
Spring Data JPA - Reference Documentation

version;

Oliver Gierke, Thomas Darimont, Christoph Strobl

Copyright © 2008-2014The original authors.

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Data JPA - Reference Documentation

version;
Spring Data JPA -

Reference Documentation ii

Table of Contents

Preface ... iii
1. Project metadata ... iii

I. Reference Documentation ... 1
1. JPA Repositories ... 2

1.1. Introduction ... 2
Spring namespace ... 2
Annotation based configuration ... 3

1.2. Persisting entities .. 4
Saving entities ... 4

1.3. Query methods ... 4
Query lookup strategies .. 4
Query creation ... 4
Using JPA NamedQueries .. 6
Using @Query ... 7
Using named parameters .. 8
Using SpEL expressions ... 8
Modifying queries ... 10
Applying query hints ... 10

1.4. Specifications .. 10
1.5. Transactionality ... 12

Transactional query methods .. 13
1.6. Locking ... 14
1.7. Auditing ... 14

Basics .. 14
Annotation based auditing metadata .. 14
Interface-based auditing metadata ... 15
AuditorAware .. 15

General auditing configuration ... 16
1.8. Miscellaneous .. 16

Merging persistence units ... 16
Classpath scanning for @Entity classes and JPA mapping files 17
CDI integration ... 17

II. Appendix .. 19
A. Frequently asked questions .. 20
Glossary .. 21

Spring Data JPA - Reference Documentation

version;
Spring Data JPA -

Reference Documentation iii

Preface

1 Project metadata
• Version control - git://github.com/spring-projects/spring-data-jpa.git
• Bugtracker - https://jira.springsource.org/browse/DATAJPA
• Release repository - http://repo.spring.io/libs-release
• Milestone repository - http://repo.spring.io/libs-milestone
• Snapshot repository - http://repo.spring.io/libs-snapshot

git://github.com/spring-projects/spring-data-jpa.git
https://jira.springsource.org/browse/DATAJPA
http://repo.spring.io/libs-release
http://repo.spring.io/libs-milestone
http://repo.spring.io/libs-snapshot

Part I. Reference Documentation

Spring Data JPA - Reference Documentation

version;
Spring Data JPA -

Reference Documentation 2

1. JPA Repositories

This chapter includes details of the JPA repository implementation.

1.1 Introduction

Spring namespace

The JPA module of Spring Data contains a custom namespace that allows defining repository beans.
It also contains certain features and element attributes that are special to JPA. Generally the JPA
repositories can be set up using the repositories element:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:jpa="http://www.springframework.org/schema/data/jpa"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/data/jpa

 http://www.springframework.org/schema/data/jpa/spring-jpa.xsd">

 <jpa:repositories base-package="com.acme.repositories" />

</beans>

Example 1.1 Setting up JPA repositories using the namespace

Using this element looks up Spring Data repositories as described in ???. Beyond that it activates
persistence exception translation for all beans annotated with @Repository to let exceptions being
thrown by the JPA persistence providers be converted into Spring's DataAccessException hierarchy.

Custom namespace attributes

Beyond the default attributes of the repositories element the JPA namespace offers additional
attributes to gain more detailed control over the setup of the repositories:

Table 1.1. Custom JPA-specific attributes of the repositories element

entity-manager-factory-ref Explicitly wire the EntityManagerFactory to
be used with the repositories being detected
by the repositories element. Usually used
if multiple EntityManagerFactory beans
are used within the application. If not
configured we will automatically lookup the
single EntityManagerFactory configured in
the ApplicationContext.

transaction-manager-ref Explicitly wire the
PlatformTransactionManager to be used
with the repositories being detected by
the repositories element. Usually only
necessary if multiple transaction managers
and/or EntityManagerFactory beans have
been configured. Default to a single defined

Spring Data JPA - Reference Documentation

version;
Spring Data JPA -

Reference Documentation 3

PlatformTransactionManager inside the
current ApplicationContext.

Note that we require a PlatformTransactionManager bean named transactionManager to be
present if no explicit transaction-manager-ref is defined.

Annotation based configuration

The Spring Data JPA repositories support cannot only be activated through an XML namespace but
also using an annotation through JavaConfig.

