Good Relationships

The Spring Data Graph Guidebook

Copyright © 2010 - 2011 Michael Hunger, David Montag, Mark Pollack, Thomas Risberg

Copies of this document may be made for your own use and for distribution to others,
provided that you do not charge any fee for such copies and further provided that
each copy contains this Copyright Notice, whether distributed in print or electronically.

1. Foreword: Rod Johnson, CEO Of SPriNGSOUICEeeeveeeiiieiiiiiieeiee e e e s ceivvee e e e e e v
2. Foreword: Emil Eifrem, CEO of Neo Technologycccccvvevieeiiiiiiiiiiiieecee e, v
3. About thiS GUIAE BOOKcoiiiiiiiiiiie et e e e e %
R T (] = S S 1
1. Allow me to introduce - CINEASIS.NELcevvieeeii e e e e e e 2
S 0] o s o] oo SRR PPPRPN 3
2.1. Preparations - REQUITEd SELUDuvvvviireeeei it e ettt e e e eeirvee e e e e e e e 3

3. Setting the Stage - MoVIES DOMAINcoieeiiiiiiiiieee e 5
4. Graphs ahead - Learning NEOAuuuuuuuueruurunirinerinnmrnrnmemnremnnnmnmnmemrmnme. 7
5. Conjuring Magic - Spring Data Graphceeviiiiiiiii e 8
6. Decorations - ANNOtated DOMEINceeiiiiiiiiiiiiie e e e e e e e e e e eeeeeas 10
7. DO | KNOW YOU? = INAEXING ...eeeiiiiiieeiiiiiee ettt e s e e e snnee e e e e 11
8. Serving a good CaUSE - REPOSITONYvvviiieeeeiiiiiiiiiie e e e e e ectree e e e e s ssr e e e e e e s e eaanenes 12
9. A convincing act - REIAONSNIPSoccuiiiiiiee e 13
9.1. Value in Relationships - Creating themccccccvvvviiiiiiieeeeeeeeeeeee 13

9.2. Who's there ? - Accessing related entitieScooeeiviiiciiiiiiie e 13

9.3. May | introduce ? - Accessing Relationships themselves............ccccceiiiiieeeeee 14

10. Curtains Up! - GEL It FUNNINGeeoiiiiiieeiiiei et 15
10.1. Requisites - Populating the databasecooevviiieiiee e 15

10.2. Behind the scenes - Peeking at the Datastoreceeveeeeviiciviieeeie e, 16
10.2.1. Eye candy - Neoclipse visuaizationcccccceeeeieeiiie e, 16

10.2.2. Hardcore "Hacking" - Neo4j Shell ..o 16

11. SNOWING OFf - WED VIBWScoeiiiiiiieiiiiee ettt e e 18
11.1. What was his Name? - SEArChiNGoccueeeeiiiiiieiiiiee e 18

11.2. Look what we've found - Listing RESUILScccovviiiiiiiieee e, 19

12. Movies 2.0 - Adding SOCIAcccuviiiiiiiee e 21
12.1. Look, MOM @ CINEBSEL = USEIS . .eeeeeeeeee ettt e e e e e e e e 21
12.2. Beware, CritiCS - RaLUNGvvveeieiieiiiiiiiiieieieieieeeeeeeeseeesrereersnrernrrrremrmrrrrrr. 22

13. Protecting ASSELS - AddiNG SECUNTYvveeiiiiiiiie e 23
14. Oh the GIamour - MOrE Uluuiiiiiee it e s e e e e e e s nnnrraneeeee s 27
15. The dusty archives - Importing Daaccooiuiiiiiiiiiiee e 30
16. Movies! Friends! Bargains! - Recommendationsccceovviiiiiiiiieeie e eiiciiieeeee e 33
I = = (= o PR OUPPRRRP 34
(= =0 SR XXXV
17. INtroduCtioN T0 NBOA ...ttt e e e 36
17.1. What is a graph database?ccueieiiiiiieiieee e 36
17.2. GraphDataDaSESEIVICEccoiuiiiieiiiiiie ettt e e 36
17.3. Creating Nodes and RelationShipsuvvviiieeeiiiiiiiiiiee e 36
17.4. Graph traVErSalcooociiiieeeee e e 37
T 1 o 1= (] o 37

18. Programming model for Spring Data Graphcoveiiiiiieiiiiiiee e 38
18.1. Overview of the ASPECET SUPPOITvvveeeiiireieeeiiiee et e e e st e e e e e 38

18.2. Using annotations to define POJO entities and relationships...........cccovcveeeennee. 38
18.2.1. @NodeEntity: The basic building blockcccccoeeiiiiiie, 38

18.2.2. @RelatedTo: Connecting NOdeENLItiescccceveeeeeiiiiiiiiiieecee e, 39

18.2.3. @RelationshipEntity: Rich relationshipsueuvviiiiiiiiiiiiiiiiii. 39

18.2.4. @RelatedToVia: Connecting NodeEntitites via RelationshipEntities....... 39

18.2.5. @StartNode: Starting NodeEntity of RelationshipEntityc.cee.... 40

Spring Data Graph () ii

Good Relationships

18.2.6. @EndNode: Ending NodeEntity of RelationshipEntitycccccoeveeeee. 40

18.2.7. @Indexed: Making entities searchable by field value..............cccvvveeee. 40

18.2.8. @GraphTraVversalccccuvveeeiiee e e e e e 40

18.2.9. @GraphProperty: Cross-store persisted fields...........cceeeeeeeee, 40

18.3. INUEXING ...ttt e e e e e s e e s s 40
18.4. Finding NOdeS With fINAEISevviiiiiiiie e 41
18.5. Transactions in Spring Data Graphccccveiiiiiiiieeiiieeee e 42
18.6. Session handling - attached and detached entities...........ccccceveeeiiiiiciiieeece e, 43

18.7. Reified types for ENtitiESvvvieiiie e 44
18.8. Methods added t0o entity ClaSSESuuviririiiiiiiiiiiiiiiiirieierrrrrererrrrerr. 44

18.9. Dynamic typing - Projection to unrelated, fitting types.........ccccevvcviveeiiiineenns 45
18.10. NEOA TEMPIBLEeeeeeeiiiieee ittt ettt e e s e e e e e e e 46
18.11. Bean Validation - JSR-303ccccuiiiiiiee et e e e s s e e e a e 47

19. Setup required for Spring Data Graphccceiiiiiiiiiiiee e 48
19.1. Maven Configurationccccvieiiiiie e a e e 48
S I T = o0) (o - 48

19.1.2. DEPENUENCIES ... ieeeieeiee e e e ettt e e e e e ettt e e e e e e e s e e e e e e e e e e snnneeeas 48

19.1.3. Aspectd build cONfiQUIraionccccveeeeiiiiiieeiiiee e 48

19.2. Setting Up Spring Data Graph - Spring Configurationccccceeviiveeeiiinnenn. 49
19.2.1. XML-NGMESPECE ...cceeeieeeeeeeeeeeee e 49

19.2.2. Java based Configurationccccuveeieeeee i 50

20. Cross-store persistence with a graph databasecccevvvvveviveviiiiieiiieeeeeeeeeeeeeeee 52
20.1. Partial graph PersiStENCEueueiiieeeiiiiieiee e e e e e e e e e eneeees 52
20.1.1. @NodeEntity(partial = "trUE™)ccoiiuiieeiiiiiiee e 52

20.1.2. @GIapNPrOPEITY ...eeeiiieieeiiiiiee ettt 52

20.2. Configuring Cross-Store PErSItENCEcccvvvvieiiee e e e ccciieeee e e e e e e e e e 53

20, SAMPIES oo e e e e e e e e e e —r e e e e e e e aaaarraaeaaas 55
P20 00 R 1 g1 oo 1 1 oo RSP 55
21.2. HEllo Worlds SamMPIEoeeeeieeee e 55
21.3. IMDB SAMPIE ..ttt 55
21.4. MYREStAUrant SAMPIEveiiiiiiiiie ettt 56
21.5. MyRestaurant-Social SAMPIEcoeiiiiiiieiiiiiie e 56

22. Performance CONSIAEIELIONSuueieeiiriiieeiiieee e st e e st e et e e st e e e aba e e s ebreee e 58
22.1. WHEN t0 USE SDG? ...ttt e e e e s 58

23. NEOA TEMPIALEucieeeieiiiiieie e nn s nnnnnnnnnnnnns 59
23.1. Transaction handling/Managementcoeeiiiiieeriiiie e 59
23.2. BASIC OPEIGLIONSeveeieiiiieee ettt ettt et e et e e e nnree s 59
23.3. INAEXING ...ttt 59
234, TTAVEISAl oo 59
ST == 11V =0 o U PORPP 59

24. ANNOtatioN-driVeN PEFSISLENCEuuuuruuuriruiuiiiuieiurirnininrarnrnrnrararrnraara—a—————————————————————_. 60
P R N 4 = 40 = SR 60
24.2. Introduced MELNOAScooiiiiiiiiii e 60
PG T T L= £ SRR 60
24.4. GraphDatabaSECONIEXTcccciiiiiiiee e e e e e e e e e e e e e e e annes 60
pZ 0 ST 1o (=] oo R PEPRR 60

P R = Y= £ RS 60
24.7. EntityMapper and Pathoooiiiiiiiiii e 60

25. ASPECEI INITOAUCTIONeeieiiiiieeeeiiee ettt e s e e e e e nnnee s 61

Spring Data Graph () i

Good Relationships

26. NEOZJ INTOTUCTIONeiiiiieeieie ettt ettt e et e e s et e e s ennneee s

27. Spring Data

28. NEOA] SEIVEL ..ccciiiceiieeeee et e e e et e e e e e s s et e e e e e e e e e s s et bt b e e e e e e e e e e annnrrraareeas

Spring Data Graph ()

Preface

.‘ springdatagraph

1. Foreword: Rod Johnson, CEO of SpringSource
2. Foreword: Emil Eifrem, CEO of Neo Technology

3. About this Guide Book

Welcome to the Spring Data Graph Guide Book. Thank you for taking the time to get an in depth look
into Spring Data Graph Library. Spring Data Graph is part of the Spring Data project which brings
the convenient programming model of the Spring Framework to modern (mainly NoSQL) datastores.
Spring Data Graph currently provides integration for the Neo4j Graph Database.

It was written by developers for devel opers. So hopefully we've created a documentation that is well
received by our peers.

If you have any feedback to the Spring Data Graph Library or this book, please provide it via
SpringSource JIRA, the SpringSource NoSQL Forum, github comments or issues or the Neodj mailing
list.

This book is presented as a duplex book, aterm coined by Martin Fowler. A duplex book consists of
at least two parts. The first part is an easily accessible narrative, that gives the reader an overview of
the topics contained in the book. It contains |ots of examples and more general discussion topics. This
should be the only part of the book that is required to be read cover-to-cover.

We chose a tutorial describing the creation of a web applicaton (cineasts.net) that allows movie
enthusiasts to find the favorites, rate them, connect with each other and enjoy social features. The
application is running on Neo4j using Spring Data Graph and the well known Spring Web Stack.

The second part is the classic reference documentation containing the detailed information about the
library. It discusses the programming model, the underlying assumptions, used toolset (like aspectj) as
well as the APIs for the object-graph mapping and the template approach. The reference docs should
be mainly used to look up concrete bits of information or to dig deeper into certain topics.

Spring Data Graph () Y

https://github.com/SpringSource/spring-data-graph
http://springsource.org/spring-data
http://neo4j.org
https://jira.springsource.org/browse/DATAGRAPH
http://forum.springsource.org/forumdisplay.php?f=80
https://github.com/SpringSource/spring-data-graph/issues
http://neo4j.org/community/list/
http://neo4j.org/community/list/
http://martinfowler.com/bliki/DuplexBook.html
http://martinfowler.com/bliki/DuplexBook.html

Part |. Tutorial

Thefirst part of the book provides atutorial that walks through the creation of a complete Web application called
cineasts.net built with Spring Data Graph and Neo4j. It uses a domain that should be familiar - movies. So for
cineasts.net we decided to add a social touch to rating movies, allowing friends to share their scores and get
recommendations for new friends and movies.

The tutorial walks the steps necessary to create the application. It provides the configuration and code examples
that are needed to understand what's happening in Spring Data Graph. Of course the complete source code for
the app is available at github.

Spring Data Graph () 1

http://github.com/jexp/cineasts

Chapter 1. Allow me to introduce - Cineasts.net

Once upon a time we wanted to build a social movie database. First things first - we had a name:
"Cineasts" - the cinemaenthusiasts who are crazy about movies. So we went ahead and got the domain,
cineasts.net and the project was almost compl ete.

We had some ideas about the domain too. Of course there should be actors who play rolesin movies.
We needed the Cineast, too, someone to rate the movies. And while they were there, they could also
make friends. Find someone to accompany them to the cinema or share movie preferences. Even
better, the engine behind al that should recommend new friends and moviesto cineasts, based on their
interests and existing friends.

CINEASTS

When welooked for possible sourcesfor data, IMDB wasour first stop, but they'realittle expensivefor
our tastes, charging 15k USD for data access. Fortunately we found TheM oviedb.org which provides
user-generated data for free. The also have liberal terms and conditions and a nice API for fetching
the data.

There were many more ideas but we wanted to get something done quickly. And thisis how it should
look.

\ X}

¥ CINEASTS

b spring — ‘ | ‘: springdatagraph

Spring Data Graph () 2

http://themoviedb.org

Chapter 2. Scope: Spring

Being Spring developers, we would, of course, choose components of the Spring Framework to do
most of the work. We'd already come up with the ideas - that should be enough.

What database would fit both the complex network of cineasts, movies, actors, roles, ratings and
friends? And also be able to support the recommendation algorithms that we had in mind? We had
no idea

But, wait, there is the new Spring Data project, started in 2010, which brings the convenience of
the Spring programming model to NoSQL databases. That should fit our experience and help us to
get started. We looked at the list of projects supporting the different NoSQL databases. Only one
mentioned the kind of social network we were thinking of - Spring Data Graph for Neo4j, a graph
database. Neo4j's pitch of "value in relationships’ and the accompanying docs looked like what we
needed. We decided to giveit atry.

2.1. Preparations - Required Setup

To setup the project we created a public github account and began setting up the infrastructure for
a spring web project using Maven as build system. So we added the dependencies for the Spring
Framework libraries, put the web.xml for the DispatcherServlet and the applicationContext.xml in the
webapp directory.

