
Spring Data MongoDB - Reference Documentation

1.6.0.M1

Mark Pollack, Thomas Risberg, Oliver Gierke, Costin Leau, Jon Brisbin, Thomas Darimont, Christoph Strobl

Copyright © 2008-2014 The original authors.

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation ii

Table of Contents

Preface .. v
I. Introduction ... 1

1. Requirements ... 2
2. Additional Help Resources .. 3

2.1. Support ... 3
Community Forum .. 3
Professional Support .. 3

2.2. Following Development .. 3
3. Working with Spring Data Repositories .. 4

3.1. Core concepts ... 4
3.2. Query methods ... 5

Defining repository interfaces .. 6
Fine-tuning repository definition ... 6

Defining query methods .. 7
Query lookup strategies .. 7
Query creation ... 8
Property expressions .. 9
Special parameter handling .. 9

Creating repository instances .. 10
XML configuration .. 10
JavaConfig ... 11
Standalone usage .. 11

3.3. Custom implementations for Spring Data repositories ... 11
Adding custom behavior to single repositories .. 12
Adding custom behavior to all repositories ... 13

3.4. Spring Data extensions .. 15
Web support .. 15

Basic web support .. 15
Hypermedia support for Pageables .. 17

Repository populators ... 18
Legacy web support ... 19

Domain class web binding for Spring MVC .. 19
Web pagination .. 21

II. Reference Documentation ... 24
4. MongoDB support .. 25

4.1. Getting Started .. 25
4.2. Examples Repository ... 28
4.3. Connecting to MongoDB with Spring .. 28

Registering a Mongo instance using Java based metadata 28
Registering a Mongo instance using XML based metadata 29
The MongoDbFactory interface ... 30
Registering a MongoDbFactory instance using Java based metadata 31
Registering a MongoDbFactory instance using XML based metadata 32

4.4. General auditing configuration .. 33
4.5. Introduction to MongoTemplate .. 34

. Instantiating MongoTemplate ... 35
WriteResultChecking Policy ... 36

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation iii

WriteConcern ... 36
WriteConcernResolver .. 36

4.6. Saving, Updating, and Removing Documents .. 36
How the '_id' field is handled in the mapping layer .. 39
Type mapping .. 40
Methods for saving and inserting documents .. 41

Which collection will my documents be saved into? 42
Inserting or saving individual objects ... 42
Inserting several objects in a batch ... 43

Updating documents in a collection ... 43
Methods for executing updates for documents .. 43
Methods for the Update class ... 43

Upserting documents in a collection .. 44
Finding and Upserting documents in a collection .. 44
Methods for removing documents .. 45

4.7. Querying Documents ... 45
Querying documents in a collection ... 46

Methods for the Criteria class ... 46
Methods for the Query class ... 47

Methods for querying for documents .. 48
GeoSpatial Queries .. 48

Geo near queries ... 50
Full Text Queries .. 50

4.8. Map-Reduce Operations .. 51
Example Usage .. 51

4.9. Group Operations .. 53
Example Usage .. 54

4.10. Aggregation Framework Support ... 55
Basic Concepts .. 56
Supported Aggregation Operations .. 56
Projection Expressions ... 57

Spring Expression Support in Projection Expressions 57
Aggregation Framework Examples .. 58

4.11. Overriding default mapping with custom converters .. 63
Saving using a registered Spring Converter ... 63
Reading using a Spring Converter ... 64
Registering Spring Converters with the MongoConverter 64
Converter disambiguation ... 65

4.12. Index and Collection management .. 65
Methods for creating an Index ... 65
Accessing index information .. 66
Methods for working with a Collection ... 66

4.13. Executing Commands .. 66
Methods for executing commands ... 66

4.14. Lifecycle Events ... 67
4.15. Exception Translation ... 68
4.16. Execution callbacks ... 68
4.17. GridFS support .. 69

5. MongoDB repositories .. 72
5.1. Introduction ... 72

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation iv

5.2. Usage ... 72
5.3. Query methods .. 74

Repository delete queries ... 75
Geo-spatial repository queries ... 76
MongoDB JSON based query methods and field restriction 77
Type-safe Query methods ... 77

5.4. Miscellaneous .. 78
CDI Integration ... 78

6. Mapping ... 80
6.1. Convention based Mapping .. 80

How the '_id' field is handled in the mapping layer .. 80
6.2. Mapping Configuration ... 81
6.3. Metadata based Mapping ... 83

Mapping annotation overview .. 84
Customized Object Construction ... 86
Compound Indexes .. 87
Text Indexes .. 88
Using DBRefs .. 88
Mapping Framework Events .. 89
Overriding Mapping with explicit Converters ... 89

7. Cross Store support ... 91
7.1. Cross Store Configuration .. 91
7.2. Writing the Cross Store Application .. 93

8. Logging support ... 96
8.1. MongoDB Log4j Configuration .. 96

9. JMX support .. 97
9.1. MongoDB JMX Configuration ... 97

III. Appendix ... 99
A. Namespace reference .. 100

A.1. The <repositories /> element ... 100
B. Repository query keywords ... 101

B.1. Supported query keywords ... 101

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation v

Preface
The Spring Data MongoDB project applies core Spring concepts to the development of solutions using
the MongoDB document style data store. We provide a "template" as a high-level abstraction for storing
and querying documents. You will notice similarities to the JDBC support in the Spring Framework.

Part I. Introduction
This document is the reference guide for Spring Data - Document Support. It explains Document module
concepts and semantics and the syntax for various stores namespaces.

This section provides some basic introduction to Spring and Document database. The rest of the
document refers only to Spring Data Document features and assumes the user is familiar with document
databases such as MongoDB and CouchDB as well as Spring concepts.

1 Knowing Spring

Spring Data uses Spring framework's core functionality, such as the IoC container, type conversion
system, expression language, JMX integration, and portable DAO exception hierarchy. While it is not
important to know the Spring APIs, understanding the concepts behind them is. At a minimum, the idea
behind IoC should be familiar for whatever IoC container you choose to use.

The core functionality of the MongoDB and CouchDB support can be used directly, with no need to
invoke the IoC services of the Spring Container. This is much like JdbcTemplate which can be used
'standalone' without any other services of the Spring container. To leverage all the features of Spring
Data document, such as the repository support, you will need to configure some parts of the library
using Spring.

To learn more about Spring, you can refer to the comprehensive (and sometimes disarming)
documentation that explains in detail the Spring Framework. There are a lot of articles, blog entries and
books on the matter - take a look at the Spring framework home page for more information.

2 Knowing NoSQL and Document databases

NoSQL stores have taken the storage world by storm. It is a vast domain with a plethora of solutions,
terms and patterns (to make things worth even the term itself has multiple meanings). While some of the
principles are common, it is crucial that the user is familiar to some degree with the stores supported by
DATADOC. The best way to get acquainted to this solutions is to read their documentation and follow
their examples - it usually doesn't take more then 5-10 minutes to go through them and if you are coming
from an RDMBS-only background many times these exercises can be an eye opener.

The jumping off ground for learning about MongoDB is www.mongodb.org. Here is a list of other useful
resources.

• The manual introduces MongoDB and contains links to getting started guides, reference
documentation and tutorials.

• The online shell provides a convenient way to interact with a MongoDB instance in combination with
the online tutorial.

• MongoDB Java Language Center

• Several books available for purchase

• Karl Seguin's online book: "The Little MongoDB Book"

http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/spring-core.html
http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/beans.html
http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/validation.html#core-convert
http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/validation.html#core-convert
http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/expressions.html
http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/jmx.html
http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/dao.html#dao-exceptions
https://spring.io/docs
http://www.google.com/search?q=nosoql+acronym
http://www.mongodb.org/
http://docs.mongodb.org/manual/
http://try.mongodb.org/
http://docs.mongodb.org/manual/tutorial/getting-started/
http://docs.mongodb.org/ecosystem/drivers/java/
http://www.mongodb.org/books
http://openmymind.net/mongodb.pdf

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 2

1. Requirements

Spring Data MongoDB 1.x binaries requires JDK level 6.0 and above, and Spring Framework 3.2.x and
above.

In terms of document stores, MongoDB preferably version 2.4.

https://spring.io/docs
http://www.mongodb.org/

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 3

2. Additional Help Resources

Learning a new framework is not always straight forward. In this section, we try to provide what we think
is an easy to follow guide for starting with Spring Data Document module. However, if you encounter
issues or you are just looking for an advice, feel free to use one of the links below:

2.1 Support

There are a few support options available:

Community Forum

Spring Data on Stackoverflow Stackoverflow is a tag for all Spring Data (not just Document) users to
share information and help each other. Note that registration is needed only for posting.

Professional Support

Professional, from-the-source support, with guaranteed response time, is available from Pivotal
Sofware, Inc., the company behind Spring Data and Spring.

2.2 Following Development

For information on the Spring Data Mongo source code repository, nightly builds and snapshot artifacts
please see the Spring Data Mongo homepage.

You can help make Spring Data best serve the needs of the Spring community by interacting with
developers through the Community on Stackoverflow. To follow developer activity look for the mailing
list information on the Spring Data Mongo homepage.

If you encounter a bug or want to suggest an improvement, please create a ticket on the Spring Data
issue tracker.

To stay up to date with the latest news and announcements in the Spring eco system, subscribe to the
Spring Community Portal.

Lastly, you can follow the SpringSource Data blog or the project team on Twitter (SpringData).

http://stackoverflow.com/questions/tagged/spring-data
http://gopivotal.com/
http://gopivotal.com/
http://projects.spring.io/spring-data-mongodb/
http://stackoverflow.com/questions/tagged/spring-data
https://jira.spring.io/browse/DATAMONGO
https://spring.io
https://spring.io/blog
http://twitter.com/SpringData

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 4

3. Working with Spring Data Repositories

The goal of Spring Data repository abstraction is to significantly reduce the amount of boilerplate code
required to implement data access layers for various persistence stores.

Important

Spring Data repository documentation and your module

This chapter explains the core concepts and interfaces of Spring Data repositories. The
information in this chapter is pulled from the Spring Data Commons module. It uses the
configuration and code samples for the Java Persistence API (JPA) module. Adapt the XML
namespace declaration and the types to be extended to the equivalents of the particular module
that you are using. Appendix A, Namespace reference covers XML configuration which is
supported across all Spring Data modules supporting the repository API, Appendix B, Repository
query keywords covers the query method keywords supported by the repository abstraction in
general. For detailed information on the specific features of your module, consult the chapter on
that module of this document.

3.1 Core concepts

The central interface in Spring Data repository abstraction is Repository (probably not that much of
a surprise). It takes the domain class to manage as well as the id type of the domain class as type
arguments. This interface acts primarily as a marker interface to capture the types to work with and
to help you to discover interfaces that extend this one. The CrudRepository provides sophisticated
CRUD functionality for the entity class that is being managed.

public interface CrudRepository<T, ID extends Serializable>

 extends Repository<T, ID> {

 ❶

 <S extends T> S save(S entity);

 ❷

 T findOne(ID primaryKey);

 ❸

 Iterable<T> findAll();

 Long count();

 ❹

 void delete(T entity);

 ❺

 boolean exists(ID primaryKey);

 ❻

 // … more functionality omitted.

}

❶ Saves the given entity.

❷ Returns the entity identified by the given id.

❸ Returns all entities.

❹ Returns the number of entities.

❺ Deletes the given entity.

❻ Indicates whether an entity with the given id exists.

Example 3.1 CrudRepository interface

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 5

Note

We also provide persistence technology-specific abstractions like e.g. JpaRepository or
MongoRepository. Those interfaces extend CrudRepository and expose the capabilities of
the underlying persistence technology in addition to the rather generic persistence technology-
agnostic interfaces like e.g. CrudRepository.

On top of the CrudRepository there is a PagingAndSortingRepository abstraction that adds
additional methods to ease paginated access to entities:

public interface PagingAndSortingRepository<T, ID extends Serializable>

 extends CrudRepository<T, ID> {

 Iterable<T> findAll(Sort sort);

 Page<T> findAll(Pageable pageable);

}

Example 3.2 PagingAndSortingRepository

Accessing the second page of User by a page size of 20 you could simply do something like this:

PagingAndSortingRepository<User, Long> repository = // … get access to a bean

Page<User> users = repository.findAll(new PageRequest(1, 20));

In addition to finder methods, query derivation for both count and delete queries, is available.

public interface UserRepository extends CrudRepository<User, Long> {

 Long countByLastname(String lastname);

}

Example 3.3 Derived Count Query

public interface UserRepository extends CrudRepository<User, Long> {

 Long deleteByLastname(String lastname);

 List<User> removeByLastname(String lastname);

}

Example 3.4 Derived Delete Query

3.2 Query methods

Standard CRUD functionality repositories usually have queries on the underlying datastore. With Spring
Data, declaring those queries becomes a four-step process:

1. Declare an interface extending Repository or one of its subinterfaces and type it to the domain
class and ID type that it will handle.

public interface PersonRepository extends Repository<User, Long> { … }

2. Declare query methods on the interface.

List<Person> findByLastname(String lastname);

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 6

3. Set up Spring to create proxy instances for those interfaces. Either via JavaConfig:

import org.springframework.data.jpa.repository.config.EnableJpaRepositories;

@EnableJpaRepositories

class Config {}

or via XML configuration:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:jpa="http://www.springframework.org/schema/data/jpa"

 xsi:schemaLocation="http://www.springframework.org/schema/beans http://

www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/data/jpa http://www.springframework.org/

schema/data/jpa/spring-jpa.xsd">

 <jpa:repositories base-package="com.acme.repositories"/>

</beans>

The JPA namespace is used in this example. If you are using the repository abstraction for any other
store, you need to change this to the appropriate namespace declaration of your store module which
should be exchanging jpa in favor of, for example, mongodb. Also, note that the JavaConfig variant
doesn't configure a package explictly as the package of the annotated class is used by default. To
customize the package to scan

4. Get the repository instance injected and use it.

public class SomeClient {

 @Autowired

 private PersonRepository repository;

 public void doSomething() {

 List<Person> persons = repository.findByLastname("Matthews");

 }

}

The sections that follow explain each step.

Defining repository interfaces

As a first step you define a domain class-specific repository interface. The interface must extend
Repository and be typed to the domain class and an ID type. If you want to expose CRUD methods
for that domain type, extend CrudRepository instead of Repository.

Fine-tuning repository definition

Typically, your repository interface will extend Repository, CrudRepository or
PagingAndSortingRepository. Alternatively, if you do not want to extend Spring Data interfaces,
you can also annotate your repository interface with @RepositoryDefinition. Extending
CrudRepository exposes a complete set of methods to manipulate your entities. If you prefer
to be selective about the methods being exposed, simply copy the ones you want to expose from
CrudRepository into your domain repository.

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 7

Note

This allows you to define your own abstractions on top of the provided Spring Data Repositories
functionality.

@NoRepositoryBean

interface MyBaseRepository<T, ID extends Serializable> extends Repository<T, ID> {

 T findOne(ID id);

 T save(T entity);

}

interface UserRepository extends MyBaseRepository<User, Long> {

 User findByEmailAddress(EmailAddress emailAddress);

}

Example 3.5 Selectively exposing CRUD methods

In this first step you defined a common base interface for all your domain repositories and exposed
findOne(…) as well as save(…).These methods will be routed into the base repository implementation
of the store of your choice provided by Spring Data ,e.g. in the case if JPA SimpleJpaRepository,
because they are matching the method signatures in CrudRepository. So the UserRepository will
now be able to save users, and find single ones by id, as well as triggering a query to find Users by
their email address.

Note

Note, that the intermediate repository interface is annotated with @NoRepositoryBean. Make
sure you add that annotation to all repository interfaces that Spring Data should not create
instances for at runtime.

Defining query methods

The repository proxy has two ways to derive a store-specific query from the method name. It can derive
the query from the method name directly, or by using an manually defined query. Available options
depend on the actual store. However, there's got to be an strategy that decides what actual query is
created. Let's have a look at the available options.

Query lookup strategies

The following strategies are available for the repository infrastructure to resolve the query. You
can configure the strategy at the namespace through the query-lookup-strategy attribute
in case of XML configuration or via the queryLookupStrategy attribute of the Enable
${store}Repositories annotation in case of Java config. Some strategies may not be supported
for particular datastores.

CREATE

CREATE attempts to construct a store-specific query from the query method name. The general approach
is to remove a given set of well-known prefixes from the method name and parse the rest of the method.
Read more about query construction in the section called “Query creation”.

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 8

USE_DECLARED_QUERY

USE_DECLARED_QUERY tries to find a declared query and will throw an exception in case it can't find
one. The query can be defined by an annotation somewhere or declared by other means. Consult the
documentation of the specific store to find available options for that store. If the repository infrastructure
does not find a declared query for the method at bootstrap time, it fails.

CREATE_IF_NOT_FOUND (default)

CREATE_IF_NOT_FOUND combines CREATE and USE_DECLARED_QUERY. It looks up a declared query
first, and if no declared query is found, it creates a custom method name-based query. This is the default
lookup strategy and thus will be used if you do not configure anything explicitly. It allows quick query
definition by method names but also custom-tuning of these queries by introducing declared queries
as needed.

Query creation

The query builder mechanism built into Spring Data repository infrastructure is useful for building
constraining queries over entities of the repository. The mechanism strips the prefixes find…By,
read…By, query…By, count…By, and get…By from the method and starts parsing the rest of it. The
introducing clause can contain further expressions such as a Distinct to set a distinct flag on the
query to be created. However, the first By acts as delimiter to indicate the start of the actual criteria. At a
very basic level you can define conditions on entity properties and concatenate them with And and Or.

public interface PersonRepository extends Repository<User, Long> {

 List<Person> findByEmailAddressAndLastname(EmailAddress emailAddress, String lastname);

 // Enables the distinct flag for the query

 List<Person> findDistinctPeopleByLastnameOrFirstname(String lastname, String firstname);

 List<Person> findPeopleDistinctByLastnameOrFirstname(String lastname, String firstname);

 // Enabling ignoring case for an individual property

 List<Person> findByLastnameIgnoreCase(String lastname);

 // Enabling ignoring case for all suitable properties

 List<Person> findByLastnameAndFirstnameAllIgnoreCase(String lastname, String firstname);

 // Enabling static ORDER BY for a query

 List<Person> findByLastnameOrderByFirstnameAsc(String lastname);

 List<Person> findByLastnameOrderByFirstnameDesc(String lastname);

}

Example 3.6 Query creation from method names

The actual result of parsing the method depends on the persistence store for which you create the query.
However, there are some general things to notice.

• The expressions are usually property traversals combined with operators that can be concatenated.
You can combine property expressions with AND and OR. You also get support for operators such as
Between, LessThan, GreaterThan, Like for the property expressions. The supported operators
can vary by datastore, so consult the appropriate part of your reference documentation.

• The method parser supports setting an IgnoreCase flag for individual properties, for
example,findByLastnameIgnoreCase(…)) or for all properties of a type that support ignoring case
(usually Strings, for example, findByLastnameAndFirstnameAllIgnoreCase(…)). Whether
ignoring cases is supported may vary by store, so consult the relevant sections in the reference
documentation for the store-specific query method.

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 9

• You can apply static ordering by appending an OrderBy clause to the query method that references
a property and by providing a sorting direction (Asc or Desc). To create a query method that supports
dynamic sorting, see the section called “Special parameter handling”.

Property expressions

Property expressions can refer only to a direct property of the managed entity, as shown in the preceding
example. At query creation time you already make sure that the parsed property is a property of the
managed domain class. However, you can also define constraints by traversing nested properties.
Assume Persons have Addresses with ZipCodes. In that case a method name of

List<Person> findByAddressZipCode(ZipCode zipCode);

creates the property traversal x.address.zipCode. The resolution algorithm starts with interpreting
the entire part (AddressZipCode) as the property and checks the domain class for a property with
that name (uncapitalized). If the algorithm succeeds it uses that property. If not, the algorithm splits
up the source at the camel case parts from the right side into a head and a tail and tries to find the
corresponding property, in our example, AddressZip and Code. If the algorithm finds a property with
that head it takes the tail and continue building the tree down from there, splitting the tail up in the way
just described. If the first split does not match, the algorithm move the split point to the left (Address,
ZipCode) and continues.

Although this should work for most cases, it is possible for the algorithm to select the wrong property.
Suppose the Person class has an addressZip property as well. The algorithm would match in the first
split round already and essentially choose the wrong property and finally fail (as the type of addressZip
probably has no code property). To resolve this ambiguity you can use _ inside your method name to
manually define traversal points. So our method name would end up like so:

List<Person> findByAddress_ZipCode(ZipCode zipCode);

If your property names contain underscores (e.g. first_name) you can escape the underscore in the
method name with a second underscore. For a first_name property the query method would have
to be named findByFirst__name(…).

Special parameter handling

To handle parameters in your query you simply define method parameters as already seen in the
examples above. Besides that the infrastructure will recognize certain specific types like Pageable and
Sort to apply pagination and sorting to your queries dynamically.

Page<User> findByLastname(String lastname, Pageable pageable);

List<User> findByLastname(String lastname, Sort sort);

List<User> findByLastname(String lastname, Pageable pageable);

Example 3.7 Using Pageable and Sort in query methods

The first method allows you to pass an org.springframework.data.domain.Pageable instance
to the query method to dynamically add paging to your statically defined query. Sorting options
are handled through the Pageable instance too. If you only need sorting, simply add an
org.springframework.data.domain.Sort parameter to your method. As you also can see,
simply returning a List is possible as well. In this case the additional metadata required to build the
actual Page instance will not be created (which in turn means that the additional count query that would

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 10

have been necessary not being issued) but rather simply restricts the query to look up only the given
range of entities.

Note

To find out how many pages you get for a query entirely you have to trigger an additional count
query. By default this query will be derived from the query you actually trigger.

Creating repository instances

In this section you create instances and bean definitions for the repository interfaces defined. One way
to do so is using the Spring namespace that is shipped with each Spring Data module that supports the
repository mechanism although we generally recommend to use the Java-Config style configuration.

XML configuration

Each Spring Data module includes a repositories element that allows you to simply define a base
package that Spring scans for you.

