
Spring Data JPA - Reference Documentation

1.0.0.M1

Copyright © 2010 Oliver Gierke

Copies of this document may be made for your own use and for distribution to others, provided that you do not
charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether

distributed in print or electronically.

Preface .. iii
1. Project metadata .. iii

I. Reference Documentation .. 1
1. Repositories .. 2

1.1. Introduction ... 2
1.2. Core concepts .. 2
1.3. Query methods ... 3

1.3.1. Defining repository interfaces .. 4
1.3.2. Defining query methods ... 4
1.3.3. Creating repository instances .. 6

1.4. Custom implementations .. 7
1.4.1. Adding behaviour to single repositories .. 7
1.4.2. Adding custom behaviour to all repositories .. 9

2. JPA Repositories ... 11
2.1. Query methods ... 11

2.1.1. Query lookup strategies ... 11
2.1.2. Query creation ... 11
2.1.3. Using JPA NamedQueries .. 12
2.1.4. Using @Query .. 13
2.1.5. Using named parameters .. 14
2.1.6. Modifying queries ... 14

2.2. Specifications .. 14
2.3. Transactionality ... 16

2.3.1. Transactional query methods .. 17
2.4. Auditing .. 17

II. Appendix ... 20
A. Namespace reference .. 21

A.1. The <repositories /> element ... 21
A.2. The <repository /> element ... 21

B. Frequently asked questions ... 22
Glossary ... 23

Spring Data JPA (1.0.0.M1) ii

Preface

1. Project metadata

• Version control - git://github.com/SpringSource/spring-data-jpa.git
• Bugtracker - https://jira.springsource.org/browse/DATAJPA
• Release repository - http://maven.springframework.org/release
• Milestone repsitory - http://maven.springframework.org/milestone
• Snapshot repsitory - http://maven.springframework.org/snapshot

Spring Data JPA (1.0.0.M1) iii

http://git.synyx.org/hades.git
http://hades.synyx.org
http://maven.springframework.org/release
http://maven.springframework.org/milestone
http://maven.springframework.org/snapshot

Part I. Reference Documentation

Spring Data JPA (1.0.0.M1) 1

Chapter 1. Repositories

1.1. Introduction

Implementing a data access layer of an application has been cumbersome for quite a while. Too much
boilerplate code had to be written. Domain classes were anemic and haven't been designed in a real object
oriented or domain driven manner.

Using both of these technologies makes developers life a lot easier regarding rich domain model's persistence.
Nevertheless the amount of boilerplate code to implement repositories especially is still quite high. So the goal
of the repository abstraction of Spring Data is to reduce the effort to implement data access layers for various
persistence stores significantly

The following chapters will introduce the core concepts and interfaces of Spring Data repositories.

1.2. Core concepts

The central interface in Spring Data repository abstraction is Repository (probably not that much of a
surprise). It is typeable to the domain class to manage as well as the id type of the domain class and provides
some sophisticated functionality around CRUD for the entity managed.

Example 1.1. Repository interface

public interface Repository<T, ID extends Serializable> {

T save(T entity); ❶

T findById(ID primaryKey); ❷

List<T> findAll(); ❸

Page<T> findAll(Pageable pageable); ❹

Long count(); ❺

void delete(T entity); ❻

boolean exists(ID primaryKey); ❼

// … more functionality omitted.
}

❶ Saves the given entity.
❷ Returns the entity identified by the given id.
❸ Returns all entities.
❹ Returns a page of entities.
❺ Returns the number of entities.
❻ Deletes the given entity.
❼ Returns whether an entity with the given id exists.

Usually we will have persistence technology specific sub-interfaces to include additional technology specific
methods. We will now ship implementations for a variety of Spring Data modules that implement that interface.

Spring Data JPA (1.0.0.M1) 2

On top of the Repository there is a PagingAndSortingRepository abstraction that adds additional methods to
ease paginated access to entities:

Example 1.2. PagingAndSortingRepository

public interface PagingAndSortingRepository<T, ID extends Serializable> extends Repository<T, ID> {

List<T> findAll(Sort sort);

Page<T> findAll(Pageable pageable);
}

Accessing the second page of User by a page size of 20 you could simply do something like this:

PagingAndSortingRepository<User, Long> repository = // … get access to a bean
Page<User> users = repository.findAll(new PageRequest(1, 20);

1.3. Query methods

Next to standard CRUD functionality repositories are usually query the underlying datastore. With Spring Data
declaring those queries becomes a four-step process (we use the JPA based module as example but that works
the same way for other stores):

1. Declare an interface extending the technology specific Repository sub-interface and type it to the domain
class it shall handle.

public interface PersonRepository extends JpaRepository<User, Long> { … }

2. Declare query methods on the interface.

List<Person> findByLastname(String lastname);

3. Setup Spring to create proxy instances for those interfaces.

<?xml version="1.0" encoding="UTF-8"?>
<beans:beans xmlns:beans="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://www.springframework.org/schema/data/jpa
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/data/jpa
http://www.springframework.org/schema/data/jpa/spring-jpa.xsd">

<repositories base-package="com.acme.repositories" />

</beans>

4. Get the repository instance injected and use it.

public class SomeClient {

@Autowired
private PersonRepoyitory repository;

public void doSomething() {
List<Person> persons = repository.findByLastname("Matthews");

Repositories

Spring Data JPA (1.0.0.M1) 3

}

At this stage we barely scratched the surface of what's possible with the repositories but the general approach
should be clear. Let's go through each of these steps and and figure out details and various options that you
have at each stage.