Example 2.1. pom.xml

<properties>
<spring. versi on>3. 0. 5. RELEASE</ spri ng. ver si on>
</ properties>

<dependenci es>

<dependency>
<gr oupl d>or g. spri ngf ramewor k</ gr oupl d>
<I-- abbreviated for all the dependencies -->

<artifactld>spring-(core, context, aop, aspects, tx, webnmvc) </ artifactld>
<ver si on>${spri ng. ver si on} </ ver si on>

</ dependency>

<dependency>
<gr oupl d>or g. spri ngf ramewor k</ gr oupl d>
<artifactld>spring-test</artifactld>
<versi on>${spri ng. ver si on} </ ver si on>
<scope>t est </ scope>

</ dependency>

</ dependenci es>

<bui | d><pl ugi ns>
<pl ugi n>
<groupl d>or g. nort bay. j etty</ groupl d>
<artifactld>jetty-maven-plugin</artifactld>
<version>7. 1. 2.v20100523</ ver si on>
<confi guration>
<webAppConfi g>
<cont ext Pat h>/ </ cont ext Pat h>
</ webAppConfi g>
</ confi guration>
</ pl ugi n>
</ pl ugi ns></ bui | d>

Spring Data Graph () 3

Scope: Spring

Example 2.2. web.xml

<l i stener>
<l i stener-cl ass>org. spri ngfranewor k. web. cont ext . Cont ext Loader Li st ener</1i st ener-cl ass>
</listener>

<servl et >
<ser vl et - nane>di spat cher Ser vl et </ servl et - nane>
<servl et - cl ass>or g. spri ngf ranewor k. web. servl et . Di spat cher Servl et </ servl et - cl ass>
<| oad- on- st artup>1</1| oad-on-start up>

</servl et>

<servl et - mappi ng>
<ser vl et - nane>di spat cher Ser vl et </ servl et - nane>
<url -pattern>/</url-pattern>

</ servl et - mappi ng>

With this setup we were ready for the first spike: creating a simple MovieController showing a static
view. Check. Next was the setup for Spring Data Graph. We looked at the README at github and
then checked it with the manual. Quite alot of Maven setup for AspectJ but otherwise not so much to

add. Time to add afew linesto our Spring configuration.

Example 2.3. applicationContext.xml

<?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: cont ext ="http://ww. spri ngfranmework. or g/ schema/ cont ext "
xm ns: tx="http://ww:. springframework. org/ schenma/tx"
xsi : schemalLocat i on="
http://ww. spri ngframework. or g/ schema/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans- 3. 0. xsd
http://ww. spri ngfranework. org/ schena/ t x
http://ww. springframework. org/ schema/t x/ spring-tx-3. 0. xsd
http://ww. springframework. or g/ schema/ cont ext
http: //ww. spri ngfranewor k. or g/ schena/ cont ext/ spri ng- cont ext - 3. 0. xsd" >

<cont ext : annot ati on- confi g/ >
<cont ext: spri ng-confi gured/ >
<cont ext : conponent - scan base- package="or g. neo4j . ci neasts">
<cont ext: exclude-filter type="annotation" expression="org.springfranework. stereotype
</ cont ext : conponent - scan>

<t x: annot ati on-driven node="aspectj"/>
</ beans>

Controller"/

Example 2.4. dispatcher Servlet-servlet.xml

<mvc: annot ati on-driven/ >

<mvc:resources mappi ng="/imges/**" |ocation="/inages/"/>

<mvc: resources mappi ng="/resources/**" | ocati on="/resources/"/>

<cont ext : conponent - scan base- package="or g. neo4j . ci neasts.controller"/>

<bean i d="vi ewResol ver" cl ass="org. springfranmewor k. web. servl et.vi ew. | nt er nal Resour ceVi enRe

<t x: annot ati on-driven node="aspectj"/>

sol ver"

We spun up Jetty to see if there were any obvious issues with the config. It all seemed to work just

fine. Check.

Spring Data Graph ()

p:pr

Chapter 3. Setting the Stage - Movies Domain

The domain model was the next thing we planned to work on. We wanted to sketch it out first before
diving into library details. We also looked at the datamodel of core themoviedb data to confirm that
it matched our expectations.

FRIEND®

User

qu[m
name
passioo rd

L Lefriend()

vate()

[Actr |

Warme

| Fldt-i.eélhﬂ{)

In Java code this looks pretty straightforward:

class Mvie {

}

class Actor {

}

class Role {

}

class User {

}

class Rating {

int id;

String title;
int year;

Set <Rol e> cast;

int id;

String nane;

Set <Movi e> fi | nogr aphy;

Rol e pl ayedl n(Movie novie, String role);

Movi e novi e;
Actor actor;
String role;

String | ogin;

String nane;

String password;

Set <Rati ng> ratings;

Set <User > fri ends;

Rating rate(Mvie novie, int stars, String comment);
voi d befriend(User user);

User user;

Movi e novi g;
int stars;
String coment;

Spring Data Graph () 5

Setting the Stage - Movies Domain

}

We then wrote some tests to show the basic plumbing works.

Spring Data Graph ()

Chapter 4. Graphs ahead - Learning Neo4j

Now came the unknown - how to put these domain objects into the graph. First we read up about
graph databases, especialy Neodj. The Neodj datamodel consists of nodes and relationships, both of
which can have properties. Relationships arefirst class citizensin Neo4j, meaning we can link together
nodes into semantically rich networks - we really liked that. Then we found we could index nodes
and relationships by {name, value} pairs to quickly get hold of them as starting points for further
processing. We also found we could imperatively traverse of relationships using the core API, and in
adeclarative way using a query-like Traversal Description.

We aso learned that Neodj was fully transactional and completely upholds ACID guarantees for
out data. This is unusual for NOoSQL databases, but easier for us to get our head around than
non-transactional eventual consistency. It also makes us feel safe, though it also means that we had
to manage transactions. Keep that in mind.

Initially we used the core Neo4j API to get a feeling for that. And also to see, how (probably) the
domain might look when it's saved in the graph store. After adding the Maven dependency, it was
ready to go.

<dependency>
<gr oupl d>or g. neo4j </ gr oupl d>
<artifactld>neodj</artifactld>
<ver si on>1. 3. M)5</ ver si on>

</ dependency>

enum Rel ati onshi pTypes i npl enents Rel ati onshi pType { ACTS IN };

G aphDat abaseServi ce gds = new EnbeddedG aphDat abase("/ path/to/store");
Node forrest=gds. creat eNode();

forrest.setProperty("title","Forrest Gunp");
forrest.setProperty("year", 1994);

gds. i ndex().for Nodes("novi es").add(forrest,"id", 1);

Node t onrgds. cr eat eNode();
tom set Property("Tom Hanks");

Rel at i onshi p rol e=t om creat eRel ati onshi pTo(forrest, ACTS_IN);
rol e.setProperty("role","Forrest Gunmp");

Node novi e=gds. i ndex() . for Nodes("novi es").get("id", 1).getSingle();

print (nmovie.getProperty("“title"));

for (Relationship role : novie.getRelationshi ps(ACTS_I N, | NCOM NG) {
Node act or=rol e. get & her Node(novi e) ;
print (actor.getProperty("nanme") +" as " + role.getProperty("role"));

Spring Data Graph () 7

http://neo4j.org
http://docs.neo4j.org/chunked/snapshot/indexing.html
http://docs.neo4j.org/chunked/snapshot/indexing.html
http://wiki.neo4j.org/content/Traversal_Framework

Chapter 5. Conjuring Magic - Spring Data Graph

That wasthe pure graph database. Using thisin our domain would pollute our classeswith lots of graph
database details. We don't want that. Spring Data Graph promised to do the heavy lifting for us. So we
checked that next. Spring Data Graph depends heavily on AspectJ magic. Some parts of our classes
would behave differently, but it would not be visible in our code. We were going to giveit atry.

First step was lots of Maven configuration.

<properties>
<aspectj.version>1. 6. 11. RELEASE</ aspectj . ver si on>
</ properties>

<dependency>
<gr oupl d>or g. spri ngf ramewor k. dat a</ gr oupl d>
<artifactld>spring-data-neodj</artifactld>
<ver si on>1. 0. 0. Mb</ ver si on>

</ dependency>

<dependency>
<gr oupl d>or g. aspectj </ groupl d>
<artifactld>aspectjrt</artifactld>
<versi on>${ aspectj . versi on} </ versi on>
</ dependency>

<bui | d> <pl ugi ns> <pl ugi n>
<gr oupl d>or g. codehaus. noj o</ gr oupl d>
<artifactld>aspectj-maven-plugin</artifactld>
<versi on>1. 2</ ver si on>
<dependenci es>
<dependency>
<gr oupl d>or g. aspectj </ gr oupl d>
<artifactld>aspectjrt</artifactld>
<versi on>${ aspectj . versi on} </ versi on>
</ dependency>
<dependency>
<gr oupl d>or g. aspectj </ groupl d>
<artifactld>aspectjtool s</artifactld>
<ver si on>${ aspectj . versi on} </ versi on>
</ dependency>
</ dependenci es>
<executions>
<execution>
<goal s>
<goal >conpi | e</ goal >
<goal >t est - conpi | e</ goal >
</ goal s>
</ executi on>
</ executions>
<configuration>
<out xm >t r ue</ out xm >
<aspect Li brari es>
<aspect Li brary>
<gr oupl d>or g. spri ngf ramewor k</ gr oupl d>
<artifactld>spring-aspects</artifactld>
</ aspect Li brary>
<aspect Li brary>
<gr oupl d>or g. spri ngf r anewor k. dat a</ gr oupl d>
<artifactld>spring-data-neodj</artifactld>
</ aspect Li brary>
</ aspect Li brari es>
<sour ce>1. 6</ sour ce>

Spring Data Graph () 8

Conjuring Magic - Spring Data Graph

<t arget >1. 6</t ar get >
</ confi guration>
</ plugi n> </ plugins> </buil d>

The Spring configuration was much easier, thanks to a provided namespace.

<beans xm ns="http://ww. springframework. or g/ schema/ beans"
xm ns: dat agr aph="ht t p: / / www. spri ngf ramewor k. or g/ schenw/ dat a/ gr aph"
xsi : schemaLocation="... http://ww.springfranmework. org/ schena/ dat a/ graph
htt p: // ww. spri ngf ranmewor k. or g/ schena/ dat a/ gr aph/ dat agr aph- 1. 0. xsd" >

<dat agr aph: confi g storeDirectory="data/ graph. db"/>
</ beans>

Spring Data Graph ()

Chapter 6. Decorations - Annotated Domain

Looking at the documentation again, we found a simple Hello-World example and tried to understand
it. The entities were annotated with @NodeEntity, that was simple, so we added the annotation to
our domain classes too. Relationships got their own annotation named @Rel ationshipEntity. Property
fields are taken care of automatically.

It's time to put thisto atest. How can we be assured that afield is persisted to the graph store? There
seemed to be two possibilities. First wasto get a GraphDatabaseContext injected and useits getByld()
method. The other onewasaFinder approach. But let'stry to keep thingssimple. How can wepersist an
entity and how to get itsid? Looking at the documentation revealed that there are a bunch of methods
introduced to the entities by the aspects. That's not obvious, but we found the two that would help here
- entity.persist() and entity.getNodel d().

So our test looked like this.

@\ut owi red G aphDat abaseCont ext gr aphDat abaseCont ext ;

@est public void persistedMvovi eShoul dBeRetri evabl eFr onGraphDb() {
Movi e forrest Gunp = new Movi e("Forrest Gunp", 1994).persist();
Movi e retri evedMovi e = graphDat abaseCont ext . get Byl d(f orrest Gunp. get Nodel d());
assert Equal ("retrieved novi e matches persisted one",forrestGunp, retri evedMyvi e);
assertEqual ("retrieved novie title nmatches","Forrest Gunp",retrievedMovie.getTitle());

That worked! But what about transactions? We didn't declare the test to be transactional. After further
reading we learned that persist() creates an implicit transaction - so that was like an EntityManager
would behave. Ok, now we're getting somewhere. We also learned that for more complex operations
on the entities we'd need external transactions.

Spring Data Graph () 10

http://github.com/SpringSource/spring-data-graph-examples/tree/master/hello-worlds

Chapter 7. Do | know you? - Indexing

There an @Indexed annotation for fields. We wanted to try this out, and use it to guide the next test.
We added an @Indexed to the id field of the movie. Thisfield isintended to represent the external id
that will be used in URIs and will stable over database imports and updates. This time we went with
the Finder to retrieve the indexed movie.

@NodeEntity
class Myvie {
@ ndexed
int id;
String title;
int year;
}

@\ut owi red Finder Factory finderFactory;

@est [@ransactional] public void persistedvbvi eShoul dBeRet ri evabl eFronGraphDb() {
int id=1;
Movi e forrestGunp = new Movie(id, "Forrest Gunp", 1994).persist();
NodeFi nder <Mbvi e> novi eFi nder = finderFactory. creat eNodeEntityFi nder (Movi e. cl ass);
// REM NDER, the "null" stands for an optional index nane
Movi e retrievedvbvi e = novi eFi nder. fi ndByPropertyVal ue(null, "id",id);
assert Equal ("retrieved novi e natches persisted one",forrestGunp, retri evedMovie);
assert Equal ("retrieved novie title nmatches","Forrest Gunp",retrievedMovie.getTitle());

Surprisingly, this failed with an exception about not being in a transaction, which means we forgot
to add the @Transactional annotation. That's easy enough to add to the test, and resume the test/code
cycle.

Spring Data Graph () 11

Chapter 8. Serving a good cause - Repository

That was the first method to add to the brand new repository. So we created a repository for the
application, annotated it with @Repository and @Transactional. We did the same for the Actor.

