
Good Relationships

The Spring Data Graph Guidebook

Copyright © 2010 - 2011 Michael Hunger, David Montag, Mark Pollack, Thomas Risberg

Copies of this document may be made for your own use and for distribution to others,
provided that you do not charge any fee for such copies and further provided that

each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Data Graph () ii

Preface .. v

1. Foreword: Rod Johnson, CEO of SpringSource .. v

2. Foreword: Emil Eifrem, CEO of Neo Technology .. v

3. About this Guide Book .. v

I. Tutorial .. 1

1. Allow me to introduce - Cineasts.net ... 2

2. Scope: Spring .. 3

2.1. Preparations - Required Setup .. 3

3. Setting the Stage - Movies Domain ... 5

4. Graphs ahead - Learning Neo4j .. 7

5. Conjuring Magic - Spring Data Graph ... 8

6. Decorations - Annotated Domain .. 10

7. Do I know you? - Indexing .. 11

8. Serving a good cause - Repository .. 12

9. A convincing act - Relationships ... 13

9.1. Value in Relationships - Creating them ... 13

9.2. Who's there ? - Accessing related entities .. 13

9.3. May I introduce ? - Accessing Relationships themselves 14

10. Curtains Up! - Get it running .. 15

10.1. Requisites - Populating the database ... 15

10.2. Behind the scenes - Peeking at the Datastore ... 16

10.2.1. Eye candy - Neoclipse visualization ... 16

10.2.2. Hardcore "Hacking" - Neo4j Shell ... 16

11. Showing off - Web views ... 18

11.1. What was his name? - Searching .. 18

11.2. Look what we've found - Listing Results ... 19

12. Movies 2.0 - Adding social ... 21

12.1. Look, mom a Cineast! - Users .. 21

12.2. Beware, Critics - Rating ... 22

13. Protecting Assets - Adding Security .. 23

14. Oh the Glamour - More UI ... 27

15. The dusty archives - Importing Data .. 30

16. Movies! Friends! Bargains! - Recommendations ... 33

II. Reference .. 34

Preface ... xxxv

17. Introduction to Neo4j ... 36

17.1. What is a graph database? .. 36

17.2. GraphDatabaseService .. 36

17.3. Creating Nodes and Relationships ... 36

17.4. Graph traversal .. 37

17.5. Indexing .. 37

18. Programming model for Spring Data Graph ... 38

18.1. Overview of the AspectJ support .. 38

18.2. Using annotations to define POJO entities and relationships 38

18.2.1. @NodeEntity: The basic building block .. 38

18.2.2. @RelatedTo: Connecting NodeEntities ... 39

18.2.3. @RelationshipEntity: Rich relationships ... 39

18.2.4. @RelatedToVia: Connecting NodeEntitites via RelationshipEntities 39

18.2.5. @StartNode: Starting NodeEntity of RelationshipEntity 40

Good Relationships

Spring Data Graph () iii

18.2.6. @EndNode: Ending NodeEntity of RelationshipEntity 40

18.2.7. @Indexed: Making entities searchable by field value 40

18.2.8. @GraphTraversal .. 40

18.2.9. @GraphProperty: Cross-store persisted fields .. 40

18.3. Indexing .. 40

18.4. Finding nodes with finders ... 41

18.5. Transactions in Spring Data Graph ... 42

18.6. Session handling - attached and detached entities ... 43

18.7. Reified types for entities .. 44

18.8. Methods added to entity classes .. 44

18.9. Dynamic typing - Projection to unrelated, fitting types 45

18.10. Neo4jTemplate .. 46

18.11. Bean Validation - JSR-303 ... 47

19. Setup required for Spring Data Graph .. 48

19.1. Maven Configuration ... 48

19.1.1. Repositories .. 48

19.1.2. Dependencies .. 48

19.1.3. AspectJ build configuration ... 48

19.2. Setting Up Spring Data Graph - Spring Configuration 49

19.2.1. XML-Namespace .. 49

19.2.2. Java based Configuration ... 50

20. Cross-store persistence with a graph database ... 52

20.1. Partial graph persistence ... 52

20.1.1. @NodeEntity(partial = "true") .. 52

20.1.2. @GraphProperty ... 52

20.2. Configuring cross-store persistence ... 53

21. Samples ... 55

21.1. Introduction ... 55

21.2. Hello Worlds sample ... 55

21.3. IMDB sample .. 55

21.4. MyRestaurant sample ... 56

21.5. MyRestaurant-Social sample ... 56

22. Performance considerations ... 58

22.1. When to use SDG? .. 58

23. Neo4jTemplate ... 59

23.1. Transaction handling/management .. 59

23.2. Basic operations .. 59

23.3. Indexing .. 59

23.4. Traversal ... 59

23.5. PathMapper ... 59

24. Annotation-driven persistence ... 60

24.1. Annotations ... 60

24.2. Introduced methods .. 60

24.3. Finders .. 60

24.4. GraphDatabaseContext ... 60

24.5. Indexing .. 60

24.6. Traversal ... 60

24.7. EntityMapper and Path ... 60

25. AspectJ introduction ... 61

Good Relationships

Spring Data Graph () iv

26. Neo4j introduction .. 62

27. Spring Data .. 63

28. Neo4j Server .. 64

Spring Data Graph () v

Preface

1. Foreword: Rod Johnson, CEO of SpringSource

2. Foreword: Emil Eifrem, CEO of Neo Technology

3. About this Guide Book

Welcome to the Spring Data Graph Guide Book. Thank you for taking the time to get an in depth look

into Spring Data Graph Library. Spring Data Graph is part of the Spring Data project which brings

the convenient programming model of the Spring Framework to modern (mainly NoSQL) datastores.

Spring Data Graph currently provides integration for the Neo4j Graph Database.

It was written by developers for developers. So hopefully we've created a documentation that is well

received by our peers.

If you have any feedback to the Spring Data Graph Library or this book, please provide it via

SpringSource JIRA, the SpringSource NoSQL Forum, github comments or issues or the Neo4j mailing

list.

This book is presented as a duplex book, a term coined by Martin Fowler. A duplex book consists of

at least two parts. The first part is an easily accessible narrative, that gives the reader an overview of

the topics contained in the book. It contains lots of examples and more general discussion topics. This

should be the only part of the book that is required to be read cover-to-cover.

We chose a tutorial describing the creation of a web applicaton (cineasts.net) that allows movie

enthusiasts to find the favorites, rate them, connect with each other and enjoy social features. The

application is running on Neo4j using Spring Data Graph and the well known Spring Web Stack.

The second part is the classic reference documentation containing the detailed information about the

library. It discusses the programming model, the underlying assumptions, used toolset (like aspectj) as

well as the APIs for the object-graph mapping and the template approach. The reference docs should

be mainly used to look up concrete bits of information or to dig deeper into certain topics.

https://github.com/SpringSource/spring-data-graph
http://springsource.org/spring-data
http://neo4j.org
https://jira.springsource.org/browse/DATAGRAPH
http://forum.springsource.org/forumdisplay.php?f=80
https://github.com/SpringSource/spring-data-graph/issues
http://neo4j.org/community/list/
http://neo4j.org/community/list/
http://martinfowler.com/bliki/DuplexBook.html
http://martinfowler.com/bliki/DuplexBook.html

Spring Data Graph () 1

Part I. Tutorial
The first part of the book provides a tutorial that walks through the creation of a complete Web application called

cineasts.net built with Spring Data Graph and Neo4j. It uses a domain that should be familiar - movies. So for

cineasts.net we decided to add a social touch to rating movies, allowing friends to share their scores and get

recommendations for new friends and movies.

The tutorial walks the steps necessary to create the application. It provides the configuration and code examples

that are needed to understand what's happening in Spring Data Graph. Of course the complete source code for

the app is available at github.

http://github.com/jexp/cineasts

Spring Data Graph () 2

Chapter 1. Allow me to introduce - Cineasts.net

Once upon a time we wanted to build a social movie database. First things first - we had a name:

"Cineasts" - the cinema enthusiasts who are crazy about movies. So we went ahead and got the domain,

cineasts.net and the project was almost complete.

We had some ideas about the domain too. Of course there should be actors who play roles in movies.

We needed the Cineast, too, someone to rate the movies. And while they were there, they could also

make friends. Find someone to accompany them to the cinema or share movie preferences. Even

better, the engine behind all that should recommend new friends and movies to cineasts, based on their

interests and existing friends.

When we looked for possible sources for data, IMDB was our first stop, but they're a little expensive for

our tastes, charging 15k USD for data access. Fortunately we found TheMoviedb.org which provides

user-generated data for free. The also have liberal terms and conditions and a nice API for fetching

the data.

There were many more ideas but we wanted to get something done quickly. And this is how it should

look.

http://themoviedb.org

Spring Data Graph () 3

Chapter 2. Scope: Spring
Being Spring developers, we would, of course, choose components of the Spring Framework to do

most of the work. We'd already come up with the ideas - that should be enough.

What database would fit both the complex network of cineasts, movies, actors, roles, ratings and

friends? And also be able to support the recommendation algorithms that we had in mind? We had

no idea.

But, wait, there is the new Spring Data project, started in 2010, which brings the convenience of

the Spring programming model to NoSQL databases. That should fit our experience and help us to

get started. We looked at the list of projects supporting the different NoSQL databases. Only one

mentioned the kind of social network we were thinking of - Spring Data Graph for Neo4j, a graph

database. Neo4j's pitch of "value in relationships" and the accompanying docs looked like what we

needed. We decided to give it a try.

2.1. Preparations - Required Setup

To setup the project we created a public github account and began setting up the infrastructure for

a spring web project using Maven as build system. So we added the dependencies for the Spring

Framework libraries, put the web.xml for the DispatcherServlet and the applicationContext.xml in the

webapp directory.

Example 2.1. pom.xml

<properties>

 <spring.version>3.0.5.RELEASE</spring.version>

</properties>

<dependencies>

<dependency>

 <groupId>org.springframework</groupId>

 <!-- abbreviated for all the dependencies -->

 <artifactId>spring-(core,context,aop,aspects,tx,webmvc)</artifactId>

 <version>${spring.version}</version>

</dependency>

<dependency>

 <groupId>org.springframework</groupId>

 <artifactId>spring-test</artifactId>

 <version>${spring.version}</version>

 <scope>test</scope>

</dependency>

</dependencies>

<build><plugins>

 <plugin>

 <groupId>org.mortbay.jetty</groupId>

 <artifactId>jetty-maven-plugin</artifactId>

 <version>7.1.2.v20100523</version>

 <configuration>

 <webAppConfig>

 <contextPath>/</contextPath>

 </webAppConfig>

 </configuration>

 </plugin>

</plugins></build>

Scope: Spring

Spring Data Graph () 4

Example 2.2. web.xml

<listener>

 <listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>

</listener>

<servlet>

 <servlet-name>dispatcherServlet</servlet-name>

 <servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>

 <load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

 <servlet-name>dispatcherServlet</servlet-name>

 <url-pattern>/</url-pattern>

</servlet-mapping>

With this setup we were ready for the first spike: creating a simple MovieController showing a static

view. Check. Next was the setup for Spring Data Graph. We looked at the README at github and

then checked it with the manual. Quite a lot of Maven setup for AspectJ but otherwise not so much to

add. Time to add a few lines to our Spring configuration.

Example 2.3. applicationContext.xml

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:context="http://www.springframework.org/schema/context"

 xmlns:tx="http://www.springframework.org/schema/tx"

 xsi:schemaLocation="

 http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd

 http://www.springframework.org/schema/tx

 http://www.springframework.org/schema/tx/spring-tx-3.0.xsd

 http://www.springframework.org/schema/context

 http://www.springframework.org/schema/context/spring-context-3.0.xsd">

 <context:annotation-config/>

 <context:spring-configured/>

 <context:component-scan base-package="org.neo4j.cineasts">

 <context:exclude-filter type="annotation" expression="org.springframework.stereotype.Controller"/>

 </context:component-scan>

 <tx:annotation-driven mode="aspectj"/>

</beans>

Example 2.4. dispatcherServlet-servlet.xml

<mvc:annotation-driven/>

<mvc:resources mapping="/images/**" location="/images/"/>

<mvc:resources mapping="/resources/**" location="/resources/"/>

<context:component-scan base-package="org.neo4j.cineasts.controller"/>

<bean id="viewResolver" class="org.springframework.web.servlet.view.InternalResourceViewResolver" p:prefix="/WEB-INF/views/" p:suffix=".jsp"/>

<tx:annotation-driven mode="aspectj"/>

We spun up Jetty to see if there were any obvious issues with the config. It all seemed to work just

fine. Check.