1.3.1. Defining repository interfaces

As a very first step you define a domain class specific repository interface to start with. It's got to be typed to
the domain class and an ID type so that you get CRUD methods of the Repository interface tailored to it.

1.3.2. Defining query methods

1.3.2.1. Query lookup strategies

The next thing we have to discuss is the definition of query methods. There's roughly two main ways how the
repository proxy is generally able to come up with the store specific query from the method name. The first
option is to derive the quer from the method name directly, the second is using some kind of additionally
created query. What detailed options are available pretty much depends on the actual store. However there's got
to be some algorithm the decision which actual query to is made.

There's three strategies for the repository infrastructure to resolve the query. The strategy to be used can be
configured at the namespace through the query-lookup-strategy attribute. However might be the case that
some of the strategies are not supported for the specific datastore. Here are your options:

CREATE

This strategy will try to construct a store specific query from the query method's name. The general approach is
to remove a given set of well-known prefixes from the method name and parse the rest of the method. Read
more about query construction in ???.

USE_DECLARED_QUERY

This strategy tries to find a declared query which will be used for execution first. The query could be defined
by an annotation somwhere or declared by other means. Please consult the documentation of the specific store
to find out what options are available for that store. If the repository infrastructure does not find a declared
query for the method at bootstrap time it will fail.

CREATE_IF_NOT_FOUND (default)

This strategy is actually a combination of the both mentioned above. It will try to lookup a declared query first
but create a custom method name based query if no declared query was found. This is default lookup strategy
and thus will be used if you don't configure anything explicitly. It allows quick query definition by method
names but also custom tuning of these queries by introducing declared queries for those who need explicit
tuning.

1.3.2.2. Query creation

The query builder mechanism built into Spring Data repository infrastructue is useful to build constraining
queries over entities of the repository. We will strip the prefixes findBy, find, readBy, read, getBy as well as

Repositories

Spring Data JPA (1.0.0.M1) 4

get from the method and start parsing the rest of it. At a very basic level you can define conditions on entity
properties and concatenate them with AND and OR.

Example 1.3. Query creation from method names

public interface PersonRepository extends JpaRepository<User, Long> {

List<Person> findByEmailAddressAndLastname(EmailAddress emailAddress, String lastname);
}

The actual result of parsing that method will of course depend on the persistence store we create the query for.
However there are some general things to notice. The expression are usually property traversals combined with
operators that can be concatenated. As you can see in the example you can combine property expressions with
And and Or. Beyond that you will get support for various operators like Between, LessThan, GreaterThan,
Like for the property expressions. As the operators supported can vary from datastore to datastore please
consult the according part of the reference documentation.

1.3.2.2.1. Property expressions

Property expressions can just refer to a direct property of the managed entity (as you just saw in the example
above. On query creation time we already make sure that the parsed property is at a property of the managed
domain class. However you can also traverse nested properties to define constraints on. Assume Persons have
Addresses with ZipCodes. In that case a method name of

List<Person> findByAddressZipCode(ZipCode zipCode);

will create the property traversal x.address.zipCode. The resolution algorithm starts with interpreting the
entire part (AddressZipCode) as property and checks the domain class for a property with that name
(uncapitalized). If it succeeds it just uses that. If not it starts splitting up the source at the camel case parts from
the right side into a head and a tail and tries to find the according property, e.g. AddressZip and Code. If we
find a property with that head we take the tail and continue building the tree down from there. As in our case
the first split does not match we move the split point to the left (Address, ZipCode).

Now although this should work for most cases, there might be cases where the algorithm could select the wrong
property. Suppose our Person class has a addressZip property as well. Then our algorithm would match in the
first split round already and essentially choose the wrong property and finally fail (as the type of addressZip
probably has no code property). To resolve this ambiguity you can use _ inside your method name to manually
define traversal points. So our method name would end up like so:

List<Person> findByAddress_ZipCode(ZipCode zipCode);

1.3.2.3. Special parameter handling

To hand parameters to your query you simply define method parameters as already seen in in examples above.
Besides that we will recognizes certain specific types to apply pagination and sorting to your queries
dynamically.

