CrudRepository exposes

a complete set of methods to manipulate your entities. If you prefer to be selective about the methods

being exposed, simply copy the ones you want to expose from CrudRepository into your domain

repository.

NOTE
This allows you to define your own abstractions on top of the provided Spring Data

Repositories functionality.

Example 21. Selectively exposing CRUD methods

@NoRepositoryBean
interface MyBaseRepository<T, ID extends Serializable> extends Repository<T, ID> {

 T findOne(ID id);

 T save(T entity);
}

interface UserRepository extends MyBaseRepository<User, Long> {
 User findByEmailAddress(EmailAddress emailAddress);
}

In this first step you defined a common base interface for all your domain repositories and exposed

findOne(…) as well as save(…).These methods will be routed into the base repository implementation

of the store of your choice provided by Spring Data ,e.g. in the case if JPA SimpleJpaRepository, because

they are matching the method signatures in CrudRepository. So the UserRepository will now be able to

save users, and find single ones by id, as well as triggering a query to find Users by their email address.

NOTE

Note, that the intermediate repository interface is annotated with @NoRepositoryBean.

Make sure you add that annotation to all repository interfaces that Spring Data should

not create instances for at runtime.

4.4. Defining query methods

The repository proxy has two ways to derive a store-specific query from the method name. It can

derive the query from the method name directly, or by using a manually defined query. Available

options depend on the actual store. However, there’s got to be a strategy that decides what actual query

is created. Let’s have a look at the available options.

4.4.1. Query lookup strategies

The following strategies are available for the repository infrastructure to resolve the query. You can

configure the strategy at the namespace through the query-lookup-strategy attribute in case of XML

configuration or via the queryLookupStrategy attribute of the Enable${store}Repositories annotation in

case of Java config. Some strategies may not be supported for particular datastores.

• CREATE attempts to construct a store-specific query from the query method name. The general

approach is to remove a given set of well-known prefixes from the method name and parse the rest

of the method. Read more about query construction in Query creation.

• USE_DECLARED_QUERY tries to find a declared query and will throw an exception in case it can’t find

one. The query can be defined by an annotation somewhere or declared by other means. Consult

the documentation of the specific store to find available options for that store. If the repository

infrastructure does not find a declared query for the method at bootstrap time, it fails.

• CREATE_IF_NOT_FOUND (default) combines CREATE and USE_DECLARED_QUERY. It looks up a declared query

first, and if no declared query is found, it creates a custom method name-based query. This is the

default lookup strategy and thus will be used if you do not configure anything explicitly. It allows

quick query definition by method names but also custom-tuning of these queries by introducing

declared queries as needed.

4.4.2. Query creation

The query builder mechanism built into Spring Data repository infrastructure is useful for building

constraining queries over entities of the repository. The mechanism strips the prefixes find…By, read

…By, query…By, count…By, and get…By from the method and starts parsing the rest of it. The

introducing clause can contain further expressions such as a Distinct to set a distinct flag on the query

to be created. However, the first By acts as delimiter to indicate the start of the actual criteria. At a very

basic level you can define conditions on entity properties and concatenate them with And and Or.

Example 22. Query creation from method names

public interface PersonRepository extends Repository<User, Long> {

 List<Person> findByEmailAddressAndLastname(EmailAddress emailAddress, String
lastname);

 // Enables the distinct flag for the query
 List<Person> findDistinctPeopleByLastnameOrFirstname(String lastname, String
firstname);
 List<Person> findPeopleDistinctByLastnameOrFirstname(String lastname, String
firstname);

 // Enabling ignoring case for an individual property
 List<Person> findByLastnameIgnoreCase(String lastname);
 // Enabling ignoring case for all suitable properties
 List<Person> findByLastnameAndFirstnameAllIgnoreCase(String lastname, String
firstname);

 // Enabling static ORDER BY for a query
 List<Person> findByLastnameOrderByFirstnameAsc(String lastname);
 List<Person> findByLastnameOrderByFirstnameDesc(String lastname);
}

The actual result of parsing the method depends on the persistence store for which you create the

query. However, there are some general things to notice.

• The expressions are usually property traversals combined with operators that can be concatenated.

You can combine property expressions with AND and OR. You also get support for operators such as

Between, LessThan, GreaterThan, Like for the property expressions. The supported operators can vary

by datastore, so consult the appropriate part of your reference documentation.

• The method parser supports setting an IgnoreCase flag for individual properties (for example,

findByLastnameIgnoreCase(…)) or for all properties of a type that support ignoring case (usually

String instances, for example, findByLastnameAndFirstnameAllIgnoreCase(…)). Whether ignoring

cases is supported may vary by store, so consult the relevant sections in the reference

documentation for the store-specific query method.

• You can apply static ordering by appending an OrderBy clause to the query method that references a

property and by providing a sorting direction (Asc or Desc). To create a query method that supports

dynamic sorting, see Special parameter handling.

4.4.3. Property expressions

Property expressions can refer only to a direct property of the managed entity, as shown in the

preceding example. At query creation time you already make sure that the parsed property is a

property of the managed domain class. However, you can also define constraints by traversing nested

properties. Assume a Person has an Address with a ZipCode. In that case a method name of

List<Person> findByAddressZipCode(ZipCode zipCode);

creates the property traversal x.address.zipCode. The resolution algorithm starts with interpreting the

entire part (AddressZipCode) as the property and checks the domain class for a property with that name

(uncapitalized). If the algorithm succeeds it uses that property. If not, the algorithm splits up the source

at the camel case parts from the right side into a head and a tail and tries to find the corresponding

property, in our example, AddressZip and Code. If the algorithm finds a property with that head it takes

the tail and continue building the tree down from there, splitting the tail up in the way just described.

