
Spring Data Couchbase - Reference
Documentation

Michael Nitschinger, Oliver Gierke, Simon Baslé

Version 3.0.0.RC2, 2017-07-25

Table of Contents
Preface 2

1. Project Information . 3

2. Migrating from Spring Data Couchbase 1.x to 2.x . 4

2.1. Configuration . 4

2.2. Repository queries . 4

2.3. Backing views and view query changes . 5

2.3.1. Passing a ViewQuery object as a parameter to a custom repository method 5

2.3.2. Reduce in views . 5

Reference Documentation 6

3. Installation & Configuration . 7

3.1. Installation. 7

3.2. Annotation-based Configuration ("JavaConfig") . 7

3.3. XML-based Configuration . 9

4. Modeling Entities . 11

4.1. Documents and Fields. 11

4.2. Datatypes and Converters . 13

4.3. Optimistic Locking . 19

4.4. Validation . 19

4.5. Auditing . 20

5. Auto generating keys . 23

5.1. Configuration . 23

5.2. Key generation using attributes . 24

5.3. Key generation using uuid . 24

6. Working with Spring Data Repositories . 25

6.1. Core concepts . 25

6.2. Query methods . 27

6.3. Defining repository interfaces . 28

6.3.1. Fine-tuning repository definition. 29

6.3.2. Using Repositories with multiple Spring Data modules . 29

6.4. Defining query methods. 32

6.4.1. Query lookup strategies . 33

6.4.2. Query creation . 33

6.4.3. Property expressions. 34

6.4.4. Special parameter handling. 35

6.4.5. Limiting query results. 36

6.4.6. Streaming query results . 36

6.4.7. Async query results . 37

6.5. Creating repository instances . 38

6.5.1. XML configuration . 38

6.5.2. JavaConfig . 39

6.5.3. Standalone usage . 39

6.6. Custom implementations for Spring Data repositories . 40

6.6.1. Adding custom behavior to single repositories. 40

6.6.2. Adding custom behavior to all repositories . 42

6.7. Publishing events from aggregate roots . 44

6.8. Spring Data extensions . 45

6.8.1. Querydsl Extension . 45

6.8.2. Web support . 46

6.8.3. Repository populators . 53

6.8.4. Legacy web support . 55

7. Couchbase repositories . 58

7.1. Configuration . 58

7.2. Usage . 59

7.3. Repositories and Querying . 60

7.3.1. N1QL based querying . 60

7.3.2. Backing Views . 64

7.3.3. Automatic Index Management . 65

7.3.4. View based querying . 66

7.3.5. Spatial View based querying . 69

7.3.6. Querying with consistency. 70

7.4. Working with multiple buckets . 71

7.5. Changing repository behaviour . 72

7.5.1. Couchbase specifics about changing the base class . 73

7.5.2. Couchbase specifics about adding methods to a single repository 74

7.5.3. DTO Projections . 75

8. Template & direct operations . 78

8.1. Supported operations . 78

8.2. Xml Configuration . 78

Appendix 80

Appendix A: Namespace reference . 81

The <repositories /> element. 81

Appendix B: Populators namespace reference. 82

The <populator /> element . 82

Appendix C: Repository query keywords. 83

Supported query keywords. 83

Appendix D: Repository query return types . 84

Supported query return types . 84

© 2014-2015 The original author(s).

NOTE

Copies of this document may be made for your own use and for distribution to
others, provided that you do not charge any fee for such copies and further
provided that each copy contains this Copyright Notice, whether distributed in print
or electronically.

1

Preface
This reference documentation describes the general usage of the Spring Data Couchbase library.

2

Chapter 1. Project Information
• Version control - https://github.com/spring-projects/spring-data-couchbase

• Bugtracker - https://jira.springsource.org/browse/DATACOUCH

• Release repository - https://repo.spring.io/libs-release

• Milestone repository - https://repo.spring.io/libs-milestone

• Snapshot repository - https://repo.spring.io/libs-snapshot

3

https://github.com/spring-projects/spring-data-couchbase
https://jira.springsource.org/browse/DATACOUCH
https://repo.spring.io/libs-release
https://repo.spring.io/libs-milestone
https://repo.spring.io/libs-snapshot

Chapter 2. Migrating from Spring Data
Couchbase 1.x to 2.x
This chapter is a quick reference of what major changes have been introduced in 2.0.x and gives a
high-level overview of things to consider when migrating.

2.1. Configuration
The configuration, xml schema, etc… has changed to take the evolution of the 2.x SDK API into
account.

Where a single CouchbaseClient bean was previously the only bean declarable, you can now declare
a Cluster bean (<couchbase:cluster>), one or more Bucket beans (<couchbase:bucket>) and even tune
the SDK via a CouchbaseEnvironment bean (<couchbase:env>). All of these can also be created via Java
Config method by extending AbstractCouchbaseConfig.

The cluster bean lists the nodes to connect through (and references the environment bean if tuning
is necessary) while the bucket beans map to bucket names and passwords and actually opens the
connections internally.

You can define more beans that are used for internal configuration of the Spring Data Couchbase
module (MappingContext, CouchbaseConverter, TranslationService, …).

For more information, see Installation & Configuration.

2.2. Repository queries
The view-backed query method has evolved and support for N1QL has been introduced. As a result,
there are now 4 ways of doing repository queries:

• Simple View query (to return all elements emitted by a view) - @View annotated without
viewName

• Intermediate View query by query derivation (to provide some criteria for the view) @View
annotated with viewName

• N1QL with explicit statements inline - @Query annotated with value

• N1QL query derivation - @Query annotated without value / no annotation (default)

View backed queries are associated with the @View annotation, while N1QL backed queries are
associated with the @Query annotation.

N1QL query derivation is now the default query method (and there the @Query annotation is
optional).

See N1QL based querying and Backing Views for more information.

4

2.3. Backing views and view query changes

IMPORTANT
The all view is still backing most CRUD operations, but custom repository
methods are now by default backed by N1QL.

To instead back them with views, use the @View annotation explicitly.

Without a viewName specified, the view will be guessed from method name (stripping count or find
prefix). Otherwise, query derivation will be used to parameterize the view query from the method
name and parameters.

2.3.1. Passing a ViewQuery object as a parameter to a custom repository
method

This behavior has been removed and the recommended approach is now to either use query
derivation (if the query parameters are simple enough) or Adding custom behavior to single
repositories.

For instance, for a view emitting user lastNames, the following:

@View
List<User> findByLastname(ViewQuery.from("","").key("test").limit(3));

is to be replaced by the (more flexible):

@View("byLastName")
List<User> findFirst3ByLastnameEquals(String lastName);

2.3.2. Reduce in views

Reduce is now supported in view-based querying.

It can be triggered by prefixing the method name with count instead of find. For example:
countByLastnameContains(String word) instead of findByLastnameContains(String word).

Alternatively, it can be explicitly be activated by setting reduce = true on the @View annotation.

Be sure to construct your view correctly:

• specify a reduce function that matches the method return type, which can be anything, eg. long
or JSON object

• emit a simple key (not null nor a compound key).

• emit a value suitable for the reduce to work (typically _count doesn’t need any particular value,
but _stats will need a numerical value, in addition to the key).

5

Reference Documentation

6

Chapter 3. Installation & Configuration
This chapter describes the common installation and configuration steps needed when working with
the library.

3.1. Installation
All versions intended for production use are distributed across Maven Central and the Spring
release repository. As a result, the library can be included like any other maven dependency:

Example 1. Including the dependency through maven

<dependency>
 <groupId>org.springframework.data</groupId>
 <artifactId>spring-data-couchbase</artifactId>
 <version>2.0.0.RELEASE</version>
</dependency>

This will pull in several dependencies, including the underlying Couchbase Java SDK, common
Spring dependencies and also Jackson as the JSON mapping infrastructure.

You can also grab snapshots from the spring snapshot repository and milestone releases from the
milestone repository. Here is an example on how to use the current SNAPSHOT dependency:

Example 2. Using a snapshot version

<dependency>
 <groupId>org.springframework.data</groupId>
 <artifactId>spring-data-couchbase</artifactId>
 <version>2.1.0.BUILD-SNAPSHOT</version>
</dependency>

<repository>
 <id>spring-libs-snapshot</id>
 <name>Spring Snapshot Repository</name>
 <url>https://repo.spring.io/libs-snapshot</url>
</repository>

Once you have all needed dependencies on the classpath, you can start configuring it. Both Java and
XML config are supported. The next sections describe both approaches in detail.

3.2. Annotation-based Configuration ("JavaConfig")
The annotation based configuration approach is getting more and more popular. It allows you to

7

http://repo.spring.io/libs-snapshot
http://repo.spring.io/libs-milestone

get rid of XML configuration and treat configuration as part of your code directly. To get started, all
you need to do is subclcass the AbstractCouchbaseConfiguration and implement the abstract
methods.

Please make sure to have cglib support in the classpath so that the annotation based configuration
works.

Example 3. Extending the AbstractCouchbaseConfiguration

@Configuration
public class Config extends AbstractCouchbaseConfiguration {

 @Override
 protected List<String> getBootstrapHosts() {
 return Collections.singletonList("127.0.0.1");
 }

 @Override
 protected String getBucketName() {
 return "beer-sample";
 }

 @Override
 protected String getBucketPassword() {
 return "";
 }
}

All you need to provide is a list of Couchbase nodes to bootstrap into (without any ports, just the IP
address or hostname). Please note that while one host is sufficient in development, it is
recommended to add 3 to 5 bootstrap nodes here. Couchbase will pick up all nodes from the cluster
automatically, but it could be the case that the only node you’ve provided is experiencing issues
while you are starting the application.

The bucketName and password should be the same as configured in Couchbase Server itself. In the
example given, we are connecting to the beer-sample bucket which is one of the sample buckets
shipped with Couchbase Server and has no password set by default.

Depending on how your environment is set up, the configuration will be automatically picked up by
the context or you need to instantiate your own one. How to manage configurations is not in scope
of this manual, please refer to the spring documentation for more information on that topic.

Additionally, the SDK environment can be tuned by overriding the getEnvironment() method to
return a properly tuned CouchbaseEnvironment.

While not immediately obvious, much more things can be customized and overridden as custom
beans from this configuration (for example repositories, query consistency, validation and custom
converters).

8

TIP

If you use SyncGateway and CouchbaseMobile, you may run into problem with fields
prefixed by _. Since Spring Data Couchbase by default stores the type information as a
_class attribute this can be problematic. Override typeKey() (for example to return
MappingCouchbaseConverter.TYPEKEY_SYNCGATEWAY_COMPATIBLE) to change the name of
said attribute.

TIP
For generated queries, if you want strong consistency (at the expense of performance),
you can override getDefaultConsistency() and return
Consistency.READ_YOUR_OWN_WRITES.

3.3. XML-based Configuration
The library provides a custom namespace that you can use in your XML configuration:

Example 4. Basic XML configuration

<?xml version="1.0" encoding="UTF-8"?>
<beans:beans xmlns:beans="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://www.springframework.org/schema/data/couchbase
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/data/couchbase
 http://www.springframework.org/schema/data/couchbase/spring-couchbase.xsd">

 <couchbase:cluster>
 <couchbase:node>127.0.0.1</couchbase:node>
 </couchbase:cluster>

 <!-- This is needed to probe the server for N1QL support -->
 <!-- Can be either cluster credentials or a bucket credentials -->
 <couchbase:clusterInfo login="beer-sample" password=""/>

 <couchbase:bucket bucketName="beer-sample" bucketPassword=""/>
</beans:beans>

This code is equivalent to the java configuration approach shown above. You can customize the SDK
CouchbaseEnvironment via the <couchbase:env/> tag, that supports most tuning parameters as
attributes. It is also possible to configure templates and repositories, which is shown in the
appropriate sections.

IMPORTANT
The XML configuration must include the clusterInfo credentials, in order to
be able to detect N1QL feature.

If you start your application, you should see Couchbase INFO level logging in the logs, indicating
that the underlying Couchbase Java SDK is connecting to the database. If any errors are reported,

9

make sure that the given credentials and host information are correct.

10

Chapter 4. Modeling Entities
This chapter describes how to model Entities and explains their counterpart representation in
Couchbase Server itself.

4.1. Documents and Fields
All entities should be annotated with the @Document annotation.

Also, every field in the entity should be annotated with the @Field annotation from the Couchbase
SDK. While this is - strictly speaking - optional, it helps to reduce edge cases and clearly shows the
intent and design of the entity. It can also be used to store the field under a different name.

There is also a special @Id annotation which needs to be always in place. Best practice is to also
name the property id.

TIP
Both the Couchbase SDK and Spring Data define their own @Id annotation. Either can
be used (the Spring Data one will get priority if both are found on different fields).

Here is a very simple User entity:

11

Example 5. A simple Document with Fields

import com.couchbase.client.java.repository.annotation.Id;
import com.couchbase.client.java.repository.annotation.Field;
import org.springframework.data.couchbase.core.mapping.Document;

@Document
public class User {

 @Id
 private String id;

 @Field
 private String firstname;

 @Field
 private String lastname;

 public User(String id, String firstname, String lastname) {
 this.id = id;
 this.firstname = firstname;
 this.lastname = lastname;
 }

 public String getId() {
 return id;
 }

 public String getFirstname() {
 return firstname;
 }

 public String getLastname() {
 return lastname;
 }
}

Couchbase Server supports automatic expiration for documents. The library implements support
for it through the @Document annotation. You can set a expiry value which translates to the number
of seconds until the document gets removed automatically. If you want to make it expire in 10
seconds after mutation, set it like @Document(expiry = 10). Alternatively, you can configure the
expiry using Spring’s property support and the expiryExpression parameter, to allow for
dynamically changing the expiry value. For example: @Document(expiryExpression =

"${valid.document.expiry}"). The property must be resolvable to an int value and the two
approaches cannot be mixed.

If you want a different representation of the field name inside the document in contrast to the field
name used in your entity, you can set a different name on the @Field annotation. For example if you

12

want to keep your documents small you can set the firstname field to @Field("fname"). In the JSON
document, you’ll see {"fname": ".."} instead of {"firstname": ".."}.

