Spring Data MongoDB - Reference
Documentation

Mark Pollack, Thomas Risberg, Oliver Gierke, Costin Leau, Jon Brisbin, Thomas
Darimont, Christoph Strobl, Mark Paluch

Version 2.0.0.M4, 2017-06-14

Table of Contents

Preface

1.

Knowing Spring

2. Knowing NoSQL and Document databases
3.
4. Additional Help Resources

Requirements

4.1. Support
4.1.1. Community Forum
4.1.2. Professional Support
4.2. Following Development

. New & Noteworthy

5.1. What’s new in Spring Data MongoDB 2.0
5.2. What’s new in Spring Data MongoDB 1.10
5.3. What’s new in Spring Data MongoDB 1.9
5.4. What’s new in Spring Data MongoDB 1.8
5.5. What’s new in Spring Data MongoDB 1.7

. Dependencies

6.1. Dependency management with Spring Boot
6.2. Spring Framework

. Working with Spring Data Repositories

7.1. Core concepts
7.2. Query methods
7.3. Defining repository interfaces

7.3.1. Fine-tuning repository definition

7.3.2. Using Repositories with multiple Spring Data modules

7.4. Defining query methods
7.4.1. Query lookup strategies
7.4.2. Query creation
7.4.3. Property expressions
7.4.4. Special parameter handling
7.4.5. Limiting query results
7.4.6. Streaming query results
7.4.7. Async query results

7.5. Creating repository instances
7.5.1. XML configuration
7.5.2. JavaConfig
7.5.3. Standalone usage

7.6. Custom implementations for Spring Data repositories
7.6.1. Adding custom behavior to single repositories

© 00 N N9 9 9 99 o0 o o o o Uk woN

DN NN DN NDNDRNDNDINIDND R P B R o) R, |, | |,
S O Ul R R WN DN R O O O Ul W R, R, O O

7.6.2. Adding custom behavior to all repositories

7.7. Publishing events from aggregate roots

7.8. Spring Data extensions
7.8.1. Querydsl Extension
7.8.2. Web support
7.8.3. Repository populators
7.8.4. Legacy web support

Reference Documentation
8. Introduction
8.1. Document Structure
9. MongoDB support

9.1. Getting Started

9.2. Examples Repository

9.3. Connecting to MongoDB with Spring
9.3.1. Registering a Mongo instance using Java based metadata
9.3.2. Registering a Mongo instance using XML based metadata
9.3.3. The MongoDbFactory interface
9.3.4. Registering a MongoDbFactory instance using Java based metadata
9.3.5. Registering a MongoDbFactory instance using XML based metadata

9.4. Introduction to MongoTemplate
9.4.1. Instantiating MongoTemplate
9.4.2. WriteResultChecking Policy
9.4.3. WriteConcern
9.4.4. WriteConcernResolver

9.5. Saving, Updating, and Removing Documents
9.5.1. How the _id field is handled in the mapping layer
9.5.2. Type mapping
9.5.3. Methods for saving and inserting documents
9.5.4. Updating documents in a collection
9.5.5. Upserting documents in a collection
9.5.6. Finding and Upserting documents in a collection
9.5.7. Methods for removing documents
9.5.8. Optimistic locking

9.6. Querying Documents
9.6.1. Querying documents in a collection
9.6.2. Methods for querying for documents
9.6.3. GeoSpatial Queries
9.6.4. GeoJSON Support
9.6.5. Full Text Queries
9.6.6. Collations

9.7. Query by Example

28
30
31
31
32
39
41
44
45
45
46
46
50
50
50
51
53
54
54
35
56
57
58
58
58
61
62
64
66
68
68
69
69
70
71
73
73
76
79
80
82

9.7.1. Introduction 82

9.7.2. Usage 82
9.7.3. Example matchers 84
9.7.4. Executing an example 85
9.8. Map-Reduce Operations 86
9.8.1. Example Usage 86
9.9. Script Operations 89
9.9.1. Example Usage 89
9.10. Group Operations 89
9.10.1. Example Usage 90
9.11. Aggregation Framework Support 92
9.11.1. Basic Concepts 92
9.11.2. Supported Aggregation Operations 93
9.11.3. Projection Expressions 94
9.12. Overriding default mapping with custom converters 103
9.12.1. Saving using a registered Spring Converter 104
9.12.2. Reading using a Spring Converter 104
9.12.3. Registering Spring Converters with the MongoConverter 105
9.12.4. Converter disambiguation 105
9.13. Index and Collection management 106
9.13.1. Methods for creating an Index 106
9.13.2. Accessing index information 107
9.13.3. Methods for working with a Collection 107
9.14. Executing Commands 107
9.14.1. Methods for executing commands 108
9.15. Lifecycle Events 108
9.16. Exception Translation 109
9.17. Execution callbacks 109
9.18. GridFS support 110
10. Reactive MongoDB support 114
10.1. Getting Started 114
10.2. Connecting to MongoDB with Spring and the Reactive Streams Driver 118
10.2.1. Registering a MongoClient instance using Java based metadata 118
10.2.2. The ReactiveMongoDatabaseFactory interface 119
10.2.3. Registering a ReactiveMongoDatabaseFactory instance using Java based metadata 121
10.3. Introduction to ReactiveMongoTemplate 122
10.3.1. Instantiating ReactiveMongoTemplate 123
10.3.2. WriteResultChecking Policy 124
10.3.3. WriteConcern 124
10.3.4. WriteConcernResolver 124

10.4. Saving, Updating, and Removing Documents 125

10.5. Infinite Streams
10.6. Execution callbacks
11. MongoDB repositories

11.1. Introduction

11.2. Usage

11.3. Query methods
11.3.1. Repository delete queries
11.3.2. Geo-spatial repository queries

11.3.3. MongoDB JSON based query methods and field restriction

11.3.4. JSON based queries with SpEL expressions
11.3.5. Type-safe Query methods
11.3.6. Full-text search queries
11.3.7. Projections
11.4. Miscellaneous
11.4.1. CDI Integration
12. Reactive MongoDB repositories
12.1. Introduction
12.2. Reactive Composition Libraries
12.3. Usage
12.4. Features
12.4.1. Geo-spatial repository queries
12.5. Infinite Streams with Tailable Cursors
13. Auditing
13.1. Basics
13.1.1. Annotation based auditing metadata
13.1.2. Interface-based auditing metadata
13.1.3. AuditorAware
13.2. General auditing configuration
14. Mapping
14.1. Convention based Mapping
14.1.1. How the _id field is handled in the mapping layer
14.2. Data mapping and type conversion
14.3. Mapping Configuration
14.4. Metadata based Mapping
14.4.1. Mapping annotation overview
14.4.2. Customized Object Construction
14.4.3. Compound Indexes
14.4.4. Text Indexes
14.4.5. Using DBRefs
14.4.6. Mapping Framework Events
14.4.7. Overriding Mapping with explicit Converters

126
127
128
128
128
131
133
133
134
135
136
137
138
142
142
144
144
144
144
146
147
148
150
150
150
150
150
151
153
153
153
154
156
160
160
162
163
164
165
166
166

15. Cross Store support 168

15.1. Cross Store Configuration 168
15.2. Writing the Cross Store Application 172
16. Logging support 175
16.1. MongoDB Log4j Configuration 175
16.1.1. Using authentication 175

17. JMX support 177
17.1. MongoDB JMX Configuration 177
18. MongoDB 3.0 Support 180
18.1. Using Spring Data MongoDB with MongoDB 3.0 180
18.1.1. Configuration Options 180
18.1.2. WriteConcern and WriteConcernChecking 180
18.1.3. Authentication 181
18.1.4. Other things to be aware of 181
Appendix 183
Appendix A: Namespace reference 184
The <repositories /> element 184
Appendix B: Populators namespace reference 185
The <populator /> element 185
Appendix C: Repository query keywords 186
Supported query keywords 186
Appendix D: Repository query return types 187

Supported query return types 187

© 2008-2017 The original authors.

Copies of this document may be made for your own use and for distribution to others,
provided that you do not charge any fee for such copies and further provided that
each copy contains this Copyright Notice, whether distributed in print or
electronically.

NOTE

Preface

The Spring Data MongoDB project applies core Spring concepts to the development of solutions
using the MongoDB document style data store. We provide a "template" as a high-level abstraction
for storing and querying documents. You will notice similarities to the JDBC support in the Spring
Framework.

This document is the reference guide for Spring Data - Document Support. It explains Document
module concepts and semantics and the syntax for various store namespaces.

This section provides some basic introduction to Spring and Document databases. The rest of the
document refers only to Spring Data MongoDB features and assumes the user is familiar with
MongoDB and Spring concepts.

Chapter 1. Knowing Spring

Spring Data uses Spring framework’s core functionality, such as the IoC container, type conversion
system, expression language, JMX integration, and portable DAO exception hierarchy. While it is
not important to know the Spring APIs, understanding the concepts behind them is. At a minimum,
the idea behind IoC should be familiar for whatever IoC container you choose to use.

The core functionality of the MongoDB support can be used directly, with no need to invoke the IoC
services of the Spring Container. This is much like JdbcTemplate which can be used 'standalone’
without any other services of the Spring container. To leverage all the features of Spring Data
MongoDB, such as the repository support, you will need to configure some parts of the library using
Spring.

To learn more about Spring, you can refer to the comprehensive (and sometimes disarming)
documentation that explains in detail the Spring Framework. There are a lot of articles, blog entries
and books on the matter - take a look at the Spring framework home page for more information.

http://docs.spring.io/spring/docs/5.0.0.RC2/spring-framework-reference/html/spring-core.html
http://docs.spring.io/spring/docs/5.0.0.RC2/spring-framework-reference/html/beans.html
http://docs.spring.io/spring/docs/5.0.0.RC2/spring-framework-reference/html/validation.html#core-convert
http://docs.spring.io/spring/docs/5.0.0.RC2/spring-framework-reference/html/validation.html#core-convert
http://docs.spring.io/spring/docs/5.0.0.RC2/spring-framework-reference/html/expressions.html
http://docs.spring.io/spring/docs/5.0.0.RC2/spring-framework-reference/html/jmx.html
http://docs.spring.io/spring/docs/5.0.0.RC2/spring-framework-reference/html/dao.html#dao-exceptions
http://spring.io/docs

Chapter 2. Knowing NoSQL and Document
databases

NoSQL stores have taken the storage world by storm. It is a vast domain with a plethora of
solutions, terms and patterns (to make things worse even the term itself has multiple meanings).
While some of the principles are common, it is crucial that the user is familiar to some degree with
MongoDB. The best way to get acquainted to this solutions is to read their documentation and
follow their examples - it usually doesn’t take more then 5-10 minutes to go through them and if
you are coming from an RDMBS-only background many times these exercises can be an eye opener.

The jumping off ground for learning about MongoDB is www.mongodb.org. Here is a list of other
useful resources:

* The manual introduces MongoDB and contains links to getting started guides, reference
documentation and tutorials.

* The online shell provides a convenient way to interact with a MongoDB instance in combination
with the online tutorial.

MongoDB Java Language Center
 Several books available for purchase

 Karl Seguin’s online book: The Little MongoDB Book

http://www.google.com/search?q=nosoql+acronym
http://www.mongodb.org/
http://docs.mongodb.org/manual/
http://try.mongodb.org/
http://docs.mongodb.org/manual/tutorial/getting-started/
http://docs.mongodb.org/ecosystem/drivers/java/
http://www.mongodb.org/books
http://openmymind.net/mongodb.pdf

Chapter 3. Requirements

Spring Data MongoDB 1.x binaries requires JDK level 6.0 and above, and Spring Framework
5.0.0.RC2 and above.

In terms of document stores, MongoDB at least 2.6.

http://spring.io/docs
http://www.mongodb.org/

Chapter 4. Additional Help Resources

Learning a new framework is not always straight forward. In this section, we try to provide what
we think is an easy to follow guide for starting with Spring Data MongoDB module. However, if you
encounter issues or you are just looking for an advice, feel free to use one of the links below:

4.1. Support

There are a few support options available:

4.1.1. Community Forum

Spring Data on Stackoverflow Stackoverflow is a tag for all Spring Data (not just Document) users to
share information and help each other. Note that registration is needed only for posting.

4.1.2. Professional Support

Professional, from-the-source support, with guaranteed response time, is available from Pivotal
Sofware, Inc., the company behind Spring Data and Spring.

4.2. Following Development

For information on the Spring Data Mongo source code repository, nightly builds and snapshot
artifacts please see the Spring Data Mongo homepage. You can help make Spring Data best serve the
needs of the Spring community by interacting with developers through the Community on
Stackoverflow. To follow developer activity look for the mailing list information on the Spring Data
Mongo homepage. If you encounter a bug or want to suggest an improvement, please create a ticket
on the Spring Data issue tracker. To stay up to date with the latest news and announcements in the
Spring eco system, subscribe to the Spring Community Portal. Lastly, you can follow the Spring blog
or the project team on Twitter (SpringData).

http://stackoverflow.com/questions/tagged/spring-data
http://pivotal.io/
http://pivotal.io/
http://projects.spring.io/spring-data-mongodb/
http://stackoverflow.com/questions/tagged/spring-data
https://jira.spring.io/browse/DATAMONGO
http://spring.io
http://spring.io/blog
http://twitter.com/SpringData

Chapter 5. New & Noteworthy

5.1. What’s new in Spring Data MongoDB 2.0

* Upgrade to Java 8.

» Usage of the Document API instead of DBObject.

* Reactive MongoDB support.

» Support for aggregation result streaming via Java 8 Stream.

* Integration of collations for collection and index creation and query operations.

5.2. What’s new in Spring Data MongoDB 1.10

* Compatible with MongoDB Server 3.4 and the MongoDB Java Driver 3.4.
* New annotations for @CountQuery, @DeleteQuery and @ExistsQuery.

* Extended support for MongoDB 3.2 and MongoDB 3.4 aggregation operators (see Supported
Aggregation Operations).

» Support partial filter expression when creating indexes.
 Publish lifecycle events when loading/converting DBRefs.

* Added any-match mode for Query By Example.

* Support for $caseSensitive and $diacriticSensitive text search.
» Support for GeoJSON Polygon with hole.

* Performance improvements by bulk fetching DBRefs.

5.3. What’s new in Spring Data MongoDB 1.9
» The following annotations have been enabled to build own, composed annotations: @Document,
@Id, @Field, @Indexed, @CompoundIndex, @GeoSpatiallndexed, @TextIndexed, @Query, @Meta.
» Support for Projections in repository query methods.
 Support for Query by Example.
* Out-of-the-box support for java.util.Currency in object mapping.
* Add support for the bulk operations introduced in MongoDB 2.6.
» Upgrade to Querydsl 4.

* Assert compatibility with MongoDB 3.0 and MongoDB Java Driver 3.2 (see: MongoDB 3.0
Support).

5.4. What’s new in Spring Data MongoDB 1.8

* Criteria offers support for creating $geoIntersects.

Support SpEL expressions in @Query.
* MongoMappingEvents expose the collection name they are issued for.
* Improved support for <mongo:mongo-client credentials=":-+" />.

* Improved index creation failure error message.

5.5. What’s new in Spring Data MongoDB 1.7

» Assert compatibility with MongoDB 3.0 and MongoDB Java Driver 3-beta3 (see: MongoDB 3.0
Support).

Support JSR-310 and ThreeTen back-port date/time types.

* Allow Stream as query method return type (see: Query methods).

Added Geo]SON support in both domain types and queries (see: Geo]JSON Support).

QueryDs1PredicateExcecutor now supports findA11(OrderSpecifier<?>-:+ orders).
» Support calling JavaScript functions via Script Operations.

» Improve support for CONTAINS keyword on collection like properties.

Support for §bit, $mul and $position operators to Update.

http://docs.spring.io/spring/docs/5.0.0.RC2/spring-framework-reference/html/expressions.html
http://geojson.org/

Chapter 6. Dependencies

Due to different inception dates of individual Spring Data modules, most of them carry different
major and minor version numbers. The easiest way to find compatible ones is by relying on the
Spring Data Release Train BOM we ship with the compatible versions defined. In a Maven project
youw’d declare this dependency in the <dependencyManagement /> section of your POM:

Example 1. Using the Spring Data release train BOM

<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-releasetrain</artifactId>
<version>${release-train}</version>
<scope>import</scope>
<type>pom</type>
</dependency>
</dependencies>
</dependencyManagement>

The current release train version is Kay-M4. The train names are ascending alphabetically and
currently available ones are listed here. The version name follows the following pattern: ${name}-
${release} where release can be one of the following:

BUILD-SNAPSHOT - current snapshots

M1, M2 etc. - milestones

RCT, RC2 etc. - release candidates

RELEASE - GA release

SR1, SR2 etc. - service releases

A working example of using the BOMs can be found in our Spring Data examples repository. If
that’s in place declare the Spring Data modules you’d like to use without a version in the
<dependencies /> block.

Example 2. Declaring a dependency to a Spring Data module

<dependencies>
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-jpa</artifactld>
</dependency>
<dependencies>

https://github.com/spring-projects/spring-data-commons/wiki/Release-planning
https://github.com/spring-projects/spring-data-examples/tree/master/bom

6.1. Dependency management with Spring Boot

Spring Boot already selects a very recent version of Spring Data modules for you. In case you want
to upgrade to a newer version nonetheless, simply configure the property spring-data-
releasetrain.version to the train name and iteration you’d like to use.

6.2. Spring Framework

The current version of Spring Data modules require Spring Framework in version 5.0.0.RC2 or
better. The modules might also work with an older bugfix version of that minor version. However,
using the most recent version within that generation is highly recommended.

10

Chapter 7. Working with Spring Data
Repositories

The goal of Spring Data repository abstraction is to significantly reduce the amount of boilerplate
code required to implement data access layers for various persistence stores.

Spring Data repository documentation and your module

This chapter explains the core concepts and interfaces of Spring Data
repositories. The information in this chapter is pulled from the Spring Data
Commons module. It uses the configuration and code samples for the Java
Persistence API (JPA) module. Adapt the XML namespace declaration and the

IMPORTANT types to be extended to the equivalents of the particular module that you are
using. Namespace reference covers XML configuration which is supported
across all Spring Data modules supporting the repository API, Repository
query keywords covers the query method keywords supported by the
repository abstraction in general. For detailed information on the specific
features of your module, consult the chapter on that module of this
document.

7.1. Core concepts

The central interface in Spring Data repository abstraction is Repository (probably not that much of
a surprise). It takes the domain class to manage as well as the id type of the domain class as type
arguments. This interface acts primarily as a marker interface to capture the types to work with
and to help you to discover interfaces that extend this one. The CrudRepository provides
sophisticated CRUD functionality for the entity class that is being managed.

11

Example 3. CrudRepository interface

public interface CrudRepository<T, ID extends Serializable>
extends Repository<T, ID> {

<S extends T> S save(S entity); @D
T findOne(ID primaryKey);

Iterable<T> findA11();

@
®
Long count(); @
void delete(T entity); ®

®

boolean exists(ID primaryKey);

// -+ more functionality omitted.

@ Saves the given entity.

@ Returns the entity identified by the given id.
® Returns all entities.

@ Returns the number of entities.

® Deletes the given entity.

® Indicates whether an entity with the given id exists.

We also provide persistence technology-specific abstractions like e.g. JpaRepository
or MongoRepository. Those interfaces extend CrudRepository and expose the
capabilities of the underlying persistence technology in addition to the rather
generic persistence technology-agnostic interfaces like e.g. CrudRepository.

NOTE

On top of the CrudRepository there is a PagingAndSortingRepository abstraction that adds additional
methods to ease paginated access to entities:

Example 4. PagingAndSortingRepository

public interface PagingAndSortingRepository<T, ID extends Serializable>
extends CrudRepository<T, ID> {

Iterable<T> findA11l(Sort sort);

Page<T> findAl1(Pageable pageable);
}

12

Accessing the second page of User by a page size of 20 you could simply do something like this:

PagingAndSortingRepository<User, Long> repository = // -+ get access to a bean
Page<User> users = repository.findAll(new PageRequest(1, 20));

In addition to query methods, query derivation for both count and delete queries, is available.

Example 5. Derived Count Query

public interface UserRepository extends CrudRepository<User, Long> {

Long countBylLastname(String lastname);

}

Example 6. Derived Delete Query

public interface UserRepository extends CrudRepository<User, Long> {
Long deleteBylLastname(String lastname);

List<User> removeBylLastname(String lastname);

7.2. Query methods

Standard CRUD functionality repositories usually have queries on the underlying datastore. With
Spring Data, declaring those queries becomes a four-step process:

1. Declare an interface extending Repository or one of its subinterfaces and type it to the domain
class and ID type that it will handle.

interface PersonRepository extends Repository<Person, Long> { - }
2. Declare query methods on the interface.

interface PersonRepository extends Repository<Person, Long> {
List<Person> findByLastname(String lastname);

}

3. Set up Spring to create proxy instances for those interfaces. Either via JavaConfig:

13

import org.springframework.data.jpa.repository.config.Enable]paRepositories;

@EnablelpaRepositories
class Config {}

or via XML configuration:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:jpa="http://www.springframework.org/schema/data/jpa"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/data/jpa
http://www.springframework.org/schema/data/jpa/spring-jpa.xsd">

<jpa:repositories base-package="com.acme.repositories"/>

</beans>

The JPA namespace is used in this example. If you are using the repository abstraction for any
other store, you need to change this to the appropriate namespace declaration of your store
module which should be exchanging jpa in favor of, for example, mongodb.

Also, note that the JavaConfig variant doesn’t configure a package explictly as the package of the
annotated class is used by default. To customize the package to scan use one of the
basePackage: - attribute of the data-store specific repository @Enable::--annotation.

4. Get the repository instance injected and use it.

public class SomeClient {

@Autowired
private PersonRepository repository;

public void doSomething() {
List<Person> persons = repository.findByLastname("Matthews");
}
}

The sections that follow explain each step in detail.

7.3. Defining repository interfaces

As a first step you define a domain class-specific repository interface. The interface must extend
Repository and be typed to the domain class and an ID type. If you want to expose CRUD methods

14

for that domain type, extend CrudRepository instead of Repository.

7.3.1. Fine-tuning repository definition

Typically, your repository interface will extend Repository, CrudRepository or
PagingAndSortingRepository. Alternatively, if you do not want to extend Spring Data interfaces, you
can also annotate your repository interface with @RepositoryDefinition. Extending CrudRepository
exposes a complete set of methods to manipulate your entities. If you prefer to be selective about
the methods being exposed, simply copy the ones you want to expose from CrudRepository into your
domain repository.

NOTE This allows you to define your own abstractions on top of the provided Spring Data
Repositories functionality.

Example 7. Selectively exposing CRUD methods

interface MyBaseRepository<T, ID extends Serializable> extends Repository<T, ID> {
T findOne(ID id);

T save(T entity);
}

interface UserRepository extends MyBaseRepository<User, Long> {
User findByEmailAddress(EmailAddress emailAddress);

}

In this first step you defined a common base interface for all your domain repositories and exposed
findOne(---) as well as save(::r).These methods will be routed into the base repository
implementation of the store of your choice provided by Spring Data ,e.g. in the case if JPA
SimpleJpaRepository, because they are matching the method signatures in CrudRepository. So the
UserRepository will now be able to save users, and find single ones by id, as well as triggering a
query to find Users by their email address.

Note, that the intermediate repository interface is annotated with
NOTE @NoRepositoryBean. Make sure you add that annotation to all repository interfaces
that Spring Data should not create instances for at runtime.

7.3.2. Using Repositories with multiple Spring Data modules

Using a unique Spring Data module in your application makes things simple hence, all repository
interfaces in the defined scope are bound to the Spring Data module. Sometimes applications
require using more than one Spring Data module. In such case, it’s required for a repository
definition to distinguish between persistence technologies. Spring Data enters strict repository
configuration mode because it detects multiple repository factories on the class path. Strict

15

configuration requires details on the repository or the domain class to decide about Spring Data
module binding for a repository definition:

1. If the repository definition extends the module-specific repository, then it’s a valid candidate for
the particular Spring Data module.

2. If the domain class is annotated with the module-specific type annotation, then it’s a valid
candidate for the particular Spring Data module. Spring Data modules accept either 3rd party
annotations (such as JPA’s @Entity) or provide own annotations such as @Document for Spring
Data MongoDB/Spring Data Elasticsearch.

Example 8. Repository definitions using Module-specific Interfaces

interface MyRepository extends JpaRepository<User, Long> { }

@NoRepositoryBean

interface MyBaseRepository<T, ID extends Serializable> extends JpaRepository<T,
ID> {

}

interface UserRepository extends MyBaseRepository<User, Long> {

}

MyRepository and UserRepository extend JpaRepository in their type hierarchy. They are valid
candidates for the Spring Data JPA module.

16

Example 9. Repository definitions using generic Interfaces

interface AmbiguousRepository extends Repository<User, Long> {

}

@NoRepositoryBean
interface MyBaseRepository<T, ID extends Serializable> extends CrudRepository<T,
ID> {

}

interface AmbiguousUserRepository extends MyBaseRepository<User, Long> {

}

AmbiguousRepository and AmbiguousUserRepository extend only Repository and CrudRepository in
their type hierarchy. While this is perfectly fine using a unique Spring Data module, multiple
modules cannot distinguish to which particular Spring Data these repositories should be
bound

Example 10. Repository definitions using Domain Classes with Annotations

interface PersonRepository extends Repository<Person, Long> {

}

@Entity
public class Person {

}

interface UserRepository extends Repository<User, Long> {

}

@Document
public class User {

}

PersonRepository references Person which is annotated with the JPA annotation @Entity so this
repository clearly belongs to Spring Data JPA. UserRepository uses User annotated with Spring
Data MongoDB’s @Document annotation.