If the first split does not match, the algorithm move the split point to the left (Address, ZipCode) and

continues.

Although this should work for most cases, it is possible for the algorithm to select the wrong property.

Suppose the Person class has an addressZip property as well. The algorithm would match in the first

split round already and essentially choose the wrong property and finally fail (as the type of addressZip

probably has no code property).

To resolve this ambiguity you can use _ inside your method name to manually define traversal points.

So our method name would end up like so:

List<Person> findByAddress_ZipCode(ZipCode zipCode);

As we treat underscore as a reserved character we stongly advise to follow standard Java naming

conventions (i.e. not using underscores in property names but camel case instead).

4.4.4. Special parameter handling

To handle parameters in your query you simply define method parameters as already seen in the

examples above. Besides that the infrastructure will recognize certain specific types like Pageable and

Sort to apply pagination and sorting to your queries dynamically.

Example 23. Using Pageable, Slice and Sort in query methods

Page<User> findByLastname(String lastname, Pageable pageable);

Slice<User> findByLastname(String lastname, Pageable pageable);

List<User> findByLastname(String lastname, Sort sort);

List<User> findByLastname(String lastname, Pageable pageable);

The first method allows you to pass an org.springframework.data.domain.Pageable instance to the query

method to dynamically add paging to your statically defined query. A Page knows about the total

number of elements and pages available. It does so by the infrastructure triggering a count query to

calculate the overall number. As this might be expensive depending on the store used, Slice can be

used as return instead. A Slice only knows about whether there’s a next Slice available which might

be just sufficient when walking thought a larger result set.

Sorting options are handled through the Pageable instance too. If you only need sorting, simply add an

org.springframework.data.domain.Sort parameter to your method. As you also can see, simply returning

a List is possible as well. In this case the additional metadata required to build the actual Page instance

will not be created (which in turn means that the additional count query that would have been

necessary not being issued) but rather simply restricts the query to look up only the given range of

entities.

NOTE

To find out how many pages you get for a query entirely you have to trigger an

additional count query. By default this query will be derived from the query you

actually trigger.

4.4.5. Limiting query results

The results of query methods can be limited via the keywords first or top, which can be used

interchangeably. An optional numeric value can be appended to top/first to specify the maximum

result size to be returned. If the number is left out, a result size of 1 is assumed.

Example 24. Limiting the result size of a query with Top and First

User findFirstByOrderByLastnameAsc();

User findTopByOrderByAgeDesc();

Page<User> queryFirst10ByLastname(String lastname, Pageable pageable);

Slice<User> findTop3ByLastname(String lastname, Pageable pageable);

List<User> findFirst10ByLastname(String lastname, Sort sort);

List<User> findTop10ByLastname(String lastname, Pageable pageable);

The limiting expressions also support the Distinct keyword. Also, for the queries limiting the result set

to one instance, wrapping the result into an Optional is supported.

If pagination or slicing is applied to a limiting query pagination (and the calculation of the number of

pages available) then it is applied within the limited result.

NOTE

Note that limiting the results in combination with dynamic sorting via a Sort parameter

allows to express query methods for the 'K' smallest as well as for the 'K' biggest

elements.

4.4.6. Streaming query results

The results of query methods can be processed incrementally by using a Java 8 Stream<T> as return

type. Instead of simply wrapping the query results in a Stream data store specific methods are used to

perform the streaming.

Example 25. Stream the result of a query with Java 8 Stream<T>

@Query("select u from User u")
Stream<User> findAllByCustomQueryAndStream();

Stream<User> readAllByFirstnameNotNull();

@Query("select u from User u")
Stream<User> streamAllPaged(Pageable pageable);

NOTE

A Stream potentially wraps underlying data store specific resources and must therefore

be closed after usage. You can either manually close the Stream using the close()

method or by using a Java 7 try-with-resources block.

Example 26. Working with a Stream<T> result in a try-with-resources block

try (Stream<User> stream = repository.findAllByCustomQueryAndStream()) {
 stream.forEach(…);
}

NOTE Not all Spring Data modules currently support Stream<T> as a return type.

4.5. Creating repository instances

In this section you create instances and bean definitions for the repository interfaces defined. One way

to do so is using the Spring namespace that is shipped with each Spring Data module that supports the

repository mechanism although we generally recommend to use the Java-Config style configuration.

4.5.1. XML configuration

Each Spring Data module includes a repositories element that allows you to simply define a base

package that Spring scans for you.

Example 27. Enabling Spring Data repositories via XML

<?xml version="1.0" encoding="UTF-8"?>
<beans:beans xmlns:beans="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://www.springframework.org/schema/data/jpa"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/data/jpa
 http://www.springframework.org/schema/data/jpa/spring-jpa.xsd">

 <repositories base-package="com.acme.repositories" />

</beans:beans>

In the preceding example, Spring is instructed to scan com.acme.repositories and all its sub-packages

for interfaces extending Repository or one of its sub-interfaces. For each interface found, the

infrastructure registers the persistence technology-specific FactoryBean to create the appropriate

proxies that handle invocations of the query methods. Each bean is registered under a bean name that

is derived from the interface name, so an interface of UserRepository would be registered under

userRepository. The base-package attribute allows wildcards, so that you can define a pattern of

scanned packages.

