
Spring Data Commons - Reference
Documentation

Oliver Gierke, Thomas Darimont, Christoph Strobl, Mark Pollack, Thomas
Risberg

Version 2.0.0.M1, 2016-11-23



Table of Contents
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1

1. Project metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2

Reference documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2

2. Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3

2.1. Dependency management with Spring Boot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4

2.2. Spring Framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4

3. Working with Spring Data Repositories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5

3.1. Core concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5

3.2. Query methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7

3.3. Defining repository interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8

3.3.1. Fine-tuning repository definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9

3.3.2. Using Repositories with multiple Spring Data modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9

3.4. Defining query methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12

3.4.1. Query lookup strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13

3.4.2. Query creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13

3.4.3. Property expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14

3.4.4. Special parameter handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15

3.4.5. Limiting query results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16

3.4.6. Streaming query results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16

3.4.7. Async query results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17

3.5. Creating repository instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18

3.5.1. XML configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18

3.5.2. JavaConfig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19

3.5.3. Standalone usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19

3.6. Custom implementations for Spring Data repositories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20

3.6.1. Adding custom behavior to single repositories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20

3.6.2. Adding custom behavior to all repositories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22

3.7. Spring Data extensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23

3.7.1. Querydsl Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23

3.7.2. Web support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24

3.7.3. Repository populators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31

3.7.4. Legacy web support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33

4. Query by Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36

4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36

4.2. Usage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36

4.3. Example matchers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38

5. Auditing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  40

5.1. Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  40



5.1.1. Annotation based auditing metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  40

5.1.2. Interface-based auditing metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  40

5.1.3. AuditorAware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  40

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41

Appendix A: Namespace reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42

The <repositories /> element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42

Appendix B: Populators namespace reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43

The <populator /> element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43

Appendix C: Repository query keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44

Supported query keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44

Appendix D: Repository query return types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  46

Supported query return types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  46



© 2008-2015 The original authors.

NOTE

Copies of this document may be made for your own use and for
distribution to others, provided that you do not charge any fee for
such copies and further provided that each copy contains this
Copyright Notice, whether distributed in print or electronically.

Preface
The Spring Data Commons project applies core Spring concepts to the development of solutions
using many relational and non-relational data stores.

1



Chapter 1. Project metadata
• Version control - http://github.com/spring-projects/spring-data-commons

• Bugtracker - https://jira.spring.io/browse/DATACMNS

• Release repository - https://repo.spring.io/libs-release

• Milestone repository - https://repo.spring.io/libs-milestone

• Snapshot repository - https://repo.spring.io/libs-snapshot

Reference documentation

2

http://github.com/spring-projects/spring-data-commons
https://jira.spring.io/browse/DATACMNS
https://repo.spring.io/libs-release
https://repo.spring.io/libs-milestone
https://repo.spring.io/libs-snapshot


Chapter 2. Dependencies
Due to different inception dates of individual Spring Data modules, most of them carry different
major and minor version numbers. The easiest way to find compatible ones is by relying on the
Spring Data Release Train BOM we ship with the compatible versions defined. In a Maven project
you’d declare this dependency in the <dependencyManagement /> section of your POM:

Example 1. Using the Spring Data release train BOM

<dependencyManagement>
  <dependencies>
    <dependency>
      <groupId>org.springframework.data</groupId>
      <artifactId>spring-data-releasetrain</artifactId>
      <version>${release-train}</version>
      <scope>import</scope>
      <type>pom</type>
    </dependency>
  </dependencies>
</dependencyManagement>

The current release train version is Kay-M1. The train names are ascending alphabetically and
currently available ones are listed here. The version name follows the following pattern: ${name}-
${release} where release can be one of the following:

• BUILD-SNAPSHOT - current snapshots

• M1, M2 etc. - milestones

• RC1, RC2 etc. - release candidates

• RELEASE - GA release

• SR1, SR2 etc. - service releases

A working example of using the BOMs can be found in our Spring Data examples repository. If
that’s in place declare the Spring Data modules you’d like to use without a version in the
<dependencies /> block.

Example 2. Declaring a dependency to a Spring Data module

<dependencies>
  <dependency>
    <groupId>org.springframework.data</groupId>
    <artifactId>spring-data-jpa</artifactId>
  </dependency>
<dependencies>

3

https://github.com/spring-projects/spring-data-commons/wiki/Release-planning
https://github.com/spring-projects/spring-data-examples/tree/master/bom


2.1. Dependency management with Spring Boot
Spring Boot already selects a very recent version of Spring Data modules for you. In case you want
to upgrade to a newer version nonetheless, simply configure the property spring-data-

releasetrain.version to the train name and iteration you’d like to use.

2.2. Spring Framework
The current version of Spring Data modules require Spring Framework in version 5.0.0.M3 or
better. The modules might also work with an older bugfix version of that minor version. However,
using the most recent version within that generation is highly recommended.

4



Chapter 3. Working with Spring Data
Repositories
The goal of Spring Data repository abstraction is to significantly reduce the amount of boilerplate
code required to implement data access layers for various persistence stores.

IMPORTANT

Spring Data repository documentation and your module

This chapter explains the core concepts and interfaces of Spring Data
repositories. The information in this chapter is pulled from the Spring Data
Commons module. It uses the configuration and code samples for the Java
Persistence API (JPA) module. Adapt the XML namespace declaration and the
types to be extended to the equivalents of the particular module that you are
using. Namespace reference covers XML configuration which is supported
across all Spring Data modules supporting the repository API, Repository
query keywords covers the query method keywords supported by the
repository abstraction in general. For detailed information on the specific
features of your module, consult the chapter on that module of this
document.

3.1. Core concepts
The central interface in Spring Data repository abstraction is Repository (probably not that much of
a surprise). It takes the domain class to manage as well as the id type of the domain class as type
arguments. This interface acts primarily as a marker interface to capture the types to work with
and to help you to discover interfaces that extend this one. The CrudRepository provides
sophisticated CRUD functionality for the entity class that is being managed.

5



Example 3. CrudRepository interface

public interface CrudRepository<T, ID extends Serializable>
    extends Repository<T, ID> {

    <S extends T> S save(S entity); ①

    T findOne(ID primaryKey);       ②

    Iterable<T> findAll();          ③

    Long count();                   ④

    void delete(T entity);          ⑤

    boolean exists(ID primaryKey);  ⑥

    // … more functionality omitted.
}

① Saves the given entity.

② Returns the entity identified by the given id.

③ Returns all entities.

④ Returns the number of entities.

⑤ Deletes the given entity.

⑥ Indicates whether an entity with the given id exists.

NOTE

We also provide persistence technology-specific abstractions like e.g. JpaRepository
or MongoRepository. Those interfaces extend    CrudRepository and expose the
capabilities of the underlying persistence technology in addition to the rather
generic persistence technology-agnostic interfaces like e.g. CrudRepository.

On top of the CrudRepository there is a PagingAndSortingRepository abstraction that adds additional
methods to ease paginated access to entities:

Example 4. PagingAndSortingRepository

public interface PagingAndSortingRepository<T, ID extends Serializable>
  extends CrudRepository<T, ID> {

  Iterable<T> findAll(Sort sort);

  Page<T> findAll(Pageable pageable);
}

6



Accessing the second page of User by a page size of 20 you could simply do something like this:

PagingAndSortingRepository<User, Long> repository = // … get access to a bean
Page<User> users = repository.findAll(new PageRequest(1, 20));

In addition to query methods, query derivation for both count and delete queries, is available.