Example 1.4. Using Pageable and Sort in query methods

Page<User> findByLastname(String lastname, Pageable pageable);

Repositories

Spring Data JPA (1.0.0.M1) 5

List<User> findByLastname(String lastname, Sort sort);

List<User> findByLastname(String lastname, Pageable pageable);

The first method allows you to pass a Pageable instance to the query method to dynamically add paging to
your statically defined query. Sorting options are handed via the Pageable instance, too. If you only need
sorting, simply add a Sort parameter to your method. As you also can see, simply returning a List is possible
as well. We will then not retrieve the additional metadata required to build the actual Page instance but rather
simply restrict the query to lookup only the given range of entities.

Note

To find out how many pages you get for a query entirely we have to trigger an additional count
query. This will be derived from the query you actually trigger by default.

1.3.3. Creating repository instances

So now the question is how to create instances and bean definitions for the repository interfaces defined.

1.3.3.1. Spring

The easiest way to do so is by using the Spring namespace that is shipped with each Spring Data module that
supports the repository mechanism. Each of those includes a repositories element that allows you to simply
define a base packge Spring shall scan for you.

<?xml version="1.0" encoding="UTF-8"?>
<beans:beans xmlns:beans="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://www.springframework.org/schema/data/jpa
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/data/jpa
http://www.springframework.org/schema/data/jpa/spring-jpa.xsd">

<repositories base-package="com.acme.repositories" />

</beans:beans>

In this case we instruct Spring to scan com.acme.repositories and all it's sub packages for interfaces extending
the appropriate Repository sub-interface (in this case JpaRepository). For each interface found it will register
the presistence technology specific FactoryBean to create the according proxies that handle invocations of the
query methods. Each of these beans will be registered under a bean name that is derived from the interface
name, so an interface of UserRepository would be registered under userRepository. The base-package

attribute allows to use wildcards, so that you can have a pattern of packages parsed.

Using filters

By default we will pick up every interface extending the persistence technology specific Repository

sub-interface located underneath the configured base package and create a bean instance for it. However, you
might want to gain finer grained control over which interfaces bean instances get created for. To do this we
support the use of <include-filter /> and <exclude-filter /> elements inside <repositories />. The
semantics are exactly equivalent to the elements in Spring's context namespace. For details see Spring reference
documentation on these elements.

Repositories

Spring Data JPA (1.0.0.M1) 6

http://static.springsource.org/spring/docs/2.5.x/reference/beans.html#beans-scanning-filters
http://static.springsource.org/spring/docs/2.5.x/reference/beans.html#beans-scanning-filters

E.g. to exclude certain interfaces from instantiation as repository, you could use the following configuration:

Example 1.5. Using exclude-filter element

<repositories base-package="com.acme.repositories">
<context:exclude-filter type="regex" expression=".*SomeRepository" />

</repositories>

This would exclude all interface ending on SomeRepository from being instantiated.

Manual configuration

If you'd rather like to manually define which repository instances to create you can do this with nested
<repository /> elements.

<repositories base-package="com.acme.repositories">
<repository id="userRepository" />

</repositories>

1.3.3.2. Standalone usage

You can also use the repository infrastructure outside of a Spring container usage. You will still need to have
some of the Spring libraries on your classpath but you can generally setup repositories programatically as well.
The Spring Data modules providing repository support ship a persistence technology specific
RepositoryFactory that can be used as follows:

Example 1.6. Standalone usage of repository factory

RepositoryFactorySupport factory = … // Instantiate factory here
UserRepository repository = factory.getRepository(UserRepository.class);

1.4. Custom implementations

1.4.1. Adding behaviour to single repositories

Often it is necessary to provide a custom implementation for a few repository methods. Spring Data
repositories easily allow provide custom repository code and integrate it with generic CRUD abstraction and
query method functionality. To enrich a repository with custom functionality you have to define an interface
and an implementation for that functionality first and let the repository interface you provided so far extend that
custom interface.

Example 1.7. Interface for custom repository functionality

interface UserRepositoryCustom {

public void someCustomMethod(User user);
}

Repositories

Spring Data JPA (1.0.0.M1) 7

Example 1.8. Implementation of custom repository functionality

class UserRepositoryImpl implements UserRepositoryCustom {

public void someCustomMethod(User user) {
// Your custom implementation

}
}

Note that the implementation itself does not depend on Spring Data and can be a regular Spring bean. So you
can either use standard dependency injection behaviour to inject references to other beans, take part in aspects
and so on.

Example 1.9. Changes to the your basic repository interface

public interface UserRepository extends JpaRepository<User, Long>, UserRepositoryCustom {

// Declare query methods here
}

Let your standard repository interface extend the custom one. This makes CRUD and custom functionality
available to clients.

Configuration

If you use namespace configuration the repository infrastructure tries to autodetect custom implementations by
looking up classes in the package we found a repository using the naming conventions appending the
namespace element's attribute repository-impl-postfix to the classname. This suffix defaults to Impl.