<?xml version="1.0" encoding="UTF-8"?>

<beans:beans xmlns:beans="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns="http://www.springframework.org/schema/data/jpa"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/data/jpa

 http://www.springframework.org/schema/data/jpa/spring-jpa.xsd">

 <repositories base-package="com.acme.repositories" />

</beans:beans>

In the preceding example, Spring is instructed to scan com.acme.repositories and all its subpackages
for interfaces extending Repository or one of its subinterfaces. For each interface found, the
infrastructure registers the persistence technology-specific FactoryBean to create the appropriate
proxies that handle invocations of the query methods. Each bean is registered under a bean name that
is derived from the interface name, so an interface of UserRepository would be registered under
userRepository. The base-package attribute allows wildcards, so that you can define a pattern of
scanned packages.

Using filters

By default the infrastructure picks up every interface extending the persistence technology-specific
Repository subinterface located under the configured base package and creates a bean instance
for it. However, you might want more fine-grained control over which interfaces bean instances get
created for. To do this you use <include-filter /> and <exclude-filter /> elements
inside <repositories />. The semantics are exactly equivalent to the elements in Spring's context
namespace. For details, see Spring reference documentation on these elements.

For example, to exclude certain interfaces from instantiation as repository, you could use the following
configuration:

http://static.springsource.org/spring/docs/2.5.x/reference/beans.html#beans-scanning-filters

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 11

<repositories base-package="com.acme.repositories">

 <context:exclude-filter type="regex" expression=".*SomeRepository" />

</repositories>

This example excludes all interfaces ending in SomeRepository from being instantiated.

Example 3.8 Using exclude-filter element

JavaConfig

The repository infrastructure can also be triggered using a store-specific @Enable

${store}Repositories annotation on a JavaConfig class. For an introduction into Java-based
configuration of the Spring container, see the reference documentation.2

A sample configuration to enable Spring Data repositories looks something like this.

@Configuration

@EnableJpaRepositories("com.acme.repositories")

class ApplicationConfiguration {

 @Bean

 public EntityManagerFactory entityManagerFactory() {

 // …

 }

}

Example 3.9 Sample annotation based repository configuration

Note

The sample uses the JPA-specific annotation, which you would change according to the store
module you actually use. The same applies to the definition of the EntityManagerFactory
bean. Consult the sections covering the store-specific configuration.

Standalone usage

You can also use the repository infrastructure outside of a Spring container, e.g. in CDI environments.
You still need some Spring libraries in your classpath, but generally you can set up repositories
programmatically as well. The Spring Data modules that provide repository support ship a persistence
technology-specific RepositoryFactory that you can use as follows.

RepositoryFactorySupport factory = … // Instantiate factory here

UserRepository repository = factory.getRepository(UserRepository.class);

Example 3.10 Standalone usage of repository factory

3.3 Custom implementations for Spring Data repositories

Often it is necessary to provide a custom implementation for a few repository methods. Spring Data
repositories easily allow you to provide custom repository code and integrate it with generic CRUD
abstraction and query method functionality.

2JavaConfig in the Spring reference documentation - http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/
html/beans.html#beans-java

http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/beans.html#beans-java
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/beans.html#beans-java

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 12

Adding custom behavior to single repositories

To enrich a repository with custom functionality you first define an interface and an implementation for
the custom functionality. Use the repository interface you provided to extend the custom interface.

interface UserRepositoryCustom {

 public void someCustomMethod(User user);

}

Example 3.11 Interface for custom repository functionality

class UserRepositoryImpl implements UserRepositoryCustom {

 public void someCustomMethod(User user) {

 // Your custom implementation

 }

}

Note

The implementation itself does not depend on Spring Data and can be a regular Spring bean.
So you can use standard dependency injection behavior to inject references to other beans like
a JdbTemplate, take part in aspects, and so on.

Example 3.12 Implementation of custom repository functionality

public interface UserRepository extends CrudRepository<User, Long>, UserRepositoryCustom {

 // Declare query methods here

}

Let your standard repository interface extend the custom one. Doing so combines the CRUD and custom
functionality and makes it available to clients.

Example 3.13 Changes to the your basic repository interface

Configuration

If you use namespace configuration, the repository infrastructure tries to autodetect custom
implementations by scanning for classes below the package we found a repository in. These classes
need to follow the naming convention of appending the namespace element's attribute repository-
impl-postfix to the found repository interface name. This postfix defaults to Impl.

<repositories base-package="com.acme.repository" />

<repositories base-package="com.acme.repository" repository-impl-postfix="FooBar" />

Example 3.14 Configuration example

The first configuration example will try to look up a class
com.acme.repository.UserRepositoryImpl to act as custom repository implementation,
whereas the second example will try to lookup com.acme.repository.UserRepositoryFooBar.

Manual wiring

The preceding approach works well if your custom implementation uses annotation-based configuration
and autowiring only, as it will be treated as any other Spring bean. If your custom implementation bean

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 13

needs special wiring, you simply declare the bean and name it after the conventions just described.
The infrastructure will then refer to the manually defined bean definition by name instead of creating
one itself.

<repositories base-package="com.acme.repository" />

<beans:bean id="userRepositoryImpl" class="…">

 <!-- further configuration -->

</beans:bean>

Example 3.15 Manual wiring of custom implementations (I)

Adding custom behavior to all repositories

The preceding approach is not feasible when you want to add a single method to all your repository
interfaces.

1. To add custom behavior to all repositories, you first add an intermediate interface to declare the
shared behavior.

public interface MyRepository<T, ID extends Serializable>

 extends JpaRepository<T, ID> {

 void sharedCustomMethod(ID id);

}

Example 3.16 An interface declaring custom shared behavior

Now your individual repository interfaces will extend this intermediate interface instead of the
Repository interface to include the functionality declared.

2. Next, create an implementation of the intermediate interface that extends the persistence technology-
specific repository base class. This class will then act as a custom base class for the repository
proxies.

public class MyRepositoryImpl<T, ID extends Serializable>

 extends SimpleJpaRepository<T, ID> implements MyRepository<T, ID> {

 private EntityManager entityManager;

 // There are two constructors to choose from, either can be used.

 public MyRepositoryImpl(Class<T> domainClass, EntityManager entityManager) {

 super(domainClass, entityManager);

 // This is the recommended method for accessing inherited class dependencies.

 this.entityManager = entityManager;

 }

 public void sharedCustomMethod(ID id) {

 // implementation goes here

 }

}

Example 3.17 Custom repository base class

The default behavior of the Spring <repositories /> namespace is to provide an implementation
for all interfaces that fall under the base-package. This means that if left in its current state, an

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 14

implementation instance of MyRepository will be created by Spring. This is of course not desired
as it is just supposed to act as an intermediary between Repository and the actual repository
interfaces you want to define for each entity. To exclude an interface that extends Repository from
being instantiated as a repository instance, you can either annotate it with @NoRepositoryBean or
move it outside of the configured base-package.

3. Then create a custom repository factory to replace the default RepositoryFactoryBean that will
in turn produce a custom RepositoryFactory. The new repository factory will then provide your
MyRepositoryImpl as the implementation of any interfaces that extend the Repository interface,
replacing the SimpleJpaRepository implementation you just extended.

public class MyRepositoryFactoryBean<R extends JpaRepository<T, I>, T, I extends

 Serializable>

 extends JpaRepositoryFactoryBean<R, T, I> {

 protected RepositoryFactorySupport createRepositoryFactory(EntityManager

 entityManager) {

 return new MyRepositoryFactory(entityManager);

 }

 private static class MyRepositoryFactory<T, I extends Serializable> extends

 JpaRepositoryFactory {

 private EntityManager entityManager;

 public MyRepositoryFactory(EntityManager entityManager) {

 super(entityManager);

 this.entityManager = entityManager;

 }

 protected Object getTargetRepository(RepositoryMetadata metadata) {

 return new MyRepositoryImpl<T, I>((Class<T>) metadata.getDomainClass(),

 entityManager);

 }

 protected Class<?> getRepositoryBaseClass(RepositoryMetadata metadata) {

 // The RepositoryMetadata can be safely ignored, it is used by the

 JpaRepositoryFactory

 //to check for QueryDslJpaRepository's which is out of scope.

 return MyRepository.class;

 }

 }

}

Example 3.18 Custom repository factory bean

4. Finally, either declare beans of the custom factory directly or use the factory-class attribute of
the Spring namespace to tell the repository infrastructure to use your custom factory implementation.

<repositories base-package="com.acme.repository"

 factory-class="com.acme.MyRepositoryFactoryBean" />

Example 3.19 Using the custom factory with the namespace

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 15

3.4 Spring Data extensions

This section documents a set of Spring Data extensions that enable Spring Data usage in a variety of
contexts. Currently most of the integration is targeted towards Spring MVC.

Web support

Note

This section contains the documentation for the Spring Data web support as it is implemented
as of Spring Data Commons in the 1.6 range. As it the newly introduced support changes quite
a lot of things we kept the documentation of the former behavior in the section called “Legacy
web support”.

Also note that the JavaConfig support introduced in Spring Data Commons 1.6 requires Spring
3.2 due to some issues with JavaConfig and overridden methods in Spring 3.1.

Spring Data modules ships with a variety of web support if the module supports the repository
programming model. The web related stuff requires Spring MVC JARs on the classpath, some of them
even provide integration with Spring HATEOAS.

3In general, the integration support is enabled by using the @EnableSpringDataWebSupport
annotation in your JavaConfig configuration class.

@Configuration

@EnableWebMvc

@EnableSpringDataWebSupport

class WebConfiguration { }

Example 3.20 Enabling Spring Data web support

The @EnableSpringDataWebSupport annotation registers a few components we will discuss in a bit.
It will also detect Spring HATEOAS on the classpath and register integration components for it as well
if present.

Alternatively, if you are using XML configuration, register either SpringDataWebSupport or
HateoasAwareSpringDataWebSupport as Spring beans:

<bean class="org.springframework.data.web.config.SpringDataWebConfiguration" />

<!-- If you're using Spring HATEOAS as well register this one *instead* of the former -->

<bean class="org.springframework.data.web.config.HateoasAwareSpringDataWebConfiguration" /

>

Example 3.21 Enabling Spring Data web support in XML

Basic web support

The configuration setup shown above will register a few basic components:

• A DomainClassConverter to enable Spring MVC to resolve instances of repository managed
domain classes from request parameters or path variables.

• HandlerMethodArgumentResolver implementations to let Spring MVC resolve Pageable and
Sort instances from request parameters.

3Spring HATEOAS - https://github.com/SpringSource/spring-hateoas

https://github.com/SpringSource/spring-hateoas

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 16

DomainClassConverter

The DomainClassConverter allows you to use domain types in your Spring MVC controller method
signatures directly, so that you don't have to manually lookup the instances via the repository:

@Controller

@RequestMapping("/users")

public class UserController {

 @RequestMapping("/{id}")

 public String showUserForm(@PathVariable("id") User user, Model model) {

 model.addAttribute("user", user);

 return "userForm";

 }

}

Example 3.22 A Spring MVC controller using domain types in method signatures

As you can see the method receives a User instance directly and no further lookup is necessary. The
instance can be resolved by letting Spring MVC convert the path variable into the id type of the domain
class first and eventually access the instance through calling findOne(…) on the repository instance
registered for the domain type.

Note

Currently the repository has to implement CrudRepository to be eligible to be discovered for
conversion.

HandlerMethodArgumentResolvers for Pageable and Sort

The configuration snippet above also registers a PageableHandlerMethodArgumentResolver
as well as an instance of SortHandlerMethodArgumentResolver. The registration enables
Pageable and Sort being valid controller method arguments

@Controller

@RequestMapping("/users")

public class UserController {

 @Autowired UserRepository repository;

 @RequestMapping

 public String showUsers(Model model, Pageable pageable) {

 model.addAttribute("users", repository.findAll(pageable));

 return "users";

 }

}

Example 3.23 Using Pageable as controller method argument

This method signature will cause Spring MVC try to derive a Pageable instance from the request
parameters using the following default configuration:

Table 3.1. Request parameters evaluated for Pageable instances

page Page you want to retrieve.

size Size of the page you want to retrieve.

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 17

sort Properties that should be sorted by in the format property,property(,ASC|
DESC). Default sort direction is ascending. Use multiple sort parameters if you
want to switch directions, e.g. ?sort=firstname&sort=lastname,asc.

To customize this behavior extend either SpringDataWebConfiguration or the HATEOAS-enabled
equivalent and override the pageableResolver() or sortResolver() methods and import your
customized configuration file instead of using the @Enable-annotation.

In case you need multiple Pageables or Sorts to be resolved from the request (for multiple tables, for
example) you can use Spring's @Qualifier annotation to distinguish one from another. The request
parameters then have to be prefixed with ${qualifier}_. So for a method signature like this:

public String showUsers(Model model,

 @Qualifier("foo") Pageable first,

 @Qualifier("bar") Pageable second) { … }

you have to populate foo_page and bar_page etc.

The default Pageable handed into the method is equivalent to a new PageRequest(0, 20) but can
be customized using the @PageableDefaults annotation on the Pageable parameter.

Hypermedia support for Pageables

Spring HATEOAS ships with a representation model class PagedResources that allows enrichting the
content of a Page instance with the necessary Page metadata as well as links to let the clients easily
navigate the pages. The conversion of a Page to a PagedResources is done by an implementation of
the Spring HATEOAS ResourceAssembler interface, the PagedResourcesAssembler.

@Controller

class PersonController {

 @Autowired PersonRepository repository;

 @RequestMapping(value = "/persons", method = RequestMethod.GET)

 HttpEntity<PagedResources<Person>> persons(Pageable pageable,

 PagedResourcesAssembler assembler) {

 Page<Person> persons = repository.findAll(pageable);

 return new ResponseEntity<>(assembler.toResources(persons), HttpStatus.OK);

 }

}

Example 3.24 Using a PagedResourcesAssembler as controller method argument

Enabling the configuration as shown above allows the PagedResourcesAssembler to be used as
controller method argument. Calling toResources(…) on it will cause the following:

• The content of the Page will become the content of the PagedResources instance.

• The PagedResources will get a PageMetadata instance attached populated with information form
the Page and the underlying PageRequest.

• The PagedResources gets prev and next links attached depending on the page's state. The links
will point to the URI the method invoked is mapped to. The pagination parameters added to the method
will match the setup of the PageableHandlerMethodArgumentResolver to make sure the links
can be resolved later on.

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 18

Assume we have 30 Person instances in the database. You can now trigger a request GET http://
localhost:8080/persons and you'll see something similar to this:

{ "links" : [{ "rel" : "next",

 "href" : "http://localhost:8080/persons?page=1&size=20 }

],

 "content" : [

 … // 20 Person instances rendered here

],

 "pageMetadata" : {

 "size" : 20,

 "totalElements" : 30,

 "totalPages" : 2,

 "number" : 0

 }

}

You see that the assembler produced the correct URI and also picks up the default configuration
present to resolve the parameters into a Pageable for an upcoming request. This means, if
you change that configuration, the links will automatically adhere to the change. By default the
assembler points to the controller method it was invoked in but that can be customized by
handing in a custom Link to be used as base to build the pagination links to overloads of the
PagedResourcesAssembler.toResource(…) method.

Repository populators

If you work with the Spring JDBC module, you probably are familiar with the support to populate a
DataSource using SQL scripts. A similar abstraction is available on the repositories level, although
it does not use SQL as the data definition language because it must be store-independent. Thus the
populators support XML (through Spring's OXM abstraction) and JSON (through Jackson) to define data
with which to populate the repositories.

Assume you have a file data.json with the following content:

[{ "_class" : "com.acme.Person",

 "firstname" : "Dave",

 "lastname" : "Matthews" },

 { "_class" : "com.acme.Person",

 "firstname" : "Carter",

 "lastname" : "Beauford" }]

Example 3.25 Data defined in JSON

You can easily populate your repositories by using the populator elements of the repository namespace
provided in Spring Data Commons. To populate the preceding data to your PersonRepository , do
the following:

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 19

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:repository="http://www.springframework.org/schema/data/repository"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/data/repository

 http://www.springframework.org/schema/data/repository/spring-repository.xsd">

 <repository:jackson-populator locations="classpath:data.json" />

</beans>

Example 3.26 Declaring a Jackson repository populator

This declaration causes the data.json file to be read and deserialized via a Jackson ObjectMapper.
The type to which the JSON object will be unmarshalled to will be determined by inspecting the _class
attribute of the JSON document. The infrastructure will eventually select the appropriate repository to
handle the object just deserialized.

To rather use XML to define the data the repositories shall be populated with, you can use the
unmarshaller-populator element. You configure it to use one of the XML marshaller options Spring
OXM provides you with. See the Spring reference documentation for details.

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:repository="http://www.springframework.org/schema/data/repository"

 xmlns:oxm="http://www.springframework.org/schema/oxm"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/data/repository

 http://www.springframework.org/schema/data/repository/spring-repository.xsd

 http://www.springframework.org/schema/oxm

 http://www.springframework.org/schema/oxm/spring-oxm.xsd">

 <repository:unmarshaller-populator locations="classpath:data.json" unmarshaller-

ref="unmarshaller" />

 <oxm:jaxb2-marshaller contextPath="com.acme" />

</beans>

Example 3.27 Declaring an unmarshalling repository populator (using JAXB)

Legacy web support

Domain class web binding for Spring MVC

Given you are developing a Spring MVC web application you typically have to resolve domain class
ids from URLs. By default your task is to transform that request parameter or URL part into the domain
class to hand it to layers below then or execute business logic on the entities directly. This would look
something like this:

???

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 20

@Controller

@RequestMapping("/users")

public class UserController {

 private final UserRepository userRepository;

 @Autowired

 public UserController(UserRepository userRepository) {

 Assert.notNull(repository, "Repository must not be null!");

 userRepository = userRepository;

 }

 @RequestMapping("/{id}")

 public String showUserForm(@PathVariable("id") Long id, Model model) {

 // Do null check for id

 User user = userRepository.findOne(id);

 // Do null check for user

 model.addAttribute("user", user);

 return "user";

 }

}

First you declare a repository dependency for each controller to look up the entity managed by
the controller or repository respectively. Looking up the entity is boilerplate as well, as it's always
a findOne(…) call. Fortunately Spring provides means to register custom components that allow
conversion between a String value to an arbitrary type.

PropertyEditors

For Spring versions before 3.0 simple Java PropertyEditors had to be used. To integrate with
that, Spring Data offers a DomainClassPropertyEditorRegistrar, which looks up all Spring Data
repositories registered in the ApplicationContext and registers a custom PropertyEditor for
the managed domain class.

<bean class="….web.servlet.mvc.annotation.AnnotationMethodHandlerAdapter">

 <property name="webBindingInitializer">

 <bean class="….web.bind.support.ConfigurableWebBindingInitializer">

 <property name="propertyEditorRegistrars">

 <bean class="org.springframework.data.repository.support.DomainClassPropertyEditorRegistrar"

 />

 </property>

 </bean>

 </property>

</bean>

If you have configured Spring MVC as in the preceding example, you can configure your controller as
follows, which reduces a lot of the clutter and boilerplate.

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 21

@Controller

@RequestMapping("/users")

public class UserController {

 @RequestMapping("/{id}")

 public String showUserForm(@PathVariable("id") User user, Model model) {

 model.addAttribute("user", user);

 return "userForm";

 }

}

ConversionService

In Spring 3.0 and later the PropertyEditor support is superseded by a new conversion infrastructure
that eliminates the drawbacks of PropertyEditors and uses a stateless X to Y conversion
approach. Spring Data now ships with a DomainClassConverter that mimics the behavior of
DomainClassPropertyEditorRegistrar. To configure, simply declare a bean instance and pipe
the ConversionService being used into its constructor:

<mvc:annotation-driven conversion-service="conversionService" />

<bean class="org.springframework.data.repository.support.DomainClassConverter">

 <constructor-arg ref="conversionService" />

</bean>

If you are using JavaConfig, you can simply extend Spring MVC's WebMvcConfigurationSupport
and hand the FormatingConversionService that the configuration superclass provides into the
DomainClassConverter instance you create.

class WebConfiguration extends WebMvcConfigurationSupport {

 // Other configuration omitted

 @Bean

 public DomainClassConverter<?> domainClassConverter() {

 return new DomainClassConverter<FormattingConversionService>(mvcConversionService());

 }

}

Web pagination

When working with pagination in the web layer you usually have to write a lot of boilerplate code yourself
to extract the necessary metadata from the request. The less desirable approach shown in the example
below requires the method to contain an HttpServletRequest parameter that has to be parsed
manually. This example also omits appropriate failure handling, which would make the code even more
verbose.

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 22

@Controller

@RequestMapping("/users")

public class UserController {

 // DI code omitted

 @RequestMapping

 public String showUsers(Model model, HttpServletRequest request) {

 int page = Integer.parseInt(request.getParameter("page"));

 int pageSize = Integer.parseInt(request.getParameter("pageSize"));

 Pageable pageable = new PageRequest(page, pageSize);

 model.addAttribute("users", userService.getUsers(pageable));

 return "users";

 }

}

The bottom line is that the controller should not have to handle the functionality of extracting pagination
information from the request. So Spring Data ships with a PageableHandlerArgumentResolver
that will do the work for you. The Spring MVC JavaConfig support exposes a
WebMvcConfigurationSupport helper class to customize the configuration as follows:

@Configuration

public class WebConfig extends WebMvcConfigurationSupport {

 @Override

 public void configureMessageConverters(List<HttpMessageConverter<?>> converters) {

 converters.add(new PageableHandlerArgumentResolver());

 }

}

If you're stuck with XML configuration you can register the resolver as follows:

<bean class="….web.servlet.mvc.method.annotation.RequestMappingHandlerAdapter">

 <property name="customArgumentResolvers">

 <list>

 <bean class="org.springframework.data.web.PageableHandlerArgumentResolver" />

 </list>

 </property>

</bean>

When using Spring 3.0.x versions use the PageableArgumentResolver instead. Once you've
configured the resolver with Spring MVC it allows you to simplify controllers down to something like this:

@Controller

@RequestMapping("/users")

public class UserController {

 @RequestMapping

 public String showUsers(Model model, Pageable pageable) {

 model.addAttribute("users", userRepository.findAll(pageable));

 return "users";

 }

}

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 23

The PageableArgumentResolver automatically resolves request parameters to build a
PageRequest instance. By default it expects the following structure for the request parameters.