17

Example 11. Repository definitions using Domain Classes with mixed Annotations

interface JpaPersonRepository extends Repository<Person, Long> {

}

interface MongoDBPersonRepository extends Repository<Person, Long> {

}

public class Person {

}

This example shows a domain class using both JPA and Spring Data MongoDB annotations. It
defines two repositories, JpaPersonRepository and MongoDBPersonRepository. One is intended for
JPA and the other for MongoDB usage. Spring Data is no longer able to tell the repositories
apart which leads to undefined behavior.

Repository type details and identifying domain class annotations are used for strict repository
configuration identify repository candidates for a particular Spring Data module. Using multiple
persistence technology-specific annotations on the same domain type is possible to reuse domain
types across multiple persistence technologies, but then Spring Data is no longer able to determine
a unique module to bind the repository.

The last way to distinguish repositories is scoping repository base packages. Base packages define
the starting points for scanning for repository interface definitions which implies to have
repository definitions located in the appropriate packages. By default, annotation-driven
configuration uses the package of the configuration class. The base package in XML-based
configuration is mandatory.

Example 12. Annotation-driven configuration of base packages

(basePackages = "com.acme.repositories.jpa")
(basePackages = "com.acme.repositories.mongo")
interface Configuration { }

7.4. Defining query methods

The repository proxy has two ways to derive a store-specific query from the method name. It can
derive the query from the method name directly, or by using a manually defined query. Available
options depend on the actual store. However, there’s got to be a strategy that decides what actual
query is created. Let’s have a look at the available options.

18

7.4.1. Query lookup strategies

The following strategies are available for the repository infrastructure to resolve the query. You can
configure the strategy at the namespace through the query-lookup-strategy attribute in case of XML
configuration or via the querylLookupStrategy attribute of the Enable${store}Repositories annotation
in case of Java config. Some strategies may not be supported for particular datastores.

» CREATE attempts to construct a store-specific query from the query method name. The general
approach is to remove a given set of well-known prefixes from the method name and parse the
rest of the method. Read more about query construction in Query creation.

» USE_DECLARED_QUERY tries to find a declared query and will throw an exception in case it can’t
find one. The query can be defined by an annotation somewhere or declared by other means.
Consult the documentation of the specific store to find available options for that store. If the
repository infrastructure does not find a declared query for the method at bootstrap time, it
fails.

o CREATE_IF_NOT_FOUND (default) combines CREATE and USE_DECLARED_QUERY. It looks up a declared
query first, and if no declared query is found, it creates a custom method name-based query.
This is the default lookup strategy and thus will be used if you do not configure anything
explicitly. It allows quick query definition by method names but also custom-tuning of these
queries by introducing declared queries as needed.

7.4.2. Query creation

The query builder mechanism built into Spring Data repository infrastructure is useful for building
constraining queries over entities of the repository. The mechanism strips the prefixes find---By,
read---By, query:--By, count---By, and get:--By from the method and starts parsing the rest of it. The
introducing clause can contain further expressions such as a Distinct to set a distinct flag on the
query to be created. However, the first By acts as delimiter to indicate the start of the actual criteria.
At a very basic level you can define conditions on entity properties and concatenate them with And
and Or.

19

Example 13. Query creation from method names

public interface PersonRepository extends Repository<User, Long> {

List<Person> findByEmailAddressAndLastname(EmailAddress emailAddress, String
lastname);

// Enables the distinct flag for the query

List<Person> findDistinctPeopleBylLastnameOrFirstname(String lastname, String
firstname);

List<Person> findPeopleDistinctBylLastnameOrFirstname(String lastname, String
firstname);

// Enabling ignoring case for an individual property

List<Person> findByLastnameIgnoreCase(String lastname);

// Enabling ignoring case for all suitable properties

List<Person> findBylLastnameAndFirstnameAllIgnoreCase(String lastname, String
firstname);

// Enabling static ORDER BY for a query
List<Person> findByLastnameOrderByFirstnameAsc(String lastname);
List<Person> findByLastnameOrderByFirstnameDesc(String lastname);

}

The actual result of parsing the method depends on the persistence store for which you create the
query. However, there are some general things to notice.

* The expressions are usually property traversals combined with operators that can be
concatenated. You can combine property expressions with AND and OR. You also get support for
operators such as Between, LessThan, GreaterThan, Like for the property expressions. The
supported operators can vary by datastore, so consult the appropriate part of your reference
documentation.

* The method parser supports setting an IgnoreCase flag for individual properties (for example,
findByLastnameIgnoreCase(::+)) or for all properties of a type that support ignoring case (usually
String instances, for example, findByLastnameAndFirstnameAllIgnoreCase(::+)). Whether ignoring
cases is supported may vary by store, so consult the relevant sections in the reference
documentation for the store-specific query method.

* You can apply static ordering by appending an OrderBy clause to the query method that
references a property and by providing a sorting direction (Asc or Desc). To create a query
method that supports dynamic sorting, see Special parameter handling.

7.4.3. Property expressions

Property expressions can refer only to a direct property of the managed entity, as shown in the
preceding example. At query creation time you already make sure that the parsed property is a
property of the managed domain class. However, you can also define constraints by traversing
nested properties. Assume a Person has an Address with a ZipCode. In that case a method name of

20

List<Person> findByAddressZipCode(ZipCode zipCode);

creates the property traversal x.address.zipCode. The resolution algorithm starts with interpreting
the entire part (AddressZipCode) as the property and checks the domain class for a property with
that name (uncapitalized). If the algorithm succeeds it uses that property. If not, the algorithm splits
up the source at the camel case parts from the right side into a head and a tail and tries to find the
corresponding property, in our example, AddressZip and Code. If the algorithm finds a property with
that head it takes the tail and continue building the tree down from there, splitting the tail up in the
way just described. If the first split does not match, the algorithm move the split point to the left
(Address, ZipCode) and continues.

Although this should work for most cases, it is possible for the algorithm to select the wrong
property. Suppose the Person class has an addressZip property as well. The algorithm would match
in the first split round already and essentially choose the wrong property and finally fail (as the
type of addressZip probably has no code property).

To resolve this ambiguity you can use _ inside your method name to manually define traversal
points. So our method name would end up like so:

List<Person> findByAddress_ZipCode(ZipCode zipCode);

As we treat underscore as a reserved character we strongly advise to follow standard Java naming
conventions (i.e. not using underscores in property names but camel case instead).

7.4.4. Special parameter handling

To handle parameters in your query you simply define method parameters as already seen in the
examples above. Besides that the infrastructure will recognize certain specific types like Pageable
and Sort to apply pagination and sorting to your queries dynamically.

Example 14. Using Pageable, Slice and Sort in query methods

Page<User> findByLastname(String lastname, Pageable pageable);
Slice<User> findByLastname(String lastname, Pageable pageable);
List<User> findBylLastname(String lastname, Sort sort);

List<User> findByLastname(String lastname, Pageable pageable);

The first method allows you to pass an org.springframework.data.domain.Pageable instance to the
query method to dynamically add paging to your statically defined query. A Page knows about the
total number of elements and pages available. It does so by the infrastructure triggering a count
query to calculate the overall number. As this might be expensive depending on the store used,
Slice can be used as return instead. A Slice only knows about whether there’s a next Slice

21

available which might be just sufficient when walking through a larger result set.

Sorting options are handled through the Pageable instance too. If you only need sorting, simply add
an org.springframework.data.domain.Sort parameter to your method. As you also can see, simply
returning a List is possible as well. In this case the additional metadata required to build the actual
Page instance will not be created (which in turn means that the additional count query that would
have been necessary not being issued) but rather simply restricts the query to look up only the
given range of entities.

To find out how many pages you get for a query entirely you have to trigger an
NOTE additional count query. By default this query will be derived from the query you
actually trigger.

7.4.5. Limiting query results

The results of query methods can be limited via the keywords first or top, which can be used
interchangeably. An optional numeric value can be appended to top/first to specify the maximum
result size to be returned. If the number is left out, a result size of 1 is assumed.

Example 15. Limiting the result size of a query with Top and First

User findFirstByOrderBylLastnameAsc();

User findTopByOrderByAgeDesc();

Page<User> queryFirst10ByLastname(String lastname, Pageable pageable);
Slice<User> findTop3BylLastname(String lastname, Pageable pageable);
List<User> findFirst10BylLastname(String lastname, Sort sort);

List<User> findTop10ByLastname(String lastname, Pageable pageable);

The limiting expressions also support the Distinct keyword. Also, for the queries limiting the result
set to one instance, wrapping the result into an Optional is supported.

If pagination or slicing is applied to a limiting query pagination (and the calculation of the number
of pages available) then it is applied within the limited result.

Note that limiting the results in combination with dynamic sorting via a Sort
NOTE parameter allows to express query methods for the 'K' smallest as well as for the 'K'
biggest elements.

7.4.6. Streaming query results

The results of query methods can be processed incrementally by using a Java 8 Stream<T> as return
type. Instead of simply wrapping the query results in a Stream data store specific methods are used

22

to perform the streaming.

Example 16. Stream the result of a query with Java 8 Stream<T>

("select u from User u")
Stream<User> findA11ByCustomQueryAndStream();

Stream<User> readAl1ByFirstnameNotNull();

("select u from User u")
Stream<User> streamAl1Paged(Pageable pageable);

A Stream potentially wraps underlying data store specific resources and must
NOTE therefore be closed after usage. You can either manually close the Stream using the
close() method or by using a Java 7 try-with-resources block.

Example 17. Working with a Stream<T> result in a try-with-resources block

try (Stream<User> stream = repository.findA11ByCustomQueryAndStream()) {
stream.forEach(:+);

}

NOTE Not all Spring Data modules currently support Stream<T> as a return type.

7.4.7. Async query results

Repository queries can be executed asynchronously using Spring’s asynchronous method execution
capability. This means the method will return immediately upon invocation and the actual query
execution will occur in a task that has been submitted to a Spring TaskExecutor.

Future<User> findByFirstname(String firstname); @)

CompletableFuture<User> findOneByFirstname(String firstname); @

ListenableFuture<User> findOneBylLastname(String lastname); ®

@ Use java.util.concurrent.Future as return type.
@ Use aJava 8 java.util.concurrent.CompletableFuture as return type.

® Use a org.springframework.util.concurrent.ListenableFuture as return type.

23

http://docs.spring.io/spring/docs/current/spring-framework-reference/html#scheduling
http://docs.spring.io/spring/docs/current/spring-framework-reference/html#scheduling

7.5. Creating repository instances

In this section you create instances and bean definitions for the repository interfaces defined. One
way to do so is using the Spring namespace that is shipped with each Spring Data module that
supports the repository mechanism although we generally recommend to use the Java-Config style
configuration.

7.5.1. XML configuration

Each Spring Data module includes a repositories element that allows you to simply define a base
package that Spring scans for you.

Example 18. Enabling Spring Data repositories via XML

<?xml version="1.0" encoding="UTF-8"7>
<beans:beans xmlns:beans="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://www.springframework.org/schema/data/jpa"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/data/jpa
http://www.springframework.org/schema/data/jpa/spring-jpa.xsd">

<repositories base-package="com.acme.repositories" />

</beans:beans>

In the preceding example, Spring is instructed to scan com.acme.repositories and all its sub-
packages for interfaces extending Repository or one of its sub-interfaces. For each interface found,
the infrastructure registers the persistence technology-specific FactoryBean to create the
appropriate proxies that handle invocations of the query methods. Each bean is registered under a
bean name that is derived from the interface name, so an interface of UserRepository would be
registered under userRepository. The base-package attribute allows wildcards, so that you can define
a pattern of scanned packages.

Using filters

By default the infrastructure picks up every interface extending the persistence technology-specific
Repository sub-interface located under the configured base package and creates a bean instance for
it. However, you might want more fine-grained control over which interfaces bean instances get
created for. To do this you use <include-filter /> and <exclude-filter /> elements inside
<repositories />. The semantics are exactly equivalent to the elements in Spring’s context
namespace. For details, see Spring reference documentation on these elements.

For example, to exclude certain interfaces from instantiation as repository, you could use the
following configuration:

24

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/beans.html#beans-scanning-filters

Example 19. Using exclude-filter element

<repositories base-package="com.acme.repositories">
<context:exclude-filter type="regex" expression=".*SomeRepository" />
</repositories>

This example excludes all interfaces ending in SomeRepository from being instantiated.

7.5.2. JavaConfig

The repository infrastructure can also be triggered using a store-specific
@Enable${store}Repositories annotation on a JavaConfig class. For an introduction into Java-based
configuration of the Spring container, see the reference documentation. [1: JavaConfig in the Spring
reference documentation]

A sample configuration to enable Spring Data repositories looks something like this.

Example 20. Sample annotation based repository configuration

("com.acme.repositories")
class ApplicationConfiguration {

public EntityManagerFactory entityManagerFactory() {

}
}

The sample uses the JPA-specific annotation, which you would change according to
the store module you actually use. The same applies to the definition of the
EntityManagerFactory bean. Consult the sections covering the store-specific
configuration.

NOTE

7.5.3. Standalone usage

You can also use the repository infrastructure outside of a Spring container, e.g. in CDI
environments. You still need some Spring libraries in your classpath, but generally you can set up
repositories programmatically as well. The Spring Data modules that provide repository support
ship a persistence technology-specific RepositoryFactory that you can use as follows.

25

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/beans.html#beans-java
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/beans.html#beans-java

Example 21. Standalone usage of repository factory

RepositoryFactorySupport factory = -+ // Instantiate factory here
UserRepository repository = factory.getRepository(UserRepository.class);

7.6. Custom implementations for Spring Data
repositories

Often it is necessary to provide a custom implementation for a few repository methods. Spring Data
repositories easily allow you to provide custom repository code and integrate it with generic CRUD
abstraction and query method functionality.

7.6.1. Adding custom behavior to single repositories

To enrich a repository with custom functionality you first define an interface and an
implementation for the custom functionality. Use the repository interface you provided to extend
the custom interface.

Example 22. Interface for custom repository functionality

interface UserRepositoryCustom {
public void someCustomMethod(User user);

}

Example 23. Implementation of custom repository functionality

class UserRepositoryImpl implements UserRepositoryCustom {

public void someCustomMethod(User user) {
// Your custom implementation

}
}

NOTE The most important bit for the class to be found is the Impl postfix of the name on it
compared to the core repository interface (see below).

The implementation itself does not depend on Spring Data and can be a regular Spring bean. So you

can use standard dependency injection behavior to inject references to other beans like a

JdbcTemplate, take part in aspects, and so on.

26

Example 24. Changes to the your basic repository interface

interface UserRepository extends CrudRepository<User, Long>, UserRepositoryCustom

{

// Declare query methods here

}

Let your standard repository interface extend the custom one. Doing so combines the CRUD and
custom functionality and makes it available to clients.

Configuration

If you use namespace configuration, the repository infrastructure tries to autodetect custom
implementations by scanning for classes below the package we found a repository in. These classes
need to follow the naming convention of appending the namespace element’s attribute repository-
impl-postfix to the found repository interface name. This postfix defaults to Impl.

Example 25. Configuration example

<repositories base-package="com.acme.repository" />

<repositories base-package="com.acme.repository" repository-impl-postfix="FooBar"
/>

The first configuration example will try to look up a class com.acme.repository.UserRepositoryImpl
to act as custom repository implementation, whereas the second example will try to lookup
com.acme.repository.UserRepositoryFooBar.

Resolution of ambiguity

If multiple implementations with matching class names get found in different packages, Spring
Data uses the bean names to identify the correct one to use.

Given the following two custom implementations for the UserRepository introduced above the first
implementation will get picked. Its bean name is userRepositoryImpl matches that of the repository
interface (userRepository) plus the postfix Impl.

27

Example 26. Resolution of amibiguous implementations

package com.acme.impl.one;
class UserRepositoryImpl implements UserRepositoryCustom {

// Your custom implementation

}

package com.acme.impl.two;

@Component("specialCustomImpl™)
class UserRepositoryImpl implements UserRepositoryCustom {

// Your custom implementation

}

If you annotate the UserRepository interface with @Component("specialCustom") the bean name plus
Impl matches the one defined for the repository implementation in com.acme.impl.two and it will be
picked instead of the first one.

Manual wiring

The approach just shown works well if your custom implementation uses annotation-based
configuration and autowiring only, as it will be treated as any other Spring bean. If your custom
implementation bean needs special wiring, you simply declare the bean and name it after the
conventions just described. The infrastructure will then refer to the manually defined bean
definition by name instead of creating one itself.

Example 27. Manual wiring of custom implementations

<repositories base-package="com.acme.repository" />

<beans:bean id="userRepositoryImpl" class="+-">
<!-- further configuration -->

</beans:bean>

7.6.2. Adding custom behavior to all repositories

The preceding approach is not feasible when you want to add a single method to all your repository
interfaces. To add custom behavior to all repositories, you first add an intermediate interface to
declare the shared behavior.

28

Example 28. An interface declaring custom shared behavior

public interface MyRepository<T, ID extends Serializable>
extends PagingAndSortingRepository<T, ID> {

void sharedCustomMethod(ID id);
}

Now your individual repository interfaces will extend this intermediate interface instead of the
Repository interface to include the functionality declared. Next, create an implementation of the
intermediate interface that extends the persistence technology-specific repository base class. This
class will then act as a custom base class for the repository proxies.

Example 29. Custom repository base class

public class MyRepositoryImpl<T, ID extends Serializable>
extends SimpleJpaRepository<T, ID> implements MyRepository<T, ID> {

private final EntityManager entityManager;

public MyRepositoryImpl(JpaEntityInformation entityInformation,
EntityManager entityManager) {
super(entityInformation, entityManager);

// Keep the EntityManager around to used from the newly introduced methods.
this.entityManager = entityManager;

}

public void sharedCustomMethod(ID id) {
// implementation goes here

}
}
The class needs to have a constructor of the super class which the store-
specific repository factory implementation is using. In case the repository base
WARNING class has multiple constructors, override the one taking an EntityInformation
plus a store specific infrastructure object (e.g. an EntityManager or a template
class).

The default behavior of the Spring <repositories />namespace is to provide an implementation for
all interfaces that fall under the base-package. This means that if left in its current state, an
implementation instance of MyRepository will be created by Spring. This is of course not desired as it
is just supposed to act as an intermediary between Repository and the actual repository interfaces
you want to define for each entity. To exclude an interface that extends Repository from being

29

instantiated as a repository instance, you can either annotate it with @NoRepositoryBean (as seen
above) or move it outside of the configured base-package.

The final step is to make the Spring Data infrastructure aware of the customized repository base
class. In JavaConfig this is achieved by using the repositoryBaseClass attribute of the @Enable
--Repositories annotation:

Example 30. Configuring a custom repository base class using JavaConfig

(repositoryBaseClass = MyRepositoryImpl.class)
class ApplicationConfiguration { -+ }

A corresponding attribute is available in the XML namespace.

Example 31. Configuring a custom repository base class using XML

<repositories base-package="com.acme.repository"
base-class="+--.MyRepositoryImpl" />

7.7. Publishing events from aggregate roots

Entities managed by repositories are aggregate roots. In a Domain-Driven Design application, these
aggregate roots usually publish domain events. Spring Data provides an annotation @DomainEvents
you can use on a method of your aggregate root to make that publication as easy as possible.

30

Example 32. Exposing domain events from an aggregate root

class AnAggregateRoot {

@DomainEvents @
Collection<Object> domainEvents() {
// -+ return events you want to get published here

}

@AfterDomainEventsPublication @
void callbackMethod() {
// -+ potentially clean up domain events list

}

® The method using @DomainEvents can either return a single event instance or a collection of
events. It must not take any arguments.

@ After all events have been published, a method annotated with
@AfterDomainEventsPublication. It e.g. can be used to potentially clean the list of events to be
published.

The methods will be called every time one of a Spring Data repository’s save(::-) methods is called.

7.8. Spring Data extensions

This section documents a set of Spring Data extensions that enable Spring Data usage in a variety of
contexts. Currently most of the integration is targeted towards Spring MVC.

7.8.1. Querydsl Extension

Querydsl is a framework which enables the construction of statically typed SQL-like queries via its
fluent APL

Several Spring Data modules offer integration with Querydsl via QueryDs1PredicateExecutor.

31

http://www.querydsl.com/

Example 33. QueryDslPredicateExecutor interface

public interface QueryDslPredicateExecutor<T> {
T findOne(Predicate predicate);
Iterable<T> findAl1l(Predicate predicate);

long count(Predicate predicate);

® © ©® O

boolean exists(Predicate predicate);

// -+ more functionality omitted.

@ Finds and returns a single entity matching the Predicate.
@ Finds and returns all entities matching the Predicate.
® Returns the number of entities matching the Predicate.

@ Returns if an entity that matches the Predicate exists.

To make use of Querydsl support simply extend QueryDslPredicateExecutor on your repository
interface.

Example 34. Querydsl integration on repositories

interface UserRepository extends CrudRepository<User, Long>,
QueryDs1PredicateExecutor<User> {

}

The above enables to write typesafe queries using Querydsl Predicate s.

Predicate predicate = user.firstname.equalsIgnoreCase("dave")
.and(user.lastname.startsWithIgnoreCase("mathews"));

userRepository.findAll(predicate);

7.8.2. Web support

This section contains the documentation for the Spring Data web support as it is
implemented as of Spring Data Commons in the 1.6 range. As it the newly
introduced support changes quite a lot of things we kept the documentation of the
former behavior in Legacy web support.

NOTE

32

Spring Data modules ships with a variety of web support if the module supports the repository
programming model. The web related stuff requires Spring MVC JARs on the classpath, some of
them even provide integration with Spring HATEOAS [2: Spring HATEOAS - https://github.com/
SpringSource/spring-hateoas]. In general, the integration support is enabled by using the
@EnableSpringDataWebSupport annotation in your JavaConfig configuration class.

Example 35. Enabling Spring Data web support

@Configuration
@EnableWebMvc
@EnableSpringDataWebSupport
class WebConfiguration { }

The @EnableSpringDatallebSupport annotation registers a few components we will discuss in a bit. It
will also detect Spring HATEOAS on the classpath and register integration components for it as well
if present.

Alternatively, if you are using XML configuration, register either SpringDatallebSupport or
HateoasAwareSpringDataWebSupport as Spring beans:

Example 36. Enabling Spring Data web support in XML

<bean class="org.springframework.data.web.config.SpringDataWebConfiguration" />

<!-- If you're using Spring HATEOAS as well register this one *instead* of the
former -->

<bean class=
"org.springframework.data.web.config.HateoasAwareSpringDataWebConfiguration" />

Basic web support

The configuration setup shown above will register a few basic components:

* A DomainClassConverter to enable Spring MVC to resolve instances of repository managed
domain classes from request parameters or path variables.

* HandlerMethodArgumentResolver implementations to let Spring MVC resolve Pageable and Sort
instances from request parameters.

DomainClassConverter

The DomainClassConverter allows you to use domain types in your Spring MVC controller method
signatures directly, so that you don’t have to manually lookup the instances via the repository:

33

https://github.com/SpringSource/spring-hateoas
https://github.com/SpringSource/spring-hateoas

Example 37. A Spring MVC controller using domain types in method signatures

("/users")
public class UserController {

(ll/{_id}")
public String showUserForm(("id") User user, Model model) {

model.addAttribute("user", user);
return "userForm";

}
}

As you can see the method receives a User instance directly and no further lookup is necessary. The
instance can be resolved by letting Spring MVC convert the path variable into the id type of the
domain class first and eventually access the instance through calling findOne(::-) on the repository
instance registered for the domain type.

Currently the repository has to implement CrudRepository to be eligible to be

NOTE
discovered for conversion.

HandlerMethodArgumentResolvers for Pageable and Sort

The configuration snippet above also registers a PageableHandlerMethodArgumentResolver as well as
an instance of SortHandlerMethodArgumentResolver. The registration enables Pageable and Sort being
valid controller method arguments

Example 38. Using Pageable as controller method argument

("/users")
public class UserController {

UserRepository repository;

public String showUsers(Model model, Pageable pageable) {

model.addAttribute("users", repository.findAll(pageable));
return "users";

}
}

This method signature will cause Spring MVC try to derive a Pageable instance from the request
parameters using the following default configuration:

34

Table 1. Request parameters evaluated for Pageable instances

Page Page you want to retrieve, 0 indexed and defaults to 0.
size Size of the page you want to retrieve, defaults to 20.

sort Properties that should be sorted by in the format property,property(,ASC|DESC). Default sort
direction is ascending. Use multiple sort parameters if you want to switch directions, e.g.
?sort=firstname&sort=1astname,asc.

To customize this behavior register a bean implementing the interface
PageableHandlerMethodArgumentResolverCustomizer or SortHandlerMethodArgumentResolverCustomizer
respectively. It’s customize() method will get called allowing you to change settings. Like in the
following example.

SortHandlerMethodArgumentResolverCustomizer sortCustomizer() {
return s -> s.setPropertyDelimiter("<-->");

If setting the properties of an existing MethodArgumentResolver isn’t sufficient for your purpose
extend either SpringDatallebConfiguration or the HATEOAS-enabled equivalent and override the
pageableResolver() or sortResolver() methods and import your customized configuration file
instead of using the @Enable-annotation.

In case you need multiple Pageable or Sort instances to be resolved from the request (for multiple
tables, for example) you can use Spring’s @Qualifier annotation to distinguish one from another.
The request parameters then have to be prefixed with ${qualifier}_. So for a method signature like
this:

public String showUsers(Model model,
("foo") Pageable first,
("bar") Pageable second) { '+ }

you have to populate foo_page and bar_page etc.

The default Pageable handed into the method is equivalent to a new PageRequest(@, 20) but can be
customized using the @PageableDefaults annotation on the Pageable parameter.

Hypermedia support for Pageables

Spring HATEOAS ships with a representation model class PagedResources that allows enriching the
content of a Page instance with the necessary Page metadata as well as links to let the clients easily
navigate the pages. The conversion of a Page to a PagedResources is done by an implementation of
the Spring HATEOAS ResourceAssembler interface, the PagedResourcesAssembler.