@Configuration

@EnableJpaRepositories

@EnableTransactionManagement

class ApplicationConfig {

 @Bean

 public DataSource dataSource() {

 EmbeddedDatabaseBuilder builder = new EmbeddedDatabaseBuilder();

 return builder.setType(EmbeddedDatabaseType.HSQL).build();

 }

 @Bean

 public EntityManagerFactory entityManagerFactory() {

 HibernateJpaVendorAdapter vendorAdapter = new HibernateJpaVendorAdapter();

 vendorAdapter.setGenerateDdl(true);

 LocalContainerEntityManagerFactoryBean factory = new

 LocalContainerEntityManagerFactoryBean();

 factory.setJpaVendorAdapter(vendorAdapter);

 factory.setPackagesToScan("com.acme.domain");

 factory.setDataSource(dataSource());

 factory.afterPropertiesSet();

 return factory.getObject();

 }

 @Bean

 public PlatformTransactionManager transactionManager() {

 JpaTransactionManager txManager = new JpaTransactionManager();

 txManager.setEntityManagerFactory(entityManagerFactory());

 return txManager;

 }

}

Example 1.2 Spring Data JPA repositories using JavaConfig

The just shown configuration class sets up an embedded HSQL database using the
EmbeddedDatabaseBuilder API of spring-jdbc. We then set up a EntityManagerFactory and
use Hibernate as sample persistence provider. The last infrastructure component declared here
is the JpaTransactionManager. We eventually activate Spring Data JPA repositories using the
@EnableJpaRepositories annotation which essentially carries the same attributes as the XML
namespace does. If no base package is configured it will use the one the configuration class resides in.

Spring Data JPA - Reference Documentation

version;
Spring Data JPA -

Reference Documentation 4

1.2 Persisting entities

Saving entities

Saving an entity can be performed via the CrudRepository.save(…)-Method. It will persist or merge
the given entity using the underlying JPA EntityManager. If the entity has not been persisted yet
Spring Data JPA will save the entity via a call to the entityManager.persist(…)-Method, otherwise
the entityManager.merge(…)-Method will be called.

Entity state detection strategies

Spring Data JPA offers the following strategies to detect whether an entity is new or not:

Table 1.2. Options for detection whether an entity is new in Spring Data JPA

Id-Property inspection (default) By default Spring Data JPA inspects the Id-Property of the given
Entity. If the Id-Property is null, then the entity will be assumed as
new, otherwise as not new.

Implementing Persistable If an entity implements the Persistable interface, Spring Data
JPA will delegate the new-detection to the isNew - Method of the
Entity. See the JavaDoc for details.

Implementing
EntityInformation

One can customize the EntityInformation abstraction used
in the SimpleJpaRepository implementation by creating a
subclass of JpaRepositoryFactory and overriding the
getEntityInformation-Method accordingly. One then has to
register the custom implementation of JpaRepositoryFactory
as a Spring bean. Note that this should be rarely necessary. See
the JavaDoc for details.

1.3 Query methods

Query lookup strategies

The JPA module supports defining a query manually as String or have it being derived from the method
name.

Declared queries

Although getting a query derived from the method name is quite convenient, one might face the situation
in which either the method name parser does not support the keyword one wants to use or the method
name would get unnecessarily ugly. So you can either use JPA named queries through a naming
convention (see the section called “Using JPA NamedQueries” for more information) or rather annotate
your query method with @Query (see the section called “Using @Query” for details).

Query creation

Generally the query creation mechanism for JPA works as described in ???. Here's a short example of
what a JPA query method translates into:

http://docs.spring.io/spring-data/data-commons/docs/current/api/index.html?org/springframework/data/domain/Persistable.html
http://docs.spring.io/spring-data/data-jpa/docs/current/api/index.html?org/springframework/data/jpa/repository/support/JpaRepositoryFactory.html

Spring Data JPA - Reference Documentation

version;
Spring Data JPA -

Reference Documentation 5

public interface UserRepository extends Repository<User, Long> {

 List<User> findByEmailAddressAndLastname(String emailAddress, String lastname);

}

We will create a query using the JPA criteria API from this but essentially this translates into the following
query:

select u from User u where u.emailAddress = ?1 and u.lastname = ?2

Spring Data JPA will do a property check and traverse nested properties as described in ???. Here's
an overview of the keywords supported for JPA and what a method containing that keyword essentially
translates to.

Example 1.3 Query creation from method names

Table 1.3. Supported keywords inside method names

Keyword Sample JPQL snippet

And findByLastnameAndFirstname… where x.lastname = ?1 and

x.firstname = ?2

Or findByLastnameOrFirstname… where x.lastname = ?1 or x.firstname

= ?2

Is,Equals findByFirstname,findByFirstnameIs,findByFirstnameEquals… where x.firstname = 1?

Between findByStartDateBetween … where x.startDate between 1? and ?2

LessThan findByAgeLessThan … where x.age < ?1

LessThanEqualfindByAgeLessThanEqual … where x.age <= ?1

GreaterThan findByAgeGreaterThan … where x.age > ?1

GreaterThanEqualfindByAgeGreaterThanEqual… where x.age >= ?1

After findByStartDateAfter … where x.startDate > ?1

Before findByStartDateBefore … where x.startDate < ?1

IsNull findByAgeIsNull … where x.age is null

IsNotNull,NotNullfindByAge(Is)NotNull … where x.age not null

Like findByFirstnameLike … where x.firstname like ?1

NotLike findByFirstnameNotLike … where x.firstname not like ?1

StartingWith findByFirstnameStartingWith… where x.firstname like ?1 (parameter
bound with appended %)