Example 5. Derived Count Query

public interface UserRepository extends CrudRepository<User, Long> {

  Long countByLastname(String lastname);
}

Example 6. Derived Delete Query

public interface UserRepository extends CrudRepository<User, Long> {

  Long deleteByLastname(String lastname);

  List<User> removeByLastname(String lastname);

}

3.2. Query methods
Standard CRUD functionality repositories usually have queries on the underlying datastore. With
Spring Data, declaring those queries becomes a four-step process:

1. Declare an interface extending Repository or one of its subinterfaces and type it to the domain
class and ID type that it will handle.

interface PersonRepository extends Repository<Person, Long> { … }

2. Declare query methods on the interface.

interface PersonRepository extends Repository<Person, Long> {
  List<Person> findByLastname(String lastname);
}

3. Set up Spring to create proxy instances for those interfaces. Either via JavaConfig:

7



import org.springframework.data.jpa.repository.config.EnableJpaRepositories;

@EnableJpaRepositories
class Config {}

or via XML configuration:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
   xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xmlns:jpa="http://www.springframework.org/schema/data/jpa"
   xsi:schemaLocation="http://www.springframework.org/schema/beans
     http://www.springframework.org/schema/beans/spring-beans.xsd
     http://www.springframework.org/schema/data/jpa
     http://www.springframework.org/schema/data/jpa/spring-jpa.xsd">

   <jpa:repositories base-package="com.acme.repositories"/>

</beans>

The JPA namespace is used in this example. If you are using the repository abstraction for any
other store, you need to change this to the appropriate namespace declaration of your store
module which should be exchanging jpa in favor of, for example, mongodb.

Also, note that the JavaConfig variant doesn’t configure a package explictly as the package of the
annotated class is used by default. To customize the package to scan use one of the
basePackage… attribute of the data-store specific repository @Enable…-annotation.

4. Get the repository instance injected and use it.

public class SomeClient {

  @Autowired
  private PersonRepository repository;

  public void doSomething() {
    List<Person> persons = repository.findByLastname("Matthews");
  }
}

The sections that follow explain each step in detail.

3.3. Defining repository interfaces
As a first step you define a domain class-specific repository interface. The interface must extend
Repository and be typed to the domain class and an ID type. If you want to expose CRUD methods

8



for that domain type, extend CrudRepository instead of Repository.

3.3.1. Fine-tuning repository definition

Typically, your repository interface will extend Repository, CrudRepository or
PagingAndSortingRepository. Alternatively, if you do not want to extend Spring Data interfaces, you
can also annotate your repository interface with @RepositoryDefinition. Extending CrudRepository
exposes a complete set of methods to manipulate your entities. If you prefer to be selective about
the methods being exposed, simply copy the ones you want to expose from CrudRepository into your
domain repository.

NOTE
This allows you to define your own abstractions on top of the provided Spring Data
Repositories functionality.

Example 7. Selectively exposing CRUD methods

@NoRepositoryBean
interface MyBaseRepository<T, ID extends Serializable> extends Repository<T, ID> {

  T findOne(ID id);

  T save(T entity);
}

interface UserRepository extends MyBaseRepository<User, Long> {
  User findByEmailAddress(EmailAddress emailAddress);
}

In this first step you defined a common base interface for all your domain repositories and exposed
findOne(…) as well as save(…).These methods will be routed into the base repository
implementation of the store of your choice provided by Spring Data ,e.g. in the case if JPA
SimpleJpaRepository, because they are matching the method signatures in CrudRepository. So the
UserRepository will now be able to save users, and find single ones by id, as well as triggering a
query to find Users by their email address.

NOTE
Note, that the intermediate repository interface is annotated with @NoRepositoryBean.
Make sure you add that annotation to all repository interfaces that Spring Data
should not create instances for at runtime.

3.3.2. Using Repositories with multiple Spring Data modules

Using a unique Spring Data module in your application makes things simple hence, all repository
interfaces in the defined scope are bound to the Spring Data module. Sometimes applications
require using more than one Spring Data module. In such case, it’s required for a repository
definition to distinguish between persistence technologies. Spring Data enters strict repository
configuration mode because it detects multiple repository factories on the class path. Strict

9



configuration requires details on the repository or the domain class to decide about Spring Data
module binding for a repository definition:

1. If the repository definition extends the module-specific repository, then it’s a valid candidate for
the particular Spring Data module.

2. If the domain class is annotated with the module-specific type annotation, then it’s a valid
candidate for the particular Spring Data module. Spring Data modules accept either 3rd party
annotations (such as JPA’s @Entity) or provide own annotations such as @Document for Spring
Data MongoDB/Spring Data Elasticsearch.

Example 8. Repository definitions using Module-specific Interfaces

interface MyRepository extends JpaRepository<User, Long> { }

@NoRepositoryBean
interface MyBaseRepository<T, ID extends Serializable> extends JpaRepository<T,
ID> {
  …
}

interface UserRepository extends MyBaseRepository<User, Long> {
  …
}

MyRepository and UserRepository extend JpaRepository in their type hierarchy. They are valid
candidates for the Spring Data JPA module.

10



Example 9. Repository definitions using generic Interfaces

interface AmbiguousRepository extends Repository<User, Long> {
 …
}

@NoRepositoryBean
interface MyBaseRepository<T, ID extends Serializable> extends CrudRepository<T,
ID> {
  …
}

interface AmbiguousUserRepository extends MyBaseRepository<User, Long> {
  …
}

AmbiguousRepository and AmbiguousUserRepository extend only Repository and CrudRepository in
their type hierarchy. While this is perfectly fine using a unique Spring Data module, multiple
modules cannot distinguish to which particular Spring Data these repositories should be
bound.

Example 10. Repository definitions using Domain Classes with Annotations

interface PersonRepository extends Repository<Person, Long> {
 …
}

@Entity
public class Person {
  …
}

interface UserRepository extends Repository<User, Long> {
 …
}

@Document
public class User {
  …
}

PersonRepository references Person which is annotated with the JPA annotation @Entity so this
repository clearly belongs to Spring Data JPA. UserRepository uses User annotated with Spring
Data MongoDB’s @Document annotation.

11



Example 11. Repository definitions using Domain Classes with mixed Annotations

interface JpaPersonRepository extends Repository<Person, Long> {
 …
}

interface MongoDBPersonRepository extends Repository<Person, Long> {
 …
}

@Entity
@Document
public class Person {
  …
}

This example shows a domain class using both JPA and Spring Data MongoDB annotations. It
defines two repositories, JpaPersonRepository and MongoDBPersonRepository. One is intended for
JPA and the other for MongoDB usage. Spring Data is no longer able to tell the repositories
apart which leads to undefined behavior.

Repository type details and identifying domain class annotations are used for strict repository
configuration identify repository candidates for a particular Spring Data module. Using multiple
persistence technology-specific annotations on the same domain type is possible to reuse domain
types across multiple persistence technologies, but then Spring Data is no longer able to determine
a unique module to bind the repository.

The last way to distinguish repositories is scoping repository base packages. Base packages define
the starting points for scanning for repository interface definitions which  implies to have
repository definitions located in the appropriate packages. By default, annotation-driven
configuration uses the package of the configuration class. The base package in XML-based
configuration is mandatory.

Example 12. Annotation-driven configuration of base packages

@EnableJpaRepositories(basePackages = "com.acme.repositories.jpa")
@EnableMongoRepositories(basePackages = "com.acme.repositories.mongo")
interface Configuration { }

3.4. Defining query methods
The repository proxy has two ways to derive a store-specific query from the method name. It can
derive the query from the method name directly, or by using a manually defined query. Available
options depend on the actual store. However, there’s got to be a strategy that decides what actual
query is created. Let’s have a look at the available options.