35

Example 39. Using a PagedResourcesAssembler as controller method argument

class PersonController {
PersonRepository repository;

(value = "/persons", method = RequestMethod.GET)
HttpEntity<PagedResources<Person>> persons(Pageable pageable,
PagedResourcesAssembler assembler) {

Page<Person> persons = repository.findAll(pageable);
return new ResponseEntity<>(assembler.toResources(persons), HttpStatus.0K);

}
}

Enabling the configuration as shown above allows the PagedResourcesAssembler to be used as
controller method argument. Calling toResources(:-+) on it will cause the following:

» The content of the Page will become the content of the PagedResources instance.

* The PagedResources will get a PageMetadata instance attached populated with information form
the Page and the underlying PageRequest.

* The PagedResources gets prev and next links attached depending on the page’s state. The links
will point to the URI the method invoked is mapped to. The pagination parameters added to the
method will match the setup of the PageableHandlerMethodArgumentResolver to make sure the
links can be resolved later on.

Assume we have 30 Person instances in the database. You can now trigger a request GET
http://localhost:8080/persons and youw’ll see something similar to this:

{ "links" : [{ "rel" : "next",
"href" : "http://localhost:8080/persons?page=1&size=20 }
1,
"content" : [
=+ // 20 Person instances rendered here
I,
"pageMetadata"” : {
"size" : 20,
"totalElements" : 30,
"totalPages" : 2,
"number" : 0

You see that the assembler produced the correct URI and also picks up the default configuration
present to resolve the parameters into a Pageable for an upcoming request. This means, if you

36

http://localhost:8080/persons
http://localhost:8080/persons
http://localhost:8080/persons

change that configuration, the links will automatically adhere to the change. By default the
assembler points to the controller method it was invoked in but that can be customized by handing
in a custom Link to be used as base to build the pagination links to overloads of the
PagedResourcesAssembler.toResource(') method.

Querydsl web support

For those stores having QueryDSL integration it is possible to derive queries from the attributes
contained in a Request query string.

This means that given the User object from previous samples a query string

?firstname=Dave&lastname=Matthews

can be resolved to

QUser.user.firstname.eq("Dave").and(QUser.user.lastname.eq("Matthews"))

using the Queryds1PredicateArgumentResolver.

NOTE The feature will be automatically enabled along @EnableSpringDataWebSupport when
Querydsl is found on the classpath.

Adding a @QuerydslPredicate to the method signature will provide a ready to use Predicate which

can be executed via the QueryDs1PredicateExecutor.

Type information is typically resolved from the methods return type. Since those

TIP information does not necessarily match the domain type it might be a good idea to use
the root attribute of Queryds1Predicate.

37

http://www.querydsl.com/

@Controller
class UserController {

@Autowired UserRepository repository;

@RequestMapping(value = "/", method = RequestMethod.GET)

String index(Model model, @QuerydsliPredicate(root = User.class) Predicate
predicate, @

Pageable pageable, @RequestParam MultiValueMap<String, String>
parameters) {

model.addAttribute("users", repository.findAll(predicate, pageable));

return "index";
}
}

@ Resolve query string arguments to matching Predicate for User.

The default binding is as follows:

* Object on simple properties as eq.
* Object on collection like properties as contains.

* Collection on simple properties as in.

Those bindings can be customized via the bindings attribute of @Queryds1Predicate or by making use
of Java 8 default methods adding the Queryds1BinderCustomizer to the repository interface.

38

interface UserRepository extends CrudRepository<User, String>,
QueryDs1PredicateExecutor<User>,

@

Queryds1BinderCustomizer<QUser> {

@

default public void customize(QuerydslBindings bindings, QUser user) {

bindings.bind(user.username).first((path, value) -> path.contains(value))

®
bindings.bind(String.class)
.first((StringPath path, String value) -> path.containsIgnoreCase(value));
@
bindings.excluding(user.password);
}
}

@ QueryDs1PredicateExecutor provides access to specific finder methods for Predicate.

@ Queryds1BinderCustomizer defined on the repository interface will be automatically picked
up and shortcuts @QuerydslPredicate(bindings=---).

® Define the binding for the username property to be a simple contains binding.
@ Define the default binding for String properties to be a case insensitive contains match.

® Exclude the password property from Predicate resolution.

7.8.3. Repository populators

If you work with the Spring JDBC module, you probably are familiar with the support to populate a
DataSource using SQL scripts. A similar abstraction is available on the repositories level, although it
does not use SQL as the data definition language because it must be store-independent. Thus the
populators support XML (through Spring’s OXM abstraction) and JSON (through Jackson) to define
data with which to populate the repositories.

Assume you have a file data. json with the following content:

Example 40. Data defined in J[SON

[{ "_class" : "com.acme.Person",
"firstname" : "Dave",

"lastname" : "Matthews" },

{ "_class" : "com.acme.Person",
"firstname" : "Carter",

"lastname" : "Beauford" }]

39

You can easily populate your repositories by using the populator elements of the repository
namespace provided in Spring Data Commons. To populate the preceding data to your
PersonRepository, do the following:

Example 41. Declaring a Jackson repository populator

<?xml version="1.0" encoding="UTF-8"7>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:repository="http://www.springframework.org/schema/data/repository"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/data/repository
http://www.springframework.org/schema/data/repository/spring-repository.xsd">

<repository:jackson2-populator locations="classpath:data.json" />

</beans>

This declaration causes the data.json file to be read and deserialized via a Jackson ObjectMapper.

The type to which the JSON object will be unmarshalled to will be determined by inspecting the
_class attribute of the JSON document. The infrastructure will eventually select the appropriate
repository to handle the object just deserialized.

To rather use XML to define the data the repositories shall be populated with, you can use the
unmarshaller-populator element. You configure it to use one of the XML marshaller options Spring
OXM provides you with. See the Spring reference documentation for details.

40

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/oxm.html

Example 42. Declaring an unmarshalling repository populator (using JAXB)

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:repository="http://www.springframework.org/schema/data/repository"
xmlns:oxm="http://www.springframework.org/schema/oxm"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/data/repository
http://www.springframework.org/schema/data/repository/spring-repository.xsd
http://www.springframework.org/schema/oxm
http://www.springframework.org/schema/oxm/spring-oxm.xsd">

<repository:unmarshaller-populator locations="classpath:data.json"
unmarshaller-ref="unmarshaller" />

<oxm:jaxb2-marshaller contextPath="com.acme" />

</beans>

7.8.4. Legacy web support

Domain class web binding for Spring MVC

Given you are developing a Spring MVC web application you typically have to resolve domain class
ids from URLs. By default your task is to transform that request parameter or URL part into the
domain class to hand it to layers below then or execute business logic on the entities directly. This
would look something like this:

41

@Controller
@RequestMapping("/users")
public class UserController {

private final UserRepository userRepository;

@Autowired

public UserController(UserRepository userRepository) {
Assert.notNull(repository, "Repository must not be null!");
this.userRepository = userRepository;

}

@RequestMapping("/{id}")
public String showUserForm(@PathVariable("id") Long id, Model model) {

// Do null check for id
User user = userRepository.findOne(id);
// Do null check for user

model.addAttribute("user", user);
return "user";

First you declare a repository dependency for each controller to look up the entity managed by the
controller or repository respectively. Looking up the entity is boilerplate as well, as it’s always a
findOne(---) call. Fortunately Spring provides means to register custom components that allow
conversion between a String value to an arbitrary type.

PropertyEditors

For Spring versions before 3.0 simple Java PropertyEditors had to be used. To integrate with that,
Spring Data offers a DomainClassPropertyEditorRegistrar, which looks up all Spring Data
repositories registered in the ApplicationContext and registers a custom PropertyEditor for the
managed domain class.

<bean class=":--.web.servlet.mvc.annotation.AnnotationMethodHandlerAdapter">
<property name="webBindingInitializer">
<bean class="++-.web.bind.support.ConfigurableWebBindingInitializer">

<property name="propertyEditorRegistrars">
<bean class=
"org.springframework.data.repository.support.DomainClassPropertyEditorRegistrar" />
</property>
</bean>
</property>
</bean>

If you have configured Spring MVC as in the preceding example, you can configure your controller

42

as follows, which reduces a lot of the clutter and boilerplate.

@Controller
@RequestMapping("/users")
public class UserController {

@RequestMapping("/{id}")
public String showUserForm(@PathVariable("id") User user, Model model) {

model.addAttribute("user", user);
return "userForm";
}
}

43

Reference Documentation

44

Chapter 8. Introduction

8.1. Document Structure

This part of the reference documentation explains the core functionality offered by Spring Data
MongoDB.

MongoDB support introduces the MongoDB module feature set.

MongoDB repositories introduces the repository support for MongoDB.

45

Chapter 9. MongoDB support

The MongoDB support contains a wide range of features which are summarized below.
» Spring configuration support using Java based @Configuration classes or an XML namespace
for a Mongo driver instance and replica sets

* MongoTemplate helper class that increases productivity performing common Mongo
operations. Includes integrated object mapping between documents and POJOs.

» Exception translation into Spring’s portable Data Access Exception hierarchy

» Feature Rich Object Mapping integrated with Spring’s Conversion Service

* Annotation based mapping metadata but extensible to support other metadata formats
* Persistence and mapping lifecycle events

 Java based Query, Criteria, and Update DSLs

* Automatic implementation of Repository interfaces including support for custom finder
methods.

* QueryDSL integration to support type-safe queries.

* Cross-store persistence - support for JPA Entities with fields transparently persisted/retrieved
using MongoDB

* Log4j log appender

* GeoSpatial integration

For most tasks you will find yourself using MongoTemplate or the Repository support that both
leverage the rich mapping functionality. MongoTemplate is the place to look for accessing
functionality such as incrementing counters or ad-hoc CRUD operations. MongoTemplate also
provides callback methods so that it is easy for you to get a hold of the low level API artifacts such
as com.mongo.DB to communicate directly with MongoDB. The goal with naming conventions on
various API artifacts is to copy those in the base MongoDB Java driver so you can easily map your
existing knowledge onto the Spring APIs.

9.1. Getting Started

Spring MongoDB support requires MongoDB 2.6 or higher and Java SE 8 or higher. An easy way to
bootstrap setting up a working environment is to create a Spring based project in STS.

First you need to set up a running Mongodb server. Refer to the Mongodb Quick Start guide for an
explanation on how to startup a MongoDB instance. Once installed starting MongoDB is typically a
matter of executing the following command: MONGO_HOME/bin/mongod

To create a Spring project in STS go to File -~ New - Spring Template Project — Simple Spring
Utility Project — press Yes when prompted. Then enter a project and a package name such as
org.spring.mongodb.example.

Then add the following to pom.xml dependencies section.

46

http://spring.io/tools/sts
http://docs.mongodb.org/manual/core/introduction/

<dependencies>
<!-- other dependency elements omitted -->

<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-mongodb</artifactId>
<version>{version}</version>

</dependency>

</dependencies>

Also change the version of Spring in the pom.xml to be

<spring.framework.version>{springVersion}</spring.framework.version>

You will also need to add the location of the Spring Milestone repository for maven to your pom.xml
which is at the same level of your <dependencies/> element

<repositories>
<repository>
<id>spring-milestone</id>
<name>Spring Maven MILESTONE Repository</name>
<url>http://repo.spring.io/libs-milestone</url>
</repository>
</repositories>

The repository is also browseable here.

You may also want to set the logging level to DEBUG to see some additional information, edit the
log4j.properties file to have

log4j.category.org.springframework.data.mongodb=DEBUG
log4j.appender.stdout.layout.ConversionPattern=%d{ABSOLUTE} %5p %40.40c:%4L - %m%n

Create a simple Person class to persist:

47

http://repo.spring.io/milestone/org/springframework/data/

package org.spring.mongodb.example;
public class Person {

private String id;
private String name;
private int age;

public Person(String name, int age) {
this.name = name;
this.age = age;

}

public String getId() {
return 1id;

}
public String getName() {
return name;

}
public int getAge() {
return age;

}

@0verride
public String toString() {
return "Person [id=" + id +

}

, name=" + name + ", age=" + age + "]";

}

And a main application to run

48

package org.spring.mongodb.example;
import static org.springframework.data.mongodb.core.query.Criteria.where;

import org.apache.commons.logging.log;

import org.apache.commons.logging.LogFactory;

import org.springframework.data.mongodb.core.MongoOperations;
import org.springframework.data.mongodb.core.MongoTemplate;
import org.springframework.data.mongodb.core.query.Query;

import com.mongodb.MongoClient;

public class MongoApp {
private static final Log log = LogFactory.getLog(MongoApp.class);
public static void main(String[] args) throws Exception {

MongoOperations mongoOps = new MongoTemplate(new MongoClient(), "database");
mongoOps.insert(new Person("Joe", 34));

log.info(mongoOps.findOne(new Query(where("name").is("Joe")), Person.class));

mongoOps.dropCollection("person");

This will produce the following output

10:01:32,062 DEBUG apping.MongoPersistentEntityIndexCreator: 80
class org.spring.example.Person for index information.
10:01:32,265 DEBUG ramework.data.mongodb.core.MongoTemplate: 631
containing fields: [_class, age, name] in collection: Person
10:01:32,765 DEBUG ramework.data.mongodb.core.MongoTemplate:1243
query: { "name" : "Joe"} in db.collection: database.Person
10:01:32,953 INFO org.spring.mongodb.example.MongoApp: 25
[1d=4ddbba3c@be56b7e1b210166, name=Joe, age=34]

10:01:32,984 DEBUG ramework.data.mongodb.core.MongoTemplate: 375
[database.person]

Analyzing class

insert Document

findOne using

Person

Dropped collection

Even in this simple example, there are few things to take notice of
* You can instantiate the central helper class of Spring Mongo, MongoTemplate, using the standard
com.mongodb.MongoClient object and the name of the database to use.

» The mapper works against standard POJO objects without the need for any additional metadata
(though you can optionally provide that information. See here.).

* Conventions are used for handling the id field, converting it to be a ObjectId when stored in the

49

database.
* Mapping conventions can use field access. Notice the Person class has only getters.

« If the constructor argument names match the field names of the stored document, they will be
used to instantiate the object

9.2. Examples Repository

There is an github repository with several examples that you can download and play around with
to get a feel for how the library works.

9.3. Connecting to MongoDB with Spring

One of the first tasks when using MongoDB and Spring is to create a com.mongodb.MongoClient object
using the IoC container. There are two main ways to do this, either using Java based bean metadata
or XML based bean metadata. These are discussed in the following sections.

For those not familiar with how to configure the Spring container using Java based
NOTE bean metadata instead of XML based metadata see the high level introduction in the
reference docs here as well as the detailed documentation here.

9.3.1. Registering a Mongo instance using Java based metadata

An example of using Java based bean metadata to register an instance of a com.mongodb.MongoClient
is shown below

Example 43. Registering a com.mongodb.MongoClient object using Java based bean metadata

public class AppConfig {

/*
* Use the standard Mongo driver API to create a com.mongodb.MongoClient
instance.
*/
public MongoClient mongoClient() {
return new MongoClient("localhost");
}
}

This approach allows you to use the standard com.mongodb.MongoClient instance with the container
using Spring’s MongoClientFactoryBean. As compared to instantiating a com.mongodb.MongoClient
instance directly, the FactoryBean has the added advantage of also providing the container with an
ExceptionTranslator implementation that translates MongoDB exceptions to exceptions in Spring’s
portable DataAccessException hierarchy for data access classes annotated with the @Repository
annotation. This hierarchy and use of @Repository is described in Spring’s DAO support features.

50

https://github.com/spring-projects/spring-data-examples
http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/new-in-3.0.html#new-java-configuration
http://docs.spring.io/spring/docs/5.0.0.RC2/spring-framework-reference/html/beans.html#beans-java-instantiating-container
http://docs.spring.io/spring/docs/5.0.0.RC2/spring-framework-reference/html/dao.html

An example of a Java based bean metadata that supports exception translation on @Repository
annotated classes is shown below:

Example 44. Registering a com.mongodb.MongoClient object using Spring’s MongoClientFactoryBean and
enabling Spring’s exception translation support

public class AppConfig {

/*
* Factory bean that creates the com.mongodb.MongoClient instance
*/
public MongoClientFactoryBean mongo() {
MongoClientFactoryBean mongo = new MongoClientFactoryBean();
mongo.setHost("localhost");
return mongo;

To access the com.mongodb.MongoClient object created by the MongoClientFactoryBean in other
@Configuration or your own classes, use a “private @Autowired Mongo mongo;” field.

9.3.2. Registering a Mongo instance using XML based metadata

While you can use Spring’s traditional <beans/> XML namespace to register an instance of
com.mongodb.MongoClient with the container, the XML can be quite verbose as it is general purpose.
XML namespaces are a better alternative to configuring commonly used objects such as the Mongo
instance. The mongo namespace allows you to create a Mongo instance server location, replica-sets,
and options.

To use the Mongo namespace elements you will need to reference the Mongo schema:

51

Example 45. XML schema to configure MongoDB

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:mongo="http://www.springframework.org/schema/data/mongo"
xsi:schemalocation=
"http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-3.0.xsd
*http://www.springframework.org/schema/data/mongo

http://www.springframework.org/schema/data/mongo/spring-mongo-1.0.xsd*
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

<!-- Default bean name is 'mongo' -->
<mongo:mongo-client host="localhost" port="27017"/>

</beans>

A more advanced configuration with MongoClientOptions is shown below (note these are not
recommended values)

Example 46. XML schema to configure a com.mongodb.MongoClient object with MongoClientOptions

<beans>

<mongo:mongo-client host="localhost" port="27017">
<mongo:client-options connections-per-host="8"

threads-allowed-to-block-for-connection-multiplier="4"
connect-timeout="1000"
max-wait-time="1500}"
auto-connect-retry="true"
socket-keep-alive="true"
socket-timeout="1500"
slave-ok="true"
write-number="1"
write-timeout="0"
write-fsync="true"/>

</mongo:mongo-client>

</beans>

A configuration using replica sets is shown below.

52

Example 47. XML schema to configure com.mongodb.MongoClient object with Replica Sets

<mongo:mongo-client id="replicaSetMongo" replica-set=
"127.0.0.1:27017,10ocalhost:27018"/>

9.3.3. The MongoDbFactory interface

While com.mongodb.MongoClient is the entry point to the MongoDB driver API, connecting to a
specific MongoDB database instance requires additional information such as the database name
and an optional username and password. With that information you can obtain a com.mongodb.DB
object and access all the functionality of a specific MongoDB database instance. Spring provides the
org.springframework.data.mongodb.core.MongoDbFactory interface shown below to bootstrap
connectivity to the database.

public interface MongoDbFactory {
MongoDatabase getDb() throws DataAccessException;

MongoDatabase getDb(String dbName) throws DataAccessException;
}

The following sections show how you can use the container with either Java or the XML based
metadata to configure an instance of the MongoDbFactory interface. In turn, you can use the
MongoDbFactory instance to configure MongoTemplate.

Instead of using the IoC container to create an instance of MongoTemplate, you can just use them in
standard Java code as shown below.

public class MongoApp {
private static final Log log = LogFactory.getLog(MongoApp.class);
public static void main(String[] args) throws Exception {

MongoOperations mongoOps = new MongoTemplate(*new SimpleMongoDbFactory(new
MongoClient(), "database")*);

mongoOps.insert(new Person("Joe", 34));
log.info(mongoOps.findOne(new Query(where("name").is("Joe")), Person.class));
mongoOps.dropCollection("person”);

}
}

The code in bold highlights the use of SimpleMongoDbFactory and is the only difference between

53

the listing shown in the getting started section.

9.3.4. Registering a MongoDbFactory instance using Java based metadata

To register a MongoDbFactory instance with the container, you write code much like what was
highlighted in the previous code listing. A simple example is shown below

public class MongoConfiguration {

public MongoDbFactory mongoDbFactory() {
return new SimpleMongoDbFactory(new MongoClient(), "database");

}
}

MongoDB Server generation 3 changed the authentication model when connecting to the DB.
Therefore some of the configuration options available for authentication are no longer valid. Please
use the MongoClient specific options for setting credentials via MongoCredential to provide
authentication data.

public class ApplicationContextEventTestsAppConfig extends AbstractMongoConfiguration
{

public String getDatabaseName() {
return "database";

}

public MongoClient mongoClient() {
return new MongoClient(singletonList(new ServerAddress("127.0.0.1", 27017)),
singletonList(MongoCredential.createCredential("name", "db", "pwd".toCharArray(

)));
}
}

In order to use authentication with XML configuration use the credentials attribue on <mongo-
client>.

9.3.5. Registering a MongoDbFactory instance using XML based metadata

The mongo namespace provides a convenient way to create a SimpleMongoDbFactory as compared to
using the <beans/> namespace. Simple usage is shown below

54

<mongo:db-factory dbname="database">

If you need to configure additional options on the com.mongodb.MongoClient instance that is used to
create a SimpleMongoDbFactory you can refer to an existing bean using the mongo-ref attribute as
shown below. To show another common usage pattern, this listing shows the use of a property
placeholder to parametrise the configuration and creating MongoTemplate.

<context:property-placeholder location=
"classpath:/com/myapp/mongodb/config/mongo.properties”/>

<mongo:mongo-client host="${mongo.host}" port="${mongo.port}">
<mongo:client-options

connections-per-host="${mongo.connectionsPerHost}"
threads-allowed-to-block-for-connection-multiplier=

"${mongo.threadsAllowedToBlockForConnectionMultiplier}"
connect-timeout="${mongo.connectTimeout}"
max-wait-time="${mongo.maxWaitTime}"
auto-connect-retry="${mongo.autoConnectRetry}"
socket-keep-alive="${mongo.socketKeepAlive}"
socket-timeout="${mongo.socketTimeout}"
slave-ok="${mongo.slaveOk}"
write-number="1"
write-timeout="0"
write-fsync="true"/>

</mongo:mongo-client>

<mongo:db-factory dbname="database" mongo-ref="mongoClient"/>

<bean id="anotherMongoTemplate" class=
"org.springframework.data.mongodb.core.MongoTemplate">

<constructor-arg name="mongoDbFactory" ref="mongoDbFactory"/>
</bean>

9.4. Introduction to MongoTemplate

The class MongoTemplate, located in the package org.springframework.data.mongodb.core, is the
central class of the Spring’s MongoDB support providing a rich feature set to interact with the
database. The template offers convenience operations to create, update, delete and query for
MongoDB documents and provides a mapping between your domain objects and MongoDB
documents.

Once configured, MongoTemplate is thread-safe and can be reused across multiple

NOTE .
instances.

The mapping between MongoDB documents and domain classes is done by delegating to an
implementation of the interface MongoConverter. Spring provides the MappingMongoConverter, but you
can also write your own converter. Please refer to the section on MongoConverters for more

55

detailed information.

The MongoTemplate class implements the interface MongoOperations. In as much as possible, the
methods on MongoOperations are named after methods available on the MongoDB driver Collection
object to make the API familiar to existing MongoDB developers who are used to the driver APIL For
example, you will find methods such as "find", "findAndModify", "findOne", "insert", "remove",
"save", "update" and "updateMulti". The design goal was to make it as easy as possible to transition
between the use of the base MongoDB driver and MongoOperations. A major difference in between
the two APIs is that MongoOperations can be passed domain objects instead of Document and there
are fluent APIs for Query, Criteria, and Update operations instead of populating a Document to specify

the parameters for those operations.

NOTE The preferred way to reference the operations on MongoTemplate instance is via its
interface MongoOperations.

The default converter implementation used by MongoTemplate is MappingMongoConverter. While

the MappingMongoConverter can make use of additional metadata to specify the mapping of objects to

documents it is also capable of converting objects that contain no additional metadata by using

some conventions for the mapping of IDs and collection names. These conventions as well as the

use of mapping annotations is explained in the Mapping chapter.

Another central feature of MongoTemplate is exception translation of exceptions thrown in the
MongoDB Java driver into Spring’s portable Data Access Exception hierarchy. Refer to the section
on exception translation for more information.

While there are many convenience methods on MongoTemplate to help you easily perform common
tasks if you should need to access the MongoDB driver API directly to access functionality not
explicitly exposed by the MongoTemplate you can use one of several Execute callback methods to
access underlying driver APIs. The execute callbacks will give you a reference to either a
com.mongodb.Collection or a com.mongodb.DB object. = Please @ see the section
mongo.executioncallback[Execution Callbacks] for more information.

Now let’s look at an example of how to work with the MongoTemplate in the context of the Spring
container.

9.4.1. Instantiating MongoTemplate

You can use Java to create and register an instance of MongoTemplate as shown below.

56

Example 48. Registering a com.mongodb.MongoClient object and enabling Spring’s exception translation
support

public class AppConfig {

public MongoClient mongoClient() {
return new MongoClient("localhost");

}

public MongoTemplate mongoTemplate() {
return new MongoTemplate(mongoClient(), "mydatabase");
}
+

There are several overloaded constructors of MongoTemplate. These are

* MongoTemplate(MongoClient mongo, String databaseName) - takes the com.mongodb.MongoClient
object and the default database name to operate against.

* MongoTemplate(MongoDbFactory mongoDbFactory) - takes a MongoDbFactory object that
encapsulated the com.mongodb.MongoClient object, database name, and username and password.

* MongoTemplate(MongoDbFactory mongoDbFactory, MongoConverter mongoConverter) - adds a
MongoConverter to use for mapping.

You can also configure a MongoTemplate using Spring’s XML <beans/> schema.

<mongo:mongo-client host="localhost" port="27017"/>

<bean id="mongoTemplate" class="org.springframework.data.mongodb.core.MongoTemplate">
<constructor-arg ref="mongoClient"/>
<constructor-arg name="databaseName" value="geospatial"/>

</bean>

Other optional properties that you might like to set when creating a MongoTemplate are the default
WriteResultCheckingPolicy, WriteConcern, and ReadPreference.

