Spring Data JPA - Reference Documentation

1.0.0.M1

Copyright © 2010 Oliver Gierke

Copies of this document may be made for your own use and for distribution to others, provided that you do not
charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether
distributed in print or electronically.

O (0 T= ol 1= o = - PSRRI iii
|. RefErence DOCUMENTALIONueiiiiieeeiiieiiiii e e e e e et e e e e e e s e e e e e e e e e s s asnteeeeaeeeessaanssnneeeeaaeeanans 1
T L 001] (o 1= PP PEPRR 2
00 g1 oo [T 1o o OO PEEPR 2

I @0 =Y oo 0= o 2

1.3, QUENY MELNOGSeeiieiiieiie ettt e et e e st e e s st e e e s nnnneeas 3
1.3.1. Defining repository iNtErfaCesoooiiiiiiieieie e 4

1.3.2. Defining query MEthOOSvvviiiiie e 4

1.3.3. Creating rePOSItOry iNSLANCESvvveeiiiiiieeeeiiie e et e e e e e e nnnneees 6

1.4. Custom implEMENLELIONSvvviiiieeee e e e e e e s e e e e e e s e e st reraaeeeaans 7
1.4.1. Adding behaviour t0 SINgI€ rEPOSITONESccuveeeeiiiiiie e 7

1.4.2. Adding custom behaviour to al repOSItOriESc.cccccciurniiiiieaees 9

2. JPA REDOSITONIES ...ttt ettt ettt e ettt e e e sttt e e e st et e e e abe e e e e e anbne e e e e nnbneeeeans 11
2.1, QUENY MELNOUOS ...t e e e e e e e e e e e e e e eeeeas 11
2.1.1. Query |0OKUP SLTELEGIESceoiieeiiieieeiee e e e ettt e e e e e s e e e e e e s s e e e e aaeeaaas 11

2.1.2. QUETY CIEELION ...t ettt et e et e e et e e e e et e e e e annn e e e e e e 11

2.1.3. Using JPA NamedQUENIEScuviiiieieeeiii ittt e e e trree e e e e e e 12
2.1.4.USING @QUETYeeeieeeiieiee ettt ettt e ettt e e et e e e et e e st e e e e e anes 13

2.1.5. Using Named ParametersSccooeeeeeeee e 14

2.1.6. MOQITYING QUENTES ...onieiiee ettt ettt e e 14

RS o= ol o= o] o PSSP 14

2.3. TranSaClONAlITYc.evvieieii e e e e e s s e e e e e e et rrareeaaas 16
2.3.1. Transactional qUEry MENOASoveiiiiiiieiiiiee e 17

P AN (o[(1 o PRI 17

N 0= 0o TSP OPPPP PP 20
F N 1SS 0T ol L 1 (= 1o 21
A.l. The<repositories /> EEMENEcouuiiiiiiiiiiii e e e e eaeaas 21

A.2. The<repository /> EleMENt ... nrnaanana 21

B. Frequently asked QUESHIONSuuiiiiiiiiiiiiieiee et e e et e e e e e anr s 22
GIOSSANY ...ttt ettt h bttt e e e e e e e e e b e e e e e e e e aanreeeean 23

Spring Data JPA (1.0.0.M1)

Preface

1. Project metadata

» Version control - git://github.com/SpringSource/spring-data-jpa.qgit
» Bugtracker - https://jira.springsource.org/browse/DATAJPA

» Release repository - http://maven.springframework.org/release

» Milestone repsitory - http://maven.springframework.org/milestone
* Snapshot repsitory - http://maven.springframework.org/snapshot

Spring Data JPA (1.0.0.M1)

http://git.synyx.org/hades.git
http://hades.synyx.org
http://maven.springframework.org/release
http://maven.springframework.org/milestone
http://maven.springframework.org/snapshot

Part |. Reference Documentation

Spring Data JPA (1.0.0.M1)

Chapter 1. Repositories

1.1. Introduction

Implementing a data access layer of an application has been cumbersome for quite a while. Too much
boilerplate code had to be written. Domain classes were anemic and haven't been designed in a real object
oriented or domain driven manner.

Using both of these technologies makes developers life alot easier regarding rich domain model's persistence.
Nevertheless the amount of boilerplate code to implement repositories especialy is till quite high. So the goal
of the repository abstraction of Spring Data is to reduce the effort to implement data access layers for various
persistence stores significantly

The following chapters will introduce the core concepts and interfaces of Spring Data repositories.

1.2. Core concepts

The central interface in Spring Data repository abstraction is Repository (probably not that much of a
surprise). It is typeable to the domain class to manage as well as the id type of the domain class and provides
some sophisticated functionality around CRUD for the entity managed.

Example 1.1. Repository interface

public interface Repository<T, |ID extends Serializable> {

T save(T entity); O
T findByld(ID primaryKey); O
List<T> findAll(); 0
Page<T> findAl | (Pageabl e pageabl e); O
Long count (); O
void delete(T entity); O
bool ean exi sts(ID primaryKey); O

// ...nore functionality omtted.

Saves the given entity.

Returns the entity identified by the given id.
Returns all entities.

Returns a page of entities.

Returns the number of entities.

Deletes the given entity.

Returns whether an entity with the given id exists.

I |

Usually we will have persistence technology specific sub-interfaces to include additional technology specific
methods. We will now ship implementations for a variety of Spring Data modules that implement that interface.