12



3.4.1. Query lookup strategies

The following strategies are available for the repository infrastructure to resolve the query. You can
configure the strategy at the namespace through the query-lookup-strategy attribute in case of XML
configuration or via the queryLookupStrategy attribute of the Enable${store}Repositories annotation
in case of Java config. Some strategies may not be supported for particular datastores.

• CREATE attempts to construct a store-specific query from the query method name. The general
approach is to remove a given set of well-known prefixes from the method name and parse the
rest of the method. Read more about query construction in Query creation.

• USE_DECLARED_QUERY tries to find a declared query and will throw an exception in case it can’t
find one. The query can be defined by an annotation somewhere or declared by other means.
Consult the documentation of the specific store to find available options for that store. If the
repository infrastructure does not find a declared query for the method at bootstrap time, it
fails.

• CREATE_IF_NOT_FOUND (default) combines CREATE and USE_DECLARED_QUERY. It looks up a declared
query first, and if no declared query is found, it creates a custom method name-based query.
This is the default lookup strategy and thus will be used if you do not configure anything
explicitly. It allows quick query definition by method names but also custom-tuning of these
queries by introducing declared queries as needed.

3.4.2. Query creation

The query builder mechanism built into Spring Data repository infrastructure is useful for building
constraining queries over entities of the repository. The mechanism strips the prefixes find…By,
read…By, query…By, count…By, and get…By from the method and starts parsing the rest of it. The
introducing clause can contain further expressions such as a Distinct to set a distinct flag on the
query to be created. However, the first By acts as delimiter to indicate the start of the actual criteria.
At a very basic level you can define conditions on entity properties and concatenate them with And
and Or.

13



Example 13. Query creation from method names

public interface PersonRepository extends Repository<User, Long> {

  List<Person> findByEmailAddressAndLastname(EmailAddress emailAddress, String
lastname);

  // Enables the distinct flag for the query
  List<Person> findDistinctPeopleByLastnameOrFirstname(String lastname, String
firstname);
  List<Person> findPeopleDistinctByLastnameOrFirstname(String lastname, String
firstname);

  // Enabling ignoring case for an individual property
  List<Person> findByLastnameIgnoreCase(String lastname);
  // Enabling ignoring case for all suitable properties
  List<Person> findByLastnameAndFirstnameAllIgnoreCase(String lastname, String
firstname);

  // Enabling static ORDER BY for a query
  List<Person> findByLastnameOrderByFirstnameAsc(String lastname);
  List<Person> findByLastnameOrderByFirstnameDesc(String lastname);
}

The actual result of parsing the method depends on the persistence store for which you create the
query. However, there are some general things to notice.

• The expressions are usually property traversals combined with operators that can be
concatenated. You can combine property expressions with AND and OR. You also get support for
operators such as Between, LessThan, GreaterThan, Like for the property expressions. The
supported operators can vary by datastore, so consult the appropriate part of your reference
documentation.

• The method parser supports setting an IgnoreCase flag for individual properties (for example,
findByLastnameIgnoreCase(…)) or for all properties of a type that support ignoring case (usually
String instances, for example, findByLastnameAndFirstnameAllIgnoreCase(…)). Whether ignoring
cases is supported may vary by store, so consult the relevant sections in the reference
documentation for the store-specific query method.

• You can apply static ordering by appending an OrderBy clause to the query method that
references a property and by providing a sorting direction (Asc or Desc). To create a query
method that supports dynamic sorting, see Special parameter handling.

3.4.3. Property expressions

Property expressions can refer only to a direct property of the managed entity, as shown in the
preceding example. At query creation time you already make sure that the parsed property is a
property of the managed domain class. However, you can also define constraints by traversing
nested properties. Assume a Person has an Address with a ZipCode. In that case a method name of

14



List<Person> findByAddressZipCode(ZipCode zipCode);

creates the property traversal x.address.zipCode. The resolution algorithm starts with interpreting
the entire part (AddressZipCode) as the property and checks the domain class for a property with
that name (uncapitalized). If the algorithm succeeds it uses that property. If not, the algorithm splits
up the source at the camel case parts from the right side into a head and a tail and tries to find the
corresponding property, in our example, AddressZip and Code. If the algorithm finds a property with
that head it takes the tail and continue building the tree down from there, splitting the tail up in the
way just described. If the first split does not match, the algorithm move the split point to the left
(Address, ZipCode) and continues.

Although this should work for most cases, it is possible for the algorithm to select the wrong
property. Suppose the Person class has an addressZip property as well. The algorithm would match
in the first split round already and essentially choose the wrong property and finally fail (as the
type of addressZip probably has no code property).

To resolve this ambiguity you can use _ inside your method name to manually define traversal
points. So our method name would end up like so:

List<Person> findByAddress_ZipCode(ZipCode zipCode);

As we treat underscore as a reserved character we strongly advise to follow standard Java naming
conventions (i.e. not using underscores in property names but camel case instead).

3.4.4. Special parameter handling

To handle parameters in your query you simply define method parameters as already seen in the
examples above. Besides that the infrastructure will recognize certain specific types like Pageable
and Sort to apply pagination and sorting to your queries dynamically.

Example 14. Using Pageable, Slice and Sort in query methods

Page<User> findByLastname(String lastname, Pageable pageable);

Slice<User> findByLastname(String lastname, Pageable pageable);

List<User> findByLastname(String lastname, Sort sort);

List<User> findByLastname(String lastname, Pageable pageable);

The first method allows you to pass an org.springframework.data.domain.Pageable instance to the
query method to dynamically add paging to your statically defined query. A Page knows about the
total number of elements and pages available. It does so by the infrastructure triggering a count
query to calculate the overall number. As this might be expensive depending on the store used,
Slice can be used as return instead. A Slice only knows about whether there’s a next Slice

15



available which might be just sufficient when walking thought a larger result set.

Sorting options are handled through the Pageable instance too. If you only need sorting, simply add
an org.springframework.data.domain.Sort parameter to your method. As you also can see, simply
returning a List is possible as well. In this case the additional metadata required to build the actual
Page instance will not be created (which in turn means that the additional count query that would
have been necessary not being issued) but rather simply restricts the query to look up only the
given range of entities.

NOTE
To find out how many pages you get for a query entirely you have to trigger an
additional count query. By default this query will be derived from the query you
actually trigger.

3.4.5. Limiting query results

The results of query methods can be limited via the keywords first or top, which can be used
interchangeably. An optional numeric value can be appended to top/first to specify the maximum
result size to be returned. If the number is left out, a result size of 1 is assumed.

Example 15. Limiting the result size of a query with Top and First

User findFirstByOrderByLastnameAsc();

User findTopByOrderByAgeDesc();

Page<User> queryFirst10ByLastname(String lastname, Pageable pageable);

Slice<User> findTop3ByLastname(String lastname, Pageable pageable);

List<User> findFirst10ByLastname(String lastname, Sort sort);

List<User> findTop10ByLastname(String lastname, Pageable pageable);

The limiting expressions also support the Distinct keyword. Also, for the queries limiting the result
set to one instance, wrapping the result into an Optional is supported.

If pagination or slicing is applied to a limiting query pagination (and the calculation of the number
of pages available) then it is applied within the limited result.

NOTE
Note that limiting the results in combination with dynamic sorting via a Sort
parameter allows to express query methods for the 'K' smallest as well as for the 'K'
biggest elements.

3.4.6. Streaming query results

The results of query methods can be processed incrementally by using a Java 8 Stream<T> as return
type. Instead of simply wrapping the query results in a Stream data store specific methods are used

16



to perform the streaming.