The @Id annotation needs to be present because every document in Couchbase needs a unique key.
This key needs to be any string with a length of maximum 250 characters. Feel free to use whatever
fits your use case, be it a UUID, an email address or anything else.

4.2. Datatypes and Converters
The storage format of choice is JSON. It is great, but like many data representations it allows less
datatypes than you could express in Java directly. Therefore, for all non-primitive types some form
of conversion to and from supported types needs to happen.

For the following entity field types, you don’t need to add special handling:

Table 1. Primitive Types

Java Type JSON Representation

string string

boolean boolean

byte number

short number

int number

long number

float number

double number

null Ignored on write

Since JSON supports objects ("maps") and lists, Map and List types can be converted naturally. If they
only contain primitive field types from the last paragraph, you don’t need to add special handling
too. Here is an example:

13

Example 6. A Document with Map and List

@Document
public class User {

 @Id
 private String id;

 @Field
 private List<String> firstnames;

 @Field
 private Map<String, Integer> childrenAges;

 public User(String id, List<String> firstnames, Map<String, Integer>
childrenAges) {
 this.id = id;
 this.firstnames = firstnames;
 this.childrenAges = childrenAges;
 }

}

Storing a user with some sample data could look like this as a JSON representation:

Example 7. A Document with Map and List - JSON

{
 "_class": "foo.User",
 "childrenAges": {
 "Alice": 10,
 "Bob": 5
 },
 "firstnames": [
 "Foo",
 "Bar",
 "Baz"
]
}

You don’t need to break everything down to primitive types and Lists/Maps all the time. Of course,
you can also compose other objects out of those primitive values. Let’s modify the last example so
that we want to store a List of Children:

14

Example 8. A Document with composed objects

@Document
public class User {

 @Id
 private String id;

 @Field
 private List<String> firstnames;

 @Field
 private List<Child> children;

 public User(String id, List<String> firstnames, List<Child> children) {
 this.id = id;
 this.firstnames = firstnames;
 this.children = children;
 }

 static class Child {
 private String name;
 private int age;

 Child(String name, int age) {
 this.name = name;
 this.age = age;
 }

 }

}

A populated object can look like:

15

Example 9. A Document with composed objects - JSON

{
 "_class": "foo.User",
 "children": [
 {
 "age": 4,
 "name": "Alice"
 },
 {
 "age": 3,
 "name": "Bob"
 }
],
 "firstnames": [
 "Foo",
 "Bar",
 "Baz"
]
}

Most of the time, you also need to store a temporal value like a Date. Since it can’t be stored directly
in JSON, a conversion needs to happen. The library implements default converters for Date,
Calendar and JodaTime types (if on the classpath). All of those are represented by default in the
document as a unix timestamp (number). You can always override the default behavior with
custom converters as shown later. Here is an example:

16

Example 10. A Document with Date and Calendar

@Document
public class BlogPost {

 @Id
 private String id;

 @Field
 private Date created;

 @Field
 private Calendar updated;

 @Field
 private String title;

 public BlogPost(String id, Date created, Calendar updated, String title) {
 this.id = id;
 this.created = created;
 this.updated = updated;
 this.title = title;
 }

}

A populated object can look like:

Example 11. A Document with Date and Calendar - JSON

{
 "title": "a blog post title",
 "_class": "foo.BlogPost",
 "updated": 1394610843,
 "created": 1394610843897
}

Optionally, Date can be converted to and from ISO-8601 compliant strings by setting system
property org.springframework.data.couchbase.useISOStringConverterForDate to true. If you want to
override a converter or implement your own one, this is also possible. The library implements the
general Spring Converter pattern. You can plug in custom converters on bean creation time in your
configuration. Here’s how you can configure it (in your overridden
AbstractCouchbaseConfiguration):

17

Example 12. Custom Converters

@Override
public CustomConversions customConversions() {
 return new CustomConversions(Arrays.asList(FooToBarConverter.INSTANCE,
BarToFooConverter.INSTANCE));
}

@WritingConverter
public static enum FooToBarConverter implements Converter<Foo, Bar> {
 INSTANCE;

 @Override
 public Bar convert(Foo source) {
 return /* do your conversion here */;
 }

}

@ReadingConverter
public static enum BarToFooConverter implements Converter<Bar, Foo> {
 INSTANCE;

 @Override
 public Foo convert(Bar source) {
 return /* do your conversion here */;
 }

}

There are a few things to keep in mind with custom conversions:

• To make it unambiguous, always use the @WritingConverter and @ReadingConverter annotations
on your converters. Especially if you are dealing with primitive type conversions, this will help
to reduce possible wrong conversions.

• If you implement a writing converter, make sure to decode into primitive types, maps and lists
only. If you need more complex object types, use the CouchbaseDocument and CouchbaseList types,
which are also understood by the underlying translation engine. Your best bet is to stick with as
simple as possible conversions.

• Always put more special converters before generic converters to avoid the case where the
wrong converter gets executed.

• For dates, reading converters should be able to read from any Number (not just Long). This is
required for N1QL support.

18

4.3. Optimistic Locking
Couchbase Server does not support multi-document transactions or rollback. To implement
optimistic locking, Couchbase uses a CAS (compare and swap) approach. When a document is
mutated, the CAS value also changes. The CAS is opaque to the client, the only thing you need to
know is that it changes when the content or a meta information changes too.

In other datastores, similar behavior can be achieved through an arbitrary version field with a
incrementing counter. Since Couchbase supports this in a much better fashion, it is easy to
implement. If you want automatic optimistic locking support, all you need to do is add a @Version
annotation on a long field like this:

Example 13. A Document with optimistic locking.

@Document
public class User {

 @Version
 private long version;

 // constructor, getters, setters...
}

If you load a document through the template or repository, the version field will be automatically
populated with the current CAS value. It is important to note that you shouldn’t access the field or
even change it on your own. Once you save the document back, it will either succeed or fail with a
OptimisticLockingFailureException. If you get such an exception, the further approach depends on
what you want to achieve application wise. You should either retry the complete load-update-write
cycle or propagate the error to the upper layers for proper handling.

4.4. Validation
The library supports JSR 303 validation, which is based on annotations directly in your entities. Of
course you can add all kinds of validation in your service layer, but this way its nicely coupled to
your actual entities.

To make it work, you need to include two additional dependencies. JSR 303 and a library that
implements it, like the one supported by hibernate:

19

Example 14. Validation dependencies

<dependency>
 <groupId>javax.validation</groupId>
 <artifactId>validation-api</artifactId>
</dependency>
<dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-validator</artifactId>
</dependency>

Now you need to add two beans to your configuration:

Example 15. Validation beans

@Bean
public LocalValidatorFactoryBean validator() {
 return new LocalValidatorFactoryBean();
}

@Bean
public ValidatingCouchbaseEventListener validationEventListener() {
 return new ValidatingCouchbaseEventListener(validator());
}

Now you can annotate your fields with JSR303 annotations. If a validation on save() fails, a
ConstraintViolationException is thrown.

Example 16. Sample Validation Annotation

@Size(min = 10)
@Field
private String name;

4.5. Auditing
Entities can be automatically audited (tracing which user created the object, updated the object,
and at what times) through Spring Data auditing mechanisms.

First, note that only entities that have a @Version annotated field can be audited for creation
(otherwise the framework will interpret a creation as an update).

Auditing works by annotating fields with @CreatedBy, @CreatedDate, @LastModifiedBy and
@LastModifiedDate. The framework will automatically inject the correct values on those fields when

20

persisting the entity. The xxxDate annotations must be put on a Date field (or compatible, eg.
jodatime classes) while the xxxBy annotations can be put on fields of any class T (albeit both fields
must be of the same type).

To configure auditing, first you need to have an auditor aware bean in the context. Said bean must
be of type AuditorAware<T> (allowing to produce a value that can be stored in the xxxBy fields of
type T we saw earlier). Secondly, you must activate auditing in your @Configuration class by using
the @EnableCouchbaseAuditing annotation.

Here is an example:

Example 17. Sample Auditing Entity

@Document
public class AuditedItem {

 @Id
 private final String id;

 private String value;

 @CreatedBy
 private String creator;

 @LastModifiedBy
 private String lastModifiedBy;

 @LastModifiedDate
 private Date lastModification;

 @CreatedDate
 private Date creationDate;

 @Version
 private long version;

 //..omitted constructor/getters/setters/...
}

Notice both @CreatedBy and @LastModifiedBy are both put on a String field, so our AuditorAware must
work with String.

21

Example 18. Sample AuditorAware implementation

public class NaiveAuditorAware implements AuditorAware<String> {

 private String auditor = "auditor";

 @Override
 public String getCurrentAuditor() {
 return auditor;
 }

 public void setAuditor(String auditor) {
 this.auditor = auditor;
 }
}

To tie all that together, we use the java configuration both to declare an AuditorAware bean and to
activate auditing:

Example 19. Sample Auditing Configuration

@Configuration
@EnableCouchbaseAuditing //this activates auditing
public class AuditConfiguration extends AbstractCouchbaseConfiguration {

 //... a few abstract methods omitted here

 // this creates the auditor aware bean that will feed the annotations
 @Bean
 public NaiveAuditorAware testAuditorAware() {
 return new NaiveAuditorAware();
 }

22

Chapter 5. Auto generating keys
This chapter describes how couchbase document keys can be auto-generated using builtin
mechanisms. There are two types of auto-generation strategies supported.

• Key generation using attributes

• Key generation using uuid

NOTE The maximum key length supported by couchbase is 250 bytes.

5.1. Configuration
Keys to be auto-generated should be annotated with @GeneratedValue. The default strategy is
USE_ATTRIBUTES. Prefix and suffix for the key can be provided as part of the entity itself, these values
are not persisted, they are only used for key generation. The prefixes and suffixes are ordered using
the order value. The default order is 0, multiple prefixes without order will overwrite the previous.
If a value for id is already available, auto-generation will be skipped. The delimiter for
concatenation can be provided using delimiter, the default delimiter is ..

Example 20. Annotation for GeneratedValue

@Document
public class User {
 @Id @GeneratedValue(strategy = USE_ATTRIBUTES, delimiter = ".")
 private String id;
 @IdPrefix(order=0)
 private String userPrefix;
 @IdSuffix(order=0)
 private String userSuffix;
 ...
}

Common prefix and suffix for all entities keys can be added to CouchbaseTemplate directly. Once
added to the CouchbaseTemplate, they become immutable. These settings are always applied
irrespective of the GeneratedValue annotation.

Example 21. Common key settings in CouchbaseTemplate

@Autowired
CouchbaseTemplate couchbaseTemplate;
...
couchbaseTemplate.keySettings(KeySettings.build().prefix("ApplicationA").suffix("S
erver1").delimiter("::"));

23

Key will be auto-generated only for operations with direct entity input like insert, update, save,
delete using entity. For other operations requiring just the key, it can be generated using
CouchbaseTemplate.

Example 22. Standalone key generation in CouchbaseTemplate

@Autowired
CouchbaseTemplate couchbaseTemplate;
...
String id = couchbaseTemplate.getGeneratedId(entity);
...
repo.exists(id);

5.2. Key generation using attributes
It is a common practice to generate keys using a combination of the document attributes. Key
generation using attributes concatenates all the attribute values annotated with IdAttribute, based
on the ordering provided similar to prefixes and suffixes.

Example 23. Annotation for IdAttribute

@Document
public class User {
 @Id @GeneratedValue(strategy = USE_ATTRIBUTES)
 private String id;
 @IdAttribute
 private String userid;
 ...
}

5.3. Key generation using uuid
This auto-generation uses UUID random generator to generate document keys consuming 16 bytes
of key space. This mechanism is only recommended for test scaffolding.

Example 24. Annotation for Unique key generation

@Document
public class User {
 @Id @GeneratedValue(strategy = UNIQUE)
 private String id;
 ...
}

24

Chapter 6. Working with Spring Data
Repositories
The goal of Spring Data repository abstraction is to significantly reduce the amount of boilerplate
code required to implement data access layers for various persistence stores.

IMPORTANT

Spring Data repository documentation and your module

This chapter explains the core concepts and interfaces of Spring Data
repositories. The information in this chapter is pulled from the Spring Data
Commons module. It uses the configuration and code samples for the Java
Persistence API (JPA) module. Adapt the XML namespace declaration and the
types to be extended to the equivalents of the particular module that you are
using. Namespace reference covers XML configuration which is supported
across all Spring Data modules supporting the repository API, Repository
query keywords covers the query method keywords supported by the
repository abstraction in general. For detailed information on the specific
features of your module, consult the chapter on that module of this
document.

6.1. Core concepts
The central interface in Spring Data repository abstraction is Repository (probably not that much of
a surprise). It takes the domain class to manage as well as the id type of the domain class as type
arguments. This interface acts primarily as a marker interface to capture the types to work with
and to help you to discover interfaces that extend this one. The CrudRepository provides
sophisticated CRUD functionality for the entity class that is being managed.

25

Example 25. CrudRepository interface

public interface CrudRepository<T, ID extends Serializable>
 extends Repository<T, ID> {

 <S extends T> S save(S entity); ①

 T findOne(ID primaryKey); ②

 Iterable<T> findAll(); ③

 Long count(); ④

 void delete(T entity); ⑤

 boolean exists(ID primaryKey); ⑥

 // … more functionality omitted.
}

① Saves the given entity.

② Returns the entity identified by the given id.

③ Returns all entities.

④ Returns the number of entities.

⑤ Deletes the given entity.

⑥ Indicates whether an entity with the given id exists.

NOTE

We also provide persistence technology-specific abstractions like e.g. JpaRepository
or MongoRepository. Those interfaces extend CrudRepository and expose the
capabilities of the underlying persistence technology in addition to the rather
generic persistence technology-agnostic interfaces like e.g. CrudRepository.

On top of the CrudRepository there is a PagingAndSortingRepository abstraction that adds additional
methods to ease paginated access to entities:

Example 26. PagingAndSortingRepository

public interface PagingAndSortingRepository<T, ID extends Serializable>
 extends CrudRepository<T, ID> {

 Iterable<T> findAll(Sort sort);

 Page<T> findAll(Pageable pageable);
}

26

Accessing the second page of User by a page size of 20 you could simply do something like this:

PagingAndSortingRepository<User, Long> repository = // … get access to a bean
Page<User> users = repository.findAll(new PageRequest(1, 20));

In addition to query methods, query derivation for both count and delete queries, is available.