Spring Data JPA (1.0.0.M1) 2

Repositories

On top of the Repository there is a PagingAndSortingRepository abstraction that adds additional methods to
ease paginated access to entities:

Example 1.2. PagingAndSortingRepository

public interface Pagi ngAndSortingRepository<T, |D extends Serializabl e> extends Repository<T, |D> {
Li st<T> findAl |l (Sort sort);

Page<T> fi ndAl | (Pageabl e pageabl e);

Accessing the second page of User by a page size of 20 you could simply do something like this:

Pagi ngAndSort i ngReposi t ory<User, Long> repository = // ...get access to a bean
Page<User > users = repository.findAl |l (new PageRequest (1, 20);

1.3. Query methods

Next to standard CRUD functionality repositories are usually query the underlying datastore. With Spring Data
declaring those queries becomes a four-step process (we use the JPA based module as example but that works
the same way for other stores):

1. Declare an interface extending the technology specific Repository sub-interface and type it to the domain
classit shall handle.

public interface PersonRepository extends JpaRepository<User, Long> { ...}

2. Declare query methods on the interface.

Li st <Person> findByLastnane(String | astnane);

3. Setup Spring to create proxy instances for those interfaces.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans: beans xm ns: beans="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns="http://ww. springfranework. org/ schema/ dat a/ j pa
xsi : schemaLocati on="http://ww. spri ngfranewor k. or g/ schema/ beans
http://ww. spri ngframework. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. spri ngframework. or g/ schena/ dat a/ j pa
http://ww. spri ngframework. or g/ schenma/ dat a/ j pa/ spri ng-j pa. xsd" >

<reposi tories base-package="com acre.repositories" />

</ beans>

4. Get the repository instance injected and use it.

public class Sonedient {

@\ut owi r ed
private PersonRepoyitory repository;

public void doSonething() {
Li st <Person> persons = repository.findByLastname("Mtthews");

Spring Data JPA (1.0.0.M1) 3

Repositories

At this stage we barely scratched the surface of what's possible with the repositories but the general approach
should be clear. Let's go through each of these steps and and figure out details and various options that you
have at each stage.

1.3.1. Defining repository interfaces

As avery first step you define a domain class specific repository interface to start with. It's got to be typed to
the domain class and an ID type so that you get CRUD methods of the Reposi t ory interface tailored toit.

1.3.2. Defining query methods

1.3.2.1. Query lookup strategies

The next thing we have to discuss is the definition of query methods. There's roughly two main ways how the
repository proxy is generally able to come up with the store specific query from the method name. The first
option is to derive the quer from the method name directly, the second is using some kind of additionally
created query. What detailed options are available pretty much depends on the actual store. However there's got
to be some algorithm the decision which actual query to is made.

There's three strategies for the repository infrastructure to resolve the query. The strategy to be used can be
configured at the namespace through the query- 1 ookup- st rat egy attribute. However might be the case that
some of the strategies are not supported for the specific datastore. Here are your options:

CREATE

This strategy will try to construct a store specific query from the query method's name. The general approach is
to remove a given set of well-known prefixes from the method name and parse the rest of the method. Read
more about query construction in ???.

USE_DECLARED_QUERY

This strategy tries to find a declared query which will be used for execution first. The query could be defined
by an annotation somwhere or declared by other means. Please consult the documentation of the specific store
to find out what options are available for that store. If the repository infrastructure does not find a declared
query for the method at bootstrap time it will fail.

CREATE_IF_NOT_FOUND (default)

This strategy is actually a combination of the both mentioned above. It will try to lookup a declared query first
but create a custom method name based query if no declared query was found. This is default lookup strategy
and thus will be used if you don't configure anything explicitly. It allows quick query definition by method
names but also custom tuning of these queries by introducing declared queries for those who need explicit
tuning.

1.3.2.2. Query creation

The query builder mechanism built into Spring Data repository infrastructue is useful to build constraining
queries over entities of the repository. We will strip the prefixes fi ndBy, fi nd, readBy, r ead, get By as well as

Spring Data JPA (1.0.0.M1) 4

Repositories

get from the method and start parsing the rest of it. At avery basic level you can define conditions on entity
properties and concatenate them with AND and OR.

Example 1.3. Query creation from method names

public interface PersonRepository extends JpaRepository<User, Long> {

Li st <Per son> fi ndByEnai | Addr essAndLast nane(Enai | Addr ess enui | Address, String |astnane);

}

The actual result of parsing that method will of course depend on the persistence store we create the query for.
However there are some general things to notice. The expression are usualy property traversals combined with
operators that can be concatenated. As you can see in the example you can combine property expressions with
And and Or. Beyond that you will get support for various operators like Bet ween, LessThan, Gr eat er Than,
Li ke for the property expressions. As the operators supported can vary from datastore to datastore please
consult the according part of the reference documentation.

1.3.2.2.1. Property expressions

Property expressions can just refer to a direct property of the managed entity (as you just saw in the example
above. On query creation time we aready make sure that the parsed property is at a property of the managed
domain class. However you can also traverse nested properties to define constraints on. Assume Per sons have
Addr esseswith zi pCodes. In that case a method name of

Li st <Person> fi ndByAddr essZi pCode(Zi pCode zi pCode);

will create the property traversal x. addr ess. zi pCode. The resolution agorithm starts with interpreting the
entire part (Addresszi pCode) as property and checks the domain class for a property with that name
(uncapitalized). If it succeeds it just uses that. If not it starts splitting up the source at the camel case parts from
the right side into a head and a tail and tries to find the according property, €.g. Addr esszi p and Code. If we
find a property with that head we take the tail and continue building the tree down from there. Asin our case
thefirst split does not match we move the split point to the left (Addr ess, zi pCode).