Using filters

By default the infrastructure picks up every interface extending the persistence technology-specific

Repository sub-interface located under the configured base package and creates a bean instance for it.

However, you might want more fine-grained control over which interfaces bean instances get created

for. To do this you use <include-filter /> and <exclude-filter /> elements inside <repositories />.

The semantics are exactly equivalent to the elements in Spring’s context namespace. For details, see

Spring reference documentation on these elements.

For example, to exclude certain interfaces from instantiation as repository, you could use the following

configuration:

Example 28. Using exclude-filter element

<repositories base-package="com.acme.repositories">
 <context:exclude-filter type="regex" expression=".*SomeRepository" />
</repositories>

This example excludes all interfaces ending in SomeRepository from being instantiated.

4.5.2. JavaConfig

The repository infrastructure can also be triggered using a store-specific @Enable${store}Repositories

annotation on a JavaConfig class. For an introduction into Java-based configuration of the Spring

container, see the reference documentation.[1: JavaConfig in the Spring reference documentation]

A sample configuration to enable Spring Data repositories looks something like this.

{spring-framework-docs}/beans.html#beans-scanning-filters
{spring-framework-docs}/beans.html#beans-java

Example 29. Sample annotation based repository configuration

@Configuration
@EnableJpaRepositories("com.acme.repositories")
class ApplicationConfiguration {

 @Bean
 public EntityManagerFactory entityManagerFactory() {
 // …
 }
}

NOTE

The sample uses the JPA-specific annotation, which you would change according to the

store module you actually use. The same applies to the definition of the

EntityManagerFactory bean. Consult the sections covering the store-specific

configuration.

4.5.3. Standalone usage

You can also use the repository infrastructure outside of a Spring container, e.g. in CDI environments.

You still need some Spring libraries in your classpath, but generally you can set up repositories

programmatically as well. The Spring Data modules that provide repository support ship a persistence

technology-specific RepositoryFactory that you can use as follows.

Example 30. Standalone usage of repository factory

RepositoryFactorySupport factory = … // Instantiate factory here
UserRepository repository = factory.getRepository(UserRepository.class);

4.6. Custom implementations for Spring Data

repositories

Often it is necessary to provide a custom implementation for a few repository methods. Spring Data

repositories easily allow you to provide custom repository code and integrate it with generic CRUD

abstraction and query method functionality.

4.6.1. Adding custom behavior to single repositories

To enrich a repository with custom functionality you first define an interface and an implementation

for the custom functionality. Use the repository interface you provided to extend the custom interface.

Example 31. Interface for custom repository functionality

interface UserRepositoryCustom {
 public void someCustomMethod(User user);
}

Example 32. Implementation of custom repository functionality

class UserRepositoryImpl implements UserRepositoryCustom {

 public void someCustomMethod(User user) {
 // Your custom implementation
 }
}

NOTE
The most important bit for the class to be found is the Impl postfix of the name on it

compared to the core repository interface (see below).

The implementation itself does not depend on Spring Data and can be a regular Spring bean. So you

can use standard dependency injection behavior to inject references to other beans like a JdbTemplate,

take part in aspects, and so on.

Example 33. Changes to the your basic repository interface

interface UserRepository extends CrudRepository<User, Long>, UserRepositoryCustom {

 // Declare query methods here
}

Let your standard repository interface extend the custom one. Doing so combines the CRUD and

custom functionality and makes it available to clients.

Configuration

If you use namespace configuration, the repository infrastructure tries to autodetect custom

implementations by scanning for classes below the package we found a repository in. These classes

need to follow the naming convention of appending the namespace element’s attribute repository-

impl-postfix to the found repository interface name. This postfix defaults to Impl.

Example 34. Configuration example

<repositories base-package="com.acme.repository" />

<repositories base-package="com.acme.repository" repository-impl-postfix="FooBar" />

The first configuration example will try to look up a class com.acme.repository.UserRepositoryImpl to

act as custom repository implementation, whereas the second example will try to lookup

com.acme.repository.UserRepositoryFooBar.

Manual wiring

The approach just shown works well if your custom implementation uses annotation-based

configuration and autowiring only, as it will be treated as any other Spring bean. If your custom

implementation bean needs special wiring, you simply declare the bean and name it after the

conventions just described. The infrastructure will then refer to the manually defined bean definition

by name instead of creating one itself.

Example 35. Manual wiring of custom implementations

<repositories base-package="com.acme.repository" />

<beans:bean id="userRepositoryImpl" class="…">
 <!-- further configuration -->
</beans:bean>

4.6.2. Adding custom behavior to all repositories

The preceding approach is not feasible when you want to add a single method to all your repository

interfaces. To add custom behavior to all repositories, you first add an intermediate interface to

declare the shared behavior.

Example 36. An interface declaring custom shared behavior

@NoRepositoryBean
public interface MyRepository<T, ID extends Serializable>
 extends PagingAndSortingRepository<T, ID> {

 void sharedCustomMethod(ID id);
}

Now your individual repository interfaces will extend this intermediate interface instead of the

Repository interface to include the functionality declared. Next, create an implementation of the

intermediate interface that extends the persistence technology-specific repository base class. This class

will then act as a custom base class for the repository proxies.