EndingWith findByFirstnameEndingWith… where x.firstname like ?1 (parameter
bound with prepended %)

Containing findByFirstnameContaining… where x.firstname like ?1 (parameter
bound wrapped in %)

Spring Data JPA - Reference Documentation

version;
Spring Data JPA -

Reference Documentation 6

Keyword Sample JPQL snippet

OrderBy findByAgeOrderByLastnameDesc… where x.age = ?1 order by x.lastname

desc

Not findByLastnameNot … where x.lastname <> ?1

In findByAgeIn(Collection<Age>

ages)

… where x.age in ?1

NotIn findByAgeNotIn(Collection<Age>

age)

… where x.age not in ?1

True findByActiveTrue() … where x.active = true

False findByActiveFalse() … where x.active = false

IgnoreCase findByFirstnameIgnoreCase… where UPPER(x.firstame) = UPPER(?1)

Note

In and NotIn also take any subclass of Collection as parameter as well as arrays or varargs.
For other syntactical versions of the very same logical operator check ???.

Using JPA NamedQueries

Note

The examples use simple <named-query /> element and @NamedQuery annotation. The
queries for these configuration elements have to be defined in JPA query language. Of course
you can use <named-native-query /> or @NamedNativeQuery too. These elements allow
you to define the query in native SQL by losing the database platform independence.

XML named query definition

To use XML configuration simply add the necessary <named-query /> element to the orm.xml JPA
configuration file located in META-INF folder of your classpath. Automatic invocation of named queries
is enabled by using some defined naming convention. For more details see below.

<named-query name="User.findByLastname">

 <query>select u from User u where u.lastname = ?1</query>

</named-query>

Example 1.4 XML named query configuration

As you can see the query has a special name which will be used to resolve it at runtime.

Annotation configuration

Annotation configuration has the advantage of not needing another configuration file to be edited,
probably lowering maintenance costs. You pay for that benefit by the need to recompile your domain
class for every new query declaration.

Spring Data JPA - Reference Documentation

version;
Spring Data JPA -

Reference Documentation 7

@Entity

@NamedQuery(name = "User.findByEmailAddress",

 query = "select u from User u where u.emailAddress = ?1")

public class User {

}

Example 1.5 Annotation based named query configuration

Declaring interfaces

To allow execution of these named queries all you need to do is to specify the UserRepository as
follows:

public interface UserRepository extends JpaRepository<User, Long> {

 List<User> findByLastname(String lastname);

 User findByEmailAddress(String emailAddress);

}

Example 1.6 Query method declaration in UserRepository

Spring Data will try to resolve a call to these methods to a named query, starting with the simple name
of the configured domain class, followed by the method name separated by a dot. So the example here
would use the named queries defined above instead of trying to create a query from the method name.

Using @Query

Using named queries to declare queries for entities is a valid approach and works fine for a small number
of queries. As the queries themselves are tied to the Java method that executes them you actually can
bind them directly using the Spring Data JPA @Query annotation rather than annotating them to the
domain class. This will free the domain class from persistence specific information and co-locate the
query to the repository interface.

Queries annotated to the query method will take precedence over queries defined using @NamedQuery
or named queries declared in orm.xml.

public interface UserRepository extends JpaRepository<User, Long> {

 @Query("select u from User u where u.emailAddress = ?1")

 User findByEmailAddress(String emailAddress);

}

Example 1.7 Declare query at the query method using @Query

Using advanced LIKE expressions

The query execution mechanism for manually defined queries using @Query allow the definition of
advanced LIKE expressions inside the query definition.

public interface UserRepository extends JpaRepository<User, Long> {

 @Query("select u from User u where u.firstname like %?1")

 List<User> findByFirstnameEndsWith(String firstname);

}

Example 1.8 Advanced LIKE expressions in @Query

Spring Data JPA - Reference Documentation

version;
Spring Data JPA -

Reference Documentation 8

In the just shown sample LIKE delimiter character % is recognized and the query transformed into a
valid JPQL query (removing the %). Upon query execution the parameter handed into the method call
gets augmented with the previously recognized LIKE pattern.

Native queries

The @Query annotation allows to execute native queries by setting the nativeQuery flag to true. Note,
that we currently don't support execution of pagination or dynamic sorting for native queries as we'd
have to manipulate the actual query declared and we cannot do this reliably for native SQL.

public interface UserRepository extends JpaRepository<User, Long> {

 @Query(value = "SELECT * FROM USERS WHERE EMAIL_ADDRESS = ?0", nativeQuery = true)

 User findByEmailAddress(String emailAddress);

}

Example 1.9 Declare a native query at the query method using @Query

Using named parameters

By default Spring Data JPA will use position based parameter binding as described in all the samples
above. This makes query methods a little error prone to refactoring regarding the parameter position.
To solve this issue you can use @Param annotation to give a method parameter a concrete name and
bind the name in the query.

public interface UserRepository extends JpaRepository<User, Long> {

 @Query("select u from User u where u.firstname = :firstname or u.lastname = :lastname")

 User findByLastnameOrFirstname(@Param("lastname") String lastname,

 @Param("firstname") String firstname);

}

Note that the method parameters are switched according to the occurrence in the query defined.