Table 3.2. Request parameters evaluated by PageableArgumentResolver

page Page you want to retrieve.

page.size Size of the page you want to retrieve.

page.sort Property that should be sorted by.

page.sort.dir Direction that should be used for sorting.

In case you need multiple Pageables to be resolved from the request (for multiple tables, for example)
you can use Spring's @Qualifier annotation to distinguish one from another. The request parameters
then have to be prefixed with ${qualifier}_. So for a method signature like this:

public String showUsers(Model model,

 @Qualifier("foo") Pageable first,

 @Qualifier("bar") Pageable second) { … }

you have to populate foo_page and bar_page and the related subproperties.

Configuring a global default on bean declaration

The PageableArgumentResolver will use a PageRequest with the first page and a page size of 10
by default. It will use that value if it cannot resolve a PageRequest from the request (because of missing
parameters, for example). You can configure a global default on the bean declaration directly. If you
might need controller method specific defaults for the Pageable, annotate the method parameter with
@PageableDefaults and specify page (through pageNumber), page size (through value), sort (list
of properties to sort by), and sortDir (the direction to sort by) as annotation attributes:

public String showUsers(Model model,

 @PageableDefaults(pageNumber = 0, value = 30) Pageable pageable) { … }

Part II. Reference Documentation

Document Structure
This part of the reference documentation explains the core functionality offered by Spring Data
Document.

Chapter 4, MongoDB support introduces the MongoDB module feature set.

Chapter 5, MongoDB repositories introduces the repository support for MongoDB.

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 25

4. MongoDB support

The MongoDB support contains a wide range of features which are summarized below.

• Spring configuration support using Java based @Configuration classes or an XML namespace for a
Mongo driver instance and replica sets

• MongoTemplate helper class that increases productivity performing common Mongo operations.
Includes integrated object mapping between documents and POJOs.

• Exception translation into Spring's portable Data Access Exception hierarchy

• Feature Rich Object Mapping integrated with Spring's Conversion Service

• Annotation based mapping metadata but extensible to support other metadata formats

• Persistence and mapping lifecycle events

• Java based Query, Criteria, and Update DSLs

• Automatic implementation of Repository interfaces including support for custom finder methods.

• QueryDSL integration to support type-safe queries.

• Cross-store persistance - support for JPA Entities with fields transparently persisted/retrieved using
MongoDB

• Log4j log appender

• GeoSpatial integration

For most tasks you will find yourself using MongoTemplate or the Repository support that both leverage
the rich mapping functionality. MongoTemplate is the place to look for accessing functionality such as
incrementing counters or ad-hoc CRUD operations. MongoTemplate also provides callback methods so
that it is easy for you to get a hold of the low level API artifacts such as org.mongo.DB to communicate
directly with MongoDB. The goal with naming conventions on various API artifacts is to copy those in
the base MongoDB Java driver so you can easily map your existing knowledge onto the Spring APIs.

4.1 Getting Started

Spring MongoDB support requires MongoDB 1.4 or higher and Java SE 5 or higher. The latest
production release (2.4.9 as of this writing) is recommended. An easy way to bootstrap setting up a
working environment is to create a Spring based project in STS.

First you need to set up a running Mongodb server. Refer to the Mongodb Quick Start guide for an
explanation on how to startup a MongoDB instance. Once installed starting MongoDB is typically a
matter of executing the following command: MONGO_HOME/bin/mongod

To create a Spring project in STS go to File -> New -> Spring Template Project -> Simple Spring
Utility Project -> press Yes when prompted. Then enter a project and a package name such as
org.spring.mongodb.example.

Then add the following to pom.xml dependencies section.

http://spring.io/tools/sts
http://docs.mongodb.org/manual/core/introduction/

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 26

<dependencies>

 <!-- other dependency elements omitted -->

 <dependency>

 <groupId>org.springframework.data</groupId>

 <artifactId>spring-data-mongodb</artifactId>

 <version>1.4.1.RELEASE</version>

 </dependency>

</dependencies>

Also change the version of Spring in the pom.xml to be

<spring.framework.version>3.2.8.RELEASE</spring.framework.version>

You will also need to add the location of the Spring Milestone repository for maven to your pom.xml
which is at the same level of your <dependencies/> element

<repositories>

 <repository>

 <id>spring-milestone</id>

 <name>Spring Maven MILESTONE Repository</name>

 <url>http://repo.spring.io/libs-milestone</url>

 </repository>

</repositories>

The repository is also browseable here.

You may also want to set the logging level to DEBUG to see some additional information, edit the
log4j.properties file to have

log4j.category.org.springframework.data.document.mongodb=DEBUG

log4j.appender.stdout.layout.ConversionPattern=%d{ABSOLUTE} %5p %40.40c:%4L - %m%n

Create a simple Person class to persist

http://shrub.appspot.com/maven.springframework.org/milestone/org/springframework/data/

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 27

package org.spring.mongodb.example;

public class Person {

 private String id;

 private String name;

 private int age;

 public Person(String name, int age) {

 this.name = name;

 this.age = age;

 }

 public String getId() {

 return id;

 }

 public String getName() {

 return name;

 }

 public int getAge() {

 return age;

 }

 @Override

 public String toString() {

 return "Person [id=" + id + ", name=" + name + ", age=" + age + "]";

 }

}

And a main application to run

package org.spring.mongodb.example;

import static org.springframework.data.mongodb.core.query.Criteria.where;

import org.apache.commons.logging.Log;

import org.apache.commons.logging.LogFactory;

import org.springframework.data.mongodb.core.MongoOperations;

import org.springframework.data.mongodb.core.MongoTemplate;

import org.springframework.data.mongodb.core.query.Query;

import com.mongodb.Mongo;

public class MongoApp {

 private static final Log log = LogFactory.getLog(MongoApp.class);

 public static void main(String[] args) throws Exception {

 MongoOperations mongoOps = new MongoTemplate(new Mongo(), "database");

 mongoOps.insert(new Person("Joe", 34));

 log.info(mongoOps.findOne(new Query(where("name").is("Joe")), Person.class));

 mongoOps.dropCollection("person");

 }

}

This will produce the following output

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 28

10:01:32,062 DEBUG apping.MongoPersistentEntityIndexCreator: 80 - Analyzing class class

 org.spring.example.Person for index information.

10:01:32,265 DEBUG ramework.data.mongodb.core.MongoTemplate: 631 - insert DBObject

 containing fields: [_class, age, name] in collection: Person

10:01:32,765 DEBUG ramework.data.mongodb.core.MongoTemplate:1243 - findOne using query:

 { "name" : "Joe"} in db.collection: database.Person

10:01:32,953 INFO org.spring.mongodb.example.MongoApp: 25 - Person

 [id=4ddbba3c0be56b7e1b210166, name=Joe, age=34]

10:01:32,984 DEBUG ramework.data.mongodb.core.MongoTemplate: 375 - Dropped collection

 [database.person]

Even in this simple example, there are few things to take notice of

• You can instantiate the central helper class of Spring Mongo, MongoTemplate, using the standard
com.mongodb.Mongo object and the name of the database to use.

• The mapper works against standard POJO objects without the need for any additional metadata
(though you can optionally provide that information. See here.).

• Conventions are used for handling the id field, converting it to be a ObjectId when stored in the
database.

• Mapping conventions can use field access. Notice the Person class has only getters.

• If the constructor argument names match the field names of the stored document, they will be used
to instantiate the object

4.2 Examples Repository

There is an github repository with several examples that you can download and play around with to get
a feel for how the library works.

4.3 Connecting to MongoDB with Spring

One of the first tasks when using MongoDB and Spring is to create a com.mongodb.Mongo object
using the IoC container. There are two main ways to do this, either using Java based bean metadata or
XML based bean metadata. These are discussed in the following sections.

Note

For those not familiar with how to configure the Spring container using Java based bean metadata
instead of XML based metadata see the high level introduction in the reference docs here as
well as the detailed documentation here.

Registering a Mongo instance using Java based metadata

An example of using Java based bean metadata to register an instance of a com.mongodb.Mongo
is shown below

https://github.com/spring-projects/spring-data-document-examples
http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/new-in-3.0.html#new-java-configuration
http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/beans.html#beans-java-instantiating-container

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 29

@Configuration

public class AppConfig {

 /*

 * Use the standard Mongo driver API to create a com.mongodb.Mongo instance.

 */

 public @Bean Mongo mongo() throws UnknownHostException {

 return new Mongo("localhost");

 }

}

Example 4.1 Registering a com.mongodb.Mongo object using Java based bean metadata

This approach allows you to use the standard com.mongodb.Mongo API that you may already be used
to using but also pollutes the code with the UnknownHostException checked exception. The use of the
checked exception is not desirable as Java based bean metadata uses methods as a means to set
object dependencies, making the calling code cluttered.

An alternative is to register an instance of com.mongodb.Mongo instance with the container using
Spring's MongoFactoryBean. As compared to instantiating a com.mongodb.Mongo instance directly,
the FactoryBean approach does not throw a checked exception and has the added advantage of
also providing the container with an ExceptionTranslator implementation that translates MongoDB
exceptions to exceptions in Spring's portable DataAccessException hierarchy for data access
classes annoated with the @Repository annotation. This hierarchy and use of @Repository is
described in Spring's DAO support features.

An example of a Java based bean metadata that supports exception translation on @Repository
annotated classes is shown below:

@Configuration

public class AppConfig {

 /*

 * Factory bean that creates the com.mongodb.Mongo instance

 */

 public @Bean MongoFactoryBean mongo() {

 MongoFactoryBean mongo = new MongoFactoryBean();

 mongo.setHost("localhost");

 return mongo;

 }

}

To access the com.mongodb.Mongo object created by the MongoFactoryBean in other
@Configuration or your own classes, use a "private @Autowired Mongo mongo;" field.

Example 4.2 Registering a com.mongodb.Mongo object using Spring's MongoFactoryBean and
enabling Spring's exception translation support

Registering a Mongo instance using XML based metadata

While you can use Spring's traditional <beans/> XML namespace to register an instance of
com.mongodb.Mongo with the container, the XML can be quite verbose as it is general purpose. XML
namespaces are a better alternative to configuring commonly used objects such as the Mongo instance.
The mongo namespace alows you to create a Mongo instance server location, replica-sets, and options.

To use the Mongo namespace elements you will need to reference the Mongo schema:

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/dao.html

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 30

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:context="http://www.springframework.org/schema/context"

 xmlns:mongo="http://www.springframework.org/schema/data/mongo"

 xsi:schemaLocation=

 "http://www.springframework.org/schema/context

 http://www.springframework.org/schema/context/spring-context-3.0.xsd

 http://www.springframework.org/schema/data/mongo

 http://www.springframework.org/schema/data/mongo/spring-mongo-1.0.xsd

 http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

 <!-- Default bean name is 'mongo' -->

 <mongo:mongo host="localhost" port="27017"/>

</beans>

Example 4.3 XML schema to configure MongoDB

A more advanced configuration with MongoOptions is shown below (note these are not recommended
values)

<beans>

 <mongo:mongo host="localhost" port="27017">

 <mongo:options connections-per-host="8"

 threads-allowed-to-block-for-connection-multiplier="4"

 connect-timeout="1000"

 max-wait-time="1500}"

 auto-connect-retry="true"

 socket-keep-alive="true"

 socket-timeout="1500"

 slave-ok="true"

 write-number="1"

 write-timeout="0"

 write-fsync="true"/>

 </mongo:mongo/>

</beans>

Example 4.4 XML schema to configure a com.mongodb.Mongo object with MongoOptions

A configuration using replica sets is shown below.

<mongo:mongo id="replicaSetMongo" replica-set="127.0.0.1:27017,localhost:27018"/>

Example 4.5 XML schema to configure com.mongodb.Mongo object with Replica Sets

The MongoDbFactory interface

While com.mongodb.Mongo is the entry point to the MongoDB driver API, connecting to a specific
MongoDB database instance requires additional information such as the database name and
an optional username and password. With that information you can obtain a com.mongodb.DB
object and access all the functionality of a specific MongoDB database instance. Spring provides
the org.springframework.data.mongodb.core.MongoDbFactory interface shown below to
bootstrap connectivity to the database.

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 31

public interface MongoDbFactory {

 DB getDb() throws DataAccessException;

 DB getDb(String dbName) throws DataAccessException;

}

The following sections show how you can use the container with either Java or the XML based metadata
to configure an instance of the MongoDbFactory interface. In turn, you can use the MongoDbFactory
instance to configure MongoTemplate.

The class org.springframework.data.mongodb.core.SimpleMongoDbFactory provides
implements the MongoDbFactory interface and is created with a
standard com.mongodb.Mongo instance, the database name and an optional
org.springframework.data.authentication.UserCredentials constructor argument.

Instead of using the IoC container to create an instance of MongoTemplate, you can just use them in
standard Java code as shown below.

public class MongoApp {

 private static final Log log = LogFactory.getLog(MongoApp.class);

 public static void main(String[] args) throws Exception {

 MongoOperations mongoOps = new MongoTemplate(new SimpleMongoDbFactory(new Mongo(),

 "database"));

 mongoOps.insert(new Person("Joe", 34));

 log.info(mongoOps.findOne(new Query(where("name").is("Joe")), Person.class));

 mongoOps.dropCollection("person");

 }

}

The code in bold highlights the use of SimpleMongoDbFactory and is the only difference between the
listing shown in the getting started section.

Registering a MongoDbFactory instance using Java based metadata

To register a MongoDbFactory instance with the container, you write code much like what was
highlighted in the previous code listing. A simple example is shown below

@Configuration

public class MongoConfiguration {

 public @Bean MongoDbFactory mongoDbFactory() throws Exception {

 return new SimpleMongoDbFactory(new Mongo(), "database");

 }

}

To define the username and password create an instance of
org.springframework.data.authentication.UserCredentials and pass it into the
constructor as shown below. This listing also shows using MongoDbFactory register an instance of
MongoTemplate with the container.

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 32

@Configuration

public class MongoConfiguration {

 public @Bean MongoDbFactory mongoDbFactory() throws Exception {

 UserCredentials userCredentials = new UserCredentials("joe", "secret");

 return new SimpleMongoDbFactory(new Mongo(), "database", userCredentials);

 }

 public @Bean MongoTemplate mongoTemplate() throws Exception {

 return new MongoTemplate(mongoDbFactory());

 }

}

Registering a MongoDbFactory instance using XML based metadata

The mongo namespace provides a convient way to create a SimpleMongoDbFactory as compared
to using the<beans/> namespace. Simple usage is shown below

<mongo:db-factory dbname="database">

In the above example a com.mongodb.Mongo instance is created using the default host and
port number. The SimpleMongoDbFactory registered with the container is identified by the id
'mongoDbFactory' unless a value for the id attribute is specified.

You can also provide the host and port for the underlying com.mongodb.Mongo instance as shown
below, in addition to username and password for the database.

<mongo:db-factory id="anotherMongoDbFactory"

 host="localhost"

 port="27017"

 dbname="database"

 username="joe"

 password="secret"/>

If you need to configure additional options on the com.mongodb.Mongo instance that is used to create
a SimpleMongoDbFactory you can refer to an existing bean using the mongo-ref attribute as shown
below. To show another common usage pattern, this listing show the use of a property placeholder to
parameterise the configuration and creating MongoTemplate.

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 33

<context:property-placeholder location="classpath:/com/myapp/mongodb/config/

mongo.properties"/>

<mongo:mongo host="${mongo.host}" port="${mongo.port}">

 <mongo:options

 connections-per-host="${mongo.connectionsPerHost}"

 threads-allowed-to-block-for-connection-

multiplier="${mongo.threadsAllowedToBlockForConnectionMultiplier}"

 connect-timeout="${mongo.connectTimeout}"

 max-wait-time="${mongo.maxWaitTime}"

 auto-connect-retry="${mongo.autoConnectRetry}"

 socket-keep-alive="${mongo.socketKeepAlive}"

 socket-timeout="${mongo.socketTimeout}"

 slave-ok="${mongo.slaveOk}"

 write-number="1"

 write-timeout="0"

 write-fsync="true"/>

</mongo:mongo>

<mongo:db-factory dbname="database" mongo-ref="mongo"/>

<bean id="anotherMongoTemplate" class="org.springframework.data.mongodb.core.MongoTemplate">

 <constructor-arg name="mongoDbFactory" ref="mongoDbFactory"/>

</bean>

4.4 General auditing configuration

Activating auditing functionality is just a matter of adding the Spring Data Mongo auditing namespace
element to your configuration:

<mongo:auditing mapping-context-ref="customMappingContext" auditor-aware-

ref="yourAuditorAwareImpl"/>

Example 4.6 Activating auditing using XML configuration

Since Spring Data MongoDB 1.4 auditing can be enabled by annotating a configuration class with the
@EnableMongoAuditing annotation.

@Configuration

@EnableMongoAuditing

class Config {

 @Bean

 public AuditorAware<AuditableUser> myAuditorProvider() {

 return new AuditorAwareImpl();

 }

}

Example 4.7 Activating auditing using JavaConfig

If you expose a bean of type AuditorAware to the ApplicationContext, the auditing infrastructure
will pick it up automatically and use it to determine the current user to be set on domain types. If you
have multiple implementations registered in the ApplicationContext, you can select the one to be
used by explicitly setting the auditorAwareRef attribute of @EnableJpaAuditing.

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 34

4.5 Introduction to MongoTemplate

The class MongoTemplate, located in the package
org.springframework.data.document.mongodb, is the central class of the Spring's MongoDB
support providng a rich feature set to interact with the database. The template offers convenience
operations to create, update, delete and query for MongoDB documents and provides a mapping
between your domain objects and MongoDB documents.

Note

Once configured, MongoTemplate is thread-safe and can be reused across multiple instances.

The mapping between MongoDB documents and domain classes is done by delegating to
an implementation of the interface MongoConverter. Spring provides two implementations,
SimpleMappingConverter and MongoMappingConverter, but you can also write your own
converter. Please refer to the section on MongoCoverters for more detailed information.

The MongoTemplate class implements the interface MongoOperations. In as much as possible,
the methods on MongoOperations are named after methods available on the MongoDB driver
Collection object as as to make the API familiar to existing MongoDB developers who are used to
the driver API. For example, you will find methods such as "find", "findAndModify", "findOne", "insert",
"remove", "save", "update" and "updateMulti". The design goal was to make it as easy as possible to
transition between the use of the base MongoDB driver and MongoOperations. A major difference in
between the two APIs is that MongOperations can be passed domain objects instead of DBObject and
there are fluent APIs for Query, Criteria, and Update operations instead of populating a DBObject
to specify the parameters for those operatiosn.

Note

The preferred way to reference the operations on MongoTemplate instance is via its interface
MongoOperations.

The default converter implementation used by MongoTemplate is MongoMappingConverter. While the
MongoMappingConverter can make use of additional metadata to specify the mapping of objects to
documents it is also capable of converting objects that contain no additonal metadata by using some
conventions for the mapping of IDs and collection names. These conventions as well as the use of
mapping annotations is explained in the Mapping chapter.

Note

In the M2 release SimpleMappingConverter, was the default and this class is now deprecated
as its functionality has been subsumed by the MongoMappingConverter.

Another central feature of MongoTemplate is exception translation of exceptions thrown in the MongoDB
Java driver into Spring's portable Data Access Exception hierarchy. Refer to the section on exception
translation for more information.

While there are many convenience methods on MongoTemplate to help you easily perform common
tasks if you should need to access the MongoDB driver API directly to access functionality not
explicitly exposed by the MongoTemplate you can use one of several Execute callback methods
to access underlying driver APIs. The execute callbacks will give you a reference to either a

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 35

com.mongodb.Collection or a com.mongodb.DB object. Please see the section Execution
Callbacks for more information.

Now let's look at a examples of how to work with the MongoTemplate in the context of the Spring
container.

Instantiating MongoTemplate

You can use Java to create and register an instance of MongoTemplate as shown below.

@Configuration

public class AppConfig {

 public @Bean Mongo mongo() throws Exception {

 return new Mongo("localhost");

 }

 public @Bean MongoTemplate mongoTemplate() throws Exception {

 return new MongoTemplate(mongo(), "mydatabase");

 }

}

Example 4.8 Registering a com.mongodb.Mongo object and enabling Spring's exception translation
support

There are several overloaded constructors of MongoTemplate. These are

• MongoTemplate (Mongo mongo, String databaseName) - takes the com.mongodb.Mongo
object and the default database name to operate against.

• MongoTemplate (Mongo mongo, String databaseName, UserCredentials

userCredentials) - adds the username and password for authenticating with the database.

• MongoTemplate (MongoDbFactory mongoDbFactory) - takes a MongoDbFactory object that
encapsulated the com.mongodb.Mongo object, database name, and username and password.

• MongoTemplate (MongoDbFactory mongoDbFactory, MongoConverter

mongoConverter) - adds a MongoConverter to use for mapping.

You can also configure a MongoTemplate using Spring's XML <beans/> schema.

 <mongo:mongo host="localhost" port="27017"/>

 <bean id="mongoTemplate" class="org.springframework.data.mongodb.core.MongoTemplate">

 <constructor-arg ref="mongo"/>

 <constructor-arg name="databaseName" value="geospatial"/>

 </bean>

Other optional properties that you might like to set when creating a MongoTemplate are the default
WriteResultCheckingPolicy, WriteConcern, and ReadPreference.

Note

The preferred way to reference the operations on MongoTemplate instance is via its interface
MongoOperations.

mongo.executioncallback
mongo.executioncallback

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 36

WriteResultChecking Policy

When in development it is very handy to either log or throw an exception if the
com.mongodb.WriteResult returned from any MongoDB operation contains an error. It is quite
common to forget to do this during development and then end up with an application that looks
like it runs successfully but in fact the database was not modified according to your expectations.
Set MongoTemplate's WriteResultChecking property to an enum with the following values, LOG,
EXCEPTION, or NONE to either log the error, throw and exception or do nothing. The default is to use
a WriteResultChecking value of NONE.

WriteConcern

You can set the com.mongodb.WriteConcern property that the MongoTemplate will use for write
operations if it has not yet been specified via the driver at a higher level such as com.mongodb.Mongo.
If MongoTemplate's WriteConcern property is not set it will default to the one set in the MongoDB
driver's DB or Collection setting.