Example 16. Stream the result of a query with Java 8 Stream<T>

@Query("select u from User u")
Stream<User> findAllByCustomQueryAndStream();

Stream<User> readAllByFirstnameNotNull();

@Query("select u from User u")
Stream<User> streamAllPaged(Pageable pageable);

NOTE
A Stream potentially wraps underlying data store specific resources and must
therefore be closed after usage. You can either manually close the Stream using the
close() method or by using a Java 7 try-with-resources block.

Example 17. Working with a Stream<T> result in a try-with-resources block

try (Stream<User> stream = repository.findAllByCustomQueryAndStream()) {
  stream.forEach(…);
}

NOTE Not all Spring Data modules currently support Stream<T> as a return type.

3.4.7. Async query results

Repository queries can be executed asynchronously using Spring’s asynchronous method execution
capability. This means the method will return immediately upon invocation and the actual query
execution will occur in a task that has been submitted to a Spring TaskExecutor.

@Async
Future<User> findByFirstname(String firstname);               ①

@Async
CompletableFuture<User> findOneByFirstname(String firstname); ②

@Async
ListenableFuture<User> findOneByLastname(String lastname);    ③

① Use java.util.concurrent.Future as return type.

② Use a Java 8 java.util.concurrent.CompletableFuture as return type.

③ Use a org.springframework.util.concurrent.ListenableFuture as return type.

17

http://docs.spring.io/spring/docs/current/spring-framework-reference/html#scheduling
http://docs.spring.io/spring/docs/current/spring-framework-reference/html#scheduling


3.5. Creating repository instances
In this section you create instances and bean definitions for the repository interfaces defined. One
way to do so is using the Spring namespace that is shipped with each Spring Data module that
supports the repository mechanism although we generally recommend to use the Java-Config style
configuration.

3.5.1. XML configuration

Each Spring Data module includes a repositories element that allows you to simply define a base
package that Spring scans for you.

Example 18. Enabling Spring Data repositories via XML

<?xml version="1.0" encoding="UTF-8"?>
<beans:beans xmlns:beans="http://www.springframework.org/schema/beans"
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xmlns="http://www.springframework.org/schema/data/jpa"
  xsi:schemaLocation="http://www.springframework.org/schema/beans
    http://www.springframework.org/schema/beans/spring-beans.xsd
    http://www.springframework.org/schema/data/jpa
    http://www.springframework.org/schema/data/jpa/spring-jpa.xsd">

  <repositories base-package="com.acme.repositories" />

</beans:beans>

In the preceding example, Spring is instructed to scan com.acme.repositories and all its sub-
packages for interfaces extending Repository or one of its sub-interfaces. For each interface found,
the infrastructure registers the persistence technology-specific FactoryBean to create the
appropriate proxies that handle invocations of the query methods. Each bean is registered under a
bean name that is derived from the interface name, so an interface of UserRepository would be
registered under userRepository. The base-package attribute allows wildcards, so that you can define
a pattern of scanned packages.

Using filters

By default the infrastructure picks up every interface extending the persistence technology-specific
Repository sub-interface located under the configured base package and creates a bean instance for
it. However, you might want more fine-grained control over which interfaces bean instances get
created for. To do this you use <include-filter /> and <exclude-filter /> elements inside
<repositories />. The semantics are exactly equivalent to the elements in Spring’s context
namespace. For details, see Spring reference documentation on these elements.

For example, to exclude certain interfaces from instantiation as repository, you could use the
following configuration:

18

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/beans.html#beans-scanning-filters


Example 19. Using exclude-filter element

<repositories base-package="com.acme.repositories">
  <context:exclude-filter type="regex" expression=".*SomeRepository" />
</repositories>

This example excludes all interfaces ending in SomeRepository from being instantiated.

3.5.2. JavaConfig

The repository infrastructure can also be triggered using a store-specific
@Enable${store}Repositories annotation on a JavaConfig class. For an introduction into Java-based
configuration of the Spring container, see the reference documentation. [1: JavaConfig in the Spring
reference documentation]

A sample configuration to enable Spring Data repositories looks something like this.

Example 20. Sample annotation based repository configuration

@Configuration
@EnableJpaRepositories("com.acme.repositories")
class ApplicationConfiguration {

  @Bean
  public EntityManagerFactory entityManagerFactory() {
    // …
  }
}

NOTE

The sample uses the JPA-specific annotation, which you would change according to
the store module you actually use. The same applies to the definition of the
EntityManagerFactory bean. Consult the sections covering the store-specific
configuration.

3.5.3. Standalone usage

You can also use the repository infrastructure outside of a Spring container, e.g. in CDI
environments. You still need some Spring libraries in your classpath, but generally you can set up
repositories programmatically as well. The Spring Data modules that provide repository support
ship a persistence technology-specific RepositoryFactory that you can use as follows.

19

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/beans.html#beans-java
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/beans.html#beans-java


Example 21. Standalone usage of repository factory

RepositoryFactorySupport factory = … // Instantiate factory here
UserRepository repository = factory.getRepository(UserRepository.class);

3.6. Custom implementations for Spring Data
repositories
Often it is necessary to provide a custom implementation for a few repository methods. Spring Data
repositories easily allow you to provide custom repository code and integrate it with generic CRUD
abstraction and query method functionality.

3.6.1. Adding custom behavior to single repositories

To enrich a repository with custom functionality you first define an interface and an
implementation for the custom functionality. Use the repository interface you provided to extend
the custom interface.

Example 22. Interface for custom repository functionality

interface UserRepositoryCustom {
  public void someCustomMethod(User user);
}

Example 23. Implementation of custom repository functionality

class UserRepositoryImpl implements UserRepositoryCustom {

  public void someCustomMethod(User user) {
    // Your custom implementation
  }
}

NOTE
The most important bit for the class to be found is the Impl postfix of the name on it
compared to the core repository interface (see below).

The implementation itself does not depend on Spring Data and can be a regular Spring bean. So you
can use standard dependency injection behavior to inject references to other beans like a
JdbcTemplate, take part in aspects, and so on.

20



Example 24. Changes to the your basic repository interface

interface UserRepository extends CrudRepository<User, Long>, UserRepositoryCustom
{

  // Declare query methods here
}

Let your standard repository interface extend the custom one. Doing so combines the CRUD and
custom functionality and makes it available to clients.

Configuration

If you use namespace configuration, the repository infrastructure tries to autodetect custom
implementations by scanning for classes below the package we found a repository in. These classes
need to follow the naming convention of appending the namespace element’s attribute repository-
impl-postfix to the found repository interface name. This postfix defaults to Impl.

Example 25. Configuration example

<repositories base-package="com.acme.repository" />

<repositories base-package="com.acme.repository" repository-impl-postfix="FooBar"
/>

The first configuration example will try to look up a class com.acme.repository.UserRepositoryImpl
to act as custom repository implementation, whereas the second example will try to lookup
com.acme.repository.UserRepositoryFooBar.

Manual wiring

The approach just shown works well if your custom implementation uses annotation-based
configuration and autowiring only, as it will be treated as any other Spring bean. If your custom
implementation bean needs special wiring, you simply declare the bean and name it after the
conventions just described. The infrastructure will then refer to the manually defined bean
definition by name instead of creating one itself.

Example 26. Manual wiring of custom implementations

<repositories base-package="com.acme.repository" />

<beans:bean id="userRepositoryImpl" class="…">
  <!-- further configuration -->
</beans:bean>

21



3.6.2. Adding custom behavior to all repositories

The preceding approach is not feasible when you want to add a single method to all your repository
interfaces. To add custom behavior to all repositories, you first add an intermediate interface to
declare the shared behavior.

Example 27. An interface declaring custom shared behavior

@NoRepositoryBean
public interface MyRepository<T, ID extends Serializable>
  extends PagingAndSortingRepository<T, ID> {

  void sharedCustomMethod(ID id);
}

Now your individual repository interfaces will extend this intermediate interface instead of the
Repository interface to include the functionality declared. Next, create an implementation of the
intermediate interface that extends the persistence technology-specific repository base class. This
class will then act as a custom base class for the repository proxies.