Now although this should work for most cases, there might be cases where the algorithm could select the wrong
property. Suppose our Per son class has aaddr esszi p property as well. Then our algorithm would match in the
first split round already and essentialy choose the wrong property and finally fail (as the type of addresszip
probably has no code property). To resolve this ambiguity you can use _ inside your method name to manually
define traversal points. So our method hame would end up like so:

Li st <Person> fi ndByAddr ess_Zi pCode(Zi pCode zi pCode);

1.3.2.3. Special parameter handling

To hand parameters to your query you simply define method parameters as already seen in in examples above.
Besides that we will recognizes certain specific types to apply pagination and sorting to your queries
dynamically.

Example 1.4. Using Pageable and Sort in query methods

Page<User > findByLast name(String | ast nane, Pageabl e pageabl e);

Spring Data JPA (1.0.0.M1) 5

Repositories

Li st <User> findByLastnane(String | astnane, Sort sort);

Li st <User > findByLastname(String | astnane, Pageabl e pageabl e);

The first method allows you to pass a Pageabl e instance to the query method to dynamically add paging to
your statically defined query. Sorting options are handed via the Pageabl e instance, too. If you only need
sorting, simply add a Sort parameter to your method. As you also can see, simply returning a Li st is possible
as well. We will then not retrieve the additional metadata required to build the actual Page instance but rather
simply restrict the query to lookup only the given range of entities.

Note

To find out how many pages you get for a query entirely we have to trigger an additional count
query. Thiswill be derived from the query you actually trigger by default.

1.3.3. Creating repository instances

So now the question is how to create instances and bean definitions for the repository interfaces defined.

1.3.3.1. Spring

The easiest way to do so is by using the Spring namespace that is shipped with each Spring Data module that
supports the repository mechanism. Each of those includes a repositories element that allows you to simply
define a base packge Spring shall scan for you.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans: beans xm ns: beans="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns="http://ww. springfranework. org/ schema/ dat a/ j pa
xsi : schemaLocati on="http://ww. spri ngfranmewor k. or g/ schema/ beans
http://ww. spri ngframework. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. spri ngframework. or g/ schena/ dat a/ j pa
http://ww. spri ngframework. or g/ schenma/ dat a/ j pa/ spri ng-j pa. xsd" >

<reposi tories base-package="com acre.repositories" />

</ beans: beans>

In this case we instruct Spring to scan com.acme.repositories and all it's sub packages for interfaces extending
the appropriate Reposi t ory sub-interface (in this case JpaReposi t or y). For each interface found it will register
the presistence technology specific Fact or yBean to create the according proxies that handle invocations of the
query methods. Each of these beans will be registered under a bean name that is derived from the interface
name, so an interface of User Repository would be registered under user Repository. The base- package
attribute allows to use wildcards, so that you can have a pattern of packages parsed.

Using filters

By default we will pick up every interface extending the persistence technology specific Repository
sub-interface located underneath the configured base package and create a bean instance for it. However, you
might want to gain finer grained control over which interfaces bean instances get created for. To do this we
support the use of <include-filter /> and <exclude-filter /> elementsinside <repositories />. The
semantics are exactly equivalent to the elements in Spring's context namespace. For details see Spring reference
documentation on these elements.

Spring Data JPA (1.0.0.M1) 6

http://static.springsource.org/spring/docs/2.5.x/reference/beans.html#beans-scanning-filters
http://static.springsource.org/spring/docs/2.5.x/reference/beans.html#beans-scanning-filters

Repositories

E.g. to exclude certain interfaces from instantiation as repository, you could use the following configuration:

Example 1.5. Using exclude-filter element

<reposi tories base-package="com acne. repositories">
<cont ext:exclude-filter type="regex" expression=".*SoneRepository" />
</repositories>

Thiswould exclude all interface ending on SoneReposi t ory from being instantiated.

Manual configuration

If you'd rather like to manually define which repository instances to create you can do this with nested
<repository /> elements.

<reposi tories base-package="com acne. repositories">
<repository id="userRepository" />
</repositories>

1.3.3.2. Standalone usage

You can aso use the repository infrastructure outside of a Spring container usage. You will still need to have
some of the Spring libraries on your classpath but you can generally setup repositories programatically as well.
The Spring Data modules providing repository support ship a persistence technology specific
RepositoryFactory that can be used as follows:

Example 1.6. Standalone usage of repository factory

Reposi t oryFact orySupport factory = ...// Instantiate factory here
User Repository repository = factory. get Repository(UserRepository.class);

1.4. Custom implementations

1.4.1. Adding behaviour to single repositories

Often it is necessary to provide a custom implementation for a few repository methods. Spring Data
repositories easily alow provide custom repository code and integrate it with generic CRUD abstraction and
query method functionality. To enrich a repository with custom functionality you have to define an interface
and an implementation for that functionality first and let the repository interface you provided so far extend that
custom interface.