WriteConcernResolver

For more advanced cases where you want to set different WriteConcern values on a per-
operation basis (for remove, update, insert and save operations), a strategy interface called
WriteConcernResolver can be configured on MongoTemplate. Since MongoTemplate is used to
persist POJOs, the WriteConcernResolver lets you create a policy that can map a specific POJO
class to a WriteConcern value. The WriteConcernResolver interface is shown below.

public interface WriteConcernResolver {

 WriteConcern resolve(MongoAction action);

}

The passed in argument, MongoAction, is what you use to determine the WriteConcern value
to be used or to use the value of the Template itself as a default. MongoAction contains the
collection name being written to, the java.lang.Class of the POJO, the converted DBObject, as
well as the operation as an enumeration (MongoActionOperation: REMOVE, UPDATE, INSERT,
INSERT_LIST, SAVE) and a few other pieces of contextual information. For example,

private class MyAppWriteConcernResolver implements WriteConcernResolver {

 public WriteConcern resolve(MongoAction action) {

 if (action.getEntityClass().getSimpleName().contains("Audit")) {

 return WriteConcern.NONE;

 } else if (action.getEntityClass().getSimpleName().contains("Metadata")) {

 return WriteConcern.JOURNAL_SAFE;

 }

 return action.getDefaultWriteConcern();

 }

}

4.6 Saving, Updating, and Removing Documents

MongoTemplate provides a simple way for you to save, update, and delete your domain objects and
map those objects to documents stored in MongoDB.

Given a simple class such as Person

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 37

public class Person {

 private String id;

 private String name;

 private int age;

 public Person(String name, int age) {

 this.name = name;

 this.age = age;

 }

 public String getId() {

 return id;

 }

 public String getName() {

 return name;

 }

 public int getAge() {

 return age;

 }

 @Override

 public String toString() {

 return "Person [id=" + id + ", name=" + name + ", age=" + age + "]";

 }

}

You can save, update and delete the object as shown below.

Note

MongoOperations is the interface that MongoTemplate implements.

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 38

package org.spring.example;

import static org.springframework.data.mongodb.core.query.Criteria.where;

import static org.springframework.data.mongodb.core.query.Update.update;

import static org.springframework.data.mongodb.core.query.Query.query;

import java.util.List;

import org.apache.commons.logging.Log;

import org.apache.commons.logging.LogFactory;

import org.springframework.data.mongodb.core.MongoOperations;

import org.springframework.data.mongodb.core.MongoTemplate;

import org.springframework.data.mongodb.core.SimpleMongoDbFactory;

import com.mongodb.Mongo;

public class MongoApp {

 private static final Log log = LogFactory.getLog(MongoApp.class);

 public static void main(String[] args) throws Exception {

 MongoOperations mongoOps = new MongoTemplate(new SimpleMongoDbFactory(new

 Mongo(), "database"));

 Person p = new Person("Joe", 34);

 // Insert is used to initially store the object into the database.

 mongoOps.insert(p);

 log.info("Insert: " + p);

 // Find

 p = mongoOps.findById(p.getId(), Person.class);

 log.info("Found: " + p);

 // Update

 mongoOps.updateFirst(query(where("name").is("Joe")), update("age", 35), Person.class);

 p = mongoOps.findOne(query(where("name").is("Joe")), Person.class);

 log.info("Updated: " + p);

 // Delete

 mongoOps.remove(p);

 // Check that deletion worked

 List<Person> people = mongoOps.findAll(Person.class);

 log.info("Number of people = : " + people.size());

 mongoOps.dropCollection(Person.class);

 }

}

This would produce the following log output (including debug messages from MongoTemplate itself)

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 39

DEBUG apping.MongoPersistentEntityIndexCreator: 80 - Analyzing class class

 org.spring.example.Person for index information.

DEBUG work.data.mongodb.core.MongoTemplate: 632 - insert DBObject containing fields:

 [_class, age, name] in collection: person

INFO org.spring.example.MongoApp: 30 - Insert: Person

 [id=4ddc6e784ce5b1eba3ceaf5c, name=Joe, age=34]

DEBUG work.data.mongodb.core.MongoTemplate:1246 - findOne using query: { "_id" :

 { "$oid" : "4ddc6e784ce5b1eba3ceaf5c"}} in db.collection: database.person

INFO org.spring.example.MongoApp: 34 - Found: Person

 [id=4ddc6e784ce5b1eba3ceaf5c, name=Joe, age=34]

DEBUG work.data.mongodb.core.MongoTemplate: 778 - calling update using query: { "name" :

 "Joe"} and update: { "$set" : { "age" : 35}} in collection: person

DEBUG work.data.mongodb.core.MongoTemplate:1246 - findOne using query: { "name" : "Joe"}

 in db.collection: database.person

INFO org.spring.example.MongoApp: 39 - Updated: Person

 [id=4ddc6e784ce5b1eba3ceaf5c, name=Joe, age=35]

DEBUG work.data.mongodb.core.MongoTemplate: 823 - remove using query: { "id" :

 "4ddc6e784ce5b1eba3ceaf5c"} in collection: person

INFO org.spring.example.MongoApp: 46 - Number of people = : 0

DEBUG work.data.mongodb.core.MongoTemplate: 376 - Dropped collection [database.person]

There was implicit conversion using the MongoConverter between a String and ObjectId as stored
in the database and recognizing a convention of the property "Id" name.

Note

This example is meant to show the use of save, update and remove operations on
MongoTemplate and not to show complex mapping functionality

The query syntax used in the example is explained in more detail in the section Querying Documents.

How the '_id' field is handled in the mapping layer

MongoDB requires that you have an '_id' field for all documents. If you don't provide one the driver
will assign a ObjectId with a generated value. When using the MongoMappingConverter there are
certain rules that govern how properties from the Java class is mapped to this '_id' field.

The following outlines what property will be mapped to the '_id' document field:

• A property or field annotated with @Id (org.springframework.data.annotation.Id) will be
mapped to the '_id' field.

• A property or field without an annotation but named id will be mapped to the '_id' field.

The following outlines what type conversion, if any, will be done on the property mapped to the _id
document field when using the MappingMongoConverter, the default for MongoTemplate.

• An id property or field declared as a String in the Java class will be converted to and stored as an
ObjectId if possible using a Spring Converter<String, ObjectId>. Valid conversion rules are
delegated to the MongoDB Java driver. If it cannot be converted to an ObjectId, then the value will
be stored as a string in the database.

• An id property or field declared as BigInteger in the Java class will be converted to and stored as
an ObjectId using a Spring Converter<BigInteger, ObjectId>.

If no field or property specified above is present in the Java class then an implicit '_id' file will be
generated by the driver but not mapped to a property or field of the Java class.

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 40

When querying and updating MongoTemplate will use the converter to handle conversions of the
Query and Update objects that correspond to the above rules for saving documents so field names
and types used in your queries will be able to match what is in your domain classes.

Type mapping

As MongoDB collections can contain documents that represent instances of a variety of types. A great
example here is if you store a hierarchy of classes or simply have a class with a property of type Object.
In the latter case the values held inside that property have to be read in correctly when retrieving the
object. Thus we need a mechanism to store type information alongside the actual document.

To achieve that the MappingMongoConverter uses a MongoTypeMapper abstraction with
DefaultMongoTypeMapper as it's main implementation. It's default behaviour is storing the fully
qualified classname under _class inside the document for the top-level document as well as for every
value if it's a complex type and a subtype of the property type declared.

public class Sample {

 Contact value;

}

public abstract class Contact { … }

public class Person extends Contact { … }

Sample sample = new Sample();

sample.value = new Person();

mongoTemplate.save(sample);

{ "_class" : "com.acme.Sample",

 "value" : { "_class" : "com.acme.Person" }

}

Example 4.9 Type mapping

As you can see we store the type information for the actual root class persistent as well
as for the nested type as it is complex and a subtype of Contact. So if you're now using
mongoTemplate.findAll(Object.class, "sample") we are able to find out that the document
stored shall be a Sample instance. We are also able to find out that the value property shall be a Person
actually.

Customizing type mapping

In case you want to avoid writing the entire Java class name as type information but rather like to use
some key you can use the @TypeAlias annotation at the entity class being persisted. If you need to
customize the mapping even more have a look at the TypeInformationMapper interface. An instance
of that interface can be configured at the DefaultMongoTypeMapper which can be configured in turn
on MappingMongoConverter.

@TypeAlias("pers")

class Person {

}

Note that the resulting document will contain "pers" as the value in the _class Field.

Example 4.10 Defining a TypeAlias for an Entity

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 41

Configuring custom type mapping

The following example demonstrates how to configure a custom MongoTypeMapper in
MappingMongoConverter.

class CustomMongoTypeMapper extends DefaultMongoTypeMapper {

 //implement custom type mapping here

}

@Configuration

class SampleMongoConfiguration extends AbstractMongoConfiguration {

 @Override

 protected String getDatabaseName() {

 return "database";

 }

 @Override

 public Mongo mongo() throws Exception {

 return new Mongo();

 }

 @Bean

 @Override

 public MappingMongoConverter mappingMongoConverter() throws Exception {

 MappingMongoConverter mmc = super.mappingMongoConverter();

 mmc.setTypeMapper(customTypeMapper());

 return mmc;

 }

 @Bean

 public MongoTypeMapper customTypeMapper() {

 return new CustomMongoTypeMapper();

 }

}

Note that we are extending the AbstractMongoConfiguration class and override the bean
definition of the MappingMongoConverter where we configure our custom MongoTypeMapper.

Example 4.11 Configuring a custom MongoTypeMapper via Spring Java Config

<mongo:mapping-converter type-mapper-ref="customMongoTypeMapper"/>

<bean name="customMongoTypeMapper" class="com.bubu.mongo.CustomMongoTypeMapper"/>

Example 4.12 Configuring a custom MongoTypeMapper via XML

Methods for saving and inserting documents

There are several convenient methods on MongoTemplate for saving and inserting your
objects. To have more fine grained control over the conversion process you can register Spring
converters with the MappingMongoConverter, for example Converter<Person, DBObject> and
Converter<DBObject, Person>.

Note

The difference between insert and save operations is that a save operation will perform an insert
if the object is not already present.

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 42

The simple case of using the save operation is to save a POJO. In this case the collection name will be
determined by name (not fully qualfied) of the class. You may also call the save operation with a specific
collection name. The collection to store the object can be overriden using mapping metadata.

When inserting or saving, if the Id property is not set, the assumption is that its value will be auto-
generated by the database. As such, for auto-generation of an ObjectId to succeed the type of the Id
property/field in your class must be either a String, ObjectId, or BigInteger.

Here is a basic example of using the save operation and retrieving its contents.

import static org.springframework.data.mongodb.core.query.Criteria.where;

import static org.springframework.data.mongodb.core.query.Criteria.query;

…

Person p = new Person("Bob", 33);

mongoTemplate.insert(p);

Person qp = mongoTemplate.findOne(query(where("age").is(33)), Person.class);

Example 4.13 Inserting and retrieving documents using the MongoTemplate

The insert/save operations available to you are listed below.

• void save (Object objectToSave) Save the object to the default collection.

• void save (Object objectToSave, String collectionName) Save the object to the
specified collection.

A similar set of insert operations is listed below

• void insert (Object objectToSave) Insert the object to the default collection.

• void insert (Object objectToSave, String collectionName) Insert the object to the
specified collection.

Which collection will my documents be saved into?

There are two ways to manage the collection name that is used for operating on the documents.
The default collection name that is used is the class name changed to start with a lower-case letter.
So a com.test.Person class would be stored in the "person" collection. You can customize this
by providing a different collection name using the @Document annotation. You can also override
the collection name by providing your own collection name as the last parameter for the selected
MongoTemplate method calls.

Inserting or saving individual objects

The MongoDB driver supports inserting a collection of documents in one operation. The methods in the
MongoOperations interface that support this functionality are listed below

• insert Insert an object. If there is an existing document with the same id then an error is generated.

• insertAll Takes a Collection of objects as the first parameter. This method inspects each object
and inserts it to the appropriate collection based on the rules specified above.

• save Save the object overwriting any object that might exist with the same id.

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 43

Inserting several objects in a batch

The MongoDB driver supports inserting a collection of documents in one operation. The methods in the
MongoOperations interface that support this functionality are listed below

• insert methods that take a Collection as the first argument.This inserts a list of
objects in a single batch write to the database.

Updating documents in a collection

For updates we can elect to update the first document found using MongoOperation's method
updateFirst or we can update all documents that were found to match the query using the method
updateMulti. Here is an example of an update of all SAVINGS accounts where we are adding a one
time $50.00 bonus to the balance using the $inc operator.

import static org.springframework.data.mongodb.core.query.Criteria.where;

import static org.springframework.data.mongodb.core.query.Query;

import static org.springframework.data.mongodb.core.query.Update;

 ...

 WriteResult wr = mongoTemplate.updateMulti(new

 Query(where("accounts.accountType").is(Account.Type.SAVINGS)),

 new Update().inc("accounts.

$.balance", 50.00),

 Account.class);

Example 4.14 Updating documents using the MongoTemplate

In addition to the Query discussed above we provide the update definition using an Update object. The
Update class has methods that match the update modifiers available for MongoDB.

As you can see most methods return the Update object to provide a fluent style for the API.

Methods for executing updates for documents

• updateFirst Updates the first document that matches the query document criteria with the provided
updated document.

• updateMulti Updates all objects that match the query document criteria with the provided updated
document.

Methods for the Update class

The Update class can be used with a little 'syntax sugar' as its methods are meant to be chained together
and you can kick-start the creation of a new Update instance via the static method public static
Update update(String key, Object value) and using static imports.

Here is a listing of methods on the Update class

• Update addToSet (String key, Object value) Update using the $addToSet update
modifier

• Update inc (String key, Number inc) Update using the $inc update modifier

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 44

• Update pop (String key, Update.Position pos) Update using the $pop update modifier

• Update pull (String key, Object value) Update using the $pull update modifier

• Update pullAll (String key, Object[] values) Update using the $pullAll update modifier

• Update push (String key, Object value) Update using the $push update modifier

• Update pushAll (String key, Object[] values) Update using the $pushAll update
modifier

• Update rename (String oldName, String newName) Update using the $rename update
modifier

• Update set (String key, Object value) Update using the $set update modifier

• Update unset (String key) Update using the $unset update modifier

Upserting documents in a collection

Related to performing an updateFirst operations, you can also perform an upsert operation which
will perform an insert if no document is found that matches the query. The document that is inserted is
a combination of the query document and the update document. Here is an example

template.upsert(query(where("ssn").is(1111).and("firstName").is("Joe").and("Fraizer").is("Update")),

 update("address", addr), Person.class);

Finding and Upserting documents in a collection

The findAndModify(…) method on DBCollection can update a document and return either the old or
newly updated document in a single operation. MongoTemplate provides a findAndModify method that
takes Query and Update classes and converts from DBObject to your POJOs. Here are the methods

<T> T findAndModify(Query query, Update update, Class<T> entityClass);

<T> T findAndModify(Query query, Update update, Class<T> entityClass, String

 collectionName);

<T> T findAndModify(Query query, Update update, FindAndModifyOptions options, Class<T>

 entityClass);

<T> T findAndModify(Query query, Update update, FindAndModifyOptions options, Class<T>

 entityClass, String collectionName);

As an example usage, we will insert of few Person objects into the container and perform a simple
findAndUpdate operation

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 45

mongoTemplate.insert(new Person("Tom", 21));

mongoTemplate.insert(new Person("Dick", 22));

mongoTemplate.insert(new Person("Harry", 23));

Query query = new Query(Criteria.where("firstName").is("Harry"));

Update update = new Update().inc("age", 1);

Person p = mongoTemplate.findAndModify(query, update, Person.class); // return's old

 person object

assertThat(p.getFirstName(), is("Harry"));

assertThat(p.getAge(), is(23));

p = mongoTemplate.findOne(query, Person.class);

assertThat(p.getAge(), is(24));

// Now return the newly updated document when updating

p = template.findAndModify(query, update, new FindAndModifyOptions().returnNew(true),

 Person.class);

assertThat(p.getAge(), is(25));

The FindAndModifyOptions lets you set the options of returnNew, upsert, and remove. An example
extending off the previous code snippit is shown below

Query query2 = new Query(Criteria.where("firstName").is("Mary"));

p = mongoTemplate.findAndModify(query2, update, new

 FindAndModifyOptions().returnNew(true).upsert(true), Person.class);

assertThat(p.getFirstName(), is("Mary"));

assertThat(p.getAge(), is(1));

Methods for removing documents

You can use several overloaded methods to remove an object from the database.

• remove Remove the given document based on one of the following: a specific object instance, a
query document criteria combined with a class or a query document criteria combined with a specific
collection name.

4.7 Querying Documents

You can express your queries using the Query and Criteria classes which have method names
that mirror the native MongoDB operator names such as lt, lte, is, and others. The Query and
Criteria classes follow a fluent API style so that you can easily chain together multiple method criteria
and queries while having easy to understand code. Static imports in Java are used to help remove the
need to see the 'new' keyword for creating Query and Criteria instances so as to improve readability.
If you like to create Query instances from a plain JSON String use BasicQuery.

BasicQuery query = new BasicQuery("{ age : { $lt : 50 }, accounts.balance : { $gt :

 1000.00 }}");

List<Person> result = mongoTemplate.find(query, Person.class);

Example 4.15 Creating a Query instance from a plain JSON String

GeoSpatial queries are also supported and are described more in the section GeoSpatial Queries.

Map-Reduce operations are also supported and are described more in the section Map-Reduce.

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 46

Querying documents in a collection

We saw how to retrieve a single document using the findOne and findById methods on MongoTemplate
in previous sections which return a single domain object. We can also query for a collection of documents
to be returned as a list of domain objects. Assuming that we have a number of Person objects with name
and age stored as documents in a collection and that each person has an embedded account document
with a balance. We can now run a query using the following code.

import static org.springframework.data.mongodb.core.query.Criteria.where;

import static org.springframework.data.mongodb.core.query.Query.query;

…

List<Person> result = mongoTemplate.find(query(where("age").lt(50)

 .and("accounts.balance").gt(1000.00d)),

 Person.class);

Example 4.16 Querying for documents using the MongoTemplate

All find methods take a Query object as a parameter. This object defines the criteria and options used
to perform the query. The criteria is specified using a Criteria object that has a static factory method
named where used to instantiate a new Criteria object. We recommend using a static import for
org.springframework.data.mongodb.core.query.Criteria.where and Query.query to
make the query more readable.

This query should return a list of Person objects that meet the specified criteria. The Criteria class
has the following methods that correspond to the operators provided in MongoDB.

As you can see most methods return the Criteria object to provide a fluent style for the API.

Methods for the Criteria class

• Criteria all (Object o)Creates a criterion using the $all operator

• Criteria and (String key) Adds a chained Criteria with the specified key to the current
Criteria and returns the newly created one

• Criteria andOperator (Criteria... criteria)Creates an and query using the $and
operator for all of the provided criteria (requires MongoDB 2.0 or later)

• Criteria elemMatch (Criteria c) Creates a criterion using the $elemMatch operator

• Criteria exists (boolean b) Creates a criterion using the $exists operator

• Criteria gt (Object o)Creates a criterion using the $gt operator

• Criteria gte (Object o)Creates a criterion using the $gte operator

• Criteria in (Object... o) Creates a criterion using the $in operator for a varargs argument.

• Criteria in (Collection<?> collection) Creates a criterion using the $in operator using
a collection

• Criteria is (Object o)Creates a criterion using the $is operator

• Criteria lt (Object o)Creates a criterion using the $lt operator

• Criteria lte (Object o)Creates a criterion using the $lte operator

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 47

• Criteria mod (Number value, Number remainder)Creates a criterion using the $mod
operator

• Criteria ne (Object o)Creates a criterion using the $ne operator

• Criteria nin (Object... o) Creates a criterion using the $nin operator

• Criteria norOperator (Criteria... criteria)Creates an nor query using the $nor operator
for all of the provided criteria

• Criteria not ()Creates a criterion using the $not meta operator which affects the clause directly
following

• Criteria orOperator (Criteria... criteria)Creates an or query using the $or operator
for all of the provided criteria

• Criteria regex (String re) Creates a criterion using a $regex

• Criteria size (int s)Creates a criterion using the $size operator

• Criteria type (int t)Creates a criterion using the $type operator

There are also methods on the Criteria class for geospatial queries. Here is a listing but look at the
section on GeoSpatial Queries to see them in action.

• Criteria withinCenter (Circle circle) Creates a geospatial criterion using $within
$center operators

• Criteria withinCenterSphere (Circle circle) Creates a geospatial criterion using $within
$center operators. This is only available for MongoDB 1.7 and higher.

• Criteria withinBox (Box box) Creates a geospatial criterion using a $within $box operation

• Criteria near (Point point) Creates a geospatial criterion using a $near operation

• Criteria nearSphere (Point point) Creates a geospatial criterion using $nearSphere
$center operations. This is only available for MongoDB 1.7 and higher.

• Criteria maxDistance (double maxDistance) Creates a geospatial criterion using the
$maxDistance operation, for use with $near.

The Query class has some additional methods used to provide options for the query.

Methods for the Query class

• Query addCriteria (Criteria criteria) used to add additional criteria to the query

• Field fields () used to define fields to be included in the query results

• Query limit (int limit) used to limit the size of the returned results to the provided limit (used
for paging)

• Query skip (int skip) used to skip the provided number of documents in the results (used for
paging)

• Sort sort () used to provide sort definition for the results

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 48

Methods for querying for documents

The query methods need to specify the target type T that will be returned and they are also overloaded
with an explicit collection name for queries that should operate on a collection other than the one
indicated by the return type.

• findAll Query for a list of objects of type T from the collection.

• findOne Map the results of an ad-hoc query on the collection to a single instance of an object of the
specified type.

• findById Return an object of the given id and target class.

• find Map the results of an ad-hoc query on the collection to a List of the specified type.

• findAndRemove Map the results of an ad-hoc query on the collection to a single instance of an object
of the specified type. The first document that matches the query is returned and also removed from
the collection in the database.

GeoSpatial Queries

MongoDB supports GeoSpatial queries through the use of operators such as $near, $within, and
$nearSphere. Methods specific to geospatial queries are available on the Criteria class. There are
also a few shape classes, Box, Circle, and Point that are used in conjunction with geospatial related
Criteria methods.