The preferred way to reference the operations on MongoTemplate instance is via its

NOTE . .
interface MongoOperations.

9.4.2. WriteResultChecking Policy

When in development it is very handy to either log or throw an exception if the
com.mongodb.WriteResult returned from any MongoDB operation contains an error. It is quite
common to forget to do this during development and then end up with an application that looks
like it runs successfully but in fact the database was not modified according to your expectations.
Set MongoTemplate’s property to an enum with the following values, EXCEPTION, or NONE to either

57

throw an Exception or do nothing. The default is to use a WriteResultChecking value of NONE.

9.4.3. WriteConcern

You can set the com.mongodb.WriteConcern property that the MongoTemplate will use for write
operations if it has not yet been specified via the driver at a higher level such as
com.mongodb.MongoClient. If MongoTemplate’s WriteConcern property is not set it will default to the
one set in the MongoDB driver’s DB or Collection setting.

9.4.4. WriteConcernResolver

For more advanced cases where you want to set different WriteConcern values on a per-operation
basis (for remove, update, insert and save operations), a strategy interface called
WriteConcernResolver can be configured on MongoTemplate. Since MongoTemplate is used to persist
POJOs, the WriteConcernResolver lets you create a policy that can map a specific POJO class to a
WriteConcern value. The WriteConcernResolver interface is shown below.

public interface WriteConcernResolver {
WriteConcern resolve(MongoAction action);

}

The passed in argument, MongoAction, is what you use to determine the WriteConcern value to be
used or to use the value of the Template itself as a default. MongoAction contains the collection name
being written to, the java.lang.(lass of the POJO, the converted Document, as well as the operation as
an enumeration (MongoActionOperation: REMOVE, UPDATE, INSERT, INSERT_LIST, SAVE) and a few
other pieces of contextual information. For example,

private class MyAppWriteConcernResolver implements WriteConcernResolver {

public WriteConcern resolve(MongoAction action) {
if (action.getEntityClass().getSimpleName().contains("Audit")) {
return WriteConcern.NONE;
} else if (action.getEntityClass().getSimpleName().contains("Metadata")) {
return WriteConcern.JOURNAL SAFE;

}

return action.getDefaultWriteConcern();

}
}

9.5. Saving, Updating, and Removing Documents

MongoTemplate provides a simple way for you to save, update, and delete your domain objects and
map those objects to documents stored in MongoDB.

Given a simple class such as Person

58

public class Person {

private String id;
private String name;
private int age;

public Person(String name, int age) {
this.name = name;
this.age = age;

}

public String getId() {
return 1id;

}
public String getName() {
return name;

}
public int getAge() {
return age;

}

public String toString() {
return "Person [id=" + id +

}

, name=" + name + ", age=" + age + "]";

You can save, update and delete the object as shown below.

NOTE MongoOperations is the interface that MongoTemplate implements.

package org.spring.example;

import static org.springframework.data.mongodb.core.query.Criteria.where;
import static org.springframework.data.mongodb.core.query.Update.update;
import static org.springframework.data.mongodb.core.query.Query.query;

import java.util.List;

import org.apache.commons.logging.Log;

import org.apache.commons.logging.LogFactory;

import org.springframework.data.mongodb.core.MongoOperations;
import org.springframework.data.mongodb.core.MongoTemplate;

import org.springframework.data.mongodb.core.SimpleMongoDbFactory;

import com.mongodb.MongoClient;

public class MongoApp {

59

private static final Log log = LogFactory.getLog(MongoApp.class);
public static void main(String[] args) {

MongoOperations mongoOps = new MongoTemplate(new SimpleMongoDbFactory(new
MongoClient(), "database"));

Person p = new Person("Joe", 34);

// Insert is used to initially store the object into the database.
mongoOps.insert(p);
log.info("Insert: " + p);

// Find

p = mongoOps.findById(p.getId(), Person.class);
log.info("Found: " + p);

// Update

mongoOps.updateFirst(query(where("name").is("Joe")), update("age", 35), Person
.class);

p = mongoOps.findOne(query(where("name").is("Joe")), Person.class);

log.info("Updated: " + p);

// Delete
mongoOps . remove(p);

// Check that deletion worked
List<Person> people = mongoOps.findAll(Person.class);

log.info("Number of people = : " + people.size());

mongoOps.dropCollection(Person.class);

}
}

This would produce the following log output (including debug messages from MongoTemplate itself)

60

DEBUG apping.MongoPersistentEntityIndexCreator: 8@ - Analyzing class class
org.spring.example.Person for index information.

DEBUG work.data.mongodb.core.MongoTemplate: 632 - insert Document containing fields:
[_class, age, name] in collection: person

INFO org.spring.example.MongoApp: 30 - Insert: Person
[1d=4ddcbe784ce5bleba3ceaf5c, name=Joe, age=34]

DEBUG work.data.mongodb.core.MongoTemplate:1246 - findOne using query: { "_id" : {
"$0id" : "4ddc6e784cebbleba3ceafbc”}} in db.collection: database.person

INFO org.spring.example.MongoApp: 34 - Found: Person
[id=4ddcbe784ce5bleba3ceaf5c, name=Joe, age=34]

DEBUG work.data.mongodb.core.MongoTemplate: 778 - calling update using query: { "name"
: "Joe"} and update: { "$set" : { "age" : 35}} in collection: person

DEBUG work.data.mongodb.core.MongoTemplate:1246 - findOne using query: { "name" :
"Joe"} in db.collection: database.person

INFO org.spring.example.MongoApp: 39 - Updated: Person
[1d=4ddcbe784ce5bleba3ceaf5c, name=Joe, age=35]

DEBUG work.data.mongodb.core.MongoTemplate: 823 - remove using query: { "id" :
"4ddcbe784ce5bleba3ceaf5c"} in collection: person

INFO org.spring.example.MongoApp: 46 - Number of people = : 0

DEBUG work.data.mongodb.core.MongoTemplate: 376 - Dropped collection [database.person]

There was implicit conversion using the MongoConverter between a String and ObjectId as stored in
the database and recognizing a convention of the property "Id" name.

This example is meant to show the use of save, update and remove operations on

NOTE . . .
MongoTemplate and not to show complex mapping functionality

The query syntax used in the example is explained in more detail in the section Querying
Documents.
9.5.1. How the _id field is handled in the mapping layer

MongoDB requires that you have an _id field for all documents. If you don’t provide one the driver
will assign a ObjectId with a generated value. When using the MappingMongoConverter there are
certain rules that govern how properties from the Java class is mapped to this _id field.

The following outlines what property will be mapped to the _id document field:

* A property or field annotated with @Id (org.springframework.data.annotation.Id) will be mapped
to the _id field.

» A property or field without an annotation but named id will be mapped to the _id field.

The following outlines what type conversion, if any, will be done on the property mapped to the _id
document field when using the MappingMongoConverter, the default for MongoTemplate.

* An id property or field declared as a String in the Java class will be converted to and stored as
an ObjectId if possible using a Spring Converter<String, ObjectId>. Valid conversion rules are
delegated to the MongoDB Java driver. If it cannot be converted to an Objectld, then the value

61

will be stored as a string in the database.

* An id property or field declared as BigInteger in the Java class will be converted to and stored
as an ObjectId using a Spring Converter<BigInteger, ObjectId>.

If no field or property specified above is present in the Java class then an implicit _id file will be
generated by the driver but not mapped to a property or field of the Java class.

When querying and updating MongoTemplate will use the converter to handle conversions of the
Query and Update objects that correspond to the above rules for saving documents so field names
and types used in your queries will be able to match what is in your domain classes.

9.5.2. Type mapping

As MongoDB collections can contain documents that represent instances of a variety of types. A
great example here is if you store a hierarchy of classes or simply have a class with a property of
type Object. In the latter case the values held inside that property have to be read in correctly when
retrieving the object. Thus we need a mechanism to store type information alongside the actual
document.

To achieve that the MappingMongoConverter wuses a MongoTypeMapper abstraction with
DefaultMongoTypeMapper as it’s main implementation. Its default behavior is storing the fully
qualified classname under _class inside the document. Type hints are written for top-level
documents as well as for every value if it’s a complex type and a subtype of the property type
declared.

Example 49. Type mapping
public class Sample {

Contact value;

}

public abstract class Contact { -+ }
public class Person extends Contact { -+ }

Sample sample = new Sample();
sample.value = new Person();

mongoTemplate.save(sample);

"value" : { " _class" : "com.acme.Person" },
"_class" : "com.acme.Sample"

As you can see we store the type information as last field for the actual root class as well as for the
nested type as it is complex and a subtype of Contact. So if you’re now using
mongoTemplate.findAl1(Object.class, "sample") we are able to find out that the document stored

62

shall be a Sample instance. We are also able to find out that the value property shall be a Person
actually.

Customizing type mapping

In case you want to avoid writing the entire Java class name as type information but rather like to
use some key you can use the @TypeAlias annotation at the entity class being persisted. If you need
to customize the mapping even more have a look at the TypeInformationMapper interface. An
instance of that interface can be configured at the DefaultMongoTypeMapper which can be configured
in turn on MappingMongoConverter.

Example 50. Defining a TypeAlias for an Entity

@TypeAlias("pers")
class Person {

Note that the resulting document will contain "pers" as the value in the _class Field.

Configuring custom type mapping

The following example demonstrates how to configure a custom MongoTypeMapper in
MappingMongoConverter.

Example 51. Configuring a custom MongoTypeMapper via Spring Java Config

class CustomMongoTypeMapper extends DefaultMongoTypeMapper {
//implement custom type mapping here

}

63

class SampleMongoConfiguration extends AbstractMongoConfiguration {

protected String getDatabaseName() {
return "database";

}

public MongoClient mongoClient() {
return new MongoClient();

}

public MappingMongoConverter mappingMongoConverter() throws Exception {
MappingMongoConverter mmc = super.mappingMongoConverter();
mmc . setTypeMapper (customTypeMapper());
return mmc;

}

public MongoTypeMapper customTypeMapper() {
return new CustomMongoTypeMapper();

}
}

Note that we are extending the AbstractMongoConfiguration class and override the bean definition of
the MappingMongoConverter where we configure our custom MongoTypeMapper.

Example 52. Configuring a custom MongoTypeMapper via XML

<mongo:mapping-converter type-mapper-ref="customMongoTypeMapper"/>

<bean name="customMongoTypeMapper" class="com.bubu.mongo.CustomMongoTypeMapper"/>

9.5.3. Methods for saving and inserting documents

There are several convenient methods on MongoTemplate for saving and inserting your objects. To
have more fine-grained control over the conversion process you can register Spring converters
with the MappingMongoConverter, for example Converter<Person, Document> and Converter<Document,
Person>.

The difference between insert and save operations is that a save operation will

NOTE
perform an insert if the object is not already present.

The simple case of using the save operation is to save a POJO. In this case the collection name will

64

be determined by name (not fully qualified) of the class. You may also call the save operation with a
specific collection name. The collection to store the object can be overridden using mapping
metadata.

When inserting or saving, if the Id property is not set, the assumption is that its value will be auto-
generated by the database. As such, for auto-generation of an Objectld to succeed the type of the Id
property/field in your class must be either a String, ObjectId, or BigInteger.

Here is a basic example of using the save operation and retrieving its contents.

Example 53. Inserting and retrieving documents using the MongoTemplate

import static org.springframework.data.mongodb.core.query.Criteria.where;
import static org.springframework.data.mongodb.core.query.Criteria.query;

Person p = new Person("Bob", 33);
mongoTemplate.insert(p);

Person gqp = mongoTemplate.findOne(query(where("age").is(33)), Person.class);

The insert/save operations available to you are listed below.

» void save (Object objectToSave) Save the object to the default collection.
* void save (Object objectToSave, String collectionName) Save the object to the specified
collection.

A similar set of insert operations is listed below

* void insert (Object objectToSave) Insert the object to the default collection.

* void insert (Object objectToSave, String collectionName) Insert the object to the specified
collection.

Which collection will my documents be saved into?

There are two ways to manage the collection name that is used for operating on the documents. The
default collection name that is used is the class name changed to start with a lower-case letter. So a
com.test.Person class would be stored in the "person" collection. You can customize this by
providing a different collection name using the @Document annotation. You can also override the
collection name by providing your own collection name as the last parameter for the selected
MongoTemplate method calls.

Inserting or saving individual objects

The MongoDB driver supports inserting a collection of documents in one operation. The methods in
the MongoOperations interface that support this functionality are listed below

* insert inserts an object. If there is an existing document with the same id then an error is

65

generated.

* insertAll takes a Collection of objects as the first parameter. This method inspects each object
and inserts it to the appropriate collection based on the rules specified above.

* save saves the object overwriting any object that might exist with the same id.

Inserting several objects in a batch

The MongoDB driver supports inserting a collection of documents in one operation. The methods in
the MongoOperations interface that support this functionality are listed below

* insert methods that take a Collection as the first argument. This inserts a list of objects in a
single batch write to the database.

9.5.4. Updating documents in a collection

For updates we can elect to update the first document found using MongoOperation 's method
updateFirst or we can update all documents that were found to match the query using the method
updateMulti. Here is an example of an update of all SAVINGS accounts where we are adding a one-
time $50.00 bonus to the balance using the $inc operator.

Example 54. Updating documents using the MongoTemplate

import static org.springframework.data.mongodb.core.query.Criteria.where;
import static org.springframework.data.mongodb.core.query.Query;
import static org.springframework.data.mongodb.core.query.Update;

WriteResult wr = mongoTemplate.updateMulti(new Query(where("accounts.accountType"
).is(Account.Type.SAVINGS)),
new Update().inc("accounts.$.balance", 50.00), Account.class);

In addition to the Query discussed above we provide the update definition using an Update object.
The Update class has methods that match the update modifiers available for MongoDB.

As you can see most methods return the Update object to provide a fluent style for the API.

Methods for executing updates for documents

» updateFirst Updates the first document that matches the query document criteria with the
provided updated document.

» updateMulti Updates all objects that match the query document criteria with the provided
updated document.

Methods for the Update class

The Update class can be used with a little 'syntax sugar' as its methods are meant to be chained

66

together and you can kick-start the creation of a new Update instance via the static method public
static Update update(String key, Object value) and using static imports.

Here is a listing of methods on the Update class

 Update addToSet (String key, Object value) Update using the $addToSet update modifier
* Update currentDate (String key) Update using the $currentDate update modifier

 Update currentTimestamp (String key) Update using the $currentDate update modifier with
$type timestamp

* Update inc (String key, Number inc) Update using the $inc update modifier

 Update max (String key, Object max) Update using the $max update modifier

 Update min (String key, Object min) Update using the $min update modifier

¢ Update multiply (String key, Number multiplier) Update using the $mul update modifier

* Update pop (String key, Update.Position pos) Update using the $pop update modifier

* Update pull (String key, Object value) Update using the $pull update modifier

¢ Update pullAll (String key, Object[] values) Update using the $pullA1ll update modifier

¢ Update push (String key, Object value) Update using the $push update modifier

* Update pushAll (String key, Object[] values) Update using the $pushAll update modifier
 Update rename (String oldName, String newName) Update using the $rename update modifier
* Update set (String key, Object value) Update using the $set update modifier

* Update setOnInsert (String key, Object value) Update using the $setOnInsert update modifier

* Update unset (String key) Update using the $unset update modifier
Some update modifiers like $push and $addToSet allow nesting of additional operators.
// { $push : { "category" : { "$each" : ["spring" , "data" 1} } }
new Update().push("category").each("spring", "data")
// { $push : { "key" : { "$position" : @ , "$each" : ["Arya" , "Arry" , "Weasel"] }

}}
new Update().push("key").atPosition(Position.FIRST).each(Arrays.asList("Arya", "Arry",

"Weasel"));

// { $push : { "key" : { "$slice" : 5, "$each" : ["Arya" , "Arry" , "Weasel"] } } }
new Update().push("key").slice(5).each(Arrays.asList("Arya", "Arry", "Weasel"));

// { $addToSet : { "values" : { "$each" : ["spring" , "data" , "mongodb"] } } }
new Update().addToSet("values").each("spring”, "data", "mongodb");

67

9.

5.5. Upserting documents in a collection

Related to performing an updateFirst operations, you can also perform an upsert operation which
will perform an insert if no document is found that matches the query. The document that is
inserted is a combination of the query document and the update document. Here is an example

9.

template.upsert(query(where("ssn").is(1111).and("firstName").is("Joe").and("Fraizer").
is("Update")), update("address", addr), Person.class);

5.6. Finding and Upserting documents in a collection

The findAndModify(:--) method on DBCollection can update a document and return either the old or
newly updated document in a single operation. MongoTemplate provides a findAndModify method

th

at takes Query and Update classes and converts from Document to your POJOs. Here are the methods

<T> T findAndModify(Query query, Update update, Class<T> entityClass);

<T> T findAndModify(Query query, Update update, Class<T> entityClass, String
collectionName);

<T> T findAndModify(Query query, Update update, FindAndModifyOptions options, Class<T>
entity(Class);

<T> T findAndModify(Query query, Update update, FindAndModifyOptions options, Class<T>
entityClass, String collectionName);

As an example usage, we will insert of few Person objects into the container and perform a simple
findAndUpdate operation

68

mongoTemplate.insert(new Person("Tom", 21));
mongoTemplate.insert(new Person("Dick", 22));
mongoTemplate.insert(new Person("Harry", 23));

Query query = new Query(Criteria.where("firstName").is("Harry"));

Update update = new Update().inc("age", 1);

Person p = mongoTemplate.findAndModify(query, update, Person.class); // return's old
person object

assertThat(p.getFirstName(), is("Harry"));
assertThat(p.getAge(), i1s(23));

p = mongoTemplate.findOne(query, Person.class);
assertThat(p.getAge(), is(24));

// Now return the newly updated document when updating

p = template.findAndModify(query, update, new FindAndModifyOptions().returnNew(true),
Person.class);

assertThat(p.getAge(), is(25));

The FindAndModifyOptions lets you set the options of returnNew, upsert, and remove. An example
extending off the previous code snippet is shown below

Query query2 = new Query(Criteria.where("firstName").is("Mary"));

p = mongoTemplate.findAndModify(query2, update, new FindAndModifyOptions().returnNew
(true).upsert(true), Person.class);

assertThat(p.getFirstName(), is("Mary"));

assertThat(p.getAge(), is(1));

9.5.7. Methods for removing documents
You can use several overloaded methods to remove an object from the database.

* remove Remove the given document based on one of the following: a specific object instance, a
query document criteria combined with a class or a query document criteria combined with a
specific collection name.

9.5.8. Optimistic locking

The @Version annotation provides a JPA similar semantic in the context of MongoDB and makes sure
updates are only applied to documents with matching version. Therefore the actual value of the
version property is added to the update query in a way that the update won’t have any effect if
another operation altered the document in between. In that case an
OptimisticLockingFailureException is thrown.

69

class Person {

String 1id;
String firstname;
String lastname;
Long version;

Person daenerys = template.insert(new Person("Daenerys"));

@

Person tmp = teplate.findOne(query(where("id").is(daenerys.getId())), Person.
class); @

daenerys.setlastname("Targaryen");
template.save(daenerys);

®

template.save(tmp); // throws OptimisticLockingFailureException

@

@ Intially insert document. version is set to 0.
@ Load the just inserted document version is still 0.
® Update document with version = 0. Set the lastname and bump version to 1.

@ Try to update previously loaded document sill having version = 0 fails with
OptimisticLockingFailureException as the current versionis 1.

Using MongoDB driver version 3 requires to set the WriteConcern to
IMPORTANT ACKNOWLEDGED. Otherwise OptimisticLockingFailureException can be silently
swallowed.

9.6. Querying Documents

You can express your queries using the Query and Criteria classes which have method names that
mirror the native MongoDB operator names such as 1t, lte, is, and others. The Query and Criteria
classes follow a fluent API style so that you can easily chain together multiple method criteria and
queries while having easy to understand the code. Static imports in Java are used to help remove
the need to see the 'new' keyword for creating Query and Criteria instances so as to improve
readability. If you like to create Query instances from a plain JSON String use BasicQuery.

70

Example 55. Creating a Query instance from a plain JSON String

BasicQuery query = new BasicQuery("{ age : { $1t : 50 }, accounts.balance : { $qgt
: 1000.00 }}");
List<Person> result = mongoTemplate.find(query, Person.class);

GeoSpatial queries are also supported and are described more in the section GeoSpatial Queries.

Map-Reduce operations are also supported and are described more in the section Map-Reduce.

9.6.1. Querying documents in a collection

We saw how to retrieve a single document using the findOne and findByld methods on
MongoTemplate in previous sections which return a single domain object. We can also query for a
collection of documents to be returned as a list of domain objects. Assuming that we have a number
of Person objects with name and age stored as documents in a collection and that each person has
an embedded account document with a balance. We can now run a query using the following code.

Example 56. Querying for documents using the MongoTemplate

import static org.springframework.data.mongodb.core.query.Criteria.where;
import static org.springframework.data.mongodb.core.query.Query.query;

List<Person> result = mongoTemplate.find(query(where("age").1t(50)
.and("accounts.balance").qgt(1000.00d)), Person.class);

All find methods take a Query object as a parameter. This object defines the criteria and options
used to perform the query. The criteria is specified using a Criteria object that has a static factory
method named where used to instantiate a new Criteria object. We recommend using a static
import for org.springframework.data.mongodb.core.query.Criteria.where and Query.query to make
the query more readable.

This query should return a list of Person objects that meet the specified criteria. The Criteria class
has the following methods that correspond to the operators provided in MongoDB.

As you can see most methods return the Criteria object to provide a fluent style for the API.

Methods for the Criteria class

* Criteriaall (Object o) Creates a criterion using the $all operator

* Criteria and (String key) Adds a chained Criteria with the specified key to the current Criteria
and returns the newly created one

* Criteria andOperator (Criteria::- criteria) Creates an and query using the $and operator for

71

all of the provided criteria (requires MongoDB 2.0 or later)

Criteria elemMatch (Criteria c) Creates a criterion using the $elemMatch operator
Criteria exists (boolean b) Creates a criterion using the $exists operator

Criteria gt (Object o) Creates a criterion using the $gt operator

Criteria gte (Object o) Creates a criterion using the $gte operator

Criteriain (Object: o) Creates a criterion using the $in operator for a varargs argument.

Criteria in (Collection<?> collection) Creates a criterion using the $in operator using a
collection

Criteria is (Object o) Creates a criterion using field matching ({ key:value }). If the specified
value is a document, the order of the fields and exact equality in the document matters.

Criterialt (Object o) Creates a criterion using the $1t operator

Criterialte (Object o) Creates a criterion using the $1te operator

Criteria mod (Number value, Number remainder) Creates a criterion using the $mod operator
Criteriane (Object o) Creates a criterion using the $ne operator

Criterianin (Object '+ o) Creates a criterion using the $nin operator

Criteria norOperator (Criteria--: criteria) Creates an nor query using the $nor operator for
all of the provided criteria

Criteria not () Creates a criterion using the $not meta operator which affects the clause directly
following

Criteria orOperator (Criteria::- criteria) Creates an or query using the $or operator for all of
the provided criteria

Criteriaregex (String re) Creates a criterion using a $regex
Criteriasize (int s) Creates a criterion using the $size operator

Criteria type (int t) Creates a criterion using the $type operator

There are also methods on the Criteria class for geospatial queries. Here is a listing but look at the
section on GeoSpatial Queries to see them in action.

e Criteria within (Circle circle) Creates a geospatial criterion using $geoWithin $center

operators.
Criteria within (Box box) Creates a geospatial criterion using a $geoWithin $box operation.

Criteria withinSphere (Circle circle) Creates a geospatial criterion using $geoWithin $center
operators.

Criteria near (Point point) Creates a geospatial criterion using a $near operation

Criteria nearSphere (Point point) Creates a geospatial criterion using $nearSphere§center
operations. This is only available for MongoDB 1.7 and higher.

Criteria minDistance (double minDistance) Creates a geospatial criterion using the
$minDistance operation, for use with $near.

* Criteria maxDistance (double maxDistance) Creates a geospatial criterion using the

72

$maxDistance operation, for use with $near.

The Query class has some additional methods used to provide options for the query.

Methods for the Query class

* Query addCriteria (Criteria criteria) used to add additional criteria to the query
* Field fields () used to define fields to be included in the query results

* Query limit (int limit) used to limit the size of the returned results to the provided limit (used
for paging)

* Query skip (int skip) used to skip the provided number of documents in the results (used for
paging)

* Query with (Sort sort) used to provide sort definition for the results

9.6.2. Methods for querying for documents

The query methods need to specify the target type T that will be returned and they are also
overloaded with an explicit collection name for queries that should operate on a collection other
than the one indicated by the return type.

» findAll Query for a list of objects of type T from the collection.

» findOne Map the results of an ad-hoc query on the collection to a single instance of an object of
the specified type.

+ findByld Return an object of the given id and target class.
 find Map the results of an ad-hoc query on the collection to a List of the specified type.

* findAndRemove Map the results of an ad-hoc query on the collection to a single instance of an
object of the specified type. The first document that matches the query is returned and also
removed from the collection in the database.

9.6.3. GeoSpatial Queries

MongoDB supports GeoSpatial queries through the use of operators such as $near, $within,
geoWithin and $nearSphere. Methods specific to geospatial queries are available on the Criteria
class. There are also a few shape classes, Box, Circle, and Point that are used in conjunction with
geospatial related Criteria methods.

To understand how to perform GeoSpatial queries we will use the following Venue class taken from
the integration tests which relies on using the rich MappingMongoConverter.