Example 1.7. Interface for custom repository functionality

i nterface User RepositoryCustom {

public void sonmeCust om\vet hod(User user);
}

Spring Data JPA (1.0.0.M1) 7

Repositories

Example 1.8. Implementation of custom repository functionality

cl ass UserRepositorylnpl inplenents User RepositoryCustom {

public void soneCust omvet hod(User user) {
/1 Your custom i nplenentation

}
}

Note that the implementation itself does not depend on Spring Data and can be a regular Spring bean. So you
can either use standard dependency injection behaviour to inject references to other beans, take part in aspects
and so on.

Example 1.9. Changesto the your basic repository interface

public interface UserRepository extends JpaRepository<User, Long>, UserRepositoryCustom {

/! Decl are query met hods here

}

Let your standard repository interface extend the custom one. This makes CRUD and custom functionality
availableto clients.

Configuration

If you use namespace configuration the repository infrastructure tries to autodetect custom implementations by
looking up classes in the package we found a repository using the naming conventions appending the
namespace element's attribute r eposi t or y- i npl - post f i x to the classname. This suffix defaultsto | npl .

Example 1.10. Configuration example

<reposi tories base-package="com acne. repository">
<repository id="userRepository" />
</ repositories>

<reposi tori es base-package="com acne. repository" repository-inpl-postfix="FooBar">
<repository id="userRepository" />
</repositories>

Thefirst configuration example will try to lookup a class com acne. reposi t ory. User Reposi t oryl mpl to act as
custom repository implementation, where the second example will try to lookup
com acne. reposi tory. User Reposi t or yFooBar .

Manual wiring

The approach above works perfectly well if your custom implementation uses annotation based configuration
and autowring entirely as will be trated as any other Spring bean. If your customly implemented bean needs
some specia wiring you simply declare the bean and name it after the conventions just descibed. We will then
pick up the custom bean by name rather than creating an own instance.

Spring Data JPA (1.0.0.M1) 8

Repositories

Example 1.11. Manual wiring of custom implementations (1)

<repositories base-package="com acne. repository">
<repository id="userRepository" />
</repositories>

<beans: bean i d="user Repositorylnpl" class="..">
<!-- further configuration -->
</ beans: bean>

This also works if you use automatic repository lookup without defining single <r eposi tory /> elements.

In case you are not in control of the implementation bean name (e.g. if you wrap a generic repository facade
around an existing repository implementation) you can explicitly tell the <r eposi tory /> element which bean
to use as custom implementation by using ther eposi tory-i npl - ref attribute.

Example 1.12. Manual wiring of custom implementations (1)

<repositories base-package="com acne. repository">
<repository id="userRepository" repository-inpl-ref="custonRepositorylnplenmentation" />
</repositories>

<bean i d="cust onReposi toryl npl ement ati on" class="..">
<!-- further configuration -->
</ bean>

1.4.2. Adding custom behaviour to all repositories

In other cases you might want to add a single method to all of your repository interfaces. So the approach just
shown is not feasible. The first step to achieve this is adding and intermediate interface to declare the shared
behaviour

Example 1.13. An interface declaring custom shared behaviour

public interface M/Repository<T, |D extends Serializabl e>
ext ends JpaRepository<T, D> {

voi d shar edCust omvet hod(I D id);
}

Now your individual repository interfaces will extend this intermediate interface to include the functionality
declared. The second step is to create an implementation of this interface that extends the persistence
technology specific repository base class which will act as custom base class for the repository proxies then.

Note

If you're using automatic repository interface detection using the Spring namespace using the
interface just asiswill cause Spring trying to create an instance of MyReposi t ory. Thisis of course
not desired as it just acts as indermediate between Reposi t ory and the actual repository interfaces

Spring Data JPA (1.0.0.M1) 9

Repositories

you want to define for each entity. To exclude an interface extending Repository from being
instantiated as repository instance annotate it with @oReposi t or yBean.

Example 1.14. Custom repository base class

public class M/Repositoryl npl <T, |ID extends Serializabl e>
extends Si npl eJpaRepository<T, |D> inplements MyRepository<T, |D> {

public void sharedCustomvet hod(ID id) {
/1 inplenmentation goes here
}
}

The last step to get this implementation used as base class for Spring Data repositores is replacing the standard
Reposi t or yFact or yBean With a custom one using a custom Reposi t or yFact ory that in turn creates instances
of your MyReposi t oryl npl class.

Example 1.15. Custom repository factory bean

public class MyRepositoryFactoryBean<T extends JpaRepository<?, ?>
ext ends JpaReposit or yFact or yBean<T> {

protect ed RepositoryFactorySupport getRepositoryFactory(.) {
return new MyRepositoryFactory(..);
}

private static class M/RepositoryFactory extends JpaRepositoryFactory{

public MyRepositoryl npl get Target Repository(..) {
return new MyRepositorylnpl (.);
}

public C ass<? extends RepositorySupport> getRepositoryd ass() {
return MyRepositorylnpl.class;
}
}
}

Finally you can either declare beans of the custom factory directly or use the f act ory-cl ass attribute of the
Spring namespace to tell the repository infrastructure to use your custom factory implementation.

Example 1.16. Using the custom factory with the namespace

<reposi tori es base-package="com acne. repository"
factory-cl ass="com acne. M/Reposi t or yFact or yBean" />

Spring Data JPA (1.0.0.M1) 10

Chapter 2. JPA Repositories

This chapter includes details of the JPA repository implementation.

2.1. Query methods

2.1.1. Query lookup strategies

The JPA module supports defining a query manually as String or have it being derived from the method name.

