Spring Data JPA - Reference Documentation

Oliver Gierke

Copyright © 2012

Copies of this document may be made for your own use and for distribution to others, provided that you do not
charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether
distributed in print or electronically.

O (0 T= ol 1= o = - PSRRI iii
|. RefErence DOCUMENTALIONueiiiiieeeiiieiiiii e e e e e et e e e e e e s e e e e e e e e e s s asnteeeeaeeeessaanssnneeeeaaeeanans 1
T L 001] (o 1= PP PEPRR 2
00 g1 oo [T 1o o OO PEEPR 2

I @0 =Y oo 0= o 2

1.3, QUENY MELNOGSeeiieiiieiie ettt e et e e st e e s st e e e s nnnneeas 3
1.3.1. Defining repository iNtErfaCesoooiiiiiiieieie e 4

1.3.2. Defining query MEthOOSvvviiiiie e 5

1.3.3. Creating rePOSItOry iNSLANCESvvveeiiiiiieeeeiiie e et e e e e e e nnnneees 7

1.4. Custom implEMENLELIONSvvviiiieeee e e e e e e s e e e e e e s e e st reraaeeeaans 8
1.4.1. Adding behaviour t0 SINgI€ rEPOSITONESccuveeeeiiiiiie e 8

1.4.2. Adding custom behaviour to al repOSItOriEScccccevinrniiiii s 10

ST (1= 0 = RSP 12
1.5.1. Domain classweb binding for Spring MV C ..o 12

1.5.2. WED PAGINALIONvvveiiieeiiiiiiieeee e a e e e e s r e e e e s e ennnees 13

1.5.3. REPOSITONY POPUIBLOIScouveeieeiiiiiee et e ettt e e e e 14

2. JPA REDPOSITOMNES ...ttt eee e e e et e e e e e e e e e e e e e e s e e ettt e e e e aeeessssatraeeeeaeeessasntbraeeeeaaeeaans 16
FZ280 R 1 1o LN o1 o o PRSP 16
2.1.1. SPriNG NAIMESPACEcceeeeeeeeeee e e e 16

2.1.2. Annotation based configurationccveeiiiiirireiiiiie e 17

2.2. QUENY MELNOUOS ... e e e e e e e e e e e e e naeeeeeeas 17
2.2.1. Query |0OKUP SLTELEJIEScceiieiiiiiieeiee e e e ettt e e e e s e e e e e e e s e rraeeeaaeeeaaas 17

2.2.2. QUETY CIEELIONvieeeeteee ettt e et e e e e et e e s e e e e e annre e e e e e 18

2.2.3. Using JPA NameEdQUENIEScuviiiiiieeeii et e e e e rrrae e e e e e e 19

2.2.4. USING @QUETY ...ttt ettt ettt ettt et e e et e et e e e e e anes 20

2.2.5. UsiNg Named ParameEterSccooeeeeeeee e 21

2.2.6. MOAIfYING QUENTESuvieiiieee ittt e e e e st e e e e e e e e 21

2.2.7. ApPlYING QUENY NINESeiiiiiiiiie e 22

GRS o= ol o= (0] < TP 22

2.4, TranSACHONBIITYvveeeiiiiiee ettt et e e e e s e e e e e e nees 23
2.4.1. Transactional query methods ..o 24

2.5, LOCKING ettt e e 25

2.6. AUAITING oo 26

2.7, MISCEIBNEOUS ...ttt ettt ettt e e st e e s st e e e bb e e e enees 27
2.7.1. Merging PErSIStENCE UNITSvveieiiiiieeeiieee et e e 27

2.7.2. Classpath scanning for @Entity classes and JPA mapping filesccccceeeeeni. 27

2.7.3. CDIINEEOIAIONveieeiiiieieeiiiee ettt e e e et e e s s e e s e e e e e 28

I 0= 1 | 30
A NAMESPACE TEFEIEINCE ...ttt e e et e e e st e e e e nneeeas 31
A.l. The<repositories />EEMENEoouiiiiii it eeeaas 31

B. REPOSITOrY qQUENY KEYWOISuvvieiiieeei ittt e e e e ettt e e e e s e e e e e e e e st e e e e e e e e s annnnenes 32
B.1. Supported qUENY KEYWOITSccoiiiiiiiiiiiiie et 32

C. Frequently asked QUESLIONScc.uuieiiieee i e e e e s e st e e e e e e e s s eatbbaeeeeaaeeeans 33
GlOSSANY ...ttt ettt e e b et e e e e b a e e e e e et e e e nrrreeeaas 34

Spring Data JPA ()

Preface

1. Project metadata

» Version control - git://github.com/SpringSource/spring-data-jpa.qgit
» Bugtracker - https://jira.springsource.org/browse/DATAJPA

» Release repository - http://repo.springsource.org/libs-release

* Milestone repository - http://repo.springsource.org/libs-milestone
*» Snapshot repository - http://repo.springsource.org/libs-snapshot

Spring Data JPA ()

git://github.com/SpringSource/spring-data-jpa.git
https://jira.springsource.org/browse/DATAJPA
http://repo.springsource.org/libs-release
http://repo.springsource.org/libs-milestone
http://repo.springsource.org/libs-snapshot

Part |. Reference Documentation

Spring Data JPA ()

Chapter 1. Repositories

1.1. Introduction

Implementing a data access layer of an application has been cumbersome for quite a while. Too much
boilerplate code had to be written. Domain classes were anemic and not designed in a real object oriented or
domain driven manner.

Using both of these technologies makes developers life alot easier regarding rich domain model's persistence.
Nevertheless the amount of boilerplate code to implement repositories especialy is till quite high. So the goal
of the repository abstraction of Spring Data is to reduce the effort to implement data access layers for various
persistence stores significantly.

The following chapters will introduce the core concepts and interfaces of Spring Data repositoriesin general for
detailled information on the specific features of a particular store consult the later chapters of this document.

Note

e
As this part of the documentation is pulled in from Spring Data Commons we have to decide for a
particular module to be used as example. The configuration and code samples in this chapter are
using the JPA module. Make sure you adapt e.g. the XML namespace declaration, types to be
extended to the equivalents of the module you're actually using.

1.2. Core concepts

The central interface in Spring Data repository abstraction is Repository (probably not that much of a
surprise). It is typeable to the domain class to manage as well as the id type of the domain class. This interface
mainly acts as marker interface to capture the types to deal with and help us when discovering interfaces that
extend this one. Beyond that there's cr udReposi t ory which provides some sophisticated functionality around
CRUD for the entity being managed.

Example 1.1. ¢ udReposi t ory interface
public interface CrudRepository<T, |D extends Serializable>

ext ends Repository<T, ID> {
T save(T entity);
T findOne(l D primaryKey);
Iterabl e<T> findAl();
Long count ();
void delete(T entity);
bool ean exi sts(1D pri maryKey);

// ...nmore functionality om tted.

0 Savesthegiven entity.
0 Returnsthe entity identified by the given id.

Spring Data JPA () 2

Repositories

Returns all entities.

Returns the number of entities.

Deletes the given entity.

Returns whether an entity with the given id exists.

[B B B

Usually we will have persistence technology specific sub-interfaces to include additional technology specific
methods. We will now ship implementations for avariety of Spring Data modules that implement this interface.

On top of the CrudRepository there is a Pagi ngAndSorti ngRepository abstraction that adds additional
methods to ease paginated access to entities:

Example 1.2. PagingAndSortingRepository

public interface Pagi ngAndSorti ngRepository<T, |ID extends Serializabl e> extends CrudRepository<T, |ID> {
Iterabl e<T> findAll (Sort sort);

Page<T> findAl | (Pageabl e pageabl e);

Accessing the second page of user by a page size of 20 you could simply do something like this:

Pagi ngAndSort i ngReposi t ory<User, Long> repository = // ...get access to a bean
Page<User > users = repository.findAl | (new PageRequest (1, 20));

1.3. Query methods

Next to standard CRUD functionality repositories are usually queries on the underlying datastore. With Spring
Data declaring those queries becomes a four-step process:

1. Declare an interface extending Reposi t ory or one of its sub-interfaces and type it to the domain classit shall
handle.

public interface PersonRepository extends Repository<User, Long> { ...}

2. Declare query methods on the interface.

Li st <Person> findByLast nane(String | astnane);

3. Setup Spring to create proxy instances for those interfaces.

<?xm version="1.0" encodi ng="UTF-8"?>
<beans: beans xm ns: beans="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schenma- i nst ance"
xm ns="http://ww. springfranework. org/ schema/ dat a/ j pa"
xsi : schemaLocati on="htt p://ww. spri ngfranewor k. or g/ schema/ beans
htt p: // ww. spri ngfranewor k. or g/ schena/ beans/ spri ng- beans. xsd
http://ww. springframework. or g/ schenma/ dat a/ j pa
http://ww. spri ngframework. or g/ schena/ dat a/ j pa/ spri ng-j pa. xsd" >

<reposi tories base-package="com acne. repositories" />

</ beans>

Spring Data JPA () 3

Repositories

Note

Note that we use the JPA namespace here just by example. If you're using the repository
abstraction for any other store you need to change this to the appropriate namespace declaration
of your store module which should be exchanging j pa in favor of e.g. nongodb.