Example 1.10. Configuration example

<repositories base-package="com.acme.repository">
<repository id="userRepository" />

</repositories>

<repositories base-package="com.acme.repository" repository-impl-postfix="FooBar">
<repository id="userRepository" />

</repositories>

The first configuration example will try to lookup a class com.acme.repository.UserRepositoryImpl to act as
custom repository implementation, where the second example will try to lookup
com.acme.repository.UserRepositoryFooBar.

Manual wiring

The approach above works perfectly well if your custom implementation uses annotation based configuration
and autowring entirely as will be trated as any other Spring bean. If your customly implemented bean needs
some special wiring you simply declare the bean and name it after the conventions just descibed. We will then
pick up the custom bean by name rather than creating an own instance.

Repositories

Spring Data JPA (1.0.0.M1) 8

Example 1.11. Manual wiring of custom implementations (I)

<repositories base-package="com.acme.repository">
<repository id="userRepository" />

</repositories>

<beans:bean id="userRepositoryImpl" class="…">
<!-- further configuration -->

</beans:bean>

This also works if you use automatic repository lookup without defining single <repository /> elements.

In case you are not in control of the implementation bean name (e.g. if you wrap a generic repository facade
around an existing repository implementation) you can explicitly tell the <repository /> element which bean
to use as custom implementation by using the repository-impl-ref attribute.

Example 1.12. Manual wiring of custom implementations (II)

<repositories base-package="com.acme.repository">
<repository id="userRepository" repository-impl-ref="customRepositoryImplementation" />

</repositories>

<bean id="customRepositoryImplementation" class="…">
<!-- further configuration -->

</bean>

1.4.2. Adding custom behaviour to all repositories

In other cases you might want to add a single method to all of your repository interfaces. So the approach just
shown is not feasible. The first step to achieve this is adding and intermediate interface to declare the shared
behaviour

Example 1.13. An interface declaring custom shared behaviour

public interface MyRepository<T, ID extends Serializable>
extends JpaRepository<T, ID> {

void sharedCustomMethod(ID id);
}

Now your individual repository interfaces will extend this intermediate interface to include the functionality
declared. The second step is to create an implementation of this interface that extends the persistence
technology specific repository base class which will act as custom base class for the repository proxies then.

Note

If you're using automatic repository interface detection using the Spring namespace using the
interface just as is will cause Spring trying to create an instance of MyRepository. This is of course
not desired as it just acts as indermediate between Repository and the actual repository interfaces

Repositories

Spring Data JPA (1.0.0.M1) 9

you want to define for each entity. To exclude an interface extending Repository from being
instantiated as repository instance annotate it with @NoRepositoryBean.

Example 1.14. Custom repository base class

public class MyRepositoryImpl<T, ID extends Serializable>
extends SimpleJpaRepository<T, ID> implements MyRepository<T, ID> {

public void sharedCustomMethod(ID id) {
// implementation goes here

}
}

The last step to get this implementation used as base class for Spring Data repositores is replacing the standard
RepositoryFactoryBean with a custom one using a custom RepositoryFactory that in turn creates instances
of your MyRepositoryImpl class.

Example 1.15. Custom repository factory bean

public class MyRepositoryFactoryBean<T extends JpaRepository<?, ?>
extends JpaRepositoryFactoryBean<T> {

protected RepositoryFactorySupport getRepositoryFactory(…) {
return new MyRepositoryFactory(…);

}

private static class MyRepositoryFactory extends JpaRepositoryFactory{

public MyRepositoryImpl getTargetRepository(…) {
return new MyRepositoryImpl(…);

}

public Class<? extends RepositorySupport> getRepositoryClass() {
return MyRepositoryImpl.class;

}
}

}

Finally you can either declare beans of the custom factory directly or use the factory-class attribute of the
Spring namespace to tell the repository infrastructure to use your custom factory implementation.

Example 1.16. Using the custom factory with the namespace

<repositories base-package="com.acme.repository"
factory-class="com.acme.MyRepositoryFactoryBean" />

Repositories

Spring Data JPA (1.0.0.M1) 10

Chapter 2. JPA Repositories
This chapter includes details of the JPA repository implementation.

2.1. Query methods

2.1.1. Query lookup strategies

The JPA module supports defining a query manually as String or have it being derived from the method name.

Declared queries

Although getting a query derived from the method name is quite convenient one might face the situation in
which either the method name parser does not support the keyword one wants to use or the method name would
get unnecessarily ugly. So you can either use JPA named queries through a naming convention (see
Section 2.1.3, “Using JPA NamedQueries” for more information) or rather annotate your query method with
@Query (see as for details).

Strategies

This strategy tries to find a declared query that can either be defined using JPA @NamedQuery means or Hades
@Query annotation (see Section 2.1.3, “Using JPA NamedQueries” and Section 2.1.4, “Using @Query” for
details). If no declared query is found execution of the query will fail.