73

@Document(collection="newyork")
public class Venue {

eId

private String id;

private String name;
private double[] location;

@PersistenceConstructor

Venue(String name, double[] location) {
super();
this.name = name;
this.location = location;

}

public Venue(String name, double x, double y) {
super();
this.name = name;
this.location = new double[] { x, y };

}

public String getName() {
return name;

}

public double[] getlocation() {
return location;

}

@0verride
public String toString() {
return "Venue [id=" + id + ", name=" + name + ", location="
+ Arrays.toString(location) + "]";

To find locations within a Circle, the following query can be used.

Circle circle = new Circle(-73.99171, 40.738868, 0.01);
List<Venue> venues =
template.find(new Query(Criteria.where("location").within(circle)), Venue.class);

To find venues within a Circle using spherical coordinates the following query can be used

74

Circle circle = new Circle(-73.99171, 40.738868, 0.003712240453784);
List<Venue> venues =

template.find(new Query(Criteria.where("location").withinSphere(circle)), Venue
.class);

To find venues within a Box the following query can be used

//lower-left then upper-right
Box box = new Box(new Point(-73.99756, 40.73083), new Point(-73.988135, 40.741404));
List<Venue> venues =

template.find(new Query(Criteria.where("location").within(box)), Venue.class);

To find venues near a Point, the following queries can be used

Point point = new Point(-73.99171, 40.738868);
List<Venue> venues =

template.find(new Query(Criteria.where("location").near(point).maxDistance(0.01)),
Venue.class);

Point point = new Point(-73.99171, 40.738868);
List<Venue> venues =

template.find(new Query(Criteria.where("location").near(point).minDistance(0.07)
.maxDistance(100)), Venue.class);

To find venues near a Point using spherical coordinates the following query can be used

Point point = new Point(-73.99171, 40.738868);
List<Venue> venues =
template.find(new Query(
Criteria.where("location").nearSphere(point).maxDistance(0.003712240453784)),
Venue.class);

Geo near queries

MongoDB supports querying the database for geo locations and calculation the distance from a
given origin at the very same time. With geo-near queries it’s possible to express queries like: "find
all restaurants in the surrounding 10 miles". To do so MongoOperations provides geoNear (::+) methods
taking a NearQuery as argument as well as the already familiar entity type and collection

75

Point location = new Point(-73.99171, 40.738868);
NearQuery query = NearQuery.near(location).maxDistance(new Distance(10, Metrics.MILES

));

GeoResults<Restaurant> = operations.geoNear(query, Restaurant.class);

As you can see we use the NearQuery builder API to set up a query to return all Restaurant instances
surrounding the given Point by 10 miles maximum. The Metrics enum used here actually
implements an interface so that other metrics could be plugged into a distance as well. A Metric is
backed by a multiplier to transform the distance value of the given metric into native distances. The
sample shown here would consider the 10 to be miles. Using one of the pre-built in metrics (miles
and kilometers) will automatically trigger the spherical flag to be set on the query. If you want to
avoid that, simply hand in plain double values into maxDistance(::+). For more information see the
JavaDoc of NearQuery and Distance.

The geo near operations return a GeoResults wrapper object that encapsulates GeoResult instances.
The wrapping GeoResults allows accessing the average distance of all results. A single GeoResult
object simply carries the entity found plus its distance from the origin.

9.6.4. GeoJSON Support

MongoDB supports GeoJSON and simple (legacy) coordinate pairs for geospatial data. Those
formats can both be used for storing as well as querying data.

Please refer to the MongoDB manual on GeoJSON support to learn about

NOTE . I
requirements and restrictions.

GeoJSON types in domain classes

Usage of GeoJSON types in domain classes is straight forward. The
org.springframework.data.mongodb.core.geo package contains types like GeoJsonPoint, GeoJsonPolygon
and others. Those are extensions to the existing org.springframework.data.geo types.

76

http://geojson.org/
http://docs.mongodb.org/manual/core/2dsphere/#geospatial-indexes-store-geojson/
http://geojson.org/

public class Store {

String 1id;

/**
* location is stored in GeoJSON format.
*{
* "type" : "Point",
* "coordinates" : [x, y]
*}
*/
GeoJsonPoint location;

GeoJSON types in repository query methods

Using GeoJSON types as repository query parameters forces usage of the $geometry operator when
creating the query.

77

78

public interface StoreRepository extends CrudRepository<Store, String> {

List<Store> findByLocationWithin(Polygon polygon); @

}
/*
*{
* "location": {
= "$geoWithin": {
* "$geometry": {
W "type": "Polygon",
* "coordinates": [
* [
* [-73.992514,40.758934],
* [-73.961138,40.760348],
* [-73.991658,40.730006],
* [-73.992514,40.758934]
*]
*]
* }
” }
*)
*}
*/
repo.findByLocationWithin()
new GeoJsonPolygon(
new Point(-73.992514, 40.758934),
new Point(-73.961138, 40.760348),
new Point(-73.991658, 40.730006),
new Point(-73.992514, 40.758934))); ®
/*
*{
* "location" : {
” "$geoWithin" : {
* "$polygon" : [[-73.992514,40.758934] , [-73.961138,40.760348] , [-
73.991658,40.730006]]
” }
* 1}
*}
*/
repo.findByLocationWithin(@

new Polygon(
new Point(-73.992514, 40.758934),
new Point(-73.961138, 40.760348),
new Point(-73.991658, 40.730000));

@ Repository method definition using the commons type allows calling it with both GeoJSON
and legacy format.

@ Use GeoJSON type the make use of $geometry operator.
® Plase note that GeoJSON polygons need the define a closed ring.

@ Use legacy format $polygon operator.

9.6.5. Full Text Queries

Since MongoDB 2.6 full text queries can be executed using the $text operator. Methods and
operations specific for full text queries are available in TextQuery and Text(Criteria. When doing full
text search please refer to the MongoDB reference for its behavior and limitations.

Full Text Search

Before we are actually able to use full text search we have to ensure to set up the search index
correctly. Please refer to section Text Index for creating index structures.

db.foo.createIndex(

{
title : "text",
content : "text"

b
{
weights : {
title : 3
}
+
)

A query searching for coffee cake, sorted by relevance according to the weights can be defined and
executed as:

Query query = TextQuery.searching(new TextCriteria().matchingAny("coffee", "cake"))
.sortByScore();
List<Document> page = template.find(query, Document.class);

Exclusion of search terms can directly be done by prefixing the term with - or using notMatching

// search for 'coffee' and not 'cake'
TextQuery.searching(new TextCriteria().matching("coffee").matching("-cake"));
TextQuery.searching(new TextCriteria().matching("coffee").notMatching("cake"));

As TextCriteria.matching takes the provided term as is. Therefore phrases can be defined by putting
them between double quotes (eg. \"coffee cake\") or using TextCriteria.phrase.

79

http://docs.mongodb.org/manual/reference/operator/query/text/#behavior

// search for phrase 'coffee cake'
TextQuery.searching(new TextCriteria().matching("\"coffee cake\""));
TextQuery.searching(new TextCriteria().phrase("coffee cake"));

The flags for $caseSensitive and $diacriticSensitive can be set via the according methods on
TextCriteria. Please note that these two optional flags have been introduced in MongoDB 3.2 and
will not be included in the query unless explicitly set.

9.6.6. Collations

MongoDB supports since 3.4 collations for collection and index creation and various query
operations. Collations define string comparison rules based on the ICU collations. A collation
document consists of various properties that are encapsulated in Collation:

Collation collation = Collation.of("fr") @

®

.strength(ComparisonLevel.secondary()
.includeCase())

.numericOrderingEnabled()
.alternate(Alternate.shifted().punct())

.forwardDiacriticSort()

@ © ® ©

.normalizationEnabled();

@ Collation requires a locale for creation. This can be either a string representation of the
locale, a Locale (considering language, country and variant) or a CollationLocale. The locale
is mandatory for creation.

@ Collation strength defines comparison levels denoting differences between characters. You
can configure various options (case-sensitivity, case-ordering) depending on the selected
strength.

® Specify whether to compare numeric strings as numbers or as strings.

@ Specify whether the collation should consider whitespace and punctuation as base
characters for purposes of comparison.

® Specify whether strings with diacritics sort from back of the string, such as with some
French dictionary ordering.

® Specify whether to check if text requires normalization and to perform normalization.

Collations can be used to create collections and indexes. If you create a collection specifying a
collation, the collation is applied to index creation and queries unless you specify a different
collation. A collation is valid for a whole operation and cannot be specified on a per-field basis.

80

http://userguide.icu-project.org/collation/concepts

Collation.of("fr");
Collation.of("de");

Collation french
Collation german

template.createCollection(Person.class, CollectionOptions.just(collation));

template.indexOps(Person.class).ensureIndex(new Index("name", Direction.ASC).
collation(german));

MongoDB uses simple binary comparison if no collation 1is specified

NOTE
(Collation.simple()).

Using collations with collection operations is a matter of specifying a Collation instance in your
query or operation options.

Example 57. Using collation with find

Collation collation = Collation.of("de");

Query query = new Query(Criteria.where("firstName").is("Amél")).collation
(collation);

List<Person> results = template.find(query, Person.class);

Example 58. Using collation with aggregate

Collation collation = Collation.of("de");

AggregationOptions options = new AggregationOptions.Builder().collation(collation
).build();

Aggregation aggregation = newAggregation(
project("tags"),
unwind("tags"),
group("tags")
.count().as("count")
).withOptions(options);

AggregationResults<TagCount> results = template.aggregate(aggregation, "tags",
TagCount.class);

Indexes are only used if the collation used for the operation and the index

WARNING .
collation matches.

81

9.7. Query by Example

9.7.1. Introduction
This chapter will give you an introduction to Query by Example and explain how to use Examples.

Query by Example (QBE) is a user-friendly querying technique with a simple interface. It allows
dynamic query creation and does not require to write queries containing field names. In fact,
Query by Example does not require to write queries using store-specific query languages at all.

9.7.2. Usage
The Query by Example API consists of three parts:

* Probe: That is the actual example of a domain object with populated fields.

» ExampleMatcher: The ExampleMatcher carries details on how to match particular fields. It can be
reused across multiple Examples.

» Example: An Example consists of the probe and the ExampleMatcher. It is used to create the query.
Query by Example is suited for several use-cases but also comes with limitations:
When to use

* Querying your data store with a set of static or dynamic constraints
* Frequent refactoring of the domain objects without worrying about breaking existing queries

* Works independently from the underlying data store API
Limitations

* No support for nested/grouped property constraints like firstname = 70 or (firstname = ?1 and
lastname = ?72)

* Only supports starts/contains/ends/regex matching for strings and exact matching for other
property types

Before getting started with Query by Example, you need to have a domain object. To get started,
simply create an interface for your repository:

82

Example 59. Sample Person object

public class Person {

eId

private String id;
private String firstname;
private String lastname;
private Address address;

// -+ getters and setters omitted

This is a simple domain object. You can use it to create an Example. By default, fields having null
values are ignored, and strings are matched using the store specific defaults. Examples can be built
by either using the of factory method or by using ExampleMatcher. Example is immutable.

Example 60. Simple Example

Person person = new Person(); @
person.setFirstname("Dave"); @
Example<Person> example = Example.of(person); ®

@ Create a new instance of the domain object
@ Set the properties to query

® Create the Example

Examples are ideally be executed with repositories. To do so, let your repository interface extend
QueryByExampleExecutor<T>. Here’s an excerpt from the QueryByExampleExecutor interface:

Example 61. The QueryByExampleExecutor

public interface QueryByExampleExecutor<T> {
<S extends T> S findOne(Example<S> example);
<S extends T> Iterable<S> findAll(Example<S> example);

// -+ more functionality omitted.

}

You can read more about Query by Example Execution below.

83

9.7.3. Example matchers

Examples are not limited to default settings. You can specify own defaults for string matching, null
handling and property-specific settings using the ExampleMatcher.

Example 62. Example matcher with customized matching

Person person = new Person();
person.setFirstname("Dave");

@
@
ExampleMatcher matcher = ExampleMatcher.matching() ©)
.withIgnorePaths("lastname") @
.withIncludeNullValues() ®
.withStringMatcherEnding(); ®
@

Example<Person> example = Example.of(person, matcher);

@ Create a new instance of the domain object.
@ Set properties.

® Create an ExampleMatcher to expect all values to match. It’s usable at this stage even without
further configuration.

@ Construct a new ExampleMatcher to ignore the property path lastname.

® Construct a new ExampleMatcher to ignore the property path lastname and to include null
values.

® Construct a new ExampleMatcher to ignore the property path lastname, to include null values,
and use perform suffix string matching.

@ Create a new Example based on the domain object and the configured ExampleMatcher.

By default the ExampleMatcher will expect all values set on the probe to match. If you want to get
results matching any of the predicates defined implicitly, use ExampleMatcher.matchingAny().

non

You can specify behavior for individual properties (e.g. "firstname" and "lastname", "address.city"
for nested properties). You can tune it with matching options and case sensitivity.

Example 63. Configuring matcher options

ExampleMatcher matcher = ExampleMatcher.matching()
.withMatcher ("firstname", endsWith())
.withMatcher("lastname", startsWith().ignoreCase());

}

Another style to configure matcher options is by using Java 8 lambdas. This approach is a callback
that asks the implementor to modify the matcher. It’s not required to return the matcher because
configuration options are held within the matcher instance.

84

Example 64. Configuring matcher options with lambdas

ExampleMatcher matcher = ExampleMatcher.matching()
.withMatcher("firstname", match -> match.endsWith())
withMatcher ("firstname", match -> match.startsWith());

+

Queries created by Example use a merged view of the configuration. Default matching settings can
be set at ExampleMatcher level while individual settings can be applied to particular property paths.
Settings that are set on ExampleMatcher are inherited by property path settings unless they are
defined explicitly. Settings on a property patch have higher precedence than default settings.

Table 2. Scope of ExampleMatcher settings

Setting Scope

Null-handling ExampleMatcher

String matching ExampleMatcher and property path
Ignoring properties Property path

Case sensitivity ExampleMatcher and property path
Value transformation Property path

9.7.4. Executing an example

Example 65. Query by Example using a Repository

public interface PersonRepository extends QueryByExampleExecutor<Person> {
}
public class PersonService {
PersonRepository personRepository;
public List<Person> findPeople(Person probe) {
return personRepository.findA11(Example.of(probe));

}
}

An Example containing an untyped ExampleSpec uses the Repository type and its collection name.
Typed ExampleSpec use their type as result type and the collection name from the Repository.

85

When including null values in the ExampleSpec Spring Data Mongo uses embedded
document matching instead of dot notation property matching. This forces exact
document matching for all property values and the property order in the embedded
document.

NOTE

Spring Data MongoDB provides support for the following matching options:

Table 3. StringMatcher options

Matching Logical result

DEFAULT (case-sensitive) {"firstname" : firstname}

DEFAULT (case-insensitive) {"firstname" : { $regex: firstname, $options: 'i'}}
EXACT (case-sensitive) {"firstname" : { $regex: /Afirstname$/}}

EXACT (case-insensitive) {"firstname" : { $regex: /Afirstname$/, $options: 'i'}}
STARTING (case-sensitive) {"firstname" : { $regex: /Afirstname/}}

STARTING (case-insensitive) {"firstname" : { $regex: /Afirstname/, $options: 'i'}}
ENDING (case-sensitive) {"firstname" : { $regex: /firstname$/}}

ENDING (case-insensitive) {"firstname" : { $regex: /firstname$/, $options: 'i'}}
CONTAINING (case-sensitive) {"firstname" : { $regex: /.*firstname.*/}}

CONTAINING (case-insensitive) {"firstname" : { $regex: /.*firstname.*/, $options: 'i'}}
REGEX (case-sensitive) {"firstname" : { $regex: /firstname/}}

REGEX (case-insensitive) {"firstname" : { $regex: /firstname/, $options: 'i'}}

9.8. Map-Reduce Operations

You can query MongoDB using Map-Reduce which is useful for batch processing, data aggregation,
and for when the query language doesn’t fulfill your needs.

Spring provides integration with MongoDB’s map reduce by providing methods on
MongoOperations to simplify the creation and execution of Map-Reduce operations. It can convert
the results of a Map-Reduce operation to a POJO also integrates with Spring’s Resource abstraction
abstraction. This will let you place your JavaScript files on the file system, classpath, http server or
any other Spring Resource implementation and then reference the JavaScript resources via an easy
URI style syntax, e.g. 'classpath:reduce.js;. Externalizing JavaScript code in files is often preferable
to embedding them as Java strings in your code. Note that you can still pass JavaScript code as Java
strings if you prefer.

9.8.1. Example Usage

To understand how to perform Map-Reduce operations an example from the book 'MongoDB - The
definitive guide' is used. In this example we will create three documents that have the values [a,b],
[b,c]l, and [c,d] respectfully. The values in each document are associated with the key 'x' as shown
below. For this example assume these documents are in the collection named "jmr1".

86

http://docs.spring.io/spring/docs/5.0.0.RC2/spring-framework-reference/html/resources.html

{ "_id" : ObjectId("4e5ff893c0277826074ec533"), "x" : ["a", "b"] }
{ "_id" : ObjectId("4e5ff893c0277826074ec534"), "x" : ["b", "c" 1}
{ "_id" : ObjectId("4e5ff893c0277826074ec535"), "x" : ["c", "d"] }

A map function that will count the occurrence of each letter in the array for each document is
shown below

function () {
for (var i = 0; i < this.x.length; i++) {
emit(this.x[i], 1);
}

The reduce function that will sum up the occurrence of each letter across all the documents is
shown below

function (key, values) {
var sum = 0;
for (var i = 0; i < values.length; i++)
sum += values[i];
return sum;

Executing this will result in a collection as shown below.

{"_id" : "a", "value" : 1}
{ "_id" : "b", "value" : 2}
{"_id" : "¢", "value" : 2}
{ " id" : "d", "value" : 1}

Assuming that the map and reduce functions are located in map.js and reduce.js and bundled in
your jar so they are available on the classpath, you can execute a map-reduce operation and obtain
the results as shown below

MapReduceResults<ValueObject> results = mongoOperations.mapReduce("jmr1",

"classpath:map.js", "classpath:reduce.js", ValueObject.class);

for (ValueObject valueObject : results) {
System.out.println(valueObject);

}

The output of the above code is

87

ValueObject [id=a, value=1.0]
ValueObject [id=b, value=2.0]
ValueObject [id=c, value=2.0]
ValueObject [id=d, value=1.0]

The MapReduceResults class implements Iterable and provides access to the raw output, as well as
timing and count statistics. The ValueObject class is simply

public class ValueObject {

private String id;
private float value;

public String getId() {
return id;

}

public float getValue() {
return value;

}

public void setValue(float value) {
this.value = value;

}

public String toString() {
return "ValueObject [id=" + id +
}
}

, value=" + value + "]";

By default the output type of INLINE is used so you don’t have to specify an output collection. To
specify additional map-reduce options use an overloaded method that takes an additional
MapReduceOptions argument. The class MapReduceOptions has a fluent API so adding additional
options can be done in a very compact syntax. Here an example that sets the output collection to
"jmrl_out". Note that setting only the output collection assumes a default output type of REPLACE.

MapReduceResults<ValueObject> results = mongoOperations.mapReduce("jmr1",
"classpath:map.js", "classpath:reduce.js",

new
MapReduceOptions().outputCollection("jmr1_out"), ValueObject.class);

There is also a static import import static
org.springframework.data.mongodb.core.mapreduce.MapReduceOptions.options; that can be used to
make the syntax slightly more compact

88

MapReduceResults<ValueObject> results = mongoOperations.mapReduce("jmr1",
"classpath:map.js", "classpath:reduce.js",

options()
.outputCollection("jmr1_out"), ValueObject.class);

You can also specify a query to reduce the set of data that will be used to feed into the map-reduce
operation. This will remove the document that contains [a,b] from consideration for map-reduce
operations.

Query query = new Query(where("x").ne(new String[] { "a", "b" }));
MapReduceResults<ValueObject> results = mongoOperations.mapReduce(query, "jmr1",
"classpath:map.js", "classpath:reduce.js",

options()
.outputCollection("jmr1_out"), ValueObject.class);

Note that you can specify additional limit and sort values as well on the query but not skip values.

9.9. Script Operations

MongoDB allows executing JavaScript functions on the server by either directly sending the script
or calling a stored one. ScriptOperations can be accessed via MongoTemplate and provides basic
abstraction for JavaScript usage.

9.9.1. Example Usage

ScriptOperations scriptOps = template.scriptOps();

ExecutableMongoScript echoScript = new ExecutableMongoScript("function(x) { return
X; ')

scriptOps.execute(echoScript, "directly execute script"); ©

scriptOps.register(new NamedMongoScript("echo", echoScript)); @
scriptOps.call("echo", "execute script via name"); ©)

@ Execute the script directly without storing the function on server side.

@ Store the script using 'echo’ as its name. The given name identifies the script and allows
calling it later.

® Execute the script with name 'echo’ using the provided parameters.

9.10. Group Operations

As an alternative to using Map-Reduce to perform data aggregation, you can use the group operation
which feels similar to using SQL’s group by query style, so it may feel more approachable vs. using

89

http://www.mongodb.org/display/DOCS/Aggregation#Aggregation-Group
http://www.mongodb.org/display/DOCS/Aggregation#Aggregation-Group

Map-Reduce. Using the group operations does have some limitations, for example it is not
supported in a shared environment and it returns the full result set in a single BSON object, so the
result should be small, less than 10,000 keys.

Spring provides integration with MongoDB’s group operation by providing methods on
MongoOperations to simplify the creation and execution of group operations. It can convert the
results of the group operation to a POJO and also integrates with Spring’s Resource abstraction
abstraction. This will let you place your JavaScript files on the file system, classpath, http server or
any other Spring Resource implementation and then reference the JavaScript resources via an easy
URI style syntax, e.g. 'classpath:reduce.js;. Externalizing JavaScript code in files if often preferable
to embedding them as Java strings in your code. Note that you can still pass JavaScript code as Java
strings if you prefer.

9.10.1. Example Usage

In order to understand how group operations work the following example is used, which is
somewhat artificial. For a more realistic example consult the book 'MongoDB - The definitive guide'.
A collection named group_test_collection created with the following rows.

"_id" : ObjectId("4ec1d25d41421e2015dab4f1"), "x" :
"_id" : ObjectId("4ec1d25d41421e2015da64f2"), "x" :
"_id" : ObjectId("4ec1d25d41421e2015dab4f3"), "
"_id" : ObjectId("4ec1d25d41421e2015dab4f4"), "
"_id" : ObjectId("4ec1d25d41421e2015da64f5"), "
"_id" : ObjectId("4ec1d25d41421e2015dab4f6"), "

P N e T e N e Y SN
X X X X X X
W W wWN =
[T s = L SV S

We would like to group by the only field in each row, the x field and aggregate the number of times
each specific value of x occurs. To do this we need to create an initial document that contains our
count variable and also a reduce function which will increment it each time it is encountered. The
Java code to execute the group operation is shown below

GroupByResults<XObject> results = mongoTemplate.group("group_test_collection”,
GroupBy.key("x").
initialDocument("{ count: @ }").reduceFunction("function(doc, prev) { prev.count += 1
),
XObject.class);

The first argument is the name of the collection to run the group operation over, the second is a
fluent API that specifies properties of the group operation via a GroupBy class. In this example we
are using just the intialDocument and reduceFunction methods. You can also specify a key-function,
as well as a finalizer as part of the fluent API. If you have multiple keys to group by, you can pass in
a comma separated list of keys.

The raw results of the group operation is a JSON document that looks like this

90

http://docs.spring.io/spring/docs/5.0.0.RC2/spring-framework-reference/html/resources.html

"retval" : [{ "x" : 1.0 , "count" : 2.0} ,
{ "x" : 2.0, "count" : 1.0} ,
{ "x" : 3.0, "count" : 3.0} 1,
"count" : 6.0 ,
"keys" : 3,
"ok" : 1.0

The document under the "retval” field is mapped onto the third argument in the group method, in
this case XObject which is shown below.

public class XObject {
private float x;

private float count;

public float getX() {
return x;

}

public void setX(float x) {
this.x = x;

}

public float getCount() {
return count;

}

public void setCount(float count) {
this.count = count;

}

public String toString() {
return "XObject [x=" + x +
}
}

n n n

count = " + count + "]";

You can also obtain the raw result as a Document by calling the method getRawResults on the
GroupByResults class.

There is an additional method overload of the group method on MongoOperations which lets you
specify a Criteria object for selecting a subset of the rows. An example which uses a Criteria
object, with some syntax sugar using static imports, as well as referencing a key-function and
reduce function javascript files via a Spring Resource string is shown below.

91

9

import static org.springframework.data.mongodb.core.mapreduce.GroupBy.keyFunction;
import static org.springframework.data.mongodb.core.query.Criteria.where;

GroupByResults<XObject> results = mongoTemplate.group(where("x").qt(0),
"group_test_collection",

keyFunction("classpath:keyFunction.js").initialDocument("{ count: 0
}").reduceFunction("classpath:groupReduce.js"), XObject.class);

.11. Aggregation Framework Support

Spring Data MongoDB provides support for the Aggregation Framework introduced to MongoDB in
version 2.2.

The MongoDB Documentation describes the Aggregation Framework as follows:

For further information see the full reference documentation of the aggregation framework and
other data aggregation tools for MongoDB.

9.

11.1. Basic Concepts

The Aggregation Framework support in Spring Data MongoDB is based on the following key
abstractions Aggregation, AggregationOperation and AggregationResults.

« Aggregation

An Aggregation represents a MongoDB aggregate operation and holds the description of the
aggregation pipeline instructions. Aggregations are created by invoking the appropriate
newAggregation(:-+) static factory Method of the Aggregation class which takes the list of
AggregateOperation as a parameter next to the optional input class.

The actual aggregate operation is executed by the aggregate method of the MongoTemplate which
also takes the desired output class as parameter.

