
Spring Data JPA - Reference Documentation

Oliver Gierke

Copyright © 2012

Copies of this document may be made for your own use and for distribution to others, provided that you do not
charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether

distributed in print or electronically.

Preface .. iii
1. Project metadata .. iii

I. Reference Documentation .. 1
1. Repositories .. 2

1.1. Introduction ... 2
1.2. Core concepts .. 2
1.3. Query methods ... 3

1.3.1. Defining repository interfaces .. 4
1.3.2. Defining query methods ... 5
1.3.3. Creating repository instances .. 7

1.4. Custom implementations .. 8
1.4.1. Adding behaviour to single repositories .. 8
1.4.2. Adding custom behaviour to all repositories .. 10

1.5. Extensions ... 12
1.5.1. Domain class web binding for Spring MVC .. 12
1.5.2. Web pagination ... 13
1.5.3. Repository populators .. 14

2. JPA Repositories ... 16
2.1. Introduction ... 16

2.1.1. Spring namespace .. 16
2.1.2. Annotation based configuration .. 17

2.2. Query methods ... 17
2.2.1. Query lookup strategies ... 17
2.2.2. Query creation ... 18
2.2.3. Using JPA NamedQueries .. 19
2.2.4. Using @Query .. 20
2.2.5. Using named parameters .. 21
2.2.6. Modifying queries ... 21
2.2.7. Applying query hints ... 22

2.3. Specifications .. 22
2.4. Transactionality ... 23

2.4.1. Transactional query methods .. 24
2.5. Locking ... 25
2.6. Auditing .. 26
2.7. Miscellaneous .. 27

2.7.1. Merging persistence units ... 27
2.7.2. Classpath scanning for @Entity classes and JPA mapping files 27
2.7.3. CDI integration ... 28

II. Appendix ... 30
A. Namespace reference .. 31

A.1. The <repositories /> element ... 31
B. Repository query keywords ... 32

B.1. Supported query keywords ... 32
C. Frequently asked questions ... 33
Glossary ... 34

Spring Data JPA () ii

Preface

1. Project metadata

• Version control - git://github.com/SpringSource/spring-data-jpa.git
• Bugtracker - https://jira.springsource.org/browse/DATAJPA
• Release repository - http://repo.springsource.org/libs-release
• Milestone repository - http://repo.springsource.org/libs-milestone
• Snapshot repository - http://repo.springsource.org/libs-snapshot

Spring Data JPA () iii

git://github.com/SpringSource/spring-data-jpa.git
https://jira.springsource.org/browse/DATAJPA
http://repo.springsource.org/libs-release
http://repo.springsource.org/libs-milestone
http://repo.springsource.org/libs-snapshot

Part I. Reference Documentation

Spring Data JPA () 1

Chapter 1. Repositories

1.1. Introduction

Implementing a data access layer of an application has been cumbersome for quite a while. Too much
boilerplate code had to be written. Domain classes were anemic and not designed in a real object oriented or
domain driven manner.

Using both of these technologies makes developers life a lot easier regarding rich domain model's persistence.
Nevertheless the amount of boilerplate code to implement repositories especially is still quite high. So the goal
of the repository abstraction of Spring Data is to reduce the effort to implement data access layers for various
persistence stores significantly.

The following chapters will introduce the core concepts and interfaces of Spring Data repositories in general for
detailled information on the specific features of a particular store consult the later chapters of this document.

Note

As this part of the documentation is pulled in from Spring Data Commons we have to decide for a
particular module to be used as example. The configuration and code samples in this chapter are
using the JPA module. Make sure you adapt e.g. the XML namespace declaration, types to be
extended to the equivalents of the module you're actually using.

1.2. Core concepts

The central interface in Spring Data repository abstraction is Repository (probably not that much of a
surprise). It is typeable to the domain class to manage as well as the id type of the domain class. This interface
mainly acts as marker interface to capture the types to deal with and help us when discovering interfaces that
extend this one. Beyond that there's CrudRepository which provides some sophisticated functionality around
CRUD for the entity being managed.

Example 1.1. CrudRepository interface

public interface CrudRepository<T, ID extends Serializable>
extends Repository<T, ID> {

❶
T save(T entity);

❷
T findOne(ID primaryKey);

❸
Iterable<T> findAll();

Long count();
❹

void delete(T entity);
❺

boolean exists(ID primaryKey);
❻

// … more functionality omitted.
}

❶ Saves the given entity.
❷ Returns the entity identified by the given id.

Spring Data JPA () 2

❸ Returns all entities.
❹ Returns the number of entities.
❺ Deletes the given entity.
❻ Returns whether an entity with the given id exists.

Usually we will have persistence technology specific sub-interfaces to include additional technology specific
methods. We will now ship implementations for a variety of Spring Data modules that implement this interface.

On top of the CrudRepository there is a PagingAndSortingRepository abstraction that adds additional
methods to ease paginated access to entities:

Example 1.2. PagingAndSortingRepository

public interface PagingAndSortingRepository<T, ID extends Serializable> extends CrudRepository<T, ID> {

Iterable<T> findAll(Sort sort);

Page<T> findAll(Pageable pageable);
}

Accessing the second page of User by a page size of 20 you could simply do something like this:

PagingAndSortingRepository<User, Long> repository = // … get access to a bean
Page<User> users = repository.findAll(new PageRequest(1, 20));

1.3. Query methods

Next to standard CRUD functionality repositories are usually queries on the underlying datastore. With Spring
Data declaring those queries becomes a four-step process:

1. Declare an interface extending Repository or one of its sub-interfaces and type it to the domain class it shall
handle.

public interface PersonRepository extends Repository<User, Long> { … }

2. Declare query methods on the interface.

List<Person> findByLastname(String lastname);

3. Setup Spring to create proxy instances for those interfaces.

<?xml version="1.0" encoding="UTF-8"?>
<beans:beans xmlns:beans="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://www.springframework.org/schema/data/jpa"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/data/jpa
http://www.springframework.org/schema/data/jpa/spring-jpa.xsd">

<repositories base-package="com.acme.repositories" />

</beans>

Repositories

Spring Data JPA () 3

Note

Note that we use the JPA namespace here just by example. If you're using the repository
abstraction for any other store you need to change this to the appropriate namespace declaration
of your store module which should be exchanging jpa in favor of e.g. mongodb.

4. Get the repository instance injected and use it.

public class SomeClient {

@Autowired
private PersonRepository repository;

public void doSomething() {
List<Person> persons = repository.findByLastname("Matthews");

}

At this stage we barely scratched the surface of what's possible with the repositories but the general approach
should be clear. Let's go through each of these steps and figure out details and various options that you have at
each stage.

1.3.1. Defining repository interfaces

As a very first step you define a domain class specific repository interface. It's got to extend Repository and be
typed to the domain class and an ID type. If you want to expose CRUD methods for that domain type, extend
CrudRepository instead of Repository.

1.3.1.1. Fine tuning repository definition

Usually you will have your repository interface extend Repository, CrudRepository or
PagingAndSortingRepository. If you don't like extending Spring Data interfaces at all you can also annotate
your repository interface with @RepositoryDefinition. Extending CrudRepository will expose a complete set
of methods to manipulate your entities. If you would rather be selective about the methods being exposed,
simply copy the ones you want to expose from CrudRepository into your domain repository.