Spring Data Graph () 5

Chapter 3. Setting the Stage - Movies Domain

The domain model was the next thing we planned to work on. We wanted to sketch it out first before

diving into library details. We also looked at the datamodel of core themoviedb data to confirm that

it matched our expectations.

In Java code this looks pretty straightforward:

class Movie {

 int id;

 String title;

 int year;

 Set<Role> cast;

}

class Actor {

 int id;

 String name;

 Set<Movie> filmography;

 Role playedIn(Movie movie, String role);

}

class Role {

 Movie movie;

 Actor actor;

 String role;

}

class User {

 String login;

 String name;

 String password;

 Set<Rating> ratings;

 Set<User> friends;

 Rating rate(Movie movie, int stars, String comment);

 void befriend(User user);

}

class Rating {

 User user;

 Movie movie;

 int stars;

 String comment;

Setting the Stage - Movies Domain

Spring Data Graph () 6

}

We then wrote some tests to show the basic plumbing works.

Spring Data Graph () 7

Chapter 4. Graphs ahead - Learning Neo4j

Now came the unknown - how to put these domain objects into the graph. First we read up about

graph databases, especially Neo4j. The Neo4j datamodel consists of nodes and relationships, both of

which can have properties. Relationships are first class citizens in Neo4j, meaning we can link together

nodes into semantically rich networks - we really liked that. Then we found we could index nodes

and relationships by {name, value} pairs to quickly get hold of them as starting points for further

processing. We also found we could imperatively traverse of relationships using the core API, and in

a declarative way using a query-like Traversal Description.

We also learned that Neo4j was fully transactional and completely upholds ACID guarantees for

out data. This is unusual for NoSQL databases, but easier for us to get our head around than

non-transactional eventual consistency. It also makes us feel safe, though it also means that we had

to manage transactions. Keep that in mind.

Initially we used the core Neo4j API to get a feeling for that. And also to see, how (probably) the

domain might look when it's saved in the graph store. After adding the Maven dependency, it was

ready to go.

<dependency>

 <groupId>org.neo4j</groupId>

 <artifactId>neo4j</artifactId>

 <version>1.3.M05</version>

</dependency>

enum RelationshipTypes implements RelationshipType { ACTS_IN };

GraphDatabaseService gds = new EmbeddedGraphDatabase("/path/to/store");

Node forrest=gds.createNode();

forrest.setProperty("title","Forrest Gump");

forrest.setProperty("year",1994);

gds.index().forNodes("movies").add(forrest,"id",1);

Node tom=gds.createNode();

tom.setProperty("Tom Hanks");

Relationship role=tom.createRelationshipTo(forrest,ACTS_IN);

role.setProperty("role","Forrest Gump");

Node movie=gds.index().forNodes("movies").get("id",1).getSingle();

print(movie.getProperty("title"));

for (Relationship role : movie.getRelationships(ACTS_IN,INCOMING)) {

 Node actor=role.getOtherNode(movie);

 print(actor.getProperty("name") +" as " + role.getProperty("role"));

}

http://neo4j.org
http://docs.neo4j.org/chunked/snapshot/indexing.html
http://docs.neo4j.org/chunked/snapshot/indexing.html
http://wiki.neo4j.org/content/Traversal_Framework

Spring Data Graph () 8

Chapter 5. Conjuring Magic - Spring Data Graph

That was the pure graph database. Using this in our domain would pollute our classes with lots of graph

database details. We don't want that. Spring Data Graph promised to do the heavy lifting for us. So we

checked that next. Spring Data Graph depends heavily on AspectJ magic. Some parts of our classes

would behave differently, but it would not be visible in our code. We were going to give it a try.

First step was lots of Maven configuration.

<properties>

 <aspectj.version>1.6.11.RELEASE</aspectj.version>

</properties>

<dependency>

 <groupId>org.springframework.data</groupId>

 <artifactId>spring-data-neo4j</artifactId>

 <version>1.0.0.M5</version>

</dependency>

<dependency>

 <groupId>org.aspectj</groupId>

 <artifactId>aspectjrt</artifactId>

 <version>${aspectj.version}</version>

</dependency>

<build> <plugins> <plugin>

 <groupId>org.codehaus.mojo</groupId>

 <artifactId>aspectj-maven-plugin</artifactId>

 <version>1.2</version>

 <dependencies>

 <dependency>

 <groupId>org.aspectj</groupId>

 <artifactId>aspectjrt</artifactId>

 <version>${aspectj.version}</version>

 </dependency>

 <dependency>

 <groupId>org.aspectj</groupId>

 <artifactId>aspectjtools</artifactId>

 <version>${aspectj.version}</version>

 </dependency>

 </dependencies>

 <executions>

 <execution>

 <goals>

 <goal>compile</goal>

 <goal>test-compile</goal>

 </goals>

 </execution>

 </executions>

 <configuration>

 <outxml>true</outxml>

 <aspectLibraries>

 <aspectLibrary>

 <groupId>org.springframework</groupId>

 <artifactId>spring-aspects</artifactId>

 </aspectLibrary>

 <aspectLibrary>

 <groupId>org.springframework.data</groupId>

 <artifactId>spring-data-neo4j</artifactId>

 </aspectLibrary>

 </aspectLibraries>

 <source>1.6</source>

Conjuring Magic - Spring Data Graph

Spring Data Graph () 9

 <target>1.6</target>

 </configuration>

</plugin> </plugins> </build>

The Spring configuration was much easier, thanks to a provided namespace.

<beans xmlns="http://www.springframework.org/schema/beans" ...

 xmlns:datagraph="http://www.springframework.org/schema/data/graph"

 xsi:schemaLocation="... http://www.springframework.org/schema/data/graph

 http://www.springframework.org/schema/data/graph/datagraph-1.0.xsd">

 <datagraph:config storeDirectory="data/graph.db"/>

</beans>

Spring Data Graph () 10

Chapter 6. Decorations - Annotated Domain

Looking at the documentation again, we found a simple Hello-World example and tried to understand

it. The entities were annotated with @NodeEntity, that was simple, so we added the annotation to

our domain classes too. Relationships got their own annotation named @RelationshipEntity. Property

fields are taken care of automatically.

It's time to put this to a test. How can we be assured that a field is persisted to the graph store? There

seemed to be two possibilities. First was to get a GraphDatabaseContext injected and use its getById()

method. The other one was a Finder approach. But let's try to keep things simple. How can we persist an

entity and how to get its id? Looking at the documentation revealed that there are a bunch of methods

introduced to the entities by the aspects. That's not obvious, but we found the two that would help here

- entity.persist() and entity.getNodeId().

So our test looked like this.

@Autowired GraphDatabaseContext graphDatabaseContext;

@Test public void persistedMovieShouldBeRetrievableFromGraphDb() {

 Movie forrestGump = new Movie("Forrest Gump", 1994).persist();

 Movie retrievedMovie = graphDatabaseContext.getById(forrestGump.getNodeId());

 assertEqual("retrieved movie matches persisted one",forrestGump,retrievedMovie);

 assertEqual("retrieved movie title matches","Forrest Gump",retrievedMovie.getTitle());

}

That worked! But what about transactions? We didn't declare the test to be transactional. After further

reading we learned that persist() creates an implicit transaction - so that was like an EntityManager

would behave. Ok, now we're getting somewhere. We also learned that for more complex operations

on the entities we'd need external transactions.

http://github.com/SpringSource/spring-data-graph-examples/tree/master/hello-worlds

Spring Data Graph () 11

Chapter 7. Do I know you? - Indexing

There an @Indexed annotation for fields. We wanted to try this out, and use it to guide the next test.

We added an @Indexed to the id field of the movie. This field is intended to represent the external id

that will be used in URIs and will stable over database imports and updates. This time we went with

the Finder to retrieve the indexed movie.

@NodeEntity

class Movie {

 @Indexed

 int id;

 String title;

 int year;

}

@Autowired FinderFactory finderFactory;

@Test [@Transactional] public void persistedMovieShouldBeRetrievableFromGraphDb() {

 int id=1;

 Movie forrestGump = new Movie(id, "Forrest Gump", 1994).persist();

 NodeFinder<Movie> movieFinder = finderFactory.createNodeEntityFinder(Movie.class);

 // REMINDER, the "null" stands for an optional index name

 Movie retrievedMovie = movieFinder.findByPropertyValue(null, "id",id);

 assertEqual("retrieved movie matches persisted one",forrestGump,retrievedMovie);

 assertEqual("retrieved movie title matches","Forrest Gump",retrievedMovie.getTitle());

}

Surprisingly, this failed with an exception about not being in a transaction, which means we forgot

to add the @Transactional annotation. That's easy enough to add to the test, and resume the test/code

cycle.

Spring Data Graph () 12

Chapter 8. Serving a good cause - Repository

That was the first method to add to the brand new repository. So we created a repository for the

application, annotated it with @Repository and @Transactional. We did the same for the Actor.

@Repository @Transactional

public class CineastsRepostory {

 FinderFactory finderFactory;

 Finder<Movie> movieFinder;

 @Autowired

 public CineastsRepostory(FinderFactory finderFactory) {

 this.finderFactory = finderFactory;

 this.movieFinder = finderFactory.createNodeEntityFinder(Movie.class);

 }

 public Movie getMovie(int id) {

 return movieFinder.findByPropertyValue(null,"id", id);

 }

}

Spring Data Graph () 13

Chapter 9. A convincing act - Relationships

9.1. Value in Relationships - Creating them

Next were relationships. Direct relationships didn't require any annotation. Unfortunately we had none

of those, because ours had more semantics. So we went for the Role relationship between Movie and

Actor. It had to be annotated with @RelationshipEntity and the @StartNode and @EndNode had to

be marked. So our Role looked like this:

@RelationshipEntity

class Role {

 @StartNode Actor actor;

 @EndNode Movie movie;

 String role;

}

When writing a test for that we tried to create the relationship entity with new, but got an exception

saying that this is not allowed. This must be a strange restriction about having only correctly

constructed RelationshipEntities. To fix it, we had to recall the relateTo method from the introduced

methods on the NodeEntities. After checking it turned out to be exactly what we needed. We then

added the method for connecting movies and actors to the actor - which seems a more natural fit.

class Actor {

...

public Role playedIn(Movie movie, String roleName) {

 Role role = relateTo(movie, Role.class, "ACTS_IN");

 role.setRole(roleName);

 return role;

}}

9.2. Who's there ? - Accessing related entities

What was left? Accessing those relationships. We already had the appropriate fields in both classes.

Time to annotate them correctly. For the fields providing access to the entities on the each side of the

relationship this was straightforward. Providing the target type again (thanks to Java's type erasure) and

the relationship type (learned from the Neo4j lesson before) there was only the direction left. Which

defaults to OUTGOING so only for the movie we had to specify it.

@NodeEntity

class Movie {

 @Indexed

 int id;

 String title;

 int year;

 @RelatedTo(elementClass = Actor.class, type = "ACTS_IN", direction = Direction.INCOMING)

 Set<Actor> cast;

}

@NodeEntity

class Actor {

 @Indexed

 int id;

A convincing act - Relationships

Spring Data Graph () 14

 String name;

 @RelatedTo(elementClass = Movie.class, type = "ACTS_IN")

 Set<Movie> cast;

 public Role playedIn(Movie movie, String roleName) {

 Role role = relateTo(movie, Role.class, "ACTS_IN");

 role.setRole(roleName);

 return role;

 }

}

While reading about those relationship-sets we learned that they are handled by managed collections of

Spring Data Graph. So whenever we add something to the set or remove it, it automatically reflects that

in the underlying relationships. Neat. But this also meant we mustn't initialize the fields. Something

we will certainly forget not to do in the future, so watch out for it.