« AggregationOperation

An AggregationOperation represents a MongoDB aggregation pipeline operation and describes
the processing that should be performed in this aggregation step. Although one could manually
create an AggregationOperation the recommended way to construct an AggregateOperation is to
use the static factory methods provided by the Aggregate class.

« AggregationResults

92

AggregationResults is the container for the result of an aggregate operation. It provides access to
the raw aggregation result in the form of an Document, to the mapped objects and information
which performed the aggregation.

The canonical example for using the Spring Data MongoDB support for the MongoDB
Aggregation Framework looks as follows:

http://docs.mongodb.org/manual/core/aggregation/
http://docs.mongodb.org/manual/aggregation/

import static org.springframework.data.mongodb.core.aggregation.Aggregation.*;

Aggregation agg = newAggregation(
pipelineOP1(),
pipelineOP2(),
pipelineOPn()

);

AggregationResults<OutputType> results = mongoTemplate.aggregate(agg,
"INPUT_COLLECTION_NAME", OutputType.class);
List<OutputType> mappedResult = results.getMappedResults();

Note that if you provide an input class as the first parameter to the newAggregation method the
MongoTemplate will derive the name of the input collection from this class. Otherwise if you don’t not
specify an input class you must provide the name of the input collection explicitly. If an input-class
and an input-collection is provided the latter takes precedence.

9.11.2. Supported Aggregation Operations

The MongoDB Aggregation Framework provides the following types of Aggregation Operations:

* Pipeline Aggregation Operators

* Group Aggregation Operators

* Boolean Aggregation Operators

* Comparison Aggregation Operators

* Arithmetic Aggregation Operators

 String Aggregation Operators

* Date Aggregation Operators

* Array Aggregation Operators

* Conditional Aggregation Operators

* Lookup Aggregation Operators
At the time of this writing we provide support for the following Aggregation Operations in Spring
Data MongoDB.
Table 4. Aggregation Operations currently supported by Spring Data MongoDB

Pipeline Aggregation Operators count, geoNear, graphLookup, group, limit,
lookup, match, project, replaceRoot, skip, sort,
unwind

Set Aggregation Operators setEquals, setIntersection, setUnion,
setDifference, setIsSubset, anyElementTrue,
allElementsTrue

Group Aggregation Operators addToSet, first, last, max, min, avg, push, sum,
(*count), stdDevPop, stdDevSamp

93

Arithmetic Aggregation Operators abs, add (*via plus), ceil, divide, exp, floor, In,
log, 10g10, mod, multiply, pow, sqrt, subtract
(*via minus), trunc

String Aggregation Operators concat, substr, toLower, toUpper, stcasecmp,
indexOfBytes, indexOfCP, split, strLenBytes,
strLenCP, substrCpP,

Comparison Aggregation Operators eq (*via: is), gt, gte, 1t, 1te, ne

Array Aggregation Operators arrayElementAt, concatArrays, filter, in,
indexOfArray, isArray, range, reverseArray,
reduce, size, slice, zip

Literal Operators literal

Date Aggregation Operators dayOfYear, dayOfMonth, dayOfWeek, year,
month, week, hour, minute, second, millisecond,
dateToString, isoDayOfWeek, isoWeek,

isoWeekYear
Variable Operators map
Conditional Aggregation Operators cond, ifNull, switch
Type Aggregation Operators type

Note that the aggregation operations not listed here are currently not supported by Spring Data
MongoDB. Comparison aggregation operators are expressed as Criteria expressions.

*) The operation is mapped or added by Spring Data MongoDB.

9.11.3. Projection Expressions

Projection expressions are used to define the fields that are the outcome of a particular aggregation
step. Projection expressions can be defined via the project method of the Aggregation class either by
passing a list of String's or an aggregation framework Fields object. The projection can be extended
with additional fields through a fluent API via the and(String) method and aliased via the
as(String) method. Note that one can also define fields with aliases via the static factory method
Fields.field of the aggregation framework that can then be used to construct a new Fields
instance. References to projected fields in later aggregation stages are only valid by using the field
name of included fields or their alias of aliased or newly defined fields. Fields not included in the
projection cannot be referenced in later aggregation stages.

94

Example 66. Projection expression examples
// will generate {$project: {name: 1, netPrice: 1}}
project("name", "netPrice")

// will generate {$project: {bar: $foo}}
project().and("foo").as("bar")

// will generate {$project: {a: 1, b: 1, bar: $foo}}
project("a","b").and("foo").as("bar")

Example 67. Multi-Stage Aggregation using Projection and Sorting

// will generate {$project: {name: 1, netPrice: 1}}, {$sort: {name: 1}}
project("name", "netPrice"), sort(ASC, "name")

// will generate {$project: {bar: $foo}}, {$sort: {bar: 1}}
project().and("foo").as("bar"), sort(ASC, "bar")

// this will not work
project().and("foo").as("bar"), sort(ASC, "foo")

More examples for project operations can be found in the AggregationTests class. Note that further
details regarding the projection expressions can be found in the corresponding section of the
MongoDB Aggregation Framework reference documentation.

Spring Expression Support in Projection Expressions

As of Version 1.4.0 we support the use of SpEL expression in projection expressions via the
andExpression method of the ProjectionOperation class. This allows you to define the desired
expression as a SpEL expression which is translated into a corresponding MongoDB projection
expression part on query execution. This makes it much easier to express complex calculations.

Complex calculations with SpEL expressions

The following SpEL expression:

T+ (q+1)/(q-1)

will be translated into the following projection expression part:

95

http://docs.mongodb.org/manual/reference/operator/aggregation/project/#pipe._S_project

{ "$add" : [1, {

"$divide" : [{
"$add":["$q", 11}, {
"$subtract":["$q", 11}

]

H}

Have a look at an example in more context in Aggregation Framework Example 5 and Aggregation
Framework Example 6. You can find more usage examples for supported SpEL expression
constructs in SpelExpressionTransformerUnitTests.

Table 5. Supported SpEL transformations

a== { $eq: [$a, $b] }
al=b { $ne:[$a, $b] }
a>b { $gt: [$a, $b] }
a>=b { $gte : [$a, $b] }
a<b { $lt: [$a, $b] }

a<b { $lte : [$a, $b] }

a+b { $add : [$a, $b] }
a-b { $subtract : [$a, $b] }
a*b { $multiply : [$a, $b] }
al/b { $divide : [$a, $b] }
a’b { $pow : [$a, $b] }
a%b { $mod : [$a, $b] }
a&&b { $and : [$a, $b] }
al|lb { $or: [$a, $b] }

la { $not : [$a] }

Next to the transformations shown in [Supported SpEL transformations] it is possible to use
standard SpEL operations like new to eg. create arrays and reference expressions via their name
followed by the arguments to use in brackets.

// { $setEquals : [$a, [5, 8, 131] }
.andExpression("setEquals(a, new int[]{5, 8, 13})");

Aggregation Framework Examples

The following examples demonstrate the usage patterns for the MongoDB Aggregation Framework
with Spring Data MongoDB.

Aggregation Framework Example 1

In this introductory example we want to aggregate a list of tags to get the occurrence count of a

96

particular tag from a MongoDB collection called "tags" sorted by the occurrence count in
descending order. This example demonstrates the usage of grouping, sorting, projections (selection)
and unwinding (result splitting).

class TagCount {
String tag;
int n;

}

import static org.springframework.data.mongodb.core.aggregation.Aggregation.*;

Aggregation agg = newAggregation(
project("tags"),
unwind("tags"),
group("tags").count().as("n"),
project("n").and("tag").previousOperation(),
sort(DESC, "n")

)i

AggregationResults<TagCount> results = mongoTemplate.aggregate(agg, "tags", TagCount
.class);
List<TagCount> tagCount = results.getMappedResults();

* In order to do this we first create a new aggregation via the newAggregation static factory
method to which we pass a list of aggregation operations. These aggregate operations define the
aggregation pipeline of our Aggregation.

* As a second step we select the "tags" field (which is an array of strings) from the input
collection with the project operation.

* In a third step we use the unwind operation to generate a new document for each tag within the
"tags" array.

* In the forth step we use the group operation to define a group for each "tags"-value for which
we aggregate the occurrence count via the count aggregation operator and collect the result in a
new field called "n".

* As a fifth step we select the field "n" and create an alias for the id-field generated from the
previous group operation (hence the call to previousOperation()) with the name "tag".

 As the sixth step we sort the resulting list of tags by their occurrence count in descending order
via the sort operation.

* Finally we call the aggregate Method on the MongoTemplate in order to let MongoDB perform
the actual aggregation operation with the created Aggregation as an argument.

Note that the input collection is explicitly specified as the "tags" parameter to the aggregate
Method. If the name of the input collection is not specified explicitly, it is derived from the input-
class passed as first parameter to the newAggreation Method.

Aggregation Framework Example 2

97

This example is based on the Largest and Smallest Cities by State example from the MongoDB
Aggregation Framework documentation. We added additional sorting to produce stable results with
different MongoDB versions. Here we want to return the smallest and largest cities by population
for each state, using the aggregation framework. This example demonstrates the usage of grouping,
sorting and projections (selection).

class ZipInfo {
String id;
String city;
String state;
@Field("pop") int population;
@Field("loc") double[] location;
}

class City {
String name;
int population;

}

class ZipInfoStats {
String 1id;
String state;
City biggestCity;
City smallestCity;

98

http://docs.mongodb.org/manual/tutorial/aggregation-examples/#largest-and-smallest-cities-by-state

import static org.springframework.data.mongodb.core.aggregation.Aggregation.*;

TypedAggregation<ZipInfo> aggregation = newAggregation(ZipInfo.class,
group("state", "city")
.sum("population").as("pop"),
sort(ASC, "pop", "state", "city"),
group("state")
.last("city").as("biggestCity")
.last("pop").as("biggestPop")
first("city").as("smallestCity")
first("pop").as("smallestPop"),
project()
.and("state").previousOperation()
.and("biggestCity")
.nested(bind("name", "biggestCity").and("population", "biggestPop"))
.and("smallestCity")
.nested(bind("name", "smallestCity").and("population”, "smallestPop")),
sort(ASC, "state")

)

AggregationResults<ZipInfoStats> result = mongoTemplate.aggregate(aggregation,
ZipInfoStats.class);
ZipInfoStats firstZipInfoStats = result.getMappedResults().get(0);

 The class ZipInfo maps the structure of the given input-collection. The class ZipInfoStats defines
the structure in the desired output format.

* As a first step we use the group operation to define a group from the input-collection. The
grouping criteria is the combination of the fields "state" and "city" which forms the id
structure of the group. We aggregate the value of the "population” property from the grouped
elements with by using the sum operator saving the result in the field "pop".

* In a second step we use the sort operation to sort the intermediate-result by the fields "pop",
"state" and "city" in ascending order, such that the smallest city is at the top and the biggest
city is at the bottom of the result. Note that the sorting on "state" and "city" is implicitly
performed against the group id fields which Spring Data MongoDB took care of.

* In the third step we use a group operation again to group the intermediate result by "state".
Note that "state" again implicitly references an group-id field. We select the name and the
population count of the biggest and smallest city with calls to the last(::-) and first(:-)
operator respectively via the project operation.

* As the forth step we select the "state" field from the previous group operation. Note that "state"
again implicitly references an group-id field. As we do not want an implicitly generated id to
appear, we exclude the id from the previous operation via and(previousOperation()).exclude().
As we want to populate the nested City structures in our output-class accordingly we have to
emit appropriate sub-documents with the nested method.

* Finally as the fifth step we sort the resulting list of StateStats by their state name in ascending
order via the sort operation.

99

Note that we derive the name of the input-collection from the ZipInfo-class passed as first
parameter to the newAggregation-Method.

Aggregation Framework Example 3

This example is based on the States with Populations Over 10 Million example from the MongoDB
Aggregation Framework documentation. We added additional sorting to produce stable results with
different MongoDB versions. Here we want to return all states with a population greater than 10
million, using the aggregation framework. This example demonstrates the usage of grouping,
sorting and matching (filtering).

class StateStats {
String 1id;
String state;
("totalPop") int totalPopulation;

import static org.springframework.data.mongodb.core.aggregation.Aggregation.*;

TypedAggregation<ZipInfo> agg = newAggregation(ZipInfo.class,
group("state").sum("population”).as("totalPop"),
sort(ASC, previousOperation(), "totalPop"),
match(where("totalPop").gte(10 * 1000 * 1000))

)i

AggregationResults<StateStats> result = mongoTemplate.aggregate(agg, StateStats.class
)i
List<StateStats> stateStatslList = result.getMappedResults();

* As a first step we group the input collection by the "state" field and calculate the sum of the
"population” field and store the result in the new field "totalPop".

* In the second step we sort the intermediate result by the id-reference of the previous group
operation in addition to the "totalPop" field in ascending order.

* Finally in the third step we filter the intermediate result by using a match operation which
accepts a Criteria query as an argument.

Note that we derive the name of the input-collection from the ZipInfo-class passed as first
parameter to the newAggregation-Method.

Aggregation Framework Example 4

This example demonstrates the use of simple arithmetic operations in the projection operation.

100

http://docs.mongodb.org/manual/tutorial/aggregation-examples/#states-with-populations-over-10-million

class Product {
String 1id;
String name;
double netPrice;
int spacelnits;

import static org.springframework.data.mongodb.core.aggregation.Aggregation.*;

TypedAggregation<Product> agg = newAggregation(Product.class,
project("name", "netPrice")

.and("netPrice").plus(1).as("netPricePlus1")
.and("netPrice").minus(1).as("netPriceMinus1")
.and("netPrice").multiply(1.19).as("grossPrice")
.and("netPrice").divide(2).as("netPriceDiv2")
.and("spaceUnits").mod(2).as("spaceUnitsMod2")

i

AggregationResults<Document> result = mongoTemplate.aggregate(agg, Document.class);
List<Document> resultlList = result.getMappedResults();

Note that we derive the name of the input-collection from the Product-class passed as first
parameter to the newAggregation-Method.

Aggregation Framework Example 5

This example demonstrates the use of simple arithmetic operations derived from SpEL Expressions
in the projection operation.

class Product {
String 1id;
String name;
double netPrice;
int spaceUnits;

101

import static org.springframework.data.mongodb.core.aggregation.Aggregation.*;

TypedAggregation<Product> agg = newAggregation(Product.class,
project("name", "netPrice")
.andExpression("netPrice +
.andExpression("netPrice
.andExpression("netPrice
.andExpression("netPrice 9").as("grossPrice")
.andExpression("spacelnits ").as("spaceUnitsMod2")
.andExpression("(netPrice * 0.8 + 1.2) * 1.19").as(
"grossPriceIncludingDiscountAndCharge")

s("netPricePlus1")
s("netPriceMinus1")

).a

").a
).as("netPriceDiv2")
1

2

* N1

1
1
2
1

)

AggregationResults<Document> result = mongoTemplate.aggregate(agg, Document.class);
List<Document> resultlList = result.getMappedResults();

Aggregation Framework Example 6

This example demonstrates the use of complex arithmetic operations derived from SpEL
Expressions in the projection operation.

Note: The additional parameters passed to the addExpression Method can be referenced via indexer
expressions according to their position. In this example we reference the parameter which is the
first parameter of the parameters array via [0]. External parameter expressions are replaced with
their respective values when the SpEL expression is transformed into a MongoDB aggregation
framework expression.

class Product {
String 1id;
String name;
double netPrice;
int spacelnits;

import static org.springframework.data.mongodb.core.aggregation.Aggregation.*;
double shippingCosts = 1.2;

TypedAggregation<Product> agg = newAggregation(Product.class,
project("name", "netPrice")
.andExpression("(netPrice * (1-discountRate) + [0]) * (1+taxRate)",
shippingCosts).as("salesPrice")

)

AggregationResults<Document> result = mongoTemplate.aggregate(agg, Document.class);
List<Document> resultlList = result.getMappedResults();

102

Note that we can also refer to other fields of the document within the SpEL expression.

Aggregation Framework Example 7

This example uses conditional projection. It’s derived from the $cond reference documentation.

public class InventoryItem {

int 1id;
String item;
String description;
int qty;
}

public class InventoryItemProjection {

int id;
String item;
String description;
int qty;
int discount

import static org.springframework.data.mongodb.core.aggregation.Aggregation.*;

TypedAggregation<InventoryItem> agg = newAggregation(InventoryItem.class,
project("item").and("discount")
.applyCondition(ConditionalOperator.newBuilder().when(Criteria.where("qty").gte
(250))
.then(30)
.otherwise(20))
.and(ifNull("description"”, "Unspecified")).as("description")

)

AggregationResults<InventoryItemProjection> result = mongoTemplate.aggregate(agg,
“inventory", InventoryItemProjection.class);
List<InventoryItemProjection> stateStatsList = result.getMappedResults();

* This one-step aggregation uses a projection operation with the inventory collection. We project
the discount field using a conditional operation for all inventory items that have a qty greater or
equal to 250. A second conditional projection is performed for the description field. We apply
the description Unspecified to all items that either do not have a description field of items that
have a null description.

9.12. Overriding default mapping with custom
converters

In order to have more fine-grained control over the mapping process you can register Spring

103

https://docs.mongodb.com/manual/reference/operator/aggregation/cond/

converters with the MongoConverter implementations such as the MappingMongoConverter.

The MappingMongoConverter checks to see if there are any Spring converters that can handle a
specific class before attempting to map the object itself. To 'hijack' the normal mapping strategies of
the MappingMongoConverter, perhaps for increased performance or other custom mapping needs, you
first need to create an implementation of the Spring Converter interface and then register it with
the MappingConverter.

For more information on the Spring type conversion service see the reference docs

NOTE
here.

9.12.1. Saving using a registered Spring Converter

An example implementation of the Converter that converts from a Person object to a
org.bson.Document is shown below

import org.springframework.core.convert.converter.Converter;
import org.bson.Document;
public class PersonWriteConverter implements Converter<Person, Document> {

public Document convert(Person source) {
Document document = new Document();
document.put("_id", source.getId());
document.put("“name", source.getFirstName());
document.put("age", source.getAge());
return document;

9.12.2. Reading using a Spring Converter

An example implementation of a Converter that converts from a Document to a Person object is
shown below.

public class PersonReadConverter implements Converter<Document, Person> {

public Person convert(Document source) {
Person p = new Person((ObjectId) source.get("_id"), (String) source.get("name"));
p.setAge((Integer) source.get("age"));
return p;
}
}

104

http://docs.spring.io/spring/docs/5.0.0.RC2/spring-framework-reference/html/validation.html#core-convert

9.12.3. Registering Spring Converters with the MongoConverter

The Mongo Spring namespace provides a convenience way to register Spring Converter s with the
MappingMongoConverter. The configuration snippet below shows how to manually register converter
beans as well as configuring the wrapping MappingMongoConverter into a MongoTemplate.

<mongo:db-factory dbname="database"/>

<mongo:mapping-converter>
<mongo:custom-converters>
<mongo:converter ref="readConverter"/>
<mongo:converter>
<bean class="org.springframework.data.mongodb.test.PersonWriteConverter"/>
</mongo:converter>
</mongo:custom-converters>
</mongo:mapping-converter>

<bean id="readConverter" class=
"org.springframework.data.mongodb.test.PersonReadConverter"/>

<bean id="mongoTemplate" class="org.springframework.data.mongodb.core.MongoTemplate">
<constructor-arg name="mongoDbFactory" ref="mongoDbFactory"/>
<constructor-arg name="mongoConverter" ref="mappingConverter"/>

</bean>

You can also use the base-package attribute of the custom-converters element to enable classpath
scanning for all Converter and GenericConverter implementations below the given package.

<mongo:mapping-converter>
<mongo:custom-converters base-package="com.acme.**.converters" />
</mongo:mapping-converter>

9.12.4. Converter disambiguation

Generally we inspect the Converter implementations for the source and target types they convert
from and to. Depending on whether one of those is a type MongoDB can handle natively we will
register the converter instance as reading or writing one. Have a look at the following samples:

// Write converter as only the target type is one Mongo can handle natively
class MyConverter implements Converter<Person, String> { -+ }

// Read converter as only the source type is one Mongo can handle natively
class MyConverter implements Converter<String, Person> { -+ }

In case you write a Converter whose source and target type are native Mongo types there’s no way
for us to determine whether we should consider it as reading or writing converter. Registering the
converter instance as both might lead to unwanted results then. E.g. a Converter<String, Long> is

105

ambiguous although it probably does not make sense to try to convert all String instances into Long
instances when writing. To be generally able to force the infrastructure to register a converter for
one way only we provide @ReadingConverter as well as @WritingConverter to be used in the converter
implementation.

9.13. Index and Collection management

MongoTemplate provides a few methods for managing indexes and collections. These are collected
into a helper interface called IndexOperations. You access these operations by calling the method
index0Ops and pass in either the collection name or the java.lang.(Class of your entity (the collection
name will be derived from the .class either by name or via annotation metadata).

The IndexOperations interface is shown below

public interface IndexOperations {
void ensureIndex(IndexDefinition indexDefinition);
void dropIndex(String name);
void dropAllIndexes();
void resetIndexCache();

List<IndexInfo> getIndexInfo();

9.13.1. Methods for creating an Index

We can create an index on a collection to improve query performance.

Creating an index using the MongoTemplate

mongoTemplate.indexOps(Person.class).ensureIndex(new Index().on("name",Order.
ASCENDING));

* ensurelndex Ensure that an index for the provided IndexDefinition exists for the collection.

You can create standard, geospatial and text indexes using the classes IndexDefinition,
GeoSpatiallndex and TextIndexDefinition. For example, given the Venue class defined in a previous
section, you would declare a geospatial query as shown below.

mongoTemplate.indexOps(Venue.class).ensurelndex(new GeospatialIndex("location"));

NOTE Index and GeospatialIndex support configuration of collations.

106

9.13.2. Accessing index information

The IndexOperations interface has the method getIndexInfo that returns a list of IndexInfo objects.
This contains all the indexes defined on the collection. Here is an example that defines an index on
the Person class that has age property.

template.indexOps(Person.class).ensureIndex(new Index().on("age", Order.DESCENDING)
.unique(Duplicates.DROP));

List<IndexInfo> indexInfolist = template.indexOps(Person.class).getIndexInfo();

// Contains

// [IndexInfo [fieldSpec={_id=ASCENDING}, name=_id_, unique=false,
dropDuplicates=false, sparse=false],

// IndexInfo [fieldSpec={age=DESCENDING}, name=age_-1, unique=true,
dropDuplicates=true, sparse=false]]

9.13.3. Methods for working with a Collection

It’s time to look at some code examples showing how to use the MongoTemplate. First we look at
creating our first collection.

Example 68. Working with collections using the MongoTemplate

DBCollection collection = null;
if (!mongoTemplate.getCollectionNames().contains("MyNewCollection")) {
collection = mongoTemplate.createCollection("MyNewCollection");

}

mongoTemplate.dropCollection("MyNewCollection");

getCollectionNames Returns a set of collection names.
collectionExists Check to see if a collection with a given name exists.
createCollection Create an uncapped collection

dropCollection Drop the collection

getCollection Get a collection by name, creating it if it doesn’t exist.

Collection creation allows customization via CollectionOptions and supports
collations.

NOTE

9.14. Executing Commands

You can also get at the MongoDB driver’s DB.command() method using the executeCommand(::-)
methods on MongoTemplate. These will also perform exception translation into Spring’s

107

DataAccessException hierarchy.

9.14.1. Methods for executing commands

* CommandResult executeCommand (Document command) Execute a MongoDB command.

* CommandResult executeCommand (String jsonCommand) Execute the a MongoDB command
expressed as a JSON string.

9.15. Lifecycle Events

Built into the MongoDB mapping framework are several
org.springframework.context.ApplicationEvent events that your application can respond to by
registering special beans in the ApplicationContext. By being based off Spring’s ApplicationContext
event infrastructure this enables other products, such as Spring Integration, to easily receive these
events as they are a well known eventing mechanism in Spring based applications.

To intercept an object before it goes through the conversion process (which turns your domain
object into a org.bson.Document), you’d register a subclass of AbstractMongoEventListener that
overrides the onBeforeConvert method. When the event is dispatched, your listener will be called
and passed the domain object before it goes into the converter.

public class BeforeConvertListener extends AbstractMongoEventListener<Person> {

public void onBeforeConvert(BeforeConvertEvent<Person> event) {
... does some auditing manipulation, set timestamps, whatever ...

}
}

To intercept an object before it goes into the database, you’d register a subclass of
org.springframework.data.mongodb.core.mapping.event.AbstractMongoEventListener that overrides
the onBeforeSave method. When the event is dispatched, your listener will be called and passed the
domain object and the converted com.mongodb.Document.

public class BeforeSavelistener extends AbstractMongoEventListener<Person> {

public void onBeforeSave(BeforeSaveEvent<Person> event) {
- change values, delete them, whatever -

}
}

Simply declaring these beans in your Spring ApplicationContext will cause them to be invoked
whenever the event is dispatched.

108

The list of callback methods that are present in AbstractMappingEventListener are

» onBeforeConvert - called in MongoTemplate insert, insertList and save operations before the
object is converted to a Document using a MongoConveter.

» onBeforeSave - called in MongoTemplate insert, insertList and save operations before
inserting/saving the Document in the database.

» onAfterSave - called in MongoTemplate insert, insertList and save operations after
inserting/saving the Document in the database.

» onAfterLoad - called in MongoTemplate find, findAndRemove, findOne and getCollection
methods after the Document is retrieved from the database.

» onAfterConvert - called in MongoTemplate find, findAndRemove, findOne and getCollection
methods after the Document retrieved from the database was converted to a POJO.

Lifecycle events are only emitted for root level types. Complex types used as
NOTE properties within a document root are not subject of event publication unless they
are document references annotated with @DBRef.

9.16. Exception Translation

The Spring framework provides exception translation for a wide variety of database and mapping
technologies. This has traditionally been for JDBC and JPA. The Spring support for MongoDB
extends this feature to the MongoDB Database by providing an implementation of the
org.springframework.dao.support.PersistenceExceptionTranslator interface.