Example 1.3. Selectively exposing CRUD methods

interface MyBaseRepository<T, ID extends Serializable> extends Repository<T, ID> {
T findOne(ID id);
T save(T entity);

}

interface UserRepository extends MyBaseRepository<User, Long> {

User findByEmailAddress(EmailAddress emailAddress);
}

In the first step we define a common base interface for all our domain repositories and expose findOne(…) as
well as save(…).These methods will be routed into the base repository implementation of the store of your
choice because they are matching the method signatures in CrudRepository. So our UserRepository will now
be able to save users, find single ones by id as well as triggering a query to find Users by their email address.

Repositories

Spring Data JPA () 4

1.3.2. Defining query methods

1.3.2.1. Query lookup strategies

The next thing we have to discuss is the definition of query methods. There are two main ways that the
repository proxy is able to come up with the store specific query from the method name. The first option is to
derive the query from the method name directly, the second is using some kind of additionally created query.
What detailed options are available pretty much depends on the actual store, however, there's got to be some
algorithm that decides what actual query is created.

There are three strategies available for the repository infrastructure to resolve the query. The strategy to be used
can be configured at the namespace through the query-lookup-strategy attribute. However, It might be the
case that some of the strategies are not supported for specific datastores. Here are your options:

CREATE

This strategy will try to construct a store specific query from the query method's name. The general approach is
to remove a given set of well-known prefixes from the method name and parse the rest of the method. Read
more about query construction in Section 1.3.2.2, “Query creation”.

USE_DECLARED_QUERY

This strategy tries to find a declared query which will be used for execution first. The query could be defined
by an annotation somewhere or declared by other means. Please consult the documentation of the specific store
to find out what options are available for that store. If the repository infrastructure does not find a declared
query for the method at bootstrap time it will fail.

CREATE_IF_NOT_FOUND (default)

This strategy is actually a combination of CREATE and USE_DECLARED_QUERY. It will try to lookup a declared
query first but create a custom method name based query if no declared query was found. This is the default
lookup strategy and thus will be used if you don't configure anything explicitly. It allows quick query definition
by method names but also custom tuning of these queries by introducing declared queries as needed.

1.3.2.2. Query creation

The query builder mechanism built into Spring Data repository infrastructure is useful to build constraining
queries over entities of the repository. We will strip the prefixes findBy, find, readBy, read, getBy as well as
get from the method and start parsing the rest of it. At a very basic level you can define conditions on entity
properties and concatenate them with AND and OR.

Example 1.4. Query creation from method names

public interface PersonRepository extends Repository<User, Long> {

List<Person> findByEmailAddressAndLastname(EmailAddress emailAddress, String lastname);
}

The actual result of parsing that method will of course depend on the persistence store we create the query for,
however, there are some general things to notice. The expressions are usually property traversals combined
with operators that can be concatenated. As you can see in the example you can combine property expressions

Repositories

Spring Data JPA () 5

with And and Or. Beyond that you also get support for various operators like Between, LessThan, GreaterThan,
Like for the property expressions. As the operators supported can vary from datastore to datastore please
consult the according part of the reference documentation.

1.3.2.2.1. Property expressions

Property expressions can just refer to a direct property of the managed entity (as you just saw in the example
above). On query creation time we already make sure that the parsed property is at a property of the managed
domain class. However, you can also define constraints by traversing nested properties. Assume Persons have
Addresses with ZipCodes. In that case a method name of

List<Person> findByAddressZipCode(ZipCode zipCode);

will create the property traversal x.address.zipCode. The resolution algorithm starts with interpreting the
entire part (AddressZipCode) as property and checks the domain class for a property with that name
(uncapitalized). If it succeeds it just uses that. If not it starts splitting up the source at the camel case parts from
the right side into a head and a tail and tries to find the according property, e.g. AddressZip and Code. If we
find a property with that head we take the tail and continue building the tree down from there. As in our case
the first split does not match we move the split point to the left (Address, ZipCode).

Although this should work for most cases, there might be cases where the algorithm could select the wrong
property. Suppose our Person class has an addressZip property as well. Then our algorithm would match in
the first split round already and essentially choose the wrong property and finally fail (as the type of
addressZip probably has no code property). To resolve this ambiguity you can use _ inside your method name
to manually define traversal points. So our method name would end up like so:

List<Person> findByAddress_ZipCode(ZipCode zipCode);

1.3.2.3. Special parameter handling

To hand parameters to your query you simply define method parameters as already seen in the examples above.
Besides that we will recognizes certain specific types to apply pagination and sorting to your queries
dynamically.

Example 1.5. Using Pageable and Sort in query methods

Page<User> findByLastname(String lastname, Pageable pageable);

List<User> findByLastname(String lastname, Sort sort);

List<User> findByLastname(String lastname, Pageable pageable);

The first method allows you to pass a Pageable instance to the query method to dynamically add paging to
your statically defined query. Sorting options are handed via the Pageable instance too. If you only need
sorting, simply add a Sort parameter to your method. As you also can see, simply returning a List is possible
as well. We will then not retrieve the additional metadata required to build the actual Page instance but rather
simply restrict the query to lookup only the given range of entities.

Note

To find out how many pages you get for a query entirely we have to trigger an additional count

Repositories

Spring Data JPA () 6

query. This will be derived from the query you actually trigger by default.

1.3.3. Creating repository instances

So now the question is how to create instances and bean definitions for the repository interfaces defined.

1.3.3.1. XML Configuration

The easiest way to do so is by using the Spring namespace that is shipped with each Spring Data module that
supports the repository mechanism. Each of those includes a repositories element that allows you to simply
define a base package that Spring will scan for you.

<?xml version="1.0" encoding="UTF-8"?>
<beans:beans xmlns:beans="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://www.springframework.org/schema/data/jpa"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/data/jpa
http://www.springframework.org/schema/data/jpa/spring-jpa.xsd">

<repositories base-package="com.acme.repositories" />

</beans:beans>

In this case we instruct Spring to scan com.acme.repositories and all its sub packages for interfaces extending
Repository or one of its sub-interfaces. For each interface found it will register the persistence technology
specific FactoryBean to create the according proxies that handle invocations of the query methods. Each of
these beans will be registered under a bean name that is derived from the interface name, so an interface of
UserRepository would be registered under userRepository. The base-package attribute allows the use of
wildcards, so that you can have a pattern of scanned packages.

Using filters

By default we will pick up every interface extending the persistence technology specific Repository

sub-interface located underneath the configured base package and create a bean instance for it. However, you
might want finer grained control over which interfaces bean instances get created for. To do this we support the
use of <include-filter /> and <exclude-filter /> elements inside <repositories />. The semantics are
exactly equivalent to the elements in Spring's context namespace. For details see Spring reference
documentation on these elements.

E.g. to exclude certain interfaces from instantiation as repository, you could use the following configuration:

Example 1.6. Using exclude-filter element

<repositories base-package="com.acme.repositories">
<context:exclude-filter type="regex" expression=".*SomeRepository" />

</repositories>

This would exclude all interfaces ending in SomeRepository from being instantiated.

1.3.3.2. JavaConfig

Repositories

Spring Data JPA () 7

http://static.springsource.org/spring/docs/2.5.x/reference/beans.html#beans-scanning-filters
http://static.springsource.org/spring/docs/2.5.x/reference/beans.html#beans-scanning-filters

1JavaConfig in the Spring reference documentation -
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/beans.html#beans-java

The repository infrastructure can also be triggered using a store-specific @Enable${store}Repositories

annotation on a JavaConfig class. For an introduction into Java based configuration of the Spring container
please have a look at the reference documentation.1

A sample configuration to enable Spring Data repositories would look something like this.