We made sure to add a test for those, so are assured that the collections worked as advertised (and also

ran into the intialization problem above).

9.3. May I introduce ? - Accessing Relationships themselves

But we still couldn't access the Role relationships. There was more to read about this. For accessing

the relationship in between the nodes there was a separate annotation @RelatedToVia. And we had to

declare the field as readonly Iterable<Role>. That should make sure that we never tried to add Roles

(which I couldn't create on my own anyway) to this field. Otherwise the annotation attributes were

similar to those used for @RelatedTo. So off we went, creating our first real relationship (just kidding).

@NodeEntity

class Movie {

 @Indexed

 int id;

 String title;

 int year;

 @RelatedTo(elementClass = Actor.class, type = "ACTS_IN", direction = Direction.INCOMING)

 Set<Actor> cast;

 @RelatedToVia(elementClass = Role.class, type = "ACTS_IN", direction = Direction.INCOMING)

 Iterable<Roles> roles;

}

After the tests proved that those relationship fields really mirrored the underlying relationships in the

graph and instantly reflected additions and removals we were pretty satisfied with our domain.

Spring Data Graph () 15

Chapter 10. Curtains Up! - Get it running

10.1. Requisites - Populating the database

Time to put this on display. But we needed some test data first. So we wrote a small class for populating

the database which could be called from our controller. To make it safe to call several times we added

index lookups to check for existing entries. A simple /populate endpoint for the controller that called

it would be enough for now.

@Service

public class DatabasePopulator {

 @Autowired GraphDatabaseContext ctx;

 @Autowired MoviesRepository repository;

 @Transactional

 public List<Movie> populateDatabase() {

 Actor tomHanks = new Actor("1", "Tom Hanks").persist();

 Movie forestGump = new Movie("1", "Forrest Gump").persist();

 forestGump.setYear(1994);

 tomHanks.playedIn(forestGump,"Forrest");

 return asList(forestGump);

 }}

@Controller

public class MovieController {

 private DatabasePopulator populator;

 @Autowired

 public MovieController(DatabasePopulator populator) {

 this.populator = populator;

 }

 @RequestMapping(value = "/populate", method = RequestMethod.GET)

 public String populateDatabase(Model model) {

 Collection<Movie> movies=populator.populateDatabase();

 model.addAttribute("movies",movies);

 return "/movies/list";

 }

}

<%@ page session="false" %>

<%@ taglib uri="http://www.springframework.org/tags" prefix="s" %>

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<c:choose>

 <c:when test="${not empty movie}">

 <h2>${movie.title}</h2>

 <c:if test="${not empty movie.roles}">

 <c:forEach items="${movie.roles}" var="role">

 <c:out value="${role.actor.name}" /> as <c:out value="${role.name}" />

 </c:forEach>

 </c:if>

Curtains Up! - Get it running

Spring Data Graph () 16

 </c:when>

 <c:otherwise>

 No Movie with id ${id} found!

 </c:otherwise>

</c:choose>

See the misused GET parameter for that (don't do this at home, the REST guys will be upset). This is

only for running it from the browser address line. Better use POST and curl for the call. So we called

the URI and it showed the single added movie on screen.

10.2. Behind the scenes - Peeking at the Datastore

10.2.1. Eye candy - Neoclipse visualization

After filling the database we wanted to see what the graph looked like. So we checked out two tools

that are available for inspecting the graph. First Neoclipse, an eclipse RCP application or plugin

that connects to existing graph stores and visualizes their content. After getting an exception about

concurrent access, I learned that I have to use Neoclipse in readonly mode when my webapp had an

active connection to the store. Good to know.

10.2.2. Hardcore "Hacking" - Neo4j Shell

Besides our movies and actors connected by ACTS_IN relationships there were some other nodes. The

reference node which is an automatically provided "root node" in Neo4j and can be used to anchor

subgraphs for easier access. And Spring Data Graph also represented the type hierarchy of my entities

in the graph. Obviously for some internal housekeeping and type checking.

http://restinpractice.com

Curtains Up! - Get it running

Spring Data Graph () 17

For console junkies there is also a shell that can reach into a running neo4j store (if that one was started

with enableRemoteShell) or provide readonly access to a graph store directory.

neo4j-shell -readonly -path data/graph.db

It uses some shell metaphors like cd and ls to navigate the graph. There are also more advanced

commands like using indexes and traversals. I tried to play around with them in this shell sesson.

neo4j-sh[readonly] (0)$ ls

(me) --[SUBREF_java.lang.Object]-> (3)

(me) --[SUBREF_org.neo4j.cineasts.domain.Movie]-> (6)

(me) --[SUBREF_org.neo4j.cineasts.domain.Person]-> (8)

(me) --[SUBREF_org.neo4j.cineasts.domain.User]-> (2)

neo4j-sh[readonly] (0)$ cd 6

neo4j-sh[readonly] (6)$ ls

*class =[org.neo4j.cineasts.domain.Movie]

*count =[39]

(me) <-[INSTANCE_OF]-- (The Matrix Revolutions,123)

(me) <-[INSTANCE_OF]-- (The Matrix Reloaded,110)

(me) <-[INSTANCE_OF]-- (The Matrix,93)

...

neo4j-sh[readonly] (6)$ cd 93

neo4j-sh[readonly] (The Matrix,93)$ ls

*description =[Neo is a young software engineer and part-time hacker who is singled out by some mysterious...]

*genre =[Action]

*homepage =[http://whatisthematrix.warnerbros.com/]

*id =[603]

*imageUrl =[http://cf1.imgobject.com/posters/606/4bc909d0017a3c57fe003606/the-matrix-mid.jpg]

*imdbId =[tt0133093]

*language =[en]

*lastModified =[1299968642000]

*releaseDate =[922831200000]

*runtime =[136]

*studio =[Warner Bros. Pictures]

*tagline =[Welcome to the Real World.]

*title =[The Matrix]

*trailer =[http://www.youtube.com/watch?v=UM5yepZ21pI]

*version =[324]

(me) <-[ACTS_IN]-- (Marc Aden,109)

...

(me) <-[ACTS_IN]-- (Keanu Reeves,96)

(me) <-[DIRECTED]-- (Andy Wachowski,95)

(me) <-[DIRECTED]-- (Lana Wachowski,94)

(me) --[INSTANCE_OF]-> (6)

(me) <-[RATED]-- (Micha,1)

Spring Data Graph () 18

Chapter 11. Showing off - Web views

After we had the means to put some data in the graph database, we also wanted to show it. So adding

the controller method to show a single movie with its attributes and cast in a jsp was straightforward.

Actually just using the repository to look the movie up and add it to the model. Then forward to the

/movies/show view and voilá.

@RequestMapping(value = "/movies/{movieId}", method = RequestMethod.GET, headers = "Accept=text/html")

public String singleMovieView(final Model model, @PathVariable String movieId) {

 Movie movie = moviesRepository.getMovie(movieId);

 model.addAttribute("id", movieId);

 if (movie != null) {

 model.addAttribute("movie", movie);

 model.addAttribute("stars", movie.getStars());

 }

 return "/movies/show";

}

Later the nice UI would look like that:

11.1. What was his name? - Searching

The next thing was to allow users to search for some movies. So we needed some fulltext-search

capabilities. As the index provider implementation of Neo4j builds on lucene we were delighted to see

that fulltext indexes are supported out of the box.

We happily annotated the title field of my Movie class with @Index(fulltext=true) and was told with

an exception that we have to specify a separate index name for that. So it became @Indexed(fulltext

= true, indexName = "search"). The corresponding finder method is called findAllByQuery. So there

Showing off - Web views

Spring Data Graph () 19

was our second repository method for searching movies. To restrict the size of the returned set we just

added a limit for now that truncates the result after so many entries.

public void List<Movie> searchForMovie(String query, int count) {

 List<Movie> movies=new ArrayList<Movie>(count);

 for (Movie movie : movieFinder.findAllByQuery("title", query)) {

 movies.add(movie);

 if (count-- == 0) break;

 }

 return movies;

}

11.2. Look what we've found - Listing Results

We then used this result in the controller to render a list of movies driven by a search box. The movie

properties and the cast was accessed by the getters in the domain classes.

@RequestMapping(value = "/movies", method = RequestMethod.GET, headers = "Accept=text/html")

public String findMovies(Model model, @RequestParam("q") String query) {

 List<Movie> movies = moviesRepository.findMovies(query, 20);

 model.addAttribute("movies", movies);

 model.addAttribute("query", query);

 return "/movies/list";

}

<h2>Movies</h2>

<c:choose>

 <c:when test="${not empty movies}">

 <dl class="listings">

 <c:forEach items="${movies}" var="movie">

 <dt>

 <c:out value="${movie.title}" />

 </dt>

 <dd>

 <c:out value="${movie.description}" escapeXml="true" />

 </dd>

 </c:forEach>

 </dl>

 </c:when>

 <c:otherwise>

 No movies found for query "${query}".

 </c:otherwise>

</c:choose>

Here is another teaser, what the final UX would look like for that:

Showing off - Web views

Spring Data Graph () 20

Spring Data Graph () 21

Chapter 12. Movies 2.0 - Adding social

But this was just a plain old movie database (POMD). Our idea of socializing this business wasn't

yet realized.

12.1. Look, mom a Cineast! - Users

So we took the User class that we'd already coded and made it a full fledged Spring Data Graph

member. We added the ability to make friends and to rate movies. With that there was also a simple

UserRepository that was able to look up users by id.

@NodeEntity

class User {

 @Indexed

 String login;

 String name;

 String password;

 @RelatedTo(elementClass=Movie.class, type="RATED")

 Set<Rating> ratings;

 @RelatedTo(elementClass=User.class, type="FRIEND")

 Set<User> friends;

 public Rating rate(Movie movie, int stars, String comment) {

 return relateTo(movie, Rating.class, "RATED").rate(stars, comment);

 }

 public void befriend(User user) {

 this.friends.add(user);

 }

}

@RelationshipEntity

class Rating {

 @StartNode User user;

 @EndNode Movie movie;

 int stars;

 String comment;

 public Rating rate(int stars, String comment) {

 this.stars=stars; this.comment = comment;

 return this;

 }

}

We extended my DatabasePopulator to add some users and ratings to the initial setup.

@Transactional

public List<Movie> populateDatabase() {

 Actor tomHanks = new Actor("1", "Tom Hanks").persist();

 Movie forestGump = new Movie("1", "Forrest Gump").persist();

 tomHanks.playedIn(forestGump,"Forrest");

 User me = new User("micha", "Micha", "password", User.Roles.ROLE_ADMIN,User.Roles.ROLE_USER).persist();

 Rating awesome = me.rate(forestGump, 5, "Awesome");

 User ollie = new User("ollie", "Olliver", "password",User.Roles.ROLE_USER).persist();

 ollie.rate(forestGump, 2, "ok");

 me.addFriend(ollie);

 return asList(forestGump);

}

Movies 2.0 - Adding social

Spring Data Graph () 22

12.2. Beware, Critics - Rating

We also put a ratings field into the movie to be able to show its ratings. And a method to average

its star rating.

class Movie {

 @RelatedToVia(elementClass=Rating.class, type="RATED", direction = Direction.INCOMING)

 Iterable<Rating> ratings;

 public int getStars() {

 int stars, int count;

 for (Rating rating : ratings) {

 stars += rating.getStars(); count++;

 }

 return count == 0 ? 0 : stars / count;

 }

}

Fortunately our tests highlighted the division by zero error when calculating the stars for a movie

without ratings. Next steps were to add this information to the UI of movie and create a user profile

page. But for that to happen they must be able to log in.

Spring Data Graph () 23

Chapter 13. Protecting Assets - Adding Security

To have a user in the webapp we had to put it in the session and add login and registration pages. Of

course the pages that only worked with a valid user account had to be secured as well.

We used Spring Security for that, writing a simple UserDetailsService that used a repository

for looking up the users and validating their credentials. The config is located in a separate

applicationContext-security.xml. But first, as always, Maven and web.xml setup.