The motivation behind mapping to Spring’s consistent data access exception hierarchy is that you
are then able to write portable and descriptive exception handling code without resorting to coding
against MongoDB error codes. All of Spring’s data access exceptions are inherited from the root
DataAccessException class so you can be sure that you will be able to catch all database related
exception within a single try-catch block. Note, that not all exceptions thrown by the MongoDB
driver inherit from the MongoException class. The inner exception and message are preserved so
no information is lost.

Some of the mappings performed by the MongoExceptionTranslator are: com.mongodb.Network to
DataAccessResourceFailureException and MongoException error codes 1003, 12001, 12010, 12011,
12012 to InvalidDataAccessApiUsageException. Look into the implementation for more details on the

mapping.

9.17. Execution callbacks

One common design feature of all Spring template classes is that all functionality is routed into one
of the templates execute callback methods. This helps ensure that exceptions and any resource
management that maybe required are performed consistency. While this was of much greater need
in the case of JDBC and JMS than with MongoDB, it still offers a single spot for exception translation
and logging to occur. As such, using these execute callback is the preferred way to access the
MongoDB driver’s DB and DBCollection objects to perform uncommon operations that were not
exposed as methods on MongoTemplate.

109

http://docs.spring.io/spring/docs/5.0.0.RC2/spring-framework-reference/html/dao.html#dao-exceptions
http://www.mongodb.org/about/contributors/error-codes/

Here is a list of execute callback methods.

* <T> T execute ((Class<?> entityClass, CollectionCallback<T> action) Executes the given
CollectionCallback for the entity collection of the specified class.

* <T> T execute (String collectionName, CollectionCallback<T> action) Executes the given
CollectionCallback on the collection of the given name.

* <T> T execute (DbCallback<T> action) Spring Data MongoDB provides support for the
Aggregation Framework introduced to MongoDB in version 2.2. Executes a DbCallback
translating any exceptions as necessary.

* <T> T execute (String collectionName, DbCallback<T> action) Executes a DbCallback on the
collection of the given name translating any exceptions as necessary.

* <T> T executeInSession (DbCallback<T> action) Executes the given DbCallback within the same
connection to the database so as to ensure consistency in a write heavy environment where you
may read the data that you wrote.

Here is an example that uses the CollectionCallback to return information about an index

boolean hasIndex = template.execute("geolocation", new CollectionCallbackBoolean>() {
public Boolean doInCollection(Venue.class, DBCollection collection) throws
MongoException, DataAccessException {
List<Document> indexes = collection.getIndexInfo();
for (Document document : indexes) {
if ("location_2d".equals(document.get("name"))) {
return true;

}
}

return false;
}
b

9.18. GridFS support

MongoDB supports storing binary files inside it’s filesystem GridFS. Spring Data MongoDB provides
a GridFsOperations interface as well as the according implementation GridFsTemplate to easily
interact with the filesystem. You can setup a GridFsTemplate instance by handing it a MongoDbFactory
as well as a MongoConverter:

110

Example 69. JavaConfig setup for a GridFsTemplate

class GridFsConfiguration extends AbstractMongoConfiguration {
// -+ further confiquration omitted

@Bean
public GridFsTemplate gridFsTemplate() {
return new GridFsTemplate(mongoDbFactory(), mappingMongoConverter());
}
}

An according XML configuration looks like this:

Example 70. XML configuration for a GridFsTemplate

<?xml version="1.0" encoding="UTF-8"7>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:mongo="http://www.springframework.org/schema/data/mongo"
xsi:schemalocation="http://www.springframework.org/schema/data/mongo
http://www.springframework.org/schema/data/mongo/spring-
mongo.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-
beans.xsd">

<mongo:db-factory id="mongoDbFactory" dbname="database" />
<mongo:mapping-converter id="converter" />

<bean class="org.springframework.data.mongodb.gridfs.GridFsTemplate">
<constructor-arg ref="mongoDbFactory" />
<constructor-arg ref="converter" />

</bean>

</beans>

The template can now be injected and used to perform storage and retrieval operations.

111

Example 71. Using GridFsTemplate to store files

class GridFsClient {

GridFsOperations operations;

public void storeFileToGridFs() {

FileMetadata metadata = new FileMetadata();
// populate metadata
Resource file = - // lookup File or Resource

operations.store(file.getInputStream(), "filename.txt", metadata);

The store(::*) operations take an InputStream, a filename and optionally metadata information
about the file to store. The metadata can be an arbitrary object which will be marshaled by the
MongoConverter configured with the GridFsTemplate. Alternatively you can also provide a Document as
well.

Reading files from the filesystem can either be achieved through the find(::-) or getResources(:)
methods. Let’s have a look at the find(:--) methods first. You can either find a single file matching a
Query or multiple ones. To easily define file queries we provide the GridFsCriteria helper class. It
provides static factory methods to encapsulate default metadata fields (e.g. whereFilename(),
whereContentType()) or the custom one through whereMetaData().

Example 72. Using GridFsTemplate to query for files

class GridFsClient {

GridFsOperations operations;

public void findFilesInGridFs() {
List<GridFSDBFile> result = operations.find(query(whereFilename().1is(
"filename.txt")))
}
}

112

Currently MongoDB does not support defining sort criteria when retrieving files
NOTE from GridFS. Thus any sort criteria defined on the Query instance handed into the
find(---) method will be disregarded.

The other option to read files from the GridFs is using the methods introduced by the
ResourcePatternResolver interface. They allow handing an Ant path into the method ar thus retrieve

files matching the given pattern.

Example 73. Using GridFsTemplate to read files
class GridFsClient {
GridFsOperations operations;

public void readFilesFromGridFs() {
GridFsResources[] txtFiles = operations.getResources("*.txt");

}
}

GridFsOperations extending ResourcePatternResolver allows the GridFsTemplate e.g. to be plugged
into an ApplicationContext to read Spring Config files from a MongoDB.

113

Chapter 10. Reactive MongoDB support

The reactive MongoDB support contains a basic set of features which are summarized below.
» Spring configuration support using Java based @Configuration classes a MongoClient instance and
replica sets.

* ReactiveMongoTemplate helper class that increases productivity using "MongoOperations in a
reactive manner. Includes integrated object mapping between "Documents and POJOs.

* Exception translation into Spring’s portable Data Access Exception hierarchy.

» Feature Rich Object Mapping integrated with Spring’s ConversionService.

* Annotation based mapping metadata but extensible to support other metadata formats.

* Persistence and mapping lifecycle events.

 Java based Query, Criteria, and Update DSLs.

* Automatic implementation of reactive Repository interfaces including support for custom

finder methods.

For most tasks you will find yourself using ReactiveMongoTemplate or the Repository support that
both leverage the rich mapping functionality. ReactiveMongoTemplate is the place to look for
accessing functionality such as incrementing counters or ad-hoc CRUD operations.
ReactiveMongoTemplate also provides callback methods so that it is easy for you to get a hold of the
low level API artifacts such as MongoDatabase to communicate directly with MongoDB. The goal with
naming conventions on various API artifacts is to copy those in the base MongoDB Java driver so
you can easily map your existing knowledge onto the Spring APIs.

10.1. Getting Started

Spring MongoDB support requires MongoDB 2.6 or higher and Java SE 8 or higher.

First you need to set up a running Mongodb server. Refer to the Mongodb Quick Start guide for an
explanation on how to startup a MongoDB instance. Once installed starting MongoDB is typically a
matter of executing the following command: MONGO_HOME/bin/mongod

To create a Spring project in STS go to File - New - Spring Template Project —» Simple Spring
Utility Project — press Yes when prompted. Then enter a project and a package name such as
org.spring.mongodb.example.

Then add the following to pom.xml dependencies section.

114

http://docs.mongodb.org/manual/core/introduction/

<dependencies>
<!-- other dependency elements omitted -->

<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-mongodb</artifactId>
<version>{version}</version>

</dependency>

<dependency>
<groupId>org.mongodb</groupld>
<artifactId>mongodb-driver-reactivestreams</artifactId>
<version>{mongo.reactivestreams}</version>
</dependency>

<dependency>
<groupld>io.projectreactor</groupIld>
<artifactId>reactor-core</artifactId>
<version>{reactor}</version>
</dependency>

</dependencies>

MongoDB uses two different drivers for blocking and reactive (non-blocking) data
NOTE access. While blocking operations are provided by default, you’re have to opt-in for

reactive usage.

Create a simple Person class to persist:

115

@Document
public class Person {

private String id;
private String name;
private int age;

public Person(String name, int age) {
this.name = name;
this.age = age;

}

public String getId() {
return id;

}

public String getName() {
return name;

}

public int getAge() {
return age;

}

@0verride
public String toString() {
return "Person [id=" + id +

}

, name=" + name + ", age=" + age + "]";

}

And a main application to run

116

public class ReactiveMongoApp {
private static final Logger log = LoggerFactory.getlLogger(ReactiveMongoApp.class);
public static void main(String[] args) throws Exception {
CountDownLatch latch = new CountDownlLatch(1);

ReactiveMongoTemplate mongoOps = new ReactiveMongoTemplate(MongoClients.create(),
"database");

mongoOps.insert(new Person("Joe", 34))
.flatMap(p -> mongoOps.findOne(new Query(where("name").is("Joe")), Person
.class))
.doOnNext(person -> log.info(person.toString()))
.flatMap(person -> mongoOps.dropCollection("person"))
.doOnComplete(latch::countDown)
.subscribe();

latch.await();

}
}

This will produce the following output

2016-09-20 14:56:57,373 DEBUG .index.MongoPersistentEntityIndexCreator: 124 -
Analyzing class class example.ReactiveMongoApp$Person for index information.
2016-09-20 14:56:57,452 DEBUG .data.mongodb.core.ReactiveMongoTemplate: 975 -
Inserting Document containing fields: [_class, name, age] in collection: person
2016-09-20 14:56:57,541 DEBUG .data.mongodb.core.ReactiveMongoTemplate:1503 - findOne
using query: { "name" : "Joe"} fields: null for class: class
example.ReactiveMongoApp$Person in collection: person

2016-09-20 14:56:57,545 DEBUG .data.mongodb.core.ReactiveMongoTemplate:1979 - findOne
using query: { "name" : "Joe"} in db.collection: database.person

2016-09-20 14:56:57,567 INFO example.ReactiveMongoApp: 43 - Person
[1d=57e1321977ac501c68d73104, name=Joe, age=34]

2016-09-20 14:56:57,573 DEBUG .data.mongodb.core.ReactiveMongoTemplate: 528 - Dropped
collection [person]

Even in this simple example, there are few things to take notice of
* You can instantiate the central helper class of Spring Mongo, MongoTemplate, using the standard
com.mongodb.reactivestreams.client.MongoClient object and the name of the database to use.

* The mapper works against standard POJO objects without the need for any additional metadata
(though you can optionally provide that information. See here.).

* Conventions are used for handling the id field, converting it to be a Objectld when stored in the
database.

117

* Mapping conventions can use field access. Notice the Person class has only getters.

* If the constructor argument names match the field names of the stored document, they will be
used to instantiate the object

There is an github repository with several examples that you can download and play around with
to get a feel for how the library works.

10.2. Connecting to MongoDB with Spring and the
Reactive Streams Driver

One of the first tasks when wusing MongoDB and Spring 1is to create a
com.mongodb.reactivestreams.client.MongoClient object using the IoC container.

10.2.1. Registering a MongoClient instance using Java based metadata

An example of wusing Java based bean metadata to register an instance of a
com.mongodb.reactivestreams.client.MongoClient is shown below

Example 74. Registering a com.mongodb.MongoClient object using Java based bean metadata

public class AppConfig {

/*
* Use the Reactive Streams Mongo Client API to create a
com.mongodb.reactivestreams.client.MongoClient instance.

*
/
public MongoClient mongoClient() {
return MongoClients.create("mongodb://localhost");
}

This approach allows you to use the standard com.mongodb.reactivestreams.client.MongoClient API
that you may already be used to using.

An alternative is to register an instance of com.mongodb.reactivestreams.client.MongoClient instance
with the container using Spring’s ReactiveMongoClientFactoryBean. As compared to instantiating a
com.mongodb.reactivestreams.client.MongoClient instance directly, the FactoryBean approach has
the added advantage of also providing the container with an ExceptionTranslator implementation
that translates MongoDB exceptions to exceptions in Spring’s portable DataAccessException
hierarchy for data access classes annotated with the @Repository annotation. This hierarchy and use
of @Repository is described in Spring’s DAO support features.

An example of a Java based bean metadata that supports exception translation on @Repository
annotated classes is shown below:

118

https://github.com/spring-projects/spring-data-examples
http://docs.spring.io/spring/docs/5.0.0.RC2/spring-framework-reference/html/dao.html

Example 75. Registering a com.mongodb.MongoClient object using Spring’s MongoClientFactoryBean and
enabling Spring’s exception translation support

@Configuration
public class AppConfig {

/*

* Factory bean that creates the
com.mongodb.reactivestreams.client.MongoClient instance

*/

public @Bean ReactiveMongoClientFactoryBean mongoClient() {

ReactiveMongoClientFactoryBean clientFactory = new
ReactiveMongoClientFactoryBean();
clientFactory.setHost("localhost");

return clientFactory;

To access the com.mongodb.reactivestreams.client.MongoClient object created by the
ReactiveMongoClientFactoryBean in other @Configuration or your own classes, just obtain the
MongoClient from the context.

10.2.2. The ReactiveMongoDatabaseFactory interface

While com.mongodb.reactivestreams.client.MongoClient is the entry point to the reactive MongoDB
driver API, connecting to a specific MongoDB database instance requires additional information
such as the database name. With that information you can obtain a
com.mongodb.reactivestreams.client.MongoDatabase object and access all the functionality of a
specific MongoDB database instance. Spring provides the
org.springframework.data.mongodb.core.ReactiveMongoDatabaseFactory interface shown below to
bootstrap connectivity to the database.

119

public interface ReactiveMongoDatabaseFactory {

/**

* Creates a default {@link MongoDatabase} instance.
*

* @return
* @throws DataAccessException
*/
MongoDatabase getMongoDatabase() throws DataAccessException;

/**
* Creates a {@link MongoDatabase} instance to access the database with the given

name.
*

* @param dbName must not be {@literal null} or empty.
* @return
* @throws DataAccessException
*/
MongoDatabase getMongoDatabase(String dbName) throws DataAccessException;

/**

* Exposes a shared {@link MongoExceptionTranslator}.
*

* @return will never be {@literal null}.
*/
PersistenceExceptionTranslator getExceptionTranslator();

}

The class org.springframework.data.mongodb.core.SimpleReactiveMongoDatabaseFactory provides
implements the ReactiveMongoDatabaseFactory interface and is created with a standard
com.mongodb.reactivestreams.client.MongoClient instance and the database name.

Instead of using the IoC container to create an instance of ReactiveMongoTemplate, you can just use
them in standard Java code as shown below.

120

public class MongoApp {
private static final Log log = LogFactory.getLog(MongoApp.class);
public static void main(String[] args) throws Exception {

ReactiveMongoOperations mongoOps = new ReactiveMongoOperations(new
SimpleReactiveMongoDatabaseFactory(MongoClient.create(), "database"));

mongoOps.insert(new Person("Joe", 34))
.flatMap(p -> mongoOps.findOne(new Query(where("name").is("Joe")), Person
.class))
.doOnNext (person -> log.info(person.toString()))
.flatMap(person -> mongoOps.dropCollection("person™))
.subscribe();

The use of SimpleMongoDbFactory is the only difference between the listing shown in the getting
started section.

10.2.3. Registering a ReactiveMongoDatabaseFactory instance using Java
based metadata

To register a ReactiveMongoDatabaseFactory instance with the container, you write code much like
what was highlighted in the previous code listing. A simple example is shown below

public class MongoConfiguration {

public ReactiveMongoDatabaseFactory mongoDatabaseFactory() {
return new SimpleReactiveMongoDatabaseFactory(MongoClients.create(), "database");

}
}

To define the username and password create MongoDB connection string and pass it into the
factory method as shown below. This listing also shows using ReactiveMongoDatabaseFactory register
an instance of ReactiveMongoTemplate with the container.

121

public class MongoConfiguration {

public ReactiveMongoDatabaseFactory mongoDatabaseFactory() {
return new SimpleMongoDbFactory(MongoClients.create(
"mongodb://joe:secret@localhost"”), "database", userCredentials);

}

public ReactiveMongoTemplate reactiveMongoTemplate() {
return new ReactiveMongoTemplate(mongoDatabaseFactory());

¥

}

10.3. Introduction to ReactiveMongoTemplate

The class ReactiveMongoTemplate, located in the package org.springframework.data.mongodb, is the
central class of the Spring’s Reactive MongoDB support providing a rich feature set to interact with
the database. The template offers convenience operations to create, update, delete and query for
MongoDB documents and provides a mapping between your domain objects and MongoDB
documents.

NOTE Once configured, ReactiveMongoTemplate is thread-safe and can be reused across
multiple instances.

The mapping between MongoDB documents and domain classes is done by delegating to an

implementation of the interface MongoConverter. Spring provides a default implementation with

MongoMappingConverter, but you can also write your own converter. Please refer to the section on

MongoConverters for more detailed information.

The ReactiveMongoTemplate class implements the interface ReactiveMongoOperations. In as much as
possible, the methods on ReactiveMongoOperations are named after methods available on the
MongoDB driver Collection object as as to make the API familiar to existing MongoDB developers
who are used to the driver API. For example, you will find methods such as "find",
"findAndModify", "findOne", "insert", "remove", "save", "update" and "updateMulti". The design goal
was to make it as easy as possible to transition between the use of the base MongoDB driver and
ReactiveMongoOperations. A major difference in between the two APIs is that
ReactiveMongoOperations can be passed domain objects instead of Document and there are fluent APIs
for Query, Criteria, and Update operations instead of populating a Document to specify the parameters

for those operations.

NOTE The preferred way to reference the operations on ReactiveMongoTemplate instance is
via its interface ReactiveMongoOperations.

The default converter implementation used by ReactiveMongoTemplate is MappingMongoConverter.

While the MappingMongoConverter can make use of additional metadata to specify the mapping of

objects to documents it is also capable of converting objects that contain no additional metadata by

using some conventions for the mapping of IDs and collection names. These conventions as well as

122

the use of mapping annotations is explained in the Mapping chapter.

Another central feature of ReactiveMongoTemplate is exception translation of exceptions thrown in
the MongoDB Java driver into Spring’s portable Data Access Exception hierarchy. Refer to the
section on exception translation for more information.

While there are many convenience methods on ReactiveMongoTemplate to help you easily perform
common tasks if you should need to access the MongoDB driver API directly to access functionality
not explicitly exposed by the MongoTemplate you can use one of several Execute callback methods
to access underlying driver APIs. The execute callbacks will give you a reference to either a
com.mongodb.reactivestreams.client.MongoCollection or a
com.mongodb.reactivestreams.client.MongoDatabase object. Please see the section Execution
Callbacks for more information.

Now let’s look at a examples of how to work with the ReactiveMongoTemplate in the context of the
Spring container.

10.3.1. Instantiating ReactiveMongoTemplate
You can use Java to create and register an instance of ReactiveMongoTemplate as shown below.

Example 76. Registering a com.mongodb.reactivestreams.client.MongoClient object and enabling Spring’s
exception translation support

@Configuration
public class AppConfig {

public @Bean MongoClient mongoClient() {
return MongoClients.create("mongodb://localhost");

}

public @Bean ReactiveMongoTemplate reactiveMongoTemplate() {
return new ReactiveMongoTemplate(mongoClient(), "mydatabase");

}
}

There are several overloaded constructors of ReactiveMongoTemplate. These are

* ReactiveMongoTemplate(MongoClient mongo, String databaseName) - takes the
com.mongodb.MongoClient object and the default database name to operate against.

* ReactiveMongoTemplate(ReactiveMongoDatabaseFactory mongoDatabaseFactory) - takes a
ReactiveMongoDatabaseFactory object that encapsulated the
com.mongodb.reactivestreams.client.MongoClient object and database name.

« ReactiveMongoTemplate(ReactiveMongoDatabaseFactory mongoDatabaseFactory, MongoConverter
mongoConverter) - adds a MongoConverter to use for mapping.

Other optional properties that you might like to set when creating a ReactiveMongoTemplate are the

123

default WriteResultCheckingPolicy, WriteConcern, and ReadPreference.

The preferred way to reference the operations on ReactiveMongoTemplate instance is

NOTE . . :
via its interface ReactiveMongoOperations.

10.3.2. WriteResultChecking Policy

When in development it is very handy to either log or throw an Exception if the
com.mongodb.WriteResult returned from any MongoDB operation contains an error. It is quite
common to forget to do this during development and then end up with an application that looks
like it runs successfully but in fact the database was not modified according to your expectations.
Set MongoTemplate’s property to an enum with the following values, L0G, EXCEPTION, or NONE to
either log the error, throw and exception or do nothing. The default is to use a WriteResultChecking
value of NONE.

10.3.3. WriteConcern

You can set the com.mongodb.WriteConcern property that the ReactiveMongoTemplate will use for write
operations if it has not yet been specified via the driver at a higher level such as MongoDatabase. If
ReactiveMongoTemplate’s WriteConcern property is not set it will default to the one set in the
MongoDB driver’s MongoDatabase or MongoCollection setting.

10.3.4. WriteConcernResolver

For more advanced cases where you want to set different WriteConcern values on a per-operation
basis (for remove, update, insert and save operations), a strategy interface called
WriteConcernResolver can be configured on ReactiveMongoTemplate. Since ReactiveMongoTemplate is
used to persist POJOs, the WriteConcernResolver lets you create a policy that can map a specific POJO
class to a WriteConcern value. The WriteConcernResolver interface is shown below.

public interface WriteConcernResolver {
WriteConcern resolve(MongoAction action);

}

The passed in argument, MongoAction, is what you use to determine the WriteConcern value to be
used or to use the value of the Template itself as a default. MongoAction contains the collection name
being written to, the java.lang.(lass of the POJO, the converted DBObject, as well as the operation as
an enumeration (MongoActionOperation: REMOVE, UPDATE, INSERT, INSERT_LIST, SAVE) and a few
other pieces of contextual information. For example,

124

private class MyAppWriteConcernResolver implements WriteConcernResolver {

public WriteConcern resolve(MongoAction action) {
if (action.getEntityClass().getSimpleName().contains("Audit")) {
return WriteConcern.NONE;
} else if (action.getEntityClass().getSimpleName().contains("Metadata")) {
return WriteConcern.JOURNAL SAFE;
}

return action.getDefaultWriteConcern();
}
}

10.4. Saving, Updating, and Removing Documents

ReactiveMongoTemplate provides a simple way for you to save, update, and delete your domain
objects and map those objects to documents stored in MongoDB.

Given a simple class such as Person

public class Person {

private String id;
private String name;
private int age;

public Person(String name, int age) {
this.name = name;
this.age = age;

}

public String getId() {
return id;

}
public String getName() {
return name;

}
public int getAge() {
return age;

}

public String toString() {
return "Person [id=" + id +

}

n 1 n

, name=" + name + ", age=" + age + "]";

You can save, update and delete the object as shown below.

125

public class ReactiveMongoApp {
private static final Logger log = LoggerFactory.getlLogger(ReactiveMongoApp.class);
public static void main(String[] args) throws Exception {
CountDownLatch latch = new CountDownlLatch(1);

ReactiveMongoTemplate mongoOps = new ReactiveMongoTemplate(MongoClients.create(),
"database");

mongoOps.insert(new Person("Joe", 34)).doOnNext(person -> log.info("Insert: " +
person))
.flatMap(person -> mongoOps.findById(person.getId(), Person.class))
.doOnNext(person -> log.info("Found: " + person))
.zipWith(person -> mongoOps.updateFirst(query(where("name").is("Joe")), update(
"age", 35), Person.class))
.flatMap(tuple -> mongoOps.remove(tuple.getT1())).flatMap(deleteResult ->
mongoOps. findA11(Person.class))
.count().doOnSuccess(count -> {
log.info("Number of people: "
latch.countDown();

b

+ count);

.subscribe();

latch.await();

}
}

There was implicit conversion using the MongoConverter between a String and ObjectId as stored in
the database and recognizing a convention of the property "Id" name.

This example is meant to show the use of save, update and remove operations on
NOTE ReactiveMongoTemplate and not to show complex mapping or functional chaining
functionality

The query syntax used in the example is explained in more detail in the section Querying
Documents. Additional documentation can be found in the blocking MongoTemplate section.

10.5. Infinite Streams

By default, MongoDB will automatically close a cursor when the client has exhausted all results in
the cursor. Closing a cursors turns a Stream into a finite stream. However, for capped collections
you may use a Tailable Cursor that remains open after the client exhausts the results in the initial
cursor. Using Tailable Cursors with a reactive approach allows construction of infinite streams. A
Tailable Cursor remains open until it’s closed. It emits data as data arrives in a capped collection.
Using Tailable Cursors with Collections is not possible as its result would never complete.

126

https://docs.mongodb.com/manual/core/tailable-cursors/

Flux<Person> stream = template.tail(query(where("name").is("Joe")), Person.class);

Disposable subscription = stream.doOnNext(person -> System.out.println(person))
.subscribe();

/]

// Later: Dispose the stream
subscription.dispose();

10.6. Execution callbacks

One common design feature of all Spring template classes is that all functionality is routed into one
of the templates execute callback methods. This helps ensure that exceptions and any resource
management that maybe required are performed consistency. While this was of much greater need
in the case of JDBC and JMS than with MongoDB, it still offers a single spot for exception translation
and logging to occur. As such, using the execute callback is the preferred way to access the
MongoDB driver’s MongoDatabase and MongoCollection objects to perform uncommon operations that
were not exposed as methods on ReactiveMongoTemplate.