To understand how to perform GeoSpatial queries we will use the following Venue class taken from the
integration tests.which relies on using the rich MappingMongoConverter.

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 49

@Document(collection="newyork")

public class Venue {

 @Id

 private String id;

 private String name;

 private double[] location;

 @PersistenceConstructor

 Venue(String name, double[] location) {

 super();

 this.name = name;

 this.location = location;

 }

 public Venue(String name, double x, double y) {

 super();

 this.name = name;

 this.location = new double[] { x, y };

 }

 public String getName() {

 return name;

 }

 public double[] getLocation() {

 return location;

 }

 @Override

 public String toString() {

 return "Venue [id=" + id + ", name=" + name + ", location="

 + Arrays.toString(location) + "]";

 }

}

To find locations within a Circle, the following query can be used.

Circle circle = new Circle(-73.99171, 40.738868, 0.01);

List<Venue> venues =

 template.find(new Query(Criteria.where("location").withinCenter(circle)),

 Venue.class);

To find venues within a Circle using spherical coordinates the following query can be used

Circle circle = new Circle(-73.99171, 40.738868, 0.003712240453784);

List<Venue> venues =

 template.find(new Query(Criteria.where("location").withinCenterSphere(circle)),

 Venue.class);

To find venues within a Box the following query can be used

//lower-left then upper-right

Box box = new Box(new Point(-73.99756, 40.73083), new Point(-73.988135, 40.741404));

List<Venue> venues =

 template.find(new Query(Criteria.where("location").withinBox(box)), Venue.class);

To find venues near a Point, the following query can be used

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 50

Point point = new Point(-73.99171, 40.738868);

List<Venue> venues =

 template.find(new Query(Criteria.where("location").near(point).maxDistance(0.01)),

 Venue.class);

To find venues near a Point using spherical coordines the following query can be used

Point point = new Point(-73.99171, 40.738868);

List<Venue> venues =

 template.find(new Query(

 Criteria.where("location").nearSphere(point).maxDistance(0.003712240453784)),

 Venue.class);

Geo near queries

MongoDB supports querying the database for geo locations and calculation the distance from a given
origin at the very same time. With geo-near queries it's possible to express queries like: "find all
restaurants in the surrounding 10 miles". To do so MongoOperations provides geoNear(…) methods
taking a NearQuery as argument as well as the already familiar entity type and collection

Point location = new Point(-73.99171, 40.738868);

NearQuery query = NearQuery.near(location).maxDistance(new Distance(10, Metrics.MILES));

GeoResults<Restaurant> = operations.geoNear(query, Restaurant.class);

As you can see we use the NearQuery builder API to set up a query to return all Restaurant instances
surrounding the given Point by 10 miles maximum. The Metrics enum used here actually implements
an interface so that other metrics could be plugged into a distance as well. A Metric is backed by a
multiplier to transform the distance value of the given metric into native distances. The sample shown
here would consider the 10 to be miles. Using one of the pre-built in metrics (miles and kilometers) will
automatically trigger the spherical flag to be set on the query. If you want to avoid that, simply hand
in plain double values into maxDistance(…). For more information see the JavaDoc of NearQuery
and Distance.

The geo near operations return a GeoResults wrapper object that encapsulates GeoResult
instances. The wrapping GeoResults allows to access the average distance of all results. A single
GeoResult object simply carries the entity found plus its distance from the origin.

Full Text Queries

Since mongodb 2.6 full text queries can be excuted using the $text operator. Methods and operations
specific for full text queries are available in TextQuery and TextCriteria. When doing full text
search please refer to the mongodb reference for its behavior and limitations.

http://docs.mongodb.org/manual/reference/operator/query/text/#behavior

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 51

Bevore we are actually able to use full text search we have to ensure to set up the search index correctly.
Please refer to section Text Index for creating index structures.

db.foo.ensureIndex(

{

 title : "text",

 content : "text"

},

{

 weights : {

 title : 3

 }

}

)

A query searching for coffee cake, sorted by relevance according to the weights can be defined
and executed as:

Query query = TextQuery.searching(new

 TextCriteria().matchingAny("coffee", "cake")).sortByScore();

List<Document> page = template.find(query, Document.class);

Exclusion of search terms can directly be done by prefixing the term with - or using notMatching

// search for 'coffee' and not 'cake'

TextQuery.searching(new TextCriteria().matching("coffee").matching("-cake"));

TextQuery.searching(new TextCriteria().matching("coffee").notMatching("cake"));

As TextCriteria.matching takes the provided term as is. Therefore phrases can be defined by
putting them between double quotes (eg. \"coffee cake\") or using TextCriteria.phrase.

// search for phrase 'coffee cake'

TextQuery.searching(new TextCriteria().matching("\"coffee cake\""));

TextQuery.searching(new TextCriteria().phrase("coffee cake"));

Example 4.17 Full Text Search

4.8 Map-Reduce Operations

You can query MongoDB using Map-Reduce which is useful for batch processing, data aggregation,
and for when the query language doesn't fulfill your needs.

Spring provides integration with MongoDB's map reduce by providing methods on MongoOperations
to simplify the creation and execution of Map-Reduce operations. It can convert the results of a Map-
Reduce operation to a POJO also integrates with Spring's Resource abstraction abstraction. This
will let you place your JavaScript files on the file system, classpath, http server or any other Spring
Resource implementation and then reference the JavaScript resources via an easy URI style syntax,
e.g. 'classpath:reduce.js;. Externalizing JavaScript code in files is often preferable to embedding them
as Java strings in your code. Note that you can still pass JavaScript code as Java strings if you prefer.

Example Usage

To understand how to perform Map-Reduce operations an example from the book 'MongoDB - The
definitive guide' is used. In this example we will create three documents that have the values [a,b], [b,c],
and [c,d] respectfully. The values in each document are associated with the key 'x' as shown below. For
this example assume these documents are in the collection named "jmr1".

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/resources.html

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 52

{ "_id" : ObjectId("4e5ff893c0277826074ec533"), "x" : ["a", "b"] }

{ "_id" : ObjectId("4e5ff893c0277826074ec534"), "x" : ["b", "c"] }

{ "_id" : ObjectId("4e5ff893c0277826074ec535"), "x" : ["c", "d"] }

A map function that will count the occurance of each letter in the array for each document is shown below

function () {

 for (var i = 0; i < this.x.length; i++) {

 emit(this.x[i], 1);

 }

}

The reduce function that will sum up the occurance of each letter across all the documents is shown
below

function (key, values) {

 var sum = 0;

 for (var i = 0; i < values.length; i++)

 sum += values[i];

 return sum;

}

Executing this will result in a collection as shown below.

{ "_id" : "a", "value" : 1 }

{ "_id" : "b", "value" : 2 }

{ "_id" : "c", "value" : 2 }

{ "_id" : "d", "value" : 1 }

Assuming that the map and reduce functions are located in map.js and reduce.js and bundled in your
jar so they are available on the classpath, you can execute a map-reduce operation and obtain the
results as shown below

MapReduceResults<ValueObject> results =

 mongoOperations.mapReduce("jmr1", "classpath:map.js", "classpath:reduce.js",

 ValueObject.class);

for (ValueObject valueObject : results) {

 System.out.println(valueObject);

}

The output of the above code is

ValueObject [id=a, value=1.0]

ValueObject [id=b, value=2.0]

ValueObject [id=c, value=2.0]

ValueObject [id=d, value=1.0]

The MapReduceResults class implements Iterable and provides access to the raw output, as well
as timing and count statistics. The ValueObject class is simply

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 53

public class ValueObject {

 private String id;

 private float value;

 public String getId() {

 return id;

 }

 public float getValue() {

 return value;

 }

 public void setValue(float value) {

 this.value = value;

 }

 @Override

 public String toString() {

 return "ValueObject [id=" + id + ", value=" + value + "]";

 }

}

By default the output type of INLINE is used so you don't have to specify an output collection. To specify
additional map-reduce options use an overloaded method that takes an additional MapReduceOptions
argument. The class MapReduceOptions has a fluent API so adding additional options can be done in
a very compact syntax. Here an example that sets the output collection to "jmr1_out". Note that setting
only the output collection assumes a default output type of REPLACE.

MapReduceResults<ValueObject> results =

 mongoOperations.mapReduce("jmr1", "classpath:map.js", "classpath:reduce.js",

 new

 MapReduceOptions().outputCollection("jmr1_out"), ValueObject.class);

There is also a static import import static

org.springframework.data.mongodb.core.mapreduce.MapReduceOptions.options;

that can be used to make the syntax slightly more compact

MapReduceResults<ValueObject> results =

 mongoOperations.mapReduce("jmr1", "classpath:map.js", "classpath:reduce.js",

 options().outputCollection("jmr1_out"), ValueObject.class);

You can also specify a query to reduce the set of data that will be used to feed into the map-
reduce operation. This will remove the document that contains [a,b] from consideration for map-reduce
operations.

Query query = new Query(where("x").ne(new String[] { "a", "b" }));

MapReduceResults<ValueObject> results =

 mongoOperations.mapReduce(query, "jmr1", "classpath:map.js", "classpath:reduce.js",

 options().outputCollection("jmr1_out"), ValueObject.class);

Note that you can specify additional limit and sort values as well on the query but not skip values.

4.9 Group Operations

As an alternative to using Map-Reduce to perform data aggregation, you can use the group operation
which feels similar to using SQL's group by query style, so it may feel more approachable vs. using

http://www.mongodb.org/display/DOCS/Aggregation#Aggregation-Group

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 54

Map-Reduce. Using the group operations does have some limitations, for example it is not supported
in a shareded environment and it returns the full result set in a single BSON object, so the result should
be small, less than 10,000 keys.

Spring provides integration with MongoDB's group operation by providing methods on MongoOperations
to simplify the creation and execution of group operations. It can convert the results of the group
operation to a POJO and also integrates with Spring's Resource abstraction abstraction. This will
let you place your JavaScript files on the file system, classpath, http server or any other Spring
Resource implementation and then reference the JavaScript resources via an easy URI style syntax,
e.g. 'classpath:reduce.js;. Externalizing JavaScript code in files if often preferable to embedding them
as Java strings in your code. Note that you can still pass JavaScript code as Java strings if you prefer.

Example Usage

In order to understand how group operations work the following example is used, which is somewhat
artificial. For a more realistic example consult the book 'MongoDB - The definitive guide'. A collection
named "group_test_collection" created with the following rows.

{ "_id" : ObjectId("4ec1d25d41421e2015da64f1"), "x" : 1 }

{ "_id" : ObjectId("4ec1d25d41421e2015da64f2"), "x" : 1 }

{ "_id" : ObjectId("4ec1d25d41421e2015da64f3"), "x" : 2 }

{ "_id" : ObjectId("4ec1d25d41421e2015da64f4"), "x" : 3 }

{ "_id" : ObjectId("4ec1d25d41421e2015da64f5"), "x" : 3 }

{ "_id" : ObjectId("4ec1d25d41421e2015da64f6"), "x" : 3 }

We would like to group by the only field in each row, the 'x' field and aggregate the number of times
each specific value of 'x' occurs. To do this we need to create an initial document that contains our count
variable and also a reduce function which will increment it each time it is encountered. The Java code
to execute the group operation is shown below

GroupByResults<XObject> results = mongoTemplate.group("group_test_collection",

 GroupBy.key("x").initialDocument("{ count: 0 }").reduceFunction("function(doc, prev)

 { prev.count += 1 }"),

 XObject.class);

The first argument is the name of the collection to run the group operation over, the second is a fluent
API that specifies properties of the group operation via a GroupBy class. In this example we are using
just the intialDocument and reduceFunction methods. You can also specify a key-function, as
well as a finalizer as part of the fluent API. If you have multiple keys to group by, you can pass in a
comma separated list of keys.

The raw results of the group operation is a JSON document that looks like this

{

 "retval" : [{ "x" : 1.0 , "count" : 2.0} ,

 { "x" : 2.0 , "count" : 1.0} ,

 { "x" : 3.0 , "count" : 3.0}] ,

 "count" : 6.0 ,

 "keys" : 3 ,

 "ok" : 1.0

}

The document under the "retval" field is mapped onto the third argument in the group method, in this
case XObject which is shown below.

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/resources.html

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 55

public class XObject {

 private float x;

 private float count;

 public float getX() {

 return x;

 }

 public void setX(float x) {

 this.x = x;

 }

 public float getCount() {

 return count;

 }

 public void setCount(float count) {

 this.count = count;

 }

 @Override

 public String toString() {

 return "XObject [x=" + x + " count = " + count + "]";

 }

}

You can also obtain the raw result as a DbObject by calling the method getRawResults on the
GroupByResults class.

There is an additional method overload of the group method on MongoOperations which lets you
specify a Criteria object for selecting a subset of the rows. An example which uses a Criteria
object, with some syntax sugar using static imports, as well as referencing a key-function and reduce
function javascript files via a Spring Resource string is shown below.

import static org.springframework.data.mongodb.core.mapreduce.GroupBy.keyFunction;

import static org.springframework.data.mongodb.core.query.Criteria.where;

GroupByResults<XObject> results = mongoTemplate.group(where("x").gt(0),

 "group_test_collection",

 keyFunction("classpath:keyFunction.js").initialDocument("{ count:

 0 }").reduceFunction("classpath:groupReduce.js"), XObject.class);

4.10 Aggregation Framework Support

Spring Data MongoDB provides support for the Aggregation Framework introduced to MongoDB in
version 2.2.

The MongoDB Documentation describes the Aggregation Framework as follows:“The MongoDB
aggregation framework provides a means to calculate aggregated values without having to use map-
reduce. While map-reduce is powerful, it is often more difficult than necessary for many simple
aggregation tasks, such as totaling or averaging field values.”

For further information see the full reference documentation of the aggregation framework and other
data aggregation tools for MongoDB.

http://docs.mongodb.org/manual/core/aggregation/
http://docs.mongodb.org/manual/aggregation/

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 56

Basic Concepts

The Aggregation Framework support in Spring Data MongoDB is based on the following key abstractions
Aggregation, AggregationOperation and AggregationResults.

• Aggregation

An Aggregation represents a MongoDB aggregate operation and holds the description of
the aggregation pipline instructions. Aggregations are created by inoking the appropriate
newAggregation(…) static factory Method of the Aggregation class which takes the list of
AggregateOperation as a parameter next to the optional input class.

The actual aggregate operation is executed by the aggregate method of the MongoTemplate which
also takes the desired output class as parameter.

• AggregationOperation

An AggregationOperation represents a MongoDB aggregation pipeline operation and describes
the processing that should be performed in this aggregation step. Although one could manually create
an AggregationOperation the recommended way to construct an AggregateOperation is to
use the static factory methods provided by the Aggregate class.

• AggregationResults

AggregationResults is the container for the result of an aggregate operation. It provides access
to the raw aggregation result in the form of an DBObject, to the mapped objects and information
which performed the aggregation.

The canonical example for using the Spring Data MongoDB support for the MongoDB Aggregation
Framework looks as follows:

import static org.springframework.data.mongodb.core.aggregation.Aggregation.*;

Aggregation agg = newAggregation(

 pipelineOP1(),

 pipelineOP2(),

 pipelineOPn()

);

AggregationResults<OutputType> results =

 mongoTemplate.aggregate(agg, "INPUT_COLLECTION_NAME", OutputType.class);

List<OutputType> mappedResult = results.getMappedResults();

Note that if you provide an input class as the first parameter to the newAggregation method the
MongoTemplate will derive the name of the input collection from this class. Otherwise if you don't not
specify an input class you must provide the name of the input collection explicitly. If an input-class and
an input-collection is provided the latter takes precedence.

Supported Aggregation Operations

The MongoDB Aggregation Framework provides the following types of Aggregation Operations:

• Pipeline Aggregation Operators

• Group Aggregation Operators

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 57

• Boolean Aggregation Operators

• Comparison Aggregation Operators

• Arithmetic Aggregation Operators

• String Aggregation Operators

• Date Aggregation Operators

• Conditional Aggregation Operators

At the time of this writing we provide support for the following Aggregation Operations in Spring Data
MongoDB.

Table 4.1. Aggregation Operations currently supported by Spring Data MongoDB

Pipeline Aggregation Operators project, skip, limit, unwind, group, sort, geoNear

Group Aggregation Operators addToSet, first, last, max, min, avg, push, sum,
(*count)

Arithmetic Aggregation Operators add (*via plus), subtract (*via minus), multiply,
divide, mod

Comparison Aggregation Operators eq (*via: is), gt, gte, lt, lte, ne

Note that the aggregation operations not listed here are currently not supported by Spring Data
MongoDB. Comparison aggregation operators are expressed as Criteria expressions.

*) The operation is mapped or added by Spring Data MongoDB.

Projection Expressions

Projection expressions are used to define the fields that are the outcome of a particular aggregation
step. Projection expressions can be defined via the project method of the Aggregate class.

project("name", "netPrice") // will generate {$project: {name: 1, netPrice: 1}}

project().and("foo").as("bar") // will generate {$project: {bar: $foo}}

project("a","b").and("foo").as("bar") // will generate {$project: {a: 1, b: 1, bar: $foo}}

Note that more examples for project operations can be found in the AggregationTests class.

Example 4.18 Projection expression examples

Note that further details regarding the projection expressions can be found in the corresponding section
of the MongoDB Aggregation Framework reference documentation.

Spring Expression Support in Projection Expressions

As of Version 1.4.0 we support the use of SpEL expression in projection expressions via the
andExpression method of the ProjectionOperation class. This allows you to define the desired
expression as a SpEL expression which is translated into a corresponding MongoDB projection
expression part on query execution. This makes it much easier to express complex calculations.

http://docs.mongodb.org/manual/reference/operator/aggregation/project/#pipe._S_project

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 58

The following SpEL expression:

1 + (q + 1) / (q - 1)

will be translated into the following projection expression part:

{ "$add" : [1, {

 "$divide" : [{

 "$add":["$q", 1]}, {

 "$subtract":["$q", 1]}

]

}]}

Example 4.19 Complex calculations with SpEL expressions

Have a look at an example in more context in Example 4.24, “Aggregation Framework Example 5” and
Example 4.25, “Aggregation Framework Example 6”. You can find more usage examples for supported
SpEL expression constructs in SpelExpressionTransformerUnitTests.

Aggregation Framework Examples

The following examples demonstrate the usage patterns for the MongoDB Aggregation Framework with
Spring Data MongoDB.

In this introductory example we want to aggregate a list of tags to get the occurrence count of a particular
tag from a MongoDB collection called "tags" sorted by the occurrence count in descending order.
This example demonstrates the usage of grouping, sorting, projections (selection) and unwinding (result
splitting).

class TagCount {

 String tag;

 int n;

}

import static org.springframework.data.mongodb.core.aggregation.Aggregation.*;

Aggregation agg = newAggregation(

 project("tags"),

 unwind("tags"),

 group("tags").count().as("n"),

 project("n").and("tag").previousOperation(),

 sort(DESC, "n")

);

AggregationResults<TagCount> results = mongoTemplate.aggregate(agg, "tags",

 TagCount.class);

List<TagCount> tagCount = results.getMappedResults();

Example 4.20 Aggregation Framework Example 1

• In order to do this we first create a new aggregation via the newAggregation static factory method
to which we pass a list of aggregation operations. These aggregate operations define the aggregation
pipeline of our Aggregation.

• As a second step we select the "tags" field (which is an array of strings) from the input collection
with the project operation.

• In a third step we use the unwind operation to generate a new document for each tag within the
"tags" array.

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 59

• In the forth step we use the group operation to define a group for each "tags"-value for which we
aggregate the occurrence count via the count aggregation operator and collect the result in a new
field called "n".

• As a fifth step we select the field "n" and create an alias for the id-field generated from the previous
group operation (hence the call to previousOperation()) with the name "tag".

• As the sixth step we sort the resulting list of tags by their occurrence count in descending order via
the sort operation.

• Finally we call the aggregate Method on the MongoTemplate in order to let MongoDB perform the
acutal aggregation operation with the created Aggregation as an argument.

Note that the input collection is explicitly specified as the "tags" parameter to the aggregate Method.
If the name of the input collection is not specified explicitly, it is derived from the input-class passed as
first parameter to the newAggreation Method.

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 60

This example is based on the Largest and Smallest Cities by State example from the MongoDB
Aggregation Framework documentation. We added additional sorting to produce stable results with
different MongoDB versions. Here we want to return the smallest and largest cities by population for
each state, using the aggregation framework. This example demonstrates the usage of grouping, sorting
and projections (selection).

class ZipInfo {

 String id;

 String city;

 String state;

 @Field("pop") int population;

 @Field("loc") double[] location;

}

class City {

 String name;

 int population;

}

class ZipInfoStats {

 String id;

 String state;

 City biggestCity;

 City smallestCity;

}

import static org.springframework.data.mongodb.core.aggregation.Aggregation.*;

TypedAggregation<ZipInfo> aggregation = newAggregation(ZipInfo.class,

 group("state", "city")

 .sum("population").as("pop"),

 sort(ASC, "pop", "state", "city"),

 group("state")

 .last("city").as("biggestCity")

 .last("pop").as("biggestPop")

 .first("city").as("smallestCity")

 .first("pop").as("smallestPop"),

 project()

 .and("state").previousOperation()

 .and("biggestCity")

 .nested(bind("name", "biggestCity").and("population", "biggestPop"))

 .and("smallestCity")

 .nested(bind("name", "smallestCity").and("population", "smallestPop")),

 sort(ASC, "state")

);

AggregationResults<ZipInfoStats> result = mongoTemplate.aggregate(aggregation,

 ZipInfoStats.class);

ZipInfoStats firstZipInfoStats = result.getMappedResults().get(0);

Example 4.21 Aggregation Framework Example 2

• The class ZipInfo maps the structure of the given input-collection. The class ZipInfoStats
defines the structure in the desired output format.

• As a first step we use the group operation to define a group from the input-collection. The grouping
criteria is the combination of the fields "state" and "city" which forms the id structure of the
group. We aggregate the value of the "population" property from the grouped elements with by
using the sum operator saving the result in the field "pop".

http://docs.mongodb.org/manual/tutorial/aggregation-examples/#largest-and-smallest-cities-by-state

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 61

• In a second step we use the sort operation to sort the intermediate-result by the fields "pop",
"state" and "city" in ascending order, such that the smallest city is at the top and the biggest
city is at the bottom of the result. Note that the sorting on "state" and "city" is implicitly performed
against the group id fields which Spring Data MongoDB took care of.