Example 13.1. pom.xml for spring-security

 <dependency>

 <groupId>org.springframework.security</groupId>

 <artifactId>spring-security-web</artifactId>

 <version>${spring.version}</version>

 </dependency>

 <dependency>

 <groupId>org.springframework.security</groupId>

 <artifactId>spring-security-config</artifactId>

 <version>${spring.version}</version>

 </dependency>

Example 13.2. web.xml

 <context-param>

 <param-name>contextConfigLocation</param-name>

 <param-value>

 /WEB-INF/applicatioContext-security.xml

 /WEB-INF/applicationContext.xml

 </param-value>

 </context-param>

 <listener>

 <listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>

 </listener>

 <filter>

 <filter-name>springSecurityFilterChain</filter-name>

 <filter-class>org.springframework.web.filter.DelegatingFilterProxy</filter-class>

 </filter>

 <filter-mapping>

 <filter-name>springSecurityFilterChain</filter-name>

 <url-pattern>/*</url-pattern>

 </filter-mapping>

Protecting Assets - Adding Security

Spring Data Graph () 24

Example 13.3. applicationContext-security.xml

<security:global-method-security secured-annotations="enabled">

</security:global-method-security>

<security:http auto-config="true" access-denied-page="/auth/denied"> <!-- use-expressions="true" -->

 <security:intercept-url pattern="/admin/*" access="ROLE_ADMIN"/>

 <security:intercept-url pattern="/import/*" access="ROLE_ADMIN"/>

 <security:intercept-url pattern="/user/*" access="ROLE_USER"/>

 <security:intercept-url pattern="/auth/login" access="IS_AUTHENTICATED_ANONYMOUSLY"/>

 <security:intercept-url pattern="/auth/register" access="IS_AUTHENTICATED_ANONYMOUSLY"/>

 <security:intercept-url pattern="/**" access="IS_AUTHENTICATED_ANONYMOUSLY"/>

 <security:form-login login-page="/auth/login" authentication-failure-url="/auth/login?login_error=true"

 default-target-url="/user"/>

 <security:logout logout-url="/auth/logout" logout-success-url="/" invalidate-session="true"/>

</security:http>

<security:authentication-manager>

 <security:authentication-provider user-service-ref="userDetailsService">

 <security:password-encoder hash="md5">

 <security:salt-source system-wide="cewuiqwzie"/>

 </security:password-encoder>

 </security:authentication-provider>

</security:authentication-manager>

<bean id="userDetailsService" class="org.neo4j.movies.service.CineastsUserDetailsService"/>

Protecting Assets - Adding Security

Spring Data Graph () 25

Example 13.4. UserDetailsService and UserDetails implementation

@Service

public class CineastsUserDetailsService implements UserDetailsService, InitializingBean {

 @Autowired private FinderFactory finderFactory;

 private NodeFinder<User> userFinder;

 @Override

 public void afterPropertiesSet() throws Exception {

 userFinder = finderFactory.createNodeEntityFinder(User.class);

 }

 @Override

 public UserDetails loadUserByUsername(String login) throws UsernameNotFoundException, DataAccessException {

 final User user = findUser(login);

 if (user==null) throw new UsernameNotFoundException("Username not found",login);

 return new CineastsUserDetails(user);

 }

 public User findUser(String login) {

 return userFinder.findByPropertyValue("users","login",login);

 }

 public User getUserFromSession() {

 SecurityContext context = SecurityContextHolder.getContext();

 Authentication authentication = context.getAuthentication();

 Object principal = authentication.getPrincipal();

 if (principal instanceof CineastsUserDetails) {

 CineastsUserDetails userDetails = (CineastsUserDetails) principal;

 return userDetails.getUser();

 }

 return null;

 }

}

public class CineastsUserDetails implements UserDetails {

 private final User user;

 public CineastsUserDetails(User user) {

 this.user = user;

 }

 @Override

 public Collection<GrantedAuthority> getAuthorities() {

 User.Roles[] roles = user.getRoles();

 if (roles ==null) return Collections.emptyList();

 return Arrays.<GrantedAuthority>asList(roles);

 }

 @Override

 public String getPassword() {

 return user.getPassword();

 }

 @Override

 public String getUsername() {

 return user.getLogin();

 }

....

 public User getUser() {

 return user;

 }

}

Protecting Assets - Adding Security

Spring Data Graph () 26

After that a logged in user was available in the session and could so be used for all the social

interactions. Most of the work done next was adding controller methods and JSPs for the views. We

used the helper method getUserFromSession() in the controllers to access the logged in user and put

it in the model for rendering. As a teaser we'd like to show off the user profile page, as it will be

rendered after UX heavy lifting.

Spring Data Graph () 27

Chapter 14. Oh the Glamour - More UI

To create a nice user experience, we wanted to have a nice looking app, not something that looked like

a toddler made it. So we got some UX people involved and the results were impressive. This sections

presents some of the remaining screenshots of cineasts.net.

Some of the noteworthy things. As Spring Data Graph does a read-through to the datastore for property

and relationship access we tried to minimize that by using <c:var/> several times. The app contains

very little javascript / ajax code right now, that will change when it moves ahead.

Oh the Glamour - More UI

Spring Data Graph () 28

Oh the Glamour - More UI

Spring Data Graph () 29

Spring Data Graph () 30

Chapter 15. The dusty archives - Importing Data

Then it was time to pull the data from themoviedb.org. Registering there and getting an API key was

simple, using the API on the command line with curl too. Looking at the JSON returned for movies

and people we decided to enhance our domain model and add some more fields to enrich the UI.

 [{"popularity":3,

"translated":true, "adult":false, "language":"en",

"original_name":"[Rec]", "name":"[Rec]", "alternative_name":"[REC]",

"movie_type":"movie",

"id":8329, "imdb_id":"tt1038988", "url":"http://www.themoviedb.org/movie/8329",

"votes":11, "rating":7.2,

"status":"Released",

"tagline":"One Witness. One Camera",

"certification":"R",

"overview":"\"REC\" turns on a young TV reporter and her cameraman who cover the night shift at the local fire station...

"keywords":["terror", "lebende leichen", "obsession", "camcorder", "firemen", "reality tv ", "bite", "cinematographer",

"attempt to escape", "virus", "lodger", "live-reportage", "schwerverletzt"],

"released":"2007-08-29",

"runtime":78,

"budget":0,

"revenue":0,

"homepage":"http://www.3l-filmverleih.de/rec",

"trailer":"http://www.youtube.com/watch?v=YQUkX_XowqI",

"genres":[{"type":"genre",

"url":"http://themoviedb.org/genre/horror",

"name":"Horror",

"id":27}],

"studios":[{"url":"http://www.themoviedb.org/company/2270", "name":"Filmax Group", "id":2270}],

"languages_spoken":[{"code":"es", "name":"Spanish", "native_name":"Espa\u00f1ol"}],

"countries":[{"code":"ES", "name":"Spain", "url":"http://www.themoviedb.org/country/es"}],

"posters":[{"image":{"type":"poster",

"size":"original", "height":1000, "width":706,

"url":"http://cf1.imgobject.com/posters/3a0/4cc8df415e73d650240003a0/rec-original.jpg", "id":"4cc8df415e73d650240003a0"}},

....

"cast":[{"name":"Manuela Velasco",

"job":"Actor", "department":"Actors",

"character":"Angela Vidal",

"id":34793, "order":0, "cast_id":1,

"url":"http://www.themoviedb.org/person/34793",

"profile":"http://cf1.imgobject.com/profiles/390/4c0157fa017a3c702d001390/manuela-velasco-thumb.jpg"},

...

{"name":"Gl\u00f2ria Viguer",

"job":"Costume Design", "department":"Costume \u0026 Make-Up",

"character":"",

"id":54531, "order":0, "cast_id":21,

"url":"http://www.themoviedb.org/person/54531",

"profile":""}],

"version":150, "last_modified_at":"2011-02-20 23:16:57"}]

 [{"popularity":3,

"name":"Glenn Strange", "known_as":[{"name":"George Glenn Strange"}, {"name":"Glen Strange"},

{"name":"Glen 'Peewee' Strange"}, {"name":"Peewee Strange"}, {"name":"'Peewee' Strange"}],

"id":30112,

"biography":"",

"known_movies":4,

"birthday":"1899-08-16", "birthplace":"Weed, New Mexico, USA",

"url":"http://www.themoviedb.org/person/30112",

"filmography":[{"name":"Bud Abbott Lou Costello Meet Frankenstein",

"id":3073,

"job":"Actor", "department":"Actors",

http://themoviedb.org

The dusty archives - Importing Data

Spring Data Graph () 31

"character":"The Frankenstein Monster",

"cast_id":23,

"url":"http://www.themoviedb.org/movie/3073",

"poster":"http://cf1.imgobject.com/posters/4ca/4bc9185d017a3c57fe0094ca/bud-abbott-lou-costello-meet-frankenstein-cover.jpg",

"adult":false, "release":"1948-06-15"},

...],

"profile":[],

"version":19, "last_modified_at":"2011-03-07 13:02:35"}]

For the import process we created a separate importer using Jackson (a JSON library) to fetch and

parse the data and then some transactional methods in the MovieDbImportService to actually insert

it as movies, roles and actors. The importer used a simple caching mechanism, to keep downloaded

actor and movie data on the filesystem, so that we didn't have to overload the remote API. In the code

below you can see, that we've changed the actor to a person so that we can also accommodate the other

folks that participate in movie production.

@Transactional

public Movie importMovie(String movieId) {

 Movie movie = moviesRepository.getMovie(movieId);

 if (movie == null) { // Not found: Create fresh

 movie = new Movie(movieId,null);

 }

 Map data = loadMovieData(movieId);

 if (data.containsKey("not_found")) throw new RuntimeException("Data for Movie "+movieId+" not found.");

 movieDbJsonMapper.mapToMovie(data, movie);

 movie.persist();

 relatePersonsToMovie(movie, data);

 return movie;

}

private void relatePersonsToMovie(Movie movie, Map data) {

 Collection<Map> cast = (Collection<Map>) data.get("cast");

 for (Map entry : cast) {

 String id = entry.get("id");

 Roles job = entry.get("job");

 Person person = importPerson(id);

 switch (job) {

 case DIRECTED:

 person.directed(movie);

 break;

 case ACTS_IN:

 person.playedIn(movie, (String) entry.get("character"));

 break;

 }

 }

}

public void mapToMovie(Map data, Movie movie) {

 movie.setTitle((String) data.get("name"));

 movie.setLanguage((String) data.get("language"));

 movie.setTagline((String) data.get("tagline"));

 movie.setReleaseDate(toDate(data, "released", "yyyy-MM-dd"));

...

 movie.setImageUrl(selectImageUrl((List<Map>) data.get("posters"), "poster", "mid"));

}

The dusty archives - Importing Data

Spring Data Graph () 32

The last part involved adding a protected URI to the MovieController to allow importing ranges of

movies. During testing it became obvious that the calls to themoviedb were a limiting factor. As soon

as the data was stored locally it took only subseconds to create the data in the Neo4j graph database.

Spring Data Graph () 33

Chapter 16. Movies! Friends! Bargains! -
Recommendations

In the last part of this exercise we wanted to add recommendations to the app. One obvious

recommendation is movies that our friends liked (and their friends too, but with less importance). The

second was recommendations for new friends that also liked the movies that we liked most.

Doing this kind of ranking algorithms is really fun with graph databases. They are applied to the graph

by traversing it in a certain order, collecting information on the go and deciding which paths to follow

and what to include in the results.

Lets say I'm only interested in the top 10 recommendations each.

 // TODO Work In Progress 1/path.length()*stars

 user.breathFirst().relationship(FRIEND, OUTGOING).relationship(RATED, OUTGOING).evaluate(new Evaluator(Path path) {

 if (path.length > 5) return EXCLUDE_AND_STOP;

 Relationship rating = path.lastRelationship();

 if (rating.getType().equals(RATED)) {

 rating.getProperty()

 return INCLUDE_AND_STOP;

 }

 return INCLUDE_AND_CONTINUE;

 })

Spring Data Graph () 34

Part II. Reference
This is the reference part of the book. It has information about the programming model, APIs, concepts, and

annotations of Spring Data Graph.