Declared queries

Although getting a query derived from the method name is quite convenient one might face the situation in
which either the method name parser does not support the keyword one wants to use or the method name would
get unnecessarily ugly. So you can either use JPA named queries through a naming convention (see
Section 2.1.3, “Using JPA NamedQueries’ for more information) or rather annotate your query method with
@uery (seeasfor details).

Strategies

This strategy tries to find a declared query that can either be defined using JPA @anedQuery means or Hades
@uery annotation (see Section 2.1.3, “Using JPA NamedQueries’ and Section 2.1.4, “Using @Query” for
details). If no declared query isfound execution of the query will fail.

CREATE_IF_NOT_FOUND (default)

This strategy is actually a combination of the both mentioned above. It will try to lookup a declared query first
but create a custom method name based query if no named query was found. Thisis default lookup strategy and
thus will be used if you don't configure anything explicitly. It alows quick query definition by method names
but also custom tuning of these queries by introducing declared queries for those who need explicit tuning.

2.1.2. Query creation

Generally the query creation mechanism for JPA works as described in Section 1.3, “Query methods’. Here's a
short example of what a JPA query method trandates into:

Example 2.1. Query creation from method names

public interface UserRepository extends Repository<User, Long> {

Li st <User > fi ndByEnmi | Addr essAndLast nane(String enni |l Address, String |astnane);
}

We will create a query using the JPA criteria APl from this but essentially this translates into the following
query:

select u from User u where u.enmil Address = ?1 and u.l astnanme = ?2

Spring Data JPA will do a property check and traverse nested properties like described in Section 1.3.2.2.1,

Spring Data JPA (1.0.0.M1) 11

JPA Repositories

“Property expressions’. Here's an overview of the keywords supported for JPA and what a method containing
that keyword essentially trandates to.

Table 2.1. Supported keywordsinside method names

Keyword Sample JPQL snippet

And fi ndByLast nanmeAndFi r st nane ...where x.lastname = ?1 and x.firstname = ?2
(03 fi ndByLast nameOr Fi r st name ...wWhere x.lastnane = ?1 or x.firstname = ?2
Bet ween fi ndBySt art Dat eBet ween ...wWhere x.startDate between 1? and ?2
LessThan fi ndByAgeLessThan ...wWhere x.age < ?1

Great er Than fi ndByAgeG eat er Than ...wWhere x.age > ?1

I sNul I fi ndByAgel sNul | ...where x.age is null

I sNot Nul |, Not Nulfli ndByAge(| s) Not Nul | ...where x.age not null

Li ke fi ndByFi r st naneLi ke ...where x.firstname like ?1

Not Li ke fi ndByFi r st nanmeNot Li ke ...where x.firstname not |ike ?1

O der By fi ndByAgeOr der ByLast nameDesc ...wWhere x.age > ?1 order by x.l|astnanme desc
Not fi ndByLast nameNot ...wWhere x.lastnane <> ?1

2.1.3. Using JPA NamedQueries

Note

The examples use simple <naned- query /> element and @amedQuery annotation. The queries for
these configuration elements have to be defined in JPA query language. Of course you can use
<naned- native-query /> OF @anedNativeQuery, t00. These elements alow you to define the
query in native SQL by losing the database platform independence.

XML named query definition

To use XML configuration simply add the necessary <named-query /> element to the ormxni JPA
configuration file located in META- I NF folder of your classpath. Automatic invocation of named queries is
enabled by using some defined naming convention. For more details see below.

Example 2.2. XML named query configuration

<naned- query nane="User. fi ndByLast nane">
<query>sel ect u from User u where u.lastname = ?1</query>
</ naned- query>

Asyou can see the query has a special name which will be used to resolve it at runtime.

Spring Data JPA (1.0.0.M1) 12

JPA Repositories

Annotation configuration

Annotation configuration has the advantage not to need another config file to be edited, probably lowering
maintenance cost. You pay for that benefit by the need to recompile your domain class for every new query
declaration.

Example 2.3. Annotation based named query configuration

@Entity
@NarmedQuery(name = "User. findByEnmai | Addr ess",
query = "select u from User u where u.emil Address = ?1")

public class User {

}

Declaring interfaces

To allow execution of this named query all you need to do isto specify the User Reposi t ory asfollows:

Example 2.4. Query method declaration in User Repository

public interface UserRepository extends JpaRepository<User, Long> {
Li st <User > findByLast name(String | astnane);

User findByEmail Address(String enunil Address);
}

Declaring this method we will try to resolve a cal to this method to a named query starting with the simple
name of the configured domain class followed by the method name separated by a dot. So the example here
would use the named queries defined above instead of trying to create a query from the method name.

2.1.4. Using @Query

Using named queries to declare queries for entities is a valid approach and works fine for a small number
amount of queries. As the queries themselves are tied to a Java method to execute them you actually can bind
them to the query executing methods using Spring Data JPA @ery annotation rather than annotating them to
the domain class. This will free the domain class from persistence specific information and colocate the query
to the repository interface.

Querys annotated to the query method will trump queries defined using @anedQuery or named queries
declared inin orm xni .