Example 37. Custom repository base class

public class MyRepositoryImpl<T, ID extends Serializable>
 extends SimpleJpaRepository<T, ID> implements MyRepository<T, ID> {

 private final EntityManager entityManager;

 public MyRepositoryImpl(Class<T> domainClass, EntityManager entityManager) {
 super(domainClass, entityManager);

 // Keep the EntityManager around to used from the newly introduced methods.
 this.entityManager = entityManager;
 }

 public void sharedCustomMethod(ID id) {
 // implementation goes here
 }
}

The default behavior of the Spring <repositories /> namespace is to provide an implementation for all

interfaces that fall under the base-package. This means that if left in its current state, an

implementation instance of MyRepository will be created by Spring. This is of course not desired as it is

just supposed to act as an intermediary between Repository and the actual repository interfaces you

want to define for each entity. To exclude an interface that extends Repository from being instantiated

as a repository instance, you can either annotate it with @NoRepositoryBean (as seen above) or move it

outside of the configured base-package.

The final step is to make the Spring Data infrastructure aware of the customized repository base class.

In JavaConfig this is achieved by using the repositoryBaseClass attribute of the @Enable…Repositories

annotation:

Example 38. Configuring a custom repository base class using JavaConfig

@Configuration
@EnableJpaRepositories(repositoryBaseClass = MyRepositoryImpl.class)
class ApplicationConfiguration { … }

A corresponding attribute is available in the XML namespace.

Example 39. Configuring a custom repository base class using XML

<repositories base-package="com.acme.repository"
 repository-base-class="….MyRepositoryImpl" />

4.7. Spring Data extensions

This section documents a set of Spring Data extensions that enable Spring Data usage in a variety of

contexts. Currently most of the integration is targeted towards Spring MVC.

4.7.1. Web support

NOTE

This section contains the documentation for the Spring Data web support as it is

implemented as of Spring Data Commons in the 1.6 range. As it the newly introduced

support changes quite a lot of things we kept the documentation of the former behavior

in Legacy web support.

Spring Data modules ships with a variety of web support if the module supports the repository

programming model. The web related stuff requires Spring MVC JARs on the classpath, some of them

even provide integration with Spring HATEOAS [2: Spring HATEOAS - https://github.com/SpringSource/spring-hateoas]. In general,

the integration support is enabled by using the @EnableSpringDataWebSupport annotation in your

JavaConfig configuration class.

Example 40. Enabling Spring Data web support

@Configuration
@EnableWebMvc
@EnableSpringDataWebSupport
class WebConfiguration { }

The @EnableSpringDataWebSupport annotation registers a few components we will discuss in a bit. It will

also detect Spring HATEOAS on the classpath and register integration components for it as well if

present.

Alternatively, if you are using XML configuration, register either SpringDataWebSupport or

HateoasAwareSpringDataWebSupport as Spring beans:

https://github.com/SpringSource/spring-hateoas

Example 41. Enabling Spring Data web support in XML

<bean class="org.springframework.data.web.config.SpringDataWebConfiguration" />

<!-- If you're using Spring HATEOAS as well register this one *instead* of the former
-->
<bean class=
"org.springframework.data.web.config.HateoasAwareSpringDataWebConfiguration" />

Basic web support

The configuration setup shown above will register a few basic components:

• A DomainClassConverter to enable Spring MVC to resolve instances of repository managed domain

classes from request parameters or path variables.

• HandlerMethodArgumentResolver implementations to let Spring MVC resolve Pageable and Sort

instances from request parameters.

DomainClassConverter

The DomainClassConverter allows you to use domain types in your Spring MVC controller method

signatures directly, so that you don’t have to manually lookup the instances via the repository:

Example 42. A Spring MVC controller using domain types in method signatures

@Controller
@RequestMapping("/users")
public class UserController {

 @RequestMapping("/{id}")
 public String showUserForm(@PathVariable("id") User user, Model model) {

 model.addAttribute("user", user);
 return "userForm";
 }
}

As you can see the method receives a User instance directly and no further lookup is necessary. The

instance can be resolved by letting Spring MVC convert the path variable into the id type of the domain

class first and eventually access the instance through calling findOne(…) on the repository instance

registered for the domain type.

NOTE
Currently the repository has to implement CrudRepository to be eligible to be discovered

for conversion.

HandlerMethodArgumentResolvers for Pageable and Sort

The configuration snippet above also registers a PageableHandlerMethodArgumentResolver as well as an

instance of SortHandlerMethodArgumentResolver. The registration enables Pageable and Sort being valid

controller method arguments

Example 43. Using Pageable as controller method argument

@Controller
@RequestMapping("/users")
public class UserController {

 @Autowired UserRepository repository;

 @RequestMapping
 public String showUsers(Model model, Pageable pageable) {

 model.addAttribute("users", repository.findAll(pageable));
 return "users";
 }
}

This method signature will cause Spring MVC try to derive a Pageable instance from the request

parameters using the following default configuration:

Table 2. Request parameters evaluated for Pageable instances

page Page you want to retrieve, 0 indexed and defaults
to 0.

size Size of the page you want to retrieve, defaults to
20.

sort Properties that should be sorted by in the format
property,property(,ASC|DESC). Default sort
direction is ascending. Use multiple sort
parameters if you want to switch directions, e.g.
?sort=firstname&sort=lastname,asc.

To customize this behavior extend either SpringDataWebConfiguration or the HATEOAS-enabled

equivalent and override the pageableResolver() or sortResolver() methods and import your

customized configuration file instead of using the @Enable-annotation.