Spring Data Graph () xxxv

Preface
The Spring Data Graph project applies core Spring concepts to the development of solutions using a

graph style data store. The basic approach is to mark simple POJO entities with Spring Data Graph

annotations. That enables the AspectJ aspects that are contained with the framework to adapt the

instantiation and field access to have them stored and retrieved from the graph store. Entities are

mapped to nodes of the graph, references to other entities are represented by relationships. There are

also special relationship entities that provide access to the properties of graph relationships.

For the developer of a Spring Data Graph backed application only the public annotations are relevant,

basic knowledge of graph stores is needed to access advanced functionality like traversals. Traversal

results can also be mapped to fields of entities.

Spring Data Graph () 36

Chapter 17. Introduction to Neo4j

Neo4j is a graph database. It is a fully ACID transactional database that stores data structured as graphs.

A graph consists of nodes, connected by relationships. It is a flexible data structure that allows for high

query performance on complex data, while being intuitive for the developer.

Neo4j has been in commercial development for 10 years and in production for over 7 years. It is a

mature and robust graph database that:

• has an intuitive graph-oriented model for data representation. Instead of tables, rows, and columns,

you work with a flexible graph network consisting of nodes, relationships, and properties.

• has a disk-based, native storage manager completely optimized for storing graph structures for

maximum performance and scalability.

• is scalable. Neo4j can handle graphs of several billion nodes/relationships/properties on a single

machine, but can also be scaled out across multiple machines for high availability.

• has a powerful traversal framework for fast traversals in the node space.

• can be deployed as a standalone server or an embedded database with a very small footprint (~700k

jar).

• has a simple and convenient API.

In addition, Neo4j includes the usual database features: ACID transactions, durable persistence,

concurrency control, transaction recovery, high availability and everything else you’d expect from an

enterprise database. Neo4j is released under a dual free software/commercial license model.

17.1. What is a graph database?

A graph database is a storage engine that is specialized in storing and retrieving vast networks of data.

It efficiently stores nodes and relationship and allows high performance traversal of those structures.

With property graphs it is possible to add an arbitrary number of properties to nodes and relationships.

17.2. GraphDatabaseService

The interface org.neo4j.graphdb.GraphDatabaseService provides access to the storage engine. Its

features include creating and retrieving Nodes and Relationships, managing indexes, via an

IndexManager, database lifecycle callbacks, transation management and more.

The EmbeddedGraphDatabaseService is an implementation of GraphDatabaseService that is used to

embed Neo4j in a Java application. This implmentation is used so as to provide the highest and tightest

integration. There are other, remote implementations that provide access to Neo4j stores via REST.

17.3. Creating Nodes and Relationships

Using the API of GraphDatabaseService it is easy to create nodes and relate them to each other.

Relationships are named. Both nodes and relationships can have properties. Property values can be

primitive Java types and Strings, byte arrays for binary data, or arrays of other Java primitives or

http://neo4j.org/
http://wiki.neo4j.org/content/Getting_Started
http://api.neo4j.org/

Introduction to Neo4j

Spring Data Graph () 37

Strings. Node creation and modification has to happen within a transaction, while reading from the

graph store can be done with or without a transaction.

GraphDatabaseService graphDb = new EmbeddedGraphDatabase("helloworld");

Transaction tx = graphDb.beginTx();

try {

 Node firstNode = graphDb.createNode();

 Node secondNode = graphDb.createNode();

 firstNode.setProperty("message", "Hello, ");

 secondNode.setProperty("message", "world!");

 Relationship relationship = firstNode.createRelationshipTo(secondNode,

 DynamicRelationshipType.of("KNOWS"));

 relationship.setProperty("message", "brave Neo4j ");

 tx.success();

} finally {

 tx.finish();

}

17.4. Graph traversal

Getting a single node or relationship and examining it is not the main use case of a graph database.

Fast graph traversal and application of graph algorithms are. Neo4j provides means via a concise DSL

to define TraversalDescriptions that can then be applied to a start node and will produce a stream of

nodes and/or relationships as a lazy result using an Iterable.

TraversalDescription traversalDescription = Traversal.description()

 .depthFirst()

 .relationships(KNOWS)

 .relationships(LIKES, Direction.INCOMING)

 .prune(Traversal.pruneAfterDepth(5));

for (Path position : traversalDescription.traverse(myStartNode)) {

 System.out.println("Path from start node to current position is " + position);

}

17.5. Indexing

The best way for retrieving start nodes for traversals is using Neo4j's index facilities. The

GraphDatabaseService provides access to the IndexManager which in turn retrieves named indexes

for nodes and relationships. Both can be indexed with property names and values. Retrieval is done

by query methods on Index to return an IndexHits iterator.

IndexManager indexManager = graphDb.index();

Index<Node> nodeIndex = indexManager.forNodes("a-node-index");

nodeIndex.add(node, "property","value");

for (Node foundNode = nodeIndex.get("property","value")) {

 assert node.getProperty("property").equals("value");

}

Note: Spring Data Graph provides auto-indexing via the @Indexed annotation, while this still is a

manual process when using the Neo4j API.

Spring Data Graph () 38

Chapter 18. Programming model for Spring Data
Graph

This chapter covers the fundamentals of the programming model behind Spring Data Graph. It

discusses the AspectJ features used and the annotations provided by Spring Data Graph and how to

use them. Examples for this section are taken from the imdb project of Spring Data Graph examples.

18.1. Overview of the AspectJ support

Behind the scenes Spring Data Graph leverages AspectJ aspects to modify the behavior of simple

POJO entities to be able to be backed by a graph store. Each entity is backed by a node that holds its

properties and relationships to other entities. AspectJ is used to intercept field access and to reroute

it to the backing state (either its properties or relationships). For relationship entities the fields are

similarly mapped to properties. There are two specially annotated fields for the start and the end node

of the relationship.

The aspect introduces some internal fields and some public methods to the entities for accessing the

backing state via getPersistentState() and creating relationships with relateTo and retrieving

relationship entities viagetRelationshipTo. It also introduces finder methods like find(Class<?

extends NodeEntity>, TraversalDescription) and equals and hashCode delegation.

Spring Data Graph internally uses an abstraction called EntityState that the field access and

instantiation advices of the aspect delegate to, keeping the aspect code very small and focused to the

pointcuts and delegation code. The EntityState then uses a number of FieldAccessor factories to create

a FieldAccessor instance per field that does the specific handling needed for the concrete field.

18.2. Using annotations to define POJO entities and
relationships

Entities are declared using the @NodeEntity annotation. Relationship entities use the

@RelationshipEntity annotation.

18.2.1. @NodeEntity: The basic building block

The @NodeEntity annotation is used to declare a POJO entity to be backed by a node in the graph

store. Simple fields on the entity are mapped by default to properties of the node. Object references

to other NodeEntities (whether single or Collection) are mapped via relationships. If the annotation

parameter useShortNames is set to false, the properties and relationship names used will be prepended

with the class name of the entity. If the parameter fullIndex is set to true, all fields of the entity will

be indexed. If the partial parameter is set to true, this entity takes part in a cross-store setting where

only the parts of the entity not handled by JPA will be mapped to the graph store.

Entity fields can be annotated with @GraphProperty, @RelatedTo, @RelatedToVia, @Indexed and

@GraphId

@NodeEntity

public class Movie {

 String title;

}

http://github.com/SpringSource/spring-data-graph-examples

Programming model for Spring Data Graph

Spring Data Graph () 39

18.2.2. @RelatedTo: Connecting NodeEntities

Relationships to other NodeEntities are mapped to graph relationships. Those can either be single

relationships (1:1) or multiple relationships (1:N). In most cases single relationships to other node

entities don't have to be annotated as Spring Data Graph can extract all necessary information from the

field using reflection. In the case of multiple relationships, the elementClass parameter of @RelatedTo

must be specified because of type erasure. The direction (default OUTGOING) and type (inferred

from field name) parameters of the annotation are optional.

Relationships to single node entities are created when setting the field and deleted when setting it to

null. For multi-relationships the field provides a managed collection (Set) that handles addition and

removal of node entities and reflects those in the graph relationships.

@NodeEntity

public class Movie {

 private Actor topActor;

}

@NodeEntity

public class Person {

 @RelatedTo(type = "topActor", direction = Direction.INCOMING)

 private Movie wasTopActorIn;

}

@NodeEntity

public class Actor {

 @RelatedTo(type = "ACTS_IN", elementClass = Movie.class)

 private Set<Movie> movies;

}

18.2.3. @RelationshipEntity: Rich relationships

To access the full data model of graph relationships, POJOs can also be annotated with

@RelationshipEntity. Relationship entities can't be instantiated directly but are rather accessed via

node entities, either by @RelatedToVia fields or by the relateTo or getRelationshipTo methods.

Relationship entities may contain fields that are mapped to properties and two special fields that are

annotated with @StartNode and @EndNode which point to the start and end node entities respectively.

These fields are treated as read only fields.

@RelationshipEntity

public class Role {

 @StartNode

 private Actor actor;

 @EndNode

 private Movie movie;

}

18.2.4. @RelatedToVia: Connecting NodeEntitites via RelationshipEntities

To provide easy programmatic access to the richer relationship entities of the data model a different

annotation @RelatedToVia can be declared on fields of Iterables of the relationship entity type. These

Iterables then provide read only access to instances of the entity that backs the relationship of this

relationship type. Those instances are initialized with the properties of the relationship and the start

and end node.

@NodeEntity

Programming model for Spring Data Graph

Spring Data Graph () 40

public class Actor {

 @RelatedToVia(type = "ACTS_IN", elementClass = Role.class)

 private Iterable<Role> roles;

}

18.2.5. @StartNode: Starting NodeEntity of RelationshipEntity

Annotation for the start node of a relationship entity, read only.

18.2.6. @EndNode: Ending NodeEntity of RelationshipEntity

Annotation for the end node of a relationship entity, read only.

18.2.7. @Indexed: Making entities searchable by field value

The @Indexed annotation can be declared on fields that are intended to be indexed by the Neo4j

IndexManager, triggered by value modification. The resulting index can be used to later retrieve nodes

or relationships that contain a certain property value (for example a name). Often an index is used to

establish the start node for a traversal. Indexes are accessed by a Finder for a particular NodeEntity or

RelationshipEntity, created via a FinderFactory.

GraphDatabaseContext exposes the indexes for Nodes and Relationships. Indexes can be named, for

instance to keep separate domain concepts in separate indexes. That's why it is possible to specifiy an

index name with the @Indexed annotation. It can also be specified at the entity level, this name is then

the default index name for all fields of the entity. If no index name is specified, it defaults to the one

configured with Neo4j ("node" and "relationship").

18.2.8. @GraphTraversal

The @GraphTraversal annotation leverages the delegation infrastructure used by the Spring Data

Graph aspects. It provides dynamic fields which, when accessed, return an Iterable of NodeEntities that

are the result of a traversal starting at the current NodeEntity. The TraversalDescription used for this is

created by a TraversalDescriptionBuilder whose class is referred to by the traversalBuilder attribute

of the annotation. The class of the expected NodeEntities is provided with the elementClass attribute.

18.2.9. @GraphProperty: Cross-store persisted fields

It is not necessary to annotate fields as they are persisted by default; all fields that contain primitive

values are persisted directly to the graph. All fields convertible to String using the Spring conversion

services will be stored as a string. Transient fields are not persisted. This annotation is mainly used

for cross-store persistence.

18.3. Indexing

The Neo4j graph database can use different index providers for exact lookups and fulltext searches.

Lucene is used as a index provider implementation. There is support for distinct indexes for nodes and

relationships which can be configured to be of fulltext or exact types.

Using the standard Neo4j API, Nodes and Relationships and their indexed field-value combinations

have to be added manually to the appropriate index. When using Spring Data Graph, this task is

simplified by eased by applying an @Indexed annotation on entity fields. This will result in updates to

the index on every change. Numerical fields are indexed numerically so that they are available for range

queries. All other fields are indexed with their string representation. The @Indexed annotation can also

Programming model for Spring Data Graph

Spring Data Graph () 41

set the index-name to be used. If @Indexed annotates the entity class, the index-name for the whole

entity is preset to that value. Not providing index names defaults them to "node" and "relationship"

respectively.