Example 2.5. Declare query at the query method using @Query

public interface User Repository extends JpaRepository<User, Long> {

@uery("select u fromUser u where u.enanil Address = ?1")
User findByEnmil Address(String enunil Address);
}

Spring Data JPA (1.0.0.M1) 13

JPA Repositories

2.1.5. Using named parameters

By default Sprign Data JPA will use position based parameter binding as described in all the samples above.
This makes query methods a little error prone to refactorings regarding the parameter position. To solve this
issue you can use @ar am annotation to give a method parameter a concrete name and bind the name in the

query:

Example 2.6. Using named parameters

public interface UserRepository extends JpaRepository<User, Long> {

@uery("select u fromUser u where u.firstnane = :firstnane or u.lastname = :|astnane")
User findByLastnameOr Firstnanme(@aranm("l astnane") String |astnang,
@aran("firstname") String firstnane);

Note that the method parameters are switched according to the occurrence in the query defined.

2.1.6. Modifying queries

All the sections before described how to declare queries to access a given entity or collection of entitites. Of
course you can add custom modifying behaviour by using facilities described in ???. As this approach is
feasible for comprehensive custom functionality, you can achieve the execution of modifying queries that
actually only need parameter binding by annotating the query method with @ubdi f yi ng:

Example 2.7. Declaring manipulating queries

@ndi fyi ng
@uery("update User u set u.firstnanme = ?1 where u.lastnane = ?2")
int setFixedFirstnaneFor(String firstnane, String |astnane);

This will trigger the query annotated to the method as updating query instead of a selecting one. As the
EntityManager might contain outdated entities after the execution of the modifying query, we automatically
clear it (see JavaDoc of Enti t yManager .cl ear () for details). Thiswill effectively drop al non-flushed changes
dtill pending in the Ent i t ymanager . If you don't wish the Ent i t yManager to be cleared automatically you can
set @nbdi fyi ng annotation'scl ear Aut omat i cal | y attributeto f al se;

2.2. Specifications

JPA 2 introduces a criteria API that can be used to build queries programatically. Writing a criteria you actually
define the where-clause of a query for a query of the handled domain class. Taking another step back these
criterias can be regarded as predicate over the entity that is verbalized by the JPA criteria API constraints.

Spring Data JPA now takes the concept of a specification from Eric Evans book Domain Driven Design, that
carries the same semantics and provides an API to define such Speci fi cati ons using the JPA criteria API.
Thus you find methods like thisin JpaReposi t or y:

Li st <T> readAl | (Speci ficati on<T> spec);

Spring Data JPA (1.0.0.M1) 14

JPA Repositories

The sSpeci fi cat i on interface now looks as follows:

public interface Specification<T> {
Predi cat e t oPredi cat e(Root <T> root, CriteriaQuery<?> query,
CriteriaBuilder builder);

Okay, so what is the typical use case? Specifications can easily be used to build an extensible set of
predicates on top of an entity that then can be combined and used with JpaReposi t ory without the need of
declaring a query (method) for every needed combination of those. Here's an example:

Example 2.8. Specifications for a Customer

public class CustonerSpecs {

public static Specification<Customer> isLongTernCustoner() {
return new Specification<Custoner>() {
Predi cat e t oPredi cat e(Root <T> root, CriteriaQuery<?> query,
CriteriaBuilder builder) {

Local Date date = new Local Date().m nusYears(2);
return builder.|essThan(root. get(Custoner_.createdAt), date);

public static Specification<Custoner> hasSal esOf Mor eThan(Mont ar yAmount val ue) {
return new Specification<Custoner>() {
Predi cate toPredi cat e(Root <T> root, CriteriaQuery<?> query,
CriteriaBuilder builder) {

/1 build query here
}
IE
}

Admittedly the amount of boilerplate leaves room for improvement (that will hopefully be reduced by Java 8
closures) but the client side becomes much nicer as you will see below. Besides that we have expressed some
criteria on a business requirement abstraction level and created executable Speci i cati ons. So a client might
use aSpeci ficati on asfollows:

Example 2.9. Using a simple Specification

Li st <Cust omer > customers = custoner Repository.findAl | (i sLongTernCustoner());
Okay, why not simply creating a query for thiskind of data access? You'reright. Using asingle Speci fi cati on
does not gain a lot of benefit over a plain query declaration. The power of Speci fi cati ons realy shines when

you combine them to create new Speci fi cati on objects. You can achieve this through the Speci fi cati ons
helper class we provide to build expressionslike this:

Example 2.10. Combined Specifications

Monet ar yAnmount anmount = new Monet ar yAmount (200. 0, Currenci es. DOLLAR) ;
Li st <Cust oner > custoners = cust oner Reposi tory.readAl | (

Spring Data JPA (1.0.0.M1) 15

JPA Repositories

wher e(i sLongTer nCust oner ()) . or (hasSal esOf Mor eThan(anount))) ;

As you can see, Speci fi cati ons oOffers some gluecode methods to chain and combine Speci fi cati ons. Thus
extending your data access layer is just a matter of creating new Specification implementations and

combining them with ones already existing.

2.3. Transactionality

CRUD methods on repository instances are transactional by default. For reading operations the transaction
configuration r eadOnl y flag is set to true, all others are configured with aplain @r ansact i onal so that default
transaction configuration applies. For details see JavaDoc of Repository. If you need to tweak transaction
configuration for one of the methods declared in Reposi t ory simply redeclare the method in your repository

interface as follows:

Example 2.11. Custom transaction configuration for CRUD

public interface UserRepository extends JpaRepository<User, Long> {

@verride
@ransactional (ti meout = 10)
public List<User> findAll();

/1 Further query nethod decl arations

This will cause the fi ndAl | () method to be executed with a timeout of 10 seconds and without the r eadnl y

flag.