In case you need multiple Pageable or Sort instances to be resolved from the request (for multiple

tables, for example) you can use Spring’s @Qualifier annotation to distinguish one from another. The

request parameters then have to be prefixed with ${qualifier}_. So for a method signature like this:

public String showUsers(Model model,
 @Qualifier("foo") Pageable first,
 @Qualifier("bar") Pageable second) { … }

you have to populate foo_page and bar_page etc.

The default Pageable handed into the method is equivalent to a new PageRequest(0, 20) but can be

customized using the @PageableDefaults annotation on the Pageable parameter.

Hypermedia support for Pageables

Spring HATEOAS ships with a representation model class PagedResources that allows enrichting the

content of a Page instance with the necessary Page metadata as well as links to let the clients easily

navigate the pages. The conversion of a Page to a PagedResources is done by an implementation of the

Spring HATEOAS ResourceAssembler interface, the PagedResourcesAssembler.

Example 44. Using a PagedResourcesAssembler as controller method argument

@Controller
class PersonController {

 @Autowired PersonRepository repository;

 @RequestMapping(value = "/persons", method = RequestMethod.GET)
 HttpEntity<PagedResources<Person>> persons(Pageable pageable,
 PagedResourcesAssembler assembler) {

 Page<Person> persons = repository.findAll(pageable);
 return new ResponseEntity<>(assembler.toResources(persons), HttpStatus.OK);
 }
}

Enabling the configuration as shown above allows the PagedResourcesAssembler to be used as controller

method argument. Calling toResources(…) on it will cause the following:

• The content of the Page will become the content of the PagedResources instance.

• The PagedResources will get a PageMetadata instance attached populated with information form the

Page and the underlying PageRequest.

• The PagedResources gets prev and next links attached depending on the page’s state. The links will

point to the URI the method invoked is mapped to. The pagination parameters added to the method

will match the setup of the PageableHandlerMethodArgumentResolver to make sure the links can be

resolved later on.

Assume we have 30 Person instances in the database. You can now trigger a request GET

http://localhost:8080/persons and you’ll see something similar to this:

{ "links" : [{ "rel" : "next",
 "href" : "http://localhost:8080/persons?page=1&size=20 }
],
 "content" : [
 … // 20 Person instances rendered here
],
 "pageMetadata" : {
 "size" : 20,
 "totalElements" : 30,
 "totalPages" : 2,
 "number" : 0
 }
}

You see that the assembler produced the correct URI and also picks up the default configuration

present to resolve the parameters into a Pageable for an upcoming request. This means, if you change

that configuration, the links will automatically adhere to the change. By default the assembler points to

the controller method it was invoked in but that can be customized by handing in a custom Link to be

used as base to build the pagination links to overloads of the PagedResourcesAssembler.toResource(…)

method.

4.7.2. Repository populators

If you work with the Spring JDBC module, you probably are familiar with the support to populate a

DataSource using SQL scripts. A similar abstraction is available on the repositories level, although it

does not use SQL as the data definition language because it must be store-independent. Thus the

populators support XML (through Spring’s OXM abstraction) and JSON (through Jackson) to define data

with which to populate the repositories.

Assume you have a file data.json with the following content:

http://localhost:8080/persons

Example 45. Data defined in JSON

[{ "_class" : "com.acme.Person",
 "firstname" : "Dave",
 "lastname" : "Matthews" },
 { "_class" : "com.acme.Person",
 "firstname" : "Carter",
 "lastname" : "Beauford" }]

You can easily populate your repositories by using the populator elements of the repository namespace

provided in Spring Data Commons. To populate the preceding data to your PersonRepository , do the

following:

Example 46. Declaring a Jackson repository populator

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:repository="http://www.springframework.org/schema/data/repository"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/data/repository
 http://www.springframework.org/schema/data/repository/spring-repository.xsd">

 <repository:jackson-populator locations="classpath:data.json" />

</beans>

This declaration causes the data.json file to be read and deserialized via a Jackson ObjectMapper.

The type to which the JSON object will be unmarshalled to will be determined by inspecting the _class

attribute of the JSON document. The infrastructure will eventually select the appropriate repository to

handle the object just deserialized.

To rather use XML to define the data the repositories shall be populated with, you can use the

unmarshaller-populator element. You configure it to use one of the XML marshaller options Spring OXM

provides you with. See the Spring reference documentation for details.

{spring-framework-docs}/oxm.html

Example 47. Declaring an unmarshalling repository populator (using JAXB)

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:repository="http://www.springframework.org/schema/data/repository"
 xmlns:oxm="http://www.springframework.org/schema/oxm"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/data/repository
 http://www.springframework.org/schema/data/repository/spring-repository.xsd
 http://www.springframework.org/schema/oxm
 http://www.springframework.org/schema/oxm/spring-oxm.xsd">

 <repository:unmarshaller-populator locations="classpath:data.json"
 unmarshaller-ref="unmarshaller" />

 <oxm:jaxb2-marshaller contextPath="com.acme" />

</beans>

4.7.3. Legacy web support

Domain class web binding for Spring MVC

Given you are developing a Spring MVC web application you typically have to resolve domain class ids

from URLs. By default your task is to transform that request parameter or URL part into the domain

class to hand it to layers below then or execute business logic on the entities directly. This would look

something like this:

@Controller
@RequestMapping("/users")
public class UserController {

 private final UserRepository userRepository;

 @Autowired
 public UserController(UserRepository userRepository) {
 Assert.notNull(repository, "Repository must not be null!");
 this.userRepository = userRepository;
 }

 @RequestMapping("/{id}")
 public String showUserForm(@PathVariable("id") Long id, Model model) {

 // Do null check for id
 User user = userRepository.findOne(id);
 // Do null check for user

 model.addAttribute("user", user);
 return "user";
 }
}

First you declare a repository dependency for each controller to look up the entity managed by the

controller or repository respectively. Looking up the entity is boilerplate as well, as it’s always a

findOne(…) call. Fortunately Spring provides means to register custom components that allow

conversion between a String value to an arbitrary type.