Query access to the index happens with the Node- and RelationshipFinders that are created

via an instance of org.springframework.data.graph.neo4j.finder.FinderFactory. The methods

findByPropertyValue and findAllByPropertyValue work on the exact indexes and return the first

or all matches. To do range queries, use findAllByRange (please note that currently both values are

inclusive).

@NodeEntity

class Person {

 @Indexed(indexName = "people")

 String name;

 // automatically indexed numerically

 @Indexed

 int age;

}

@NodeEntity

@Indexed(indexName="groups")

class Group {

 @Indexed

 String name;

 @RelatedTo(elementClass = Person.class, type = "people")

 Set<Person> people;

}

NodeFinder<Person> finder = finderFactory.createNodeEntityFinder(Person.class);

// exact finder

Person mark = finder.findByProperyValue("people","name","mark");

// numeric range queries

for (Person middleAgedDeveloper : finder.findAllByRange(null, "age", 20, 40)) {

 Developer developer=middleAgedDeveloper.projectTo(Developer.class);

}

Neo4jTemplate also offers index support, providing auto-indexing for fields at creation time of nodes

and relationships. There is an autoIndex method that can also add indexes for a set of fields in one go.

For querying the index, the template offers query-methods that take either the exact match parameters

or a query object / query expression and push the results wrapped uniformly as Paths to the supplied

PathMapper to be converted or collected.

18.4. Finding nodes with finders

Spring Data Graph also comes with a type bound Repository-like Finder implementation that provides

methods for locating nodes and relationships:

• using direct access findById(id),

• iterating over all nodes of a node entity type (findAll),

• counting the instances of a node entity type (count),

Programming model for Spring Data Graph

Spring Data Graph () 42

• iterating over all indexed instances with a certain property value (findAllByPropertyValue),

• getting a single instance with a certain property value (findByPropertyValue),

• iterating over all indexed instances within a certain numerical range (inclusive) (findAllByRange),

• iterating over a traversal result (findAllByTraversal).

The Finder instances are created via a FinderFactory to be bound to a concrete node or relationship

entity class. The FinderFactory is created in the Spring context and can be injected.

NodeFinder<Person> finder = finderFactory.createNodeEntityFinder(Person.class);

Person dave=finder.findById(123);

int people = finder.count();

Person mark = finder.findByPropertyValue("name", "mark");

Iterable<Person> devs = finder.findAllByProperyValue("occupation","developer");

Iterable<Person> davesFriends = finder.findAllByTraversal(dave,

 Traversal.description().pruneAfterDepth(1)

 .relationships(KNOWS).filter(returnAllButStartNode()));

18.5. Transactions in Spring Data Graph

Neo4j is a transactional datastore which only allows modifications within transaction boundaries and

fullfills the ACID properties. Reading from the store is also possible outside of transactions.

Spring Data Graph integrates with transaction managers configured using Spring. The simplest

scenario of just running the graph database uses a SpringTransactionManager provided by the Neo4j

kernel to be used with Spring's JtaTransactionManager. Note: The explicit XML configuration given

below is encoded in the Neo4jConfiguration configuration bean that uses Spring's @Configuration

functioanlity. This simplifies the configuration. An example is shown further below.

<bean id="transactionManager" class="org.springframework.transaction.jta.JtaTransactionManager">

<property name="transactionManager">

 <bean class="org.neo4j.kernel.impl.transaction.SpringTransactionManager">

 <constructor-arg ref="graphDatabaseService"/>

 </bean>

</property>

<property name="userTransaction">

 <bean class="org.neo4j.kernel.impl.transaction.UserTransactionImpl">

 <constructor-arg ref="graphDatabaseService"/>

 </bean>

</property>

</bean>

<tx:annotation-driven mode="aspectj" transaction-manager="transactionManager"/>

For scenarios running multiple transactional resources there are two options. First of all you can

have Neo4j participate in the externally set up transaction manager using the new SpringProvider

by enabling the configuration parameter for your graph database. Either via the spring config or the

configuration file (neo4j.properties).

<context:annotation-config />

<context:spring-configured/>

<bean id="transactionManager" class="org.springframework.transaction.jta.JtaTransactionManager">

<property name="transactionManager">

 <bean id="jotm" class="org.springframework.data.graph.neo4j.transaction.JotmFactoryBean"/>

Programming model for Spring Data Graph

Spring Data Graph () 43

</property>

</bean>

<bean class="org.neo4j.kernel.EmbeddedGraphDatabase" destroy-method="shutdown">

<constructor-arg value="target/test-db"/>

<constructor-arg>

 <map>

 <entry key="tx_manager_impl" value="spring-jta"/>

 </map>

</constructor-arg>

</bean>

<tx:annotation-driven mode="aspectj" transaction-manager="transactionManager"/>

You can configure a stock XA transaction manager to be used with Neo4j and the other resources

(e.g. Atomikos, JOTM, App-Server-TM). For a bit less secure but fast 1 phase commit best effort,

use the implementation coming with Spring Data Graph (ChainedTransactionManager). It takes a list

of transaction-managers as constructor params and will handle them in order for transaction start and

commit (or rollback) in the reverse order.

<bean id="transactionManager"

 class="org.springframework.data.graph.neo4j.transaction.ChainedTransactionManager" >

 <constructor-arg>

 <list>

 <bean class="org.springframework.orm.jpa.JpaTransactionManager" id="jpaTransactionManager">

 <property name="entityManagerFactory" ref="entityManagerFactory"/>

 </bean>

 <bean

 class="org.springframework.transaction.jta.JtaTransactionManager">

 <property name="transactionManager">

 <bean class="org.neo4j.kernel.impl.transaction.SpringTransactionManager">

 <constructor-arg ref="graphDatabaseService" />

 </bean>

 </property>

 <property name="userTransaction">

 <bean class="org.neo4j.kernel.impl.transaction.UserTransactionImpl">

 <constructor-arg ref="graphDatabaseService" />

 </bean>

 </property>

 </bean>

 </list>

 </constructor-arg>

</bean>

18.6. Session handling - attached and detached entities

By default newly created node entities are in a detached state. When persist() is called on the entity

it is attached to the graph store and its properties and relationships are persisted as well. Changing an

attached entity inside a transaction will write through the changes to the datastore. Whenever an entity

is changed outside of a transaction it will be considered detached. The changed data is stored in the

entity itself and not written back to the datastore.

All entities that are returned by library functions are initially in an attached state. Changing them

outside of a transaction detaches them. For writing the changes back it is necessary to persist() them

again.

Persisting an entity not only persists that single entity but will traverse its existing and new relationships

and persist the cluster of detached entities that it is part of. The borders of this cluster are formed by

Programming model for Spring Data Graph

Spring Data Graph () 44

attached entities. The persist operation creates its own, implicit transaction. When it is called withina

external transaction it participates otherwise it is an atomic operation.

Please keep in mind that the session handling behaviour is still heavily developed. The defaults and

also other aspects of the behaviour are likely to change in subsequent releases. At the moment there is

no support for the creation of relationships outside of transactions and also more complex operations

like creating whole subgraphs outside of transactions is not supported.

@NodeEntity

class Person {

 String name;

}

Person p = new Person().persist();

18.7. Reified types for entities

There are several ways to represent the Java type hierarchy of the data model in the graph. In general for

all node and relationship entities type information is needed to perform certain repository operations.

Some of this type information is saved in the graph database.

Implementations of NodeTypeStrategy take care of persisting this information on entity instance

creation. They also provide the repository methods that use this type information to perform their

operations like findAll, count, etc.

There are three available implementations to choose from.

• IndexingNodeTypeStrategy

Stores entity types in the integrated index. Each entity node gets indexed with its type and any

supertypes that are also @NodeEntity-annotated. The special index used for this is called __types__.

Additionally, in order to get the type of an entity node, each node has a property __type__ with

the type of that entity.

• SubReferenceNodeTypeStrategy

Stores entity types in a tree in the graph representing the type hierarchy. Each entity has a

INSTANCE_OF relationship to a type node representing that entity's type. The type may or may

not have a SUBCLASS_OF relationship to another type node.

• NoopNodeTypeStrategy

Does not store any type information, and does hence not support finding by type, counting by type,

or retrieving the type of any entity.

The default implementation is IndexingNodeTypeStrategy for new graphs. If using an existing graph,

Spring Data Graph will default to the strategy first used when the graph was created.

18.8. Methods added to entity classes

The node and relationship aspects introduce (via ITD - inter type declaration) several methods to the

entities that make common tasks easier. Unfortunately these methods are not generified yet, so the

results have to be casted to the correct return type.

Programming model for Spring Data Graph

Spring Data Graph () 45

persisting the node-entity initially and after changes outside of a transaction, persist participates in a

transaction or creates its own implict transaction.

nodeEntity.persist()

accessing node and relationship ids

nodeEntity.getNodeId() and relationshipEntity.getRelationshipId()

accessing the node or relationship backing the entity

entity.getPersistentState()

equals and hashcode are delegated to the underlying state

entity.equals() and entity.hashCode()

creating relationships to a target node entity and returning the relationship-entity instance

nodeEntity.relateTo(targetEntity, relationshipClass, relationshipType)

retrieving a single relationship-entity

nodeEntity.getRelationshipTo(targetEnttiy, relationshipClass, relationshipType)

creating relationships to a target node entity and returning the relationship

nodeEntity.relateTo(targetEntity, relationshipType)

retrieving a single relationship

nodeEntity.getRelationshipTo(targetEnttiy, relationshipType)

removing a single relationship

nodeEntity.removeRelationshipTo(targetEntity, relationshipType)

remove the node entity, its relationship and index entries

entity.remove()

projecting to a different target type

entity.projectTo(targetClass)

traversing, starting at the current node

nodeEntity.findAllByTraversal(targetType, traversalDescription)

18.9. Dynamic typing - Projection to unrelated, fitting types

As the underlying data model of a graph database doesn't imply and enforce strict type constraints

like a relational model does, it offers much more flexibility on how to model your domain classes and

which of those to use in different contexts.

For instance an order can be used in these contexts: customer, procurement, logistics, billing,

fulfillment and many more. Each of those contexts requires its distinct set of attributes and operations.

As Java doesn't support mixins one would put the sum of all of those into the entity class and thereby

making it very big, brittle and hard to understand. Being able to take a basic order and project it to a

different (not related in the inheritance hierarchy or even an interface) order type that is valid in the

current context and only offers the attributes and methods needed here would be very benefitial.

Spring Data Graph offers initial support for projecting node and relationship entities to different target

types. All instances of this projected entity share the same backing node or relationship, so data changes

are reflected immediately.

Programming model for Spring Data Graph

Spring Data Graph () 46

This could for instance also be used to handle nodes of a traversal with a unified (simpler) type (e.g.

for reporting or auditing) and only project them to a concrete, more functional target type when the

business logic requires it.

// not related to Person at all

@NodeEntity

class Trainee {

 String name;

 @RelatedTo(elementClass=Training.class);

 Set<Training> trainings;

}

for (Person person : finder.findAllByProperyValue("occupation","developer")) {

 Developer developer = person.projectTo(Developer.class);

 if (developer.isJavaDeveloper()) {

 trainInSpringData(developer.projectTo(Trainee.class));

 }

}

18.10. Neo4jTemplate

The Neo4jTemplate offers the convenient API of Spring templates for the Neo4j graph database.

There are methods for creating nodes and relationships that automatically set provided properties and

optionally index certain fields. Other methods (index, autoindex) will index them.

For the querying operations Neo4jTemplate unifies the result with the Path abstraction that

comes from Neo4j. Much like a resultset a path contains nodes() and relationships() starting

at a startNode() and ending with aendNode(), the lastRelationship() is also available

separately. The Path abstraction also wraps results that contain just nodes or relationships. Using

implementations of PathMapper<T> and PathMapper.WithoutResult (comparable with RowMapper

and RowCallbackHandler) the paths can be converted to Java objects.

Query methods either take a field / value combination to look for exact matches in the index or a lucene

query object or string to handle more complex queries.