4. Get the repository instance injected and use it.

public class Sonmedient {

@\ut owi r ed
private PersonRepository repository;

public void doSonet hi ng() {
Li st <Person> persons = repository.findByLastname("Matthews");

}

At this stage we barely scratched the surface of what's possible with the repositories but the general approach
should be clear. Let's go through each of these steps and figure out details and various options that you have at
each stage.

1.3.1. Defining repository interfaces

Asavery first step you define adomain class specific repository interface. It's got to extend Reposi t ory and be
typed to the domain class and an ID type. If you want to expose CRUD methods for that domain type, extend
CrudReposi t ory instead of Repository.

1.3.1.1. Fine tuning repository definition

Usually you will have your repository interface extend Repository, CrudRepository Of
Pagi ngAndSort i ngReposi t ory. If you don't like extending Spring Data interfaces at all you can also annotate
your repository interface with @eposi t or yDef i ni ti on. Extending Cr udReposi t ory Will expose a complete set
of methods to manipulate your entities. If you would rather be selective about the methods being exposed,
simply copy the ones you want to expose from Cr udReposi t ory into your domain repository.

Example 1.3. Selectively exposing CRUD methods

interface MyBaseRepository<T, |ID extends Serializabl e> extends Repository<T, |ID> {
T findOne(ID id);
T save(T entity);

}

interface UserRepository extends MyBaseRepository<User, Long> {

User findByEnail Address(Enai |l Address enai | Address);
}

In the first step we define a common base interface for al our domain repositories and expose fi ndone(..) as
well as save(..).These methods will be routed into the base repository implementation of the store of your
choice because they are matching the method signatures in Cr udReposi t ory. SO OUr User Reposi t ory Will now
be able to save users, find single ones by id as well as triggering a query to find User s by their email address.

Spring Data JPA () 4

Repositories

1.3.2. Defining query methods

1.3.2.1. Query lookup strategies

The next thing we have to discuss is the definition of query methods. There are two main ways that the
repository proxy is able to come up with the store specific query from the method name. The first option is to
derive the query from the method name directly, the second is using some kind of additionally created query.
What detailed options are available pretty much depends on the actual store, however, there's got to be some
algorithm that decides what actual query is created.

There are three strategies available for the repository infrastructure to resolve the query. The strategy to be used
can be configured at the namespace through the query- 1 ookup- st rat egy attribute. However, It might be the
case that some of the strategies are not supported for specific datastores. Here are your options:

CREATE

This strategy will try to construct a store specific query from the query method's name. The general approach is
to remove a given set of well-known prefixes from the method name and parse the rest of the method. Read
more about query construction in Section 1.3.2.2, “ Query creation”.

USE_DECLARED_QUERY

This strategy tries to find a declared query which will be used for execution first. The query could be defined
by an annotation somewhere or declared by other means. Please consult the documentation of the specific store
to find out what options are available for that store. If the repository infrastructure does not find a declared
query for the method at bootstrap time it will fail.

CREATE_IF_NOT_FOUND (default)

This strategy is actualy a combination of CREATE and USE_DECLARED QUERY. It will try to lookup a declared
query first but create a custom method name based query if no declared query was found. This is the default
lookup strategy and thus will be used if you don't configure anything explicitly. It allows quick query definition
by method names but also custom tuning of these queries by introducing declared queries as needed.

1.3.2.2. Query creation

The query builder mechanism built into Spring Data repository infrastructure is useful to build constraining
queries over entities of the repository. We will strip the prefixes fi ndBy, fi nd, readBy, r ead, get By as well as
get from the method and start parsing the rest of it. At avery basic level you can define conditions on entity
properties and concatenate them with AND and CR.

Example 1.4. Query creation from method names

public interface PersonRepository extends Repository<User, Long> {

Li st <Person> fi ndByEmai | Addr essAndLast nane(Enai | Addr ess enmi | Address, String | astnane);

}

The actual result of parsing that method will of course depend on the persistence store we create the query for,
however, there are some general things to notice. The expressions are usually property traversals combined
with operators that can be concatenated. As you can see in the example you can combine property expressions

Spring Data JPA () 5

Repositories

with And and Or. Beyond that you also get support for various operators like Bet ween, LessThan, Gr eat er Than,
Li ke for the property expressions. As the operators supported can vary from datastore to datastore please
consult the according part of the reference documentation.

1.3.2.2.1. Property expressions

Property expressions can just refer to a direct property of the managed entity (as you just saw in the example
above). On query creation time we already make sure that the parsed property is at a property of the managed
domain class. However, you can also define constraints by traversing nested properties. Assume Per sons have
Addr esseswith zi pCodes. In that case a method name of

Li st <Person> fi ndByAddr essZi pCode(Zi pCode zi pCode);

will create the property traversal x. address. zi pCode. The resolution algorithm starts with interpreting the
entire part (Addresszi pCode) as property and checks the domain class for a property with that name
(uncapitalized). If it succeedsiit just uses that. If not it starts splitting up the source at the camel case parts from
the right side into a head and a tail and tries to find the according property, e.g. Addr esszi p and Code. If we
find a property with that head we take the tail and continue building the tree down from there. Asin our case
the first split does not match we move the split point to the left (Addr ess, zi pCode).

Although this should work for most cases, there might be cases where the algorithm could select the wrong
property. Suppose our Per son class has an addr esszi p property as well. Then our algorithm would match in
the first split round aready and essentially choose the wrong property and finaly fail (as the type of
addr esszi p probably has no code property). To resolve this ambiguity you can use _ inside your method name
to manually define traversal points. So our method name would end up like so:

Li st <Person> fi ndByAddr ess_Zi pCode(Zi pCode zi pCode);

1.3.2.3. Special parameter handling

To hand parameters to your query you simply define method parameters as already seen in the examples above.
Besides that we will recognizes certain specific types to apply pagination and sorting to your queries
dynamically.

Example 1.5. Using Pageable and Sort in query methods

Page<User > findBylLast nane(String | ast nane, Pageabl e pageabl e);
Li st <User > findByLastname(String | astname, Sort sort);

Li st <User > findByLastname(String | ast nane, Pageabl e pageabl e);

The first method allows you to pass a Pageabl e instance to the query method to dynamically add paging to
your statically defined query. Sorti ng options are handed via the Pageabl e instance too. If you only need
sorting, simply add a Sort parameter to your method. As you also can see, simply returning a Li st is possible
as well. We will then not retrieve the additional metadata required to build the actual Page instance but rather
simply restrict the query to lookup only the given range of entities.

5 Note
“a

To find out how many pages you get for a query entirely we have to trigger an additional count

Spring Data JPA () 6

Repositories

query. Thiswill be derived from the query you actually trigger by default.

1.3.3. Creating repository instances

So now the question is how to create instances and bean definitions for the repository interfaces defined.

1.3.3.1. XML Configuration

The easiest way to do so is by using the Spring namespace that is shipped with each Spring Data module that
supports the repository mechanism. Each of those includes a repositories element that allows you to simply
define a base package that Spring will scan for you.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans: beans xm ns: beans="http://ww. spri ngfranmewor k. or g/ schenma/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schenma- i nst ance"
xm ns="http://ww. springframework. org/ schena/ dat a/j pa"
xsi : schemaLocati on="http://ww. spri ngfranewor k. or g/ schema/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. spri ngfranework. or g/ schena/ dat a/ j pa
http://ww. springframework. or g/ schena/ dat a/ j pa/ spri ng-j pa. xsd">

<repositories base-package="com acne.repositories" />

</ beans: beans>

In this case we instruct Spring to scan com.acme.repositories and all its sub packages for interfaces extending
Reposi tory or one of its sub-interfaces. For each interface found it will register the persistence technology
specific Fact oryBean to create the according proxies that handle invocations of the query methods. Each of
these beans will be registered under a bean name that is derived from the interface name, so an interface of
User Reposi t ory would be registered under user Reposit ory. The base- package attribute allows the use of
wildcards, so that you can have a pattern of scanned packages.