PropertyEditors

For Spring versions before 3.0 simple Java PropertyEditors had to be used. To integrate with that,

Spring Data offers a DomainClassPropertyEditorRegistrar, which looks up all Spring Data repositories

registered in the ApplicationContext and registers a custom PropertyEditor for the managed domain

class.

<bean class="….web.servlet.mvc.annotation.AnnotationMethodHandlerAdapter">
 <property name="webBindingInitializer">
 <bean class="….web.bind.support.ConfigurableWebBindingInitializer">
 <property name="propertyEditorRegistrars">
 <bean class=
"org.springframework.data.repository.support.DomainClassPropertyEditorRegistrar" />
 </property>
 </bean>
 </property>
</bean>

If you have configured Spring MVC as in the preceding example, you can configure your controller as

follows, which reduces a lot of the clutter and boilerplate.

@Controller
@RequestMapping("/users")
public class UserController {

 @RequestMapping("/{id}")
 public String showUserForm(@PathVariable("id") User user, Model model) {

 model.addAttribute("user", user);
 return "userForm";
 }
}

Chapter 5. Couchbase repositories
The goal of Spring Data repository abstraction is to significantly reduce the amount of boilerplate code

required to implement data access layers for various persistence stores.

5.1. Configuration

While support for repositories is always present, you need to enable them in general or for a specific

namespace. If you extend AbstractCouchbaseConfiguration, just use the @EnableCouchbaseRepositories

annotation. It provides lots of possible options to narrow or customize the search path, one of the most

common ones is basePackages.

Example 48. Annotation-Based Repository Setup

@Configuration
@EnableCouchbaseRepositories(basePackages = {"com.couchbase.example.repos"})
public class Config extends AbstractCouchbaseConfiguration {
 //...
}

XML-based configuration is also available:

Example 49. XML-Based Repository Setup

<couchbase:repositories base-package="com.couchbase.example.repos" />

5.2. Usage

In the simplest case, your repository will extend the CrudRepository<T, String>, where T is the entity

that you want to expose. Let’s look at a repository for a user:

Example 50. A User repository

import org.springframework.data.repository.CrudRepository;

public interface UserRepository extends CrudRepository<User, String> {
}

Please note that this is just an interface and not an actual class. In the background, when your context

gets initialized, actual implementations for your repository descriptions get created and you can access

them through regular beans. This means you will save lots of boilerplate code while still exposing full

CRUD semantics to your service layer and application.

Now, let’s imagine we @Autowrie the UserRepository to a class that makes use of it. What methods do we

have available?

Table 3. Exposed methods on the UserRepository

Method Description

User save(User entity) Save the given entity.

Iterable<User> save(Iterable<User> entity) Save the list of entities.

User findOne(String id) Find a entity by its unique id.

boolean exists(String id) Check if a given entity exists by its unique id.

Iterable<User> findAll() (*) Find all entities by this type in the bucket.

Iterable<User> findAll(Iterable<String> ids) Find all entities by this type and the given list of
ids.

long count() (*) Count the number of entities in the bucket.

void delete(String id) Delete the entity by its id.

void delete(User entity) Delete the entity.

void delete(Iterable<User> entities) Delete all given entities.

void deleteAll() (*) Delete all entities by type in the bucket.

Now thats awesome! Just by defining an interface we get full CRUD functionality on top of our

managed entity. All methods suffixed with (*) in the table are backed by Views, which is explained

later.

If you are coming from other datastore implementations, you might want to implement the

PagingAndSortingRepository as well. Note that as of now, it is not supported but will be in the future.

While the exposed methods provide you with a great variety of access patterns, very often you need to

define custom ones. You can do this by adding method declarations to your interface, which will be

automatically resolved to view requests in the background. Here is an example:

Example 51. An extended User repository

public interface UserRepository extends CrudRepository<User, String> {

 List<User> findAllAdmins();

 List<User> findByFirstname(Query query);
}

Since we’ve came across views now multiple times and the findByFirstname(Query query) exposes a yet

unknown parameter, let’s cover that next.

5.3. Backing Views

As a rule of thumb, all repository access methods which are not "by a specific key" require a backing

view to find the one or more matching entities. We’ll only cover views to the extend which they are

needed, if you need in-depth information about them please refer to the official Couchbase Server

manual and the Couchbase Java SDK manual.

To cover the basic CRUD methods from the CrudRepository, one view needs to be implemented in

Couchbase Server. It basically returns all documents for the specific entity and also adds the optional

reduce function _count.

Since every view has a design document and view name, by convention we default to all as the view

name and the lower-cased entity name as the design document name. So if your entity is named User,

then the code expects the all view in the user design document. It needs to look like this:

Example 52. The all view map function

// do not forget the _count reduce function!
function (doc, meta) {
 if (doc._class == "namespace.to.entity.User") {
 emit(null, null);
 }
}

Note that the important part in this map function is to only include the document IDs which

correspond to our entity. Because the library always adds the _class property, this is a quick and easy

way to do it. If you have another property in your JSON which does the same job (like a explicit type

field), then you can use that as well - you don’t have to stick to _class all the time.