CREATE_IF_NOT_FOUND (default)

This strategy is actually a combination of the both mentioned above. It will try to lookup a declared query first
but create a custom method name based query if no named query was found. This is default lookup strategy and
thus will be used if you don't configure anything explicitly. It allows quick query definition by method names
but also custom tuning of these queries by introducing declared queries for those who need explicit tuning.

2.1.2. Query creation

Generally the query creation mechanism for JPA works as described in Section 1.3, “Query methods”. Here's a
short example of what a JPA query method translates into:

Example 2.1. Query creation from method names

public interface UserRepository extends Repository<User, Long> {

List<User> findByEmailAddressAndLastname(String emailAddress, String lastname);
}

We will create a query using the JPA criteria API from this but essentially this translates into the following
query:

select u from User u where u.emailAddress = ?1 and u.lastname = ?2

Spring Data JPA will do a property check and traverse nested properties like described in Section 1.3.2.2.1,

Spring Data JPA (1.0.0.M1) 11

“Property expressions”. Here's an overview of the keywords supported for JPA and what a method containing
that keyword essentially translates to.

Table 2.1. Supported keywords inside method names

Keyword Sample JPQL snippet

And findByLastnameAndFirstname … where x.lastname = ?1 and x.firstname = ?2

Or findByLastnameOrFirstname … where x.lastname = ?1 or x.firstname = ?2

Between findByStartDateBetween … where x.startDate between 1? and ?2

LessThan findByAgeLessThan … where x.age < ?1

GreaterThan findByAgeGreaterThan … where x.age > ?1

IsNull findByAgeIsNull … where x.age is null

IsNotNull,NotNullfindByAge(Is)NotNull … where x.age not null

Like findByFirstnameLike … where x.firstname like ?1

NotLike findByFirstnameNotLike … where x.firstname not like ?1

OrderBy findByAgeOrderByLastnameDesc … where x.age > ?1 order by x.lastname desc

Not findByLastnameNot … where x.lastname <> ?1

2.1.3. Using JPA NamedQueries

Note

The examples use simple <named-query /> element and @NamedQuery annotation. The queries for
these configuration elements have to be defined in JPA query language. Of course you can use
<named-native-query /> or @NamedNativeQuery, too. These elements allow you to define the
query in native SQL by losing the database platform independence.

XML named query definition

To use XML configuration simply add the necessary <named-query /> element to the orm.xml JPA
configuration file located in META-INF folder of your classpath. Automatic invocation of named queries is
enabled by using some defined naming convention. For more details see below.

Example 2.2. XML named query configuration

<named-query name="User.findByLastname">
<query>select u from User u where u.lastname = ?1</query>

</named-query>

As you can see the query has a special name which will be used to resolve it at runtime.

JPA Repositories

Spring Data JPA (1.0.0.M1) 12

Annotation configuration

Annotation configuration has the advantage not to need another config file to be edited, probably lowering
maintenance cost. You pay for that benefit by the need to recompile your domain class for every new query
declaration.

Example 2.3. Annotation based named query configuration

@Entity
@NamedQuery(name = "User.findByEmailAddress",
query = "select u from User u where u.emailAddress = ?1")

public class User {

}

Declaring interfaces

To allow execution of this named query all you need to do is to specify the UserRepository as follows:

Example 2.4. Query method declaration in UserRepository

public interface UserRepository extends JpaRepository<User, Long> {

List<User> findByLastname(String lastname);

User findByEmailAddress(String emailAddress);
}

Declaring this method we will try to resolve a call to this method to a named query starting with the simple
name of the configured domain class followed by the method name separated by a dot. So the example here
would use the named queries defined above instead of trying to create a query from the method name.

2.1.4. Using @Query

Using named queries to declare queries for entities is a valid approach and works fine for a small number
amount of queries. As the queries themselves are tied to a Java method to execute them you actually can bind
them to the query executing methods using Spring Data JPA @Query annotation rather than annotating them to
the domain class. This will free the domain class from persistence specific information and colocate the query
to the repository interface.

Querys annotated to the query method will trump queries defined using @NamedQuery or named queries
declared in in orm.xml.

Example 2.5. Declare query at the query method using @Query

public interface UserRepository extends JpaRepository<User, Long> {

@Query("select u from User u where u.emailAddress = ?1")
User findByEmailAddress(String emailAddress);

}

JPA Repositories

Spring Data JPA (1.0.0.M1) 13

2.1.5. Using named parameters

By default Sprign Data JPA will use position based parameter binding as described in all the samples above.
This makes query methods a little error prone to refactorings regarding the parameter position. To solve this
issue you can use @Param annotation to give a method parameter a concrete name and bind the name in the
query:

Example 2.6. Using named parameters

public interface UserRepository extends JpaRepository<User, Long> {

@Query("select u from User u where u.firstname = :firstname or u.lastname = :lastname")
User findByLastnameOrFirstname(@Param("lastname") String lastname,

@Param("firstname") String firstname);
}

Note that the method parameters are switched according to the occurrence in the query defined.