@Repository @ransacti onal
public class C neastsRepostory {
Fi nder Factory finder Factory;
Fi nder <Movi e> novi eFi nder ;
@\ut owi red
publi ¢ C neast sRepost ory(Fi nder Factory finderFactory) {
this.finderFactory = finderFactory;
t hi s. novi eFi nder = finderFactory. createNodeEntityFi nder (Mvie. cl ass);

}
public Myvie getMuvie(int id) {

return novi eFi nder. fi ndByPropertyVal ue(null,"id", id);
}

}

Spring Data Graph () 12

Chapter 9. A convincing act - Relationships

9.1. Value in Relationships - Creating them

Next were relationships. Direct relationships didn't require any annotation. Unfortunately we had none
of those, because ours had more semantics. So we went for the Role relationship between Movie and
Actor. It had to be annotated with @RelationshipEntity and the @StartNode and @EndNode had to

be marked. So our Role looked like this;

@Rel ati onshi pEntity

class Role {
@t art Node Actor actor;
@ndNode Mbvi e novi e;
String role;

When writing atest for that we tried to create the relationship entity with new, but got an exception
saying that this is not allowed. This must be a strange restriction about having only correctly
constructed RelationshipEntities. To fix it, we had to recall the relateTo method from the introduced
methods on the NodeEntities. After checking it turned out to be exactly what we needed. We then

added the method for connecting movies and actors to the actor - which seems a more natural fit.

class Actor {

public Role playedln(Mvie novie, String rol eName) {
Rol e role = rel ateTo(novi e, Role.class, "ACTS_IN');
rol e. set Rol e(rol eNan®) ;
return role;

1}

9.2. Who's there ? - Accessing related entities

What was left? Accessing those relationships. We already had the appropriate fields in both classes.
Time to annotate them correctly. For the fields providing access to the entities on the each side of the
relationship thiswas straightforward. Providing thetarget type again (thanksto Java'stype erasure) and
the relationship type (Iearned from the Neo4j lesson before) there was only the direction left. Which

defaults to OUTGOING so only for the movie we had to specify it.

@NodeEntity
class Mvie {
@ ndexed
int id;
String title;
int year;

@Rel at edTo(el ement 0 ass = Actor.class, type = "ACTS_IN', direction = Direction. | NCOM NG

Set <Act or > cast ;

}

@NodeEntity

class Actor {
@ ndexed
int id;

Spring Data Graph ()

13

A convincing act - Relationships

String nane;
@Rel at edTo(el ement 0 ass = Movie.class, type = "ACTS_IN')
Set <Movi e> cast;

public Role playedln(Mvie novie, String rol eNanme) {
Role role = rel ateTo(novie, Role.class, "ACTS_IN');
rol e. set Rol e(rol eNane) ;
return role;

While reading about those rel ationshi p-setswe learned that they are handled by managed collections of
Spring Data Graph. So whenever we add something to the set or removeit, it automatically reflectsthat
in the underlying relationships. Neat. But this also meant we mustn't initialize the fields. Something
we will certainly forget not to do in the future, so watch out for it.

We made sure to add atest for those, so are assured that the collections worked as advertised (and also
ran into the intialization problem above).

9.3. May | introduce ? - Accessing Relationships themselves

But we still couldn't access the Role relationships. There was more to read about this. For accessing
the relationship in between the nodes there was a separate annotation @RelatedToVia. And we had to
declare the field as readonly Iterable<Role>. That should make sure that we never tried to add Roles
(which I couldn't create on my own anyway) to this field. Otherwise the annotation attributes were
similar to those used for @RelatedTo. So off we went, creating our first real relationship (just kidding).

@NodeEntity
class Mvie {
@ ndexed
int id;
String title;
int year;
@Rel at edTo(el ement 0 ass = Actor.class, type = "ACTS_IN', direction = Direction.| NCOM NG
Set <Act or > cast;

@Rel at edToVi a(el enent Cl ass = Role.class, type = "ACTS_IN', direction = Direction.| NCOM NG
| t er abl e<Rol es> rol es;

After the tests proved that those relationship fields really mirrored the underlying relationshipsin the
graph and instantly reflected additions and removals we were pretty satisfied with our domain.

Spring Data Graph () 14

Chapter 10. Curtains Up! - Get it running

10.1. Requisites - Populating the database

Timeto put thison display. But we needed sometest datafirst. Sowewroteasmall classfor populating
the database which could be called from our controller. To make it safe to call several times we added
index lookups to check for existing entries. A simple /populate endpoint for the controller that called
it would be enough for now.

@servi ce
public class Dat abasePopul ator {

@\ut owi red G aphDat abaseCont ext ctx;
@\ut owi red Mbvi esRepository repository;

@r ansacti onal
public List<Myvie> popul at eDat abase() {
Act or tonHanks = new Actor("1", "Tom Hanks").persist();
Movi e forestGunp = new Movie("1", "Forrest Gunp").persist();
f orest Gunp. set Year (1994) ;
t onHanks. pl ayedl n(f orest Gunp, "Forrest");
return asLi st (forestGunp);
1}

@ontroller

public class MyvieController {
privat e Dat abasePopul at or popul at or;

@\ut owi r ed
publ i c Movi eControl | er (Dat abasePopul at or popul ator) {
thi s. popul ator = popul ator;

}

@Request Mappi ng(val ue = "/ popul ate", nethod = Request Met hod. GET)
public String popul at eDat abase(Model nodel) {

Col | ecti on<Movi e> novi es=popul at or. popul at eDat abase();

nodel . addAt tri but e(" novi es", novi es);

return "/novies/list";

<%@ page session="fal se" %
<v@taglib uri="http://ww.springfranmework.org/tags" prefix="s" %
<v@taglib prefix="c" uri="http://java.sun.conljsp/jstl/core" %

<c: choose>
<c:when test="%${not enpty novie}">
<h2>${novie.title}</h2>
<c:if test="${not enpty novie.roles}">

<c:forEach itens="${novie.roles}" var="rol e">

<c:out value="${role.actor.nane}" /> as <c:out value="3${ro

</ c: forEach>
</ ul >
</c:if>

Spring Data Graph () 15

Curtains Up! - Get it running

</ c: when>
<c: ot herwi se>
No Movie with id ${id} found!
</c: ot herw se>
</ c: choose>

See the misused GET parameter for that (don't do this at home, the REST guys will be upset). Thisis
only for running it from the browser address line. Better use POST and curl for the call. So we called
the URI and it showed the single added movie on screen.

10.2. Behind the scenes - Peeking at the Datastore

10.2.1. Eye candy - Neoclipse visualization

After filling the database we wanted to see what the graph looked like. So we checked out two tools
that are available for inspecting the graph. First Neoclipse, an eclipse RCP application or plugin
that connects to existing graph stores and visualizes their content. After getting an exception about
concurrent access, | learned that | have to use Neoclipse in readonly mode when my webapp had an
active connection to the store. Good to know.

g neoclipse

fanon Neoclipse —
e |BEYybD

% Database graph ® | | % | B le=|a-|tsaHEY O

{3} Reference Node

SUBREF_Javasang.Object 7 Lana Wachowski

7 Andy Wachowski

=

_ D Matt Doran

NSTANCE OF — D Carrie-Anne Moss
gt v

.
‘ @mva.\ang.omect
¥4 % D) Keanu Reeves.
SUBREF_org.neod].c| g

neasts.domaig, Lisar

\ SUBCLASS_OF uBcl
SUBEE[-{@ neod].clheasts dofnain Movie / SUBCLAGS.OF

v SUBCLASS OF . g NSFANEEZOT | 10 pavid Aston @
.nead; ts.d ! 5 - - - 0 Hugo Weaving
{5 orgneodcineasts domain.User / D org.neo4j.cineasts.domain.Person — PSFANCE O —

{5 Paul Goddard ——=—— 1 Gioria Foster

tofr | N/ -
70 org.neodj.cineasts.domain Movie o
INSTANCE_OF

0 Marc Aden
D Olliver [f > <
. |.’ f 0 Julian Arahanga 7 Joe Pantoliano
FRIEND K e
o
D Micha INSTANCE_OF _,_Egj\i‘"e"“ Eishougre, {2 Anthony Ray Parker
T Marcus Chong
RATED
f
J.‘
0 The Matrix
=l Properties 52 B ¥ = O|[%® relationship types &2 ¥ =0
Property Value Relationship type W In % Qut
Node] %
ld &5 DIRECTED v % |
Properties FRIEND v] |
: ; |
description (%)) Neo is a young software engineer and part-time hacker TENE T 7 7 |
genre () Action
’ RATED 7] %
homepage (7) http:f jwhatisthematrix.warnerbros.com/ ‘ - -
” @ c03 o || suBcass_or -
imageUrl (%) hetp:f jcflimgobject.com/posters/606/4bc309d0017, + || SUBREF_java.lang Object v 4 +

Traversal depth: 3 Nodes: 24 Relationships: 44

10.2.2. Hardcore "Hacking" - Neo4j Shell

Besides our moviesand actors connected by ACTS IN relationshipsthere were some other nodes. The
reference node which is an automatically provided "root node" in Neodj and can be used to anchor
subgraphsfor easier access. And Spring Data Graph al so represented the type hierarchy of my entities
in the graph. Obviously for some internal housekeeping and type checking.

Spring Data Graph () 16

http://restinpractice.com

Curtains Up! - Get it running

For console junkiesthereisaso ashell that can reach into arunning neodj store (if that one was started

with enableRemoteShell) or provide readonly access to a graph store directory.

neodj -shel|l -readonly -path data/graph.db

It uses some shell metaphors like cd and Is to navigate the graph. There are also more advanced

commands like using indexes and traversals. | tried to play around with them in this shell sesson.

neodj -sh[readonly] (0)$ Is
(me) --[SUBREF_j ava. |l ang. Obj ect]-> (3)

(me) --[SUBREF_org. neo4j . ci neasts. donmai n. Movi e]-> (6)
(me) --[SUBREF_org. neo4j . ci neasts. donmai n. Person] -> (8)
(me) --[SUBREF_org. neodj.cineasts. domain. User]-> (2)

neo4j -sh[readonly] (0)$ cd 6

neodj -sh[readonly] (6)$ Is

*cl ass =[org. neodj.cineasts. domai n. Movi e]

*count =[39]

(me) <-[INSTANCE OF]-- (The Matrix Revol utions, 123)
(me) <-[INSTANCE OF]-- (The Matrix Rel oaded, 110)
(me) <-[INSTANCE_OF]-- (The Matrix, 93)

neodj - sh[readonly] (6)$ cd 93
neo4j - sh[readonly] (The Matrix, 93)$ Is

*description =[Neo is a young software engi neer and part-tine hacker who is singled out by sone nyste
*genre =[Acti on]

*honmepage =[http://whatisthematrix.warnerbros. con]

*id =[603]

*i mageUr | =[http://cfl. ingobject.conl posters/606/4bc909d0017a3c57f e003606/the-matri x-m d.j pg]

*i ndbl d =[tt0133093]

*| anguage =[en]

*| ast Modi fied =[1299968642000]
*rel easeDate =[922831200000]

*runtime =[136]

*studio =[Warner Bros. Pictures]

*tagline =[Wel come to the Real World.]

*title =[The Matri x]

*trailer =[http: // ww. yout ube. conf wat ch?v=UVbyepZ21pl]
*version =[324]

(me) <-[ACTS_IN-- (Marc Aden, 109)

(nme) <-[ACTS_IN -- (Keanu Reeves, 96)
(nme) <-[DI RECTED]-- (Andy Wachowski , 95)
(me) <-[DIRECTED]-- (Lana Wachowski , 94)
(me) --[INSTANCE OF] -> (6)

(ne) <-[RATED]-- (Mcha, 1)

Spring Data Graph ()

17

Chapter 11. Showing off - Web views

After we had the means to put some data in the graph database, we also wanted to show it. So adding
the controller method to show a single movie with its attributes and cast in a jsp was straightforward.
Actually just using the repository to look the movie up and add it to the model. Then forward to the

/movies/show view and voil&

@Request Mappi ng(val ue = "/ novi es/ {novi el d}",

public String singleMvieView final

Model nodel ,

Movi e novi e = novi esReposi tory. get Movi e(novi el d) ;

nodel . addAttri bute("id",

if (movie !'= null) {
nodel . addAt tri but e(" novi e",
nodel . addAttri bute("stars",

}

return "/ novi es/ show';

Later the nice Ul would look like that:

3 CINEASTS

TheMovieDb.org
IMDb

Amazon
CineButler

Google Movies

Homepage

novi el d) ;

novi e) ;
novi e. get Stars());

- - f A -
% o - %
L b L b >
- - “ -

Anthony Ray Paul Goddard as Joe Pantoliano asMatt Doran as

Parker as Dozer Agent Brown Cypher Mouse
-
- 1 -
- -
=
= | ™ =

Belinda McClory Marcus Chong asGloria Foster as Carrie-Anne
as Switch Tank Oracle Moss as Trinity

-

-
\ B} \ B}
j"\ 3 = 5

Hugo Weaving asLaurence David Aston as Marc Aden as
Agent Smith Fishburne as Rhineheart Choi
Morpheus

Micha

11.1. What was his name? - Searching

nmet hod = Request Met hod. GET, headers = "Accept
@Pat hVari abl e String novield) {

-~
=
\ 2/

-
=
Julian Arahanga

as Apoc

¥

Keanu Reeves as
Neo

stext/htm ™)

Login Register

The next thing was to allow users to search for some movies. So we needed some fulltext-search
capabilities. Asthe index provider implementation of Neo4j builds on lucene we were delighted to see
that fulltext indexes are supported out of the box.

We happily annotated the title field of my Movie class with @Index(fulltext=true) and was told with
an exception that we have to specify a separate index name for that. So it became @Indexed(fulltext
= true, indexName = "search"). The corresponding finder method is called findAlIByQuery. So there

Spring Data Graph ()

18

Showing off - Web views

was our second repository method for searching movies. To restrict the size of the returned set we just
added alimit for now that truncates the result after so many entries.

public void List<Myvie> searchForMvie(String query, int count) {
Li st <Mbvi e> novi es=new ArrayLi st <Mbvi e>(count);
for (Muwvie novie : novieFinder.findA|ByQuery("title", query)) {
novi es. add(novi e) ;
if (count-- == 0) break;
}

return novies;

11.2. Look what we've found - Listing Results

We then used this result in the controller to render alist of movies driven by a search box. The movie
properties and the cast was accessed by the gettersin the domain classes.

@Request Mappi ng(val ue = "/ novi es", nethod = Request Met hod. GET, headers = "Accept=text/htm |)
public String findMovi es(Mddel nodel, @RequestParan{"q") String query) {
Li st <Movi e> novi es = novi esReposi tory. fi ndMovi es(query, 20);
nodel . addAt tri but e(" novi es", novies);
nodel . addAt tri but e("query", query);
return "/ nmovies/list";

<h2>Movi es</ h2>

<c: choose>
<c:when test="${not enpty novies}">

<dl class="Ilistings">
<c:forEach itenms="${novi es}" var="novie">
<dt >
<c: out value="${novie.title}" />

</ dt>
<dd>
<c:out value="${novie.description}" escapeXm ="true" />
</ dd>
</ c:forEach>
</dl >
</ c: when>

<c: ot herw se>
No novies found for query " ${query}"
</ c: ot herw se>
</ c: choose>

Hereis another teaser, what the final UX would look like for that:

Spring Data Graph () 19

Showing off - Web views

-—
-
-

"

3 CINEASTS

%

' e

b3) h b b3
O
The Matrix @ 2 @ @ 4

| e i
RE {.nh.ﬂ-:u
i

The Matrix Reloaded

The Matrix Revolutions

Micha Logout

Spring Data Graph ()

20

Chapter 12. Movies 2.0 - Adding social

But this was just a plain old movie database (POMD). Our idea of sociaizing this business wasn't

yet redlized.