Example 1.7. Sample annotation based repository configuration

@Configuration
@EnableJpaRepositories("com.acme.repositories")
class ApplicationConfiguration {

@Bean
public EntityManagerFactory entityManagerFactory() {
// …

}
}

Note that the sample uses the JPA specific annotation which would have to be exchanged dependingon which
store module you actually use. The same applies to the definition of the EntityManagerFactory bean. Please
consult the sections covering the store-specific configuration.

1.3.3.3. Standalone usage

You can also use the repository infrastructure outside of a Spring container usage. You will still need to have
some of the Spring libraries on your classpath but you can generally setup repositories programmatically as
well. The Spring Data modules providing repository support ship a persistence technology specific
RepositoryFactory that can be used as follows:

Example 1.8. Standalone usage of repository factory

RepositoryFactorySupport factory = … // Instantiate factory here
UserRepository repository = factory.getRepository(UserRepository.class);

1.4. Custom implementations

1.4.1. Adding behaviour to single repositories

Often it is necessary to provide a custom implementation for a few repository methods. Spring Data
repositories easily allow you to provide custom repository code and integrate it with generic CRUD abstraction
and query method functionality. To enrich a repository with custom functionality you have to define an
interface and an implementation for that functionality first and let the repository interface you provided so far
extend that custom interface.

Repositories

Spring Data JPA () 8

http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/beans.html#beans-java

Example 1.9. Interface for custom repository functionality

interface UserRepositoryCustom {

public void someCustomMethod(User user);
}

Example 1.10. Implementation of custom repository functionality

class UserRepositoryImpl implements UserRepositoryCustom {

public void someCustomMethod(User user) {
// Your custom implementation

}
}

Note that the implementation itself does not depend on Spring Data and can be a regular Spring bean. So you
can use standard dependency injection behaviour to inject references to other beans, take part in aspects and so
on.

Example 1.11. Changes to the your basic repository interface

public interface UserRepository extends CrudRepository<User, Long>, UserRepositoryCustom {

// Declare query methods here
}

Let your standard repository interface extend the custom one. This makes CRUD and custom functionality
available to clients.

Configuration

If you use namespace configuration the repository infrastructure tries to autodetect custom implementations by
looking up classes in the package we found a repository using the naming conventions appending the
namespace element's attribute repository-impl-postfix to the classname. This suffix defaults to Impl.

Example 1.12. Configuration example

<repositories base-package="com.acme.repository" />

<repositories base-package="com.acme.repository" repository-impl-postfix="FooBar" />

The first configuration example will try to lookup a class com.acme.repository.UserRepositoryImpl to act as
custom repository implementation, where the second example will try to lookup
com.acme.repository.UserRepositoryFooBar.

Manual wiring

Repositories

Spring Data JPA () 9

The approach above works perfectly well if your custom implementation uses annotation based configuration
and autowiring entirely as it will be treated as any other Spring bean. If your custom implementation bean
needs some special wiring you simply declare the bean and name it after the conventions just described. We
will then pick up the custom bean by name rather than creating an instance.

Example 1.13. Manual wiring of custom implementations (I)

<repositories base-package="com.acme.repository" />

<beans:bean id="userRepositoryImpl" class="…">
<!-- further configuration -->

</beans:bean>

1.4.2. Adding custom behaviour to all repositories

In other cases you might want to add a single method to all of your repository interfaces. So the approach just
shown is not feasible. The first step to achieve this is adding and intermediate interface to declare the shared
behaviour

Example 1.14. An interface declaring custom shared behaviour

public interface MyRepository<T, ID extends Serializable>
extends JpaRepository<T, ID> {

void sharedCustomMethod(ID id);
}

Now your individual repository interfaces will extend this intermediate interface instead of the Repository

interface to include the functionality declared. The second step is to create an implementation of this interface
that extends the persistence technology specific repository base class which will then act as a custom base class
for the repository proxies.

Note

The default behaviour of the Spring <repositories /> namespace is to provide an implementation
for all interfaces that fall under the base-package. This means that if left in it's current state, an
implementation instance of MyRepository will be created by Spring. This is of course not desired
as it is just supposed to act as an intermediary between Repository and the actual repository
interfaces you want to define for each entity. To exclude an interface extending Repository from
being instantiated as a repository instance it can either be annotate it with @NoRepositoryBean or
moved out side of the configured base-package.

Example 1.15. Custom repository base class

public class MyRepositoryImpl<T, ID extends Serializable>
extends SimpleJpaRepository<T, ID> implements MyRepository<T, ID> {

private EntityManager entityManager;

Repositories

Spring Data JPA () 10

// There are two constructors to choose from, either can be used.
public MyRepositoryImpl(Class<T> domainClass, EntityManager entityManager) {
super(domainClass, entityManager);

// This is the recommended method for accessing inherited class dependencies.
this.entityManager = entityManager;

}

public void sharedCustomMethod(ID id) {
// implementation goes here

}
}

The last step is to create a custom repository factory to replace the default RepositoryFactoryBean that will in
turn produce a custom RepositoryFactory. The new repository factory will then provide your
MyRepositoryImpl as the implementation of any interfaces that extend the Repository interface, replacing the
SimpleJpaRepository implementation you just extended.

Example 1.16. Custom repository factory bean

public class MyRepositoryFactoryBean<R extends JpaRepository<T, I>, T, I extends Serializable>
extends JpaRepositoryFactoryBean<R, T, I> {

protected RepositoryFactorySupport createRepositoryFactory(EntityManager entityManager) {

return new MyRepositoryFactory(entityManager);
}

private static class MyRepositoryFactory<T, I extends Serializable> extends JpaRepositoryFactory {

private EntityManager entityManager;

public MyRepositoryFactory(EntityManager entityManager) {
super(entityManager);

this.entityManager = entityManager;
}

protected Object getTargetRepository(RepositoryMetadata metadata) {

return new MyRepositoryImpl<T, I>((Class<T>) metadata.getDomainClass(), entityManager);
}

protected Class<?> getRepositoryBaseClass(RepositoryMetadata metadata) {

// The RepositoryMetadata can be safely ignored, it is used by the JpaRepositoryFactory
//to check for QueryDslJpaRepository's which is out of scope.
return MyRepository.class;

}
}

}

Finally you can either declare beans of the custom factory directly or use the factory-class attribute of the
Spring namespace to tell the repository infrastructure to use your custom factory implementation.

Example 1.17. Using the custom factory with the namespace

<repositories base-package="com.acme.repository"
factory-class="com.acme.MyRepositoryFactoryBean" />

Repositories

Spring Data JPA () 11

1.5. Extensions

This chapter documents a set of Spring Data extensions that enable Spring Data usage in a variety of contexts.
Currently most of the integration is targeted towards Spring MVC.

1.5.1. Domain class web binding for Spring MVC

Given you are developing a Spring MVC web applications you typically have to resolve domain class ids from
URLs. By default it's your task to transform that request parameter or URL part into the domain class to hand it
layers below then or execute business logic on the entities directly. This should look something like this:

@Controller
@RequestMapping("/users")
public class UserController {

private final UserRepository userRepository;

public UserController(UserRepository userRepository) {
userRepository = userRepository;

}

@RequestMapping("/{id}")
public String showUserForm(@PathVariable("id") Long id, Model model) {

// Do null check for id
User user = userRepository.findOne(id);
// Do null check for user
// Populate model
return "user";

}
}

First you pretty much have to declare a repository dependency for each controller to lookup the entity managed
by the controller or repository respectively. Beyond that looking up the entity is boilerplate as well as it's
always a findOne(…) call. Fortunately Spring provides means to register custom converting components that
allow conversion between a String value to an arbitrary type.