Example 27. Derived Count Query

public interface UserRepository extends CrudRepository<User, Long> {

 Long countByLastname(String lastname);
}

Example 28. Derived Delete Query

public interface UserRepository extends CrudRepository<User, Long> {

 Long deleteByLastname(String lastname);

 List<User> removeByLastname(String lastname);

}

6.2. Query methods
Standard CRUD functionality repositories usually have queries on the underlying datastore. With
Spring Data, declaring those queries becomes a four-step process:

1. Declare an interface extending Repository or one of its subinterfaces and type it to the domain
class and ID type that it will handle.

interface PersonRepository extends Repository<Person, Long> { … }

2. Declare query methods on the interface.

interface PersonRepository extends Repository<Person, Long> {
 List<Person> findByLastname(String lastname);
}

3. Set up Spring to create proxy instances for those interfaces. Either via JavaConfig:

27

import org.springframework.data.jpa.repository.config.EnableJpaRepositories;

@EnableJpaRepositories
class Config {}

or via XML configuration:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jpa="http://www.springframework.org/schema/data/jpa"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/data/jpa
 http://www.springframework.org/schema/data/jpa/spring-jpa.xsd">

 <jpa:repositories base-package="com.acme.repositories"/>

</beans>

The JPA namespace is used in this example. If you are using the repository abstraction for any
other store, you need to change this to the appropriate namespace declaration of your store
module which should be exchanging jpa in favor of, for example, mongodb.

Also, note that the JavaConfig variant doesn’t configure a package explictly as the package of the
annotated class is used by default. To customize the package to scan use one of the
basePackage… attribute of the data-store specific repository @Enable…-annotation.

4. Get the repository instance injected and use it.

public class SomeClient {

 @Autowired
 private PersonRepository repository;

 public void doSomething() {
 List<Person> persons = repository.findByLastname("Matthews");
 }
}

The sections that follow explain each step in detail.

6.3. Defining repository interfaces
As a first step you define a domain class-specific repository interface. The interface must extend
Repository and be typed to the domain class and an ID type. If you want to expose CRUD methods

28

for that domain type, extend CrudRepository instead of Repository.

6.3.1. Fine-tuning repository definition

Typically, your repository interface will extend Repository, CrudRepository or
PagingAndSortingRepository. Alternatively, if you do not want to extend Spring Data interfaces, you
can also annotate your repository interface with @RepositoryDefinition. Extending CrudRepository
exposes a complete set of methods to manipulate your entities. If you prefer to be selective about
the methods being exposed, simply copy the ones you want to expose from CrudRepository into your
domain repository.

NOTE
This allows you to define your own abstractions on top of the provided Spring Data
Repositories functionality.

Example 29. Selectively exposing CRUD methods

@NoRepositoryBean
interface MyBaseRepository<T, ID extends Serializable> extends Repository<T, ID> {

 T findOne(ID id);

 T save(T entity);
}

interface UserRepository extends MyBaseRepository<User, Long> {
 User findByEmailAddress(EmailAddress emailAddress);
}

In this first step you defined a common base interface for all your domain repositories and exposed
findOne(…) as well as save(…).These methods will be routed into the base repository
implementation of the store of your choice provided by Spring Data ,e.g. in the case if JPA
SimpleJpaRepository, because they are matching the method signatures in CrudRepository. So the
UserRepository will now be able to save users, and find single ones by id, as well as triggering a
query to find Users by their email address.

NOTE
Note, that the intermediate repository interface is annotated with
@NoRepositoryBean. Make sure you add that annotation to all repository interfaces
that Spring Data should not create instances for at runtime.

6.3.2. Using Repositories with multiple Spring Data modules

Using a unique Spring Data module in your application makes things simple hence, all repository
interfaces in the defined scope are bound to the Spring Data module. Sometimes applications
require using more than one Spring Data module. In such case, it’s required for a repository
definition to distinguish between persistence technologies. Spring Data enters strict repository
configuration mode because it detects multiple repository factories on the class path. Strict

29

configuration requires details on the repository or the domain class to decide about Spring Data
module binding for a repository definition:

1. If the repository definition extends the module-specific repository, then it’s a valid candidate for
the particular Spring Data module.

2. If the domain class is annotated with the module-specific type annotation, then it’s a valid
candidate for the particular Spring Data module. Spring Data modules accept either 3rd party
annotations (such as JPA’s @Entity) or provide own annotations such as @Document for Spring
Data MongoDB/Spring Data Elasticsearch.

Example 30. Repository definitions using Module-specific Interfaces

interface MyRepository extends JpaRepository<User, Long> { }

@NoRepositoryBean
interface MyBaseRepository<T, ID extends Serializable> extends JpaRepository<T,
ID> {
 …
}

interface UserRepository extends MyBaseRepository<User, Long> {
 …
}

MyRepository and UserRepository extend JpaRepository in their type hierarchy. They are valid
candidates for the Spring Data JPA module.

30

Example 31. Repository definitions using generic Interfaces

interface AmbiguousRepository extends Repository<User, Long> {
 …
}

@NoRepositoryBean
interface MyBaseRepository<T, ID extends Serializable> extends CrudRepository<T,
ID> {
 …
}

interface AmbiguousUserRepository extends MyBaseRepository<User, Long> {
 …
}

AmbiguousRepository and AmbiguousUserRepository extend only Repository and CrudRepository in
their type hierarchy. While this is perfectly fine using a unique Spring Data module, multiple
modules cannot distinguish to which particular Spring Data these repositories should be
bound.

Example 32. Repository definitions using Domain Classes with Annotations

interface PersonRepository extends Repository<Person, Long> {
 …
}

@Entity
public class Person {
 …
}

interface UserRepository extends Repository<User, Long> {
 …
}

@Document
public class User {
 …
}

PersonRepository references Person which is annotated with the JPA annotation @Entity so this
repository clearly belongs to Spring Data JPA. UserRepository uses User annotated with Spring
Data MongoDB’s @Document annotation.

31

Example 33. Repository definitions using Domain Classes with mixed Annotations

interface JpaPersonRepository extends Repository<Person, Long> {
 …
}

interface MongoDBPersonRepository extends Repository<Person, Long> {
 …
}

@Entity
@Document
public class Person {
 …
}

This example shows a domain class using both JPA and Spring Data MongoDB annotations. It
defines two repositories, JpaPersonRepository and MongoDBPersonRepository. One is intended for
JPA and the other for MongoDB usage. Spring Data is no longer able to tell the repositories
apart which leads to undefined behavior.

Repository type details and identifying domain class annotations are used for strict repository
configuration identify repository candidates for a particular Spring Data module. Using multiple
persistence technology-specific annotations on the same domain type is possible to reuse domain
types across multiple persistence technologies, but then Spring Data is no longer able to determine
a unique module to bind the repository.

The last way to distinguish repositories is scoping repository base packages. Base packages define
the starting points for scanning for repository interface definitions which implies to have
repository definitions located in the appropriate packages. By default, annotation-driven
configuration uses the package of the configuration class. The base package in XML-based
configuration is mandatory.

Example 34. Annotation-driven configuration of base packages

@EnableJpaRepositories(basePackages = "com.acme.repositories.jpa")
@EnableMongoRepositories(basePackages = "com.acme.repositories.mongo")
interface Configuration { }

6.4. Defining query methods
The repository proxy has two ways to derive a store-specific query from the method name. It can
derive the query from the method name directly, or by using a manually defined query. Available
options depend on the actual store. However, there’s got to be a strategy that decides what actual
query is created. Let’s have a look at the available options.

32

6.4.1. Query lookup strategies

The following strategies are available for the repository infrastructure to resolve the query. You can
configure the strategy at the namespace through the query-lookup-strategy attribute in case of XML
configuration or via the queryLookupStrategy attribute of the Enable${store}Repositories annotation
in case of Java config. Some strategies may not be supported for particular datastores.

• CREATE attempts to construct a store-specific query from the query method name. The general
approach is to remove a given set of well-known prefixes from the method name and parse the
rest of the method. Read more about query construction in Query creation.

• USE_DECLARED_QUERY tries to find a declared query and will throw an exception in case it can’t
find one. The query can be defined by an annotation somewhere or declared by other means.
Consult the documentation of the specific store to find available options for that store. If the
repository infrastructure does not find a declared query for the method at bootstrap time, it
fails.

• CREATE_IF_NOT_FOUND (default) combines CREATE and USE_DECLARED_QUERY. It looks up a declared
query first, and if no declared query is found, it creates a custom method name-based query.
This is the default lookup strategy and thus will be used if you do not configure anything
explicitly. It allows quick query definition by method names but also custom-tuning of these
queries by introducing declared queries as needed.

6.4.2. Query creation

The query builder mechanism built into Spring Data repository infrastructure is useful for building
constraining queries over entities of the repository. The mechanism strips the prefixes find…By,
read…By, query…By, count…By, and get…By from the method and starts parsing the rest of it. The
introducing clause can contain further expressions such as a Distinct to set a distinct flag on the
query to be created. However, the first By acts as delimiter to indicate the start of the actual criteria.
At a very basic level you can define conditions on entity properties and concatenate them with And
and Or.

33

Example 35. Query creation from method names

public interface PersonRepository extends Repository<User, Long> {

 List<Person> findByEmailAddressAndLastname(EmailAddress emailAddress, String
lastname);

 // Enables the distinct flag for the query
 List<Person> findDistinctPeopleByLastnameOrFirstname(String lastname, String
firstname);
 List<Person> findPeopleDistinctByLastnameOrFirstname(String lastname, String
firstname);

 // Enabling ignoring case for an individual property
 List<Person> findByLastnameIgnoreCase(String lastname);
 // Enabling ignoring case for all suitable properties
 List<Person> findByLastnameAndFirstnameAllIgnoreCase(String lastname, String
firstname);

 // Enabling static ORDER BY for a query
 List<Person> findByLastnameOrderByFirstnameAsc(String lastname);
 List<Person> findByLastnameOrderByFirstnameDesc(String lastname);
}

The actual result of parsing the method depends on the persistence store for which you create the
query. However, there are some general things to notice.

• The expressions are usually property traversals combined with operators that can be
concatenated. You can combine property expressions with AND and OR. You also get support for
operators such as Between, LessThan, GreaterThan, Like for the property expressions. The
supported operators can vary by datastore, so consult the appropriate part of your reference
documentation.

• The method parser supports setting an IgnoreCase flag for individual properties (for example,
findByLastnameIgnoreCase(…)) or for all properties of a type that support ignoring case (usually
String instances, for example, findByLastnameAndFirstnameAllIgnoreCase(…)). Whether ignoring
cases is supported may vary by store, so consult the relevant sections in the reference
documentation for the store-specific query method.

• You can apply static ordering by appending an OrderBy clause to the query method that
references a property and by providing a sorting direction (Asc or Desc). To create a query
method that supports dynamic sorting, see Special parameter handling.

6.4.3. Property expressions

Property expressions can refer only to a direct property of the managed entity, as shown in the
preceding example. At query creation time you already make sure that the parsed property is a
property of the managed domain class. However, you can also define constraints by traversing
nested properties. Assume a Person has an Address with a ZipCode. In that case a method name of

34

List<Person> findByAddressZipCode(ZipCode zipCode);

creates the property traversal x.address.zipCode. The resolution algorithm starts with interpreting
the entire part (AddressZipCode) as the property and checks the domain class for a property with
that name (uncapitalized). If the algorithm succeeds it uses that property. If not, the algorithm splits
up the source at the camel case parts from the right side into a head and a tail and tries to find the
corresponding property, in our example, AddressZip and Code. If the algorithm finds a property with
that head it takes the tail and continue building the tree down from there, splitting the tail up in the
way just described. If the first split does not match, the algorithm move the split point to the left
(Address, ZipCode) and continues.

Although this should work for most cases, it is possible for the algorithm to select the wrong
property. Suppose the Person class has an addressZip property as well. The algorithm would match
in the first split round already and essentially choose the wrong property and finally fail (as the
type of addressZip probably has no code property).

To resolve this ambiguity you can use _ inside your method name to manually define traversal
points. So our method name would end up like so:

List<Person> findByAddress_ZipCode(ZipCode zipCode);

As we treat underscore as a reserved character we strongly advise to follow standard Java naming
conventions (i.e. not using underscores in property names but camel case instead).

6.4.4. Special parameter handling

To handle parameters in your query you simply define method parameters as already seen in the
examples above. Besides that the infrastructure will recognize certain specific types like Pageable
and Sort to apply pagination and sorting to your queries dynamically.

Example 36. Using Pageable, Slice and Sort in query methods

Page<User> findByLastname(String lastname, Pageable pageable);

Slice<User> findByLastname(String lastname, Pageable pageable);

List<User> findByLastname(String lastname, Sort sort);

List<User> findByLastname(String lastname, Pageable pageable);

The first method allows you to pass an org.springframework.data.domain.Pageable instance to the
query method to dynamically add paging to your statically defined query. A Page knows about the
total number of elements and pages available. It does so by the infrastructure triggering a count
query to calculate the overall number. As this might be expensive depending on the store used,
Slice can be used as return instead. A Slice only knows about whether there’s a next Slice

35

available which might be just sufficient when walking through a larger result set.

Sorting options are handled through the Pageable instance too. If you only need sorting, simply add
an org.springframework.data.domain.Sort parameter to your method. As you also can see, simply
returning a List is possible as well. In this case the additional metadata required to build the actual
Page instance will not be created (which in turn means that the additional count query that would
have been necessary not being issued) but rather simply restricts the query to look up only the
given range of entities.

NOTE
To find out how many pages you get for a query entirely you have to trigger an
additional count query. By default this query will be derived from the query you
actually trigger.

6.4.5. Limiting query results

The results of query methods can be limited via the keywords first or top, which can be used
interchangeably. An optional numeric value can be appended to top/first to specify the maximum
result size to be returned. If the number is left out, a result size of 1 is assumed.