2.1.6. Modifying queries

All the sections before described how to declare queries to access a given entity or collection of entitites. Of
course you can add custom modifying behaviour by using facilities described in ???. As this approach is
feasible for comprehensive custom functionality, you can achieve the execution of modifying queries that
actually only need parameter binding by annotating the query method with @Modifying:

Example 2.7. Declaring manipulating queries

@Modifying
@Query("update User u set u.firstname = ?1 where u.lastname = ?2")
int setFixedFirstnameFor(String firstname, String lastname);

This will trigger the query annotated to the method as updating query instead of a selecting one. As the
EntityManager might contain outdated entities after the execution of the modifying query, we automatically
clear it (see JavaDoc of EntityManager.clear() for details). This will effectively drop all non-flushed changes
still pending in the EntityManager. If you don't wish the EntityManager to be cleared automatically you can
set @Modifying annotation's clearAutomatically attribute to false;

2.2. Specifications

JPA 2 introduces a criteria API that can be used to build queries programatically. Writing a criteria you actually
define the where-clause of a query for a query of the handled domain class. Taking another step back these
criterias can be regarded as predicate over the entity that is verbalized by the JPA criteria API constraints.

Spring Data JPA now takes the concept of a specification from Eric Evans' book Domain Driven Design, that
carries the same semantics and provides an API to define such Specifications using the JPA criteria API.
Thus you find methods like this in JpaRepository:

List<T> readAll(Specification<T> spec);

JPA Repositories

Spring Data JPA (1.0.0.M1) 14

The Specification interface now looks as follows:

public interface Specification<T> {
Predicate toPredicate(Root<T> root, CriteriaQuery<?> query,

CriteriaBuilder builder);
}

Okay, so what is the typical use case? Specifications can easily be used to build an extensible set of
predicates on top of an entity that then can be combined and used with JpaRepository without the need of
declaring a query (method) for every needed combination of those. Here's an example:

Example 2.8. Specifications for a Customer

public class CustomerSpecs {

public static Specification<Customer> isLongTermCustomer() {
return new Specification<Customer>() {
Predicate toPredicate(Root<T> root, CriteriaQuery<?> query,

CriteriaBuilder builder) {

LocalDate date = new LocalDate().minusYears(2);
return builder.lessThan(root.get(Customer_.createdAt), date);

}
};

}

public static Specification<Customer> hasSalesOfMoreThan(MontaryAmount value) {
return new Specification<Customer>() {
Predicate toPredicate(Root<T> root, CriteriaQuery<?> query,

CriteriaBuilder builder) {

// build query here
}

};
}

}

Admittedly the amount of boilerplate leaves room for improvement (that will hopefully be reduced by Java 8
closures) but the client side becomes much nicer as you will see below. Besides that we have expressed some
criteria on a business requirement abstraction level and created executable Specifications. So a client might
use a Specification as follows:

Example 2.9. Using a simple Specification

List<Customer> customers = customerRepository.findAll(isLongTermCustomer());

Okay, why not simply creating a query for this kind of data access? You're right. Using a single Specification

does not gain a lot of benefit over a plain query declaration. The power of Specifications really shines when
you combine them to create new Specification objects. You can achieve this through the Specifications

helper class we provide to build expressions like this:

Example 2.10. Combined Specifications

MonetaryAmount amount = new MonetaryAmount(200.0, Currencies.DOLLAR);
List<Customer> customers = customerRepository.readAll(

JPA Repositories

Spring Data JPA (1.0.0.M1) 15

where(isLongTermCustomer()).or(hasSalesOfMoreThan(amount)));

As you can see, Specifications offers some gluecode methods to chain and combine Specifications. Thus
extending your data access layer is just a matter of creating new Specification implementations and
combining them with ones already existing.

2.3. Transactionality

CRUD methods on repository instances are transactional by default. For reading operations the transaction
configuration readOnly flag is set to true, all others are configured with a plain @Transactional so that default
transaction configuration applies. For details see JavaDoc of Repository. If you need to tweak transaction
configuration for one of the methods declared in Repository simply redeclare the method in your repository
interface as follows:

Example 2.11. Custom transaction configuration for CRUD

public interface UserRepository extends JpaRepository<User, Long> {

@Override
@Transactional(timeout = 10)
public List<User> findAll();

// Further query method declarations
}

This will cause the findAll() method to be executed with a timeout of 10 seconds and without the readOnly

flag.