12.1. Look, mom a Cineast! - Users

So we took the User class that we'd already coded and made it a full fledged Spring Data Graph
member. We added the ability to make friends and to rate movies. With that there was also asimple

UserRepository that was able to look up users by id.

@NodeEntity
class User {
@ ndexed
String |ogin;
String nane;
String password;
@Rel at edTo(el enment O ass=Movi e. cl ass, type="RATED")
Set <Rating> ratings;

@Rel at edTo(el ement d ass=User. cl ass, type="FRI END")
Set <User > fri ends;

public Rating rate(Mwvie novie, int stars, String comment) {
return rel ateTo(novie, Rating.class, "RATED').rate(stars,
}
public void befriend(User user) {
this.friends. add(user);
}

}
@Rel ati onshi pEntity

class Rating {

@5t art Node User user;

@ndNode Movi e novi e;

int stars;

String comment;

public Rating rate(int stars, String coment) {
this.stars=stars; this.coment = coment;
return this;

coment) ;

We extended my DatabasePopul ator to add some users and ratings to the initial setup.

@r ansacti onal

public List<Myvie> popul at eDat abase() {
Act or tonHanks = new Actor("1", "Tom Hanks").persist();
Movi e forestGunp = new Movie("1", "Forrest Gunp").persist();
t omHanks. pl ayedl n(f or est Gunp, "Forrest");

User ne = new User("mcha", "M cha", "password", User.Roles. ROLE_ADM N, User. Rol es. ROLE_ USER) . per si

Rati ng awesone = ne.rate(forestGnp, 5 "Awesone");

User ollie = new User("ollie", "Aliver", "password", User. Rol es. ROLE_USER) . persi st ();

ollie.rate(forestGunp, 2, "ok");
ne. addFri end(ol lie);
return asLi st (forestGunp);

Spring Data Graph ()

21

Movies 2.0 - Adding social

12.2. Beware, Critics - Rating

We also put a ratings field into the movie to be able to show its ratings. And a method to average
its star rating.

class Myvie {
@Rel at edToVi a(el ement Cl ass=Rati ng. cl ass, type="RATED', direction = Direction.| NCOM NG
I terabl e<Rating> ratings;

public int getStars() {
int stars, int count;
for (Rating rating : ratings) {
stars += rating.getStars(); count++;

}

return count == 0 ? 0 : stars / count;

Fortunately our tests highlighted the division by zero error when calculating the stars for a movie
without ratings. Next steps were to add this information to the Ul of movie and create a user profile
page. But for that to happen they must be ableto log in.

Spring Data Graph () 22

Chapter 13. Protecting Assets - Adding Security

To have a user in the webapp we had to put it in the session and add login and registration pages. Of
course the pages that only worked with avalid user account had to be secured as well.

We used Spring Security for that, writing a simple UserDetailsService that used a repository
for looking up the users and validating their credentials. The config is located in a separate
applicationContext-security.xml. But first, as always, Maven and web.xml setup.

Example 13.1. pom.xml for spring-security

<dependency>
<gr oupl d>or g. spri ngf ramewor k. securi t y</ gr oupl d>
<artifactld>spring-security-web</artifactld>
<ver si on>${spring. ver si on} </ ver si on>

</ dependency>

<dependency>
<gr oupl d>or g. spri ngf ramewor k. securi t y</ gr oupl d>
<artifactld>spring-security-config</artifactld>
<versi on>${spri ng. ver si on} </ ver si on>

</ dependency>

Example 13.2. web.xml

<cont ext - par an>
<par am nane>cont ext Conf i gLocat i on</ par am nane>
<par am val ue>
/ VEEB- | NF/ appl i cati oCont ext - security. xm
/ VEB- | NF/ appl i cat i onCont ext . xm
</ par am val ue>
</ cont ext - par an>

<li stener>
<l i st ener-cl ass>org. spri ngf ranewor k. web. cont ext . Cont ext Loader Li st ener</1i st ener-cl ass>
</listener>

<filter>
<filter-name>springSecurityFilterChain</filter-nanme>
<filter-class>org.springframework.web.filter.Del egatingFilterProxy</filter-class>
</filter>

<filter-mppi ng>
<filter-nane>springSecurityFilterChain</filter-nane>
<url-pattern>/*</url-pattern>

</filter-mppi ng>

Spring Data Graph () 23

Protecting Assets - Adding Security

Example 13.3. applicationContext-security.xml

<security: gl obal - net hod-security secured-annotati ons="enabl ed">
</security: gl obal - met hod-security>

<security:http

<security:i
<security:i

<security:

<security:i
<security:i

<security:
<security:

<security: | ogout

aut o-config="true" access-deni ed-page="/aut h/deni ed"> <!--

nt er cept-url
ntercept-url
nt er cept - url
nt er cept - url
nt ercept-url
nt er cept - url

pattern="/adm n/*" access="RCOLE_ADM N'/ >
pattern="/inport/*" access="ROLE_ADM N'/ >
pattern="/user/*" access="ROLE_USER'/>

pattern="/auth/l ogi n" access="1S_AUTHENTI CATED ANONYMOUSLY"/ >

use- expressions={true" -->

pattern="/auth/regi ster" access="|S_AUTHENTI CATED ANONYMOUSLY"/ >

pattern="/**" access="|S_AUTHENTI CATED ANONYMOUSLY"/ >

form | ogin | ogin-page="/auth/logi n" authentication-failure-url="/auth/l ogin?| ogin_error-
defaul t-target-url="/user"/>

</security:http>

| ogout -ur| ="/ auth/l ogout "

<security:authentication-manager >
<security:authentication-provider user-service-ref="userDetail sService">
<security: password- encoder hash="nd5">
<security:salt-source systemw de="cewui quzi e"/>
</ security: password- encoder >
</ security:authentication-provider>
</security:authentication-nmanager>

<bean i d="userDetail sServi ce" class="org. neo4j. novi es. servi ce. C neast sUserDetai | sServi ce"/>

| ogout - success-url ="/" invalidate-session="true"/>

Spring Data Graph ()

24

Protecting Assets - Adding Security

Example 13.4. User DetailsService and User Details implementation

@servi ce

publ

publ

ic class CineastsUserDetail sService inplements UserDetail sService, InitializingBean {

@\t owi red private FinderFactory finderFactory;
private NodeFi nder <User> user Fi nder;

@verride
public void afterPropertiesSet() throws Exception {
user Fi nder = finderFactory. createNodeEntityFi nder(User.cl ass);

@verride

public UserDetails |oadUserByUsernane(String | ogin) throws UsernanmeNot FoundExcepti on,
final User user = findUser(login);
if (user==null) throw new UsernaneNot FoundExcepti on("Usernanme not found",|ogin);
return new G neastsUserDetail s(user);

public User findUser(String |ogin) {
return userFinder.findByPropertyVal ue("users", "l ogin",|ogin);
}
public User getUserFrontession() {
SecurityCont ext context = SecurityContextHol der. get Context();
Aut henti cati on authentication = context.getAuthentication();
oj ect principal = authentication.getPrincipal();
if (principal instanceof C neastsUserDetails) {
CineastsUserDetails userDetails = (Ci neastsUserDetails) principal;
return userDetails.getUser();

}

return null;

ic class G neastsUserDetails inplements UserDetails {
private final User user;

public C neastsUserDetail s(User user) {
this.user = user;

@verride

public Collection<G antedAuthority> getAuthorities() {
User. Rol es[] roles = user.getRoles();
if (roles ==null) return Collections.emtyList();
return Arrays. <G ant edAut hority>asLi st(roles);

@verride
public String getPassword() ({
return user.getPassword();

@verride
public String getUsernane() {
return user.getlLogin();

public User getUser() {

return user;

Pat aAccessEx

Spring Data Graph ()

25

Protecting Assets - Adding Security

After that a logged in user was available in the session and could so be used for al the socia
interactions. Most of the work done next was adding controller methods and JSPs for the views. We
used the helper method get User FronBessi on() in the controllersto access the logged in user and put

it in the model for rendering. As a teaser we'd like to show off the user profile page, as it will be
rendered after UX heavy lifting.

Micha Logout

-
-
-

5 CINEASTS

Forrest Gump (1994) - "Inspiring"

The Matrix (1999) - "Best of the series”

Spring Data Graph () 26

Chapter 14. Oh the Glamour - More Ul

To create anice user experience, we wanted to have anice looking app, not something that looked like
atoddler madeit. So we got some UX people involved and the results were impressive. This sections
presents some of the remaining screenshots of cineasts.net.

Some of the noteworthy things. As Spring Data Graph does aread-through to the datastore for property
and relationship access we tried to minimize that by using <c: var/ > several times. The app contains
very little javascript / gjax code right now, that will change when it moves ahead.

-

\ X}

! CINEASTS

H L]
A spring = : springdatagraph

Spring Data Graph () 27

Oh the Glamour - More Ul

-—
-
-

\ L}

3 CINEASTS

) h b b3)
TR eEAes
The Matrix @ @ 9 @ 4

The Matrix Revolutions

Miche. Logout

Spring Data Graph ()

28

Oh the Glamour - More Ul

TheMovieDb.org
IMDb

Amazon
CineButler

Google Movies

Homepage

-
-
-

-

3 CINEASTS

Login Regster

-
-
-
-

Anthony Ray Paul Goddard as Joe Pantoliano asMatt Doran as Julian Arahanga
Parker as Dozer Agent Brown Cypher Mouse as Apoc
E F

% | &
- 3 \L 54 q ‘
|~}

- -
]

Belinda McClory Marcus Chong asGloria Foster as Carrie-Anne Keanu Reeves as
as Switch Tank Oracle Moss as Trinity Neo

Hugo Weaving asLaur;ence David Aston as Marc Aden as
Agent Smith Fishburne as Rhineheart Chol
Morpheus

Micha

Find maovie

The Matrix as Neo in 1999
The Matrix Revolutions as Neo in 2003
The Matrix Reloaded as Neo in 2003

Spring Data Graph ()

29

Chapter 15. The dusty archives - Importing Data

Then it was time to pull the data from themoviedb.org. Registering there and getting an API key was
simple, using the APl on the command line with curl too. Looking at the JSON returned for movies

and people we decided to enhance our domain model and add some more fields to enrich the Ul.

[{"popul arity":3,
"translated":true, "adult":false, "language":"en",
“original _name":"[Rec]", "name":"[Rec]", "alternative_nane":"[REC]",
"nmovi e_type": "novi e",
"id":8329, "inmdb_id":"tt1038988", "url":"http://ww:.thenovi edb. org/ novi e/ 8329",
"votes":11, "rating":7.2,
"status":"Rel eased",
"tagline":"One Wtness. One Canera",
"“certification":"R',
"overview':"\"REQ\" turns on a young TV reporter and her caneraman who cover the night shi
"keywords":["terror", "lebende |eichen", "obsession", "cancorder", "firemen", "reality tv
"attenpt to escape", "virus", "lodger", "live-reportage", "schwerverletzt"],
"rel eased": "2007- 08- 29",
"runtinme":78,
"budget ": 0,
"revenue": 0,
"homepage": "http://ww. 3l -filmerleih. de/rec",
“trailer":"http://ww.yout ube. con wat ch?v=YQUkX_Xowgl ",
"genres":[{"type":"genre",

“url":"http://thenovi edb. org/ genre/ horror",
"nanme": " Horror",
"id":27}],

"studios":[{"url":"http://ww.thenovi edb. or g/ conpany/ 2270", "nane":"Fil max G oup", "id":22
"l anguages_spoken": [{"code": "es", "name":"Spanish", "native_nane":"Espa\u00f 1ol "}],
"countries":[{"code":"ES", "name":"Spain", "url":"http://ww.thenovi edb. org/country/es"}],
"posters":[{"image":{"type": "poster",

"size":"original", "height":1000, "w dth": 706,

"url":"http://cfl. ingobject.conl posters/3a0/4cc8df 415e73d650240003a0/ rec-original.jpg", "i

"cast":[{"name": " Manuel a Vel asco",

"job":"Actor", "departnment":"Actors",

"character":"Angela Vidal",

"id":34793, "order":0, "cast_id":1,

“url":"http://ww.thenovi edb. or g/ per son/ 34793",

"profile":"http://cfl.ingobject.con profiles/390/4c0157fa017a3c702d001390/ manuel a- vel asco-

{"name":"d \uO0Of 2ria Viguer",

"job":"Costunme Design", "departnent":"Costune \u0026 Make-Up",
"character":"",

"id":54531, "order":0, "cast_id":21,

"url":"http://ww.thenovi edb. or g/ per son/ 54531",
"profile":""}],

"version":150, "last_nodified_at":"2011-02-20 23:16:57"}]

t at the Ic
 vpite", "

70}],

d":"4cc8df 41

hurb. j pg"},

[{"popularity":3,

"name":"d enn Strange", "known_as":[{"name":"George denn Strange"}, {"name":"d en Strange!
{"name":"d en ' Peewee' Strange"}, {"nane":"Peewee Strange"}, {"nane":"'Peewee' Strange"}],
"id":30112,

"bi ography":"",

"known_novi es": 4,

"birthday":"1899-08-16", "birthplace":"Wed, New Mexico, USA",
“url":"http://ww.thenovi edb. or g/ per son/ 30112",

"fil nography":[{"name":"Bud Abbott Lou Costell o Meet Frankenstein",
"id":3073,

"job":"Actor", "departnment":"Actors",

Spring Data Graph () 30

http://themoviedb.org

The dusty archives - Importing Data

"character":"The Frankenstein Mnster",
"cast _id":23,

"url":"http://ww.thenovi edb. or g/ novi e/ 3073",
"poster":"http://cfl.ingobject.conf posters/4cal 4bc9185d017a3c57f e0094ca/ bud- abbott-I| ou-costell o-neet-f
"adult":fal se, "rel ease":"1948-06- 15"},

o]

"profile":[],

"version":19, "last_nodified_at":"2011-03-07 13:02:35"}]

For the import process we created a separate importer using Jackson (a JSON library) to fetch and
parse the data and then some transactional methods in the MovieDblmportService to actually insert
it as movies, roles and actors. The importer used a simple caching mechanism, to keep downloaded
actor and movie data on the filesystem, so that we didn't have to overload the remote API. In the code
below you can see, that we've changed the actor to a person so that we can also accommodate the other
folks that participate in movie production.