Example 28. Custom repository base class

public class MyRepositoryImpl<T, ID extends Serializable>
  extends SimpleJpaRepository<T, ID> implements MyRepository<T, ID> {

  private final EntityManager entityManager;

  public MyRepositoryImpl(JpaEntityInformation entityInformation,
                          EntityManager entityManager) {
    super(entityInformation, entityManager);

    // Keep the EntityManager around to used from the newly introduced methods.
    this.entityManager = entityManager;
  }

  public void sharedCustomMethod(ID id) {
    // implementation goes here
  }
}

WARNING

The class needs to have a constructor of the super class which the store-specific
repository factory implementation is using. In case the repository base class
has multiple constructors, override the one taking an EntityInformation plus a
store specific infrastructure object (e.g. an EntityManager or a template class).

The default behavior of the Spring <repositories /> namespace is to provide an implementation for

22



all interfaces that fall under the base-package. This means that if left in its current state, an
implementation instance of MyRepository will be created by Spring. This is of course not desired as it
is just supposed to act as an intermediary between Repository and the actual repository interfaces
you want to define for each entity. To exclude an interface that extends Repository from being
instantiated as a repository instance, you can either annotate it with @NoRepositoryBean (as seen
above) or move it outside of the configured base-package.

The final step is to make the Spring Data infrastructure aware of the customized repository base
class. In JavaConfig this is achieved by using the repositoryBaseClass attribute of the @Enable
…Repositories annotation:

Example 29. Configuring a custom repository base class using JavaConfig

@Configuration
@EnableJpaRepositories(repositoryBaseClass = MyRepositoryImpl.class)
class ApplicationConfiguration { … }

A corresponding attribute is available in the XML namespace.

Example 30. Configuring a custom repository base class using XML

<repositories base-package="com.acme.repository"
     base-class="….MyRepositoryImpl" />

3.7. Spring Data extensions
This section documents a set of Spring Data extensions that enable Spring Data usage in a variety of
contexts. Currently most of the integration is targeted towards Spring MVC.

3.7.1. Querydsl Extension

Querydsl is a framework which enables the construction of statically typed SQL-like queries via its
fluent API.

Several Spring Data modules offer integration with Querydsl via QueryDslPredicateExecutor.

23

http://www.querydsl.com/


Example 31. QueryDslPredicateExecutor interface

public interface QueryDslPredicateExecutor<T> {

    T findOne(Predicate predicate);             ①

    Iterable<T> findAll(Predicate predicate);   ②

    long count(Predicate predicate);            ③

    boolean exists(Predicate predicate);        ④

    // … more functionality omitted.
}

① Finds and returns a single entity matching the Predicate.

② Finds and returns all entities matching the Predicate.

③ Returns the number of entities matching the Predicate.

④ Returns if an entity that matches the Predicate exists.

To make use of Querydsl support simply extend QueryDslPredicateExecutor on your repository
interface.

Example 32. Querydsl integration on repositories

interface UserRepository extends CrudRepository<User, Long>,
QueryDslPredicateExecutor<User> {

}

The above enables to write typesafe queries using Querydsl Predicate s.

Predicate predicate = user.firstname.equalsIgnoreCase("dave")
    .and(user.lastname.startsWithIgnoreCase("mathews"));

userRepository.findAll(predicate);

3.7.2. Web support

NOTE

This section contains the documentation for the Spring Data web support as it is
implemented as of Spring Data Commons in the 1.6 range. As it the newly
introduced support changes quite a lot of things we kept the documentation of the
former behavior in Legacy web support.

24



Spring Data modules ships with a variety of web support if the module supports the repository
programming model. The web related stuff requires Spring MVC JARs on the classpath, some of
them even provide integration with Spring HATEOAS  [2: Spring HATEOAS -
https://github.com/SpringSource/spring-hateoas]. In general, the integration support is enabled by
using the @EnableSpringDataWebSupport annotation in your JavaConfig configuration class.

Example 33. Enabling Spring Data web support

@Configuration
@EnableWebMvc
@EnableSpringDataWebSupport
class WebConfiguration { }

The @EnableSpringDataWebSupport annotation registers a few components we will discuss in a bit. It
will also detect Spring HATEOAS on the classpath and register integration components for it as well
if present.

Alternatively, if you are using XML configuration, register either SpringDataWebSupport or
HateoasAwareSpringDataWebSupport as Spring beans:

Example 34. Enabling Spring Data web support in XML

<bean class="org.springframework.data.web.config.SpringDataWebConfiguration" />

<!-- If you're using Spring HATEOAS as well register this one *instead* of the
former -->
<bean class=
"org.springframework.data.web.config.HateoasAwareSpringDataWebConfiguration" />

Basic web support

The configuration setup shown above will register a few basic components:

• A DomainClassConverter to enable Spring MVC to resolve instances of repository managed
domain classes from request parameters or path variables.

• HandlerMethodArgumentResolver implementations to let Spring MVC resolve Pageable and Sort
instances from request parameters.

DomainClassConverter

The DomainClassConverter allows you to use domain types in your Spring MVC controller method
signatures directly, so that you don’t have to manually lookup the instances via the repository:

25

https://github.com/SpringSource/spring-hateoas


Example 35. A Spring MVC controller using domain types in method signatures

@Controller
@RequestMapping("/users")
public class UserController {

  @RequestMapping("/{id}")
  public String showUserForm(@PathVariable("id") User user, Model model) {

    model.addAttribute("user", user);
    return "userForm";
  }
}

As you can see the method receives a User instance directly and no further lookup is necessary. The
instance can be resolved by letting Spring MVC convert the path variable into the id type of the
domain class first and eventually access the instance through calling findOne(…) on the repository
instance registered for the domain type.

NOTE
Currently the repository has to implement CrudRepository to be eligible to be
discovered for conversion.

HandlerMethodArgumentResolvers for Pageable and Sort

The configuration snippet above also registers a PageableHandlerMethodArgumentResolver as well as
an instance of SortHandlerMethodArgumentResolver. The registration enables Pageable and Sort being
valid controller method arguments

Example 36. Using Pageable as controller method argument

@Controller
@RequestMapping("/users")
public class UserController {

  @Autowired UserRepository repository;

  @RequestMapping
  public String showUsers(Model model, Pageable pageable) {

    model.addAttribute("users", repository.findAll(pageable));
    return "users";
  }
}

This method signature will cause Spring MVC try to derive a Pageable instance from the request
parameters using the following default configuration:

26



Table 1. Request parameters evaluated for Pageable instances

page Page you want to retrieve, 0 indexed and defaults to 0.

size Size of the page you want to retrieve, defaults to 20.

sort Properties that should be sorted by in the format property,property(,ASC|DESC). Default sort
direction is ascending. Use multiple sort parameters if you want to switch directions, e.g.
?sort=firstname&sort=lastname,asc.

To customize this behavior extend either SpringDataWebConfiguration or the HATEOAS-enabled
equivalent and override the pageableResolver() or sortResolver() methods and import your
customized configuration file instead of using the @Enable-annotation.

In case you need multiple Pageable or Sort instances to be resolved from the request (for multiple
tables, for example) you can use Spring’s @Qualifier annotation to distinguish one from another.
The request parameters then have to be prefixed with ${qualifier}_. So for a method signature like
this:

public String showUsers(Model model,
      @Qualifier("foo") Pageable first,
      @Qualifier("bar") Pageable second) { … }

you have to populate foo_page and bar_page etc.