Another possibility to alter transactional behaviour is using a facade or service implementation that typically
covers more than one repository. Its purpose is to define transactional boundaries for non-CRUD operations:

Example 2.12. Using a facade to define transactions for multiple repository calls

@Service
class UserManagementImpl implements UserManagement {

private final UserRepository userRepository;
private final RoleRepository roleRepository;

@Autowired
public UserManagementImpl(UserRepository userRepository,
RoleRepository roleRepository) {
this.userRepository = userRepository;
this.roleRepository = roleRepository;

}

@Transactional
public void addRoleToAllUsers(String roleName) {

Role role = roleRepository.findByName(roleName);

for (User user : userRepository.readAll()) {
user.addRole(role);
userRepository.save(user);

}
}

JPA Repositories

Spring Data JPA (1.0.0.M1) 16

This will cause call to addRoleToAllUsers(…) to run inside a transaction (participating in an existing one or
create a new one if none already running). The transaction configuration at the repositories will be neglected
then as the outer transaction configuration determines the actual one used. Note that you will have to activate
<tx:annotation-driven /> explicitly to get annotation based configuration at facades working. The example
above assumes you're using component scanning.

2.3.1. Transactional query methods

To let your query methods be transactional simply use @Transactional at the repository interface you define.

Example 2.13. Using @Transactional at query methods

@Transactional(readOnly = true)
public interface UserRepository extends JpaRepository<User, Long> {

List<User> findByLastname(String lastname);

@Modifying
@Transactional
@Query("delete from User u where u.active = false")
void deleteInactiveUsers();

}

Typically you will use the readOnly flag set to true as most of the query methods will be reading ones. In
contrast to that deleteInactiveUsers() makes use of the @Modifying annotation and overrides the transaction
configuration. Thus the method will be executed with readOnly flag set to false.

Note

It's definitely reasonable to use transactions for read only queries as we can mark them as such by
setting the readOnly flag. This will not act as check that you do not trigger a manipulating query
nevertheless (although some databases reject e.g. INSERT or UPDATE statements inside a transaction
set to be read only) but gets propagated as hint to the underlying JDBC driver to do performance
optimizations. Furthermore Spring will do some optimizations to the underlying JPA provider. E.g.
when used with Hibernate the flush mode is set to NEVER when you configure a transaction as read
only which causes Hibernate to skip dirty checks that gets quite noticeable on large object trees.

2.4. Auditing

Most applications will require some auditability for entities allowing to track creation date and user and
modification date and user. Spring Data JPA provides facilities to add this audition information to entity
transparently by AOP means. To take part in this functionality your domain classes have to implement a more
advanced interface:

Example 2.14. Auditable interface

public interface Auditable<U, ID extends Serializable>
extends Persistable<ID> {

U getCreatedBy();

JPA Repositories

Spring Data JPA (1.0.0.M1) 17

void setCreatedBy(U createdBy);

DateTime getCreatedDate();

void setCreated(Date creationDate);

U getLastModifiedBy();

void setLastModifiedBy(U lastModifiedBy);

DateTime getLastModifiedDate();

void setLastModified(Date lastModifiedDate);
}

As you can see the modifying entity itself only has to be an entity. Mostly this will be some sort of User entity,
so we chose U as parameter type.

Note

To minimize boilerplate code Spring Data JPA offers AbstractPersistable and
AbstractAuditable base classes that implement and preconfigure entities. Thus you can decide to
only implement the interface or enjoy more sophisticated support by extending the base class.

General auditing configuration

Spring Data JPA ships with an entity listener that can be used to trigger capturing auditing information. So first
you have to register the AuditingEntityListener inside your orm.xml to be used for all entities in your
persistence contexts:

Example 2.15. Auditing configuration orm.xml

<persistence-unit-metadata>
<persistence-unit-defaults>
<entity-listeners>
<entity-listener class="….data.jpa.domain.support.AuditingEntityListener" />

</entity-listeners>
</persistence-unit-defaults>

</persistence-unit-metadata>

Now activating auditing functionlity is just a matter of adding the Spring Data JPA auditing namespace
element to your configuration:

Example 2.16. Activating auditing in the Spring configuration

<jpa:auditing auditor-aware-ref="yourAuditorAwareBean" />

As you can see you have to provide a bean that implements the AuditorAware interface which looks as follows:

Example 2.17. AuditorAware interface

public interface AuditorAware<T, ID extends Serializable> {

JPA Repositories

Spring Data JPA (1.0.0.M1) 18

T getCurrentAuditor();
}

Usually you will have some kind of authentication component in your application that tracks the user currently
working with the system. This component should be AuditorAware and thus allow seemless tracking of the
auditor.

JPA Repositories

Spring Data JPA (1.0.0.M1) 19

Part II. Appendix

Spring Data JPA (1.0.0.M1) 20

1see ???

Appendix A. Namespace reference

A.1. The <repositories /> element

The <repositories /> element acts as container for <repository /> elements or can be left empty to trigger
auto detection1 of repository instances. Attributes defined for <repositories /> act are propagated to
contained <repository /> elements but can be overridden of course.