Traversal methods are the bread and butter of graph operations. As such, they are fully supported in

the Neo4jTemplate. The traverseNext method traverses to the direct neighbours of the start node

filtering the relationships according to its parameters.

The traverse method covers the full fledged traversal operation that takes a powerful

TraversalDescription (most probably built from the Traversal.description() DSL) and runs it

from the start node. Each path that is returned via the traversal is passed to the PathMapper to be

processed accordingly.

The Neo4jTemplate provides configurable implicit transactions for all its methods. By default it creates

a transaction for each call (which is a no-op if there is already a transaction running). If you call the

constructor with the useExplicitTransactions parameter set to true, it won't create any transactions

so you have to provide them using @Transactional or the TransactionTemplate.

Neo4jOperations neo = new Neo4jTemplate(grapDatabase);

Node michael = neo.createNode(_("name","Michael"),"name");

Node mark = neo.createNode(_("name","Mark"));

Node thomas = neo.createNode(_("name","Thomas"));

neo.createRelationship(mark,thomas, WORKS_WITH, _("project","spring-data"));

neo.index("devs",thomas, "name","Thomas");

Programming model for Spring Data Graph

Spring Data Graph () 47

neo.autoIndex("devs",mark, "name");

assert "Mark".equals(neo.query("devs","name","Mark",new NodeNamePathMapper()));

18.11. Bean Validation - JSR-303

Spring Data Graph supports property based validation support. So whenever a property is changed, it

is checked against the annotated constraints (.e.g @Min, @Max, @Size, etc). Validation errors throw

a ValidationException. For evaluating the constraints the validation support that comes with Spring

is used. To use it a validator has to be registered with the GraphDatabaseContext, if there is none, no

validation will be performed (any registered Validator or (Local)ValidatorFactoryBean will be used).

@NodeEntity

class Person {

 @Size(min = 3, max = 20)

 String name;

 @Min(0)

 @Max(100)

 int age;

}

Spring Data Graph () 48

Chapter 19. Setup required for Spring Data Graph
To use Spring Data Graph in your application, some setup is required. For building the application

the necessary Maven dependencies must be included and for the AspectJ weaving some extensions of

the compile goal are necessary. This chapter also discusses the Spring configuration needed to set up

Spring Data Graph. Examples for this setup can be found in the Spring Data Graph examples.

19.1. Maven Configuration

As stated in the requirements chapter, Spring Data Graph projects are easiest to build with Apache

Maven. The main dependencies are Spring Data Graph itself, Spring Data Commons, some parts of

the Spring Framework and of course the Neo4j graph database.

19.1.1. Repositories

The milestone releases of Spring Data Graph are available from the dedicated milestone repository.

Neo4j releases and milestones are available from Maven Central.

<repository>

 <id>spring-maven-milestone</id>

 <name>Springframework Maven Repository</name>

 <url>http://maven.springframework.org/milestone</url>

</repository>

19.1.2. Dependencies

The dependency on spring-data-neo4j should transitively pull in Spring Framework (core, context,

aop, aspects, tx), Aspectj, Neo4j and Spring Data Commons. If you already use these (or different

versions of these) in your project, then include those dependencies on your own.

<dependency>

 <groupId>org.springframework.data</groupId>

 <artifactId>spring-data-neo4j</artifactId>

 <version>1.0.0.M5</version>

</dependency>

<dependency>

 <groupId>org.aspectj</groupId>

 <artifactId>aspectjrt</artifactId>

 <version>1.6.11.RELEASE</version>

</dependency>

19.1.3. AspectJ build configuration

As Spring Data Graph uses AspectJ for build time aspect weaving of your entities, it is necessary to

add the aspectj-plugin to the build phases. The plugin has its own dependencies. You also need to

explicitely specifiy libraries containing aspects (spring-aspects and spring-data-neo4j)

<plugin>

 <groupId>org.codehaus.mojo</groupId>

 <artifactId>aspectj-maven-plugin</artifactId>

 <version>1.0</version>

http://github.com/SpringSource/spring-data-graph-examples

Setup required for Spring Data Graph

Spring Data Graph () 49

 <dependencies>

 <!-- NB: You must use Maven 2.0.9 or above or these are ignored (see MNG-2972) -->

 <dependency>

 <groupId>org.aspectj</groupId>

 <artifactId>aspectjrt</artifactId>

 <version>1.6.11.RELEASE</version>

 </dependency>

 <dependency>

 <groupId>org.aspectj</groupId>

 <artifactId>aspectjtools</artifactId>

 <version>1.6.11.RELEASE</version>

 </dependency>

 </dependencies>

 <executions>

 <execution>

 <goals>

 <goal>compile</goal>

 <goal>test-compile</goal>

 </goals>

 </execution>

 </executions>

 <configuration>

 <outxml>true</outxml>

 <aspectLibraries>

 <aspectLibrary>

 <groupId>org.springframework</groupId>

 <artifactId>spring-aspects</artifactId>

 </aspectLibrary>

 <aspectLibrary>

 <groupId>org.springframework.data</groupId>

 <artifactId>spring-datastore-neo4j</artifactId>

 </aspectLibrary>

 </aspectLibraries>

 <source>1.6</source>

 <target>1.6</target>

 </configuration>

</plugin>

19.2. Setting Up Spring Data Graph - Spring Configuration

The concrete configuration for Spring Data Graph is quite verbose as there is no autowiring involved.

It sets up the following parts.

• GraphDatabaseService, IndexManager for the embedded Neo4j storage engine

• Spring transaction manager, Neo4j transaction manager

• aspects and instantiators for node and relationship entities

• EntityState and FieldAccessFactories needed for the different field handling

• Conversion services

• Finder factory

• an appropriate NodeTypeStrategy

19.2.1. XML-Namespace

To simplify the configuration we provide a xml namespace datagraph that allows configuration of

any Spring Data Graph project with a single line of xml code. There are three possible parameters.

Setup required for Spring Data Graph

Spring Data Graph () 50

You can use storeDirectory or the reference to graphDatabaseService alternatively. For cross-store

configuration just refer to an entityManagerFactory.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:context="http://www.springframework.org/schema/context"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:datagraph="http://www.springframework.org/schema/data/graph"

 xsi:schemaLocation="

 http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd

 http://www.springframework.org/schema/context

 http://www.springframework.org/schema/context/spring-context-3.0.xsd

 http://www.springframework.org/schema/data/graph

 http://www.springframework.org/schema/data/graph/datagraph-1.0.xsd

 ">

 <context:annotation-config/>

 <datagraph:config storeDirectory="target/config-test"/>

</beans>

 <context:annotation-config/>

 <bean id="graphDatabaseService" class="org.neo4j.kernel.EmbeddedGraphDatabase"

 destroy-method="shutdown">

 <constructor-arg index="0" value="target/config-test" />

 </bean>

 <datagraph:config graphDatabaseService="graphDatabaseService"/>

 <context:annotation-config/>

 <datagraph:config storeDirectory="target/config-test"

 entityManagerFactory="entityManagerFactory"/>

 <bean class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean"

 id="entityManagerFactory">

 <property name="dataSource" ref="dataSource"/>

 <property name="persistenceXmlLocation" value="classpath:META-INF/persistence.xml"/>

 </bean>

19.2.2. Java based Configuration

You can also configure Spring Data Graph using Java based bean metadata.

Note

For those not familiar with how to configure the Spring container using Java based bean

metadata instead of XML based metadata see the high level introduction in the reference

docs here as well as the detailed documentation here.

To help configure Spring Data Graph using Java based bean metadata the class Neo4jConfiguration

is registerd with the context either explicitly in the XML config or via classpath scanning

for classes that have the @Configuration annotation. The only thing that must be provided in

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/new-in-3.html#new-java-configuration
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-java-instantiating-container

Setup required for Spring Data Graph

Spring Data Graph () 51

addition is the GraphDatabaseService configured with a datastore directory. The example below

shows using XML to register the Neo4jConfiguration @Configuration class as well as Spring's

ConfigurationClassPostProcessor that transforms the @Configuration class to bean definitions.

 <beans>

 ...

 <tx:annotation-driven mode="aspectj" transaction-manager="transactionManager"/>

 <bean class="org.springframework.data.graph.neo4j.config.Neo4jConfiguration"/>

 <bean class="org.springframework.context.annotation.ConfigurationClassPostProcessor"/>

 <bean id="graphDatabaseService" class="org.neo4j.kernel.EmbeddedGraphDatabase"

 destroy-method="shutdown" scope="singleton">

 <constructor-arg index="0" value="target/config-test"/>

 </bean>

 ...

 </beans>

Spring Data Graph () 52

Chapter 20. Cross-store persistence with a graph
database

The Spring Data Graph project support cross-store persistence which allows parts of the data mode

to be stored in a traditional JPA datastore (RDBMS) and other parts of the data model (even partial

entites, that is some properties or relationships) in a graph store.

This allows existing JPA-based applications to embrace NOSQL data stores to evolve certain parts

of their model. Possible use cases are adding social network or geospatial information to existing

applications.

20.1. Partial graph persistence

Partial graph persistence is achieved by restricting the Spring Data Graph aspects to explicitly

annotated parts of the entity. Those fields will be made transient by the aspect so that JPA ignores

them and won't try to persist those attributes.

A backing node in the graph store is only created when the entity has been assigned a JPA id. Only

then will the connection between the two stores be kept. Until the entity has been persisted, its state is

just kept inside the POJO (detached state) and flushed to the backing graph store afterwards.

The connection between the two entities is kept via a FOREIGN_ID field in the node that contains

the JPA id (currently only single value ids are supported). The entity class can be resolved via the

NodeTypeStrategy that preserves the Java type hierarchy within the graph. With the id and class, you

can then retrieve the appropriate JPA entity for a given node.

The other direction is handled by indexing the Node with the FOREIGN_ID index which contains

a concatenation of the fully qualified class name of the JPA entity and the id. So it is possible on

instantiation of a JPA id via the entity manager (or some other means like creating the POJO and setting

its id manually) to find the matching node using the index facilities and reconnect them.

Using those mechanisms and the Spring Data Graph aspects a single POJO can contain fields that are

handled by JPA and other fields (which might be relationships as well) that are handled by Spring

Data Graph.

20.1.1. @NodeEntity(partial = "true")

When annotating an entity with partial true, Spring Data Graph assumes that this is a cross-store entity.

So its only responsibility is for the fields annotated with Spring Data Graph annotations. JPA should

not take care of these fields (they should be annotated with @Transient). In this mode of operation

Spring Data Graph also handles the cross-store connection via the content of the JPA id field.

20.1.2. @GraphProperty

For common fields containing primitive or convertible values that wouldn't have to be annotated in

exclusive Spring Data Graph operations this explicit declaration is necessary to be sure that they are

intended to be stored in the graph. These fields should then be made transient so that JPA doesn't try

to take care of them as well.

The following example is taken from the Spring Data Graph examples, it is contained in the

myrestaurant-social project.

http://github.com/SpringSource/spring-data-graph-examples

Cross-store persistence with a graph database

Spring Data Graph () 53

 @Entity

 @Table(name = "user_account")

 @NodeEntity(partial = true)

 public class UserAccount {

 private String userName;

 private String firstName;

 private String lastName;

 @GraphProperty

 String nickname;

 @RelatedTo(type = "friends", elementClass = UserAccount.class)

 Set<UserAccount> friends;

 @RelatedToVia(type = "recommends", elementClass = Recommendation.class)

 Iterable<Recommendation> recommendations;

 @Temporal(TemporalType.TIMESTAMP)

 @DateTimeFormat(style = "S-")

 private Date birthDate;

 @ManyToMany(cascade = CascadeType.ALL)

 private Set<Restaurant> favorites;

 @Id

 @GeneratedValue(strategy = GenerationType.AUTO)

 @Column(name = "id")

 private Long id;

 @Transactional

 public void knows(UserAccount friend) {

 relateTo(friend, "friends");

 }

 @Transactional

 public Recommendation rate(Restaurant restaurant, int stars, String comment) {

 Recommendation recommendation = relateTo(restaurant, Recommendation.class, "recommends");

 recommendation.rate(stars, comment);

 return recommendation;

 }

 public Iterable<Recommendation> getRecommendations() {

 return recommendations;

 }

 }

20.2. Configuring cross-store persistence

Configuring cross-store persistence is done similarly to the default Spring Data Graph operations.