@ ansact i onal
public Movie inmportMvie(String novield) {
Movi e novi e = novi esReposi tory. get Movi e(novi el d) ;
if (nmovie == null) { // Not found: Create fresh
novi e = new Movi e(novield, null);

}

Map data = | oadMovi eDat a(novi el d) ;
i f (data.containsKey("not_found")) throw new Runti neException("Data for Myvie "+noviel d+" not four
novi eDbJsonMapper . mapToMvi e(dat a, novi e);
novi e. persist();

rel at ePer sonsToMovi e(novi e, data);

return novie;

}

private void rel at ePer sonsToMovi e(Movi e novi e, Map data) {
Col | ecti on<Map> cast = (Col |l ecti on<Map>) data.get("cast");
for (Map entry : cast) {
String id = entry.get("id");
Rol es job = entry.get("job");
Per son person = inportPerson(id);
switch (job) {
case DI RECTED:
person. di rect ed(novi e) ;
br eak;
case ACTS_I N
person. pl ayedl n(novie, (String) entry.get("character"));
br eak;

}

public void mapToMovi e(Map data, Movie novie) {
novie.setTitle((String) data.get("nane"));
novi e. set Language((String) data.get("language"));
novi e. set Tagl i ne((String) data.get("tagline"));
novi e. set Rel easeDat e(t oDat e(data, "rel eased", "yyyy-Mvdd"));

novi e. set | mageUr | (sel ect | mageUr | ((Li st<Map>) data.get("posters"), "poster", "nmid"));

Spring Data Graph () 31

The dusty archives - Importing Data

The last part involved adding a protected URI to the MovieController to allow importing ranges of
movies. During testing it became obvious that the calls to themoviedb were alimiting factor. As soon
as the data was stored locally it took only subseconds to create the data in the Neo4j graph database.

Spring Data Graph () 32

Chapter 16. Movies! Friends! Bargains! -
Recommendations

In the last part of this exercise we wanted to add recommendations to the app. One obvious
recommendation is moviesthat our friends liked (and their friends too, but with less importance). The
second was recommendations for new friends that also liked the movies that we liked most.

Doing thiskind of ranking algorithmsisreally fun with graph databases. They are applied to the graph
by traversing it in a certain order, collecting information on the go and deciding which paths to follow
and what to include in the results.

Lets say I'm only interested in the top 10 recommendations each.

// TODO Work In Progress 1/ path.length()*stars
user. breathFirst().relati onshi p(FRIEND, OUTGO NG .rel ati onshi p(RATED, OUTGO NG . eval uat e(new E
if (path.length > 5) return EXCLUDE_AND_STOP;
Rel ationship rating = path.|astRel ati onship();
if (rating.getType().equal s(RATED)) ({
rating. get Property()
return | NCLUDE_AND_STOPR,;

}
return | NCLUDE_AND_CONTI NUE;

1}

Spring Data Graph () 33

Part Il. Reference

This is the reference part of the book. It has information about the programming model, APIs, concepts, and
annotations of Spring Data Graph.

Spring Data Graph () 34

Preface

The Spring Data Graph project applies core Spring concepts to the development of solutions using a
graph style data store. The basic approach is to mark simple POJO entities with Spring Data Graph
annotations. That enables the AspectJ aspects that are contained with the framework to adapt the
instantiation and field access to have them stored and retrieved from the graph store. Entities are
mapped to nodes of the graph, references to other entities are represented by relationships. There are
also special relationship entities that provide access to the properties of graph relationships.

For the devel oper of a Spring Data Graph backed application only the public annotations are relevant,
basic knowledge of graph stores is heeded to access advanced functionality like traversals. Traversal
results can also be mapped to fields of entities.

Spring Data Graph () XXXV

Chapter 17. Introduction to Neo4j

Neo4j isagraph database. Itisafully ACID transactional database that storesdata structured asgraphs.
A graph consists of nodes, connected by relationships. It isaflexible data structure that allowsfor high
query performance on complex data, while being intuitive for the developer.

Neodj has been in commercial development for 10 years and in production for over 7 years. It is a
mature and robust graph database that:

« hasanintuitive graph-oriented model for data representation. Instead of tables, rows, and columns,
you work with a flexible graph network consisting of nodes, relationships, and properties.

 has a disk-based, native storage manager completely optimized for storing graph structures for
maximum performance and scalability.

* is scalable. Neodj can handle graphs of several billion nodes/relationships/properties on a single
machine, but can also be scaled out across multiple machines for high availability.

» has apowerful traversal framework for fast traversalsin the node space.

 can be deployed as a standalone server or an embedded database with avery small footprint (~700k
jar).

« hasasimple and convenient API.

In addition, Neo4j includes the usual database features. ACID transactions, durable persistence,
concurrency control, transaction recovery, high availability and everything else you' d expect from an
enterprise database. Neo4j isreleased under a dua free software/commercial license model.

17.1. What is a graph database?

A graph database is a storage engine that is specialized in storing and retrieving vast networks of data.
It efficiently stores nodes and relationship and allows high performance traversal of those structures.
With property graphsit is possible to add an arbitrary number of properties to nodes and rel ationships.

17.2. GraphDatabaseService

The interface org.neodj.graphdb.GraphDatabaseService provides access to the storage engine. Its
features include creating and retrieving Nodes and Relationships, managing indexes, via an
IndexManager, database lifecycle callbacks, transation management and more.

The EmbeddedGraphDatabaseService is an implementation of GraphDatabaseService that is used to
embed Neodj in aJavaapplication. Thisimplmentation isused so asto provide the highest and tightest
integration. There are other, remote implementations that provide access to Neo4j storesvia REST.

17.3. Creating Nodes and Relationships

Using the API of GraphDatabaseService it is easy to create nodes and relate them to each other.
Relationships are named. Both nodes and relationships can have properties. Property values can be
primitive Java types and Strings, byte arrays for binary data, or arrays of other Java primitives or

Spring Data Graph () 36

http://neo4j.org/
http://wiki.neo4j.org/content/Getting_Started
http://api.neo4j.org/

Introduction to Neo4j

Strings. Node creation and modification has to happen within a transaction, while reading from the

graph store can be done with or without a transaction.

GraphDat abaseSer vi ce graphDb = new EnbeddedG aphDat abase("hel | oworl d");
Transaction tx = graphDb. begi nTx();

try {

Node firstNode = graphDb. creat eNode();

Node secondNode = gr aphDb. cr eat eNode();
firstNode. set Property("nmessage", "Hello, ");
secondNode. set Property("message", "world!");

Rel ationship rel ationship = firstNode. createRel ati onshi pTo(secondNode,
Dynani cRel ati onshi pType. of (" KNOAS"));
rel ationshi p. set Property("nessage", "brave Neo4j ");
t x. success();
} finally {
tx. finish();
}

17.4. Graph traversal

Getting a single node or relationship and examining it is not the main use case of a graph database.
Fast graph traversal and application of graph agorithms are. Neo4j provides meansviaaconcise DSL
to define Traversal Descriptions that can then be applied to a start node and will produce a stream of

nodes and/or relationships as alazy result using an Iterable.

Traversal Description traversal Description = Traversal .description()
. dept hFirst ()
.rel ationshi ps(KNOAS)
.rel ationships(LIKES, Direction.|NCOM NG)
.prune(Traversal.pruneAfterDepth(5));
for (Path position : traversal Description.traverse(nyStartNode)) {

Systemout.println("Path fromstart node to current position is " + position);

}

17.5. Indexing

The best way for retrieving start nodes for traversals is using Neodj's index facilities. The
GraphDatabaseService provides access to the IndexManager which in turn retrieves named indexes
for nodes and relationships. Both can be indexed with property names and values. Retrieval is done

by query methods on Index to return an IndexHits iterator.

| ndexManager i ndexManager = graphDb. i ndex();

| ndex<Node> nodel ndex = i ndexManager . f or Nodes("a- node-i ndex");

nodel ndex. add(node, "property", "val ue");

for (Node foundNode = nodel ndex. get ("property", "value")) {
assert node. get Property("property").equal s("val ue");

}

Note: Spring Data Graph provides auto-indexing via the @Indexed annotation, while this till is a

manual process when using the Neo4j API.

Spring Data Graph ()

37

Chapter 18. Programming model for Spring Data
Graph

This chapter covers the fundamentals of the programming model behind Spring Data Graph. It
discusses the AspectJ features used and the annotations provided by Spring Data Graph and how to
use them. Examples for this section are taken from the imdb project of Spring Data Graph examples.

18.1. Overview of the AspectJd support

Behind the scenes Spring Data Graph leverages AspectJ aspects to modify the behavior of simple
POJO entities to be able to be backed by a graph store. Each entity is backed by a node that holds its
properties and relationships to other entities. AspectJ is used to intercept field access and to reroute
it to the backing state (either its properties or relationships). For relationship entities the fields are
similarly mapped to properties. There are two specially annotated fields for the start and the end node
of the relationship.

The aspect introduces some internal fields and some public methods to the entities for accessing the
backing state via get Persi stent Stat e() and creating relationships with rel at eTo and retrieving
relationship entities viaget Rel at i onshi pTo. It aso introduces finder methods like i nd(C ass<?
extends NodeEntity>, Traversal Description) andequalsand hashCode delegation.

Spring Data Graph internally uses an abstraction caled EntityState that the field access and
instantiation advices of the aspect delegate to, keeping the aspect code very small and focused to the
pointcuts and del egation code. The Entity State then uses anumber of FieldA ccessor factoriesto create
a FieldAccessor instance per field that does the specific handling needed for the concrete field.

18.2. Using annotations to define POJO entities and
relationships

Entities are declared using the @wodeEntity annotation. Relationship entities use the
@Rel ati onshi pEnti ty annotation.

18.2.1. @NodeEntity: The basic building block

The @odeEnt ity annotation is used to declare a POJO entity to be backed by a node in the graph
store. Simple fields on the entity are mapped by default to properties of the node. Object references
to other NodeEntities (whether single or Collection) are mapped via relationships. If the annotation
parameter useShor t Nanes S Set to false, the properties and relationship names used will be prepended
with the class name of the entity. If the parameter f ul | | ndex is set to true, al fields of the entity will
beindexed. If theparti al parameter is set to true, this entity takes part in a cross-store setting where
only the parts of the entity not handled by JPA will be mapped to the graph store.

Entity fields can be annotated with @GraphProperty, @RelatedTo, @RelatedToVia, @Indexed and
@Graphld

@NodeEntity

public class Myvie {
String title;

}

Spring Data Graph () 38

http://github.com/SpringSource/spring-data-graph-examples

Programming model for Spring Data Graph

18.2.2. @RelatedTo: Connecting NodeEntities

Relationships to other NodeEntities are mapped to graph relationships. Those can either be single
relationships (1:1) or multiple relationships (1:N). In most cases single relationships to other node
entities don't have to be annotated as Spring Data Graph can extract al necessary information from the
field using reflection. Inthe case of multiplerelationships, theel enent d ass parameter of @RelatedTo
must be specified because of type erasure. The di recti on (default OUTGOING) and t ype (inferred

from field name) parameters of the annotation are optional.

Relationships to single node entities are created when setting the field and deleted when setting it to
null. For multi-relationships the field provides a managed collection (Set) that handles addition and

removal of node entities and reflects those in the graph relationships.

@NodeEntity

public class Myvie {
private Actor topActor;

}

@NodeEntity

public class Person {
@Rel at edTo(type = "topActor"”, direction = Direction.| NCOM NG
private Movie wasTopActorln;

}

@NodeEntity

public class Actor {
@Rel atedTo(type = "ACTS_IN', elenentd ass = Mvi e. cl ass)
private Set <Movi e> novi es;

}

18.2.3. @RelationshipEntity: Rich relationships

To access the full data model of graph relationships, POJOs can aso be annotated with
@RelationshipEntity. Relationship entities can't be instantiated directly but are rather accessed via
node entities, either by @RelatedToViafields or by the rel at eTo Or get Rel ati onshi pTo methods.
Relationship entities may contain fields that are mapped to properties and two specia fields that are
annotated with @StartNode and @EndNode which point to the start and end node entities respectively.

These fields are treated as read only fields.

@Rel ati onshi pEntity
public class Role {
@5t ar t Node
private Actor actor;
@ndNode
private Myvie novie;

}

18.2.4. @RelatedToVia: Connecting NodeEntitites via RelationshipEntities

To provide easy programmatic access to the richer relationship entities of the data model a different
annotation @RelatedToViacan be declared on fields of Iterables of the relationship entity type. These
Iterables then provide read only access to instances of the entity that backs the relationship of this
relationship type. Those instances are initialized with the properties of the relationship and the start

and end node.

@NodeEntity

Spring Data Graph ()

Programming model for Spring Data Graph

public class Actor {
@Rel atedToVi a(type = "ACTS_IN', el enentC ass = Rol e. cl ass)
private |terabl e<Rol e> rol es;

}

18.2.5. @StartNode: Starting NodeEntity of RelationshipEntity

Annotation for the start node of arelationship entity, read only.

18.2.6. @EndNode: Ending NodeEntity of RelationshipEntity

Annotation for the end node of arelationship entity, read only.

18.2.7. @Indexed: Making entities searchable by field value

The @Indexed annotation can be declared on fields that are intended to be indexed by the Neo4j
IndexManager, triggered by value modification. The resulting index can be used to later retrieve nodes
or relationships that contain a certain property value (for example a name). Often an index is used to
establish the start node for atraversal. Indexes are accessed by a Finder for aparticular NodeEntity or
RelationshipEntity, created via a FinderFactory.

GraphDatabaseContext exposes the indexes for Nodes and Relationships. Indexes can be named, for
instance to keep separate domain concepts in separate indexes. That'swhy it is possible to specifiy an
index name with the @I ndexed annotation. It can also be specified at the entity level, thisnameisthen
the default index name for all fields of the entity. If no index name is specified, it defaults to the one
configured with Neo4j ("node" and "relationship").

18.2.8. @GraphTraversal

The @GraphTraversal annotation leverages the delegation infrastructure used by the Spring Data
Graph aspects. It provides dynamic fieldswhich, when accessed, return an Iterabl e of NodeEntitiesthat
aretheresult of atraversal starting at the current NodeEntity. The TraversalDescription used for thisis
created by a Traversal DescriptionBuilder whose classisreferred to by thet r aver sal Bui | der attribute
of the annotation. The class of the expected NodeEntitiesis provided with theel ement A ass attribute.