PropertyEditors

For versions up to Spring 3.0 simple Java PropertyEditors had to be used. Thus, we offer a
DomainClassPropertyEditorRegistrar, that will look up all Spring Data repositories registered in the
ApplicationContext and register a custom PropertyEditor for the managed domain class

<bean class="….web.servlet.mvc.annotation.AnnotationMethodHandlerAdapter">
<property name="webBindingInitializer">
<bean class="….web.bind.support.ConfigurableWebBindingInitializer">
<property name="propertyEditorRegistrars">

<bean class="org.springframework.data.repository.support.DomainClassPropertyEditorRegistrar" />
</property>

</bean>
</property>

</bean>

If you have configured Spring MVC like this you can turn your controller into the following that reduces a lot
of the clutter and boilerplate.

@Controller
@RequestMapping("/users")
public class UserController {

@RequestMapping("/{id}")
public String showUserForm(@PathVariable("id") User user, Model model) {

Repositories

Spring Data JPA () 12

// Do null check for user
// Populate model
return "userForm";

}
}

ConversionService

As of Spring 3.0 the PropertyEditor support is superseeded by a new conversion infrstructure that leaves all
the drawbacks of PropertyEditors behind and uses a stateless X to Y conversion approach. We now ship with
a DomainClassConverter that pretty much mimics the behaviour of DomainClassPropertyEditorRegistrar.
To register the converter you have to declare ConversionServiceFactoryBean, register the converter and tell
the Spring MVC namespace to use the configured conversion service:

<mvc:annotation-driven conversion-service="conversionService" />

<bean id="conversionService" class="….context.support.ConversionServiceFactoryBean">
<property name="converters">
<list>
<bean class="org.springframework.data.repository.support.DomainClassConverter">

<constructor-arg ref="conversionService" />
</bean>

</list>
</property>

</bean>

1.5.2. Web pagination

@Controller
@RequestMapping("/users")
public class UserController {

// DI code omitted

@RequestMapping
public String showUsers(Model model, HttpServletRequest request) {

int page = Integer.parseInt(request.getParameter("page"));
int pageSize = Integer.parseInt(request.getParameter("pageSize"));
model.addAttribute("users", userService.getUsers(pageable));
return "users";

}
}

As you can see the naive approach requires the method to contain an HttpServletRequest parameter that has
to be parsed manually. We even omitted an appropriate failure handling which would make the code even more
verbose. The bottom line is that the controller actually shouldn't have to handle the functionality of extracting
pagination information from the request. So we include a PageableArgumentResolver that will do the work for
you.

<bean class="….web.servlet.mvc.annotation.AnnotationMethodHandlerAdapter">
<property name="customArgumentResolvers">
<list>
<bean class="org.springframework.data.web.PageableArgumentResolver" />

</list>
</property>

</bean>

This configuration allows you to simplify controllers down to something like this:

@Controller
@RequestMapping("/users")

Repositories

Spring Data JPA () 13

public class UserController {

@RequestMapping
public String showUsers(Model model, Pageable pageable) {

model.addAttribute("users", userDao.readAll(pageable));
return "users";

}
}

The PageableArgumentResolver will automatically resolve request parameters to build a PageRequest

instance. By default it will expect the following structure for the request parameters:

Table 1.1. Request parameters evaluated by PageableArgumentResolver

page The page you want to retrieve

page.size The size of the page you want to retrieve

page.sort The property that should be sorted by

page.sort.dir The direction that should be used for sorting

In case you need multiple Pageables to be resolved from the request (for multiple tables e.g.) you can use
Spring's @Qualifier annotation to distinguish one from another. The request parameters then have to be
prefixed with ${qualifier}_. So a method signature like this:

public String showUsers(Model model,
@Qualifier("foo") Pageable first,
@Qualifier("bar") Pageable second) { … }

you'd have to populate foo_page and bar_page and the according subproperties.

Defaulting

The PageableArgumentResolver will use a PageRequest with the first page and a page size of 10 by default
and will use that in case it can't resolve a PageRequest from the request (because of missing parameters e.g.).
You can configure a global default on the bean declaration directly. In case you might need controller method
specific defaults for the Pageable simply annotate the method parameter with @PageableDefaults and specify
page and page size as annotation attributes:

public String showUsers(Model model,
@PageableDefaults(pageNumber = 0, value = 30) Pageable pageable) { … }

1.5.3. Repository populators

If you have been working with the JDBC module of Spring you're probably familiar with the support to
populate a DataSource using SQL scripts. A similar abstraction is available on the repositories level although
we don't use SQL as data definition language as we need to be store independent of course. Thus the populators
support XML (through Spring's OXM abstraction) and JSON (through Jackson) to define data for the
repositories to be populated with.

Assume you have a file data.json with the following content:

Repositories

Spring Data JPA () 14

Example 1.18. Data defined in JSON

[{ "_class" : "com.acme.Person",
"firstname" : "Dave",
"lastname" : "Matthews" },
{ "_class" : "com.acme.Person",
"firstname" : "Carter",
"lastname" : "Beauford" }]

You can easily populate you repositories by using the populator elements of the repository namespace provided
in Spring Data Commons. To get the just shown data be populated to your PersonRepository all you need to
do is the following:

Example 1.19. Declaring a Jackson repository populator

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:repository="http://www.springframework.org/schema/data/repository"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/data/repository
http://www.springframework.org/schema/data/repository/spring-repository.xsd">

<repository:jackson-populator location="classpath:data.json" />

</beans>

This declaration causes the data.json file being read, deserialized by a Jackson ObjectMapper. The type the
JSON object will be unmarshalled to will be determined by inspecting the _class attribute of the JSON
document. We will eventually select the appropriate repository being able to handle the object just deserialized.

To rather use XML to define the repositories shall be populated with you can use the unmarshaller-populator
you hand one of the marshaller options Spring OXM provides you with.

Example 1.20. Declaring an unmarshalling repository populator (using JAXB)

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:repository="http://www.springframework.org/schema/data/repository"
xmlns:oxm="http://www.springframework.org/schema/oxm"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/data/repository
http://www.springframework.org/schema/data/repository/spring-repository.xsd
http://www.springframework.org/schema/oxm
http://www.springframework.org/schema/oxm/spring-oxm.xsd">

<repository:unmarshaller-populator location="classpath:data.json" unmarshaller-ref="unmarshaller" />

<oxm:jaxb2-marshaller contextPath="com.acme" />

</beans>

Repositories

Spring Data JPA () 15

Chapter 2. JPA Repositories
This chapter includes details of the JPA repository implementation.

2.1. Introduction

2.1.1. Spring namespace

The JPA module of Spring Data contains a custom namespace that allows defining repository beans. It also
contains certain features and element attributes that are special to JPA. Generally the JPA repositories can be
set up using the repositories element:

Example 2.1. Setting up JPA repositories using the namespace

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jpa="http://www.springframework.org/schema/data/jpa"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/data/jpa
http://www.springframework.org/schema/data/jpa/spring-jpa.xsd">

<jpa:repositories base-package="com.acme.repositories" />

</beans>

Using this element looks up Spring Data repositories as described in Section 1.3.3, “Creating repository
instances”. Beyond that it activates persistence exception translation for all beans annotated with @Repository

to let exceptions being thrown by the JPA presistence providers be converted into Spring's
DataAccessException hierarchy.