Using filters

By default we will pick up every interface extending the persistence technology specific Repository
sub-interface located underneath the configured base package and create a bean instance for it. However, you
might want finer grained control over which interfaces bean instances get created for. To do this we support the
use of <include-filter /> and <exclude-filter /> elementsinside <repositories />. The semantics are
exactly equivalent to the elements in Spring's context namespace. For detaills see Spring reference
documentation on these elements.

E.g. to exclude certain interfaces from instantiation as repository, you could use the following configuration:

Example 1.6. Using exclude-filter element

<repositories base-package="com acne. repositories">
<cont ext:exclude-filter type="regex" expression=".*SoneRepository" />
</repositories>

Thiswould exclude all interfaces ending in SoneReposi t ory from being instantiated.

1.3.3.2. JavaConfig

Spring Data JPA () 7

http://static.springsource.org/spring/docs/2.5.x/reference/beans.html#beans-scanning-filters
http://static.springsource.org/spring/docs/2.5.x/reference/beans.html#beans-scanning-filters

Repositories

The repository infrastructure can also be triggered using a store-specific @nabl e${ st or e} Reposi tori es
annotation on a JavaConfig class. For an introduction into Java based configuration of the Spring container
please have alook at the reference documentati on.!

A sample configuration to enable Spring Data repositories would look something like this.

Example 1.7. Sample annotation based repository configuration

@Configuration
@nabl eJpaReposi tories("com acne. repositories")
cl ass ApplicationConfiguration {

@ean
public EntityManagerFactory entityManager Factory() {
...

}
}

Note that the sample uses the JPA specific annotation which would have to be exchanged dependingon which
store module you actually use. The same applies to the definition of the Enti t yManager Fact ory bean. Please
consult the sections covering the store-specific configuration.

1.3.3.3. Standalone usage

You can aso use the repository infrastructure outside of a Spring container usage. You will till need to have
some of the Spring libraries on your classpath but you can generally setup repositories programmatically as
well. The Spring Data modules providing repository support ship a persistence technology specific
Reposi t or yFact ory that can be used as follows:

Example 1.8. Standalone usage of repository factory

Reposi t oryFact orySupport factory = ...// Instantiate factory here
User Repository repository = factory. get Repository(UserRepository.class);

1.4. Custom implementations

1.4.1. Adding behaviour to single repositories

Often it is necessary to provide a custom implementation for a few repository methods. Spring Data
repositories easily allow you to provide custom repository code and integrate it with generic CRUD abstraction
and query method functionality. To enrich a repository with custom functionality you have to define an
interface and an implementation for that functionality first and let the repository interface you provided so far
extend that custom interface.

1 JavaConfi g in the Spring reference documentation

Spring Data JPA () 8

http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/beans.html#beans-java

Repositories

Example 1.9. Interface for custom repository functionality

i nterface User RepositoryCust om {

public void soneCustonmvet hod(User user);
}

Example 1.10. Implementation of custom repository functionality

cl ass UserRepositorylnmpl inplenents User RepositoryCustom {
public voi d someCust omVet hod(User user) {

/1 Your custom inpl enentation

}
}

Note that the implementation itself does not depend on Spring Data and can be a regular Spring bean. So you
can use standard dependency injection behaviour to inject references to other beans, take part in aspects and so
on.

Example 1.11. Changesto the your basic repository interface

public interface UserRepository extends CrudRepository<User, Long> UserRepositoryCustom {

/| Declare query nethods here

}

Let your standard repository interface extend the custom one. This makes CRUD and custom functionality
availableto clients.

Configuration

If you use namespace configuration the repository infrastructure tries to autodetect custom implementations by
looking up classes in the package we found a repository using the naming conventions appending the
namespace element's attribute r eposi t or y- i npl - post f i x to the classname. This suffix defaultsto | npl .

Example 1.12. Configuration example

<repositories base-package="com acne.repository" />

<reposi tories base-package="com acne.repository" repository-inpl-postfix="FooBar" />

The first configuration example will try to lookup a class com acre. reposi t ory. User Reposi t oryl mpl to act as
custom repository implementation, where the second example will try to lookup
com acne. reposi tory. User Reposi t or yFooBar .

Manual wiring

Spring Data JPA () 9

Repositories

The approach above works perfectly well if your custom implementation uses annotation based configuration
and autowiring entirely as it will be treated as any other Spring bean. If your custom implementation bean
needs some special wiring you simply declare the bean and name it after the conventions just described. We
will then pick up the custom bean by name rather than creating an instance.

Example 1.13. Manual wiring of custom implementations (1)

<repositories base-package="com acne. repository" />

<beans: bean i d="user Repositorylnpl" class=".">
<!-- further configuration -->
</ beans: bean>

1.4.2. Adding custom behaviour to all repositories

In other cases you might want to add a single method to all of your repository interfaces. So the approach just
shown is not feasible. The first step to achieve this is adding and intermediate interface to declare the shared
behaviour

Example 1.14. An interface declaring custom shared behaviour

public interface My/Repository<T, |D extends Serializable>
ext ends JpaRepository<T, |ID> {

voi d shar edCust omvet hod(ID i d);
}

Now your individual repository interfaces will extend this intermediate interface instead of the Repository
interface to include the functionality declared. The second step is to create an implementation of this interface
that extends the persistence technology specific repository base class which will then act as a custom base class
for the repository proxies.

Note
"

The default behaviour of the Spring <r eposi tori es /> namespaceis to provide an implementation
for al interfaces that fall under the base- package. This means that if left in it's current state, an
implementation instance of M/Reposi t ory will be created by Spring. Thisis of course not desired
as it is just supposed to act as an intermediary between Repository and the actual repository
interfaces you want to define for each entity. To exclude an interface extending Reposi t ory from
being instantiated as a repository instance it can either be annotate it with @oReposi t or yBean oOr
moved out side of the configured base- package.

Example 1.15. Custom repository base class

public class MyRepositorylnpl <T, |ID extends Serializabl e>
ext ends Si npl eJpaRepository<T, |D> i npl enents MyRepository<T, |D> {

private EntityManager entityManager;

Spring Data JPA () 10

Repositories

/'l There are two constructors to choose from either can be used.
public MyRepositoryl npl (O ass<T> donmi nC ass, EntityManager entityManager) {
super (domai nCl ass, entityManager);

/] This is the recormended nethod for accessing inherited class dependenci es.
this.entityManager = entityManager;
}

public voi d sharedCust omvet hod(ID id) {
/1 inplenmentation goes here
}
}

The last step is to create a custom repository factory to replace the default Reposi t or yFact or yBean that will in
turn produce a custom RepositoryFactory. The new repository factory will then provide your
MyReposi toryl npl as the implementation of any interfaces that extend the Reposi t ory interface, replacing the
Si npl eJpaReposi t ory implementation you just extended.

Example 1.16. Custom repository factory bean

public class MyRepositoryFact oryBean<R ext ends JpaRepository<T, 1>, T, | extends Serializabl e>
ext ends JpaRepositoryFactoryBean<R, T, |> {

prot ect ed RepositoryFactorySupport createRepositoryFactory(EntityManager entityManager) {

return new MyRepositoryFactory(entityManager);

}
private static class M/RepositoryFactory<T, | extends Serializable> extends JpaRepositoryFactory {
private EntityManager entityManager;

public MyRepositoryFactory(EntityManager entityManager) ({
super (entityManager);

this.entityManager = entityManager;
}

protected Object getTarget Repository(RepositoryMetadata nmetadata) {

return new MyRepositoryl npl <T, |>((C ass<T>) netadat a. get Domai nCl ass(), entityManager);
}

protected Cl ass<?> get RepositoryBaseCl ass(RepositoryMet adata met adata) {

I/ The RepositoryMetadata can be safely ignored, it is used by the JpaRepositoryFactory
//to check for QueryDsl JpaRepository's which is out of scope.
return MyRepository.cl ass;
}
}
}

Finally you can either declare beans of the custom factory directly or use the f act ory- ¢l ass attribute of the
Spring namespace to tell the repository infrastructure to use your custom factory implementation.

Example 1.17. Using the custom factory with the namespace

<repositories base-package="com acne. repository"
factory-cl ass="com acne. M/Reposi t or yFact or yBean" />

Spring Data JPA () 11

Repositories

1.5. Extensions

This chapter documents a set of Spring Data extensions that enable Spring Data usage in a variety of contexts.
Currently most of the integration is targeted towards Spring MV C.