• In the third step we use a group operation again to group the intermediate result by "state".
Note that "state" again implicitly references an group-id field. We select the name and the
population count of the biggest and smallest city with calls to the last(…) and first(...) operator
respectively via the project operation.

• As the forth step we select the "state" field from the previous group operation. Note that "state"
again implicitly references an group-id field. As we do not want an implicit generated id to appear,
we exclude the id from the previous operation via and(previousOperation()).exclude(). As
we want to populate the nested City structures in our output-class accordingly we have to emit
appropriate sub-documents with the nested method.

• Finally as the fifth step we sort the resulting list of StateStats by their state name in ascending
order via the sort operation.

Note that we derive the name of the input-collection from the ZipInfo-class passed as first parameter
to the newAggregation-Method.

This example is based on the States with Populations Over 10 Million example from the MongoDB
Aggregation Framework documentation. We added additional sorting to produce stable results with
different MongoDB versions. Here we want to return all states with a population greater than 10 million,
using the aggregation framework. This example demonstrates the usage of grouping, sorting and
matching (filtering).

class StateStats {

 @Id String id;

 String state;

 @Field("totalPop") int totalPopulation;

}

import static org.springframework.data.mongodb.core.aggregation.Aggregation.*;

TypedAggregation<ZipInfo> agg = newAggregation(ZipInfo.class,

 group("state").sum("population").as("totalPop"),

 sort(ASC, previousOperation(), "totalPop"),

 match(where("totalPop").gte(10 * 1000 * 1000))

);

AggregationResults<StateStats> result = mongoTemplate.aggregate(agg, StateStats.class);

List<StateStats> stateStatsList = result.getMappedResults();

Example 4.22 Aggregation Framework Example 3

• As a first step we group the input collection by the "state" field and calculate the sum of the
"population" field and store the result in the new field "totalPop".

• In the second step we sort the intermediate result by the id-reference of the previous group operation
in addition to the "totalPop" field in ascending order.

• Finally in the third step we filter the intermediate result by using a match operation which accepts a
Criteria query as an argument.

http://docs.mongodb.org/manual/tutorial/aggregation-examples/#states-with-populations-over-10-million

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 62

Note that we derive the name of the input-collection from the ZipInfo-class passed as first parameter
to the newAggregation-Method.

This example demonstrates the use of simple arithmetic operations in the projection operation.

class Product {

 String id;

 String name;

 double netPrice;

 int spaceUnits;

}

import static org.springframework.data.mongodb.core.aggregation.Aggregation.*;

TypedAggregation<Product> agg = newAggregation(Product.class,

 project("name", "netPrice")

 .and("netPrice").plus(1).as("netPricePlus1")

 .and("netPrice").minus(1).as("netPriceMinus1")

 .and("netPrice").multiply(1.19).as("grossPrice")

 .and("netPrice").divide(2).as("netPriceDiv2")

 .and("spaceUnits").mod(2).as("spaceUnitsMod2")

);

AggregationResults<DBObject> result = mongoTemplate.aggregate(agg, DBObject.class);

List<DBObject> resultList = result.getMappedResults();

Example 4.23 Aggregation Framework Example 4

Note that we derive the name of the input-collection from the Product-class passed as first parameter
to the newAggregation-Method.

This example demonstrates the use of simple arithmetic operations derived from SpEL Expressions in
the projection operation.

class Product {

 String id;

 String name;

 double netPrice;

 int spaceUnits;

}

import static org.springframework.data.mongodb.core.aggregation.Aggregation.*;

TypedAggregation<Product> agg = newAggregation(Product.class,

 project("name", "netPrice")

 .andExpression("netPrice + 1").as("netPricePlus1")

 .andExpression("netPrice - 1").as("netPriceMinus1")

 .andExpression("netPrice / 2").as("netPriceDiv2")

 .andExpression("netPrice * 1.19").as("grossPrice")

 .andExpression("spaceUnits % 2").as("spaceUnitsMod2")

 .andExpression("(netPrice * 0.8 + 1.2) *

 1.19").as("grossPriceIncludingDiscountAndCharge")

);

AggregationResults<DBObject> result = mongoTemplate.aggregate(agg, DBObject.class);

List<DBObject> resultList = result.getMappedResults();

Example 4.24 Aggregation Framework Example 5

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 63

This example demonstrates the use of complex arithmetic operations derived from SpEL Expressions
in the projection operation.

Note: The additional parameters passed to the addExpression Method can be referenced via indexer
expressions according to their position. In this example we reference the parameter shippingCosts
which is the first parameter of the parameters array via [0]. External parameter expressions are
replaced with their respective values when the SpEL expression is transformed into a MongoDB
aggregation framework expression.

class Product {

 String id;

 String name;

 double netPrice;

 int spaceUnits;

}

import static org.springframework.data.mongodb.core.aggregation.Aggregation.*;

double shippingCosts = 1.2;

TypedAggregation<Product> agg = newAggregation(Product.class,

 project("name", "netPrice")

 .andExpression("(netPrice * (1-discountRate) + [0]) * (1+taxRate)",

 shippingCosts).as("salesPrice")

);

AggregationResults<DBObject> result = mongoTemplate.aggregate(agg, DBObject.class);

List<DBObject> resultList = result.getMappedResults();

Example 4.25 Aggregation Framework Example 6

Note that we can also refer to other fields of the document within the SpEL expression.

4.11 Overriding default mapping with custom converters

In order to have more fine grained control over the mapping process you can register Spring converters
with the MongoConverter implementations such as the MappingMongoConverter.

The MappingMongoConverter checks to see if there are any Spring converters that can handle a
specific class before attempting to map the object itself. To 'hijack' the normal mapping strategies of
the MappingMongoConverter, perhaps for increased performance or other custom mapping needs,
you first need to create an implementation of the Spring Converter interface and then register it with
the MappingConverter.

Note

For more information on the Spring type conversion service see the reference docs here.

Saving using a registered Spring Converter

An example implementation of the Converter that converts from a Person object to a
com.mongodb.DBObject is shown below

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/validation.html#core-convert

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 64

import org.springframework.core.convert.converter.Converter;

import com.mongodb.BasicDBObject;

import com.mongodb.DBObject;

public class PersonWriteConverter implements Converter<Person, DBObject> {

 public DBObject convert(Person source) {

 DBObject dbo = new BasicDBObject();

 dbo.put("_id", source.getId());

 dbo.put("name", source.getFirstName());

 dbo.put("age", source.getAge());

 return dbo;

 }

}

Reading using a Spring Converter

An example implementation of a Converter that converts from a DBObject ot a Person object is shownn
below

public class PersonReadConverter implements Converter<DBObject, Person> {

 public Person convert(DBObject source) {

 Person p = new Person((ObjectId) source.get("_id"), (String) source.get("name"));

 p.setAge((Integer) source.get("age"));

 return p;

 }

}

Registering Spring Converters with the MongoConverter

The Mongo Spring namespace provides a convenience way to register Spring Converters with the
MappingMongoConverter. The configuration snippet below shows how to manually register converter
beans as well as configuring the wrapping MappingMongoConverter into a MongoTemplate.

<mongo:db-factory dbname="database"/>

<mongo:mapping-converter>

 <mongo:custom-converters>

 <mongo:converter ref="readConverter"/>

 <mongo:converter>

 <bean class="org.springframework.data.mongodb.test.PersonWriteConverter"/>

 </mongo:converter>

 </mongo:custom-converters>

</mongo:mapping-converter>

<bean id="readConverter" class="org.springframework.data.mongodb.test.PersonReadConverter"/

>

<bean id="mongoTemplate" class="org.springframework.data.mongodb.core.MongoTemplate">

 <constructor-arg name="mongoDbFactory" ref="mongoDbFactory"/>

 <constructor-arg name="mongoConverter" ref="mappingConverter"/>

</bean>

You can also use the base-package attribute of the custom-converters element to enable classpath
scanning for all Converter and GenericConverter implementations below the given package.

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 65

<mongo:mapping-converter>

 <mongo:custom-converters base-package="com.acme.**.converters" />

</mongo:mapping-converter>

Converter disambiguation

Generally we inspect the Converter implementations for the source and target types they convert from
and to. Depending on whether one of those is a type MongoDB can handle natively we will register the
converter instance as reading or writing one. Have a look at the following samples:

// Write converter as only the target type is one Mongo can handle natively

class MyConverter implements Converter<Person, String> { … }

// Read converter as only the source type is one Mongo can handle natively

class MyConverter implements Converter<String, Person> { … }

In case you write a Converter whose source and target type are native Mongo types there's no
way for us to determine whether we should consider it as reading or writing converter. Registering the
converter instance as both might lead to unwanted results then. E.g. a Converter<String, Long>
is ambiguous although it probably does not make sense to try to convert all Strings into Longs when
writing. To be generally able to force the infrastructure to register a converter for one way only we provide
@ReadingConverter as well as @WritingConverter to be used at the converter implementation.

4.12 Index and Collection management

MongoTemplate provides a few methods for managing indexes and collections. These are collected
into a helper interface called IndexOperations. You access these operations by calling the method
indexOps and pass in either the collection name or the java.lang.Class of your entity (the collection
name will be derived from the .class either by name or via annotation metadata).

The IndexOperations interface is shown below

public interface IndexOperations {

 void ensureIndex(IndexDefinition indexDefinition);

 void dropIndex(String name);

 void dropAllIndexes();

 void resetIndexCache();

 List<IndexInfo> getIndexInfo();

}

Methods for creating an Index

We can create an index on a collection to improve query performance.

mongoTemplate.indexOps(Person.class).ensureIndex(new Index().on("name",Order.ASCENDING));

Example 4.26 Creating an index using the MongoTemplate

• ensureIndex Ensure that an index for the provided IndexDefinition exists for the collection.

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 66

You can create standard, geospatial and text indexes using the classes IndexDefinition,
GeoSpatialIndex and TextIndexDefinition. For example, given the Venue class defined in a
previous section, you would declare a geospatial query as shown below.

mongoTemplate.indexOps(Venue.class).ensureIndex(new GeospatialIndex("location"));

Accessing index information

The IndexOperations interface has the method getIndexInfo that returns a list of IndexInfo objects. This
contains all the indexes defined on the collectcion. Here is an example that defines an index on the
Person class that has age property.

template.indexOps(Person.class).ensureIndex(new Index().on("age",

 Order.DESCENDING).unique(Duplicates.DROP));

List<IndexInfo> indexInfoList = template.indexOps(Person.class).getIndexInfo();

// Contains

// [IndexInfo [fieldSpec={_id=ASCENDING}, name=_id_, unique=false, dropDuplicates=false,

 sparse=false],

// IndexInfo [fieldSpec={age=DESCENDING}, name=age_-1, unique=true, dropDuplicates=true,

 sparse=false]]

Methods for working with a Collection

It's time to look at some code examples showing how to use the MongoTemplate. First we look at
creating our first collection.

DBCollection collection = null;

if (!mongoTemplate.getCollectionNames().contains("MyNewCollection")) {

 collection = mongoTemplate.createCollection("MyNewCollection");

}

mongoTemplate.dropCollection("MyNewCollection");

Example 4.27 Working with collections using the MongoTemplate

• getCollectionNames Returns a set of collection names.

• collectionExists Check to see if a collection with a given name exists.

• createCollection Create an uncapped collection

• dropCollection Drop the collection

• getCollection Get a collection by name, creating it if it doesn't exist.

4.13 Executing Commands

You can also get at the MongoDB driver's DB.command() method using the executeCommand(…)
methods on MongoTemplate. These will also perform exception translation into Spring's
DataAccessException hierarchy.

Methods for executing commands

• CommandResult executeCommand (DBObject command) Execute a MongoDB command.

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 67

• CommandResult executeCommand (String jsonCommand) Execute the a MongoDB
command expressed as a JSON string.

4.14 Lifecycle Events

Built into the MongoDB mapping framework are several
org.springframework.context.ApplicationEvent events that your application can respond
to by registering special beans in the ApplicationContext. By being based off Spring's
ApplicationContext event infastructure this enables other products, such as Spring Integration, to easily
receive these events as they are a well known eventing mechanism in Spring based applications.

To intercept an object before it goes through the conversion process (which turns your domain object
into a com.mongodb.DBObject), you'd register a subclass of AbstractMongoEventListener that
overrides the onBeforeConvert method. When the event is dispatched, your listener will be called
and passed the domain object before it goes into the converter.

public class BeforeConvertListener extends AbstractMongoEventListener<Person> {

 @Override

 public void onBeforeConvert(Person p) {

 ... does some auditing manipulation, set timestamps, whatever ...

 }

}

Example 4.28

To intercept an object before it goes into the database, you'd register a subclass of
org.springframework.data.mongodb.core.mapping.event.AbstractMongoEventListener

that overrides the onBeforeSave method. When the event is dispatched, your listener will be called
and passed the domain object and the converted com.mongodb.DBObject.

public class BeforeSaveListener extends AbstractMongoEventListener<Person> {

 @Override

 public void onBeforeSave(Person p, DBObject dbo) {

 … change values, delete them, whatever …

 }

}

Example 4.29

Simply declaring these beans in your Spring ApplicationContext will cause them to be invoked whenever
the event is dispatched.

The list of callback methods that are present in AbstractMappingEventListener are

• onBeforeConvert - called in MongoTemplate insert, insertList and save operations before the
object is converted to a DBObject using a MongoConveter.

• onBeforeSave - called in MongoTemplate insert, insertList and save operations before inserting/
saving the DBObject in the database.

• onAfterSave - called in MongoTemplate insert, insertList and save operations after inserting/saving
the DBObject in the database.

• onAfterLoad - called in MongoTempnlate find, findAndRemove, findOne and getCollection methods
after the DBObject is retrieved from the database.

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 68

• onAfterConvert - called in MongoTempnlate find, findAndRemove, findOne and getCollection
methods after the DBObject retrieved from the database was converted to a POJO.

4.15 Exception Translation

The Spring framework provides exception translation for a wide variety of database and
mapping technologies. This has traditionally been for JDBC and JPA. The Spring support for
MongoDB extends this feature to the MongoDB Database by providing an implementation of the
org.springframework.dao.support.PersistenceExceptionTranslator interface.

The motivation behind mapping to Spring's consistent data access exception hierarchy is that you
are then able to write portable and descriptive exception handling code without resorting to coding
against MongoDB error codes. All of Spring's data access exceptions are inherited from the root
DataAccessException class so you can be sure that you will be able to catch all database related
exception within a single try-catch block. Note, that not all exceptions thrown by the MongoDB driver
inherit from the MongoException class. The inner exception and message are preserved so no
information is lost.

Some of the mappings performed by the MongoExceptionTranslator are: com.mongodb.Network
to DataAccessResourceFailureException and MongoException error codes 1003, 12001, 12010,
12011, 12012 to InvalidDataAccessApiUsageException. Look into the implementation for more
details on the mapping.

4.16 Execution callbacks

One common design feature of all Spring template classes is that all functionality is routed into one of the
templates execute callback methods. This helps ensure that exceptions and any resource management
that maybe required are performed consistency. While this was of much greater need in the case of
JDBC and JMS than with MongoDB, it still offers a single spot for exception translation and logging to
occur. As such, using thexe execute callback is the preferred way to access the MongoDB driver's DB
and DBCollection objects to perform uncommon operations that were not exposed as methods on
MongoTemplate.

Here is a list of execute callback methods.

• <T> T execute (Class<?> entityClass, CollectionCallback<T> action) Executes
the given CollectionCallback for the entity collection of the specified class.

• <T> T execute (String collectionName, CollectionCallback<T> action) Executes
the given CollectionCallback on the collection of the given name.

• <T> T execute (DbCallback<T> action) Spring Data MongoDB provides support
for the Aggregation Framework introduced to MongoDB in version 2.2. Executes
a DbCallback translating any exceptions as necessary.

• <T> T execute (String collectionName, DbCallback<T> action) Executes a
DbCallback on the collection of the given name translating any exceptions as necessary.

• <T> T executeInSession (DbCallback<T> action) Executes the given DbCallback within the
same connection to the database so as to ensure consistency in a write heavy environment where
you may read the data that you wrote.

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/dao.html#dao-exceptions
http://www.mongodb.org/about/contributors/error-codes/

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 69

Here is an example that uses the CollectionCallback to return information about an index

boolean hasIndex = template.execute("geolocation", new CollectionCallbackBoolean>() {

 public Boolean doInCollection(Venue.class, DBCollection collection) throws

 MongoException, DataAccessException {

 List<DBObject> indexes = collection.getIndexInfo();

 for (DBObject dbo : indexes) {

 if ("location_2d".equals(dbo.get("name"))) {

 return true;

 }

 }

 return false;

 }

});

4.17 GridFS support

MongoDB supports storing binary files inside it's filesystem GridFS. Spring Data MongoDB provides
a GridFsOperations interface as well as the according implementation GridFsTemplate to
easily interact with the filesystem. You can setup a GridFsTemplate instance by handing it a
MongoDbFactory as well as a MongoConverter:

class GridFsConfiguration extends AbstractMongoConfiguration {

 // … further configuration omitted

 @Bean

 public GridFsTemplate gridFsTemplate() {

 return new GridFsTemplate(mongoDbFactory(), mappingMongoConverter());

 }

}

Example 4.30 JavaConfig setup for a GridFsTemplate

An according XML configuration looks like this:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:mongo="http://www.springframework.org/schema/data/mongo"

 xsi:schemaLocation="http://www.springframework.org/schema/data/mongo

 http://www.springframework.org/schema/data/mongo/spring-mongo.xsd

 http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <mongo:db-factory id="mongoDbFactory" dbname="database" />

 <mongo:mapping-converter id="converter" />

 <bean class="org.springframework.data.mongodb.gridfs.GridFsTemplate">

 <constructor-arg ref="mongoDbFactory" />

 <constructor-arg ref="converter" />

 </bean>

</beans>

Example 4.31 XML configuration for a GridFsTemplate

The template can now be injected and used to perform storage and retrieval operations.

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 70

class GridFsClient {

 @Autowired

 GridFsOperations operations;

 @Test

 public void storeFileToGridFs {

 FileMetadata metadata = new FileMetadata();

 // populate metadata

 Resource file = … // lookup File or Resource

 operations.store(file.getInputStream(), "filename.txt", metadata);

 }

}

Example 4.32 Using GridFsTemplate to store files

The store(…) operations take an InputStream, a filename and optionally metadata information
about the file to store. The metadata can be an arbitrary object which will be marshalled by the
MongoConverter configured with the GridFsTemplate. Alternatively you can also provide a
DBObject as well.

Reading files from the filesystem can either be achieved through the find(…) or getResources(…)
methods. Let's have a look at the find(…) methods first. You can either find a single file matching a
Query or multiple ones. To easily define file queries we provide the GridFsCriteria helper class.
It provides static factory methods to encapsulate default metadata fields (e.g. whereFilename(),
whereContentType()) or the custom one through whereMetaData().

class GridFsClient {

 @Autowired

 GridFsOperations operations;

 @Test

 public void findFilesInGridFs {

 List<GridFSDBFile> result = operations.find(query(whereFilename().is("filename.txt")))

 }

}

Example 4.33 Using GridFsTemplate to query for files

Note

Currently MongoDB does not support defining sort criterias when retrieving files from GridFS.
Thus any sort criterias defined on the Query instance handed into the find(…) method will be
disregarded.

The other option to read files from the GridFs is using the methods introduced by the
ResourcePatternResolver interface. They allow handing an Ant path into the method ar thus
retrieve files matching the given pattern.

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 71

class GridFsClient {

 @Autowired

 GridFsOperations operations;

 @Test

 public void readFilesFromGridFs {

 GridFsResources[] txtFiles = operations.getResources("*.txt");

 }

}

Example 4.34 Using GridFsTemplate to read files

GridFsOperations extending ResourcePatternResolver allows the GridFsTemplate e.g. to
be plugged into an ApplicationContext to read Spring Config files from a MongoDB.

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 72

5. MongoDB repositories

5.1 Introduction

This chapter will point out the specialties for repository support for MongoDB. This builds on the core
repository support explained in Chapter 3, Working with Spring Data Repositories. So make sure you've
got a sound understanding of the basic concepts explained there.

5.2 Usage

To access domain entities stored in a MongoDB you can leverage our sophisticated repository support
that eases implementing those quite significantly. To do so, simply create an interface for your repository:

public class Person {

 @Id

 private String id;

 private String firstname;

 private String lastname;

 private Address address;

 // … getters and setters omitted

}

Example 5.1 Sample Person entity

We have a quite simple domain object here. Note that it has a property named id of typeObjectId.
The default serialization mechanism used in MongoTemplate (which is backing the repository
support) regards properties named id as document id. Currently we supportString, ObjectId and
BigInteger as id-types.

public interface PersonRepository extends PagingAndSortingRepository<Person, Long> {

 // additional custom finder methods go here

}

Example 5.2 Basic repository interface to persist Person entities

Right now this interface simply serves typing purposes but we will add additional methods to it later. In
your Spring configuration simply add

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 73

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:mongo="http://www.springframework.org/schema/data/mongo"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd

 http://www.springframework.org/schema/data/mongo

 http://www.springframework.org/schema/data/mongo/spring-mongo-1.0.xsd">

 <mongo:mongo id="mongo" />

 <bean id="mongoTemplate" class="org.springframework.data.mongodb.core.MongoTemplate">

 <constructor-arg ref="mongo" />

 <constructor-arg value="databaseName" />

 </bean>

 <mongo:repositories base-package="com.acme.*.repositories" />

</beans>

Example 5.3 General MongoDB repository Spring configuration

This namespace element will cause the base packages to be scanned for interfaces extending
MongoRepository and create Spring beans for each of them found. By default the repositories will get
a MongoTemplate Spring bean wired that is called mongoTemplate, so you only need to configure
mongo-template-ref explicitly if you deviate from this convention.

If you'd rather like to go with JavaConfig use the @EnableMongoRepositories annotation. The
annotation carries the very same attributes like the namespace element. If no base package is
configured the infrastructure will scan the package of the annotated configuration class.