Example 37. Limiting the result size of a query with Top and First

User findFirstByOrderByLastnameAsc();

User findTopByOrderByAgeDesc();

Page<User> queryFirst10ByLastname(String lastname, Pageable pageable);

Slice<User> findTop3ByLastname(String lastname, Pageable pageable);

List<User> findFirst10ByLastname(String lastname, Sort sort);

List<User> findTop10ByLastname(String lastname, Pageable pageable);

The limiting expressions also support the Distinct keyword. Also, for the queries limiting the result
set to one instance, wrapping the result into an Optional is supported.

If pagination or slicing is applied to a limiting query pagination (and the calculation of the number
of pages available) then it is applied within the limited result.

NOTE
Note that limiting the results in combination with dynamic sorting via a Sort
parameter allows to express query methods for the 'K' smallest as well as for the 'K'
biggest elements.

6.4.6. Streaming query results

The results of query methods can be processed incrementally by using a Java 8 Stream<T> as return
type. Instead of simply wrapping the query results in a Stream data store specific methods are used

36

to perform the streaming.

Example 38. Stream the result of a query with Java 8 Stream<T>

@Query("select u from User u")
Stream<User> findAllByCustomQueryAndStream();

Stream<User> readAllByFirstnameNotNull();

@Query("select u from User u")
Stream<User> streamAllPaged(Pageable pageable);

NOTE
A Stream potentially wraps underlying data store specific resources and must
therefore be closed after usage. You can either manually close the Stream using the
close() method or by using a Java 7 try-with-resources block.

Example 39. Working with a Stream<T> result in a try-with-resources block

try (Stream<User> stream = repository.findAllByCustomQueryAndStream()) {
 stream.forEach(…);
}

NOTE Not all Spring Data modules currently support Stream<T> as a return type.

6.4.7. Async query results

Repository queries can be executed asynchronously using Spring’s asynchronous method execution
capability. This means the method will return immediately upon invocation and the actual query
execution will occur in a task that has been submitted to a Spring TaskExecutor.

@Async
Future<User> findByFirstname(String firstname); ①

@Async
CompletableFuture<User> findOneByFirstname(String firstname); ②

@Async
ListenableFuture<User> findOneByLastname(String lastname); ③

① Use java.util.concurrent.Future as return type.

② Use a Java 8 java.util.concurrent.CompletableFuture as return type.

③ Use a org.springframework.util.concurrent.ListenableFuture as return type.

37

http://docs.spring.io/spring/docs/current/spring-framework-reference/html#scheduling
http://docs.spring.io/spring/docs/current/spring-framework-reference/html#scheduling

6.5. Creating repository instances
In this section you create instances and bean definitions for the repository interfaces defined. One
way to do so is using the Spring namespace that is shipped with each Spring Data module that
supports the repository mechanism although we generally recommend to use the Java-Config style
configuration.

6.5.1. XML configuration

Each Spring Data module includes a repositories element that allows you to simply define a base
package that Spring scans for you.

Example 40. Enabling Spring Data repositories via XML

<?xml version="1.0" encoding="UTF-8"?>
<beans:beans xmlns:beans="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://www.springframework.org/schema/data/jpa"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/data/jpa
 http://www.springframework.org/schema/data/jpa/spring-jpa.xsd">

 <repositories base-package="com.acme.repositories" />

</beans:beans>

In the preceding example, Spring is instructed to scan com.acme.repositories and all its sub-
packages for interfaces extending Repository or one of its sub-interfaces. For each interface found,
the infrastructure registers the persistence technology-specific FactoryBean to create the
appropriate proxies that handle invocations of the query methods. Each bean is registered under a
bean name that is derived from the interface name, so an interface of UserRepository would be
registered under userRepository. The base-package attribute allows wildcards, so that you can define
a pattern of scanned packages.

Using filters

By default the infrastructure picks up every interface extending the persistence technology-specific
Repository sub-interface located under the configured base package and creates a bean instance for
it. However, you might want more fine-grained control over which interfaces bean instances get
created for. To do this you use <include-filter /> and <exclude-filter /> elements inside
<repositories />. The semantics are exactly equivalent to the elements in Spring’s context
namespace. For details, see Spring reference documentation on these elements.

For example, to exclude certain interfaces from instantiation as repository, you could use the
following configuration:

38

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/beans.html#beans-scanning-filters

Example 41. Using exclude-filter element

<repositories base-package="com.acme.repositories">
 <context:exclude-filter type="regex" expression=".*SomeRepository" />
</repositories>

This example excludes all interfaces ending in SomeRepository from being instantiated.

6.5.2. JavaConfig

The repository infrastructure can also be triggered using a store-specific
@Enable${store}Repositories annotation on a JavaConfig class. For an introduction into Java-based
configuration of the Spring container, see the reference documentation. [1: JavaConfig in the Spring
reference documentation]

A sample configuration to enable Spring Data repositories looks something like this.

Example 42. Sample annotation based repository configuration

@Configuration
@EnableJpaRepositories("com.acme.repositories")
class ApplicationConfiguration {

 @Bean
 public EntityManagerFactory entityManagerFactory() {
 // …
 }
}

NOTE

The sample uses the JPA-specific annotation, which you would change according to
the store module you actually use. The same applies to the definition of the
EntityManagerFactory bean. Consult the sections covering the store-specific
configuration.

6.5.3. Standalone usage

You can also use the repository infrastructure outside of a Spring container, e.g. in CDI
environments. You still need some Spring libraries in your classpath, but generally you can set up
repositories programmatically as well. The Spring Data modules that provide repository support
ship a persistence technology-specific RepositoryFactory that you can use as follows.

39

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/beans.html#beans-java
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/beans.html#beans-java

Example 43. Standalone usage of repository factory

RepositoryFactorySupport factory = … // Instantiate factory here
UserRepository repository = factory.getRepository(UserRepository.class);

6.6. Custom implementations for Spring Data
repositories
Often it is necessary to provide a custom implementation for a few repository methods. Spring Data
repositories easily allow you to provide custom repository code and integrate it with generic CRUD
abstraction and query method functionality.

6.6.1. Adding custom behavior to single repositories

To enrich a repository with custom functionality you first define an interface and an
implementation for the custom functionality. Use the repository interface you provided to extend
the custom interface.

Example 44. Interface for custom repository functionality

interface UserRepositoryCustom {
 public void someCustomMethod(User user);
}

Example 45. Implementation of custom repository functionality

class UserRepositoryImpl implements UserRepositoryCustom {

 public void someCustomMethod(User user) {
 // Your custom implementation
 }
}

NOTE
The most important bit for the class to be found is the Impl postfix of the name on it
compared to the core repository interface (see below).

The implementation itself does not depend on Spring Data and can be a regular Spring bean. So you
can use standard dependency injection behavior to inject references to other beans like a
JdbcTemplate, take part in aspects, and so on.

40

Example 46. Changes to the your basic repository interface

interface UserRepository extends CrudRepository<User, Long>, UserRepositoryCustom
{

 // Declare query methods here
}

Let your standard repository interface extend the custom one. Doing so combines the CRUD and
custom functionality and makes it available to clients.

Configuration

If you use namespace configuration, the repository infrastructure tries to autodetect custom
implementations by scanning for classes below the package we found a repository in. These classes
need to follow the naming convention of appending the namespace element’s attribute repository-
impl-postfix to the found repository interface name. This postfix defaults to Impl.

Example 47. Configuration example

<repositories base-package="com.acme.repository" />

<repositories base-package="com.acme.repository" repository-impl-postfix="FooBar"
/>

The first configuration example will try to look up a class com.acme.repository.UserRepositoryImpl
to act as custom repository implementation, whereas the second example will try to lookup
com.acme.repository.UserRepositoryFooBar.

Resolution of ambiguity

If multiple implementations with matching class names get found in different packages, Spring
Data uses the bean names to identify the correct one to use.

Given the following two custom implementations for the UserRepository introduced above the first
implementation will get picked. Its bean name is userRepositoryImpl matches that of the repository
interface (userRepository) plus the postfix Impl.

41

Example 48. Resolution of amibiguous implementations

package com.acme.impl.one;

class UserRepositoryImpl implements UserRepositoryCustom {

 // Your custom implementation
}

package com.acme.impl.two;

@Component("specialCustomImpl")
class UserRepositoryImpl implements UserRepositoryCustom {

 // Your custom implementation
}

If you annotate the UserRepository interface with @Component("specialCustom") the bean name plus
Impl matches the one defined for the repository implementation in com.acme.impl.two and it will be
picked instead of the first one.

Manual wiring

The approach just shown works well if your custom implementation uses annotation-based
configuration and autowiring only, as it will be treated as any other Spring bean. If your custom
implementation bean needs special wiring, you simply declare the bean and name it after the
conventions just described. The infrastructure will then refer to the manually defined bean
definition by name instead of creating one itself.

Example 49. Manual wiring of custom implementations

<repositories base-package="com.acme.repository" />

<beans:bean id="userRepositoryImpl" class="…">
 <!-- further configuration -->
</beans:bean>

6.6.2. Adding custom behavior to all repositories

The preceding approach is not feasible when you want to add a single method to all your repository
interfaces. To add custom behavior to all repositories, you first add an intermediate interface to
declare the shared behavior.

42

Example 50. An interface declaring custom shared behavior

@NoRepositoryBean
public interface MyRepository<T, ID extends Serializable>
 extends PagingAndSortingRepository<T, ID> {

 void sharedCustomMethod(ID id);
}

Now your individual repository interfaces will extend this intermediate interface instead of the
Repository interface to include the functionality declared. Next, create an implementation of the
intermediate interface that extends the persistence technology-specific repository base class. This
class will then act as a custom base class for the repository proxies.

Example 51. Custom repository base class

public class MyRepositoryImpl<T, ID extends Serializable>
 extends SimpleJpaRepository<T, ID> implements MyRepository<T, ID> {

 private final EntityManager entityManager;

 public MyRepositoryImpl(JpaEntityInformation entityInformation,
 EntityManager entityManager) {
 super(entityInformation, entityManager);

 // Keep the EntityManager around to used from the newly introduced methods.
 this.entityManager = entityManager;
 }

 public void sharedCustomMethod(ID id) {
 // implementation goes here
 }
}

WARNING

The class needs to have a constructor of the super class which the store-
specific repository factory implementation is using. In case the repository base
class has multiple constructors, override the one taking an EntityInformation
plus a store specific infrastructure object (e.g. an EntityManager or a template
class).

The default behavior of the Spring <repositories /> namespace is to provide an implementation for
all interfaces that fall under the base-package. This means that if left in its current state, an
implementation instance of MyRepository will be created by Spring. This is of course not desired as it
is just supposed to act as an intermediary between Repository and the actual repository interfaces
you want to define for each entity. To exclude an interface that extends Repository from being

43

instantiated as a repository instance, you can either annotate it with @NoRepositoryBean (as seen
above) or move it outside of the configured base-package.

The final step is to make the Spring Data infrastructure aware of the customized repository base
class. In JavaConfig this is achieved by using the repositoryBaseClass attribute of the @Enable
…Repositories annotation:

Example 52. Configuring a custom repository base class using JavaConfig

@Configuration
@EnableJpaRepositories(repositoryBaseClass = MyRepositoryImpl.class)
class ApplicationConfiguration { … }

A corresponding attribute is available in the XML namespace.

Example 53. Configuring a custom repository base class using XML

<repositories base-package="com.acme.repository"
 base-class="….MyRepositoryImpl" />

6.7. Publishing events from aggregate roots
Entities managed by repositories are aggregate roots. In a Domain-Driven Design application, these
aggregate roots usually publish domain events. Spring Data provides an annotation @DomainEvents
you can use on a method of your aggregate root to make that publication as easy as possible.

44

Example 54. Exposing domain events from an aggregate root

class AnAggregateRoot {

 @DomainEvents ①
 Collection<Object> domainEvents() {
 // … return events you want to get published here
 }

 @AfterDomainEventsPublication ②
 void callbackMethod() {
 // … potentially clean up domain events list
 }
}

① The method using @DomainEvents can either return a single event instance or a collection of
events. It must not take any arguments.

② After all events have been published, a method annotated with
@AfterDomainEventsPublication. It e.g. can be used to potentially clean the list of events to be
published.

The methods will be called every time one of a Spring Data repository’s save(…) methods is called.

6.8. Spring Data extensions
This section documents a set of Spring Data extensions that enable Spring Data usage in a variety of
contexts. Currently most of the integration is targeted towards Spring MVC.

6.8.1. Querydsl Extension

Querydsl is a framework which enables the construction of statically typed SQL-like queries via its
fluent API.

Several Spring Data modules offer integration with Querydsl via QueryDslPredicateExecutor.

45

http://www.querydsl.com/

Example 55. QueryDslPredicateExecutor interface

public interface QueryDslPredicateExecutor<T> {

 T findOne(Predicate predicate); ①

 Iterable<T> findAll(Predicate predicate); ②

 long count(Predicate predicate); ③

 boolean exists(Predicate predicate); ④

 // … more functionality omitted.
}

① Finds and returns a single entity matching the Predicate.

② Finds and returns all entities matching the Predicate.

③ Returns the number of entities matching the Predicate.

④ Returns if an entity that matches the Predicate exists.

To make use of Querydsl support simply extend QueryDslPredicateExecutor on your repository
interface.

Example 56. Querydsl integration on repositories

interface UserRepository extends CrudRepository<User, Long>,
QueryDslPredicateExecutor<User> {

}

The above enables to write typesafe queries using Querydsl Predicate s.

Predicate predicate = user.firstname.equalsIgnoreCase("dave")
 .and(user.lastname.startsWithIgnoreCase("mathews"));

userRepository.findAll(predicate);

6.8.2. Web support

NOTE

This section contains the documentation for the Spring Data web support as it is
implemented as of Spring Data Commons in the 1.6 range. As it the newly
introduced support changes quite a lot of things we kept the documentation of the
former behavior in Legacy web support.

46

Spring Data modules ships with a variety of web support if the module supports the repository
programming model. The web related stuff requires Spring MVC JARs on the classpath, some of
them even provide integration with Spring HATEOAS [2: Spring HATEOAS - https://github.com/
SpringSource/spring-hateoas]. In general, the integration support is enabled by using the
@EnableSpringDataWebSupport annotation in your JavaConfig configuration class.