Custom namespace attributes

Beyond the default attributes of the repositories element the JPA namespace offers additional attributes to
gain more detailled control over the setup of the repositories:

Table 2.1. Custom JPA-specific attributes of the repositories element

entity-manager-factory-ref Explicitly wire the EntityManagerFactory to be used
with the repositories being detected by the
repositories element. Usually used if multiple
EntityManagerFactory beans are used within the
application. If not configured we will automatically
lookup the single EntityManagerFactory configured
in the ApplicationContext.

transaction-manager-ref Explicitly wire the PlatformTransactionManager to
be used with the repositories being detected by the
repositories element. Usually only necessary if
multiple transaction managers and/or

Spring Data JPA () 16

EntityManagerFactory beans have been configured.
Default to a single defined
PlatformTransactionManager inside the current
ApplicationContext.

2.1.2. Annotation based configuration

The Spring Data JPA repositories support cannot only be activated through an XML namespace but also using
an annotation through JavaConfig.

Example 2.2. Spring Data JPA repositories using JavaConfig

@Configuration
@EnableJpaRepositories
@EnableTransactionManagement
class ApplicationConfig {

@Bean
public DataSource dataSource() {

EmbeddedDatabaseBuilder builder = new EmbeddedDatabaseBuilder();
return builder.setType(EmbeddedDatabaseType.HSQL).build();

}

@Bean
public EntityManagerFactory entityManagerFactory() {

HibernateJpaVendorAdapter vendorAdapter = new HibernateJpaVendorAdapter();
vendorAdapter.setGenerateDdl(true);

LocalContainerEntityManagerFactoryBean factory = new LocalContainerEntityManagerFactoryBean();
factory.setJpaVendorAdapter(vendorAdapter);
factory.setPackagesToScan("com.acme.domain");
factory.setDataSource(dataSource());
factory.afterPropertiesSet();

return factory.getObject();
}

@Bean
public PlatformTransactionManager transactionManager() {

JpaTransactionManager txManager = new JpaTransactionManager();
txManager.setEntityManagerFactory(entityManagerFactory());
return txManager;

}
}

The just shown configuration class sets up an embedded HSQL database using the EmbeddedDatabaseBuilder

API of spring-jdbc. We then set up a EntityManagerFactory and use Hibernate as sample persistence provider.
The last infrastructure component declared here is the JpaTransactionManager. We eventually activate Spring
Data JPA repositories using the @EnableJpaRepositories annotation which essentially carries the same
attributes as the XML namespace does. If no base package is configured it will use the one the configuration
class resides in.

2.2. Query methods

2.2.1. Query lookup strategies

JPA Repositories

Spring Data JPA () 17

The JPA module supports defining a query manually as String or have it being derived from the method name.

Declared queries

Although getting a query derived from the method name is quite convenient, one might face the situation in
which either the method name parser does not support the keyword one wants to use or the method name would
get unnecessarily ugly. So you can either use JPA named queries through a naming convention (see
Section 2.2.3, “Using JPA NamedQueries” for more information) or rather annotate your query method with
@Query (see Section 2.2.4, “Using @Query” for details).

2.2.2. Query creation

Generally the query creation mechanism for JPA works as described in Section 1.3, “Query methods”. Here's a
short example of what a JPA query method translates into:

Example 2.3. Query creation from method names

public interface UserRepository extends Repository<User, Long> {

List<User> findByEmailAddressAndLastname(String emailAddress, String lastname);
}

We will create a query using the JPA criteria API from this but essentially this translates into the following
query:

select u from User u where u.emailAddress = ?1 and u.lastname = ?2

Spring Data JPA will do a property check and traverse nested properties as described in Section 1.3.2.2.1,
“Property expressions”. Here's an overview of the keywords supported for JPA and what a method containing
that keyword essentially translates to.

Table 2.2. Supported keywords inside method names

Keyword Sample JPQL snippet

And findByLastnameAndFirstname … where x.lastname = ?1 and x.firstname = ?2

Or findByLastnameOrFirstname … where x.lastname = ?1 or x.firstname = ?2

Between findByStartDateBetween … where x.startDate between 1? and ?2

LessThan findByAgeLessThan … where x.age < ?1

GreaterThan findByAgeGreaterThan … where x.age > ?1

After findByStartDateAfter … where x.startDate > ?1

Before findByStartDateBefore … where x.startDate < ?1

IsNull findByAgeIsNull … where x.age is null

IsNotNull,NotNullfindByAge(Is)NotNull … where x.age not null

Like findByFirstnameLike … where x.firstname like ?1

JPA Repositories

Spring Data JPA () 18

Keyword Sample JPQL snippet

NotLike findByFirstnameNotLike … where x.firstname not like ?1

StartingWith findByFirstnameStartingWith … where x.firstname like ?1 (parameter bound
with prepended %)

ngWith findByFirstnameEndingWith … where x.firstname like ?1 (parameter bound
with appended %)

Containing findByFirstnameContaining … where x.firstname like ?1 (parameter bound
wrapped in %)

OrderBy findByAgeOrderByLastnameDesc … where x.age = ?1 order by x.lastname desc

Not findByLastnameNot … where x.lastname <> ?1

In findByAgeIn(Collection<Age>

ages)

… where x.age in ?1

NotIn findByAgeNotIn(Collection<Age>

age)

… where x.age not in ?1

True findByActiveTrue() … where x.active = true

False findByActiveFalse() … where x.active = false

Note

In and NotIn also take any subclass of Collection as parameter as well as arrays or varargs. For
other syntactical versions of the very same logical operator check Appendix B, Repository query
keywords.

2.2.3. Using JPA NamedQueries

Note

The examples use simple <named-query /> element and @NamedQuery annotation. The queries for
these configuration elements have to be defined in JPA query language. Of course you can use
<named-native-query /> or @NamedNativeQuery too. These elements allow you to define the
query in native SQL by losing the database platform independence.

XML named query definition

To use XML configuration simply add the necessary <named-query /> element to the orm.xml JPA
configuration file located in META-INF folder of your classpath. Automatic invocation of named queries is
enabled by using some defined naming convention. For more details see below.

Example 2.4. XML named query configuration

<named-query name="User.findByLastname">
<query>select u from User u where u.lastname = ?1</query>

</named-query>

JPA Repositories

Spring Data JPA () 19

As you can see the query has a special name which will be used to resolve it at runtime.

Annotation configuration

Annotation configuration has the advantage of not needing another configuration file to be edited, probably
lowering maintenance costs. You pay for that benefit by the need to recompile your domain class for every new
query declaration.

Example 2.5. Annotation based named query configuration

@Entity
@NamedQuery(name = "User.findByEmailAddress",
query = "select u from User u where u.emailAddress = ?1")

public class User {

}

Declaring interfaces

To allow execution of these named queries all you need to do is to specify the UserRepository as follows:

Example 2.6. Query method declaration in UserRepository

public interface UserRepository extends JpaRepository<User, Long> {

List<User> findByLastname(String lastname);

User findByEmailAddress(String emailAddress);
}

Spring Data will try to resolve a call to these methods to a named query, starting with the simple name of the
configured domain class, followed by the method name separated by a dot. So the example here would use the
named queries defined above instead of trying to create a query from the method name.

2.2.4. Using @Query

Using named queries to declare queries for entities is a valid approach and works fine for a small number of
queries. As the queries themselves are tied to the Java method that executes them you actually can bind them
directly using the Spring Data JPA @Query annotation rather than annotating them to the domain class. This will
free the domain class from persistence specific information and co-locate the query to the repository interface.