18.2.9. @GraphProperty: Cross-store persisted fields

It is not necessary to annotate fields as they are persisted by default; all fields that contain primitive
values are persisted directly to the graph. All fields convertible to String using the Spring conversion
services will be stored as a string. Transient fields are not persisted. This annotation is mainly used
for cross-store persistence.

18.3. Indexing

The Neo4j graph database can use different index providers for exact lookups and fulltext searches.
Luceneisused asaindex provider implementation. Thereis support for distinct indexes for nodes and
relationships which can be configured to be of fulltext or exact types.

Using the standard Neo4j API, Nodes and Relationships and their indexed field-value combinations
have to be added manually to the appropriate index. When using Spring Data Graph, this task is
simplified by eased by applying an @ ndexed annotation on entity fields. Thiswill result in updates to
theindex on every change. Numerical fieldsareindexed numerically so that they are availablefor range
queries. All other fieldsareindexed with their string representation. The @I ndexed annotation can also

Spring Data Graph () 40

Programming model for Spring Data Graph

set the index-name to be used. If @Indexed annotates the entity class, the index-name for the whole
entity is preset to that value. Not providing index names defaults them to "node" and "relationship"
respectively.

Query access to the index happens with the Node- and RelationshipFinders that are created
viaan instance of or g. spri ngf r amewor k. dat a. gr aph. neo4j . fi nder . Fi nder Fact ory. The methods
fi ndByPropertyVal ue and fi ndAl | ByPr opert yVal ue work on the exact indexes and return the first
or all matches. To do range queries, use f i ndAl | ByRange (please note that currently both values are
inclusive).

@NodeEntity

cl ass Person {
@ ndexed(i ndexNanme = "peopl e")
String nane;

/1 automatically indexed nunerically
@ ndexed
int age;

}

@\odeEntity
@ ndexed(i ndexName="gr oups")
class Goup {

@ ndexed

String nane;

@Rel at edTo(el ement d ass = Person.cl ass, type = "people")
Set <Per son> peopl €;

}
NodeFi nder <Per son> finder = finderFactory. createNodeEntityFi nder(Person.cl ass);

/'l exact finder
Person mark = finder.findByProperyVal ue("people", "nane", "nmark");

// numeric range queries
for (Person m ddl eAgedDevel oper : finder.findAllByRange(null, "age", 20, 40)) {
Devel oper devel oper=m ddl eAgedDevel oper . proj ect To(Devel oper. cl ass);

}

NeodjTemplate also offersindex support, providing auto-indexing for fields at creation time of nodes
and relationships. Thereisan aut ol ndex method that can also add indexes for aset of fieldsin one go.

For querying the index, the template offers query-methods that take either the exact match parameters
or aquery object / query expression and push the results wrapped uniformly as Paths to the supplied
Pat hvapper to be converted or collected.

18.4. Finding nodes with finders

Spring Data Graph also comes with atype bound Repository-like Finder implementation that provides
methods for locating nodes and relationships:

e using direct accessfi ndByl d(i d),
* iterating over all nodes of a node entity type (findAll),

 counting the instances of a node entity type (count),

Spring Data Graph () 41

Programming model for Spring Data Graph

« iterating over all indexed instances with a certain property value (findAllByPropertyValue),

 getting asingle instance with a certain property value (findByPropertyValue),

« iterating over all indexed instances within a certain numerical range (inclusive) (findAllByRange),

* iterating over atraversal result (findAlIByTraversal).

The Finder instances are created via a FinderFactory to be bound to a concrete node or relationship

entity class. The FinderFactory is created in the Spring context and can be injected.

NodeFi nder <Per son> finder = finderFactory. creat eNodeEntityFi nder (Person. cl ass);
Per son dave=fi nder. findByld(123);
int people = finder.count();
Person mark = finder.findByPropertyVal ue("nane", "mark");
It erabl e<Person> devs = finder.findAl | ByProperyVal ue("occupation", "devel oper");
I t erabl e<Person> davesFriends = finder.findAl | ByTraversal (dave

Traversal . description(). pruneAfterDepth(1)

.rel ationshi ps(KNOAS) . filter(returnAl | ButStartNode()));

18.5. Transactions in Spring Data Graph

Neo4j isatransactional datastore which only allows modifications within transaction boundaries and

fullfills the ACID properties. Reading from the store is also possible outside of transactions.

Spring Data Graph integrates with transaction managers configured using Spring. The simplest
scenario of just running the graph database uses a SpringTransactionManager provided by the Neo4j
kernel to be used with Spring's JtaTransactionManager. Note: The explicit XML configuration given
below is encoded in the Neo4j Conf i gur ati on configuration bean that uses Spring's @Configuration

functioanlity. This simplifies the configuration. An example is shown further below.

<bean id="transacti onManager" class="org. springframework.transaction.jta.JtaTransacti onMan
<property name="transacti onManager" >
<bean cl ass="org. neo4j . kernel .inpl.transaction. Spri ngTransacti onManager" >
<constructor-arg ref="graphDat abaseServi ce"/>
</ bean>
</ property>
<property nanme="user Transaction">
<bean cl ass="org. neo4j . kernel .inpl.transaction. User Transacti onl npl ">
<constructor-arg ref="graphDat abaseServi ce"/ >
</ bean>
</ property>
</ bean>

<t x:annot ati on-driven node="aspectj" transacti on-nmanager="transacti onManager"/>

ager" >

For scenarios running multiple transactional resources there are two options. First of al you can
have Neo4j participate in the externally set up transaction manager using the new SpringProvider

by enabling the configuration parameter for your graph database. Either via the spring config or th
configuration file (neodj.properties).

e

<cont ext: annot ati on-config />
<cont ext : spri ng-confi gured/ >

<bean i d="transacti onManager" class="org. springfranework.transaction.jta.JtaTransacti onMan
<property name="transacti onManager" >
<bean id="jotn' class="org.springfranmework. dat a. graph. neo4j . transacti on. Jot nfFact or yBea

ager" >

n"/>

Spring Data Graph () 42

Programming model for Spring Data Graph

</ property>
</ bean>

<bean cl ass="org. neo4j . ker nel . EnbeddedG aphDat abase" destroy- net hod="shut down" >
<constructor-arg value="target/test-db"/>
<constructor-arg>

<n’Hp>
<entry key="tx_manager _i npl " val ue="spring-jta"/>
</ map>
</ constructor-arg>
</ bean>

<t x:annot ati on-driven node="aspectj" transaction-nmanager="transacti onManager"/>

You can configure a stock XA transaction manager to be used with Neo4j and the other resources
(e.g. Atomikos, JOTM, App-Server-TM). For a bit less secure but fast 1 phase commit best effort,
use the implementation coming with Spring Data Graph (Chai nedTr ansact i onManager). It takesalist
of transaction-managers as constructor params and will handle them in order for transaction start and

commit (or rollback) in the reverse order.

<bean i d="transacti onManager"
cl ass="org. spri ngfranmewor k. dat a. gr aph. neo4j . transacti on. Chai nedTr ansact i onManager "
<const ruct or - ar g>
<list>
<bean cl ass="org. spri ngfranmework. orm j pa. JpaTransacti onManager" i d="jpaTransaction
<property name="entityManager Factory" ref="entityManagerFactory"/>
</ bean>
<bean
cl ass="org. spri ngframework. transaction.jta.JtaTransacti onManager" >
<property nanme="transacti onManager">
<bean cl ass="org. neo4j . kernel .inpl.transaction. Spri ngTransacti onManager" >
<constructor-arg ref="graphDat abaseServi ce" />
</ bean>
</ property>
<property nanme="user Transacti on">
<bean class="org.neodj.kernel.inpl.transaction.UserTransactionlnpl">
<constructor-arg ref="graphDat abaseServi ce" />
</ bean>
</ property>
</ bean>
</list>
</ constructor-arg>
</ bean>

Manager " >

18.6. Session handling - attached and detached entities

By default newly created node entities are in a detached state. When per si st () is called on the entity
it is attached to the graph store and its properties and relationships are persisted as well. Changing an
attached entity inside atransaction will write through the changesto the datastore. Whenever an entity
is changed outside of a transaction it will be considered detached. The changed data is stored in the

entity itself and not written back to the datastore.

All entities that are returned by library functions are initially in an attached state. Changing them
outside of atransaction detaches them. For writing the changes back it is necessary to per si st () them

again.

Persisting an entity not only persiststhat single entity but will traverseitsexisting and new relationships
and persist the cluster of detached entities that it is part of. The borders of this cluster are formed by

Spring Data Graph () 43

Programming model for Spring Data Graph

attached entities. The persist operation creates its own, implicit transaction. When it is called withina
external transaction it participates otherwise it is an atomic operation.

Please keep in mind that the session handling behaviour is still heavily developed. The defaults and
also other aspects of the behaviour are likely to change in subsequent releases. At the moment thereis
no support for the creation of relationships outside of transactions and also more complex operations
like creating whole subgraphs outside of transactionsis not supported.

@NodeEntity

cl ass Person {
String nane;

}

Person p = new Person().persist();

18.7. Reified types for entities

There are several waysto represent the Javatype hierarchy of the datamodel inthe graph. In general for
all node and relationship entities type information is needed to perform certain repository operations.
Some of thistype information is saved in the graph database.

Implementations of NodeTypeSt rat egy take care of persisting this information on entity instance
creation. They aso provide the repository methods that use this type information to perform their
operations like findAll, count, etc.

There are three available implementations to choose from.
* | ndexi ngNodeTypeSt r at egy

Stores entity types in the integrated index. Each entity node gets indexed with its type and any
supertypesthat are also @odeEnt i t y-annotated. The special index used for thisiscalled __types_ .
Additionaly, in order to get the type of an entity node, each node has a property __type__ with
the type of that entity.

* SubRef erenceNodeTypeStr at egy

Stores entity types in a tree in the graph representing the type hierarchy. Each entity has a
INSTANCE_OF relationship to a type node representing that entity's type. The type may or may
not have a SUBCLASS OF relationship to another type node.

* NoopNodeTypeSt r at egy

Does not store any type information, and does hence not support finding by type, counting by type,
or retrieving the type of any entity.

Thedefault implementationis| ndexi ngNodeTypeSt r at egy for new graphs. If using an existing graph,
Spring Data Graph will default to the strategy first used when the graph was created.

18.8. Methods added to entity classes

The node and relationship aspects introduce (vial TD - inter type declaration) several methods to the
entities that make common tasks easier. Unfortunately these methods are not generified yet, so the
results have to be casted to the correct return type.

Spring Data Graph () 44

Programming model for Spring Data Graph

persisting the node-entity initially and after changes outside of a transaction, persist participatesin a
transaction or creates its own implict transaction.
nodeEntity. persist()

accessing node and relationship ids
nodeEntity. get Nodel d() and rel ati onshi pEntity. getRel ati onshi pld()

accessing the node or relationship backing the entity
entity. getPersistentState()

equals and hashcode are delegated to the underlying state
entity.equal s() and entity. hashCode()

creating relationships to atarget node entity and returning the relationship-entity instance
nodeEntity.relateTo(targetEntity, relationshipC ass, relationshipType)

retrieving a single relationship-entity
nodeEntity. get Rel ati onshi pTo(targetEnttiy, relationshi plass, relationshipType)

creating relationships to atarget node entity and returning the relationship
nodeEntity.rel ateTo(targetEntity, relationshipType)

retrieving a single relationship
nodeEntity. get Rel ati onshi pTo(targetEnttiy, relationshipType)

removing asingle relationship
nodeEntity. renoveRel ati onshi pTo(targetEntity, relationshipType)

remove the node entity, its relationship and index entries

entity.renove()

projecting to a different target type
entity.projectTo(targetd ass)

traversing, starting at the current node
nodeEntity. findAl | ByTraversal (target Type, traversal Description)

18.9. Dynamic typing - Projection to unrelated, fitting types

As the underlying data model of a graph database doesn't imply and enforce strict type constraints
like arelational model does, it offers much more flexibility on how to model your domain classes and
which of those to use in different contexts.

For instance an order can be used in these contexts. customer, procurement, logistics, billing,
fulfillment and many more. Each of those contexts requiresits distinct set of attributes and operations.
As Java doesn't support mixins one would put the sum of all of those into the entity class and thereby
making it very big, brittle and hard to understand. Being able to take a basic order and project it to a
different (not related in the inheritance hierarchy or even an interface) order type that is valid in the
current context and only offers the attributes and methods needed here would be very benefitial.

Spring Data Graph offersinitial support for projecting node and relationship entitiesto different target
types. All instances of this projected entity share the same backing node or relationship, so datachanges
are reflected immediately.

Spring Data Graph () 45

Programming model for Spring Data Graph

This could for instance also be used to handle nodes of atraversal with a unified (simpler) type (e.g.
for reporting or auditing) and only project them to a concrete, more functional target type when the
business logic requiresit.

/1 not related to Person at all

@NodeEntity

cl ass Trainee {
String nang;
@Rel at edTo(el ement d ass=Tr ai ni ng. cl ass) ;
Set <Tr ai ni ng> trainings;

}

for (Person person : finder.findAllByProperyVal ue("occupati on","devel oper")) {
Devel oper devel oper = person. proj ect To(Devel oper. cl ass);
i f (devel oper.isJavaDevel oper()) {
trainl nSpri ngDat a(devel oper. proj ect To(Tr ai nee. cl ass));

}

18.10. Neo4jTemplate

The Neo4j Tenpl at e offers the convenient APl of Spring templates for the Neodj graph database.
There are methods for creating nodes and relationships that automatically set provided properties and
optionally index certain fields. Other methods (i ndex, aut oi ndex) will index them.

For the querying operations NeodjTemplate unifies the result with the Path abstraction that
comes from Neodj. Much like a resultset a path contains nodes() and rel ati onshi ps() starting
a a startNode() and ending with aendNode(), the |astRelationship() is also available
separately. The Pat h abstraction also wraps results that contain just nodes or relationships. Using
implementations of Pat hMapper <T> and Pat hMapper . W t hout Resul t (comparable with Rowvapper
and RowCal | backHand! er) the paths can be converted to Java objects.

Query methods either take afield / value combination to look for exact matchesin theindex or alucene
query object or string to handle more complex queries.

Traversal methods are the bread and butter of graph operations. As such, they are fully supported in
the Neo4j Tenpl at e. The traver seNext method traverses to the direct neighbours of the start node
filtering the relationships according to its parameters.