Example 1.10 Using named parameters

Using SpEL expressions

As of Spring Data JPA Release 1.4 we support the usage of restricted SpEL template expressions in
manually defined queries via @Query. Upon query execution these expressions are evaluated against
a predefined set of variables. We support the following list of variables to be used in a manual query.

Table 1.4. Supported variables inside SpEL based query templates

Variable Usage Description

entityName select x from

#{#entityName} x

Inserts the entityName of the domain type
associated with the given Repository. The
entityName is resolved as follows: If the domain
type has set the name property on the @Entity
annotation then it will be used. Otherwise the
simple class-name of the domain type will be
used.

The following example demonstrates one use case for the #{#entityName} expression in a query
string where you want to define a repository interface with a query method with a manually defined

Spring Data JPA - Reference Documentation

version;
Spring Data JPA -

Reference Documentation 9

query. In order not to have to state the actual entity name in the query string of a @Query annotation
one can use the #{#entityName} Variable.

Note

The entityName can be customized via the @Entity annotation. Customizations via orm.xml
are not supported for the SpEL expressions.

@Entity

public class User {

 @Id

 @GeneratedValue

 Long id;

 String lastname;

}

public interface UserRepository extends JpaRepository<User,Long> {

 @Query("select u from #{#entityName} u where u.lastname = ?1")

 List<User> findByLastname(String lastname);

}

Example 1.11 Using SpEL expressions in Repository query methods - entityName

Of course you could have just used User in the query declaration directly but that would require you to
change the query as well. The reference to #entityName will pick up potential future remappings of
the User class to a different entity name (e.g. by using @Entity(name = "MyUser").

Another use case for the #{#entityName} expression in a query string is if you want to define a
generic repository interface with specialized repository interfaces for a concrete domain type. In order
not to have to repeat the definition of custom query methods on the concrete interfaces you can use the
entity name expression in the query string of the @Query annotation in the generic repository interface.

@MappedSuperclass

public abstract class AbstractMappedType {

 …

 String attribute

}

@Entity

public class ConcreteType extends AbstractMappedType { … }

@NoRepositoryBean

public interface MappedTypeRepository<T extends AbstractMappedType>

 extends Repository<T, Long> {

 @Query("select t from #{#entityName} t where t.attribute = ?1")

 List<T> findAllByAttribute(String attribute);

}

public interface ConcreteRepository

 extends MappedTypeRepository<ConcreteType> { … }

Example 1.12 Using SpEL expressions in Repository query methods - entityName with inheritance

In the example the interface MappedTypeRepository is the common parent interface for
a few domain types extending AbstractMappedType. It also defines the generic method

Spring Data JPA - Reference Documentation

version;
Spring Data JPA -

Reference Documentation 10

findAllByAttribute(…) which can be used on instances of the specialized repository interfaces. If
you now invoke findByAllAttribute(…) on ConcreteRepository the query being executed will
be select t from ConcreteType t where t.attribute = ?1.

Modifying queries

All the sections above describe how to declare queries to access a given entity or collection of entities.
Of course you can add custom modifying behaviour by using facilities described in ???. As this approach
is feasible for comprehensive custom functionality, you can achieve the execution of modifying queries
that actually only need parameter binding by annotating the query method with @Modifying:

@Modifying

@Query("update User u set u.firstname = ?1 where u.lastname = ?2")

int setFixedFirstnameFor(String firstname, String lastname);

Example 1.13 Declaring manipulating queries

This will trigger the query annotated to the method as updating query instead of a selecting one. As the
EntityManager might contain outdated entities after the execution of the modifying query, we do not
automatically clear it (see JavaDoc of EntityManager.clear() for details) since this will effectively
drop all non-flushed changes still pending in the EntityManager. If you wish the EntityManager
to be cleared automatically you can set @Modifying annotation's clearAutomatically attribute
to true.

Applying query hints

To apply JPA QueryHints to the queries declared in your repository interface you can use the
QueryHints annotation. It takes an array of JPA QueryHint annotations plus a boolean flag to
potentially disable the hints applied to the addtional count query triggered when applying pagination.

public interface UserRepository extends Repository<User, Long> {

 @QueryHints(value = { @QueryHint(name = "name", value = "value")},

 forCounting = false)

 Page<User> findByLastname(String lastname, Pageable pageable);

}

The just shown declaration would apply the configured QueryHint for that actually query but omit
applying it to the count query triggered to calculate the total number of pages.