As soon as you refer to an entityManagerFactory in the xml-namespace it is set up for cross-store

persistence.

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:context="http://www.springframework.org/schema/context"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:datagraph="http://www.springframework.org/schema/data/graph"

 xsi:schemaLocation="

 http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd

 http://www.springframework.org/schema/context

 http://www.springframework.org/schema/context/spring-context-3.0.xsd

 http://www.springframework.org/schema/data/graph

Cross-store persistence with a graph database

Spring Data Graph () 54

 http://www.springframework.org/schema/data/graph/datagraph-1.0.xsd

 ">

 <context:annotation-config/>

 <datagraph:config storeDirectory="target/config-test"

 entityManagerFactory="entityManagerFactory"/>

 <bean class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean"

 id="entityManagerFactory">

 <property name="dataSource" ref="dataSource"/>

 <property name="persistenceXmlLocation" value="classpath:META-INF/persistence.xml"/>

 </bean>

</beans>

Spring Data Graph () 55

Chapter 21. Samples

21.1. Introduction

Spring Data Graph comes with a number of samples. The source code of the samples is found on

GitHub. The different sample projects are introduced below.

21.2. Hello Worlds sample

The Hello Worlds sample application is a simple console application with unit tests, that creates some

Worlds (entities / nodes) and Rocket Routes (relationships) in a Galaxy (graph) and then reads them

back and prints them out.

The unit tests demonstrate some other features of Spring Data Graph. The sample comes with a minimal

configuration for Maven and Spring to get up and running quickly.

Executing the application creates the following graph in the Graph Database:

21.3. IMDB sample

A web application that imports datasets from the Internet Movie Database (IMDB) into the graph

database. It allows listings of movies with their actors and actors with their roles in different movies.

It also uses graph traversal operations to calculate the Kevin Bacon number (distance to an actor that

has acted with Kevin Bacon). This sample application shows the basic usage of Spring Data Graph in

a more complex setting with several annotated entities and relationships as well as usage of indices

and graph traversal.

See the readme file for instruction on how to compile and run the application.

An excerpt of the data stored in the Graph Database after executing the application:

http://github.com/SpringSource/spring-data-graph-examples

Samples

Spring Data Graph () 56

21.4. MyRestaurant sample

Simple, JPA based web application for managing users and restaurants, with the ability to add

restaurants as favorites to a user.

21.5. MyRestaurant-Social sample

An extended version of the MyRestaurant sample application that adds social networking functionality

to it. It is possible to have friends and to add rated relationships to restaurants. The relationships and

some of the properties of the entities are transparently stored in the graph database. There is also a

graph traversal that provides a recommendation based on your friends' (and their friends') rating of

restaurants.

An excerpt of the data stored in the Graph Database after executing the application:

Samples

Spring Data Graph () 57

Spring Data Graph () 58

Chapter 22. Performance considerations

Although adding another layer of abstraction is always the solution to look for in software development,

each of those layers adds overhead and performance penalties. This chapter discusses the performance

implications of using Spring Data Graph on top of the native Neo4j API.

22.1. When to use SDG?

The focus of Spring Data Graph is to add a convenience layer on top of the native Neo4j API. This

should enable developers to get up and running with the graph database very quickly, having their

domain objects mapped to the graph. Building on this foundation one can later explore other, more

efficient ways to explore and process the graph - if the performance requirements demand it.

Like any other object mapping framework, the domain entities that are created, read or persisted

represent only a small fraction of the data stored in the database. This is the set needed for a certain

use-case to be displayed, edited or processed in a low throughput fashion. The main advantages of

using an object mapper in this case is the ease of use of real domain objects in your business logic and

also with existing frameworks and libraries that expect Java POJOs as input or create them as results.

Spring Data Graph was not designed with a major performance focus. It adds some overhead to pure

graph operations. Something to keep in mind is, that the access of properties and relationships is a read

trough in the attached case. So to avoid multiple read-throughs it is sensible to store the result in a local

variable at the scope of use (method, class or jsp for example).

Most of the overhead comes from the use of the Java Reflection API, which is leveraged to provide

information about Annotations, Fields and Constructors. Some of the information is already cached

by the JVM and the library, so that only the first access gets a performance penalty.

Spring Data Graph () 59

Chapter 23. Neo4jTemplate

...

23.1. Transaction handling/management

...

23.2. Basic operations

...

23.3. Indexing

...

23.4. Traversal

...

23.5. PathMapper

... path as general return type?

Spring Data Graph () 60

Chapter 24. Annotation-driven persistence

...

24.1. Annotations

... this is the most important part

24.2. Introduced methods

...

24.3. Finders

...

24.4. GraphDatabaseContext

...

24.5. Indexing

...

24.6. Traversal

...

24.7. EntityMapper and Path

...

Spring Data Graph () 61

Chapter 25. AspectJ introduction

The object graph mapper of Spring Data Graph relies heavily on AspectJ. AspectJ is the Java

implementation of the Aspect Oriented Programming paradigm that allows easy extraction and

controlled application of so called cross cutting concerns. Cross cutting concerns are repetitive tasks in

a system (e.g. logging, security, auditing, caching, transaction scoping) that are difficult to extract using

the normal OO paradigms. The means of the OO paradigm, of subclassing, polymorphism, overriding

and delegation are still very cumbersome to use with many of those concerns applied in the codebase.

Also the flexibility is limited or would add quite a number of configuration options or parameters.

The learning curve for the AspectJ pointcut language is quite slow but the developer who uses Spring

Data Graph will not be confronted with that. Users do not have care about to hooking into a framework

mechanism or having to extend a framework superclass.

That's why AspectJ uses a declarative approach, defining concrete advice, which is just the piece

of code that contains the implementation of the concern. AspectJ advice can for instance be applied

before, after, or instead of a method or constructor call, or variable access. This is declared using

AspectJ's expressive pointcut language that is able to express any place within a code structure or

flow. AspectJ is also able to introduce new methods, fields, annotations, interfaces, and superclasses

to existing classes.

Spring Data Graph uses both mechanisms internally. First, when encountering @NodeEntity or

@RelationshipEntity annotations it introduces a new interface NodeBacked or RelationshipBacked,

depending on the annotation type. Secondly, it introduces fields and methods to the annotated class.

See Section 18.8, “Methods added to entity classes” for more information on the methods introduced.

Spring Data Graph also leverages AspectJ to intercept access to fields, delegating the calls to the graph

database instead. Under the hood, properties and relationships will be created.

So how is an aspect applied to a concrete class? This can be either done at compile time with the

AspectJ Java compiler (ajc) that takes source files and aspect definitions, and then compiles the source

files while adding all the necessary interception code for the aspects to hook in where they're declared

to. This is known as compile-time weaving. At runtime only a small AspectJ runtime is needed, as

the bytecode of the classes has already been rewritten to delegate appropriate calls via the declared

advice in the aspects.

Note
A caveat of using compile-time weaving is that all source files that should be part of the

weaving process must be compiled with the AspectJ compiler. Fortunately, this is all taken

care of seamlessly by the AspectJ Maven plugin.

AspectJ also supports other types of weaving, for example load-time weaving and runtime weaving.

These are currently not supported by Spring Data Graph.

https://secure.wikimedia.org/wikipedia/en/wiki/Aspect-oriented_programming

Spring Data Graph () 62

Chapter 26. Neo4j introduction

...

Spring Data Graph () 63

Chapter 27. Spring Data

...

Spring Data Graph () 64

Chapter 28. Neo4j Server

...

	Good Relationships
	Table of Contents
	Preface
	1. Foreword: Rod Johnson, CEO of SpringSource
	2. Foreword: Emil Eifrem, CEO of Neo Technology
	3. About this Guide Book

	Part I. Tutorial
	Chapter 1. Allow me to introduce - Cineasts.net
	Chapter 2. Scope: Spring
	2.1. Preparations - Required Setup

	Chapter 3. Setting the Stage - Movies Domain
	Chapter 4. Graphs ahead - Learning Neo4j
	Chapter 5. Conjuring Magic - Spring Data Graph
	Chapter 6. Decorations - Annotated Domain
	Chapter 7. Do I know you? - Indexing
	Chapter 8. Serving a good cause - Repository
	Chapter 9. A convincing act - Relationships
	9.1. Value in Relationships - Creating them
	9.2. Who's there ? - Accessing related entities
	9.3. May I introduce ? - Accessing Relationships themselves

	Chapter 10. Curtains Up! - Get it running
	10.1. Requisites - Populating the database
	10.2. Behind the scenes - Peeking at the Datastore
	10.2.1. Eye candy - Neoclipse visualization
	10.2.2. Hardcore "Hacking" - Neo4j Shell

	Chapter 11. Showing off - Web views
	11.1. What was his name? - Searching
	11.2. Look what we've found - Listing Results

	Chapter 12. Movies 2.0 - Adding social
	12.1. Look, mom a Cineast! - Users
	12.2. Beware, Critics - Rating

	Chapter 13. Protecting Assets - Adding Security
	Chapter 14. Oh the Glamour - More UI
	Chapter 15. The dusty archives - Importing Data
	Chapter 16. Movies! Friends! Bargains! - Recommendations

	Part II. Reference
	Preface
	Chapter 17. Introduction to Neo4j
	17.1. What is a graph database?
	17.2. GraphDatabaseService
	17.3. Creating Nodes and Relationships
	17.4. Graph traversal
	17.5. Indexing

	Chapter 18. Programming model for Spring Data Graph
	18.1. Overview of the AspectJ support
	18.2. Using annotations to define POJO entities and relationships
	18.2.1. @NodeEntity: The basic building block
	18.2.2. @RelatedTo: Connecting NodeEntities
	18.2.3. @RelationshipEntity: Rich relationships
	18.2.4. @RelatedToVia: Connecting NodeEntitites via RelationshipEntities
	18.2.5. @StartNode: Starting NodeEntity of RelationshipEntity
	18.2.6. @EndNode: Ending NodeEntity of RelationshipEntity
	18.2.7. @Indexed: Making entities searchable by field value
	18.2.8. @GraphTraversal
	18.2.9. @GraphProperty: Cross-store persisted fields

	18.3. Indexing
	18.4. Finding nodes with finders
	18.5. Transactions in Spring Data Graph
	18.6. Session handling - attached and detached entities
	18.7. Reified types for entities
	18.8. Methods added to entity classes
	18.9. Dynamic typing - Projection to unrelated, fitting types
	18.10. Neo4jTemplate
	18.11. Bean Validation - JSR-303

	Chapter 19. Setup required for Spring Data Graph
	19.1. Maven Configuration
	19.1.1. Repositories
	19.1.2. Dependencies
	19.1.3. AspectJ build configuration

	19.2. Setting Up Spring Data Graph - Spring Configuration
	19.2.1. XML-Namespace
	19.2.2. Java based Configuration

	Chapter 20. Cross-store persistence with a graph database
	20.1. Partial graph persistence
	20.1.1. @NodeEntity(partial = "true")
	20.1.2. @GraphProperty

	20.2. Configuring cross-store persistence

	Chapter 21. Samples
	21.1. Introduction
	21.2. Hello Worlds sample
	21.3. IMDB sample
	21.4. MyRestaurant sample
	21.5. MyRestaurant-Social sample

	Chapter 22. Performance considerations
	22.1. When to use SDG?

	Chapter 23. Neo4jTemplate
	23.1. Transaction handling/management
	23.2. Basic operations
	23.3. Indexing
	23.4. Traversal
	23.5. PathMapper

	Chapter 24. Annotation-driven persistence
	24.1. Annotations
	24.2. Introduced methods
	24.3. Finders
	24.4. GraphDatabaseContext
	24.5. Indexing
	24.6. Traversal
	24.7. EntityMapper and Path

	Chapter 25. AspectJ introduction
	Chapter 26. Neo4j introduction
	Chapter 27. Spring Data
	Chapter 28. Neo4j Server