Another possibility to alter transactional behaviour is using a facade or service implementation that typically

covers more than one repository. Its purpose is to define transactional boundaries for non-CRUD operations:

Example 2.12. Using a facade to define transactions for multiple repository calls

@vervi ce
cl ass User Managenent | mpl i npl enents User Managenent {

private final UserRepository userRepository;
private final Rol eRepository rol eRepository;

@\ut owi red

publ i ¢ User Managenent | npl (User Reposi tory user Repository,
Rol eRepository rol eRepository) {
t hi s. user Reposi tory user Reposi tory;
this.rol eRepository rol eReposi tory;

}

@r ansacti onal
public void addRol eToAl | Users(String rol eNane) {

Rol e rol e = rol eReposi tory. findByName(rol eNane) ;

for (User user : userRepository.readAl()) {
user . addRol e(rol e);
user Reposi tory. save(user);

}

Spring Data JPA (1.0.0.M1)

16

JPA Repositories

This will cause call to addRol eToAl | User s(..) to run inside a transaction (participating in an existing one or
create a new one if none aready running). The transaction configuration at the repositories will be neglected
then as the outer transaction configuration determines the actual one used. Note that you will have to activate
<t x: annot ation-driven /> explicitly to get annotation based configuration at facades working. The example
above assumes you're using component scanning.

2.3.1. Transactional query methods

To let your query methods be transactional simply use @r ansacti onal at the repository interface you define.

Example 2.13. Using @Transactional at query methods

@ransactional (readOnly = true)
public interface User Repository extends JpaRepository<User, Long> {

Li st <User > findByLast name(String | astnane);

@bdi fying

@ransacti onal

@uery("delete from User u where u.active = fal se")
voi d del etel nacti veUsers();

Typicaly you will use the readonl y flag set to true as most of the query methods will be reading ones. In
contrast to that del et el nact i veUser s() makes use of the @nbdi fyi ng annotation and overrides the transaction
configuration. Thus the method will be executed with readonl y flag set to false.

Note

It's definitely reasonable to use transactions for read only queries as we can mark them as such by
setting the readonl y flag. This will not act as check that you do not trigger a manipulating query
nevertheless (although some databases reject e.g. | NSERT or UPDATE statements inside a transaction
set to be read only) but gets propagated as hint to the underlying JDBC driver to do performance
optimizations. Furthermore Spring will do some optimizations to the underlying JPA provider. E.g.
when used with Hibernate the flush mode is set to NEVER when you configure a transaction as read
only which causes Hibernate to skip dirty checks that gets quite noticeable on large object trees.

2.4. Auditing

Most applications will require some auditability for entities allowing to track creation date and user and
modification date and user. Spring Data JPA provides facilities to add this audition information to entity
transparently by AOP means. To take part in this functionality your domain classes have to implement a more
advanced interface:

Example 2.14. Audi t abl e interface

public interface Auditable<U, |ID extends Serializable>
ext ends Persi st abl e<I D> {

U get Creat edBy();

Spring Data JPA (1.0.0.M1) 17

JPA Repositories

voi d set CreatedBy(U creat edBy);

Dat eTi ne get Creat edDat e() ;

voi d setCreated(Date creationDate);

U get Last Modi fi edBy();

voi d setLast Modi fi edBy(U | ast Modi fi edBy);
Dat eTi ne get Last Modi fi edDat e();

voi d setLast Mdified(Date |astMdifiedDate);

Asyou can see the modifying entity itself only has to be an entity. Mostly this will be some sort of User entity,
so we chose U as parameter type.

Note
To minimize boilerplate code Spring Data JPA offers AbstractPersistable and

Abst r act Audi t abl e base classes that implement and preconfigure entities. Thus you can decide to
only implement the interface or enjoy more sophisticated support by extending the base class.

General auditing configuration
Spring Data JPA ships with an entity listener that can be used to trigger capturing auditing information. So first

you have to register the Audi ti ngEntityListener inside your orm xm to be used for al entities in your
persistence contexts:

Example 2.15. Auditing configuration orm.xml

<per si st ence- uni t - net adat a>
<persi stence-unit-defaul ts>
<entity-listeners>
<entity-listener class="..data.jpa.domain.support.AuditingEntityListener" />
</entity-listeners>
</ persi stence-unit-defaul ts>
</ per si st ence- uni t - et adat a>

Now activating auditing functionlity is just a matter of adding the Spring Data JPA audi ti ng namespace
element to your configuration:

Example 2.16. Activating auditing in the Spring configuration

<j pa: audi ti ng auditor-aware-ref="yourAudi t or Anar eBean" />

Asyou can see you have to provide a bean that implements the Audi t or Awar e interface which looks as follows:

Example 2.17. Audi t or Awar e interface

public interface AuditorAware<T, |ID extends Serializable> {

Spring Data JPA (1.0.0.M1) 18

JPA Repositories

T get Current Audi tor();

Usually you will have some kind of authentication component in your application that tracks the user currently
working with the system. This component should be Audi t or Awar e and thus allow seemless tracking of the
auditor.

Spring Data JPA (1.0.0.M1) 19

Part Il. Appendix

Spring Data JPA (1.0.0.M1)

20

Appendix A. Namespace reference

A.1. The <repositories />element

The <repositories /> element acts as container for <reposi tory /> elements or can be left empty to trigger
auto detection® of repository instances. Attributes defined for <repositories /> act are propagated to
contained <r eposi tory /> elements but can be overridden of course.