Example 1.14 Using QueryHints with a repository method

1.4 Specifications

JPA 2 introduces a criteria API that can be used to build queries programmatically. Writing a criteria
you actually define the where-clause of a query for a domain class. Taking another step back these
criteria can be regarded as predicate over the entity that is described by the JPA criteria API constraints.

Spring Data JPA takes the concept of a specification from Eric Evans' book "Domain Driven
Design", following the same semantics and providing an API to define such Specifications using
the JPA criteria API. To support specifications you can extend your repository interface with the
JpaSpecificationExecutor interface:

Spring Data JPA - Reference Documentation

version;
Spring Data JPA -

Reference Documentation 11

public interface CustomerRepository extends CrudRepository<Customer, Long>,

 JpaSpecificationExecutor {

 …

}

The additional interface carries methods that allow you to execute Specifications in a variety of
ways.

For example, the findAll method will return all entities that match the specification:

List<T> findAll(Specification<T> spec);

The Specification interface is as follows:

public interface Specification<T> {

 Predicate toPredicate(Root<T> root, CriteriaQuery<?> query,

 CriteriaBuilder builder);

}

Okay, so what is the typical use case? Specifications can easily be used to build an extensible set
of predicates on top of an entity that then can be combined and used with JpaRepository without the
need to declare a query (method) for every needed combination. Here's an example:

public class CustomerSpecs {

 public static Specification<Customer> isLongTermCustomer() {

 return new Specification<Customer>() {

 public Predicate toPredicate(Root<Customer> root, CriteriaQuery<?> query,

 CriteriaBuilder builder) {

 LocalDate date = new LocalDate().minusYears(2);

 return builder.lessThan(root.get(Customer_.createdAt), date);

 }

 };

 }

 public static Specification<Customer> hasSalesOfMoreThan(MontaryAmount value) {

 return new Specification<Customer>() {

 public Predicate toPredicate(Root<T> root, CriteriaQuery<?> query,

 CriteriaBuilder builder) {

 // build query here

 }

 };

 }

}

Example 1.15 Specifications for a Customer

Admittedly the amount of boilerplate leaves room for improvement (that will hopefully be reduced by
Java 8 closures) but the client side becomes much nicer as you will see below. The Customer_ type is
a metamodel type generated using the JPA Metamodel generator (see the Hibernate implementation's
documentation for example). So the expression Customer_.createdAt is asuming the Customer
having a createdAt attribute of type Date. Besides that we have expressed some criteria on a
business requirement abstraction level and created executable Specifications. So a client might
use a Specification as follows:

http://docs.jboss.org/hibernate/jpamodelgen/1.0/reference/en-US/html_single/#whatisit
http://docs.jboss.org/hibernate/jpamodelgen/1.0/reference/en-US/html_single/#whatisit

Spring Data JPA - Reference Documentation

version;
Spring Data JPA -

Reference Documentation 12

List<Customer> customers = customerRepository.findAll(isLongTermCustomer());

Example 1.16 Using a simple Specification

Okay, why not simply create a query for this kind of data access? You're right. Using a single
Specification does not gain a lot of benefit over a plain query declaration. The power of
Specifications really shines when you combine them to create new Specification objects. You
can achieve this through the Specifications helper class we provide to build expressions like this:

MonetaryAmount amount = new MonetaryAmount(200.0, Currencies.DOLLAR);

List<Customer> customers = customerRepository.findAll(

 where(isLongTermCustomer()).or(hasSalesOfMoreThan(amount)));

As you can see, Specifications offers some glue-code methods to chain and combine
Specifications. Thus extending your data access layer is just a matter of creating new
Specification implementations and combining them with ones already existing.

Example 1.17 Combined Specifications

1.5 Transactionality

CRUD methods on repository instances are transactional by default. For reading operations the
transaction configuration readOnly flag is set to true, all others are configured with a plain
@Transactional so that default transaction configuration applies. For details see JavaDoc of
Repository. If you need to tweak transaction configuration for one of the methods declared in
Repository simply redeclare the method in your repository interface as follows:

public interface UserRepository extends JpaRepository<User, Long> {

 @Override

 @Transactional(timeout = 10)

 public List<User> findAll();

 // Further query method declarations

}

This will cause the findAll() method to be executed with a timeout of 10 seconds and without the
readOnly flag.

Example 1.18 Custom transaction configuration for CRUD

Another possibility to alter transactional behaviour is using a facade or service implementation that
typically covers more than one repository. Its purpose is to define transactional boundaries for non-
CRUD operations:

Spring Data JPA - Reference Documentation

version;
Spring Data JPA -

Reference Documentation 13

@Service

class UserManagementImpl implements UserManagement {

 private final UserRepository userRepository;

 private final RoleRepository roleRepository;

 @Autowired

 public UserManagementImpl(UserRepository userRepository,

 RoleRepository roleRepository) {

 this.userRepository = userRepository;

 this.roleRepository = roleRepository;

 }

 @Transactional

 public void addRoleToAllUsers(String roleName) {

 Role role = roleRepository.findByName(roleName);

 for (User user : userRepository.findAll()) {

 user.addRole(role);

 userRepository.save(user);

 }

}

This will cause call to addRoleToAllUsers(…) to run inside a transaction (participating in an existing
one or create a new one if none already running). The transaction configuration at the repositories will
be neglected then as the outer transaction configuration determines the actual one used. Note that
you will have to activate <tx:annotation-driven /> or use @EnableTransactionManagement
explicitly to get annotation based configuration at facades working. The example above assumes you
are using component scanning.