Queries annotated to the query method will take precedence over queries defined using @NamedQuery or named
queries declared in orm.xml.

Example 2.7. Declare query at the query method using @Query

public interface UserRepository extends JpaRepository<User, Long> {

@Query("select u from User u where u.emailAddress = ?1")
User findByEmailAddress(String emailAddress);

}

JPA Repositories

Spring Data JPA () 20

Native queries

The @Query annotation allows to execute native queries by setting the nativeQuery flag to true. Note, that we
currently don't support execution of pagination or dynamic sorting for native queries as we'd have to
manipulate the actual query declared and we cannot do this reliably for native SQL.

Example 2.8. Declare a native query at the query method using @Query

public interface UserRepository extends JpaRepository<User, Long> {

@Query(value = "SELECT FROM USERS WHERE EMAIL_ADDRESS = ?0", nativeQuery = true)
User findByEmailAddress(String emailAddress);

}

2.2.5. Using named parameters

By default Spring Data JPA will use position based parameter binding as described in all the samples above.
This makes query methods a little error prone to refactoring regarding the parameter position. To solve this
issue you can use @Param annotation to give a method parameter a concrete name and bind the name in the
query:

Example 2.9. Using named parameters

public interface UserRepository extends JpaRepository<User, Long> {

@Query("select u from User u where u.firstname = :firstname or u.lastname = :lastname")
User findByLastnameOrFirstname(@Param("lastname") String lastname,

@Param("firstname") String firstname);
}

Note that the method parameters are switched according to the occurrence in the query defined.

2.2.6. Modifying queries

All the sections above describe how to declare queries to access a given entity or collection of entities. Of
course you can add custom modifying behaviour by using facilities described in Section 1.4, “Custom
implementations”. As this approach is feasible for comprehensive custom functionality, you can achieve the
execution of modifying queries that actually only need parameter binding by annotating the query method with
@Modifying:

Example 2.10. Declaring manipulating queries

@Modifying
@Query("update User u set u.firstname = ?1 where u.lastname = ?2")
int setFixedFirstnameFor(String firstname, String lastname);

This will trigger the query annotated to the method as updating query instead of a selecting one. As the
EntityManager might contain outdated entities after the execution of the modifying query, we automatically

JPA Repositories

Spring Data JPA () 21

clear it (see JavaDoc of EntityManager.clear() for details). This will effectively drop all non-flushed changes
still pending in the EntityManager. If you don't wish the EntityManager to be cleared automatically you can
set @Modifying annotation's clearAutomatically attribute to false;

2.2.7. Applying query hints

To apply JPA QueryHints to the queries declared in your repository interface you can use the QueryHints

annotation. It takes an array of JPA QueryHint annotations plus a boolean flag to potentially disable the hints
applied to the addtional count query triggered when applying pagination.

Example 2.11. Using QueryHints with a repository method

public interface UserRepository extends Repository<User, Long> {

@QueryHints(value = { @QueryHint(name = "name", value = "value")},
forCounting = false)

Page<User> findByLastname(String lastname, Pageable pageable);
}

The just shown declaration would apply the configured QueryHint for that actually query but omit applying it
to the count query triggered to calculate the total number of pages.

2.3. Specifications

JPA 2 introduces a criteria API that can be used to build queries programmatically. Writing a criteria you
actually define the where-clause of a query for a domain class. Taking another step back these criteria can be
regarded as predicate over the entity that is described by the JPA criteria API constraints.

Spring Data JPA takes the concept of a specification from Eric Evans' book "Domain Driven Design",
following the same semantics and providing an API to define such Specifications using the JPA criteria API.
To support specifications you can extend your repository interface with the JpaSpecificationExecutor

interface:

public interface CustomerRepository extends CrudRepository<Customer, Long>, JpaSpecificationExecutor {
…
}

The additional interface carries methods that allow you to execute Specifications in a variety of ways.

For example, the readAll method will return all entities that match the specification:

List<T> readAll(Specification<T> spec);

The Specification interface is as follows:

public interface Specification<T> {
Predicate toPredicate(Root<T> root, CriteriaQuery<?> query,

CriteriaBuilder builder);
}

Okay, so what is the typical use case? Specifications can easily be used to build an extensible set of
predicates on top of an entity that then can be combined and used with JpaRepository without the need to

JPA Repositories

Spring Data JPA () 22

declare a query (method) for every needed combination. Here's an example:

Example 2.12. Specifications for a Customer

public class CustomerSpecs {

public static Specification<Customer> isLongTermCustomer() {
return new Specification<Customer>() {
Predicate toPredicate(Root<T> root, CriteriaQuery<?> query,

CriteriaBuilder builder) {

LocalDate date = new LocalDate().minusYears(2);
return builder.lessThan(root.get(Customer_.createdAt), date);

}
};

}

public static Specification<Customer> hasSalesOfMoreThan(MontaryAmount value) {
return new Specification<Customer>() {
Predicate toPredicate(Root<T> root, CriteriaQuery<?> query,

CriteriaBuilder builder) {

// build query here
}

};
}

}

Admittedly the amount of boilerplate leaves room for improvement (that will hopefully be reduced by Java 8
closures) but the client side becomes much nicer as you will see below. Besides that we have expressed some
criteria on a business requirement abstraction level and created executable Specifications. So a client might
use a Specification as follows:

Example 2.13. Using a simple Specification

List<Customer> customers = customerRepository.findAll(isLongTermCustomer());

Okay, why not simply create a query for this kind of data access? You're right. Using a single Specification

does not gain a lot of benefit over a plain query declaration. The power of Specifications really shines when
you combine them to create new Specification objects. You can achieve this through the Specifications

helper class we provide to build expressions like this:

Example 2.14. Combined Specifications

MonetaryAmount amount = new MonetaryAmount(200.0, Currencies.DOLLAR);
List<Customer> customers = customerRepository.readAll(
where(isLongTermCustomer()).or(hasSalesOfMoreThan(amount)));

As you can see, Specifications offers some glue-code methods to chain and combine Specifications. Thus
extending your data access layer is just a matter of creating new Specification implementations and
combining them with ones already existing.

2.4. Transactionality

JPA Repositories

Spring Data JPA () 23

CRUD methods on repository instances are transactional by default. For reading operations the transaction
configuration readOnly flag is set to true, all others are configured with a plain @Transactional so that default
transaction configuration applies. For details see JavaDoc of Repository. If you need to tweak transaction
configuration for one of the methods declared in Repository simply redeclare the method in your repository
interface as follows:

Example 2.15. Custom transaction configuration for CRUD

public interface UserRepository extends JpaRepository<User, Long> {

@Override
@Transactional(timeout = 10)
public List<User> findAll();

// Further query method declarations
}

This will cause the findAll() method to be executed with a timeout of 10 seconds and without the readOnly

flag.

Another possibility to alter transactional behaviour is using a facade or service implementation that typically
covers more than one repository. Its purpose is to define transactional boundaries for non-CRUD operations:

Example 2.16. Using a facade to define transactions for multiple repository calls

@Service
class UserManagementImpl implements UserManagement {

private final UserRepository userRepository;
private final RoleRepository roleRepository;

@Autowired
public UserManagementImpl(UserRepository userRepository,
RoleRepository roleRepository) {
this.userRepository = userRepository;
this.roleRepository = roleRepository;

}

@Transactional
public void addRoleToAllUsers(String roleName) {

Role role = roleRepository.findByName(roleName);

for (User user : userRepository.readAll()) {
user.addRole(role);
userRepository.save(user);

}
}

This will cause call to addRoleToAllUsers(…) to run inside a transaction (participating in an existing one or
create a new one if none already running). The transaction configuration at the repositories will be neglected
then as the outer transaction configuration determines the actual one used. Note that you will have to activate
<tx:annotation-driven /> explicitly to get annotation based configuration at facades working. The example
above assumes you are using component scanning.