Also make sure to publish your design documents into production so that they can be picked up by the

library! Also, if you are curious why we use emit(null, null) in the view: the document id is always

sent over to the client implicitly, so we can shave off a view bytes in our view by not duplicating the id.

If you use emit(meta.id, null) it won’t hurt much too.

Implementing your custom repository finder methods works the same way. The findAllAdmins calls the

allAdmins view in the user design document. Imagine we have a field on our entity which looks like

boolean isAdmin. We can write a view like this to expose them (we don’t need a reduce function for this

one):

Example 53. A custom view map function

function (doc, meta) {
 if (doc._class == "namespace.to.entity.User" && doc.isAdmin) {
 emit(null, null);
 }
}

By now, we’ve never actually customized our view at query time. This is where the special Query

argument comes along - like in our findByFirstname(Query query) method.

Example 54. A parameterized view map function

function (doc, meta) {
 if (doc._class == "namespace.to.entity.User") {
 emit(doc.firstname, null);
 }
}

This view not only emits the document id, but also the firstname of every user as the key. We can now

run a Query which returns us all users with a firstname of "Michael" or "Thomas".

Example 55. Query a repository method with custom params.

// Load the bean, or @Autowire it
UserRepository repo = ctx.getBean(UserRepository.class);

// Create the CouchbaseClient Query object
Query query = new Query();

// Filter on those two keys
query.setKeys(ComplexKey.of("Michael", "Thomas"));

// Run the query and get all matching users returned
List<User> users = repo.findByFirstname(query));

On all custom finder methods, you can use the @View annotation to both customize the design

document and view name (to override the conventions).

Please keep in mind that by default, the Stale.UPDATE_AFTER mechanism is used. This means that

whatever is in the index gets returned, and then the index gets updated. This strikes a good balance

between performance and data freshness. You can tune the behavior through the setStale() method

on the query object. For more details on behavior, please consult the Couchbase Server and Java SDK

documentation directly.

Chapter 6. Template & direct operations
The template provides lower level access to the underlying database and also serves as the foundation

for repositories. Any time a repository is too high-level for you needs chances are good that the

templates will serve you well.

6.1. Supported operations

The template can be accessed through the couchbaseTemplate bean out of your context. Once you’ve got

a reference to it, you can run all kinds of operations against it. Other than through a repository, in a

template you need to always specify the target entity type which you want to get converted.

To mutate documents, you’ll find save, insert and update methods exposed. Saving will insert or update

the document, insert will fail if it has been created already and update only works against documents

that have already been created.

Since Couchbase Server has different levels of persistence (by default you’ll get a positive response if it

has been acknowledged in the managed cache), you can provide higher durability options through the

overloaded PersistTo and/or ReplicateTo options. The behaviour is part of the Couchbase Java SDK,

please refer to the official documentation for more details.

Removing documents through the remove methods works exactly the same.

If you want to load documents, you can do that through the findById method, which is the fastest and if

possible your tool of choice. The find methods for views are findByView which converts it into the target

entity, but also queryView which exposes lower level semantics.

If you really need low-level semantics, the couchbaseClient bean is also always in scope.

Chapter 7. Caching
This chapter describes additional support for caching and @Cacheable.

7.1. Configuration & Usage

Technically, caching is not part of spring-data, but is implemented directly in the spring core. Most

database implementations in the spring-data package can’t support @Cacheable, because it is not

possible to store arbitrary data.

Couchbase supports both binary and JSON data, so you can get both out of the same database.

To make it work, you need to add the @EnableCaching annotation and configure the cacheManager bean:

Example 56. AbstractCouchbaseConfiguration for Caching

@Configuration
@EnableCaching
public class Config extends AbstractCouchbaseConfiguration {
 // general methods

 @Bean
 public CouchbaseCacheManager cacheManager() throws Exception {
 HashMap<String, CouchbaseClient> instances = new HashMap<String,
CouchbaseClient>();
 instances.put("persistent", couchbaseClient());
 return new CouchbaseCacheManager(instances);
 }
}

The persistent identifier can then be used on the @Cacheable annotation to identify the cache manager

to use (you can have more than one configured).

Once it is set up, you can annotate every method with the @Cacheable annotation to transparently cache

it in your couchbase bucket. You can also customize how the key is generated.

Example 57. Caching example

@Cacheable(value="persistent", key="'longrunsim-'+#time")
public String simulateLongRun(long time) {
 try {
 Thread.sleep(time);
 } catch(Exception ex) {
 System.out.println("This shouldnt happen...");
 }
 return "I've slept " + time + " miliseconds.;
}

If you run the method multiple times, you’ll see a set operation happening first, followed by multiple

get operations and no sleep time (which fakes the expensive execution). You can store whatever you

want, if it is JSON of course you can access it through views and look at it in the Web UI.