1.5.1. Domain class web binding for Spring MVC

Given you are developing a Spring MV C web applications you typically have to resolve domain class ids from
URLSs. By default it's your task to transform that request parameter or URL part into the domain class to hand it
layers below then or execute business logic on the entities directly. This should look something like this:

@ontroller
@Request Mappi ng("/ users")
public class UserController {

private final UserRepository userRepository;

public UserController(UserRepository userRepository) {
user Repository = userRepository;
}

@Request Mappi ng("/{id}")
public String showUser Forn{ @at hVari abl e("id") Long id, Mdel nodel) {

/1 Do null check for id

User user = userRepository.findOne(id);
/1 Do null check for user

/| Popul at e nodel

return "user";

First you pretty much have to declare a repository dependency for each controller to lookup the entity managed
by the controller or repository respectively. Beyond that looking up the entity is boilerplate as well as it's
aways afindone(.) cal. Fortunately Spring provides means to register custom converting components that
allow conversion between a st ri ng value to an arbitrary type.

PropertyEditors

For versions up to Spring 3.0 simple Java PropertyEditors had to be used. Thus, we offer a
Domai nCl assPropert yEdi t or Regi strar, that will look up all Spring Data repositories registered in the
Appl i cati onCont ext and register a custom pr oper t yEdi t or for the managed domain class

<bean cl ass="...web. servl et. nmvc. annot ati on. Annot at i onMet hodHandl er Adapt er " >
<property nanme="webBi ndinglnitializer">
<bean cl ass="...web. bi nd. support. Confi gurabl eWebBi ndi nglnitializer">

<property name="propertyEditorRegistrars">
<bean cl ass="org. spri ngfranmework. dat a. reposi tory. support. Dormai nCl assPropertyEdi torRegi strar" />
</ property>
</ bean>
</ property>
</ bean>

If you have configured Spring MV C like this you can turn your controller into the following that reduces a lot
of the clutter and boilerplate.

@ontrol | er
@Request Mappi ng("/ users")
public class UserController {

@Request Mappi ng("/{id}")
public String showUser For n{ @at hVari abl e("id") User user, Mdel nodel) {

Spring Data JPA () 12

Repositories

/1 Do null check for user
/| Popul at e nodel
return "userForni;

}
}

ConversionService

As of Spring 3.0 the Propert yEdi t or support is superseeded by a new conversion infrstructure that leaves all
the drawbacks of Propert yEdi t or s behind and uses a stateless X to Y conversion approach. We now ship with
a Domai nd assConverter that pretty much mimics the behaviour of Dormai nO assPropert yEdi t or Regi strar.
To register the converter you have to declare Conver si onSer vi ceFact or yBean, register the converter and tell
the Spring MV C namespace to use the configured conversion service:

<mvc: annot ati on-driven conversi on-servi ce="conversi onServi ce" />

<bean i d="conversionService" class="...context.support.ConversionServiceFactoryBean">
<property name="converters">
<list>

<bean cl ass="org. spri ngfranmewor k. dat a. reposi tory. support. Domai nCl assConverter">
<constructor-arg ref="conversionService" />
</ bean>
</list>
</ property>
</ bean>

1.5.2. Web pagination

@ontroller
@Request Mappi ng("/ users")
public class UserController {

/1 DI code omtted

@Request Mappi ng
public String showUsers(Mdel nodel, HttpServletRequest request) {

int page = Integer.parselnt(request. getParaneter("page"));

int pageSi ze = | nteger. parsel nt(request.get Paraneter("pageSi ze"));
nodel . addAttri but e("users", userService. get Users(pageabl e));
return "users";

As you can see the naive approach requires the method to contain an Ht t pSer vl et Request parameter that has
to be parsed manually. We even omitted an appropriate failure handling which would make the code even more
verbose. The bottom line is that the controller actually shouldn't have to handle the functionality of extracting
pagination information from the request. So we include a Pageabl eAr gunent Resol ver that will do the work for
youl.

<bean cl ass="...web. servl et. nvc. annot ati on. Annot at i onMet hodHandl er Adapt er " >
<property nanme="cust omAr gunent Resol vers">
<list>
<bean cl ass="org. spri ngfranmewor k. dat a. web. Pageabl eAr gunent Resol ver" />
</list>
</ property>
</ bean>

This configuration allows you to simplify controllers down to something like this:

@ontrol | er
@Request Mappi ng("/ users")

Spring Data JPA () 13

Repositories

public class UserController {

@Request Mappi ng
public String showUsers(Mdel nodel, Pageable pageable) {

nodel . addAttri but e("users", userDao.readAl | (pageable));
return "users";

}
}

The Pageabl eAr gunent Resol ver Will automatically resolve request parameters to build a PageRequest
instance. By default it will expect the following structure for the request parameters.

Table 1.1. Request parameters evaluated by Pageabl eAr gunent Resol ver

page The page you want to retrieve

page. si ze The size of the page you want to retrieve
page. sort The property that should be sorted by

page. sort.dir The direction that should be used for sorting

In case you need multiple Pageabl es to be resolved from the request (for multiple tables e.g.) you can use
Spring's @al i fi er annotation to distinguish one from another. The request parameters then have to be
prefixed with ${ qual i fi er}_. So amethod signature like this:

public String showlUsers(Mdel nodel,
@ualifier("foo") Pageable first,
@ualifier("bar") Pageable second) { ...}

you'd have to populate f oo_page and bar _page and the according subproperties.

Defaulting

The Pageabl eAr gunent Resol ver Will use a PageRequest with the first page and a page size of 10 by default
and will use that in case it can't resolve a PageRequest from the request (because of missing parameters e.g.).
Y ou can configure a global default on the bean declaration directly. In case you might need controller method
specific defaults for the Pageabl e sSimply annotate the method parameter with @ageabl eDef aul t s and specify
page and page size as annotation attributes:

public String showlUsers(Mdel nodel,
@rageabl eDef aul t s(pageNunber = 0, value = 30) Pageabl e pageable) { ...}

1.5.3. Repository populators

If you have been working with the JDBC module of Spring you're probably familiar with the support to
populate a DataSource using SQL scripts. A similar abstraction is available on the repositories level although
we don't use SQL as data definition language as we need to be store independent of course. Thus the populators
support XML (through Spring's OXM abstraction) and JSON (through Jackson) to define data for the
repositories to be populated with.

Assume you have afiledat a. j son with the following content:

Spring Data JPA () 14

Repositories

Example 1.18. Data defined in JSON

[{ "_class" : "com acne. Person",
‘firstnane" : "Dave",
"l astnanme" : "Matthews" },
{ "_class" : "com acne. Person",
"firstname" : "Carter",
"l ast nanme" : "Beauford" }]

Y ou can easily populate you repositaries by using the populator elements of the repository namespace provided
in Spring Data Commons. To get the just shown data be populated to your Per sonReposi t ory al you need to
do isthefollowing:

Example 1.19. Declaring a Jackson repository populator

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. springfranmework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns: repository="http://ww.springfranmework. org/ schene/ dat a/repository"
xsi : schemaLocati on="htt p://ww. spri ngfranewor k. or g/ schema/ beans
http://ww. spri ngframewor k. or g/ schenma/ beans/ spri ng- beans. xsd
http://ww. springframework. or g/ schenma/ dat a/ reposi tory
ht t p: / / ww. spri ngf ranewor k. or g/ schena/ dat a/ r eposi t ory/ spri ng-repository. xsd">

<reposi tory:jackson-popul ator | ocati on="cl asspat h: data.json" />

</ beans>

This declaration causes the data.json file being read, deserialized by a Jackson bj ect Mapper . The type the
JSON object will be unmarshalled to will be determined by inspecting the _cl ass attribute of the JSON
document. We will eventually select the appropriate repository being able to handle the object just deserialized.

To rather use XML to define the repositories shall be populated with you can use the unmarshaller-popul ator
you hand one of the marshaller options Spring OXM provides you with.

Example 1.20. Declaring an unmar shalling repository populator (using JAXB)

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. springframework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: reposi tory="http://ww. springframework. org/ schena/ dat a/repository"
xm ns: oxnE"ht t p: // ww. spri ngfranmewor k. or g/ schema/ oxnt'
xsi : schemaLocati on="htt p://ww. spri ngfranewor k. or g/ schema/ beans
http: // ww. spri ngfranework. or g/ schena/ beans/ spri ng- beans. xsd
http://ww. springframework. or g/ schenma/ dat a/ reposi tory
htt p: // ww. spri ngf ranewor k. or g/ schena/ dat a/ r eposi t ory/ spri ng-repository. xsd
http: //ww. spri ngfranework. or g/ schena/ oxm
htt p: // www. spri ngf ranewor k. or g/ schena/ oxni spri ng- oxm xsd" >

<reposi tory: unmarshal | er-popul ator | ocati on="cl asspat h: data.j son" unnmarshall er-ref="unmarshal l er" />
<oxm j axb2- mar shal | er cont ext Pat h="com acne" />

</ beans>

Spring Data JPA () 15

Chapter 2. JPA Repositories

This chapter includes details of the JPA repository implementation.