Table A.1. Attributes

Name Description

base-package Defines the package to be used to be scanned for repository interfaces
extending *Repository (actual interface is determined by specific
Spring Data module) in auto detection mode. All packages below the
configured package will be scanned, too. In auto configuration mode (no
nested <repository /> elements) wildcards are also allowed.

repository-impl-postfix Defines the postfix to autodetect custom repository implementations.
Classes whose names end with the configured postfix will be considered
as candidates. Defaults to Impl.

query-lookup-strategy Determines the strategy to be used to create finder queries. See ??? for
details. Defaults to create-if-not-found.

A.2. The <repository /> element

The <repository /> element can contain all attributes of <repositories /> except base-package. This will
result in overriding the values configured in the surrounding <repositories /> element. Thus here we will
only document extended attributes.

Table A.2. Attributes

id Defines the id of the bean the repository instance will be registered
under as well as the repository interface name.

custom-impl-ref Defines a reference to a custom repository implementation bean.

Spring Data JPA (1.0.0.M1) 21

Appendix B. Frequently asked questions
B.1. Common

B.1.1.
I'd like to get more detailled logging information on what methods are called inside JpaRepository, e.g.
How can I gain them?

You can make use of CustomizableTraceInterceptor provided by Spring:

<bean id="customizableTraceInterceptor" class="
org.springframework.aop.interceptor.CustomizableTraceInterceptor">
<property name="enterMessage" value="Entering $[methodName]($[arguments])"/>
<property name="exitMessage" value="Leaving $[methodName](): $[returnValue]"/>

</bean>

<aop:config>
<aop:advisor advice-ref="customizableTraceInterceptor"
pointcut="execution(public * org.sfw.data.jpa.repository.JpaRepository+.*(..))"/>

</aop:config>

B.2. Infrastructure

B.2.1.
Currently I have implemented a repository layer based on HibernateDaoSupport. I create a
SessionFactory by using Spring's AnnotationSessionFactoryBean. How do I get Hades DAOs
working in this environment.

You have to replace AnnotationSessionFactoryBean with the
LocalContainerEntityManagerFactoryBean. Supposed you have registered it under
entityManagerFactory you can reference it in you repositories based on HibernateDaoSupport as
follows:

Example B.1. Looking up a SessionFactory from an HibernateEntityManagerFactory

<bean class="com.acme.YourDaoBasedOnHibernateDaoSupport">
<property name="sessionFactory">
<bean factory-bean="entityManagerFactory"
factory-method="getSessionFactory" />

</property>
</bean>

B.3. Auditing

B.3.1.
I want to use Spring Data JPA auditing capabilities but have my database already set up to set
modification and creation date on entities. How to prevent Hades to set the date programmatically.

Just use the set-dates attribute of the auditing namespace element to false.

Spring Data JPA (1.0.0.M1) 22

Glossary

A

AOP Aspect oriented programming

C

Commons DBCP Commons DataBase Connection Pools - Library of the Apache foundation
offering pooling implementations of the DataSource interface.

CRUD Create, Read, Update, Delete - Basic persistence operations

D

DAO Data Access Object - Pattern to separate persisting logic from the object to be
persisted

Dependency Injection Pattern to hand a component's dependency to the component from outside,
freeing the component to lookup the dependant itself. For more information
see http://en.wikipedia.org/wiki/Dependency_Injection.

E

EclipseLink Object relational mapper implementing JPA - http://www.eclipselink.org

H

Hibernate Object relational mapper implementing JPA - http://www.hibernate.org

J

JPA Java Persistence Api

S

Spring Java application framework - http://www.springframework.org

Spring Data JPA (1.0.0.M1) 23

http://en.wikipedia.org/wiki/Dependency_Injection
http://www.eclipselink.org
http://www.hibernate.org
http://www.springframework.org

	Spring Data JPA - Reference Documentation
	Table of Contents
	Preface
	1. Project metadata

	Part I. Reference Documentation
	Chapter 1. Repositories
	1.1. Introduction
	1.2. Core concepts
	1.3. Query methods
	1.3.1. Defining repository interfaces
	1.3.2. Defining query methods
	1.3.2.1. Query lookup strategies
	1.3.2.2. Query creation
	1.3.2.2.1. Property expressions

	1.3.2.3. Special parameter handling

	1.3.3. Creating repository instances
	1.3.3.1. Spring
	1.3.3.2. Standalone usage

	1.4. Custom implementations
	1.4.1. Adding behaviour to single repositories
	1.4.2. Adding custom behaviour to all repositories

	Chapter 2. JPA Repositories
	2.1. Query methods
	2.1.1. Query lookup strategies
	2.1.2. Query creation
	2.1.3. Using JPA NamedQueries
	2.1.4. Using @Query
	2.1.5. Using named parameters
	2.1.6. Modifying queries

	2.2. Specifications
	2.3. Transactionality
	2.3.1. Transactional query methods

	2.4. Auditing

	Part II. Appendix
	Appendix A. Namespace reference
	A.1. The <repositories /> element
	A.2. The <repository /> element

	Appendix B. Frequently asked questions
	Glossary