Example 1.19 Using a facade to define transactions for multiple repository calls

Transactional query methods

To allow your query methods to be transactional simply use @Transactional at the repository
interface you define.

@Transactional(readOnly = true)

public interface UserRepository extends JpaRepository<User, Long> {

 List<User> findByLastname(String lastname);

 @Modifying

 @Transactional

 @Query("delete from User u where u.active = false")

 void deleteInactiveUsers();

}

Typically you will want the readOnly flag set to true as most of the query methods will only read data. In
contrast to that deleteInactiveUsers() makes use of the @Modifying annotation and overrides
the transaction configuration. Thus the method will be executed with readOnly flag set to false.

Example 1.20 Using @Transactional at query methods

Note

It's definitely reasonable to use transactions for read only queries and we can mark them as
such by setting the readOnly flag. This will not, however, act as check that you do not trigger a

Spring Data JPA - Reference Documentation

version;
Spring Data JPA -

Reference Documentation 14

manipulating query (although some databases reject INSERT and UPDATE statements inside a
read only transaction). The readOnly flag instead is propagated as hint to the underlying JDBC
driver for performance optimizations. Furthermore, Spring will perform some optimizations on the
underlying JPA provider. E.g. when used with Hibernate the flush mode is set to NEVER when you
configure a transaction as readOnly which causes Hibernate to skip dirty checks (a noticeable
improvement on large object trees).

1.6 Locking

To specify the lock mode to be used the @Lock annotation can be used on query methods:

interface UserRepository extends Repository<User, Long> {

 // Plain query method

 @Lock(LockModeType.READ)

 List<User> findByLastname(String lastname);

}

Example 1.21 Defining lock metadata on query methods

This method declaration will cause the query being triggered to be equipped with the LockModeType
READ. You can also define locking for CRUD methods by redeclaring them in your repository interface
and adding the @Lock annotation:

interface UserRepository extends Repository<User, Long> {

 // Redeclaration of a CRUD method

 @Lock(LockModeType.READ);

 List<User> findAll();

}

Example 1.22 Defining lock metadata on CRUD methods

1.7 Auditing

Basics

Spring Data provides sophisticated support to transparently keep track of who created or changed an
entity and the point in time this happened. To benefit from that functionality you have to equip your
entity classes with auditing metadata that can be defined either using annotations or by implementing
an interface.

Annotation based auditing metadata

We provide @CreatedBy, @LastModifiedBy to capture the user who created or modified the entity
as well as @CreatedDate and @LastModifiedDate to capture the point in time this happened.

Spring Data JPA - Reference Documentation

version;
Spring Data JPA -

Reference Documentation 15

class Customer {

 @CreatedBy

 private User user;

 @CreatedDate

 private DateTime createdDate;

 // … further properties omitted

}

Example 1.23 An audited entity

As you can see, the annotations can be applied selectively, depending on which information you'd
like to capture. For the annotations capturing the points in time can be used on properties of type
org.joda.time.DateTime, java.util.Date as well as long/Long.

Interface-based auditing metadata

In case you don't want to use annotations to define auditing metadata you can let your domain class
implement the Auditable interface. It exposes setter methods for all of the auditing properties.

There's also a convenience base class AbstractAuditable which you can extend to avoid the need
to manually implement the interface methods. Be aware that this increases the coupling of your domain
classes to Spring Data which might be something you want to avoid. Usually the annotation based way
of defining auditing metadata is preferred as it is less invasive and more flexible.

AuditorAware

In case you use either @CreatedBy or @LastModifiedBy, the auditing infrastructure somehow needs
to become aware of the current principal. To do so, we provide an AuditorAware<T> SPI interface
that you have to implement to tell the infrastructure who the current user or system interacting with the
application is. The generic type T defines of what type the properties annotated with @CreatedBy or
@LastModifiedBy have to be.

Here's an example implementation of the interface using Spring Security's Authentication object:

class SpringSecurityAuditorAware implements AuditorAware<User> {

 public User getCurrentAuditor() {

 Authentication authentication =

 SecurityContextHolder.getContext().getAuthentication();

 if (authentication == null || !authentication.isAuthenticated()) {

 return null;

 }

 return ((MyUserDetails) authentication.getPrincipal()).getUser();

 }

}

Example 1.24 Implementation of AuditorAware based on Spring Security

The implementation is accessing the Authentication object provided by Spring Security and looks
up the custom UserDetails instance from it that you have created in your UserDetailsService
implementation. We're assuming here that you are exposing the domain user through that
UserDetails implementation but you could also look it up from anywhere based on the
Authentication found.