Example 57. Enabling Spring Data web support

@Configuration
@EnableWebMvc
@EnableSpringDataWebSupport
class WebConfiguration { }

The @EnableSpringDataWebSupport annotation registers a few components we will discuss in a bit. It
will also detect Spring HATEOAS on the classpath and register integration components for it as well
if present.

Alternatively, if you are using XML configuration, register either SpringDataWebSupport or
HateoasAwareSpringDataWebSupport as Spring beans:

Example 58. Enabling Spring Data web support in XML

<bean class="org.springframework.data.web.config.SpringDataWebConfiguration" />

<!-- If you're using Spring HATEOAS as well register this one *instead* of the
former -->
<bean class=
"org.springframework.data.web.config.HateoasAwareSpringDataWebConfiguration" />

Basic web support

The configuration setup shown above will register a few basic components:

• A DomainClassConverter to enable Spring MVC to resolve instances of repository managed
domain classes from request parameters or path variables.

• HandlerMethodArgumentResolver implementations to let Spring MVC resolve Pageable and Sort
instances from request parameters.

DomainClassConverter

The DomainClassConverter allows you to use domain types in your Spring MVC controller method
signatures directly, so that you don’t have to manually lookup the instances via the repository:

47

https://github.com/SpringSource/spring-hateoas
https://github.com/SpringSource/spring-hateoas

Example 59. A Spring MVC controller using domain types in method signatures

@Controller
@RequestMapping("/users")
public class UserController {

 @RequestMapping("/{id}")
 public String showUserForm(@PathVariable("id") User user, Model model) {

 model.addAttribute("user", user);
 return "userForm";
 }
}

As you can see the method receives a User instance directly and no further lookup is necessary. The
instance can be resolved by letting Spring MVC convert the path variable into the id type of the
domain class first and eventually access the instance through calling findOne(…) on the repository
instance registered for the domain type.

NOTE
Currently the repository has to implement CrudRepository to be eligible to be
discovered for conversion.

HandlerMethodArgumentResolvers for Pageable and Sort

The configuration snippet above also registers a PageableHandlerMethodArgumentResolver as well as
an instance of SortHandlerMethodArgumentResolver. The registration enables Pageable and Sort being
valid controller method arguments

Example 60. Using Pageable as controller method argument

@Controller
@RequestMapping("/users")
public class UserController {

 @Autowired UserRepository repository;

 @RequestMapping
 public String showUsers(Model model, Pageable pageable) {

 model.addAttribute("users", repository.findAll(pageable));
 return "users";
 }
}

This method signature will cause Spring MVC try to derive a Pageable instance from the request
parameters using the following default configuration:

48

Table 2. Request parameters evaluated for Pageable instances

page Page you want to retrieve, 0 indexed and defaults to 0.

size Size of the page you want to retrieve, defaults to 20.

sort Properties that should be sorted by in the format property,property(,ASC|DESC). Default sort
direction is ascending. Use multiple sort parameters if you want to switch directions, e.g.
?sort=firstname&sort=lastname,asc.

To customize this behavior register a bean implementing the interface
PageableHandlerMethodArgumentResolverCustomizer or SortHandlerMethodArgumentResolverCustomizer

respectively. It’s customize() method will get called allowing you to change settings. Like in the
following example.

@Bean SortHandlerMethodArgumentResolverCustomizer sortCustomizer() {
 return s -> s.setPropertyDelimiter("<-->");
}

If setting the properties of an existing MethodArgumentResolver isn’t sufficient for your purpose
extend either SpringDataWebConfiguration or the HATEOAS-enabled equivalent and override the
pageableResolver() or sortResolver() methods and import your customized configuration file
instead of using the @Enable-annotation.

In case you need multiple Pageable or Sort instances to be resolved from the request (for multiple
tables, for example) you can use Spring’s @Qualifier annotation to distinguish one from another.
The request parameters then have to be prefixed with ${qualifier}_. So for a method signature like
this:

public String showUsers(Model model,
 @Qualifier("foo") Pageable first,
 @Qualifier("bar") Pageable second) { … }

you have to populate foo_page and bar_page etc.

The default Pageable handed into the method is equivalent to a new PageRequest(0, 20) but can be
customized using the @PageableDefaults annotation on the Pageable parameter.

Hypermedia support for Pageables

Spring HATEOAS ships with a representation model class PagedResources that allows enriching the
content of a Page instance with the necessary Page metadata as well as links to let the clients easily
navigate the pages. The conversion of a Page to a PagedResources is done by an implementation of
the Spring HATEOAS ResourceAssembler interface, the PagedResourcesAssembler.

49

Example 61. Using a PagedResourcesAssembler as controller method argument

@Controller
class PersonController {

 @Autowired PersonRepository repository;

 @RequestMapping(value = "/persons", method = RequestMethod.GET)
 HttpEntity<PagedResources<Person>> persons(Pageable pageable,
 PagedResourcesAssembler assembler) {

 Page<Person> persons = repository.findAll(pageable);
 return new ResponseEntity<>(assembler.toResources(persons), HttpStatus.OK);
 }
}

Enabling the configuration as shown above allows the PagedResourcesAssembler to be used as
controller method argument. Calling toResources(…) on it will cause the following:

• The content of the Page will become the content of the PagedResources instance.

• The PagedResources will get a PageMetadata instance attached populated with information form
the Page and the underlying PageRequest.

• The PagedResources gets prev and next links attached depending on the page’s state. The links
will point to the URI the method invoked is mapped to. The pagination parameters added to the
method will match the setup of the PageableHandlerMethodArgumentResolver to make sure the
links can be resolved later on.

Assume we have 30 Person instances in the database. You can now trigger a request GET
http://localhost:8080/persons and you’ll see something similar to this:

{ "links" : [{ "rel" : "next",
 "href" : "http://localhost:8080/persons?page=1&size=20 }
],
 "content" : [
 … // 20 Person instances rendered here
],
 "pageMetadata" : {
 "size" : 20,
 "totalElements" : 30,
 "totalPages" : 2,
 "number" : 0
 }
}

You see that the assembler produced the correct URI and also picks up the default configuration
present to resolve the parameters into a Pageable for an upcoming request. This means, if you

50

http://localhost:8080/persons
http://localhost:8080/persons
http://localhost:8080/persons

change that configuration, the links will automatically adhere to the change. By default the
assembler points to the controller method it was invoked in but that can be customized by handing
in a custom Link to be used as base to build the pagination links to overloads of the
PagedResourcesAssembler.toResource(…) method.

Querydsl web support

For those stores having QueryDSL integration it is possible to derive queries from the attributes
contained in a Request query string.

This means that given the User object from previous samples a query string

?firstname=Dave&lastname=Matthews

can be resolved to

QUser.user.firstname.eq("Dave").and(QUser.user.lastname.eq("Matthews"))

using the QuerydslPredicateArgumentResolver.

NOTE
The feature will be automatically enabled along @EnableSpringDataWebSupport when
Querydsl is found on the classpath.

Adding a @QuerydslPredicate to the method signature will provide a ready to use Predicate which
can be executed via the QueryDslPredicateExecutor.

TIP
Type information is typically resolved from the methods return type. Since those
information does not necessarily match the domain type it might be a good idea to use
the root attribute of QuerydslPredicate.

51

http://www.querydsl.com/

@Controller
class UserController {

 @Autowired UserRepository repository;

 @RequestMapping(value = "/", method = RequestMethod.GET)
 String index(Model model, @QuerydslPredicate(root = User.class) Predicate
predicate, ①
 Pageable pageable, @RequestParam MultiValueMap<String, String>
parameters) {

 model.addAttribute("users", repository.findAll(predicate, pageable));

 return "index";
 }
}

① Resolve query string arguments to matching Predicate for User.

The default binding is as follows:

• Object on simple properties as eq.

• Object on collection like properties as contains.

• Collection on simple properties as in.

Those bindings can be customized via the bindings attribute of @QuerydslPredicate or by making use
of Java 8 default methods adding the QuerydslBinderCustomizer to the repository interface.

52

interface UserRepository extends CrudRepository<User, String>,
 QueryDslPredicateExecutor<User>,
①
 QuerydslBinderCustomizer<QUser> {
②

 @Override
 default public void customize(QuerydslBindings bindings, QUser user) {

 bindings.bind(user.username).first((path, value) -> path.contains(value))
③
 bindings.bind(String.class)
 .first((StringPath path, String value) -> path.containsIgnoreCase(value));
④
 bindings.excluding(user.password);
⑤
 }
}

① QueryDslPredicateExecutor provides access to specific finder methods for Predicate.

② QuerydslBinderCustomizer defined on the repository interface will be automatically picked
up and shortcuts @QuerydslPredicate(bindings=…).

③ Define the binding for the username property to be a simple contains binding.

④ Define the default binding for String properties to be a case insensitive contains match.

⑤ Exclude the password property from Predicate resolution.

6.8.3. Repository populators

If you work with the Spring JDBC module, you probably are familiar with the support to populate a
DataSource using SQL scripts. A similar abstraction is available on the repositories level, although it
does not use SQL as the data definition language because it must be store-independent. Thus the
populators support XML (through Spring’s OXM abstraction) and JSON (through Jackson) to define
data with which to populate the repositories.

Assume you have a file data.json with the following content:

Example 62. Data defined in JSON

[{ "_class" : "com.acme.Person",
 "firstname" : "Dave",
 "lastname" : "Matthews" },
 { "_class" : "com.acme.Person",
 "firstname" : "Carter",
 "lastname" : "Beauford" }]

53

You can easily populate your repositories by using the populator elements of the repository
namespace provided in Spring Data Commons. To populate the preceding data to your
PersonRepository , do the following:

Example 63. Declaring a Jackson repository populator

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:repository="http://www.springframework.org/schema/data/repository"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/data/repository
 http://www.springframework.org/schema/data/repository/spring-repository.xsd">

 <repository:jackson2-populator locations="classpath:data.json" />

</beans>

This declaration causes the data.json file to be read and deserialized via a Jackson ObjectMapper.

The type to which the JSON object will be unmarshalled to will be determined by inspecting the
_class attribute of the JSON document. The infrastructure will eventually select the appropriate
repository to handle the object just deserialized.

To rather use XML to define the data the repositories shall be populated with, you can use the
unmarshaller-populator element. You configure it to use one of the XML marshaller options Spring
OXM provides you with. See the Spring reference documentation for details.

54

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/oxm.html

Example 64. Declaring an unmarshalling repository populator (using JAXB)

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:repository="http://www.springframework.org/schema/data/repository"
 xmlns:oxm="http://www.springframework.org/schema/oxm"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/data/repository
 http://www.springframework.org/schema/data/repository/spring-repository.xsd
 http://www.springframework.org/schema/oxm
 http://www.springframework.org/schema/oxm/spring-oxm.xsd">

 <repository:unmarshaller-populator locations="classpath:data.json"
 unmarshaller-ref="unmarshaller" />

 <oxm:jaxb2-marshaller contextPath="com.acme" />

</beans>

6.8.4. Legacy web support

Domain class web binding for Spring MVC

Given you are developing a Spring MVC web application you typically have to resolve domain class
ids from URLs. By default your task is to transform that request parameter or URL part into the
domain class to hand it to layers below then or execute business logic on the entities directly. This
would look something like this:

55

@Controller
@RequestMapping("/users")
public class UserController {

 private final UserRepository userRepository;

 @Autowired
 public UserController(UserRepository userRepository) {
 Assert.notNull(repository, "Repository must not be null!");
 this.userRepository = userRepository;
 }

 @RequestMapping("/{id}")
 public String showUserForm(@PathVariable("id") Long id, Model model) {

 // Do null check for id
 User user = userRepository.findOne(id);
 // Do null check for user

 model.addAttribute("user", user);
 return "user";
 }
}

First you declare a repository dependency for each controller to look up the entity managed by the
controller or repository respectively. Looking up the entity is boilerplate as well, as it’s always a
findOne(…) call. Fortunately Spring provides means to register custom components that allow
conversion between a String value to an arbitrary type.

PropertyEditors

For Spring versions before 3.0 simple Java PropertyEditors had to be used. To integrate with that,
Spring Data offers a DomainClassPropertyEditorRegistrar, which looks up all Spring Data
repositories registered in the ApplicationContext and registers a custom PropertyEditor for the
managed domain class.

<bean class="….web.servlet.mvc.annotation.AnnotationMethodHandlerAdapter">
 <property name="webBindingInitializer">
 <bean class="….web.bind.support.ConfigurableWebBindingInitializer">
 <property name="propertyEditorRegistrars">
 <bean class=
"org.springframework.data.repository.support.DomainClassPropertyEditorRegistrar" />
 </property>
 </bean>
 </property>
</bean>

If you have configured Spring MVC as in the preceding example, you can configure your controller

56

as follows, which reduces a lot of the clutter and boilerplate.

@Controller
@RequestMapping("/users")
public class UserController {

 @RequestMapping("/{id}")
 public String showUserForm(@PathVariable("id") User user, Model model) {

 model.addAttribute("user", user);
 return "userForm";
 }
}

57

Chapter 7. Couchbase repositories
The goal of Spring Data repository abstraction is to significantly reduce the amount of boilerplate
code required to implement data access layers for various persistence stores.

There are three backing mechanisms in Couchbase for repositories, described in the sections of this
chapter:

• N1QL based querying

• View based querying

• Spatial View based querying

CRUD operations are still mostly backed by Couchbase views (see Backing Views). Such views (and,
for N1QL, equivalent indexes) can be automatically built, but note this is discouraged in
production and can be an expensive operation (see Automatic Index Management).

Note that you can tune the consistency you want for your queries (see Querying with consistency)
and have different repositories backed by different buckets (see Working with multiple buckets)

7.1. Configuration
While support for repositories is always present, you need to enable them in general or for a
specific namespace. If you extend AbstractCouchbaseConfiguration, just use the
@EnableCouchbaseRepositories annotation. It provides lots of possible options to narrow or
customize the search path, one of the most common ones is basePackages.