2.4.1. Transactional query methods

JPA Repositories

Spring Data JPA () 24

To allow your query methods to be transactional simply use @Transactional at the repository interface you
define.

Example 2.17. Using @Transactional at query methods

@Transactional(readOnly = true)
public interface UserRepository extends JpaRepository<User, Long> {

List<User> findByLastname(String lastname);

@Modifying
@Transactional
@Query("delete from User u where u.active = false")
void deleteInactiveUsers();

}

Typically you will want the readOnly flag set to true as most of the query methods will only read data. In
contrast to that deleteInactiveUsers() makes use of the @Modifying annotation and overrides the transaction
configuration. Thus the method will be executed with readOnly flag set to false.

Note

It's definitely reasonable to use transactions for read only queries and we can mark them as such by
setting the readOnly flag. This will not, however, act as check that you do not trigger a
manipulating query (although some databases reject INSERT and UPDATE statements inside a read
only transaction). The readOnly flag instead is propagated as hint to the underlying JDBC driver
for performance optimizations. Furthermore, Spring will perform some optimizations on the
underlying JPA provider. E.g. when used with Hibernate the flush mode is set to NEVER when you
configure a transaction as readOnly which causes Hibernate to skip dirty checks (a noticeable
improvement on large object trees).

2.5. Locking

To specify the lock mode to be used the @Lock annotation can be used on query methods:

Example 2.18. Defining lock metadata on query methods

interface UserRepository extends Repository<User, Long> {

// Plain query method
@Lock(LockModeType.READ)
List<User> findByLastname(String lastname);

}

This method declaration will cause the query being triggered to be equipped with the LockModeType READ. You
can also define locking for CRUD methods by redeclaring them in your repository interface and adding the
@Lock annotation:

Example 2.19. Defining lock metadata on CRUD methods

interface UserRepository extends Repository<User, Long> {

JPA Repositories

Spring Data JPA () 25

// Redeclaration of a CRUD method
@Lock(LockModeType.READ);
List<User> findAll();

}

2.6. Auditing

Most applications will require some form of auditability to track when an entity was created or modified and by
whom. Spring Data JPA provides facilities to add this audit information to an entity transparently by AOP
means. To take part in this functionality your domain classes must implement a more advanced interface:

Example 2.20. Auditable interface

public interface Auditable<U, ID extends Serializable>
extends Persistable<ID> {

U getCreatedBy();

void setCreatedBy(U createdBy);

DateTime getCreatedDate();

void setCreated(Date creationDate);

U getLastModifiedBy();

void setLastModifiedBy(U lastModifiedBy);

DateTime getLastModifiedDate();

void setLastModified(Date lastModifiedDate);
}

As you can see the modifying entity itself only has to be an entity. Mostly this will be some sort of User entity,
so we chose U as parameter type.

Note

To minimize boilerplate code Spring Data JPA offers AbstractPersistable and
AbstractAuditable base classes that implement and pre-configure entities. Thus you can decide to
only implement the interface or enjoy more sophisticated support by extending the base class.

General auditing configuration

Spring Data JPA ships with an entity listener that can be used to trigger capturing auditing information. So first
you have to register the AuditingEntityListener inside your orm.xml to be used for all entities in your
persistence contexts:

Example 2.21. Auditing configuration orm.xml

<persistence-unit-metadata>
<persistence-unit-defaults>
<entity-listeners>
<entity-listener class="….data.jpa.domain.support.AuditingEntityListener" />

JPA Repositories

Spring Data JPA () 26

</entity-listeners>
</persistence-unit-defaults>

</persistence-unit-metadata>

Now activating auditing functionality is just a matter of adding the Spring Data JPA auditing namespace
element to your configuration:

Example 2.22. Activating auditing in the Spring configuration

<jpa:auditing auditor-aware-ref="yourAuditorAwareBean" />

As you can see you have to provide a bean that implements the AuditorAware interface which looks as follows:

Example 2.23. AuditorAware interface

public interface AuditorAware<T, ID extends Serializable> {

T getCurrentAuditor();
}

Usually you will have some kind of authentication component in your application that tracks the user currently
working with the system. This component should be AuditorAware and thus allow seamless tracking of the
auditor.

2.7. Miscellaneous

2.7.1. Merging persistence units

Spring supports having multiple persistence units out of the box. Sometimes, however, you might want to
modularize your application but still make sure that all these modules run inside a single persistence unit at
runtime. To do so Spring Data JPA offers a PersistenceUnitManager implementation that automatically
merges persistence units based on their name.

Example 2.24. Using MergingPersistenceUnitmanager

<bean class="….LocalContainerEntityManagerFactoryBean">
<property name="persistenceUnitManager">
<bean class="….MergingPersistenceUnitManager" />

</property
</bean>

2.7.2. Classpath scanning for @Entity classes and JPA mapping files

A plain JPA setup requires all annotation mapped entity classes listed in orm.xml. Same applies to XML
mapping files. Spring Data JPA provides a ClasspathScanningPersistenceUnitPostProcessor that gets a

JPA Repositories

Spring Data JPA () 27

base package configured and optionally takes a mapping filename pattern. It will then scan the given package
for classes annotated with @Entity or @MappedSuperclass and also loads the configuration files matching the
filename pattern and hands them to the JPA configuration. The PostProcessor has to be configured like this

Example 2.25. Using ClasspathScanningPersistenceUnitPostProcessor

<bean class="….LocalContainerEntityManagerFactoryBean">
<property name="persistenceUnitPostProcessors">
<list>
<bean class="org.springframework.data.jpa.support.ClasspathScanningPersistenceUnitPostProcessor">

<constructor-arg value="com.acme.domain" />
<property name="mappingFileNamePattern" value="**/*Mapping.xml" />

</bean>
</list>

</property>
</bean>

Note

As of Spring 3.1 a package to scan can be configured on the
LocalContainerEntityManagerFactoryBean directly to enable classpath scanning for entity
classes. See the JavaDoc for details.

2.7.3. CDI integration

Instances of the repository interfaces are usually created by a container, which Spring is the most natural choice
when working with Spring Data. There's sophisticated support to easily set up Spring to create bean instances
documented in Section 1.3.3, “Creating repository instances”. As of version 1.1.0 Spring Data JPA ships with a
custom CDI extension that allows using the repository abstraction in CDI environments. The extension is part
of the JAR so all you need to do to activate it is dropping the Spring Data JPA JAR into your classpath.

You can now set up the infrastructure by implementing a CDI Producer for the EntityManagerFactory:

class EntityManagerFactoryProducer {

@Produces
@ApplicationScoped
public EntityManagerFactory createEntityManagerFactory() {
return Persistence.createEntityManagerFactory("my-presistence-unit");

}

public void close(@Disposes EntityManagerFactory entityManagerFactory) {
entityManagerFactory.close();

}
}

The Spring Data JPA CDI extension will pick up all EntityManagers availables as CDI beans and create a
proxy for a Spring Data repository whenever an bean of a repository type is requested by the container. Thus
obtaining an instance of a Spring Data repository is a matter of declaring an @Injected property:

class RepositoryClient {

@Inject
PersonRepository repository;

public void businessMethod() {

List<Person> people = repository.findAll();
}

JPA Repositories

Spring Data JPA () 28

http://static.springsource.org/spring/docs/3.1.x/javadoc-api/org/springframework/orm/jpa/LocalContainerEntityManagerFactoryBean.html#setPackagesToScan(java.lang.String...)