2.1. Introduction

2.1.1. Spring namespace

The JPA module of Spring Data contains a custom namespace that allows defining repository beans. It also
contains certain features and element attributes that are specia to JPA. Generally the JPA repositories can be

set up using ther eposi t ori es element:

Example 2.1. Setting up JPA repositories using the namespace

<?xm version="1.0" encodi ng="UTF- 8" ?>

<beans xm ns="http://ww. springframework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schenma- i nst ance"
xm ns:j pa="http://ww. springframework. org/ schena/ dat a/ j pa"
xsi : schemaLocati on="http://ww. spri ngfranmewor k. or g/ schema/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans. xsd

http: // ww. spri ngfranewor k. or g/ schena/ dat a/ j pa

http://ww. springframework. or g/ schena/ dat a/ j pa/ spri ng-j pa. xsd">

<j pa: repositories base-package="com acne.repositories" />

</ beans>

Using this element looks up Spring Data repositories as described in Section 1.3.3, “Creating repository
instances’. Beyond that it activates persistence exception trandation for all beans annotated with @reposi t ory
to let exceptions being thrown by the JPA presistence providers be converted into Spring's

Dat aAccessExcept i on hierarchy.

Custom namespace attributes

Beyond the default attributes of the reposi tories element the JPA namespace offers additional attributes to
gain more detailled control over the setup of the repositories:

Table 2.1. Custom JPA-specific attributes of the repositories element

entity-manager-factory-ref

Explicitly wirethe Ent i t yManager Fact ory to be used
with the repositories being detected by the
repositories element. Usually used if multiple
EntityManager Fact ory beans are used within the
application. If not configured we will automatically
lookup the single Ent i t yManager Fact ory configured
inthe Appl i cati onCont ext .

transacti on- manager - r ef

Explicitly wire the Pl at f or nilr ansact i onManager t0
be used with the repositories being detected by the
repositories element. Usually only necessary if
multiple transaction managers and/or

Spring Data JPA () 16

JPA Repositories

Enti t yManager Fact ory beans have been configured.
Default to a single defined
Pl at f or miTr ansact i onManager inside the current
Appl i cati onCont ext .

2.1.2. Annotation based configuration

The Spring Data JPA repositories support cannot only be activated through an XML namespace but also using
an annotation through JavaConfig.

Example 2.2. Spring Data JPA repositories using JavaConfig

@Confi guration

@nabl eJpaRepositories
@nabl eTr ansact i onManagenent
class ApplicationConfig {

@ean
publ i c DataSource dataSource() ({

EnbeddedDat abaseBui | der buil der = new EnbeddedDat abaseBui | der () ;
return buil der. set Type(EnbeddedDat abaseType. HSQL) . bui I d() ;
}

@Bean
public EntityManager Factory entityManager Factory() {

Hi ber nat eJpaVendor Adapt er vendor Adapt er = new Hi ber nat eJpaVendor Adapt er () ;
vendor Adapt er . set Gener at eDdl (true);

Local Cont ai ner Ent i t yManager Fact oryBean factory = new Local Cont ai ner Ent i t yManager Fact or yBean() ;
factory. set JpaVendor Adapt er (vendor Adapt er) ;

factory. set PackagesToScan("com acne. donai n") ;

factory. set Dat aSour ce(dat aSource());

factory.afterPropertiesSet();

return factory. get Object();
}

@Bean

public Pl atformlransacti onManager transacti onManager () {

JpaTransacti onManager txManager = new JpaTransacti onManager();
t xManager . set Enti t yManager Fact ory(entityManager Factory());
return txManager;
}
}

The just shown configuration class sets up an embedded HSQL database using the EnbeddedDat abaseBui | der
API of spring-jdbc. We then set up aEnt i t yManager Fact ory and use Hibernate as sample persistence provider.
The last infrastructure component declared here is the JpaTr ansact i onManager . We eventually activate Spring
Data JPA repositories using the @nabl eJpaRepositories annotation which essentialy carries the same
attributes as the XML namespace does. If no base package is configured it will use the one the configuration
classresidesin.

2.2. Query methods

2.2.1. Query lookup strategies

Spring Data JPA () 17

JPA Repositories

The JPA module supports defining a guery manually as String or have it being derived from the method name.

Declared queries

Although getting a query derived from the method name is quite convenient, one might face the situation in
which either the method name parser does not support the keyword one wants to use or the method name would
get unnecessarily ugly. So you can either use JPA named queries through a naming convention (see
Section 2.2.3, “Using JPA NamedQueries’ for more information) or rather annotate your query method with

@wery (see Section 2.2.4, “Using @Query” for details).

2.2.2. Query creation

Generally the query creation mechanism for JPA works as described in Section 1.3, “Query methods’. Here's a

short example of what a JPA query method trandates into:

Example 2.3. Query creation from method names

public interface UserRepository extends Repository<User, Long> {

Li st <User > fi ndByEnai | Addr essAndLast nane(String emai |l Address, String | astnane);

}

We will create a query using the JPA criteria APl from this but essentially this transates into the following

query:

select u from User u where u.enmil Address = ?1 and u.l astnane = ?2

Spring Data JPA will do a property check and traverse nested properties as described in Section 1.3.2.2.1,
“Property expressions’. Here's an overview of the keywords supported for JPA and what a method containing

that keyword essentially trandates to.

Table 2.2. Supported keywordsinside method names

Keyword Sample JPQL snippet

And fi ndByLast nanmeAndFi r st nane ...where x.lastname = ?1 and x.firstname = ?2
(0 fi ndByLast nameOr Fi r st nane ...wWhere x.lastnane = ?1 or x.firstnane = ?2
Bet ween fi ndBySt art Dat eBet ween ...wWhere x.startDate between 1? and ?2
LessThan fi ndByAgeLessThan ...wWhere x.age < ?1

Great er Than fi ndByAgeG eat er Than ...wWhere x.age > ?1

After findByStartDat eAfter ...wWhere x.startDate > ?1

Bef or e fi ndBySt art Dat eBef ore ...wWhere x.startDate < ?1

I sNul | fi ndByAgel sNul | ...where x.age is null

I sNot Nul |, Not Nulfli ndByAge(| s) Not Nul | ...where x.age not null

Li ke fi ndByFi r st nameLi ke ...where x.firstname |ike ?1

Spring Data JPA ()

18

JPA Repositories

Keyword Sample JPQL snippet
Not Li ke fi ndByFi r st nameNot Li ke ...where x.firstname not |ike ?1
StartingWth findByFirstnaneStarti ngWth ... where x.firstname like 2?1 (parameter bound
with prepended %)
ngWth findByFi rst naneEndi ngWt h ... where x.firstname like 2?1 (parameter bound
with appended %)
Cont ai ni ng fi ndByFi r st naneCont ai ni ng ... where x.firstname like 2?1 (parameter bound
wrapped in %)
O der By fi ndByAgeOr der ByLast nanmeDesc ...wWhere x.age = ?1 order by x.l|astnane desc
Not fi ndByLast nameNot ...wWhere x.lastnane <> ?1
In fi ndByAgel n(Col | ecti on<Age> ...where x.age in ?1
ages)
Not I n fi ndByAgeNot | n(Col | ecti on<Age> ...where x.age not in ?1
age)
True findByActiveTrue() ...where x.active = true
Fal se findByActi veFal se() ...Where x.active = fal se
Note
9

I'n and Not I n also take any subclass of Col | ecti on as parameter as well as arrays or varargs. For
other syntactical versions of the very same logical operator check Appendix B, Repository query
keywords.

2.2.3. Using JPA NamedQueries

Note

.

e

The examples use simple <naned- query /> element and @anedQuery annotation. The queries for
these configuration elements have to be defined in JPA query language. Of course you can use
<naned- native-query /> Or @anmedNativeQuery t00. These elements allow you to define the
query in native SQL by losing the database platform independence.

XML named query definition

To use XML configuration simply add the necessary <naned-query /> element to the orm xni JPA
configuration file located in META-1 NF folder of your classpath. Automatic invocation of named queries is
enabled by using some defined naming convention. For more details see below.