The traverse method covers the full fledged traversal operation that takes a powerful
Traver sal Descri pti on (Most probably built from the Traversal . descri pti on() DSL) and runs it
from the start node. Each path that is returned via the traversal is passed to the pat hvapper to be
processed accordingly.

TheNeo4j Tenpl at e provides configurableimplicit transactionsfor all itsmethods. By default it creates
atransaction for each call (which isano-op if there is already a transaction running). If you call the
constructor with the useExpl i ci t Transact i ons parameter set to true, it won't create any transactions
so you have to provide them using @Transactional or the TransactionTemplate.

Neo4j Oper ati ons neo = new Neo4j Tenpl at e(gr apDat abase) ;

Node mi chael = neo.createNode(_("nanme","M chael "), "name");

Node mark = neo. creat eNode(_("nane", "Mark"));

Node t homas = neo. creat eNode(_("nanme", " Thonmas"));

neo. cr eat eRel ati onshi p(mark, t homas, WORKS WTH, _("project","spring-data"));
neo. i ndex("devs", t homas, "nane","Thonmas");

Spring Data Graph () 46

Programming model for Spring Data Graph

neo. aut ol ndex("devs", mark, "nane");
assert "Mark".equal s(neo. query("devs", "nane", "Mark", new NodeNanePat hvapper()));

18.11. Bean Validation - JSR-303

Spring Data Graph supports property based validation support. So whenever a property is changed, it
is checked against the annotated constraints (.e.g @Min, @Max, @Size, etc). Validation errors throw
a ValidationException. For evaluating the constraints the validation support that comes with Spring
isused. To useit avalidator has to be registered with the GraphDatabaseContext, if there is none, no
validation will be performed (any registered Validator or (Local)ValidatorFactoryBean will be used).

@NodeEntity

cl ass Person {
@i ze(mn = 3, max = 20)
String nane;

@1 n(0)
@bx(100)

int age;

Spring Data Graph () 47

Chapter 19. Setup required for Spring Data Graph

To use Spring Data Graph in your application, some setup is required. For building the application
the necessary Maven dependencies must be included and for the AspectJ weaving some extensions of
the compile goal are necessary. This chapter also discusses the Spring configuration needed to set up
Spring Data Graph. Examples for this setup can be found in the Spring Data Graph examples.

19.1. Maven Configuration

As stated in the requirements chapter, Spring Data Graph projects are easiest to build with Apache
Maven. The main dependencies are Spring Data Graph itself, Spring Data Commons, some parts of
the Spring Framework and of course the Neo4j graph database.

19.1.1. Repositories

The milestone releases of Spring Data Graph are available from the dedicated milestone repository.
Neo4j releases and milestones are available from Maven Central.

<repository>

<i d>spring- maven-m | est one</i d>

<nanme>Spri ngf ramewor k Maven Repository</ nanme>

<url >http:// maven. spri ngframewor k. org/ m | est one</ url >
</ repository>

19.1.2. Dependencies

The dependency on spri ng- dat a- neo4j should transitively pull in Spring Framework (core, context,
aop, aspects, tx), Aspectj, Neodj and Spring Data Commons. If you already use these (or different
versions of these) in your project, then include those dependencies on your own.

<dependency>
<gr oupl d>or g. spri ngf r amewor k. dat a</ gr oupl d>
<artifactld>spring-data-neodj</artifactld>
<versi on>1. 0. 0. Mb</ ver si on>

</ dependency>

<dependency>
<gr oupl d>or g. aspectj </ gr oupl d>
<artifactld>aspectjrt</artifactld>
<versi on>1. 6. 11. RELEASE</ ver si on>
</ dependency>

19.1.3. AspectJ build configuration

As Spring Data Graph uses AspectJ for build time aspect weaving of your entities, it is necessary to
add the aspectj-plugin to the build phases. The plugin has its own dependencies. You aso need to
explicitely specifiy libraries contai ning aspects (spring-aspects and spring-data-neo4;)

<pl ugi n>
<gr oupl d>or g. codehaus. noj o</ gr oupl d>
<artifactld>aspectj-maven-plugin</artifactld>
<ver si on>1. 0</ ver si on>

Spring Data Graph () 48

http://github.com/SpringSource/spring-data-graph-examples

Setup required for Spring Data Graph

<dependenci es>
<l-- NB: You nust use Maven 2.0.9 or above or these are ignored (see MNG 2972) -->
<dependency>
<gr oupl d>or g. aspectj </ groupl d>
<artifactld>aspectjrt</artifactld>
<version>1. 6. 11. RELEASE</ ver si on>
</ dependency>
<dependency>
<gr oupl d>or g. aspectj </ groupl d>
<artifactld>aspectjtool s</artifactld>
<versi on>1. 6. 11. RELEASE</ ver si on>
</ dependency>
</ dependenci es>
<executions>
<execution>
<goal s>
<goal >conpi | e</ goal >
<goal >t est - conpi | e</ goal >
</ goal s>
</ executi on>
</ executions>
<confi guration>
<out xm >t rue</ out xm >
<aspect Li brari es>
<aspect Li brary>
<gr oupl d>or g. spri ngf r amewor k</ gr oupl d>
<artifactld>spring-aspects</artifactld>
</ aspect Li brary>
<aspect Li brary>
<gr oupl d>or g. spri ngf ramewor k. dat a</ gr oupl d>
<artifactld>spring-datastore-neodj</artifactld>
</ aspect Li brary>
</ aspect Li brari es>
<sour ce>1. 6</ sour ce>
<t arget >1. 6</target >
</ configuration>
</ pl ugi n>

19.2. Setting Up Spring Data Graph - Spring Configuration

The concrete configuration for Spring Data Graph is quite verbose as there is no autowiring involved.
It sets up the following parts.

» GraphDatabaseService, IndexManager for the embedded Neodj storage engine
« Spring transaction manager, Neodj transaction manager

* aspects and instantiators for node and relationship entities

« EntityState and Fiel dAccessFactories needed for the different field handling

» Conversion services

« Finder factory

* an appropriate NodeTypeStrategy

19.2.1. XML-Namespace

To simplify the configuration we provide a xml namespace dat agr aph that allows configuration of
any Spring Data Graph project with a single line of xml code. There are three possible parameters.

Spring Data Graph () 49

Setup required for Spring Data Graph

19.2.2.

Youcanusest orebi rect ory Or thereferenceto gr aphDat abaseSer vi ce aternatively. For cross-store
configuration just refer to an ent i t yManager Fact ory.

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: cont ext ="http://ww. spri ngframewor k. or g/ schema/ cont ext "
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: dat agr aph="ht t p: / / www. spri ngf ramewor k. or g/ schenw/ dat a/ gr aph"
xsi : schemalLocat i on="
http://ww. spri ngfranework. or g/ schena/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans- 3. 0. xsd
htt p: // ww. spri ngf ranewor k. or g/ schenma/ cont ext
http://ww. spri ngfranework. or g/ schenma/ cont ext/ spri ng- cont ext - 3. 0. xsd
http://ww. spri ngframework. or g/ schena/ dat a/ gr aph
htt p: // ww. spri ngf ranmewor k. or g/ schena/ dat a/ gr aph/ dat agr aph- 1. 0. xsd
">

<cont ext: annot ati on-confi g/ >
<dat agr aph: config storeDirectory="target/config-test"/>

</ beans>

<cont ext : annot ati on- confi g/ >

<bean i d="gr aphDat abaseServi ce" cl ass="org. neodj . ker nel . EnbeddedG aphDat abase"
dest r oy- met hod="shut down" >
<constructor-arg index="0" value="target/config-test" />
</ bean>

<dat agr aph: confi g graphDat abaseSer vi ce="gr aphDat abaseSer vi ce"/>

<cont ext : annot ati on- confi g/ >

<dat agr aph: config storeDirectory="target/config-test"
entityManager Fact ory="ent it yManager Factory"/>

<bean cl ass="org. spri ngframewor k. orm j pa. Local Cont ai ner Enti t yManager Fact or yBean"
i d="entityManager Fact ory" >
<property nanme="dat aSource" ref="dataSource"/>
<property nanme="persistenceXn Locati on" val ue="cl asspat h: META- | NF/ per si st ence. xm "/ >
</ bean>

Java based Configuration

Y ou can aso configure Spring Data Graph using Java based bean metadata.

Note

For those not familiar with how to configure the Spring container using Java based bean
metadata instead of XML based metadata see the high level introduction in the reference
docs here aswell as the detailed documentation here.

To help configure Spring Data Graph using Java based bean metadata the class Neo4j Conf i gurati on
is registerd with the context either explicitly in the XML config or via classpath scanning
for classes that have the @Configuration annotation. The only thing that must be provided in

Spring Data Graph () 50

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/new-in-3.html#new-java-configuration
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-java-instantiating-container

Setup required for Spring Data Graph

addition is the GraphDat abaseServi ce configured with a datastore directory. The example below
shows using XML to register the Neo4j Confi guration @Configuration class as well as Spring's
Conf i gurati ond assPost Processor that transforms the @Configuration class to bean definitions.

<beans>
<t x: annot ati on-driven node="aspectj" transaction-nmanager="transacti onManager"/>
<bean cl ass="org. spri ngfranmewor k. dat a. gr aph. neo4j . confi g. Neo4j Confi gurati on"/>
<bean cl ass="org. spri ngfranmewor k. cont ext . annot ati on. Conf i gur ati onCl assPost Processor"/ >
<bean i d="gr aphDat abaseServi ce" cl ass="org. neo4j . kernel . EnheddedG aphDat abase"
dest r oy- met hod="shut down" scope="si ngl et on" >
<constructor-arg index="0" value="target/config-test"/>

</ bean>

</ beans>

Spring Data Graph () 51

Chapter 20. Cross-store persistence with a graph
database

The Spring Data Graph project support cross-store persistence which alows parts of the data mode
to be stored in atraditional JPA datastore (RDBMS) and other parts of the data model (even partia
entites, that is some properties or relationships) in agraph store.

This allows existing JPA-based applications to embrace NOSQL data stores to evolve certain parts
of their model. Possible use cases are adding social network or geospatial information to existing
applications.

20.1. Partial graph persistence

Partial graph persistence is achieved by restricting the Spring Data Graph aspects to explicitly
annotated parts of the entity. Those fields will be made transient by the aspect so that JPA ignores
them and won't try to persist those attributes.

A backing node in the graph store is only created when the entity has been assigned a JPA id. Only
then will the connection between the two stores be kept. Until the entity has been persisted, its stateis
just kept inside the POJO (detached state) and flushed to the backing graph store afterwards.

The connection between the two entities is kept via a FOREIGN_ID field in the node that contains
the JPA id (currently only single value ids are supported). The entity class can be resolved via the
NodeTypeStrategy that preserves the Javatype hierarchy within the graph. With theid and class, you
can then retrieve the appropriate JPA entity for a given node.

The other direction is handled by indexing the Node with the FOREIGN_ID index which contains
a concatenation of the fully qualified class name of the JPA entity and the id. So it is possible on
instantiation of aJPA id viathe entity manager (or some other meanslike creating the POJO and setting
itsid manually) to find the matching node using the index facilities and reconnect them.

Using those mechanisms and the Spring Data Graph aspects a single POJO can contain fields that are
handled by JPA and other fields (which might be relationships as well) that are handled by Spring
Data Graph.

20.1.1. @NodeEntity(partial = "true")

When annotating an entity with partial true, Spring Data Graph assumesthat thisis across-store entity.
So its only responsibility is for the fields annotated with Spring Data Graph annotations. JPA should
not take care of these fields (they should be annotated with @Transient). In this mode of operation
Spring Data Graph also handles the cross-store connection viathe content of the JPA id field.

20.1.2. @GraphProperty

For common fields containing primitive or convertible values that wouldn't have to be annotated in
exclusive Spring Data Graph operations this explicit declaration is necessary to be sure that they are
intended to be stored in the graph. These fields should then be made transient so that JPA doesn't try
to take care of them as well.

The following example is taken from the Spring Data Graph examples, it is contained in the
myrestaurant-social project.

Spring Data Graph () 52

http://github.com/SpringSource/spring-data-graph-examples

Cross-store persistence with a graph database

@ntity

@abl e(name = "user _account")

@NodeEntity(partial = true)

public class UserAccount {
private String userNane;
private String firstNang;
private String | astNane;

@ aphProperty
String ni cknane;

@Rel atedTo(type = "friends", elenentC ass = UserAccount. cl ass)
Set <User Account > fri ends;

@Rel at edToVi a(type = "reconmends”, el enentC ass = Recommendati on. cl ass)

| t er abl e<Recommendat i on> r ecommendat i ons;

@enpor al (Tenpor al Type. TI MESTAVP)
@at eTi neFor mat (style = "S-")
private Date birthDate;

@manyToMany(cascade = CascadeType. ALL)
private Set<Restaurant> favorites;

@d
@zener at edVal ue(strategy = Generati onType. AUTO)
@ol um(nanme = "id")
private Long id;

@r ansacti onal
public void knows(UserAccount friend) {
rel ateTo(friend, "friends");

}

@ransact i onal

public Recommendation rate(Restaurant restaurant, int stars, String coment) {
Reconmendat i on reconmendati on = rel ateTo(restaurant, Recommendati on. cl ass,

recommendation.rate(stars, comment);
return recommendati on;

}
public I|terabl e<Reconmendati on> get Reconmendati ons() {
return recomendati ons;

}

20.2. Configuring cross-store persistence

"reconmends") ;

Configuring cross-store persistence is done similarly to the default Spring Data Graph operations.
As soon as you refer to an ent i t yManager Fact ory in the xml-namespace it is set up for cross-store

persistence.

<beans xm ns="http://ww. springframewor k. or g/ schena/ beans"
xm ns: cont ext ="http://wwm. spri ngframewor k. or g/ schema/ cont ext "
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schenma- i nst ance"
xm ns: dat agr aph="ht t p: / / www. spri ngf ramewor k. or g/ schenwa/ dat a/ gr aph"
xsi : schemaLocati on="
http://ww. spri ngframework. or g/ schema/ beans
http://ww. spri ngfranmework. or g/ schenma/ beans/ spri ng- beans- 3. 0. xsd
http://ww. spri ngfranmework. or g/ schema/ cont ext
http://ww. springframework. or g/ schema/ cont ext/ spri ng- cont ext - 3. 0. xsd
http://ww. spri ngframework. or g/ schena/ dat a/ gr aph

Spring Data Graph ()

53

Cross-store persistence with a graph database

http://ww. spri ngframework. or g/ schenma/ dat a/ gr aph/ dat agr aph- 1. 0. xsd
"

<cont ext : annot ati on- confi g/ >

<dat agr aph: config storeDirectory="target/config-test"
entityManager Fact ory="entityManager Fact ory"/>

<bean cl ass="org. spri ngframewor k. orm j pa. Local Cont ai ner Enti t yManager Fact or yBean"
id="entityManager Factory" >
<property name="dat aSource" ref="dataSource"/>
<property name="persistenceXnl Location" val ue="cl asspat h: META- | NF/ per si stence. xm "
</ bean>
</ beans>

Spring Data Graph ()

Chapter 21. Samples

21.1. Introduction

Spring Data Graph comes with a number of samples. The source code of the samples is found on
GitHub. The different sample projects are introduced below.