Spring Data JPA - Reference Documentation

version;
Spring Data JPA -

Reference Documentation 16

General auditing configuration

Spring Data JPA ships with an entity listener that can be used to trigger capturing auditing information.
So first you have to register the AuditingEntityListener inside your orm.xml to be used for all
entities in your persistence contexts:

Note that the auditing feature requires spring-aspects.jar to be on the classpath.

<persistence-unit-metadata>

 <persistence-unit-defaults>

 <entity-listeners>

 <entity-listener class="….data.jpa.domain.support.AuditingEntityListener" />

 </entity-listeners>

 </persistence-unit-defaults>

</persistence-unit-metadata>

Example 1.25 Auditing configuration orm.xml

Now activating auditing functionality is just a matter of adding the Spring Data JPA auditing
namespace element to your configuration:

<jpa:auditing auditor-aware-ref="yourAuditorAwareBean" />

Example 1.26 Activating auditing using XML configuration

As of Spring Data JPA 1.5, auditing can be enabled by annotating a configuration class with the
@EnableJpaAuditing annotation.

@Configuration

@EnableJpaAuditing

class Config {

 @Bean

 public AuditorAware<AuditableUser> auditorProvider() {

 return new AuditorAwareImpl();

 }

}

Example 1.27 Activating auditing via Java configuration

If you expose a bean of type AuditorAware to the ApplicationContext, the auditing infrastructure
will pick it up automatically and use it to determine the current user to be set on domain types. If you
have multiple implementations registered in the ApplicationContext, you can select the one to be
used by explicitly setting the auditorAwareRef attribute of @EnableJpaAuditing.

1.8 Miscellaneous

Merging persistence units

Spring supports having multiple persistence units out of the box. Sometimes, however, you might want
to modularize your application but still make sure that all these modules run inside a single persistence
unit at runtime. To do so Spring Data JPA offers a PersistenceUnitManager implementation that
automatically merges persistence units based on their name.

Spring Data JPA - Reference Documentation

version;
Spring Data JPA -

Reference Documentation 17

<bean class="….LocalContainerEntityManagerFactoryBean">

 <property name="persistenceUnitManager">

 <bean class="….MergingPersistenceUnitManager" />

 </property

</bean>

Example 1.28 Using MergingPersistenceUnitmanager

Classpath scanning for @Entity classes and JPA mapping files

A plain JPA setup requires all annotation mapped entity classes listed in
orm.xml. Same applies to XML mapping files. Spring Data JPA provides a
ClasspathScanningPersistenceUnitPostProcessor that gets a base package configured and
optionally takes a mapping filename pattern. It will then scan the given package for classes annotated
with @Entity or @MappedSuperclass and also loads the configuration files matching the filename
pattern and hands them to the JPA configuration. The PostProcessor has to be configured like this

<bean class="….LocalContainerEntityManagerFactoryBean">

 <property name="persistenceUnitPostProcessors">

 <list>

 <bean class="org.springframework.data.jpa.support.ClasspathScanningPersistenceUnitPostProcessor">

 <constructor-arg value="com.acme.domain" />

 <property name="mappingFileNamePattern" value="**/*Mapping.xml" />

 </bean>

 </list>

 </property>

</bean>

Example 1.29 Using ClasspathScanningPersistenceUnitPostProcessor

Note

As of Spring 3.1 a package to scan can be configured on the
LocalContainerEntityManagerFactoryBean directly to enable classpath scanning for
entity classes. See the JavaDoc for details.

CDI integration

Instances of the repository interfaces are usually created by a container, which Spring is the most natural
choice when working with Spring Data. There's sophisticated support to easily set up Spring to create
bean instances documented in ???. As of version 1.1.0 Spring Data JPA ships with a custom CDI
extension that allows using the repository abstraction in CDI environments. The extension is part of the
JAR so all you need to do to activate it is dropping the Spring Data JPA JAR into your classpath.

You can now set up the infrastructure by implementing a CDI Producer for the
EntityManagerFactory and EntityManager:

http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/orm/jpa/LocalContainerEntityManagerFactoryBean.html#setPackagesToScan(java.lang.String...)