Example 2.4. XML named query configuration

<naned- query nane="User. findByLast nane">
<query>select u from User u where u.lastnane = ?1</query>
</ naned- query>

Spring Data JPA () 19

JPA Repositories

Asyou can see the query has a special name which will be used to resolve it at runtime.

Annotation configuration

Annotation configuration has the advantage of not needing another configuration file to be edited, probably
lowering maintenance costs. Y ou pay for that benefit by the need to recompile your domain class for every new
query declaration.

Example 2.5. Annotation based named query configuration

@ntity
@NanmedQuery(name = "User. findByEmai | Addr ess",
query = "select u from User u where u.enuil Address = ?1")

public class User {

}

Declaring interfaces

To allow execution of these named queries all you need to do isto specify the User Reposi t ory asfollows:

Example 2.6. Query method declaration in User Repository

public interface UserRepository extends JpaRepository<User, Long> {
Li st <User> findBylLast nane(String | astnane);

User findByEmail Address(String enumil Address);
}

Spring Data will try to resolve a call to these methods to a named query, starting with the simple name of the
configured domain class, followed by the method name separated by a dot. So the example here would use the
named queries defined above instead of trying to create a query from the method name.

2.2.4. Using @Query

Using named queries to declare queries for entities is a valid approach and works fine for a small number of
queries. As the queries themselves are tied to the Java method that executes them you actually can bind them
directly using the Spring Data JPA @uery annotation rather than annotating them to the domain class. This will
free the domain class from persistence specific information and co-locate the query to the repository interface.

Queries annotated to the query method will take precedence over queries defined using @damedQuery or named
queriesdeclared inorm xm .

Example 2.7. Declare query at the query method using @uery

public interface UserRepository extends JpaRepository<User, Long> {

@uery("select u fromUser u where u.email Address = ?1")
User findByEmail Address(String enmmil Address);
}

Spring Data JPA () 20

JPA Repositories

Native queries

The @uery annotation allows to execute native queries by setting the nat i veQuery flag to true. Note, that we
currently don't support execution of pagination or dynamic sorting for native queries as we'd have to
mani pulate the actual query declared and we cannot do thisreliably for native SQL.

Example 2.8. Declare a native query at the query method using @uery

public interface UserRepository extends JpaRepository<User, Long> {

@uery(value = "SELECT FROM USERS WHERE EMAI L_ADDRESS = ?0", nativeQuery = true)
User findByEnmail Address(String enunil Address);
}

2.2.5. Using named parameters

By default Spring Data JPA will use position based parameter binding as described in al the samples above.
This makes query methods a little error prone to refactoring regarding the parameter position. To solve this
issue you can use @ar am annotation to give a method parameter a concrete name and bind the name in the

query:

Example 2.9. Using named parameters

public interface UserRepository extends JpaRepository<User, Long> {

@uery("select u fromUser u where u.firstnane = :firstnane or u.lastnanme = :|astnane")
User findByLastnameOr Firstnanme(@Paranm("l astnane") String | astnaneg,
@aran("firstnanme") String firstnane);

Note that the method parameters are switched according to the occurrence in the query defined.

2.2.6. Modifying queries

All the sections above describe how to declare queries to access a given entity or collection of entities. Of
course you can add custom modifying behaviour by using facilities described in Section 1.4, “Custom
implementations’. As this approach is feasible for comprehensive custom functionality, you can achieve the
execution of modifying queries that actually only need parameter binding by annotating the query method with
@ndi fyi ng:

Example 2.10. Declaring manipulating queries

@ndi fyi ng
@uery("update User u set u.firstname = ?1 where u.lastnane = ?2")
int setFixedFirstnaneFor(String firstnane, String |astnane);

This will trigger the query annotated to the method as updating query instead of a selecting one. As the
Enti t yManager might contain outdated entities after the execution of the modifying query, we automatically

Spring Data JPA () 21

JPA Repositories

clear it (see JavaDoc of Enti t yManager .cl ear () for details). Thiswill effectively drop al non-flushed changes
till pending in the Ent i t yManager . If you don't wish the Enti t yManager to be cleared automatically you can
set @nbdi fyi ng annotation'scl ear Aut omat i cal | y attributeto f al se;

2.2.7. Applying query hints

To apply JPA QueryHi nt s to the queries declared in your repository interface you can use the QueryHints
annotation. It takes an array of JPA Quer yH nt annotations plus a boolean flag to potentially disable the hints
applied to the addtional count query triggered when applying pagination.

Example 2.11. Using QueryHintswith arepository method

public interface UserRepository extends Repository<User, Long> {
@ueryH nts(val ue = { @ueryH nt(name = "nane", value = "value")},
forCounting = fal se)
Page<User > findByLast name(String | ast nane, Pageabl e pageabl e);

}

The just shown declaration would apply the configured Quer yHi nt for that actually query but omit applying it
to the count query triggered to calculate the total number of pages.

2.3. Specifications

JPA 2 introduces a criteria API that can be used to build queries programmatically. Writing acriteria you
actually define the where-clause of a query for a domain class. Taking another step back these criteria can be
regarded as predicate over the entity that is described by the JPA criteria API constraints.

Spring Data JPA takes the concept of a specification from Eric Evans book "Domain Driven Design’,
following the same semantics and providing an APl to define such speci fi cat i ons using the JPA criteria API.
To support specifications you can extend your repository interface with the JpaSpeci fi cati onExecut or
interface:

public interface CustonerRepository extends CrudRepository<Custoner, Long>, JpaSpecificationExecutor {

-

The additional interface carries methods that allow you to execute Speci fi cat i onsin avariety of ways.

For example, ther eadAl I method will return all entities that match the specification:

Li st <T> readAl | (Speci ficati on<T> spec);

The speci fi cati on interfaceis as follows:

public interface Specification<T> {
Predi cat e t oPredi cat e(Root <T> root, CriteriaQuery<?> query,
CriteriaBuil der builder);

Okay, so what is the typical use case? Specifications can easily be used to build an extensible set of
predicates on top of an entity that then can be combined and used with JpaReposi t ory without the need to

Spring Data JPA () 22

JPA Repositories

declare a query (method) for every needed combination. Here's an example:

Example 2.12. Specifications for a Customer

public class CustonerSpecs {

public static Specification<Custoner> isLongTernCustoner() {
return new Specification<Custoner>() {
Predi cate toPredi cate(Root <T> root, CriteriaQuery<?> query,
CriteriaBuilder builder) {

Local Date date = new Local Dat e(). m nusYears(2);
return builder.| essThan(root. get (Custoner_.createdAt), date);

}
b
}

public static Specification<Custoner> hasSal esO MoreThan(Mont ar yAmount val ue) {
return new Speci fication<Custoner>() {
Predi cat e t oPredi cat e(Root <T> root, CriteriaQuery<?> query,
CriteriaBuilder builder) {

/1 build query here
}
hé
}
}

Admittedly the amount of boilerplate leaves room for improvement (that will hopefully be reduced by Java 8
closures) but the client side becomes much nicer as you will see below. Besides that we have expressed some
criteria on a business requirement abstraction level and created executable Speci i cati onS. S0 a client might
use a Speci fi cati on asfollows:

Example 2.13. Using a simple Specification

Li st <Cust omer > custonmers = custoner Repository.findAl | (isLongTernCustoner());

Okay, why not simply create a query for this kind of data access? Y ou're right. Using a single Speci fi cati on
does not gain alot of benefit over a plain query declaration. The power of Speci fi cati ons really shines when
you combine them to create new Speci fi cati on objects. You can achieve this through the Speci fi cati ons
helper class we provide to build expressions like this:

Example 2.14. Combined Specifications

Monet ar yAnmount anmount = new Monet ar yAmount (200. 0, Currenci es. DOLLAR) ;
Li st <Cust oner > custoners = cust oner Reposi tory.readAl | (
wher e(i sLongTer nCust oner ()) . or (hasSal esOf Mor eThan(anount)));

As you can see, Speci fi cati ons offers some glue-code methods to chain and combine Speci fi cati onS. Thus
extending your data access layer is just a matter of creating new Specification implementations and
combining them with ones already existing.