The default Pageable handed into the method is equivalent to a new PageRequest(0, 20) but can be
customized using the @PageableDefaults annotation on the Pageable parameter.

Hypermedia support for Pageables

Spring HATEOAS ships with a representation model class PagedResources that allows enriching the
content of a Page instance with the necessary Page metadata as well as links to let the clients easily
navigate the pages. The conversion of a Page to a PagedResources is done by an implementation of
the Spring HATEOAS ResourceAssembler interface, the PagedResourcesAssembler.

27



Example 37. Using a PagedResourcesAssembler as controller method argument

@Controller
class PersonController {

  @Autowired PersonRepository repository;

  @RequestMapping(value = "/persons", method = RequestMethod.GET)
  HttpEntity<PagedResources<Person>> persons(Pageable pageable,
    PagedResourcesAssembler assembler) {

    Page<Person> persons = repository.findAll(pageable);
    return new ResponseEntity<>(assembler.toResources(persons), HttpStatus.OK);
  }
}

Enabling the configuration as shown above allows the PagedResourcesAssembler to be used as
controller method argument. Calling toResources(…) on it will cause the following:

• The content of the Page will become the content of the PagedResources instance.

• The PagedResources will get a PageMetadata instance attached populated with information form
the Page and the underlying PageRequest.

• The PagedResources gets prev and next links attached depending on the page’s state. The links
will point to the URI the method invoked is mapped to. The pagination parameters added to the
method will match the setup of the PageableHandlerMethodArgumentResolver to make sure the
links can be resolved later on.

Assume we have 30 Person instances in the database. You can now trigger a request GET
http://localhost:8080/persons and you’ll see something similar to this:

{ "links" : [ { "rel" : "next",
                "href" : "http://localhost:8080/persons?page=1&size=20 }
  ],
  "content" : [
     … // 20 Person instances rendered here
  ],
  "pageMetadata" : {
    "size" : 20,
    "totalElements" : 30,
    "totalPages" : 2,
    "number" : 0
  }
}

You see that the assembler produced the correct URI and also picks up the default configuration
present to resolve the parameters into a Pageable for an upcoming request. This means, if you

28

http://localhost:8080/persons


change that configuration, the links will automatically adhere to the change. By default the
assembler points to the controller method it was invoked in but that can be customized by handing
in a custom Link to be used as base to build the pagination links to overloads of the
PagedResourcesAssembler.toResource(…) method.

Querydsl web support

For those stores having QueryDSL integration it is possible to derive queries from the attributes
contained in a Request query string.

This means that given the User object from previous samples a query string

?firstname=Dave&lastname=Matthews

can be resolved to

QUser.user.firstname.eq("Dave").and(QUser.user.lastname.eq("Matthews"))

using the QuerydslPredicateArgumentResolver.

NOTE
The feature will be automatically enabled along @EnableSpringDataWebSupport when
Querydsl is found on the classpath.

Adding a @QuerydslPredicate to the method signature will provide a ready to use Predicate which
can be executed via the QueryDslPredicateExecutor.

TIP
Type information is typically resolved from the methods return type. Since those
information does not necessarily match the domain type it might be a good idea to use
the root attribute of QuerydslPredicate.

29

http://www.querydsl.com/


@Controller
class UserController {

  @Autowired UserRepository repository;

  @RequestMapping(value = "/", method = RequestMethod.GET)
  String index(Model model, @QuerydslPredicate(root = User.class) Predicate
predicate,    ①
          Pageable pageable, @RequestParam MultiValueMap<String, String>
parameters) {

    model.addAttribute("users", repository.findAll(predicate, pageable));

    return "index";
  }
}

① Resolve query string arguments to matching Predicate for User.

The default binding is as follows:

• Object on simple properties as eq.

• Object on collection like properties as contains.

• Collection on simple properties as in.

Those bindings can be customized via the bindings attribute of @QuerydslPredicate or by making use
of Java 8 default methods adding the QuerydslBinderCustomizer to the repository interface.

30



interface UserRepository extends CrudRepository<User, String>,
                                 QueryDslPredicateExecutor<User>,
①
                                 QuerydslBinderCustomizer<QUser> {
②

  @Override
  default public void customize(QuerydslBindings bindings, QUser user) {

    bindings.bind(user.username).first((path, value) -> path.contains(value))
③
    bindings.bind(String.class)
      .first((StringPath path, String value) -> path.containsIgnoreCase(value));
④
    bindings.excluding(user.password);
⑤
  }
}

① QueryDslPredicateExecutor provides access to specific finder methods for Predicate.

② QuerydslBinderCustomizer defined on the repository interface will be automatically picked
up and shortcuts @QuerydslPredicate(bindings=…).

③ Define the binding for the username property to be a simple contains binding.

④ Define the default binding for String properties to be a case insensitive contains match.

⑤ Exclude the password property from Predicate resolution.

3.7.3. Repository populators

If you work with the Spring JDBC module, you probably are familiar with the support to populate a
DataSource using SQL scripts. A similar abstraction is available on the repositories level, although it
does not use SQL as the data definition language because it must be store-independent. Thus the
populators support XML (through Spring’s OXM abstraction) and JSON (through Jackson) to define
data with which to populate the repositories.

Assume you have a file data.json with the following content:

Example 38. Data defined in JSON

[ { "_class" : "com.acme.Person",
 "firstname" : "Dave",
  "lastname" : "Matthews" },
  { "_class" : "com.acme.Person",
 "firstname" : "Carter",
  "lastname" : "Beauford" } ]

31



You can easily populate your repositories by using the populator elements of the repository
namespace provided in Spring Data Commons. To populate the preceding data to your
PersonRepository , do the following:

Example 39. Declaring a Jackson repository populator

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xmlns:repository="http://www.springframework.org/schema/data/repository"
  xsi:schemaLocation="http://www.springframework.org/schema/beans
    http://www.springframework.org/schema/beans/spring-beans.xsd
    http://www.springframework.org/schema/data/repository
    http://www.springframework.org/schema/data/repository/spring-repository.xsd">

  <repository:jackson2-populator locations="classpath:data.json" />

</beans>

This declaration causes the data.json file to be read and deserialized via a Jackson ObjectMapper.

The type to which the JSON object will be unmarshalled to will be determined by inspecting the
_class attribute of the JSON document. The infrastructure will eventually select the appropriate
repository to handle the object just deserialized.

To rather use XML to define the data the repositories shall be populated with, you can use the
unmarshaller-populator element. You configure it to use one of the XML marshaller options Spring
OXM provides you with. See the Spring reference documentation for details.

32

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/oxm.html


Example 40. Declaring an unmarshalling repository populator (using JAXB)

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xmlns:repository="http://www.springframework.org/schema/data/repository"
  xmlns:oxm="http://www.springframework.org/schema/oxm"
  xsi:schemaLocation="http://www.springframework.org/schema/beans
    http://www.springframework.org/schema/beans/spring-beans.xsd
    http://www.springframework.org/schema/data/repository
    http://www.springframework.org/schema/data/repository/spring-repository.xsd
    http://www.springframework.org/schema/oxm
    http://www.springframework.org/schema/oxm/spring-oxm.xsd">

  <repository:unmarshaller-populator locations="classpath:data.json"
    unmarshaller-ref="unmarshaller" />

  <oxm:jaxb2-marshaller contextPath="com.acme" />

</beans>

3.7.4. Legacy web support

Domain class web binding for Spring MVC

Given you are developing a Spring MVC web application you typically have to resolve domain class
ids from URLs. By default your task is to transform that request parameter or URL part into the
domain class to hand it to layers below then or execute business logic on the entities directly. This
would look something like this:

33



@Controller
@RequestMapping("/users")
public class UserController {

  private final UserRepository userRepository;

  @Autowired
  public UserController(UserRepository userRepository) {
    Assert.notNull(repository, "Repository must not be null!");
    this.userRepository = userRepository;
  }

  @RequestMapping("/{id}")
  public String showUserForm(@PathVariable("id") Long id, Model model) {

    // Do null check for id
    User user = userRepository.findOne(id);
    // Do null check for user

    model.addAttribute("user", user);
    return "user";
  }
}

First you declare a repository dependency for each controller to look up the entity managed by the
controller or repository respectively. Looking up the entity is boilerplate as well, as it’s always a
findOne(…) call. Fortunately Spring provides means to register custom components that allow
conversion between a String value to an arbitrary type.