Example 65. Annotation-Based Repository Setup

@Configuration
@EnableCouchbaseRepositories(basePackages = {"com.couchbase.example.repos"})
public class Config extends AbstractCouchbaseConfiguration {
 //...
}

An advanced usage is described in Working with multiple buckets.

XML-based configuration is also available:

Example 66. XML-Based Repository Setup

<couchbase:repositories base-package="com.couchbase.example.repos" />

58

7.2. Usage
In the simplest case, your repository will extend the CrudRepository<T, String>, where T is the
entity that you want to expose. Let’s look at a repository for a UserInfo:

Example 67. A UserInfo repository

import org.springframework.data.repository.CrudRepository;

public interface UserRepository extends CrudRepository<UserInfo, String> {
}

Please note that this is just an interface and not an actual class. In the background, when your
context gets initialized, actual implementations for your repository descriptions get created and
you can access them through regular beans. This means you will save lots of boilerplate code while
still exposing full CRUD semantics to your service layer and application.

Now, let’s imagine we @Autowire the UserRepository to a class that makes use of it. What methods do
we have available?

Table 3. Exposed methods on the UserRepository

Method Description

UserInfo save(UserInfo entity) Save the given entity.

Iterable<UserInfo> save(Iterable<UserInfo>
entity)

Save the list of entities.

UserInfo findOne(String id) Find a entity by its unique id.

boolean exists(String id) Check if a given entity exists by its unique id.

Iterable<UserInfo> findAll() (*) Find all entities by this type in the bucket.

Iterable<UserInfo> findAll(Iterable<String> ids) Find all entities by this type and the given list of
ids.

long count() (*) Count the number of entities in the bucket.

void delete(String id) Delete the entity by its id.

void delete(UserInfo entity) Delete the entity.

void delete(Iterable<UserInfo> entities) Delete all given entities.

void deleteAll() (*) Delete all entities by type in the bucket.

Now that’s awesome! Just by defining an interface we get full CRUD functionality on top of our
managed entity. All methods suffixed with (*) in the table are backed by Views, which is explained
later.

While the exposed methods provide you with a great variety of access patterns, very often you need
to define custom ones. You can do this by adding method declarations to your interface, which will
be automatically resolved to requests in the background, as we’ll see in the next sections.

59

7.3. Repositories and Querying

7.3.1. N1QL based querying

As of version 4.0, Couchbase Server ships with a new query language called N1QL. In Spring-Data-
Couchbase 2.0, N1QL is the default way of doing queries and will allow you to fully derive queries
from a method name.

Prerequisite is to have a N1QL-compatible cluster and to have created a PRIMARY INDEX on the
bucket where the entities will be stored. DML queries are supported from Couchbase server version
4.1.

WARNING
If it is detected at configuration time that the cluster doesn’t support N1QL
while there are @Query annotated methods or non-annotated methods in your
repository interface, a UnsupportedCouchbaseFeatureException will be thrown.

Here is an example:

Example 68. An extended UserInfo repository with N1QL queries

public interface UserRepository extends CrudRepository<UserInfo, String> {

 @Query("#{#n1ql.selectEntity} WHERE role = 'admin' AND #{#n1ql.filter}")
 List<UserInfo> findAllAdmins();

 List<UserInfo> findByFirstname(String fname);
}

Here we see two N1QL-backed ways of querying.

The first method uses the Query annotation to provide a N1QL statement inline. SpEL (Spring
Expression Language) is supported by surrounding SpEL expression blocks between #{ and }. A few
N1QL-specific values are provided through SpEL:

• #n1ql.selectEntity allows to easily make sure the statement will select all the fields necessary to
build the full entity (including document ID and CAS value).

• #n1ql.filter in the WHERE clause adds a criteria matching the entity type with the field that
Spring Data uses to store type information.

• #n1ql.bucket will be replaced by the name of the bucket the entity is stored in, escaped in
backticks.

• #n1ql.fields will be replaced by the list of fields (eg. for a SELECT clause) necessary to
reconstruct the entity.

• #n1ql.delete will be replaced by the delete from statement.

• #n1ql.returning will be replaced by returning clause needed for reconstructing entity.

60

IMPORTANT
We recommend that you always use the selectEntity SpEL and a WHERE
clause with a filter SpEL (since otherwise your query could be impacted by
entities from other repositories).

String-based queries support parametrized queries. You can either use positional placeholders like
“$1”, in which case each of the method parameters will map, in order, to $1, $2, $3… Alternatively,
you can use named placeholders using the “$someString” syntax. Method parameters will be
matched with their corresponding placeholder using the parameter’s name, which can be
overridden by annotating each parameter (except a Pageable or Sort) with @Param (eg.
@Param("someString")). You cannot mix the two approaches in your query and will get an
IllegalArgumentException if you do.

Note that you can mix N1QL placeholders and SpEL. N1QL placeholders will still consider all
method parameters, so be sure to use the correct index like in the example below:

Example 69. An inline query that mixes SpEL and N1QL placeholders

@Query("#{#n1ql.selectEntity} WHERE #{#n1ql.filter} AND #{[0]} = $2")
public List<User> findUsersByDynamicCriteria(String criteriaField, Object
criteriaValue)

This allows you to generate queries that would work similarly to eg. AND name = "someName" or AND
age = 3, with a single method declaration.

You can also do single projections in your N1QL queries (provided it selects only one field and
returns only one result, usually an aggregation like COUNT, AVG, MAX…). Such projection would have a
simple return type like long, boolean or String. This is NOT intended for projections to DTOs.

Another example:
#{#n1ql.selectEntity} WHERE #{#n1ql.filter} AND test = $1

is equivalent to
SELECT #{#n1ql.fields} FROM #{#n1ql.bucket} WHERE #{#n1ql.filter} AND test = $1

61

A practical application of SpEL with Spring Security

SpEL can be useful when you want to do a query depending on data injected by other Spring
components, like Spring Security. Here is what you need to do to extend the SpEL context to
get access to such external data.

First, you need to implement an EvaluationContextExtension (use the support class as below):

class SecurityEvaluationContextExtension extends
EvaluationContextExtensionSupport {

 @Override
 public String getExtensionId() {
 return "security";
 }

 @Override
 public SecurityExpressionRoot getRootObject() {
 Authentication authentication = SecurityContextHolder.getContext()
.getAuthentication();
 return new SecurityExpressionRoot(authentication) {};
 }
}

Then all you need to do for Spring Data Couchbase to be able to access associated SpEL values
is to declare a corresponding bean in your configuration:

@Bean
EvaluationContextExtension securityExtension() {
 return new SecurityEvaluationContextExtension();
}

This could be useful to craft a query according to the role of the connected user for instance:

@Query("#{#n1ql.selectEntity} WHERE #{#n1ql.filter} AND " +
"role = '?#{hasRole('ROLE_ADMIN') ? 'public_admin' : 'admin'}'")
List<UserInfo> findAllAdmins(); //only ROLE_ADMIN users will see hidden admins

Delete query example:

@Query("#{#n1ql.delete} WHERE #{#n1ql.filter} AND " +
"username = $1 #{#n1ql.returning}")
UserInfo removeUser(String username);

62

The second method uses Spring-Data’s query derivation mechanism to build a N1QL query from the
method name and parameters. This will produce a query looking like this: SELECT … FROM … WHERE

firstName = "valueOfFnameAtRuntime". You can combine these criteria, even do a count with a name
like countByFirstname or a limit with a name like findFirst3ByLastname…

NOTE
Actually the generated N1QL query will also contain an additional N1QL criteria in
order to only select documents that match the repository’s entity class.

Most Spring-Data keywords are supported: .Supported keywords inside @Query (N1QL) method
names

Keyword Sample N1QL WHERE clause snippet

And findByLastnameAndFirs
tname

lastName = a AND firstName = b

Or findByLastnameOrFirst
name

lastName = a OR firstName = b

Is,Equals findByField,findByFie
ldEquals

field = a

IsNot,Not findByFieldIsNot field != a

Between findByFieldBetween field BETWEEN a AND b

IsLessThan,LessThan,I
sBefore,Before

findByFieldIsLessThan
,findByFieldBefore

field < a

IsLessThanEqual,LessT
hanEqual

findByFieldIsLessThan
Equal

field ⇐ a

IsGreaterThan,Greater
Than,IsAfter,After

findByFieldIsGreaterT
han,findByFieldAfter

field > a

IsGreaterThanEqual,Gr
eaterThanEqual

findByFieldGreaterTha
nEqual

field >= a

IsNull findByFieldIsNull field IS NULL

IsNotNull,NotNull findByFieldIsNotNull field IS NOT NULL

IsLike,Like findByFieldLike field LIKE "a" - a should be a String containing %
and _ (matching n and 1 characters)

IsNotLike,NotLike findByFieldNotLike field NOT LIKE "a" - a should be a String
containing % and _ (matching n and 1 characters)

IsStartingWith,Starti
ngWith,StartsWith

findByFieldStartingWi
th

field LIKE "a%" - a should be a String prefix

IsEndingWith,EndingWi
th,EndsWith

findByFieldEndingWith field LIKE "%a" - a should be a String suffix

IsContaining,Containi
ng,Contains

findByFieldContains field LIKE "%a%" - a should be a String

IsNotContaining,NotCo
ntaining,NotContains

findByFieldNotContain
ing

field NOT LIKE "%a%" - a should be a String

IsIn,In findByFieldIn field IN array - note that the next parameter value
(or its children if a collection/array) should be
compatible for storage in a JsonArray)

IsNotIn,NotIn findByFieldNotIn field NOT IN array - note that the next parameter
value (or its children if a collection/array) should
be compatible for storage in a JsonArray)

63

Keyword Sample N1QL WHERE clause snippet

IsTrue,True findByFieldIsTrue field = TRUE

IsFalse,False findByFieldFalse field = FALSE

MatchesRegex,Matches,
Regex

findByFieldMatches REGEXP_LIKE(field, "a") - note that the ignoreCase
is ignored here, a is a regular expression in String
form

Exists findByFieldExists field IS NOT MISSING - used to verify that the JSON
contains this attribute

OrderBy findByFieldOrderByLas
tnameDesc

field = a ORDER BY lastname DESC

IgnoreCase findByFieldIgnoreCase LOWER(field) = LOWER("a") - a must be a String

You can use both counting queries and Limiting query results features with this approach.

With N1QL, another possible interface for the repository is the PagingAndSortingRepository one
(which extends CRUDRepository). It adds two methods:

Table 4. Exposed methods on the PagingAndSortingRepository

Method Description

Iterable<T> findAll(Sort sort); Allows to retrieve all relevant entities while
sorting on one of their attributes.

Page<T> findAll(Pageable pageable); Allows to retrieve your entities in pages. The
returned Page allows to easily get the next page’s
Pageable as well as the list of items. For the first
call, use new PageRequest(0, pageSize) as
Pageable.

TIP
You can also use Page and Slice as method return types as well with a N1QL backed
repository.

NOTE
If pageable and sort parameters are used with inline queries, there should not be
any order by, limit or offset clause in the inline query itself otherwise the server
would reject the query as malformed.

The second way of querying, supported also in older versions of Couchbase Server, is the View-
backed one that we’ll see in the next section.

7.3.2. Backing Views

This is the historical way of secondary indexing in Couchbase. Views are much more limited in
terms of querying flexibility, and each custom method may very well need its own backing view, to
be prepared in the cluster beforehand.

We’ll only cover views to the extent to which they are needed, if you need in-depth information
about them please refer to the official Couchbase Server manual and the Couchbase Java SDK
manual.

64

As a rule of thumb, all repository CRUD access methods which are not "by a specific key" still
require a single backing view, by default all, to find the one or more matching entities.

IMPORTANT
This is only true for the methods directly defined by the CrudRepository
interface (the one marked with a * in Table 3. above), since your additional
methods can now be backed by N1QL.

To cover the basic CRUD methods from the CrudRepository, one view needs to be implemented in
Couchbase Server. It basically returns all documents for the specific entity and also adds the
optional reduce function _count.

Since every view has a design document and view name, by convention we default to all as the
view name and the uncapitalized (lowercase first letter) entity name as the design document name.
So if your entity is named UserInfo, then the code expects the all view in the userInfo design
document. It needs to look like this:

Example 70. The all view map function

// do not forget the _count reduce function!
function (doc, meta) {
 if (doc._class == "namespace.to.entity.UserInfo") {
 emit(meta.id, null);
 }
}

Note that the important part in this map function is to only include the document IDs which
correspond to our entity. Because the library always adds the _class property, this is a quick and
easy way to do it. If you have another property in your JSON which does the same job (like a explicit
type field), then you can use that as well - you don’t have to stick to _class all the time.

Also make sure to publish your design documents into production so that they can be picked up by
the library! Also, if you are curious why we use emit(meta.id, null) in the view despite the
document id being always sent over to the client implicitly, it is so the view can be queried with a
list of ids, eg. in the findAll(Iterable<ID> ids) CRUD method.

7.3.3. Automatic Index Management

We’ve seen that the repositories default methods can be backed by two broad kind of features:
views and N1QL (in the case of paging and sorting). In order for the CRUD operations to work, the
adequate view must have been created beforehand, and this is usually left for the user to do. First
because view creation (and index creation) is an expensive operation that can take quite some time
if the quantity of documents is high. Second, because in production it is considered best practice to
avoid administration of the cluster elements like buckets, indexes and view by an application code.

In the case where the index creation cost isn’t considered too high and you are not in a production
environment, it can be triggered automatically instead, in two steps. You will first need to annotate
the repositories you want managed with the relevant annotation(s):

65

• @ViewIndexed will create a view like the "all" view previously seen, to list all entities in the
bucket.

• @N1qlPrimaryIndexed can be used to ensure a general-purpose PRIMARY INDEX is available in
N1QL.

• @N1qlSecondaryIndexed will create a more specific N1QL index that does the same kind of
filtering on entity type that the view does. It’ll allow for efficient listing of all documents that
correspond to a Repository’s associated domain object.

Secondly, you’ll need to opt-in to this feature by customizing the indexManager() bean of your env-
specific AbstractCouchbaseConfiguration to take certain types of annotations into account. This is
done through the IndexManager(boolean processViews, boolean processN1qlPrimary, boolean

processN1qlSecondary) constructor. Set the flags for the category of annotations you want processed
to true, or false to deactivate the automatic creation feature.