2.4. Transactionality

Spring Data JPA () 23

JPA Repositories

CRUD methods on repository instances are transactional by default. For reading operations the transaction
configuration readonl y flag is set to true, al others are configured with a plain @r ansacti onal so that default
transaction configuration applies. For details see JavaDoc of Repository. If you need to tweak transaction
configuration for one of the methods declared in Reposi t ory simply redeclare the method in your repository
interface as follows:

Example 2.15. Custom transaction configuration for CRUD

public interface UserRepository extends JpaRepository<User, Long> {

@verride
@ransactional (ti meout = 10)
public List<User> findAll();

/'l Further query nethod decl arations

This will cause the fi ndAl I () method to be executed with a timeout of 10 seconds and without the r eadnl y
flag.

Another possibility to alter transactional behaviour is using a facade or service implementation that typically
covers more than one repository. Its purpose is to define transactional boundaries for non-CRUD operations:

Example 2.16. Using a facade to define transactions for multiple repository calls

@servi ce
cl ass User Managenent | npl i npl enents User Managenent {

private final UserRepository userRepository;
private final Rol eRepository rol eRepository;

@\ut owi r ed

publ i c User Managenent | npl (User Reposi tory user Repository,
Rol eRepository rol eRepository) {
t hi s. user Reposi tory user Reposi tory;
this.rol eRepository rol eReposi tory;

}

@r ansacti onal
public voi d addRol eToAl | Users(String rol eNane) {

Rol e rol e = rol eRepository. fi ndByNane(rol eNane) ;

for (User user : userRepository.readAl()) {
user . addRol e(rol e);
user Reposi tory. save(user);

}

This will cause call to addRol eToAl | Users(..) to run inside a transaction (participating in an existing one or
create a new one if none aready running). The transaction configuration at the repositories will be neglected
then as the outer transaction configuration determines the actual one used. Note that you will have to activate
<t x: annotation-driven /> explicitly to get annotation based configuration at facades working. The example
above assumes you are using component scanning.

2.4.1. Transactional query methods

Spring Data JPA () 24

JPA Repositories

To alow your query methods to be transactional simply use @r ansacti onal at the repository interface you
define.

Example 2.17. Using @Transactional at query methods

@ransactional (readOnly = true)
public interface UserRepository extends JpaRepository<User, Long> {

Li st <User> findBylLast nane(String | astnane);

@vbdi fying

@r ansacti onal

@uery("delete fromUser u where u.active = fal se")
voi d del etel nactiveUsers();

Typically you will want the readonl y flag set to true as most of the query methods will only read data. In
contrast to that del et el nact i veUser s() makes use of the @ndi f yi ng annotation and overrides the transaction
configuration. Thus the method will be executed with r eadonl y flag set to false.

Note

It's definitely reasonable to use transactions for read only queries and we can mark them as such by
setting the readonly flag. This will not, however, act as check that you do not trigger a
manipulating query (although some databases reject | NSERT and UPDATE statements inside a read
only transaction). The readonl y flag instead is propagated as hint to the underlying JDBC driver
for performance optimizations. Furthermore, Spring will perform some optimizations on the
underlying JPA provider. E.g. when used with Hibernate the flush mode is set to NEVER when you
configure a transaction as readonl y which causes Hibernate to skip dirty checks (a noticeable
improvement on large object trees).

2.5. Locking

To specify the lock mode to be used the @ ock annotation can be used on query methods:

Example 2.18. Defining lock metadata on query methods

interface UserRepository extends Repository<User, Long> {

// Plain query nethod
@ock(LockMbdeType. READ)
Li st <User> findBylLast nane(String | astnane);

}

This method declaration will cause the query being triggered to be equipped with the LockMbdeType READ. Y ou
can also define locking for CRUD methods by redeclaring them in your repository interface and adding the
@ock annotation:

Example 2.19. Defining lock metadata on CRUD methods

interface UserRepository extends Repository<User, Long> {

Spring Data JPA () 25

JPA Repositories

/| Redecl aration of a CRUD net hod
@.ock(LockMdeType. READ) ;
Li st<User> findAll ();

}

2.6. Auditing

Most applications will require some form of auditability to track when an entity was created or modified and by
whom. Spring Data JPA provides facilities to add this audit information to an entity transparently by AOP
means. To take part in this functionality your domain classes must implement a more advanced interface:

Example 2.20. Audi t abl e interface

public interface Auditable<U, |ID extends Serializable>
extends Persi stabl e<|I D> {

U get Creat edBy() ;

voi d set CreatedBy(U createdBy);

Dat eTi ne get Cr eat edDat e() ;

voi d set Created(Date creationDate);

U get Last Modi fi edBy();

voi d setLast Modifi edBy(U | ast Modi fi edBy);
Dat eTi ne get Last Modi fi edDat e();

voi d setLastMdified(Date |astMdifiedDate);

Asyou can see the modifying entity itself only has to be an entity. Mostly this will be some sort of User entity,
so we chose U as parameter type.

Note

“a
To minimize boilerplate code Spring Data JPA offers AbstractPersistable and
Abst r act Audi t abl e base classes that implement and pre-configure entities. Thus you can decide to
only implement the interface or enjoy more sophisticated support by extending the base class.

General auditing configuration

Spring Data JPA ships with an entity listener that can be used to trigger capturing auditing information. So first
you have to register the Audi ti ngEntityLi stener inside your orm xm to be used for al entities in your
persistence contexts:

Example 2.21. Auditing configuration orm.xml

<per si st ence- uni t - net adat a>
<persi st ence-unit-defaul t s>
<entity-listeners>
<entity-listener class="..data.jpa.domain.support.AuditingEntityListener" />

Spring Data JPA () 26

JPA Repositories

</entity-listeners>
</ persi stence-uni t-defaul ts>
</ persi st ence-uni t - net adat a>

Now activating auditing functionality is just a matter of adding the Spring Data JPA audi ti ng hamespace
element to your configuration:

Example 2.22. Activating auditing in the Spring configuration

<j pa: audi ting auditor-aware-ref="yourAudi t or Anar eBean" />

Asyou can see you have to provide a bean that implements the Audi t or Awar e interface which looks as follows:

Example 2.23. Audi t or Avar e interface

public interface AuditorAware<T, |ID extends Serializable> {

T get Current Auditor();

Usually you will have some kind of authentication component in your application that tracks the user currently
working with the system. This component should be Audi t or Awar e and thus allow seamless tracking of the
auditor.

2.7. Miscellaneous

2.7.1. Merging persistence units

Spring supports having multiple persistence units out of the box. Sometimes, however, you might want to
modularize your application but still make sure that all these modules run inside a single persistence unit at
runtime. To do so Spring Data JPA offers a Persi st enceUni t Manager implementation that automatically
merges persistence units based on their name.

Example 2.24. Using M er gingPer sistenceUnitmanager

<bean cl ass="... Local Cont ai ner Enti t yManager Fact or yBean" >
<property name="persistenceUnitManager" >
<bean cl ass="... Mergi ngPer si st enceUni t Manager" />
</ property
</ bean>

2.7.2. Classpath scanning for @Entity classes and JPA mapping files

A plain JPA setup requires all annotation mapped entity classes listed in orm xni . Same applies to XML
mapping files. Spring Data JPA provides a d asspat hScanni ngPer si st enceUni t Post Processor that gets a

Spring Data JPA () 27

JPA Repositories

base package configured and optionally takes a mapping filename pattern. It will then scan the given package
for classes annotated with @ntity or @mppedSupercl ass and also loads the configuration files matching the
filename pattern and hands them to the JPA configuration. The PostProcessor hasto be configured like this

Example 2.25. Using ClasspathScanningPer sistenceUnitPostPr ocessor

<bean cl ass="... Local Cont ai ner Enti t yManager Fact or yBean" >
<property name="persistenceUnit Post Processors">
<list>

<bean cl ass="org. springfranmework. dat a. j pa. support . Cl asspat hScanni ngPer si st enceUni t Post Processor ">
<constructor-arg val ue="com acne. domai n" />
<property nanme="nmappi ngFi | eNanePattern" val ue="**/*Mappi ng. xm " />
</ bean>
</list>
</ property>
</ bean>

Note

As of Spring 31 a package to scan can be configured on the
Local Cont ai ner Ent i t yManager Fact oryBean directly to enable classpath scanning for entity
classes. See the JavaDoc for details.

2.7.3. CDl integration

Instances of the repository interfaces are usually created by a container, which Spring is the most natural choice
when working with Spring Data. There's sophisticated support to easily set up Spring to create bean instances
documented in Section 1.3.3, “ Creating repository instances’. As of version 1.1.0 Spring Data JPA ships with a
custom CDI extension that allows using the repository abstraction in CDI environments. The extension is part
of the JAR so all you need to do to activate it is dropping the Spring Data JPA JAR into your classpath.