}

JPA Repositories

Spring Data JPA () 29

Part II. Appendix

Spring Data JPA () 30

1see Section 1.3.3.1, “XML Configuration”

Appendix A. Namespace reference

A.1. The <repositories /> element

The <repositories /> triggers the setup of the Spring Data repository infrastructure. The most important
attribute is base-package which defines the package to scan for Spring Data repository interfaces.1

Table A.1. Attributes

Name Description

base-package Defines the package to be used to be scanned for repository interfaces
extending *Repository (actual interface is determined by specific
Spring Data module) in auto detection mode. All packages below the
configured package will be scanned, too. Wildcards are also allowed.

repository-impl-postfix Defines the postfix to autodetect custom repository implementations.
Classes whose names end with the configured postfix will be considered
as candidates. Defaults to Impl.

query-lookup-strategy Determines the strategy to be used to create finder queries. See
Section 1.3.2.1, “Query lookup strategies” for details. Defaults to
create-if-not-found.

Spring Data JPA () 31

Appendix B. Repository query keywords

B.1. Supported query keywords

The following table lists the keywords generally supported by the Spring data repository query derivation
mechanism. However consult the store specific documentation for the exact list of supported keywords as some
of the ones listed here might not be supported in a particular store.

Table B.1. Query keywords

Logical keyword Keyword expressions

AFTER After, IsAfter

BEFORE Before, IsBefore

CONTAINING Containing, IsContaining, Contains

BETWEEN Between, IsBetween

ENDING_WITH EndingWith, IsEndingWith, EndsWith

EXISTS Exists

FALSE False, IsFalse

GREATER_THAN GreaterThan, IsGreaterThan

GREATER_THAN_EQUALSGreaterThanEqual, IsGreaterThanEqual

IN In, IsIn

IS Is, Equals, (or no keyword)

IS_NOT_NULL NotNull, IsNotNull

IS_NULL Null, IsNull

LESS_THAN LessThan, IsLessThan

LESS_THAN_EQUAL LessThanEqual, IsLessThanEqual

LIKE Like, IsLike

NEAR Near, IsNear

NOT Not, IsNot

NOT_IN NotIn, IsNotIn

NOT_LIKE NotLike, IsNotLike

REGEX Regex, MatchesRegex, Matches

STARTING_WITH StartingWith, IsStartingWith, StartsWith

TRUE True, IsTrue

WITHIN Within, IsWithin

Spring Data JPA () 32

Appendix C. Frequently asked questions
C.1. Common

C.1.1.
I'd like to get more detailed logging information on what methods are called inside JpaRepository, e.g.
How can I gain them?

You can make use of CustomizableTraceInterceptor provided by Spring:

<bean id="customizableTraceInterceptor" class="
org.springframework.aop.interceptor.CustomizableTraceInterceptor">
<property name="enterMessage" value="Entering $[methodName]($[arguments])"/>
<property name="exitMessage" value="Leaving $[methodName](): $[returnValue]"/>

</bean>

<aop:config>
<aop:advisor advice-ref="customizableTraceInterceptor"
pointcut="execution(public * org.sfw.data.jpa.repository.JpaRepository+.*(..))"/>

</aop:config>

C.2. Infrastructure

C.2.1.
Currently I have implemented a repository layer based on HibernateDaoSupport. I create a
SessionFactory by using Spring's AnnotationSessionFactoryBean. How do I get Spring Data
repositories working in this environment?

You have to replace AnnotationSessionFactoryBean with the
LocalContainerEntityManagerFactoryBean. Supposed you have registered it under
entityManagerFactory you can reference it in you repositories based on HibernateDaoSupport as
follows:

Example C.1. Looking up a SessionFactory from an HibernateEntityManagerFactory

<bean class="com.acme.YourDaoBasedOnHibernateDaoSupport">
<property name="sessionFactory">
<bean factory-bean="entityManagerFactory"
factory-method="getSessionFactory" />

</property>
</bean>

C.3. Auditing

C.3.1.
I want to use Spring Data JPA auditing capabilities but have my database already set up to set
modification and creation date on entities. How to prevent Spring Data from setting the date
programmatically.

Just use the set-dates attribute of the auditing namespace element to false.

Spring Data JPA () 33

Glossary

A

AOP Aspect oriented programming

C

Commons DBCP Commons DataBase Connection Pools - Library of the Apache foundation
offering pooling implementations of the DataSource interface.

CRUD Create, Read, Update, Delete - Basic persistence operations

D

DAO Data Access Object - Pattern to separate persisting logic from the object to be
persisted

Dependency Injection Pattern to hand a component's dependency to the component from outside,
freeing the component to lookup the dependant itself. For more information
see http://en.wikipedia.org/wiki/Dependency_Injection.

E

EclipseLink Object relational mapper implementing JPA - http://www.eclipselink.org

H

Hibernate Object relational mapper implementing JPA - http://www.hibernate.org

J

JPA Java Persistence Api

S

Spring Java application framework - http://www.springframework.org

Spring Data JPA () 34

http://en.wikipedia.org/wiki/Dependency_Injection
http://www.eclipselink.org
http://www.hibernate.org
http://www.springframework.org

	Spring Data JPA - Reference Documentation
	Table of Contents
	Preface
	1. Project metadata

	Part I. Reference Documentation
	Chapter 1. Repositories
	1.1. Introduction
	1.2. Core concepts
	1.3. Query methods
	1.3.1. Defining repository interfaces
	1.3.1.1. Fine tuning repository definition

	1.3.2. Defining query methods
	1.3.2.1. Query lookup strategies
	1.3.2.2. Query creation
	1.3.2.2.1. Property expressions

	1.3.2.3. Special parameter handling

	1.3.3. Creating repository instances
	1.3.3.1. XML Configuration
	1.3.3.2. JavaConfig
	1.3.3.3. Standalone usage

	1.4. Custom implementations
	1.4.1. Adding behaviour to single repositories
	1.4.2. Adding custom behaviour to all repositories

	1.5. Extensions
	1.5.1. Domain class web binding for Spring MVC
	1.5.2. Web pagination
	1.5.3. Repository populators

	Chapter 2. JPA Repositories
	2.1. Introduction
	2.1.1. Spring namespace
	2.1.2. Annotation based configuration

	2.2. Query methods
	2.2.1. Query lookup strategies
	2.2.2. Query creation
	2.2.3. Using JPA NamedQueries
	2.2.4. Using @Query
	2.2.5. Using named parameters
	2.2.6. Modifying queries
	2.2.7. Applying query hints

	2.3. Specifications
	2.4. Transactionality
	2.4.1. Transactional query methods

	2.5. Locking
	2.6. Auditing
	2.7. Miscellaneous
	2.7.1. Merging persistence units
	2.7.2. Classpath scanning for @Entity classes and JPA mapping files
	2.7.3. CDI integration

	Part II. Appendix
	Appendix A. Namespace reference
	A.1. The <repositories /> element

	Appendix B. Repository query keywords
	B.1. Supported query keywords

	Appendix C. Frequently asked questions
	Glossary