Spring Data JPA - Reference Documentation

version;
Spring Data JPA -

Reference Documentation 18

class EntityManagerFactoryProducer {

 @Produces

 @ApplicationScoped

 public EntityManagerFactory createEntityManagerFactory() {

 return Persistence.createEntityManagerFactory("my-presistence-unit");

 }

 public void close(@Disposes EntityManagerFactory entityManagerFactory) {

 entityManagerFactory.close();

 }

 @Produces

 @RequestScoped

 public EntityManager createEntityManager(EntityManagerFactory entityManagerFactory) {

 return entityManagerFactory.createEntityManager();

 }

 public void close(@Disposes EntityManager entityManager) {

 entityManager.close();

 }

}

The necessary setup can vary depending on the JavaEE environment you run in. It might also just be
enough to redeclare a EntityManager as CDI bean as follows:

class CdiConfig {

 @Produces

 @RequestScoped

 @PersistenceContext

 public EntityManager entityManager;

}

In this example, the container has to be capable of creating JPA EntityManagers itself. All the
configuration does is re-exporting the JPA EntityManager as CDI bean.

The Spring Data JPA CDI extension will pick up all EntityManagers availables as CDI beans and
create a proxy for a Spring Data repository whenever an bean of a repository type is requested by the
container. Thus obtaining an instance of a Spring Data repository is a matter of declaring an @Injected
property:

class RepositoryClient {

 @Inject

 PersonRepository repository;

 public void businessMethod() {

 List<Person> people = repository.findAll();

 }

}

Part II. Appendix

Spring Data JPA - Reference Documentation

version;
Spring Data JPA -

Reference Documentation 20

Appendix A. Frequently asked
questions
A.1. Common

A.1.1. I'd like to get more detailed logging information on what methods are called inside
JpaRepository, e.g. How can I gain them?

You can make use of CustomizableTraceInterceptor provided by Spring:

<bean id="customizableTraceInterceptor" class="

 org.springframework.aop.interceptor.CustomizableTraceInterceptor">

 <property name="enterMessage" value="Entering $[methodName]($[arguments])"/>

 <property name="exitMessage" value="Leaving $[methodName](): $[returnValue]"/>

</bean>

<aop:config>

 <aop:advisor advice-ref="customizableTraceInterceptor"

 pointcut="execution(public *

 org.springframework.data.jpa.repository.JpaRepository+.*(..))"/>

</aop:config>

A.2. Infrastructure

A.2.1. Currently I have implemented a repository layer based on HibernateDaoSupport. I create a
SessionFactory by using Spring's AnnotationSessionFactoryBean. How do I get Spring
Data repositories working in this environment?

You have to replace AnnotationSessionFactoryBean with the
HibernateJpaSessionFactoryBean as follows:

<bean id="sessionFactory" class="org.springframework.orm.jpa.vendor.HibernateJpaSessionFactoryBean">

 <property name="entityManagerFactory" ref="entityManagerFactory"/>

</bean>

Example A.1 Looking up a SessionFactory from a HibernateEntityManagerFactory

A.3. Auditing

A.3.1. I want to use Spring Data JPA auditing capabilities but have my database already set up to set
modification and creation date on entities. How to prevent Spring Data from setting the date
programmatically.

Just use the set-dates attribute of the auditing namespace element to false.

Spring Data JPA - Reference Documentation

version;
Spring Data JPA -

Reference Documentation 21

Glossary

A
AOP Aspect oriented programming

C
Commons DBCP Commons DataBase Connection Pools - Library of the Apache

foundation offering pooling implementations of the DataSource
interface.

CRUD Create, Read, Update, Delete - Basic persistence operations

D
DAO Data Access Object - Pattern to separate persisting logic from the

object to be persisted

Dependency Injection Pattern to hand a component's dependency to the component
from outside, freeing the component to lookup the dependant
itself. For more information see http://en.wikipedia.org/wiki/
Dependency_Injection.

E
EclipseLink Object relational mapper implementing JPA - http://

www.eclipselink.org

H
Hibernate Object relational mapper implementing JPA - http://www.hibernate.org

J
JPA Java Persistence Api

S
Spring Java application framework - http://projects.spring.io/spring-framework

http://en.wikipedia.org/wiki/Dependency_Injection
http://en.wikipedia.org/wiki/Dependency_Injection
http://www.eclipselink.org
http://www.eclipselink.org
http://www.hibernate.org
http://projects.spring.io/spring-framework

	Spring Data JPA - Reference Documentation
	Table of Contents
	Preface
	1 Project metadata

	Part I. Reference Documentation
	1. JPA Repositories
	1.1 Introduction
	Spring namespace
	Annotation based configuration

	1.2 Persisting entities
	Saving entities

	1.3 Query methods
	Query lookup strategies
	Query creation
	Using JPA NamedQueries
	Using @Query
	Using named parameters
	Using SpEL expressions
	Modifying queries
	Applying query hints

	1.4 Specifications
	1.5 Transactionality
	Transactional query methods

	1.6 Locking
	1.7 Auditing
	Basics
	Annotation based auditing metadata
	Interface-based auditing metadata
	AuditorAware

	General auditing configuration

	1.8 Miscellaneous
	Merging persistence units
	Classpath scanning for @Entity classes and JPA mapping files
	CDI integration

	Part II. Appendix
	Appendix A. Frequently asked questions
	Glossary