Appendix

Appendix A: Namespace reference

The <repositories /> element

The <repositories /> element triggers the setup of the Spring Data repository infrastructure. The most

important attribute is base-package which defines the package to scan for Spring Data repository

interfaces.[3: see XML configuration]

Table 4. Attributes

Name Description

base-package Defines the package to be used to be scanned for repository interfaces
extending *Repository (actual interface is determined by specific Spring
Data module) in auto detection mode. All packages below the configured
package will be scanned, too. Wildcards are allowed.

repository-impl-postfix Defines the postfix to autodetect custom repository implementations.
Classes whose names end with the configured postfix will be considered as
candidates. Defaults to Impl.

query-lookup-strategy Determines the strategy to be used to create finder queries. See Query
lookup strategies for details. Defaults to create-if-not-found.

named-queries-location Defines the location to look for a Properties file containing externally
defined queries.

consider-nested-
repositories

Controls whether nested repository interface definitions should be
considered. Defaults to false.

Appendix B: Populators namespace reference

The <populator /> element

The <populator /> element allows to populate the a data store via the Spring Data repository

infrastructure.[4: see XML configuration]

Table 5. Attributes

Name Description

locations Where to find the files to read the objects from the repository shall be
populated with.

Appendix C: Repository query keywords

Supported query keywords

The following table lists the keywords generally supported by the Spring Data repository query

derivation mechanism. However, consult the store-specific documentation for the exact list of

supported keywords, because some listed here might not be supported in a particular store.

Table 6. Query keywords

Logical keyword Keyword expressions

AND And

OR Or

AFTER After, IsAfter

BEFORE Before, IsBefore

CONTAINING Containing, IsContaining, Contains

BETWEEN Between, IsBetween

ENDING_WITH EndingWith, IsEndingWith, EndsWith

EXISTS Exists

FALSE False, IsFalse

GREATER_THAN GreaterThan, IsGreaterThan

GREATER_THAN_EQUALS GreaterThanEqual, IsGreaterThanEqual

IN In, IsIn

IS Is, Equals, (or no keyword)

IS_NOT_NULL NotNull, IsNotNull

IS_NULL Null, IsNull

LESS_THAN LessThan, IsLessThan

LESS_THAN_EQUAL LessThanEqual, IsLessThanEqual

LIKE Like, IsLike

NEAR Near, IsNear

NOT Not, IsNot

NOT_IN NotIn, IsNotIn

NOT_LIKE NotLike, IsNotLike

Logical keyword Keyword expressions

REGEX Regex, MatchesRegex, Matches

STARTING_WITH StartingWith, IsStartingWith, StartsWith

TRUE True, IsTrue

WITHIN Within, IsWithin

Appendix D: Repository query return types

Supported query return types

The following table lists the return types generally supported by Spring Data repositories. However,

consult the store-specific documentation for the exact list of supported return types, because some

listed here might not be supported in a particular store.

NOTE
Geospatial types like (GeoResult, GeoResults, GeoPage) are only available for data stores

that support geospatial queries.

Table 7. Query return types

Return type Description

void Denotes no return value.

Primitives Java primitives.

Wrapper types Java wrapper types.

T An unique entity. Expects the query method to return one result at most. In
case no result is found null is returned. More than one result will trigger an
IncorrectResultSizeDataAccessException.

Iterator<T> An Iterator.

Collection<T> A Collection.

List<T> A List.

Optional<T> A Java 8 or Guava Optional. Expects the query method to return one result
at most. In case no result is found Optional.empty()/Optional.absent() is
returned. More than one result will trigger an
IncorrectResultSizeDataAccessException.

Stream<T> A Java 8 Stream.

Slice A sized chunk of data with information whether there is more data
available. Requires a Pageable method parameter.

Page<T> A Slice with additional information, e.g. the total number of results.
Requires a Pageable method parameter.

GeoResult<T> A result entry with additional information, e.g. distance to a reference
location.

GeoResults<T> A list of GeoResult<T> with additional information, e.g. average distance to a
reference location.

GeoPage<T> A Page with GeoResult<T>, e.g. average distance to a reference location.

	Spring Data Couchbase - Reference Documentation
	Table of Contents
	Preface
	Chapter 1. Project Information

	Reference Documentation
	Chapter 2. Installation & Configuration
	2.1. Installation
	2.2. Annotation-based Configuration ("JavaConfig")
	2.3. XML-based Configuration

	Chapter 3. Modeling Entities
	3.1. Documents and Fields
	3.2. Datatypes and Converters
	3.3. Optimistic Locking
	3.4. Validation

	Chapter 4. Working with Spring Data Repositories
	4.1. Core concepts
	4.2. Query methods
	4.3. Defining repository interfaces
	4.3.1. Fine-tuning repository definition

	4.4. Defining query methods
	4.4.1. Query lookup strategies
	4.4.2. Query creation
	4.4.3. Property expressions
	4.4.4. Special parameter handling
	4.4.5. Limiting query results
	4.4.6. Streaming query results

	4.5. Creating repository instances
	4.5.1. XML configuration
	4.5.2. JavaConfig
	4.5.3. Standalone usage

	4.6. Custom implementations for Spring Data repositories
	4.6.1. Adding custom behavior to single repositories
	4.6.2. Adding custom behavior to all repositories

	4.7. Spring Data extensions
	4.7.1. Web support
	4.7.2. Repository populators
	4.7.3. Legacy web support

	Chapter 5. Couchbase repositories
	5.1. Configuration
	5.2. Usage
	5.3. Backing Views

	Chapter 6. Template & direct operations
	6.1. Supported operations

	Chapter 7. Caching
	7.1. Configuration & Usage

	Appendix
	Appendix A: Namespace reference
	The <repositories /> element

	Appendix B: Populators namespace reference
	The <populator /> element

	Appendix C: Repository query keywords
	Supported query keywords

	Appendix D: Repository query return types
	Supported query return types