@Configuration

@EnableMongoRepositories

class ApplicationConfig extends AbstractMongoConfiguration {

 @Override

 protected String getDatabaseName() {

 return "e-store";

 }

 @Override

 public Mongo mongo() throws Exception {

 return new Mongo();

 }

 @Override

 protected String getMappingBasePackage() {

 return "com.oreilly.springdata.mongodb"

 }

}

Example 5.4 JavaConfig for repositories

As our domain repository extends PagingAndSortingRepository it provides you with CRUD
operations as well as methods for paginated and sorted access to the entities. Working with the
repository instance is just a matter of dependency injecting it into a client. So accessing the second
page of Persons at a page size of 10 would simply look something like this:

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 74

@RunWith(SpringJUnit4ClassRunner.class)

@ContextConfiguration

public class PersonRepositoryTests {

 @Autowired PersonRepository repository;

 @Test

 public void readsFirstPageCorrectly() {

 Page<Person> persons = repository.findAll(new PageRequest(0, 10));

 assertThat(persons.isFirstPage(), is(true));

 }

}

Example 5.5 Paging access to Person entities

The sample creates an application context with Spring's unit test support which will perform annotation
based dependency injection into test cases. Inside the test method we simply use the repository to
query the datastore. We hand the repository a PageRequest instance that requests the first page of
persons at a page size of 10.

5.3 Query methods

Most of the data access operations you usually trigger on a repository result a query being executed
against the MongoDB databases. Defining such a query is just a matter of declaring a method on the
repository interface

public interface PersonRepository extends PagingAndSortingRepository<Person, String> {

 List<Person> findByLastname(String lastname);

 Page<Person> findByFirstname(String firstname, Pageable pageable);

 Person findByShippingAddresses(Address address);

}

Example 5.6 PersonRepository with query methods

The first method shows a query for all people with the given lastname. The query will be derived parsing
the method name for constraints which can be concatenated with And and Or. Thus the method name
will result in a query expression of{"lastname" : lastname}. The second example shows how
pagination is applied to a query. Just equip your method signature with a Pageable parameter and
let the method return a Page instance and we will automatically page the query accordingly. The third
examples shows that you can query based on properties which are not a primitive type.

Note

Note that for version 1.0 we currently don't support referring to parameters that are mapped as
DBRef in the domain class.

Table 5.1. Supported keywords for query methods

Keyword Sample Logical result

GreaterThan findByAgeGreaterThan(int age) {"age" : {"$gt" : age}}

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 75

Keyword Sample Logical result

GreaterThanEqualfindByAgeGreaterThanEqual(int

age)

{"age" : {"$gte" : age}}

LessThan findByAgeLessThan(int age) {"age" : {"$lt" : age}}

LessThanEqual findByAgeLessThanEqual(int

age)

{"age" : {"$lte" : age}}

Between findByAgeBetween(int from,

int to)

{"age" : {"$gt" : from,

"$lt" : to}}

In findByAgeIn(Collection ages) {"age" : {"$in" : [ages...]}}

NotIn findByAgeNotIn(Collection

ages)

{"age" : {"$nin" : [ages...]}}

IsNotNull,
NotNull

findByFirstnameNotNull() {"age" : {"$ne" : null}}

IsNull, Null findByFirstnameNull() {"age" : null}

Like findByFirstnameLike(String

name)

{"age" : age} (age as regex)

Regex findByFirstnameRegex(String

firstname)

{"firstname" : {"$regex" :

firstname }}

(No keyword) findByFirstname(String name) {"age" : name}

Not findByFirstnameNot(String

name)

{"age" : {"$ne" : name}}

Near findByLocationNear(Point

point)

{"location" : {"$near" :

[x,y]}}

Within findByLocationWithin(Circle

circle)

{"location" : {"$within" :

{"$center" : [[x, y],

distance]}}}

Within findByLocationWithin(Box box) {"location" : {"$within" :

{"$box" : [[x1, y1], x2,

y2]}}}True

IsTrue, True findByActiveIsTrue() {"active" : true}

IsFalse, False findByActiveIsFalse() {"active" : false}

Exists findByLocationExists(boolean

exists)

{"location" : {"$exists" :

exists }}

Repository delete queries

The above keywords can be used in conjunciton with delete…By or remove…By to create queries
deleting matching documents.

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 76

public interface PersonRepository extends MongoRepository<Person, String> {

 List <Person> deleteByLastname(String lastname);

 Long deletePersonByLastname(String lastname);

}

Example 5.7 Delete…By Query

Using return type List will retrieve and return all matching documents before actually deleting them. A
numeric return type directly removes the matching documents returning the total number of documents
removed.

Geo-spatial repository queries

As you've just seen there are a few keywords triggering geo-spatial operations within a MongoDB query.
The Near keyword allows some further modification. Let's have look at some examples:

public interface PersonRepository extends MongoRepository<Person, String>

 // { 'location' : { '$near' : [point.x, point.y], '$maxDistance' : distance}}

 List<Person> findByLocationNear(Point location, Distance distance);

}

Example 5.8 Advanced Near queries

Adding a Distance parameter to the query method allows restricting results to those within the given
distance. If the Distance was set up containing a Metric we will transparently use $nearSphere
instead of $code.

Point point = new Point(43.7, 48.8);

Distance distance = new Distance(200, Metrics.KILOMETERS);

… = repository.findByLocationNear(point, distance);

// {'location' : {'$nearSphere' : [43.7, 48.8], '$maxDistance' : 0.03135711885774796}}

Example 5.9 Using Distance with Metrics

As you can see using a Distance equipped with a Metric causes $nearSphere clause to be added
instead of a plain $near. Beyond that the actual distance gets calculated according to the Metrics
used.

Geo-near queries

public interface PersonRepository extends MongoRepository<Person, String>

 // {'geoNear' : 'location', 'near' : [x, y] }

 GeoResults<Person> findByLocationNear(Point location);

 // No metric: {'geoNear' : 'person', 'near' : [x, y], maxDistance : distance }

 // Metric: {'geoNear' : 'person', 'near' : [x, y], 'maxDistance' : distance,

 // 'distanceMultiplier' : metric.multiplier, 'spherical' : true }

 GeoResults<Person> findByLocationNear(Point location, Distance distance);

 // {'geoNear' : 'location', 'near' : [x, y] }

 GeoResults<Person> findByLocationNear(Point location);

}

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 77

MongoDB JSON based query methods and field restriction

By adding the annotation org.springframework.data.mongodb.repository.Query repository
finder methods you can specify a MongoDB JSON query string to use instead of having the query
derived from the method name. For example

public interface PersonRepository extends MongoRepository<Person, String>

 @Query("{ 'firstname' : ?0 }")

 List<Person> findByThePersonsFirstname(String firstname);

}

The placeholder ?0 lets you substitute the value from the method arguments into the JSON query string.

You can also use the filter property to restrict the set of properties that will be mapped into the Java
object. For example,

public interface PersonRepository extends MongoRepository<Person, String>

 @Query(value="{ 'firstname' : ?0 }", fields="{ 'firstname' : 1, 'lastname' : 1}")

 List<Person> findByThePersonsFirstname(String firstname);

}

This will return only the firstname, lastname and Id properties of the Person objects. The age property,
a java.lang.Integer, will not be set and its value will therefore be null.

Type-safe Query methods

MongoDB repository support integrates with the QueryDSL project which provides a means to perform
type-safe queries in Java. To quote from the project description, "Instead of writing queries as inline
strings or externalizing them into XML files they are constructed via a fluent API." It provides the following
features

• Code completion in IDE (all properties, methods and operations can be expanded in your favorite
Java IDE)

• Almost no syntactically invalid queries allowed (type-safe on all levels)

• Domain types and properties can be referenced safely (no Strings involved!)

• Adopts better to refactoring changes in domain types

• Incremental query definition is easier

Please refer to the QueryDSL documentation which describes how to bootstrap your environment for
APT based code generation using Maven or using Ant.

Using QueryDSL you will be able to write queries as shown below

QPerson person = new QPerson("person");

List<Person> result = repository.findAll(person.address.zipCode.eq("C0123"));

Page<Person> page = repository.findAll(person.lastname.contains("a"),

 new PageRequest(0, 2, Direction.ASC, "lastname"));

http://www.querydsl.com/
http://source.mysema.com/static/querydsl/2.1.2/reference/html/ch02.html#d0e112
http://source.mysema.com/static/querydsl/2.1.2/reference/html/ch02.html#d0e131

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 78

QPerson is a class that is generated (via the Java annotation post processing tool) which is a
Predicate that allows you to write type safe queries. Notice that there are no strings in the query other
than the value "C0123".

You can use the generated Predicate class via the interface QueryDslPredicateExecutor which
is shown below

public interface QueryDslPredicateExecutor<T> {

 T findOne(Predicate predicate);

 List<T> findAll(Predicate predicate);

 List<T> findAll(Predicate predicate, OrderSpecifier<?>... orders);

 Page<T> findAll(Predicate predicate, Pageable pageable);

 Long count(Predicate predicate);

}

To use this in your repository implementation, simply inherit from it in addition to other repository
interfaces. This is shown below

public interface PersonRepository extends MongoRepository<Person, String>,

 QueryDslPredicateExecutor<Person> {

 // additional finder methods go here

}

We think you will find this an extremely powerful tool for writing MongoDB queries.

5.4 Miscellaneous

CDI Integration

Instances of the repository interfaces are usually created by a container, which Spring is the most natural
choice when working with Spring Data. As of version 1.3.0 Spring Data MongoDB ships with a custom
CDI extension that allows using the repository abstraction in CDI environments. The extension is part of
the JAR so all you need to do to activate it is dropping the Spring Data MongoDB JAR into your classpath.
You can now set up the infrastructure by implementing a CDI Producer for the MongoTemplate:

class MongoTemplateProducer {

 @Produces

 @ApplicationScoped

 public MongoOperations createMongoTemplate() throws UnknownHostException,

 MongoException {

 MongoDbFactory factory = new SimpleMongoDbFactory(new Mongo(), "database");

 return new MongoTemplate(factory);

 }

}

The Spring Data MongoDB CDI extension will pick up the MongoTemplate available as CDI bean and
create a proxy for a Spring Data repository whenever an bean of a repository type is requested by the

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 79

container. Thus obtaining an instance of a Spring Data repository is a matter of declaring an @Inject-
ed property:

class RepositoryClient {

 @Inject

 PersonRepository repository;

 public void businessMethod() {

 List<Person> people = repository.findAll();

 }

}

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 80

6. Mapping

Rich mapping support is provided by the MongoMappingConverter. MongoMappingConverter
has a rich metadata model that provides a full feature set of functionality to map domain objects to
MongoDB documents.The mapping metadata model is populated using annotations on your domain
objects. However, the infrastructure is not limited to using annotations as the only source of metadata
information. The MongoMappingConverter also allows you to map objects to documents without
providing any additional metadata, by following a set of conventions.

In this section we will describe the features of the MongoMappingConverter. How to use conventions for
mapping objects to documents and how to override those conventions with annotation based mapping
metadata.

Note

SimpleMongoConverter has been deprecated in Spring Data MongoDB M3 as all of its
functionality has been subsumed into MappingMongoConverter.

6.1 Convention based Mapping

MongoMappingConverter has a few conventions for mapping objects to documents when no
additional mapping metadata is provided. The conventions are:

• The short Java class name is mapped to the collection name in the following manner. The class
'com.bigbank.SavingsAccount' maps to 'savingsAccount' collection name.

• All nested objects are stored as nested objects in the document and *not* as DBRefs

• The converter will use any Spring Converters registered with it to override the default mapping of
object properties to document field/values.

• The fields of an object are used to convert to and from fields in the document. Public JavaBean
properties are not used.

• You can have a single non-zero argument constructor whose constructor argument names match top
level field names of document, that constructor will be used. Otherwise the zero arg constructor will
be used. if there is more than one non-zero argument constructor an exception will be thrown.

How the '_id' field is handled in the mapping layer

MongoDB requires that you have an '_id' field for all documents. If you don't provide one the driver will
assign a ObjectId with a generated value. The "_id" field can be of any type the, other than arrays,
so long as it is unique. The driver naturally supports all primitive types and Dates. When using the
MongoMappingConverter there are certain rules that govern how properties from the Java class is
mapped to this '_id' field.

The following outlines what field will be mapped to the '_id' document field:

• A field annotated with @Id (org.springframework.data.annotation.Id) will be mapped to
the '_id' field.

• A field without an annotation but named id will be mapped to the '_id' field.

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 81

The following outlines what type conversion, if any, will be done on the property mapped to the _id
document field.

• If a field named 'id' is declared as a String or BigInteger in the Java class it will be converted to and
stored as an ObjectId if possible. ObjectId as a field type is also valid. If you specify a value for 'id' in
your application, the conversion to an ObjectId is detected to the MongoDBdriver. If the specified 'id'
value cannot be converted to an ObjectId, then the value will be stored as is in the document's _id field.

• If a field named ' id' id field is not declared as a String, BigInteger, or ObjectID in the Java class then
you should assign it a value in your application so it can be stored 'as-is' in the document's _id field.

• If no field named 'id' is present in the Java class then an implicit '_id' file will be generated by the driver
but not mapped to a property or field of the Java class.

When querying and updating MongoTemplate will use the converter to handle conversions of the
Query and Update objects that correspond to the above rules for saving documents so field names
and types used in your queries will be able to match what is in your domain classes.

6.2 Mapping Configuration

Unless explicitly configured, an instance of MongoMappingConverter is created by default when
creating a MongoTemplate. You can create your own instance of the MappingMongoConverter so
as to tell it where to scan the classpath at startup your domain classes in order to extract metadata and
construct indexes. Also, by creating your own instance you can register Spring converters to use for
mapping specific classes to and from the database.

You can configure the MongoMappingConverter as well as com.mongodb.Mongo and
MongoTemplate either using Java or XML based metadata. Here is an example using Spring's Java
based configuration

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 82

@Configuration

public class GeoSpatialAppConfig extends AbstractMongoConfiguration {

 @Bean

 public Mongo mongo() throws Exception {

 return new Mongo("localhost");

 }

 @Override

 public String getDatabaseName() {

 return "database";

 }

 @Override

 public String getMappingBasePackage() {

 return "com.bigbank.domain";

 }

 // the following are optional

 @Bean

 @Override

 public CustomConversions customConversions() throws Exception {

 List<Converter<?, ?>> converterList = new ArrayList<Converter<?, ?>>();

 converterList.add(new org.springframework.data.mongodb.test.PersonReadConverter());

 converterList.add(new org.springframework.data.mongodb.test.PersonWriteConverter());

 return new CustomConversions(converterList);

 }

 @Bean

 public LoggingEventListener<MongoMappingEvent> mappingEventsListener() {

 return new LoggingEventListener<MongoMappingEvent>();

 }

}

Example 6.1 @Configuration class to configure MongoDB mapping support

AbstractMongoConfiguration requires you to implement methods that define a
com.mongodb.Mongo as well as provide a database name. AbstractMongoConfiguration
also has a method you can override named 'getMappingBasePackage'
which tells the converter where to scan for classes annotated with the
@org.springframework.data.mongodb.core.mapping.Document annotation.

You can add additional converters to the converter by overriding the method
afterMappingMongoConverterCreation. Also shown in the above example is a
LoggingEventListener which logs MongoMappingEvents that are posted onto Spring's
ApplicationContextEvent infrastructure.

Note

AbstractMongoConfiguration will create a MongoTemplate instance and registered with the
container under the name 'mongoTemplate'.

You can also override the method UserCredentials getUserCredentials() to provide the
username and password information to connect to the database.

Spring's MongoDB namespace enables you to easily enable mapping functionality in XML

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 83

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:context="http://www.springframework.org/schema/context"

 xmlns:mongo="http://www.springframework.org/schema/data/mongo"

 xsi:schemaLocation="http://www.springframework.org/schema/context http://

www.springframework.org/schema/context/spring-context-3.0.xsd

 http://www.springframework.org/schema/data/mongo http://

www.springframework.org/schema/data/mongo/spring-mongo-1.0.xsd

 http://www.springframework.org/schema/beans http://www.springframework.org/

schema/beans/spring-beans-3.0.xsd">

 <!-- Default bean name is 'mongo' -->

 <mongo:mongo host="localhost" port="27017"/>

 <mongo:db-factory dbname="database" mongo-ref="mongo"/>

 <!-- by default look for a Mongo object named 'mongo' - default name used for the

 converter is 'mappingConverter' -->

 <mongo:mapping-converter base-package="com.bigbank.domain">

 <mongo:custom-converters>

 <mongo:converter ref="readConverter"/>

 <mongo:converter>

 <bean class="org.springframework.data.mongodb.test.PersonWriteConverter"/>

 </mongo:converter>

 </mongo:custom-converters>

 </mongo:mapping-converter>

 <bean id="readConverter" class="org.springframework.data.mongodb.test.PersonReadConverter"/

>

 <!-- set the mapping converter to be used by the MongoTemplate -->

 <bean id="mongoTemplate" class="org.springframework.data.mongodb.core.MongoTemplate">

 <constructor-arg name="mongoDbFactory" ref="mongoDbFactory"/>

 <constructor-arg name="mongoConverter" ref="mappingConverter"/>

 </bean>

 <bean class="org.springframework.data.mongodb.core.mapping.event.LoggingEventListener"/>

</beans

Example 6.2 XML schema to configure MongoDB mapping support

The base-package property tells it where to scan for classes annotated with the
@org.springframework.data.mongodb.core.mapping.Document annotation.

6.3 Metadata based Mapping

To take full advantage of the object mapping functionality inside the Spring
Data/MongoDB support, you should annotate your mapped objects with the
@org.springframework.data.mongodb.core.mapping.Document annotation. Although it is
not necessary for the mapping framework to have this annotation (your POJOs will be mapped correctly,
even without any annotations), it allows the classpath scanner to find and pre-process your domain
objects to extract the necessary metadata. If you don't use this annotation, your application will take a
slight performance hit the first time you store a domain object because the mapping framework needs
to build up its internal metadata model so it knows about the properties of your domain object and how
to persist them.

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 84

package com.mycompany.domain;

@Document

public class Person {

 @Id

 private ObjectId id;

 @Indexed

 private Integer ssn;

 private String firstName;

 @Indexed

 private String lastName;

}

Example 6.3 Example domain object

Important

The @Id annotation tells the mapper which property you want to use for the MongoDB _id
property and the @Indexed annotation tells the mapping framework to call ensureIndex on
that property of your document, making searches faster.

Important

Automatic index creation is only done for types annotated with @Document.

Mapping annotation overview

The MappingMongoConverter can use metadata to drive the mapping of objects to documents. An
overview of the annotations is provided below

• @Id - applied at the field level to mark the field used for identiy purpose.

• @Document - applied at the class level to indicate this class is a candidate for mapping to the
database. You can specify the name of the collection where the database will be stored.

• @DBRef - applied at the field to indicate it is to be stored using a com.mongodb.DBRef.

• @Indexed - applied at the field level to describe how to index the field.

• @CompoundIndex - applied at the type level to declare Compound Indexes

• @GeoSpatialIndexed - applied at the field level to describe how to geoindex the field.

• @TextIndexed - applied at the field level to mark the field to be included in the text index.

• @Language - applied at the field level to set the language override property for text index.

• @Transient - by default all private fields are mapped to the document, this annotation excludes the
field where it is applied from being stored in the database

• @PersistenceConstructor - marks a given constructor - even a package protected one - to use
when instantiating the object from the database. Constructor arguments are mapped by name to the
key values in the retrieved DBObject.

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 85

• @Value - this annotation is part of the Spring Framework . Within the mapping framework it can
be applied to constructor arguments. This lets you use a Spring Expression Language statement
to transform a key's value retrieved in the database before it is used to construct a domain
object. In order to reference a property of a given document one has to use expressions like:
@Value("#root.myProperty") where root refers to the root of the given document.

• @Field - applied at the field level and described the name of the field as it will be represented in the
MongoDB BSON document thus allowing the name to be different than the fieldname of the class.

The mapping metadata infrastructure is defined in a seperate spring-data-commons project that is
technology agnostic. Specific subclasses are using in the MongoDB support to support annotation based
metadata. Other strategies are also possible to put in place if there is demand.

Here is an example of a more complex mapping.

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 86

@Document

@CompoundIndexes({

 @CompoundIndex(name = "age_idx", def = "{'lastName': 1, 'age': -1}")

})

public class Person<T extends Address> {

 @Id

 private String id;

 @Indexed(unique = true)

 private Integer ssn;

 @Field("fName")

 private String firstName;

 @Indexed

 private String lastName;

 private Integer age;

 @Transient

 private Integer accountTotal;

 @DBRef

 private List<Account> accounts;

 private T address;

 public Person(Integer ssn) {

 this.ssn = ssn;

 }

 @PersistenceConstructor

 public Person(Integer ssn, String firstName, String lastName, Integer age, T address) {

 this.ssn = ssn;

 this.firstName = firstName;

 this.lastName = lastName;

 this.age = age;

 this.address = address;

 }

 public String getId() {

 return id;

 }

 // no setter for Id. (getter is only exposed for some unit testing)

 public Integer getSsn() {

 return ssn;

 }

// other getters/setters ommitted

Customized Object Construction

The mapping subsystem allows the customization of the object construction by annotating a constructor
with the @PersistenceConstructor annotation. The values to be used for the constructor
parameters are resolved in the following way:

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 87

• If a parameter is annotated with the @Value annotation, the given expression is evaluated and the
result is used as the parameter value.

• If the Java type has a property whose name matches the given field of the input document, then it's
property information is used to select the appropriate constructor parameter to pass the input field
value to. This works only if the parameter name information is present in the java .class files which
can be achieved by compiling the source with debug information or using the new -parameters
command-line switch for javac in Java 8.

• Otherwise an MappingException will be thrown indicating that the given constructor parameter
could not be bound.

class OrderItem {

 private @Id String id;

 private int quantity;

 private double unitPrice;

 OrderItem(String id, @Value("#root.qty ?: 0") int quantity, double unitPrice) {

 this.id = id;

 this.quantity = quantity;

 this.unitPrice = unitPrice;

 }

 // getters/setters ommitted

}

DBObject input = new BasicDBObject("id", "4711");

input.put("unitPrice", 2.5);

input.put("qty",5);

OrderItem item = converter.read(OrderItem.class, input);

Note

The SpEL expression in the @Value annotation of the quantity parameter falls back to the
value 0 if the given property path cannot be resolved.