PropertyEditors

For Spring versions before 3.0 simple Java PropertyEditors had to be used. To integrate with that,
Spring Data offers a DomainClassPropertyEditorRegistrar, which looks up all Spring Data
repositories registered in the ApplicationContext and registers a custom PropertyEditor for the
managed domain class.

<bean class="….web.servlet.mvc.annotation.AnnotationMethodHandlerAdapter">
  <property name="webBindingInitializer">
    <bean class="….web.bind.support.ConfigurableWebBindingInitializer">
      <property name="propertyEditorRegistrars">
        <bean class=
"org.springframework.data.repository.support.DomainClassPropertyEditorRegistrar" />
      </property>
    </bean>
  </property>
</bean>

If you have configured Spring MVC as in the preceding example, you can configure your controller

34



as follows, which reduces a lot of the clutter and boilerplate.

@Controller
@RequestMapping("/users")
public class UserController {

  @RequestMapping("/{id}")
  public String showUserForm(@PathVariable("id") User user, Model model) {

    model.addAttribute("user", user);
    return "userForm";
  }
}

35



Chapter 4. Query by Example

4.1. Introduction
This chapter will give you an introduction to Query by Example and explain how to use Examples.

Query by Example (QBE) is a user-friendly querying technique with a simple interface. It allows
dynamic query creation and does not require to write queries containing field names. In fact,
Query by Example does not require to write queries using store-specific query languages at all.

4.2. Usage
The Query by Example API consists of three parts:

• Probe: That is the actual example of a domain object with populated fields.

• ExampleMatcher: The ExampleMatcher carries details on how to match particular fields. It can be
reused across multiple Examples.

• Example: An Example consists of the probe and the ExampleMatcher. It is used to create the query.

Query by Example is suited for several use-cases but also comes with limitations:

When to use

• Querying your data store with a set of static or dynamic constraints

• Frequent refactoring of the domain objects without worrying about breaking existing queries

• Works independently from the underlying data store API

Limitations

• No support for nested/grouped property constraints like firstname = ?0 or (firstname = ?1 and
lastname = ?2)

• Only supports starts/contains/ends/regex matching for strings and exact matching for other
property types

Before getting started with Query by Example, you need to have a domain object. To get started,
simply create an interface for your repository:

36



Example 41. Sample Person object

public class Person {

  @Id
  private String id;
  private String firstname;
  private String lastname;
  private Address address;

  // … getters and setters omitted
}

This is a simple domain object. You can use it to create an Example. By default, fields having null
values are ignored, and strings are matched using the store specific defaults. Examples can be built
by either using the of factory method or by using ExampleMatcher. Example is immutable.

Example 42. Simple Example

Person person = new Person();                         ①
person.setFirstname("Dave");                          ②

Example<Person> example = Example.of(person);         ③

① Create a new instance of the domain object

② Set the properties to query

③ Create the Example

Examples are ideally be executed with repositories. To do so, let your repository interface extend
QueryByExampleExecutor<T>. Here’s an excerpt from the QueryByExampleExecutor interface:

Example 43. The QueryByExampleExecutor

public interface QueryByExampleExecutor<T> {

  <S extends T> S findOne(Example<S> example);

  <S extends T> Iterable<S> findAll(Example<S> example);

  // … more functionality omitted.
}

You can read more about Query by Example Execution below.

37



4.3. Example matchers
Examples are not limited to default settings. You can specify own defaults for string matching, null
handling and property-specific settings using the ExampleMatcher.

Example 44. Example matcher with customized matching

Person person = new Person();                          ①
person.setFirstname("Dave");                           ②

ExampleMatcher matcher = ExampleMatcher.matching()     ③
  .withIgnorePaths("lastname")                         ④
  .withIncludeNullValues()                             ⑤
  .withStringMatcherEnding();                          ⑥

Example<Person> example = Example.of(person, matcher); ⑦

① Create a new instance of the domain object.

② Set properties.

③ Create an ExampleMatcher to expect all values to match. It’s usable at this stage even without
further configuration.

④ Construct a new ExampleMatcher to ignore the property path lastname.

⑤ Construct a new ExampleMatcher to ignore the property path lastname and to include null
values.

⑥ Construct a new ExampleMatcher to ignore the property path lastname, to include null values,
and use perform suffix string matching.

⑦ Create a new Example based on the domain object and the configured ExampleMatcher.

By default the ExampleMatcher will expect all values set on the probe to match. If you want to get
results matching any of the predicates defined implicitly, use ExampleMatcher.matchingAny().

You can specify behavior for individual properties (e.g. "firstname" and "lastname", "address.city"
for nested properties). You can tune it with matching options and case sensitivity.

Example 45. Configuring matcher options

ExampleMatcher matcher = ExampleMatcher.matching()
  .withMatcher("firstname", endsWith())
  .withMatcher("lastname", startsWith().ignoreCase());
}

Another style to configure matcher options is by using Java 8 lambdas. This approach is a callback
that asks the implementor to modify the matcher. It’s not required to return the matcher because

38



configuration options are held within the matcher instance.

Example 46. Configuring matcher options with lambdas

ExampleMatcher matcher = ExampleMatcher.matching()
  .withMatcher("firstname", match -> match.endsWith())
  .withMatcher("firstname", match -> match.startsWith());
}

Queries created by Example use a merged view of the configuration. Default matching settings can
be set at ExampleMatcher level while individual settings can be applied to particular property paths.
Settings that are set on ExampleMatcher are inherited by property path settings unless they are
defined explicitly. Settings on a property patch have higher precedence than default settings.

Table 2. Scope of ExampleMatcher settings

Setting Scope

Null-handling ExampleMatcher

String matching ExampleMatcher and property path

Ignoring properties Property path

Case sensitivity ExampleMatcher and property path

Value transformation Property path

39



Chapter 5. Auditing

5.1. Basics
Spring Data provides sophisticated support to transparently keep track of who created or changed
an entity and the point in time this happened. To benefit from that functionality you have to equip
your entity classes with auditing metadata that can be defined either using annotations or by
implementing an interface.

5.1.1. Annotation based auditing metadata

We provide @CreatedBy, @LastModifiedBy to capture the user who created or modified the entity as
well as @CreatedDate and @LastModifiedDate to capture the point in time this happened.

Example 47. An audited entity

class Customer {

  @CreatedBy
  private User user;

  @CreatedDate
  private DateTime createdDate;

  // … further properties omitted
}

As you can see, the annotations can be applied selectively, depending on which information you’d
like to capture. For the annotations capturing the points in time can be used on properties of type
JodaTimes DateTime, legacy Java Date and Calendar, JDK8 date/time types as well as long/Long.

5.1.2. Interface-based auditing metadata

In case you don’t want to use annotations to define auditing metadata you can let your domain
class implement the Auditable interface. It exposes setter methods for all of the auditing properties.

There’s also a convenience base class AbstractAuditable which you can extend to avoid the need to
manually implement the interface methods. Be aware that this increases the coupling of your
domain classes to Spring Data which might be something you want to avoid. Usually the annotation
based way of defining auditing metadata is preferred as it is less invasive and more flexible.