Y ou can now set up the infrastructure by implementing a CDI Pr oducer for the Enti t yManager Fact ory:

cl ass EntityManager Fact or yProducer {

@r oduces
@\ppl i cat i onScoped
public EntityManager Factory createEntityManagerFactory() {
return Persistence. createEntityManager Fact ory("ny-presistence-unit");

}

public void cl ose(@i sposes EntityManagerFactory entityManager Factory) {
entityManager Factory. cl ose();

}
}

The Spring Data JPA CDI extension will pick up al EntityManager s availables as CDI beans and create a
proxy for a Spring Data repository whenever an bean of a repository type is requested by the container. Thus
obtaining an instance of a Spring Data repository is a matter of declaring an @ nj ect ed property:

cl ass Repositorydient {

@ nj ect
Per sonReposi tory repository;

public voi d busi nessMet hod() {

Li st <Per son> peopl e = repository.findAll();

}

Spring Data JPA () 28

http://static.springsource.org/spring/docs/3.1.x/javadoc-api/org/springframework/orm/jpa/LocalContainerEntityManagerFactoryBean.html#setPackagesToScan(java.lang.String...)

JPA Repositories

Spring Data JPA ()

29

Part Il. Appendix

Spring Data JPA ()

30

Appendix A. Namespace reference

A.1. The <repositories />element

The <repositories /> triggers the setup of the Spring Data repository infrastructure. The most important
attribute is base- package which defines the package to scan for Spring Data repository interfaces.!

Table A.1. Attributes

Name Description

base- package Defines the package to be used to be scanned for repository interfaces
extending *Repository (actua interface is determined by specific
Spring Data module) in auto detection mode. All packages below the
configured package will be scanned, too. Wildcards are also allowed.

repository-inpl -postfix Defines the postfix to autodetect custom repository implementations.
Classes whose names end with the configured postfix will be considered
as candidates. Defaultsto I npl .

quer y- | ookup- str at egy Determines the strategy to be used to create finder queries. See
Section 1.3.2.1, “Query lookup strategies’ for details. Defaults to

create-if-not-found.

Isee Section 1.3.3.1, “XML Configuration”

Spring Data JPA () 31

Appendix B. Repository query keywords

B.1. Supported query keywords

The following table lists the keywords generally supported by the Spring data repository query derivation
mechanism. However consult the store specific documentation for the exact list of supported keywords as some
of the ones listed here might not be supported in a particular store.

Table B.1. Query keywords

L ogical keyword Keyword expressions

AFTER After,|sAfter

BEFORE Before, | sBefore

CONTAI NI NG Cont ai ni ng, | sCont ai ni ng, Cont ai ns
BETWEEN Bet ween, | sBet ween

ENDI NG_ W TH Endi ngW t h, | sEndi ngWt h, EndsWt h
EXI STS Exi sts

FALSE Fal se, | sFal se

GREATER_THAN Great er Than, | sG eat er Than

GREATER_THAN EQUALSG eat er ThanEqual , | sGr eat er ThanEqual

IN In,Isln
IS I's, Equal s, (or no keyword)
| S_NOT_NULL Not Nul | , I sNot Nul |

'S _NULL Nul I, 1'sNul |

LESS THAN LessThan, | sLessThan

LESS THAN_ EQUAL LessThanEqual , | sLessThanEqual

LI KE Li ke, | sLi ke

NEAR Near , | sNear

NOT Not , | sNot

NOT_I'N Not I n, I sNot I n

NOT_LI KE Not Li ke, | sNot Li ke

REGEX Regex, Mat chesRegex, Mat ches

STARTI NG_W TH StartingWth,lsStartingWth,StartsWth
TRUE True, | sTrue

W THI N Wthin,|sWthin

Spring Data JPA () 32

Appendix C. Frequently asked questions

C.1

Cl1

. Common

I'd like to get more detailed logging information on what methods are called inside JpaReposi tory, €.g.
How can | gain them?

Y ou can make use of Cust oni zabl eTr acel nt er cept or provided by Spring:

<bean i d="cust oni zabl eTracel nterceptor"” cl ass="
org. springfranmewor k. aop. i nt ercept or. Cust om zabl eTracel nt er cept or">
<property nanme="enter Message" val ue="Entering $[net hodNane] ($[argunents])"/>
<property name="exitMessage" val ue="Leavi ng $[net hodNane] (): $[returnVal ue]"/>
</ bean>

<aop: confi g>
<aop: advi sor advi ce-ref="custom zabl eTracel nterceptor"

poi nt cut =" executi on(public * org.sfw data.jpa.repository.JpaRepository+.*(..))"/>

</ aop: confi g>

C.2

c21

. Infrastructure

Currently | have implemented a repository layer based on Hibernat eDaoSupport. | create a
Sessi onFactory by using Spring's Annot ati onSessi onFact oryBean. How do | get Spring Data
repositories working in this environment?

You have to replace Annot at i onSessi onFact or yBean with the
Local Cont ai ner Ent i t yManager Fact oryBean. Supposed you have registered it under
entit yManager Factory you can reference it in you repositories based on Hi ber nat eDaoSupport &S
follows:

Example C.1. Looking up a SessionFactory from an Hiber nateEntityM anager Factory

<bean cl ass="com acne. Your DaoBasedOnHi ber nat eDaoSupport ">
<property nanme="sessi onFactory">

<bean factory-bean="entityManager Factory"
fact ory-net hod="get Sessi onFactory" />

</ property>
</ bean>

C.3

C31

. Auditing

| want to use Spring Data JPA auditing capabilities but have my database aready set up to set
modification and creation date on entities. How to prevent Spring Data from setting the date
programmatically.

Just use the set - dat es attribute of the audi t i ng namespace element to false.

Spring Data JPA () 33

Glossary
A

AOP

C

Commons DBCP

CRUD

D

DAO

Dependency Injection

E

EclipseLink

H

Hibernate

J

JPA

Spring

Aspect oriented programming

Commons DataBase Connection Pools - Library of the Apache foundation
offering pooling implementations of the Dat aSour ce interface.

Create, Read, Update, Delete - Basic persistence operations

Data Access Object - Pattern to separate persisting logic from the object to be
persisted

Pattern to hand a component's dependency to the component from outside,
freeing the component to lookup the dependant itself. For more information
see http://en.wikipedia.org/wiki/Dependency Injection.

Object relational mapper implementing JPA - http://www.eclipselink.org

Object relational mapper implementing JPA - http://www.hibernate.org

Java Persistence Api

Java application framework - http://www.springframework.org

Spring Data JPA () 34

http://en.wikipedia.org/wiki/Dependency_Injection
http://www.eclipselink.org
http://www.hibernate.org
http://www.springframework.org

	Spring Data JPA - Reference Documentation
	Table of Contents
	Preface
	1. Project metadata

	Part I. Reference Documentation
	Chapter 1. Repositories
	1.1. Introduction
	1.2. Core concepts
	1.3. Query methods
	1.3.1. Defining repository interfaces
	1.3.1.1. Fine tuning repository definition

	1.3.2. Defining query methods
	1.3.2.1. Query lookup strategies
	1.3.2.2. Query creation
	1.3.2.2.1. Property expressions

	1.3.2.3. Special parameter handling

	1.3.3. Creating repository instances
	1.3.3.1. XML Configuration
	1.3.3.2. JavaConfig
	1.3.3.3. Standalone usage

	1.4. Custom implementations
	1.4.1. Adding behaviour to single repositories
	1.4.2. Adding custom behaviour to all repositories

	1.5. Extensions
	1.5.1. Domain class web binding for Spring MVC
	1.5.2. Web pagination
	1.5.3. Repository populators

	Chapter 2. JPA Repositories
	2.1. Introduction
	2.1.1. Spring namespace
	2.1.2. Annotation based configuration

	2.2. Query methods
	2.2.1. Query lookup strategies
	2.2.2. Query creation
	2.2.3. Using JPA NamedQueries
	2.2.4. Using @Query
	2.2.5. Using named parameters
	2.2.6. Modifying queries
	2.2.7. Applying query hints

	2.3. Specifications
	2.4. Transactionality
	2.4.1. Transactional query methods

	2.5. Locking
	2.6. Auditing
	2.7. Miscellaneous
	2.7.1. Merging persistence units
	2.7.2. Classpath scanning for @Entity classes and JPA mapping files
	2.7.3. CDI integration

	Part II. Appendix
	Appendix A. Namespace reference
	A.1. The <repositories /> element

	Appendix B. Repository query keywords
	B.1. Supported query keywords

	Appendix C. Frequently asked questions
	Glossary