Additional examples for using the @PersistenceConstructor annotation can be found in the
MappingMongoConverterUnitTests test suite.

Compound Indexes

Compound indexes are also supported. They are defined at the class level, rather than on indidvidual
properties.

Note

Compound indexes are very important to improve the performance of queries that involve criteria
on multiple fields

Here's an example that creates a compound index of lastName in ascending order and age in
descending order:

https://github.com/spring-projects/spring-data-mongodb/blob/master/spring-data-mongodb/src/test/java/org/springframework/data/mongodb/core/convert/MappingMongoConverterUnitTests.java

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 88

package com.mycompany.domain;

@Document

@CompoundIndexes({

 @CompoundIndex(name = "age_idx", def = "{'lastName': 1, 'age': -1}")

})

public class Person {

 @Id

 private ObjectId id;

 private Integer age;

 private String firstName;

 private String lastName;

}

Example 6.4 Example Compound Index Usage

Text Indexes

Note

The text index feature is disabled by default for mongodb v.2.4.

Creating a text index allows to accumulate several fields into a searchable full text index. It is
only possible to have one text index per collection so all fields marked with @TextIndexed are
combined into this index. Properties can be weighted to influence document score for ranking
results. The default language for the text index is english, to change the default language set
@Document(language="spanish") to any language you want. Using a property called language
or @Language allows to define a language override on a per document base.

@Document(language = "spanish")

class SomeEntity {

 @TextIndexed String foo;

 @Language String lang;

 Nested nested;

}

class Nested {

 @TextIndexed(weight=5) String bar;

 String roo;

}

Example 6.5 Example Text Index Usage

Using DBRefs

The mapping framework doesn't have to store child objects embedded within the document. You can
also store them separately and use a DBRef to refer to that document. When the object is loaded from

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 89

MongoDB, those references will be eagerly resolved and you will get back a mapped object that looks
the same as if it had been stored embedded within your master document.

Here's an example of using a DBRef to refer to a specific document that exists independently of the
object in which it is referenced (both classes are shown in-line for brevity's sake):

@Document

public class Account {

 @Id

 private ObjectId id;

 private Float total;

}

@Document

public class Person {

 @Id

 private ObjectId id;

 @Indexed

 private Integer ssn;

 @DBRef

 private List<Account> accounts;

}

Example 6.6

There's no need to use something like @OneToMany because the mapping framework sees that you're
wanting a one-to-many relationship because there is a List of objects. When the object is stored in
MongoDB, there will be a list of DBRefs rather than the Account objects themselves.

Important

The mapping framework does not handle cascading saves. If you change an Account object that
is referenced by a Person object, you must save the Account object separately. Calling save on
the Person object will not automatically save the Account objects in the property accounts.

Mapping Framework Events

Events are fired throughout the lifecycle of the mapping process. This is described in the Lifecycle
Events section.

Simply declaring these beans in your Spring ApplicationContext will cause them to be invoked whenever
the event is dispatched.

Overriding Mapping with explicit Converters

When storing and querying your objects it is convenient to have a MongoConverter instance
handle the mapping of all Java types to DBObjects. However, sometimes you may want the
MongoConverter's do most of the work but allow you to selectivly handle the conversion for a particular
type or to optimize performance.

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 90

To selectivly handle the conversion yourself, register one or more one or
more org.springframework.core.convert.converter.Converter instances with the
MongoConverter.

Note

Spring 3.0 introduced a core.convert package that provides a general type conversion system.
This is described in detail in the Spring reference documentation section entitled Spring 3 Type
Conversion.

The method customConversions in AbstractMongoConfiguration can be used to configure
Converters. The examples here at the begining of this chapter show how to perform the configuration
using Java and XML.

Below is an example of a Spring Converter implementation that converts from a DBObject to a Person
POJO.

@ReadingConverter

 public class PersonReadConverter implements Converter<DBObject, Person> {

 public Person convert(DBObject source) {

 Person p = new Person((ObjectId) source.get("_id"), (String) source.get("name"));

 p.setAge((Integer) source.get("age"));

 return p;

 }

}

Here is an example that converts from a Person to a DBObject.

@WritingConverter

public class PersonWriteConverter implements Converter<Person, DBObject> {

 public DBObject convert(Person source) {

 DBObject dbo = new BasicDBObject();

 dbo.put("_id", source.getId());

 dbo.put("name", source.getFirstName());

 dbo.put("age", source.getAge());

 return dbo;

 }

}

http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/validation.html#core-convert
http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/validation.html#core-convert

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 91

7. Cross Store support

Sometimes you need to store data in multiple data stores and these data stores can be of different
types. One might be relational while the other a document store. For this use case we have created a
separate module in the MongoDB support that handles what we call cross-store support. The current
implementation is based on JPA as the driver for the relational database and we allow select fields in the
Entities to be stored in a Mongo database. In addition to allowing you to store your data in two stores we
also coordinate persistence operations for the non-transactional MongoDB store with the transaction
life-cycle for the relational database.

7.1 Cross Store Configuration

Assuming that you have a working JPA application and would like to add some cross-store persistence
for MongoDB. What do you have to add to your configuration?

First of all you need to add a dependency on the spring-data-mongodb-cross-store module.
Using Maven this is done by adding a dependency to your pom:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/

XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/

maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

...

 <!-- Spring Data -->

 <dependency>

 <groupId>org.springframework.data</groupId>

 <artifactId>spring-data-mongodb-cross-store</artifactId>

 <version>${spring.data.mongo.version}</version>

 </dependency>

...

</project>

Example 7.1 Example Maven pom.xml with spring-data-mongodb-cross-store dependency

Once this is done we need to enable AspectJ for the project. The cross-store support is implemented
using AspectJ aspects so by enabling compile time AspectJ support the cross-store features will become
available to your project. In Maven you would add an additional plugin to the <build> section of the pom:

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 92

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/

XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/

maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

...

 <build>

 <plugins>

 ...

 <plugin>

 <groupId>org.codehaus.mojo</groupId>

 <artifactId>aspectj-maven-plugin</artifactId>

 <version>1.0</version>

 <dependencies>

 <!-- NB: You must use Maven 2.0.9 or above or these are ignored (see MNG-2972)

 -->

 <dependency>

 <groupId>org.aspectj</groupId>

 <artifactId>aspectjrt</artifactId>

 <version>${aspectj.version}</version>

 </dependency>

 <dependency>

 <groupId>org.aspectj</groupId>

 <artifactId>aspectjtools</artifactId>

 <version>${aspectj.version}</version>

 </dependency>

 </dependencies>

 <executions>

 <execution>

 <goals>

 <goal>compile</goal>

 <goal>test-compile</goal>

 </goals>

 </execution>

 </executions>

 <configuration>

 <outxml>true</outxml>

 <aspectLibraries>

 <aspectLibrary>

 <groupId>org.springframework</groupId>

 <artifactId>spring-aspects</artifactId>

 </aspectLibrary>

 <aspectLibrary>

 <groupId>org.springframework.data</groupId>

 <artifactId>spring-data-mongodb-cross-store</artifactId>

 </aspectLibrary>

 </aspectLibraries>

 <source>1.6</source>

 <target>1.6</target>

 </configuration>

 </plugin>

 ...

 </plugins>

 </build>

...

</project>

Example 7.2 Example Maven pom.xml with AspectJ plugin enabled

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 93

Finally, you need to configure your project to use MongoDB and also configure the aspects that are
used. The following XML snippet should be added to your application context:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:jdbc="http://www.springframework.org/schema/jdbc"

 xmlns:jpa="http://www.springframework.org/schema/data/jpa"

 xmlns:mongo="http://www.springframework.org/schema/data/mongo"

 xsi:schemaLocation="http://www.springframework.org/schema/data/mongo

 http://www.springframework.org/schema/data/mongo/spring-mongo.xsd

 http://www.springframework.org/schema/jdbc

 http://www.springframework.org/schema/jdbc/spring-jdbc-3.0.xsd

 http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd

 http://www.springframework.org/schema/data/jpa

 http://www.springframework.org/schema/data/jpa/spring-jpa-1.0.xsd">

 ...

 <!-- Mongo config -->

 <mongo:mongo host="localhost" port="27017"/>

 <bean id="mongoTemplate" class="org.springframework.data.mongodb.core.MongoTemplate">

 <constructor-arg name="mongo" ref="mongo"/>

 <constructor-arg name="databaseName" value="test"/>

 <constructor-arg name="defaultCollectionName" value="cross-store"/>

 </bean>

 <bean class="org.springframework.data.mongodb.core.MongoExceptionTranslator"/>

 <!-- Mongo cross-store aspect config -->

 <bean class="org.springframework.data.persistence.document.mongo.MongoDocumentBacking"

 factory-method="aspectOf">

 <property name="changeSetPersister" ref="mongoChangeSetPersister"/>

 </bean>

 <bean id="mongoChangeSetPersister"

 class="org.springframework.data.persistence.document.mongo.MongoChangeSetPersister">

 <property name="mongoTemplate" ref="mongoTemplate"/>

 <property name="entityManagerFactory" ref="entityManagerFactory"/>

 </bean>

 ...

</beans>

Example 7.3 Example application context with MongoDB and cross-store aspect support

7.2 Writing the Cross Store Application

We are assuming that you have a working JPA application so we will only cover the additional steps
needed to persist part of your Entity in your Mongo database. First you need to identify the field you
want persisted. It should be a domain class and follow the general rules for the Mongo mapping support
covered in previous chapters. The field you want persisted in MongoDB should be annotated using the
@RelatedDocument annotation. That is really all you need to do!. The cross-store aspects take care
of the rest. This includes marking the field with @Transient so it won't be persisted using JPA, keeping
track of any changes made to the field value and writing them to the database on successful transaction

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 94

completion, loading the document from MongoDB the first time the value is used in your application.
Here is an example of a simple Entity that has a field annotated with @RelatedEntity.

@Entity

public class Customer {

 @Id

 @GeneratedValue(strategy = GenerationType.IDENTITY)

 private Long id;

 private String firstName;

 private String lastName;

 @RelatedDocument

 private SurveyInfo surveyInfo;

 // getters and setters omitted

}

Example 7.4 Example of Entity with @RelatedDocument

public class SurveyInfo {

 private Map<String, String> questionsAndAnswers;

 public SurveyInfo() {

 this.questionsAndAnswers = new HashMap<String, String>();

 }

 public SurveyInfo(Map<String, String> questionsAndAnswers) {

 this.questionsAndAnswers = questionsAndAnswers;

 }

 public Map<String, String> getQuestionsAndAnswers() {

 return questionsAndAnswers;

 }

 public void setQuestionsAndAnswers(Map<String, String> questionsAndAnswers) {

 this.questionsAndAnswers = questionsAndAnswers;

 }

 public SurveyInfo addQuestionAndAnswer(String question, String answer) {

 this.questionsAndAnswers.put(question, answer);

 return this;

 }

}

Example 7.5 Example of domain class to be stored as document

Once the SurveyInfo has been set on the Customer object above the MongoTemplate that was
configured above is used to save the SurveyInfo along with some metadata about the JPA Entity is stored
in a MongoDB collection named after the fully qualified name of the JPA Entity class. The following code:

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 95

 Customer customer = new Customer();

 customer.setFirstName("Sven");

 customer.setLastName("Olafsen");

 SurveyInfo surveyInfo = new SurveyInfo()

 .addQuestionAndAnswer("age", "22")

 .addQuestionAndAnswer("married", "Yes")

 .addQuestionAndAnswer("citizenship", "Norwegian");

 customer.setSurveyInfo(surveyInfo);

 customerRepository.save(customer);

Example 7.6 Example of code using the JPA Entity configured for cross-store persistence

Executing the code above results in the following JSON document stored in MongoDB.

{ "_id" : ObjectId("4d9e8b6e3c55287f87d4b79e"),

 "_entity_id" : 1,

 "_entity_class" : "org.springframework.data.mongodb.examples.custsvc.domain.Customer",

 "_entity_field_name" : "surveyInfo",

 "questionsAndAnswers" : { "married" : "Yes",

 "age" : "22",

 "citizenship" : "Norwegian" },

 "_entity_field_class"

 : "org.springframework.data.mongodb.examples.custsvc.domain.SurveyInfo" }

Example 7.7 Example of JSON document stored in MongoDB

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 96

8. Logging support

An appender for Log4j is provided in the maven module "spring-data-mongodb-log4j". Note, there is no
dependency on other Spring Mongo modules, only the MongoDB driver.

8.1 MongoDB Log4j Configuration

Here is an example configuration

log4j.rootCategory=INFO, stdout

log4j.appender.stdout=org.springframework.data.document.mongodb.log4j.MongoLog4jAppender

log4j.appender.stdout.layout=org.apache.log4j.PatternLayout

log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - <%m>%n

log4j.appender.stdout.host = localhost

log4j.appender.stdout.port = 27017

log4j.appender.stdout.database = logs

log4j.appender.stdout.collectionPattern = %X{year}%X{month}

log4j.appender.stdout.applicationId = my.application

log4j.appender.stdout.warnOrHigherWriteConcern = FSYNC_SAFE

log4j.category.org.apache.activemq=ERROR

log4j.category.org.springframework.batch=DEBUG

log4j.category.org.springframework.data.document.mongodb=DEBUG

log4j.category.org.springframework.transaction=INFO

The important configuration to look at aside from host and port is the database and collectionPattern.
The variables year, month, day and hour are available for you to use in forming a collection name. This
is to support the common convention of grouping log information in a collection that corresponds to a
specific time period, for example a collection per day.

There is also an applicationId which is put into the stored message. The document stored from logging
as the following keys: level, name, applicationId, timestamp, properties, traceback, and message.

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 97

9. JMX support

The JMX support for MongoDB exposes the results of executing the 'serverStatus' command on the
admin database for a single MongoDB server instance. It also exposes an administrative MBean,
MongoAdmin which will let you perform administrative operations such as drop or create a database.
The JMX features build upon the JMX feature set available in the Spring Framework. See here for
more details.

9.1 MongoDB JMX Configuration

Spring's Mongo namespace enables you to easily enable JMX functionality

<?xml version="1.0" encoding="UTF-8"?>

 <beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:context="http://www.springframework.org/schema/context"

 xmlns:mongo="http://www.springframework.org/schema/data/mongo"

 xsi:schemaLocation=

 "http://www.springframework.org/schema/context

 http://www.springframework.org/schema/context/spring-context-3.0.xsd

 http://www.springframework.org/schema/data/mongo

 http://www.springframework.org/schema/data/mongo/spring-mongo-1.0.xsd

 http://www.springframework.org/schema/beans http://www.springframework.org/schema/

beans/spring-beans-3.0.xsd">

<beans>

 <!-- Default bean name is 'mongo' -->

 <mongo:mongo host="localhost" port="27017"/>

 <!-- by default look for a Mongo object named 'mongo' -->

 <mongo:jmx/>

 <context:mbean-export/>

 <!-- To translate any MongoExceptions thrown in @Repository annotated classes -->

 <context:annotation-config/>

 <bean id="registry" class="org.springframework.remoting.rmi.RmiRegistryFactoryBean" p:port="1099"

 />

 <!-- Expose JMX over RMI -->

 <bean id="serverConnector" class="org.springframework.jmx.support.ConnectorServerFactoryBean"

 depends-on="registry"

 p:objectName="connector:name=rmi"

 p:serviceUrl="service:jmx:rmi://localhost/jndi/rmi://localhost:1099/myconnector" /

>

</beans>

Example 9.1 XML schema to configure MongoDB

This will expose several MBeans

• AssertMetrics

• BackgroundFlushingMetrics

http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/jmx.html

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 98

• BtreeIndexCounters

• ConnectionMetrics

• GlobalLoclMetrics

• MemoryMetrics

• OperationCounters

• ServerInfo

• MongoAdmin

This is shown below in a screenshot from JConsole

Part III. Appendix

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 100

Appendix A. Namespace reference

A.1 The <repositories /> element

The <repositories /> element triggers the setup of the Spring Data repository infrastructure. The
most important attribute is base-package which defines the package to scan for Spring Data repository
interfaces.1

Table A.1. Attributes

Name Description

base-package Defines the package to be used to be scanned for repository
interfaces extending *Repository (actual interface is determined
by specific Spring Data module) in auto detection mode. All
packages below the configured package will be scanned, too.
Wildcards are allowed.

repository-impl-postfix Defines the postfix to autodetect custom repository
implementations. Classes whose names end with the configured
postfix will be considered as candidates. Defaults to Impl.

query-lookup-strategy Determines the strategy to be used to create finder queries. See
the section called “Query lookup strategies” for details. Defaults to
create-if-not-found.

named-queries-location Defines the location to look for a Properties file containing externally
defined queries.

consider-nested-

repositories

Controls whether nested repository interface definitions should be
considered. Defaults to false.

1see the section called “XML configuration”

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 101

Appendix B. Repository query
keywords

B.1 Supported query keywords

The following table lists the keywords generally supported by the Spring Data repository query derivation
mechanism. However, consult the store-specific documentation for the exact list of supported keywords,
because some listed here might not be supported in a particular store.

Table B.1. Query keywords

Logical keyword Keyword expressions

AND And

OR Or

AFTER After, IsAfter

BEFORE Before, IsBefore

CONTAINING Containing, IsContaining, Contains

BETWEEN Between, IsBetween

ENDING_WITH EndingWith, IsEndingWith, EndsWith

EXISTS Exists

FALSE False, IsFalse

GREATER_THAN GreaterThan, IsGreaterThan

GREATER_THAN_EQUALSGreaterThanEqual, IsGreaterThanEqual

IN In, IsIn

IS Is, Equals, (or no keyword)

IS_NOT_NULL NotNull, IsNotNull

IS_NULL Null, IsNull

LESS_THAN LessThan, IsLessThan

LESS_THAN_EQUALLessThanEqual, IsLessThanEqual

LIKE Like, IsLike

NEAR Near, IsNear

NOT Not, IsNot

NOT_IN NotIn, IsNotIn

NOT_LIKE NotLike, IsNotLike

Spring Data MongoDB - Reference Documentation

1.6.0.M1
Spring Data MongoDB -

Reference Documentation 102

Logical keyword Keyword expressions

REGEX Regex, MatchesRegex, Matches

STARTING_WITH StartingWith, IsStartingWith, StartsWith

TRUE True, IsTrue

WITHIN Within, IsWithin

	Spring Data MongoDB - Reference Documentation
	Table of Contents
	Preface
	Part I. Introduction
	1 Knowing Spring
	2 Knowing NoSQL and Document databases
	1. Requirements
	2. Additional Help Resources
	2.1 Support
	Community Forum
	Professional Support

	2.2 Following Development

	3. Working with Spring Data Repositories
	3.1 Core concepts
	3.2 Query methods
	Defining repository interfaces
	Fine-tuning repository definition

	Defining query methods
	Query lookup strategies
	Query creation
	Property expressions
	Special parameter handling

	Creating repository instances
	XML configuration
	JavaConfig
	Standalone usage

	3.3 Custom implementations for Spring Data repositories
	Adding custom behavior to single repositories
	Adding custom behavior to all repositories

	3.4 Spring Data extensions
	Web support
	Basic web support
	Hypermedia support for Pageables

	Repository populators
	Legacy web support
	Domain class web binding for Spring MVC
	Web pagination

	Part II. Reference Documentation
	4. MongoDB support
	4.1 Getting Started
	4.2 Examples Repository
	4.3 Connecting to MongoDB with Spring
	Registering a Mongo instance using Java based metadata
	Registering a Mongo instance using XML based metadata
	The MongoDbFactory interface
	Registering a MongoDbFactory instance using Java based metadata
	Registering a MongoDbFactory instance using XML based metadata

	4.4 General auditing configuration
	4.5 Introduction to MongoTemplate
	Instantiating MongoTemplate
	WriteResultChecking Policy
	WriteConcern
	WriteConcernResolver

	4.6 Saving, Updating, and Removing Documents
	How the '_id' field is handled in the mapping layer
	Type mapping
	Methods for saving and inserting documents
	Which collection will my documents be saved into?
	Inserting or saving individual objects
	Inserting several objects in a batch

	Updating documents in a collection
	Methods for executing updates for documents
	Methods for the Update class

	Upserting documents in a collection
	Finding and Upserting documents in a collection
	Methods for removing documents

	4.7 Querying Documents
	Querying documents in a collection
	Methods for the Criteria class
	Methods for the Query class

	Methods for querying for documents
	GeoSpatial Queries
	Geo near queries

	Full Text Queries

	4.8 Map-Reduce Operations
	Example Usage

	4.9 Group Operations
	Example Usage

	4.10 Aggregation Framework Support
	Basic Concepts
	Supported Aggregation Operations
	Projection Expressions
	Spring Expression Support in Projection Expressions

	Aggregation Framework Examples

	4.11 Overriding default mapping with custom converters
	Saving using a registered Spring Converter
	Reading using a Spring Converter
	Registering Spring Converters with the MongoConverter
	Converter disambiguation

	4.12 Index and Collection management
	Methods for creating an Index
	Accessing index information
	Methods for working with a Collection

	4.13 Executing Commands
	Methods for executing commands

	4.14 Lifecycle Events
	4.15 Exception Translation
	4.16 Execution callbacks
	4.17 GridFS support

	5. MongoDB repositories
	5.1 Introduction
	5.2 Usage
	5.3 Query methods
	Repository delete queries
	Geo-spatial repository queries
	MongoDB JSON based query methods and field restriction
	Type-safe Query methods

	5.4 Miscellaneous
	CDI Integration

	6. Mapping
	6.1 Convention based Mapping
	How the '_id' field is handled in the mapping layer

	6.2 Mapping Configuration
	6.3 Metadata based Mapping
	Mapping annotation overview
	Customized Object Construction
	Compound Indexes
	Text Indexes
	Using DBRefs
	Mapping Framework Events
	Overriding Mapping with explicit Converters

	7. Cross Store support
	7.1 Cross Store Configuration
	7.2 Writing the Cross Store Application

	8. Logging support
	8.1 MongoDB Log4j Configuration

	9. JMX support
	9.1 MongoDB JMX Configuration

	Part III. Appendix
	Appendix A. Namespace reference
	A.1 The <repositories /> element

	Appendix B. Repository query keywords
	B.1 Supported query keywords