5.1.3. AuditorAware

In case you use either @CreatedBy or @LastModifiedBy, the auditing infrastructure somehow needs to
become aware of the current principal. To do so, we provide an AuditorAware<T> SPI interface that
you have to implement to tell the infrastructure who the current user or system interacting with

40



the application is. The generic type T defines of what type the properties annotated with @CreatedBy
or @LastModifiedBy have to be.

Here’s an example implementation of the interface using Spring Security’s Authentication object:

Example 48. Implementation of AuditorAware based on Spring Security

class SpringSecurityAuditorAware implements AuditorAware<User> {

  public User getCurrentAuditor() {

    Authentication authentication = SecurityContextHolder.getContext()
.getAuthentication();

    if (authentication == null || !authentication.isAuthenticated()) {
      return null;
    }

    return ((MyUserDetails) authentication.getPrincipal()).getUser();
  }
}

The implementation is accessing the Authentication object provided by Spring Security and looks
up the custom UserDetails instance from it that you have created in your UserDetailsService
implementation. We’re assuming here that you are exposing the domain user through that
UserDetails implementation but you could also look it up from anywhere based on the
Authentication found.

Appendix

41



Appendix A: Namespace reference

The <repositories /> element
The <repositories /> element triggers the setup of the Spring Data repository infrastructure. The
most important attribute is base-package which defines the package to scan for Spring Data
repository interfaces. [3: see XML configuration]

Table 3. Attributes

Name Description

base-package Defines the package to be used to be scanned for repository interfaces
extending *Repository (actual interface is determined by specific Spring
Data module) in auto detection mode. All packages below the configured
package will be scanned, too. Wildcards are allowed.

repository-impl-
postfix

Defines the postfix to autodetect custom repository implementations.
Classes whose names end with the configured postfix will be considered
as candidates. Defaults to Impl.

query-lookup-strategy Determines the strategy to be used to create finder queries. See Query
lookup strategies for details. Defaults to create-if-not-found.

named-queries-location Defines the location to look for a Properties file containing externally
defined queries.

consider-nested-
repositories

Controls whether nested repository interface definitions should be
considered. Defaults to false.

42



Appendix B: Populators namespace
reference

The <populator /> element
The <populator /> element allows to populate the a data store via the Spring Data repository
infrastructure. [4: see XML configuration]

Table 4. Attributes

Name Description

locations Where to find the files to read the objects from the repository shall be
populated with.

43



Appendix C: Repository query keywords

Supported query keywords
The following table lists the keywords generally supported by the Spring Data repository query
derivation mechanism. However, consult the store-specific documentation for the exact list of
supported keywords, because some listed here might not be supported in a particular store.

Table 5. Query keywords

Logical keyword Keyword expressions

AND And

OR Or

AFTER After, IsAfter

BEFORE Before, IsBefore

CONTAINING Containing, IsContaining, Contains

BETWEEN Between, IsBetween

ENDING_WITH EndingWith, IsEndingWith, EndsWith

EXISTS Exists

FALSE False, IsFalse

GREATER_THAN GreaterThan, IsGreaterThan

GREATER_THAN_EQUALS GreaterThanEqual, IsGreaterThanEqual

IN In, IsIn

IS Is, Equals, (or no keyword)

IS_NOT_NULL NotNull, IsNotNull

IS_NULL Null, IsNull

LESS_THAN LessThan, IsLessThan

LESS_THAN_EQUAL LessThanEqual, IsLessThanEqual

LIKE Like, IsLike

NEAR Near, IsNear

NOT Not, IsNot

NOT_IN NotIn, IsNotIn

NOT_LIKE NotLike, IsNotLike

REGEX Regex, MatchesRegex, Matches

STARTING_WITH StartingWith, IsStartingWith, StartsWith

TRUE True, IsTrue

44



Logical keyword Keyword expressions

WITHIN Within, IsWithin

45



Appendix D: Repository query return types

Supported query return types
The following table lists the return types generally supported by Spring Data repositories. However,
consult the store-specific documentation for the exact list of supported return types, because some
listed here might not be supported in a particular store.

NOTE
Geospatial types like (GeoResult, GeoResults, GeoPage) are only available for data
stores that support geospatial queries.

Table 6. Query return types

Return type Description

void Denotes no return value.

Primitives Java primitives.

Wrapper types Java wrapper types.

T An unique entity. Expects the query method to return one result at most.
In case no result is found null is returned. More than one result will
trigger an IncorrectResultSizeDataAccessException.

Iterator<T> An Iterator.

Collection<T> A Collection.

List<T> A List.

Optional<T> A Java 8 or Guava Optional. Expects the query method to return one
result at most. In case no result is found Optional.empty()
/Optional.absent() is returned. More than one result will trigger an
IncorrectResultSizeDataAccessException.

Option<T> An either Scala or JavaSlang Option type. Semantically same behavior as
Java 8’s Optional described above.

Stream<T> A Java 8 Stream.

Future<T> A Future. Expects method to be annotated with @Async and requires
Spring’s asynchronous method execution capability enabled.

CompletableFuture<T> A Java 8 CompletableFuture. Expects method to be annotated with @Async
and requires Spring’s asynchronous method execution capability
enabled.

ListenableFuture A org.springframework.util.concurrent.ListenableFuture. Expects method
to be annotated with @Async and requires Spring’s asynchronous method
execution capability enabled.

Slice A sized chunk of data with information whether there is more data
available. Requires a Pageable method parameter.

46



Return type Description

Page<T> A Slice with additional information, e.g. the total number of results.
Requires a Pageable method parameter.

GeoResult<T> A result entry with additional information, e.g. distance to a reference
location.

GeoResults<T> A list of GeoResult<T> with additional information, e.g. average distance to
a reference location.

GeoPage<T> A Page with GeoResult<T>, e.g. average distance to a reference location.

47


	Spring Data Commons - Reference Documentation
	Table of Contents
	Preface
	Chapter 1. Project metadata

	Reference documentation
	Chapter 2. Dependencies
	2.1. Dependency management with Spring Boot
	2.2. Spring Framework

	Chapter 3. Working with Spring Data Repositories
	3.1. Core concepts
	3.2. Query methods
	3.3. Defining repository interfaces
	3.3.1. Fine-tuning repository definition
	3.3.2. Using Repositories with multiple Spring Data modules

	3.4. Defining query methods
	3.4.1. Query lookup strategies
	3.4.2. Query creation
	3.4.3. Property expressions
	3.4.4. Special parameter handling
	3.4.5. Limiting query results
	3.4.6. Streaming query results
	3.4.7. Async query results

	3.5. Creating repository instances
	3.5.1. XML configuration
	3.5.2. JavaConfig
	3.5.3. Standalone usage

	3.6. Custom implementations for Spring Data repositories
	3.6.1. Adding custom behavior to single repositories
	3.6.2. Adding custom behavior to all repositories

	3.7. Spring Data extensions
	3.7.1. Querydsl Extension
	3.7.2. Web support
	3.7.3. Repository populators
	3.7.4. Legacy web support


	Chapter 4. Query by Example
	4.1. Introduction
	4.2. Usage
	4.3. Example matchers

	Chapter 5. Auditing
	5.1. Basics
	5.1.1. Annotation based auditing metadata
	5.1.2. Interface-based auditing metadata
	5.1.3. AuditorAware



	Appendix
	Appendix A: Namespace reference
	The <repositories /> element

	Appendix B: Populators namespace reference
	The <populator /> element

	Appendix C: Repository query keywords
	Supported query keywords

	Appendix D: Repository query return types
	Supported query return types