Table A.1. Attributes

Name

base- package

reposi tory-inpl-postfix

Description

Defines the package to be used to be scanned for repository interfaces
extending *Repository (actual interface is determined by specific
Spring Data module) in auto detection mode. All packages below the
configured package will be scanned, too. In auto configuration mode (no
nested <r eposi tory /> elements) wildcards are also allowed.

Defines the postfix to autodetect custom repository implementations.
Classes whose names end with the configured postfix will be considered
as candidates. Defaultsto | npl .

qguery-| ookup-strategy

Determines the strategy to be used to create finder queries. See ??? for
details. Defaultsto creat e-i f - not - f ound.

A.2. The <repository /> element

The <repository /> element can contain all attributes of <repositories /> except base- package. This will
result in overriding the values configured in the surrounding <r eposi tories /> element. Thus here we will

only document extended attributes.

Table A.2. Attributes

id

custominpl -ref

Defines the id of the bean the repository instance will be registered
under as well asthe repository interface name.

Defines areference to a custom repository implementation bean.

Spring Data JPA (1.0.0.M1) 21

Appendix B. Frequently asked questions
B.1. Common

B.1.1.
I'd like to get more detailled logging information on what methods are called inside JpaReposi tory, €.0.

How can | gain them?

Y ou can make use of Cust oni zabl eTr acel nt er cept or provided by Spring:

<bean i d="cust onmi zabl eTracel nterceptor"” cl ass="
or g. springfranmewor k. aop. i nt er cept or. Cust om zabl eTracel nt ercept or">
<property name="ent er Message" val ue="Entering $[net hodNane] ($[argunments])"/>
<property name="exitMessage" val ue="Leavi ng $[net hodNane] (): $[returnVal ue]"/>
</ bean>

<aop: confi g>
<aop: advi sor advi ce-ref="customn zabl eTracel nterceptor"”
poi nt cut ="execution(public * org.sfw data.]jpa.repository.JpaRepository+. *(..))"/>
</ aop: confi g>

B.2. Infrastructure

B.2.1.
Currently | have implemented a repository layer based on Hibernat eDaoSupport. | create a

Sessi onFactory by using Spring's Annot ati onSessi onFact oryBean. How do | get Hades DAOs
working in this environment.

You have to replace Annot at i onSessi onFact or yBean with the
Local Cont ai ner Ent i t yManager Fact oryBean. Supposed you have registered it under
entit yManager Factory you can reference it in you repositories based on Hi ber nat eDaoSupport &S
follows:

Example B.1. Looking up a SessionFactory from an Hiber nateEntityM anager Factory

<bean cl ass="com acmne. Your DaoBasedOnHi ber nat eDaoSupport ">
<property nanme="sessi onFactory">
<bean factory-bean="entityManager Factory"
fact ory-net hod="get Sessi onFactory" />
</ property>
</ bean>

B.3. Auditing

B.3.1.
| want to use Spring Data JPA auditing capabilities but have my database already set up to set

modification and creation date on entities. How to prevent Hades to set the date programmeatically.

Just use the set - dat es attribute of the audi t i ng namespace element to false.

Spring Data JPA (1.0.0.M1) 22

Glossary
A

AOP

C

Commons DBCP

CRUD

D

DAO

Dependency Injection

E

EclipseLink

H

Hibernate

J

JPA

Spring

Aspect oriented programming

Commons DataBase Connection Pools - Library of the Apache foundation
offering pooling implementations of the Dat aSour ce interface.

Create, Read, Update, Delete - Basic persistence operations

Data Access Object - Pattern to separate persisting logic from the object to be
persisted

Pattern to hand a component's dependency to the component from outside,
freeing the component to lookup the dependant itself. For more information
see http://en.wikipedia.org/wiki/Dependency Injection.

Object relational mapper implementing JPA - http://www.eclipselink.org

Object relational mapper implementing JPA - http://www.hibernate.org

Java Persistence Api

Java application framework - http://www.springframework.org

Spring Data JPA (1.0.0.M1) 23

http://en.wikipedia.org/wiki/Dependency_Injection
http://www.eclipselink.org
http://www.hibernate.org
http://www.springframework.org

	Spring Data JPA - Reference Documentation
	Table of Contents
	Preface
	1. Project metadata

	Part I. Reference Documentation
	Chapter 1. Repositories
	1.1. Introduction
	1.2. Core concepts
	1.3. Query methods
	1.3.1. Defining repository interfaces
	1.3.2. Defining query methods
	1.3.2.1. Query lookup strategies
	1.3.2.2. Query creation
	1.3.2.2.1. Property expressions

	1.3.2.3. Special parameter handling

	1.3.3. Creating repository instances
	1.3.3.1. Spring
	1.3.3.2. Standalone usage

	1.4. Custom implementations
	1.4.1. Adding behaviour to single repositories
	1.4.2. Adding custom behaviour to all repositories

	Chapter 2. JPA Repositories
	2.1. Query methods
	2.1.1. Query lookup strategies
	2.1.2. Query creation
	2.1.3. Using JPA NamedQueries
	2.1.4. Using @Query
	2.1.5. Using named parameters
	2.1.6. Modifying queries

	2.2. Specifications
	2.3. Transactionality
	2.3.1. Transactional query methods

	2.4. Auditing

	Part II. Appendix
	Appendix A. Namespace reference
	A.1. The <repositories /> element
	A.2. The <repository /> element

	Appendix B. Frequently asked questions
	Glossary