21.2. Hello Worlds sample

The Hello Worlds sample application is a simple console application with unit tests, that creates some
Worlds (entities / nodes) and Rocket Routes (relationships) in a Galaxy (graph) and then reads them
back and prints them out.

Theunit testsdemonstrate some other features of Spring Data Graph. The sample comeswithaminimal
configuration for Maven and Spring to get up and running quickly.

Executing the application creates the following graph in the Graph Database:

w class: java.lang.Object

 moons: 1 count: 13
name: Earth M cUBCL FSS_{::
REACHABLE/ BY_ROCKET w class: org.springframework.data.neo4j.examples.hellograph.world
count: 13
coons2 | INSTANEETOF 4
® name: Mars !
moons: 0 moons: 62
® name: Mercury ® name: Hel
—— E_OF NSTANCE_OF
: moons: 63
® name: Venus INSTANCE, A CE_'H?TM CE_OF ® name: Asgard

Y
o moons: 2

7 MOONS: 63
name: Muspellheim

name: Jupiter

o moons: 62
name: Saturn

7 moons: 0
name: AlFheimr

moons: 27

name: Uranus 7 Moons: 13
name: Neptune

#p MOONS: 1
name: Midgard

21.3. IMDB sample

A web application that imports datasets from the Internet Movie Database (IMDB) into the graph
database. It allows listings of movies with their actors and actors with their roles in different movies.
It also uses graph traversal operations to calculate the Kevin Bacon number (distance to an actor that
has acted with Kevin Bacon). This sample application shows the basic usage of Spring Data Graph in
a more complex setting with several annotated entities and relationships as well as usage of indices
and graph traversal.

See the readme file for instruction on how to compile and run the application.

An excerpt of the data stored in the Graph Database after executing the application:

Spring Data Graph () 55

http://github.com/SpringSource/spring-data-graph-examples

Samples

&b Lawrence, Harry (1) | Ball, J I
& d all, Jeremy (1)

&b Witt, Eleanor & Johnson, F||:|na & Tien, Natalie

a McClory, Belinda ~C
a Butcher, Michael (1) A o e \\ dAden Marc /
utcher, Michael _AcTs o

a Harbach, Nigel ___:__._'____*

a Aston, David (1)

) & Dodd, Steve
@Matnx The (1999) .._V_H___ & Pender, Janaya

&a Brown, Tamara /
4 Nicodemou, Ada ﬂ Chong, MBVCUS INSTANCE_OF

& Goddard, Paul (1)

d Gordon, Dennl -
d Arahanga Julian @ org.neodj.examples.imdb.domain.Movie

21.4. MyRestaurant sample

Simple, JPA based web application for managing users and restaurants, with the ability to add
restaurants as favorites to a user.

M MyRestaurants

a SpringOne Demo

= e T e
Log out Subway 53073 Plymouth) &
Boston Mar 20877 Gaithersbu MD &) v
List all Restaurants Subway Sub 88008 Santa Tere NM @ @
e Arby's Roa 97603 Klamath Fa OR) i
Bellefleur 92008 Carlsbad CA i) il
Huddle Hou 30701 Calhoun GA @ @
John Brown 46235 Indianapol IN @ ﬁ
Ling's Exp 53217 Milwaukee Wi @ @
Chubys's 87044 Cdell OR @ @
Bojangles 29203 Columbia sC) il

List results per page: 5 10 1520 25 | Page 10f5 p

Home | Logout | Language: gj= | Theme: standard | alt Sponsored by SpringSource

21.5. MyRestaurant-Social sample

An extended version of the MyRestaurant sampl e application that adds social networking functionality
toit. It is possible to have friends and to add rated relationships to restaurants. The relationships and
some of the properties of the entities are transparently stored in the graph database. There is aso a
graph traversal that provides a recommendation based on your friends (and their friends) rating of
restaurants.

An excerpt of the data stored in the Graph Database after executing the application:

Spring Data Graph () 56

Samples

MYRQS‘MUI’&H{S + NOW WITH SOCIAL NETWORKING

Sprﬁlg

a SpringOne Demo

USER ACCOUNT w List all Top Rated Restaurants

Log out
Wamo " Rocommendations Az Rating | |
RESTAURANT
Subway 2 35 i)
List all Restaurants
Manage favorite Restaurants
RECOMMENDATION Home | Logout | Language: EjZ | Theme: standard | alt Sponsared by SpringSource §
List my Recommendations
Create a new Friend
List my Friends
List Top Rated Restaurants
/51 Reference Node — —SuUBREFjavafarmgOtEt > Bavaiang Object

SUBREF_com.springone.myrastaurants.domain.Restaurant

INSTANCE_OF

Spring Data Graph ()

57

Chapter 22. Performance considerations

Although adding another layer of abstractionisawaysthe solutiontolook for in software devel opment,
each of those layers adds overhead and performance penalties. This chapter discusses the performance
implications of using Spring Data Graph on top of the native Neo4j API.

22.1. When to use SDG?

The focus of Spring Data Graph is to add a convenience layer on top of the native Neo4j API. This
should enable developers to get up and running with the graph database very quickly, having their
domain objects mapped to the graph. Building on this foundation one can later explore other, more
efficient waysto explore and process the graph - if the performance requirements demand it.

Like any other object mapping framework, the domain entities that are created, read or persisted
represent only a small fraction of the data stored in the database. This is the set needed for a certain
use-case to be displayed, edited or processed in a low throughput fashion. The main advantages of
using an object mapper in this case isthe ease of use of real domain objectsin your businesslogic and
also with existing frameworks and libraries that expect Java POJOs as input or create them as results.

Spring Data Graph was not designed with a major performance focus. It adds some overhead to pure
graph operations. Something to keep in mind is, that the access of properties and relationshipsisaread
trough in the attached case. So to avoid multiple read-throughsit is sensibleto store theresultin alocal
variable at the scope of use (method, class or jsp for example).

Most of the overhead comes from the use of the Java Reflection API, which is leveraged to provide
information about Annotations, Fields and Constructors. Some of the information is already cached
by the JVM and the library, so that only the first access gets a performance penalty.

Spring Data Graph () 58

Chapter 23. Neo4jTemplate

23.1. Transaction handling/management

23.2. Basic operations

23.3. Indexing

23.4. Traversal

23.5. PathMapper

... path as general return type?

Spring Data Graph ()

59

Chapter 24. Annotation-driven persistence
24.1. Annotations
... thisis the most important part
24.2. Introduced methods
24.3. Finders
24.4. GraphDatabaseContext
24.5. Indexing

24.6. Traversal

24.7. EntityMapper and Path

Spring Data Graph ()

60

Chapter 25. Aspectd introduction

The object graph mapper of Spring Data Graph relies heavily on Aspect]. Aspectd is the Java
implementation of the Aspect Oriented Programming paradigm that allows easy extraction and
controlled application of so called cross cutting concerns. Cross cutting concerns are repetitive tasksin
asystem (e.g. logging, security, auditing, caching, transaction scoping) that are difficult to extract using
the normal OO paradigms. The means of the OO paradigm, of subclassing, polymorphism, overriding
and delegation are still very cumbersome to use with many of those concerns applied in the codebase.
Also the flexibility is limited or would add quite a number of configuration options or parameters.

The learning curve for the AspectJ pointcut language is quite slow but the devel oper who uses Spring
Data Graph will not be confronted with that. Users do not have care about to hooking into aframework
mechanism or having to extend a framework superclass.

That's why AspectJ uses a declarative approach, defining concrete advice, which is just the piece
of code that contains the implementation of the concern. AspectJ advice can for instance be applied
before, after, or instead of a method or constructor cal, or variable access. This is declared using
AspectJs expressive pointcut language that is able to express any place within a code structure or
flow. AspectJis also able to introduce new methods, fields, annotations, interfaces, and superclasses
to existing classes.

Spring Data Graph uses both mechanisms internally. First, when encountering @odeEntity or
@rel at i onshi pEnti ty annotationsit introduces anew interface NodeBacked Or Rel at i onshi pBacked,
depending on the annotation type. Secondly, it introduces fields and methods to the annotated class.
See Section 18.8, “Methods added to entity classes” for more information on the methods introduced.

Spring Data Graph also leverages AspectJto intercept accessto fields, del egating the callsto the graph
database instead. Under the hood, properties and relationships will be created.

So how is an aspect applied to a concrete class? This can be either done at compile time with the
Aspect] Java compiler (gjc) that takes sourcefiles and aspect definitions, and then compilesthe source
fileswhile adding all the necessary interception code for the aspects to hook in where they're declared
to. Thisis known as compile-time weaving. At runtime only a small AspectJ runtime is needed, as
the bytecode of the classes has already been rewritten to delegate appropriate calls via the declared
advice in the aspects.

Note

A caveat of using compile-time weaving isthat all source files that should be part of the
weaving process must be compiled with the Aspectd compiler. Fortunately, thisisall taken
care of seamlessly by the Aspectd Maven plugin.

Aspect] also supports other types of weaving, for example load-time weaving and runtime weaving.
These are currently not supported by Spring Data Graph.

Spring Data Graph () 61

https://secure.wikimedia.org/wikipedia/en/wiki/Aspect-oriented_programming

Chapter 26. Neo4j introduction

Spring Data Graph ()

62

Chapter 27. Spring Data

Spring Data Graph ()

63

Chapter 28. Neo4j Server

Spring Data Graph ()

64

	Good Relationships
	Table of Contents
	Preface
	1. Foreword: Rod Johnson, CEO of SpringSource
	2. Foreword: Emil Eifrem, CEO of Neo Technology
	3. About this Guide Book

	Part I. Tutorial
	Chapter 1. Allow me to introduce - Cineasts.net
	Chapter 2. Scope: Spring
	2.1. Preparations - Required Setup

	Chapter 3. Setting the Stage - Movies Domain
	Chapter 4. Graphs ahead - Learning Neo4j
	Chapter 5. Conjuring Magic - Spring Data Graph
	Chapter 6. Decorations - Annotated Domain
	Chapter 7. Do I know you? - Indexing
	Chapter 8. Serving a good cause - Repository
	Chapter 9. A convincing act - Relationships
	9.1. Value in Relationships - Creating them
	9.2. Who's there ? - Accessing related entities
	9.3. May I introduce ? - Accessing Relationships themselves

	Chapter 10. Curtains Up! - Get it running
	10.1. Requisites - Populating the database
	10.2. Behind the scenes - Peeking at the Datastore
	10.2.1. Eye candy - Neoclipse visualization
	10.2.2. Hardcore "Hacking" - Neo4j Shell

	Chapter 11. Showing off - Web views
	11.1. What was his name? - Searching
	11.2. Look what we've found - Listing Results

	Chapter 12. Movies 2.0 - Adding social
	12.1. Look, mom a Cineast! - Users
	12.2. Beware, Critics - Rating

	Chapter 13. Protecting Assets - Adding Security
	Chapter 14. Oh the Glamour - More UI
	Chapter 15. The dusty archives - Importing Data
	Chapter 16. Movies! Friends! Bargains! - Recommendations

	Part II. Reference
	Preface
	Chapter 17. Introduction to Neo4j
	17.1. What is a graph database?
	17.2. GraphDatabaseService
	17.3. Creating Nodes and Relationships
	17.4. Graph traversal
	17.5. Indexing

	Chapter 18. Programming model for Spring Data Graph
	18.1. Overview of the AspectJ support
	18.2. Using annotations to define POJO entities and relationships
	18.2.1. @NodeEntity: The basic building block
	18.2.2. @RelatedTo: Connecting NodeEntities
	18.2.3. @RelationshipEntity: Rich relationships
	18.2.4. @RelatedToVia: Connecting NodeEntitites via RelationshipEntities
	18.2.5. @StartNode: Starting NodeEntity of RelationshipEntity
	18.2.6. @EndNode: Ending NodeEntity of RelationshipEntity
	18.2.7. @Indexed: Making entities searchable by field value
	18.2.8. @GraphTraversal
	18.2.9. @GraphProperty: Cross-store persisted fields

	18.3. Indexing
	18.4. Finding nodes with finders
	18.5. Transactions in Spring Data Graph
	18.6. Session handling - attached and detached entities
	18.7. Reified types for entities
	18.8. Methods added to entity classes
	18.9. Dynamic typing - Projection to unrelated, fitting types
	18.10. Neo4jTemplate
	18.11. Bean Validation - JSR-303

	Chapter 19. Setup required for Spring Data Graph
	19.1. Maven Configuration
	19.1.1. Repositories
	19.1.2. Dependencies
	19.1.3. AspectJ build configuration

	19.2. Setting Up Spring Data Graph - Spring Configuration
	19.2.1. XML-Namespace
	19.2.2. Java based Configuration

	Chapter 20. Cross-store persistence with a graph database
	20.1. Partial graph persistence
	20.1.1. @NodeEntity(partial = "true")
	20.1.2. @GraphProperty

	20.2. Configuring cross-store persistence

	Chapter 21. Samples
	21.1. Introduction
	21.2. Hello Worlds sample
	21.3. IMDB sample
	21.4. MyRestaurant sample
	21.5. MyRestaurant-Social sample

	Chapter 22. Performance considerations
	22.1. When to use SDG?

	Chapter 23. Neo4jTemplate
	23.1. Transaction handling/management
	23.2. Basic operations
	23.3. Indexing
	23.4. Traversal
	23.5. PathMapper

	Chapter 24. Annotation-driven persistence
	24.1. Annotations
	24.2. Introduced methods
	24.3. Finders
	24.4. GraphDatabaseContext
	24.5. Indexing
	24.6. Traversal
	24.7. EntityMapper and Path

	Chapter 25. AspectJ introduction
	Chapter 26. Neo4j introduction
	Chapter 27. Spring Data
	Chapter 28. Neo4j Server