The @Profile annotation is one possible Spring annotation to be used to differentiate configurations
(or individual beans) per environment.

Example 71. A Dev configuration where only @ViewIndexed annotations will be processed.

@Configuration
public class ExampleDevApplicationConfig extends AbstractCouchbaseConfiguration {

 // note a few other overrides are actually needed

 //this is for dev so it is ok to auto-create indexes
 @Override
 public IndexManager indexManager() {
 return new IndexManager(true, false, false);
 }
}

7.3.4. View based querying

In 2.0, since N1QL has been introduced as a more powerful concept, view-backed queries have
changed a bit outside of the CRUD methods:

• the @View annotation is mandatory.

• if you just want all the results from the view, you can let the framework guess the view name to
use by just using the plain annotation @View. You won’t be able to customize the ViewQuery (eg.
adding limits and specifying a startkey) using this method anymore.

• if you want your view query to have restrictions, those can be derived from the method name
but in this case you must explicitly provide the viewName attribute in the annotation.

• View based query derivation is limited to a few keywords and only works on simple keys (not
compound keys like [age, fname]).

• View based query derivation still needs you to include one valid property before keywords in

66

the method name.

Example 72. An extended UserInfo repository with View queries

public interface UserRepository extends CrudRepository<UserInfo, String> {

 @View
 List<UserInfo> findAllAdmins();

 @View(viewName="firstNames")
 List<UserInfo> findByFirstnameStartingWith(String fnamePrefix);
}

Implementing your custom repository finder methods also needs backing views. The findAllAdmins
guesses to use the allAdmins view in the userInfo design document, by convention. Imagine we have
a field on our entity which looks like boolean isAdmin. We can write a view like this to expose them
(we don’t need a reduce function for this one, unless you plan to call one by prefixing your method
with count instead of find!):

Example 73. The allAdmins map function

function (doc, meta) {
 if (doc._class == "namespace.to.entity.UserInfo" && doc.isAdmin) {
 emit(null, null);
 }
}

By now, we’ve never actually customized our view at query time. This is where the alternative,
query derivation, comes along - like in our findByFirstnameStartingWith(String fnamePrefix)

method.

Example 74. The firstNames view map function

function (doc, meta) {
 if (doc._class == "namespace.to.entity.UserInfo") {
 emit(doc.firstname, null);
 }
}

This view not only emits the document id, but also the firstname of every UserInfo as the key. We
can now run a ViewQuery which returns us all users with a firstname of "Michael" or "Michele".

67

Example 75. Query a repository method with custom params.

// Load the bean, or @Autowire it
UserRepository repo = ctx.getBean(UserRepository.class);

// Find all users with first name starting with "Mich"
List<UserInfo> users = repo.findByFirstnameStartingWith("Mich");

On all these derived custom finder methods, you have to use the @View annotation with at least the
view name specified (and you can also override the design document name, otherwise determined
by convention).

IMPORTANT

For any other usage and customization of the ViewQuery that goes beyond
that, recommended approach is to provide an implementation that uses the
underlying template, like described in Changing repository behaviour. For
more details on behavior, please consult the Couchbase Server and Java SDK
documentation directly.

For view-based query derivation, here are the supported keywords (A and B are method
parameters in this table):

Table 5. Supported keywords inside @View method names

Is,Equals findAllByUsername,fin
dByFieldEquals

key=A - if only keyword, the method can have no
parameter (return all items from the view)

Between findByFieldBetween startkey=A&endkey=B

IsLessThan,LessThan,
IsBefore,Before

findByFieldIsLessThan
,findByFieldBefore

endkey=A

IsLessThanEqual,Less
ThanEqual

findByFieldIsLessThan
Equal

endkey=A&inclusive_end=true

IsGreaterThanEqual,G
reaterThanEqual

findByFieldGreaterTha
nEqual

startkey=A

IsStartingWith,Start
ingWith,StartsWith

findByFieldStartingWi
th

startkey="A"&endkey="A\uefff" - A should be a String
prefix

IsIn,In findByFieldIn keys=[A] - A should be a Collection/Array with
elements compatible for storage in a JsonArray (or a
single element to be stored in a JsonArray)

Note that both reduce functions and Limiting query results are also supported.

TIP

In order to trigger a reduce, you can use the count prefix instead of find. But sometimes
is doesn’t make much sense (eg. because you actually use the _stats built in function,
which returns a JSON object). So alternatively you can also explicitly ask for reduce to
be executed by setting reduce = true in the @View annotation. Be sure to specify a
return type that make sense for the reduce function of your view.

68

WARNING
Compound keys are not supported, and neither are Or composition, Ignore
Case and Order By. You have to include a valid entity property in the naming of
your method.

Last method of querying in Couchbase (from Couchbase Server 4.0, like for N1QL) is querying for
dimensional data through Spatial Views, as we’ll see in the next section.

7.3.5. Spatial View based querying

Couchbase can accommodate multi-dimensional data and query it with the use of special views, the
Spatial Views. Such views allows to perform multi-dimensional queries, not only limited to
geographical data.

Integration of these views in Spring Data Couchbase repositories is done through the @Dimensional
annotation. Like @View, the annotation allows to indicate usage of a Spatial View as the backing
mechanism for the annotated method. The annotation requires you to give the name of the
designDocument and the spatialViewName to use. Additionally, you should specify the number of
dimensions the view works with (unless it is the default classical 2).

Multi-dimensionality concept is interesting, it means you can craft views that allows you to answer
questions like "find all shops that are within Manhattan and open between 14:00 and 23:00" (the
third dimension of the view being the opening hours).

Couchbase’s Spatial View support querying through ranges that represent "lowest" and "highest"
values in each dimension, so for 2D it represents a bounding box, with the southwest-most point
[x,y] as startRange and northeast-most point [x,y] as endRange.

TIP

Even though Couchbase Spatial View engine only support Bounding Box querying, the
Spring Data Couchbase framework will attempt to remove false positives for you
when querying with a Polygon or a Circle (in TRACE log level each false positive
elimination will be logged). Note that a point on the edge of a Polygon is not considered
within (whereas it is when dealing with a Circle).

The following query derivation keywords and parameters relative to geographical data in Spring
Data are supported for Spatial Views:

Table 6. Supported keywords inside @Dimensional method names

Keyword Sample Remarks

Within,IsWithin findByLocationWithin

Near,IsNear findByLocationNear expects a Point and a Distance, will approximate to
bounding box

Between findByLocationWithinAn
dOpeningHoursBetween

useful for dimensions beyond 2, adds two numerical
values to the startRange and endRange respectively

GreaterThan,Greate
rThanEqual,After

findByLocationWithinAn
dOpeningHoursAfter

useful for dimensions beyond 2, adds a numerical
value to the startRange

LessThan,LessThanE
qual,Before

findByLocationWithinAn
dOpeningHoursBefore

useful for dimensions beyond 2, adds a numerical
value to the endRange

69

IMPORTANT
For "within" types of queries, the expected parameters map to geographical
2D data. Classes from the org.springframework.data.geo package are usually
expected, but Polygon and Boxes can also be expressed as arrays of `Point`s.

Further dimensions are supported through keywords other than Within and Near and require
numerical input.

7.3.6. Querying with consistency

One aspect that is often needed and doesn’t have a direct equivalent in the Spring Data query
derivation mechanism is query consistency. In both view-based queries and N1QL, you have this
concept that the secondary index can return stale data, because the latest version hasn’t been
indexed yet. This gives the best performance at the expense of consistency.

Note that weaker consistencies can lead to data being returned that doesn’t match the criteria of a
derived query. One trickier case is when documents are deleted from Couchbase but views have not
yet caught up to the deletion. With weak consistency this can mean that a view would return IDs
that are not in the database anymore, leading to null entities. The CouchbaseTemplate`s `findByView
and findBySpatialView methods will remove such stale deleted entities from their result in order to
avoid having nulls in the returned collections. Similarly, CouchbaseRepository’s `deleteAll method
will ignore documents that the backing view provided but the SDK remove operation couldn’t find.

If one wants to have stronger consistency, there are two possibilities described in the next sections.

Configure it on a global level

A global consistency can be defined using the Consistency enumeration (eg.
Consistency.READ_YOUR_OWN_WRITE):

• in xml, this is done via the consistency attribute on <couchbase:template>.

• in javaConfig, this is done by overriding the getDefaultConsistency() method.

By default it is Consistency.READ_YOUR_OWN_WRITES (which means consistency is prioritized over
speed, especially when a large number of documents has been created recently).

IMPORTANT

This is only used in repositories, either for index-backed methods
automatically provided by the repository interface (findAll(), findAll(keys),
count(), deleteAll()…) or methods you define in your specific interface
using query derivation.

Provide an implementation

Provide the implementation and directly use queryView and queryN1QL methods on the template with
a specific consistency (see Changing repository behaviour).

• one can specify the consistency on those via their respective query classes, according to the
Couchbase Java SDK documentation.

• for example for views ViewQuery.stale(Stale.FALSE)

70

• for example for N1QL Query.simple("SELECT * FROM default",
QueryParams.build().consistency(ScanConsistency.REQUEST_PLUS));

7.4. Working with multiple buckets
The Java Config version allows you to define multiple Bucket and CouchbaseTemplate, but in order to
have different repositories use different underlying buckets/templates, you need to follow these
steps:

• in your AbstractCouchbaseConfiguration implementation, override the
configureRepositoryOperationsMapping method.

• mutate the provided RepositoryOperationsMapping as needed (it defaults to mapping everything
to the default template).

• configure the mapping by chaining calls to map, mapEntity and setDefault.

◦ map maps a specific repository interface to the CouchbaseOperations it should use

◦ mapEntity maps all unmapped repositories of a domain type / entity class to a common
CouchbaseOperations

◦ setDefault maps all remaining unmapped repositories to a default CouchaseOperations (the
default, using couchbaseTemplate bean unless modified).

The idea is that the framework will look for an entry corresponding to the repository’s interface
when instantiating it. If none is found it will look at the mapping for the repository’s domain type.
Eventually it will fallback to the default setting. Here is an example:

71

Example 76. Example of configuring multiple templates and repositories.

@Configuration
@EnableCouchbaseRepositories
public class ConcreteCouchbaseConfig extends AbstractCouchbaseConfig {

 //the default bucket and template must be created, implement abstract methods
here to that end

 //we want all User objects to be stored in a second bucket
 //let's define the bucket reference...
 @Bean
 public Bucket userBucket() {
 return couchbaseCluster().openBucket("users", "");
 }

 //... then the template (inspired by couchbaseTemplate() method)...
 @Bean
 public CouchbaseTemplate userTemplate() {
 CouchbaseTemplate template = new CouchbaseTemplate(
 couchbaseClusterInfo(), //reuse the default bean
 userBucket(), //the bucket is non-default
 mappingCouchbaseConverter(), translationService() //default beans here as
well
);
 template.setDefaultConsistency(getDefaultConsistency());
 return template;
 }

 //... then finally make sure all repositories of Users will use it
 @Override
 public void configureRepositoryOperationsMapping(RepositoryOperationsMapping
baseMapping) {
 baseMapping //this is already using couchbaseTemplate as default
 .mapEntity(User.class, userTemplate()); //every repository dealing with User
will be backed by userTemplate()
 }
}

7.5. Changing repository behaviour
Sometimes you don’t simply want the repository to create methods for you, but instead you want to
tune the base repository’s behaviour. You can either do that for all repositories - by changing the
base class for them - or just for a single repository - by adding custom implementations for either
new or existing methods - (see Custom implementations for Spring Data repositories for a generic
introduction to these concepts).

72

7.5.1. Couchbase specifics about changing the base class

This follows the standard procedure for changing all repositories' base class:

1. Create an generic interface for your base that extends CouchbaseRepository (CRUD) or
CouchbasePagingAndSortingRepository. Declare any method you want to add to all repositories
there.

2. Create an implementation (eg. MyRepositoryImpl). This should extend one the concrete base
classes (SimpleCouchbaseRepository or N1qlCouchbaseRepository) and you can also override
existing methods from the Spring Data interfaces.

3. Declare your repository interfaces as extending MyRepository instead of eg. CRUDRepository or
CouchbaseRepository.

4. In the @EnableCouchbaseRepositories annotation of your configuration, use the
repositoryBaseClass parameter.

Here is a complete example that you can find in RepositoryBaseTest in the integration tests:

Changing repository base class

@NoRepositoryBean ①
public interface MyRepository<T, ID extends Serializable> extends CouchbaseRepository
<T, ID> { ②

 int sharedCustomMethod(ID id); ③
}

public class MyRepositoryImpl<T, ID extends Serializable>
 extends N1qlCouchbaseRepository<T, ID> ④
 implements MyRepository<T, ID> { ⑤

 public MyRepositoryImpl(CouchbaseEntityInformation<T, String> metadata,
CouchbaseOperations couchbaseOperations) { ⑥
 super(metadata, couchbaseOperations);
 }

 @Override
 public int sharedCustomMethod(ID id) {
 //... implement common behavior ⑦
 }
}

@EnableCouchbaseRepositories(repositoryBaseClass = MyRepositoryImpl.class) ⑧
public class MyConfig extends AbstractCouchbaseConfiguration { /** ... */ }

① This annotation prevents picking this custom interface as a repository declaration.

② The new base interface extends one from Spring Data Couchbase.

③ This method will be available in all repositories.

④ Custom base implementation relies on the existing bases…

73

⑤ …and also implements new interface (so that common methods are exposed).

⑥ Constructors that follow the signature of superconstructor will be picked up by the framework.

⑦ Custom functionality to be implemented by the user (eg. return string’s length).

⑧ Weaving it all in by changing the repository base class.

7.5.2. Couchbase specifics about adding methods to a single repository

Again following the standard procedure for custom repository methods, here is a complete example
that you can find in RepositoryCustomMethodTest in the integration tests:

Adding and overriding methods in a single repository

public interface MyRepositoryCustom {
 long customCountItems(); ①
}

public interface MyRepository extends CrudRepository<MyItem, String>,
MyRepositoryCustom { } ②

public class MyRepositoryImpl implements MyRepositoryCustom { ③

 @Autowired
 RepositoryOperationsMapping templateProvider; ④

 @Override
 public long customCountItems() {
 CouchbaseOperations template = templateProvider.resolve(MyRepository.class, Item
.class); ⑤

 CouchbasePersistentEntity<Object> itemPersistenceEntity =
(CouchbasePersistentEntity<Object>)
 template.getConverter()
 .getMappingContext()
 .getPersistentEntity(MyItem.class);

 CouchbaseEntityInformation<? extends Object, String> itemEntityInformation =
 new MappingCouchbaseEntityInformation<Object, String>(itemPersistenceEntity);

 Statement countStatement = N1qlUtils.createCountQueryForEntity(⑥
 template.getCouchbaseBucket().name(),
 template.getConverter(),
 itemEntityInformation);

 ScanConsistency consistency = template.getDefaultConsistency().n1qlConsistency();
⑦
 N1qlParams queryParams = N1qlParams.build().consistency(consistency);
 N1qlQuery query = N1qlQuery.simple(countStatement, queryParams);

 List<CountFragment> countFragments = template.findByN1QLProjection(query,

74

CountFragment.class); ⑧

 if (countFragments == null || countFragments.isEmpty()) {
 return 0L;
 } else {
 return countFragments.get(0).count * -1L; ⑨
 }
 }

 public long count() { ⑩
 return 100;
 }
}

① This method is to be added with a user-provided implementation for a single repository.

② This is the declaration of the customized repository, both a CRUD and exposing the custom
interface.

③ This is the implementation of the custom interface.

④ The custom implementation doesn’t have access to the original base implementation, so use
dependency injection to get access to necessary resources.

⑤ Here is a couchbase specificity: if you need to use the CouchbaseTemplate, be sure to use the one
that would be associated with the customized repository or associated entity type.

⑥ We use N1QLUtils to prepare a complete N1QL statement for counting. It relies on the information
above that we got from the correct template.

⑦ We want to make sure that the default consistency configured in the associated template is used
for this query.

⑧ Using CouchbaseTemplate.findByN1qlProjection, we execute the count query and store the single
aggregation result into a CountFragment.

⑨ Now we return this count result with a twist: it is negated.

⑩ TIP: You can actually also change implementation of methods from the CRUDRepository interface!

By storing 3 items using a MyRepository instance and calling count() then customCountItems(), we’d
obtain

100
-3

7.5.3. DTO Projections

Spring Data Repositories usually return the domain model when using query methods. However,
sometimes, you may need to alter the view of that model for various reasons. In this section, you
will learn how to define projections to serve up simplified and reduced views of resources.

Look at the following domain model:

75

@Entity
public class Person {

 @Id @GeneratedValue
 private Long id;
 private String firstName, lastName;

 @OneToOne
 private Address address;
 …
}

@Entity
public class Address {

 @Id @GeneratedValue
 private Long id;
 private String street, state, country;

 …
}

This Person has several attributes:

• id is the primary key

• firstName and lastName are data attributes

• address is a link to another domain object

Now assume we create a corresponding repository as follows:

interface PersonRepository extends CrudRepository<Person, Long> {

 Person findPersonByFirstName(String firstName);
}

Spring Data will return the domain object including all of its attributes. There are two options just
to retrieve the address attribute. One option is to define a repository for Address objects like this:

interface AddressRepository extends CrudRepository<Address, Long> {}

In this situation, using PersonRepository will still return the whole Person object. Using
AddressRepository will return just the Address.

However, what if you do not want to expose address details at all? You can offer the consumer of
your repository service an alternative by defining one or more projections.

76

Example 77. Simple Projection

interface NoAddresses { ①

 String getFirstName(); ②

 String getLastName(); ③
}

This projection has the following details:

① A plain Java interface making it declarative.

② Export the firstName.

③ Export the lastName.

The NoAddresses projection only has getters for firstName and lastName meaning that it will not serve
up any address information. The query method definition returns in this case NoAdresses instead of
Person.

interface PersonRepository extends CrudRepository<Person, Long> {

 NoAddresses findByFirstName(String firstName);
}

Projections declare a contract between the underlying type and the method signatures related to
the exposed properties. Hence it is required to name getter methods according to the property
name of the underlying type. If the underlying property is named firstName, then the getter method
must be named getFirstName otherwise Spring Data is not able to look up the source property.

77

Chapter 8. Template & direct operations
The template provides lower level access to the underlying database and also serves as the
foundation for repositories. Any time a repository is too high-level for you needs chances are good
that the templates will serve you well.

8.1. Supported operations
The template can be accessed through the couchbaseTemplate bean out of your context. Once you’ve
got a reference to it, you can run all kinds of operations against it. Other than through a repository,
in a template you need to always specify the target entity type which you want to get converted.

To mutate documents, you’ll find save, insert and update methods exposed. Saving will insert or
update the document, insert will fail if it has been created already and update only works against
documents that have already been created.

Since Couchbase Server has different levels of persistence (by default you’ll get a positive response
if it has been acknowledged in the managed cache), you can provide higher durability options
through the overloaded PersistTo and/or ReplicateTo options. The behaviour is part of the
Couchbase Java SDK, please refer to the official documentation for more details.

Removing documents through the remove methods works exactly the same.

If you want to load documents, you can do that through the findById method, which is the fastest
and if possible your tool of choice. The find methods for views are findByView which converts it into
the target entity, but also queryView which exposes lower level semantics. Similarly, find methods
using N1QL are provided in findByN1QL and queryN1QL. Additionally, since N1QL allows you to select
specific fields in documents (or even across documents using joins), findByN1QLProjection will allow
you to skip full Document conversion and map these fields to an ad-hoc class.

WARNING
If it is detected at runtime that the cluster doesn’t support N1QL, these
methods will throw a UnsupportedCouchbaseFeatureException.

If you really need low-level semantics, the couchbaseBucket is also always in scope through
getCouchbaseBucket().

8.2. Xml Configuration
The template can be configured via xml, including setting a custom TranslationService.

78

Example 78. XML Based Template Declaration

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:couchbase="http://www.springframework.org/schema/data/couchbase"
 xsi:schemaLocation="http://www.springframework.org/schema/data/couchbase
http://www.springframework.org/schema/data/couchbase/spring-couchbase.xsd
 http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

 <couchbase:env/>
 <couchbase:cluster/>
 <couchbase:clusterInfo/>
 <couchbase:bucket/>

 <couchbase:template translation-service-ref="myCustomTranslationService"/>

 <bean id="myCustomTranslationService" class=
"org.springframework.data.couchbase.core.convert.translation.JacksonTranslationSer
vice"/>

</beans>

NOTE
In the example above most tags assume their default values, that is a localhost
cluster and bucket "default". In production you would have to also provide specifics
to these tags.

79

Appendix

80

Appendix A: Namespace reference

The <repositories /> element
The <repositories /> element triggers the setup of the Spring Data repository infrastructure. The
most important attribute is base-package which defines the package to scan for Spring Data
repository interfaces. [3: see XML configuration]

Table 7. Attributes

Name Description

base-package Defines the package to be used to be scanned for repository interfaces
extending *Repository (actual interface is determined by specific Spring
Data module) in auto detection mode. All packages below the configured
package will be scanned, too. Wildcards are allowed.

repository-impl-
postfix

Defines the postfix to autodetect custom repository implementations.
Classes whose names end with the configured postfix will be considered
as candidates. Defaults to Impl.

query-lookup-strategy Determines the strategy to be used to create finder queries. See Query
lookup strategies for details. Defaults to create-if-not-found.

named-queries-location Defines the location to look for a Properties file containing externally
defined queries.

consider-nested-
repositories

Controls whether nested repository interface definitions should be
considered. Defaults to false.

81

Appendix B: Populators namespace
reference

The <populator /> element
The <populator /> element allows to populate the a data store via the Spring Data repository
infrastructure. [4: see XML configuration]

Table 8. Attributes

Name Description

locations Where to find the files to read the objects from the repository shall be
populated with.

82

Appendix C: Repository query keywords

Supported query keywords
The following table lists the keywords generally supported by the Spring Data repository query
derivation mechanism. However, consult the store-specific documentation for the exact list of
supported keywords, because some listed here might not be supported in a particular store.

Table 9. Query keywords

Logical keyword Keyword expressions

AND And

OR Or

AFTER After, IsAfter

BEFORE Before, IsBefore

CONTAINING Containing, IsContaining, Contains

BETWEEN Between, IsBetween

ENDING_WITH EndingWith, IsEndingWith, EndsWith

EXISTS Exists

FALSE False, IsFalse

GREATER_THAN GreaterThan, IsGreaterThan

GREATER_THAN_EQUALS GreaterThanEqual, IsGreaterThanEqual

IN In, IsIn

IS Is, Equals, (or no keyword)

IS_EMPTY IsEmpty, Empty

IS_NOT_EMPTY IsNotEmpty, NotEmpty

IS_NOT_NULL NotNull, IsNotNull

IS_NULL Null, IsNull

LESS_THAN LessThan, IsLessThan

LESS_THAN_EQUAL LessThanEqual, IsLessThanEqual

LIKE Like, IsLike

NEAR Near, IsNear

NOT Not, IsNot

NOT_IN NotIn, IsNotIn

NOT_LIKE NotLike, IsNotLike

REGEX Regex, MatchesRegex, Matches

STARTING_WITH StartingWith, IsStartingWith, StartsWith

TRUE True, IsTrue

WITHIN Within, IsWithin

83

Appendix D: Repository query return types

Supported query return types
The following table lists the return types generally supported by Spring Data repositories. However,
consult the store-specific documentation for the exact list of supported return types, because some
listed here might not be supported in a particular store.

NOTE
Geospatial types like (GeoResult, GeoResults, GeoPage) are only available for data
stores that support geospatial queries.

Table 10. Query return types

Return type Description

void Denotes no return value.

Primitives Java primitives.

Wrapper types Java wrapper types.

T An unique entity. Expects the query method to return one result at most.
In case no result is found null is returned. More than one result will
trigger an IncorrectResultSizeDataAccessException.

Iterator<T> An Iterator.

Collection<T> A Collection.

List<T> A List.

Optional<T> A Java 8 or Guava Optional. Expects the query method to return one
result at most. In case no result is found Optional.empty()
/Optional.absent() is returned. More than one result will trigger an
IncorrectResultSizeDataAccessException.

Option<T> An either Scala or JavaSlang Option type. Semantically same behavior as
Java 8’s Optional described above.

Stream<T> A Java 8 Stream.

Future<T> A Future. Expects method to be annotated with @Async and requires
Spring’s asynchronous method execution capability enabled.

CompletableFuture<T> A Java 8 CompletableFuture. Expects method to be annotated with @Async
and requires Spring’s asynchronous method execution capability
enabled.

ListenableFuture A org.springframework.util.concurrent.ListenableFuture. Expects method
to be annotated with @Async and requires Spring’s asynchronous method
execution capability enabled.

Slice A sized chunk of data with information whether there is more data
available. Requires a Pageable method parameter.

Page<T> A Slice with additional information, e.g. the total number of results.
Requires a Pageable method parameter.

GeoResult<T> A result entry with additional information, e.g. distance to a reference
location.

84

Return type Description

GeoResults<T> A list of GeoResult<T> with additional information, e.g. average distance to
a reference location.

GeoPage<T> A Page with GeoResult<T>, e.g. average distance to a reference location.

85

	Spring Data Couchbase - Reference Documentation
	Table of Contents
	Preface
	Chapter 1. Project Information
	Chapter 2. Migrating from Spring Data Couchbase 1.x to 2.x
	2.1. Configuration
	2.2. Repository queries
	2.3. Backing views and view query changes
	2.3.1. Passing a ViewQuery object as a parameter to a custom repository method
	2.3.2. Reduce in views

	Reference Documentation
	Chapter 3. Installation & Configuration
	3.1. Installation
	3.2. Annotation-based Configuration ("JavaConfig")
	3.3. XML-based Configuration

	Chapter 4. Modeling Entities
	4.1. Documents and Fields
	4.2. Datatypes and Converters
	4.3. Optimistic Locking
	4.4. Validation
	4.5. Auditing

	Chapter 5. Auto generating keys
	5.1. Configuration
	5.2. Key generation using attributes
	5.3. Key generation using uuid

	Chapter 6. Working with Spring Data Repositories
	6.1. Core concepts
	6.2. Query methods
	6.3. Defining repository interfaces
	6.3.1. Fine-tuning repository definition
	6.3.2. Using Repositories with multiple Spring Data modules

	6.4. Defining query methods
	6.4.1. Query lookup strategies
	6.4.2. Query creation
	6.4.3. Property expressions
	6.4.4. Special parameter handling
	6.4.5. Limiting query results
	6.4.6. Streaming query results
	6.4.7. Async query results

	6.5. Creating repository instances
	6.5.1. XML configuration
	6.5.2. JavaConfig
	6.5.3. Standalone usage

	6.6. Custom implementations for Spring Data repositories
	6.6.1. Adding custom behavior to single repositories
	6.6.2. Adding custom behavior to all repositories

	6.7. Publishing events from aggregate roots
	6.8. Spring Data extensions
	6.8.1. Querydsl Extension
	6.8.2. Web support
	6.8.3. Repository populators
	6.8.4. Legacy web support

	Chapter 7. Couchbase repositories
	7.1. Configuration
	7.2. Usage
	7.3. Repositories and Querying
	7.3.1. N1QL based querying
	7.3.2. Backing Views
	7.3.3. Automatic Index Management
	7.3.4. View based querying
	7.3.5. Spatial View based querying
	7.3.6. Querying with consistency

	7.4. Working with multiple buckets
	7.5. Changing repository behaviour
	7.5.1. Couchbase specifics about changing the base class
	7.5.2. Couchbase specifics about adding methods to a single repository
	7.5.3. DTO Projections

	Chapter 8. Template & direct operations
	8.1. Supported operations
	8.2. Xml Configuration

	Appendix
	Appendix A: Namespace reference
	The <repositories /> element

	Appendix B: Populators namespace reference
	The <populator /> element

	Appendix C: Repository query keywords
	Supported query keywords

	Appendix D: Repository query return types
	Supported query return types