Here is a list of execute callback methods.
o <T> Flux<T> execute ((lass<?> entityClass, ReactiveCollectionCallback<T> action) Executes

the given ReactiveCollectionCallback for the entity collection of the specified class.

* <T> Flux<T> execute (String collectionName, ReactiveCollectionCallback<T> action) Executes
the given ReactiveCollectionCallback on the collection of the given name.

o <T> Flux<T> execute (ReactiveDatabaseCallback<T> action) Executes a
ReactiveDatabaseCallback translating any exceptions as necessary.

Here is an example that uses the ReactiveCollectionCallback to return information about an index

Flux<Boolean> hasIndex = operations.execute("geolocation",
collection -> Flux.from(collection.listIndexes(Document.class))
.filter(document -> document.get("name").equals("fancy-index-name"))
.flatMap(document -> Mono.just(true))
.defaultIfEmpty(false));

127

Chapter 11. MongoDB repositories

11.1. Introduction

This chapter will point out the specialties for repository support for MongoDB. This builds on the
core repository support explained in Working with Spring Data Repositories. So make sure you’ve
got a sound understanding of the basic concepts explained there.

11.2. Usage

To access domain entities stored in a MongoDB you can leverage our sophisticated repository
support that eases implementing those quite significantly. To do so, simply create an interface for
your repository:

Example 77. Sample Person entity

public class Person {

private String id;

private String firstname;
private String lastname;
private Address address;

// -+ getters and setters omitted

We have a quite simple domain object here. Note that it has a property named id of type ObjectId.
The default serialization mechanism used in MongoTemplate (which is backing the repository
support) regards properties named id as document id. Currently we support String, ObjectId and
BigInteger asid-types.

Example 78. Basic repository interface to persist Person entities

public interface PersonRepository extends PagingAndSortingRepository<Person, Long>

{

// additional custom finder methods go here

}

Right now this interface simply serves typing purposes but we will add additional methods to it
later. In your Spring configuration simply add

128

Example 79. General MongoDB repository Spring configuration

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:mongo="http://www.springframework.org/schema/data/mongo"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/data/mongo
http://www.springframework.org/schema/data/mongo/spring-mongo-1.0.xsd">

<mongo:mongo-client id="mongoClient" />

<bean id="mongoTemplate" class=
"org.springframework.data.mongodb.core.MongoTemplate">
<constructor-arg ref="mongoClient" />
<constructor-arg value="databaseName" />
</bean>

<mongo:repositories base-package="com.acme.*.repositories" />

</beans>

This namespace element will cause the base packages to be scanned for interfaces extending
MongoRepository and create Spring beans for each of them found. By default the repositories will get
a MongoTemplate Spring bean wired that is called mongoTemplate, so you only need to configure mongo-
template-ref explicitly if you deviate from this convention.

If you'd rather like to go with JavaConfig use the @EnableMongoRepositories annotation. The
annotation carries the very same attributes like the namespace element. If no base package is
configured the infrastructure will scan the package of the annotated configuration class.

129

Example 80. JavaConfig for repositories

class ApplicationConfig extends AbstractMongoConfiguration {

protected String getDatabaseName() {
return "e-store";

}

public MongoClient mongoClient() {
return new MongoClient();

}

protected String getMappingBasePackage() {
return "com.oreilly.springdata.mongodb"

}
}

As our domain repository extends PagingAndSortingRepository it provides you with CRUD
operations as well as methods for paginated and sorted access to the entities. Working with the
repository instance is just a matter of dependency injecting it into a client. So accessing the second
page of Person s at a page size of 10 would simply look something like this:

Example 81. Paging access to Person entities

(SpringJUnit4ClassRunner.class)
public class PersonRepositoryTests {

PersonRepository repository;

public void readsFirstPageCorrectly() {

Page<Person> persons = repository.findAl1(PageRequest.of(0, 10));
assertThat(persons.isFirstPage(), is(true));

}

The sample creates an application context with Spring’s unit test support which will perform
annotation based dependency injection into test cases. Inside the test method we simply use the
repository to query the datastore. We hand the repository a PageRequest instance that requests the

130

first page of persons at a page size of 10.

11.3. Query methods

Most of the data access operations you usually trigger on a repository result a query being executed
against the MongoDB databases. Defining such a query is just a matter of declaring a method on the
repository interface

Example 82. PersonRepository with query methods

public interface PersonRepository extends PagingAndSortingRepository<Person,
String> {

List<Person> findBylLastname(String lastname); @
Page<Person> findByFirstname(String firstname, Pageable pageable); @
Person findByShippingAddresses(Address address); ®

Stream<Person> findA11By(); @

@® The method shows a query for all people with the given lastname. The query will be
derived parsing the method name for constraints which can be concatenated with And and
Or. Thus the method name will result in a query expression of {"lastname" : lastname}.

@ Applies pagination to a query. Just equip your method signature with a Pageable parameter
and let the method return a Page instance and we will automatically page the query
accordingly.

® Shows that you can query based on properties which are not a primitive type.

@ Uses a Java 8 Stream which reads and converts individual elements while iterating the
stream.

Note that for version 1.0 we currently don’t support referring to parameters that

NOTE
are mapped as DBRef in the domain class.

Table 6. Supported keywords for query methods

Keyword Sample Logical result
After findByBirthdateAfter(Date {"birthdate" : {"$gt" : date}}
date)

GreaterThan findByAgeGreaterThan(int age) {"age" : {"$gt" : age}}

GreaterThanEqu findByAgeGreaterThanEqual(int {"age" : {"$gte" : age}}
al age)

Before findByBirthdateBefore(Date {"birthdate" : {"$1t" : date}}
date)
LessThan findByAgelLessThan(int age) {"age" : {"$1t" : age}}

131

Keyword
LessThanEqual

Between

In
NotIn

IsNotNull,
NotNull

IsNull, Null

Like,
StartingWith,
EndingWith

NotLike,
IsNotLike

Containing on
String

NotContaining
on String

Containing on
Collection

NotContaining
on Collection

Regex

(No keyword)
Not

Near
Near

Near

Within

Within

IsTrue, True

IsFalse, False

Exists

NOTE

Sample

findByAgelLessThanEqual(int
age)

findByAgeBetween(int from, int
to)

findByAgeIn(Collection ages)

findByAgeNotIn(Collection
ages)

findByFirstnameNotNull()

findByFirstnameNull()

findByFirstnamelike(String
name)

findByFirstnameNotLike(String
name)

findByFirstnameContaining(Stri
ng name)

findByFirstnameNotContaining(S
tring name)

findByAddressesContaining(Addr
ess address)

findByAddressesNotContaining(A
ddress address)

findByFirstnameRegex(String
firstname)
findByFirstname(String name)

findByFirstnameNot(String
name)

findByLocationNear (Point
point)

findByLocationNear (Point
point, Distance max)

findByLocationNear (Point
point, Distance min, Distance
max)

findByLocationWithin(Circle
circle)

findByLocationWithin(Box box)

findByActiveIsTrue()
findByActiveIsFalse()

findByLocationExists(boolean
exists)

equality in the document matters.

132

Logical result

{"age" : {"$lte" : age}}

{"age" : {"$gt" : from, "$1t" : to}}
{"age" : {"$in" : [ages--]}}

{"age" : {"$nin" : [ages'-1}}
{"firstname" : {"$ne" : null}}
{"firstname" : null}

{"firstname" : name} (name as regex)

{"firstname" : { "$not" : name }} (name as

regex)

{"firstname" : name} (name as regex)

{"firstname" : { "$not" : name}} (name as
regex)

{"addresses" : { "$in" : address}}
{"addresses" : { "$not" : { "$in" : address}}}
{"firstname" : {"$regex" : firstname }}
{"firstname" : name}

{"firstname" : {"$ne" : name}}

{"location" : {"$near" : [x,yl}}

{"location" : {"$near" : [x,y], "$maxDistance"

: max}}

{"location" : {"$near"
: min, "$maxDistance"

: [x,y], "$minDistance"

: max}}

{"location" : {"$geoWithin" : {"$center" : [
[x, yl, distance]}}}

{"location" : {"$geoWithin" : {"$box" : [[x1,
y11, x2, y21}}}

. true}
: false}

{"active"
{"active"

{"location" : {"$exists" : exists }}

If the property criterion compares a document, the order of the fields and exact

11.3.1. Repository delete queries

The above keywords can be used in conjunction with delete::-By or remove:-'By to create queries
deleting matching documents.

Example 83. Delete-By Query

public interface PersonRepository extends MongoRepository<Person, String> {
List <Person> deleteBylLastname(String lastname);

Long deletePersonByLastname(String lastname);

}

Using return type List will retrieve and return all matching documents before actually deleting
them. A numeric return type directly removes the matching documents returning the total number
of documents removed.

11.3.2. Geo-spatial repository queries

As you’ve just seen there are a few keywords triggering geo-spatial operations within a MongoDB
query. The Near keyword allows some further modification. Let’s have a look at some examples:

Example 84. Advanced Near queries

public interface PersonRepository extends MongoRepository<Person, String>

// { 'location' : { '$near' : [point.x, point.y], '$maxDistance' : distance}}
List<Person> findByLocationNear(Point location, Distance distance);

}

Adding a Distance parameter to the query method allows restricting results to those within the
given distance. If the Distance was set up containing a Metric we will transparently use $nearSphere
instead of $code.

Example 85. Using Distance with Metrics

Point point = new Point(43.7, 48.8);
Distance distance = new Distance(200, Metrics.KILOMETERS);
+ = repository.findBylLocationNear(point, distance);
// {'location' : {'$nearSphere' : [43.7, 48.8], '$maxDistance’
0.03135711885774796}}

As you can see using a Distance equipped with a Metric causes $nearSphere clause to be added

133

instead of a plain $near. Beyond that the actual distance gets calculated according to the Metrics
used.

Using @GeoSpatiallndexed(type = GeoSpatialIndexType.GEO_2DSPHERE) on the target

NOTE
property forces usage of $nearSphere operator.

Geo-near queries

public interface PersonRepository extends MongoRepository<Person, String>

// {'geoNear' : 'location', 'near' : [x, y] }
GeoResults<Person> findBylLocationNear(Point location);

// No metric: {'geoNear' : 'person', 'mear' : [x, y], maxDistance : distance }
// Metric: {'geoNear' : 'person', 'near' : [x, y], 'maxDistance' : distance,
// "distanceMultiplier' : metric.multiplier, 'spherical' : true }

GeoResults<Person> findBylLocationNear(Point location, Distance distance);

// Metric: {'geoNear' : 'person', 'near' : [x, yl, 'minDistance’ : min,
// 'maxDistance’ : max, 'distanceMultiplier' : metric.multiplier,
// "spherical’ : true }

GeoResults<Person> findBylLocationNear(Point location, Distance min, Distance max);

// {'geoNear' : 'location', 'near' : [x, y] }
GeoResults<Person> findByLocationNear(Point location);

11.3.3. MongoDB JSON based query methods and field restriction

By adding the annotation org.springframework.data.mongodb.repository.Query repository finder
methods you can specify a MongoDB JSON query string to use instead of having the query derived
from the method name. For example

public interface PersonRepository extends MongoRepository<Person, String>

@Query("{ 'firstname' : 70 }")
List<Person> findByThePersonsFirstname(String firstname);

The placeholder 70 lets you substitute the value from the method arguments into the JSON query
string.

String parameter values are escaped during the binding process, which means that

NOTE .. . e .
it is not possible to add MongoDB specific operators via the argument.

You can also use the filter property to restrict the set of properties that will be mapped into the Java

134

object. For example,

public interface PersonRepository extends MongoRepository<Person, String>

(value="{ 'firstname' : 7?0 }", fields="{ 'firstname' : 1, 'lastname' : 1}")
List<Person> findByThePersonsFirstname(String firstname);

This will return only the firstname, lastname and Id properties of the Person objects. The age
property, a java.lang.Integer, will not be set and its value will therefore be null.

11.3.4. JSON based queries with SpEL expressions

Query strings and field definitions can be used together with SpEL expressions to create dynamic
queries at runtime. SpEL expressions can provide predicate values and can be used to extend
predicates with subdocuments.

Expressions expose method arguments through an array that contains all arguments. The the
following query uses [0] to declare the predicate value for lastname that is equivalent to the 70
parameter binding.

public interface PersonRepository extends MongoRepository<Person, String>

("{'lastname': ?#{[0]} }")
List<Person> findByQueryWithExpression(String param@);
}

Expressions can be used to invoke functions, evaluate conditionals and construct values. SpEL
expressions reveal in conjunction with JSON a side-effect as Map-like declarations inside of SpEL
read like JSON.

public interface PersonRepository extends MongoRepository<Person, String>

("{'id': t{ [0] ? {fexists :true} : [1] }}")
List<Person> findByQueryWithExpressionAndNestedObject(boolean param@, String param1
)i
}

SpEL in query strings can be a powerful way to enhance queries and can accept a broad range of
unwanted arguments. You should make sure to sanitize strings before passing these to the query to
avoid unwanted changes to your query.

Expression support is extensible through the Query SPI
org.springframework.data.repository.query.spi.EvaluationContextExtension than can contribute
properties, functions and customize the root object. Extensions are retrieved from the application
context at the time of SpEL evaluation when the query is build.

135

public class SampleEvaluationContextExtension extends
EvaluationContextExtensionSupport {

public String getExtensionId() {
return "security";

}

public Map<String, Object> getProperties() {
return Collections.singletonMap("principal”, SecurityContextHolder.getCurrent()
.getPrincipal());
}
}

Bootstrapping MongoRepositoryFactory yourself is not application context-aware and

NOTE
requires further configuration to pick up Query SPI extensions.

11.3.5. Type-safe Query methods

MongoDB repository support integrates with the QueryDSL project which provides a means to
perform type-safe queries in Java. To quote from the project description, "Instead of writing queries
as inline strings or externalizing them into XML files they are constructed via a fluent APL" It
provides the following features

* Code completion in IDE (all properties, methods and operations can be expanded in your
favorite Java IDE)
* Almost no syntactically invalid queries allowed (type-safe on all levels)

* Domain types and properties can be referenced safely (no Strings involved!)

Adopts better to refactoring changes in domain types

* Incremental query definition is easier

Please refer to the QueryDSL documentation which describes how to bootstrap your environment
for APT based code generation using Maven or Ant.

Using QueryDSL you will be able to write queries as shown below

QPerson person = new QPerson("person");
List<Person> result = repository.findAll(person.address.zipCode.eq("C0123"));

Page<Person> page = repository.findAl1l(person.lastname.contains("a"),

PageRequest.of(0, 2, Direction.ASC, "lastname"
)i

QPerson is a class that is generated (via the Java annotation post processing tool) which is a
Predicate that allows you to write type safe queries. Notice that there are no strings in the query

136

http://www.querydsl.com/
http://www.querydsl.com/static/querydsl/latest/reference/html/

other than the value "C0123".

You can use the generated Predicate class via the interface QueryDslPredicateExecutor which is
shown below

public interface QueryDslPredicateExecutor<T> {
T findOne(Predicate predicate);
List<T> findAll(Predicate predicate);
List<T> findA11(Predicate predicate, OrderSpecifier<?>... orders);
Page<T> findAll(Predicate predicate, Pageable pageable);

Long count(Predicate predicate);

To use this in your repository implementation, simply inherit from it in addition to other repository
interfaces. This is shown below

public interface PersonRepository extends MongoRepository<Person, String>,
QueryDs1PredicateExecutor<Person> {

// additional finder methods go here

We think you will find this an extremely powerful tool for writing MongoDB queries.

11.3.6. Full-text search queries

MongoDBs full text search feature is very store specific and therefore can rather be found on
MongoRepository than on the more general CrudRepository. What we need is a document with a full-
text index defined for (Please see section Text Indexes for creating).

Additional methods on MongoRepository take TextCriteria as input parameter. In addition to those
explicit methods, it is also possible to add a TextCriteria derived repository method. The criteria
will be added as an additional AND criteria. Once the entity contains a @TextScore annotated property
the documents full-text score will be retrieved. Furthermore the @TextScore annotated property will
also make it possible to sort by the documents score.

137

@Document
class FullTextDocument {

@Id String id;

@TextIndexed String title;
@TextIndexed String content;
@TextScore Float score;

}
interface FullTextRepository extends Repository<FullTextDocument, String> {

// Execute a full-text search and define sorting dynamically
List<FullTextDocument> findA11By(TextCriteria criteria, Sort sort);

// Paginate over a full-text search result
Page<FullTextDocument> findA11By(TextCriteria criteria, Pageable pageable);

// Combine a derived query with a full-text search
List<FullTextDocument> findByTitleOrderByScoreDesc(String title, TextCriteria
criteria);

}

Sort sort = Sort.by("score");
TextCriteria criteria = TextCriteria.forDefaultLanquage().matchingAny("spring"”, "data
)i

List<FullTextDocument> result = repository.findAl1By(criteria, sort);

criteria = TextCriteria.forDefaultLanguage().matching("film");
Page<FullTextDocument> page = repository.findAl1By(criteria, PageRequest.of(1, 1,
sort));

List<FullTextDocument> result = repository.findByTitleOrderByScoreDesc("mongodb",
criteria);

11.3.7. Projections

Spring Data Repositories usually return the domain model when using query methods. However,
sometimes, you may need to alter the view of that model for various reasons. In this section, you
will learn how to define projections to serve up simplified and reduced views of resources.

Look at the following domain model:

138

public class Person {

private Long 1id;
private String firstName, lastName;

private Address address;

public class Address {

private Long 1id;
private String street, state, country;

This Person has several attributes:

¢ idis the primary key
e firstName and lastName are data attributes

* address is a link to another domain object

Now assume we create a corresponding repository as follows:

interface PersonRepository extends CrudRepository<Person, Long> {

Person findPersonByFirstName(String firstName);

}

Spring Data will return the domain object including all of its attributes. There are two options just
to retrieve the address attribute. One option is to define a repository for Address objects like this:

interface AddressRepository extends CrudRepository<Address, Long> {}

In this situation, using PersonRepository will still return the whole Person object. Using
AddressRepository will return just the Address.

However, what if you do not want to expose address details at all? You can offer the consumer of
your repository service an alternative by defining one or more projections.

139

Example 86. Simple Projection

interface NoAddresses { @
String getFirstName(); @

String getLastName(); @
}

This projection has the following details:

@ A plain Java interface making it declarative.
@ Export the firstName.
® Export the lastName.

The NoAddresses projection only has getters for firstName and lastName meaning that it will not serve
up any address information. The query method definition returns in this case NoAdresses instead of
Person.

interface PersonRepository extends CrudRepository<Person, Long> {

NoAddresses findByFirstName(String firstName);
}

Projections declare a contract between the underlying type and the method signatures related to
the exposed properties. Hence it is required to name getter methods according to the property
name of the underlying type. If the underlying property is named firstName, then the getter method
must be named getFirstName otherwise Spring Data is not able to look up the source property. This
type of projection is also called closed projection. Closed projections expose a subset of properties
hence they can be used to optimize the query in a way to reduce the selected fields from the data
store. The other type is, as you might imagine, an open projection.

Remodelling data

So far, you have seen how projections can be used to reduce the information that is presented to
the user. Projections can be used to adjust the exposed data model. You can add virtual properties
to your projection. Look at the following projection interface:

140

Example 87. Renaming a property

interface RenamedProperty { @
String getFirstName(); @

("#{target.lastName}")
String getName(); ®
}

This projection has the following details:

@ A plain Java interface making it declarative.
@ Export the firstName.

® Export the name property. Since this property is virtual it requires
@Value("#{target.lastName}") to specify the property source.

The backing domain model does not have this property so we need to tell Spring Data from where
this property is obtained. Virtual properties are the place where @Value comes into play. The name
getter is annotated with @Value to use SpEL expressions pointing to the backing property lastName.
You may have noticed lastName is prefixed with target which is the variable name pointing to the
backing object. Using @Value on methods allows defining where and how the value is obtained.

Some applications require the full name of a person. Concatenating strings with String.format("%s
%s", person.getFirstName(), person.getlLastName()) would be one possibility but this piece of code
needs to be called in every place the full name is required. Virtual properties on projections
leverage the need for repeating that code all over.

interface FullNameAndCountry {

("#{target.firstName} #{target.lastName}")
String getFullName();

("#{target.address.country}")
String getCountry();
}

In fact, @Value gives full access to the target object and its nested properties. SpEL expressions are
extremly powerful as the definition is always applied to the projection method. Let’s take SpEL
expressions in projections to the next level.

Imagine you had the following domain model definition:

141

http://docs.spring.io/spring/docs/5.0.0.RC2/spring-framework-reference/html/expressions.html

public class User {

private Long 1id;
private String name;

private String password;

}
This example may seem a bit contrived, but it is possible with a richer
domain model and many projections, to accidentally leak such details. Since
Spring Data cannot discern the sensitivity of such data, it is up to the
IMPORTANT

developers to avoid such situations. Storing a password as plain-text is
discouraged. You really should not do this. For this example, you could also
replace password with anything else that is secret.

In some cases, you might keep the password as secret as possible and not expose it more than it
should be. The solution is to create a projection using @Value together with a SpEL expression.

interface PasswordProjection {
("#{(target.password == null || target.password.empty) ? null : '*¥¥**x!}1®)
String getPassword();
}

The expression checks whether the password is null or empty and returns null in this case,
otherwise six asterisks to indicate a password was set.

11.4. Miscellaneous

11.4.1. CDI Integration

Instances of the repository interfaces are usually created by a container, which Spring is the most
natural choice when working with Spring Data. As of version 1.3.0 Spring Data MongoDB ships with
a custom CDI extension that allows using the repository abstraction in CDI environments. The
extension is part of the JAR so all you need to do to activate it is dropping the Spring Data MongoDB
JAR into your classpath. You can now set up the infrastructure by implementing a CDI Producer for
the MongoTemplate:

142

class MongoTemplateProducer {

public MongoOperations createMongoTemplate() {

MongoDbFactory factory = new SimpleMongoDbFactory(new MongoClient(), "
database");

return new MongoTemplate(factory);

}

The Spring Data MongoDB CDI extension will pick up the MongoTemplate available as CDI bean and
create a proxy for a Spring Data repository whenever a bean of a repository type is requested by
the container. Thus obtaining an instance of a Spring Data repository is a matter of declaring an
@Inject-ed property:

class RepositoryClient {

PersonRepository repository;

public void businessMethod() {
List<Person> people = repository.findA11l();

}
}

143

Chapter 12. Reactive MongoDB repositories

12.1. Introduction

This chapter will point out the specialties for reactive repository support for MongoDB. This builds
on the core repository support explained in Working with Spring Data Repositories. So make sure
you’ve got a sound understanding of the basic concepts explained there.

12.2. Reactive Composition Libraries

The reactive space offers various reactive composition libraries. The most common libraries are
RxJava and Project Reactor.

Spring Data MongoDB is built on top of the MongoDB Reactive Streams driver to provide maximal
interoperability relying on the Reactive Streams initiative. Static APIs such as
ReactiveMongoOperations are provided by using Project Reactor’s Flux and Mono types. Project Reactor
offers various adapters to convert reactive wrapper types (Flux to Observable and vice versa) but
conversion can easily clutter your code.

Spring Data’s Repository abstraction is a dynamic API, mostly defined by you and your
requirements, as you’re declaring query methods. Reactive MongoDB repositories can be either
implemented using RxJava or Project Reactor wrapper types by simply extending from one of the
library-specific repository interfaces:

« ReactiveCrudRepository
« ReactiveSortingRepository
« RxJavalCrudRepository

« RxJavalSortingRepository

Spring Data converts reactive wrapper types behind the scenes so that you can stick to your
favorite composition library.

12.3. Usage

To access domain entities stored in a MongoDB you can leverage our sophisticated repository
support that eases implementing those quite significantly. To do so, simply create an interface for
your repository:

144

https://github.com/ReactiveX/RxJava
https://projectreactor.io/
https://mongodb.github.io/mongo-java-driver-reactivestreams/
http://www.reactive-streams.org/

Example 88. Sample Person entity

public class Person {

private String id;
private String firstname;
private String lastname;
private Address address;

// -+ getters and setters omitted

We have a quite simple domain object here. Note that it has a property named id of type ObjectId.
The default serialization mechanism used in MongoTemplate (which is backing the repository
support) regards properties named id as document id. Currently we support String, ObjectId and
BigInteger as id-types.

Example 89. Basic repository interface to persist Person entities

public interface ReactivePersonRepository extends
ReactiveSortingRepository<Person, Long> {

Flux<Person> findByFirstname(String firstname);
Flux<Person> findByFirstname(Publisher<String> firstname);

Flux<Person> findByFirstnameOrderBylLastname(String firstname, Pageable
pageable);

Mono<Person> findByFirstnameAndLastname(String firstname, String lastname);

}

For JavaConfig use the @EnableReactiveMongoRepositories annotation. The annotation carries the
very same attributes like the namespace element. If no base package is configured the
infrastructure will scan the package of the annotated configuration class.

MongoDB uses two different drivers for blocking and reactive (non-blocking) data
access. It’s required to create a connection using the Reactive Streams driver to
provide the required infrastructure for Spring Data’s Reactive MongoDB support

NOTE hence you’re required to provide a separate Configuration for MongoDB’s Reactive
Streams driver. Please also note that your application will operate on two different
connections if using Reactive and Blocking Spring Data MongoDB Templates and
Repositories.

145

Example 90. JavaConfig for repositories

class ApplicationConfig extends AbstractReactiveMongoConfiguration {

protected String getDatabaseName() {
return "e-store";

}

public MongoClient mongoClient() {
return MongoClients.create();

}

protected String getMappingBasePackage() {
return "com.oreilly.springdata.mongodb"

}
}

As our domain repository extends ReactiveSortingRepository it provides you with CRUD operations
as well as methods for sorted access to the entities. Working with the repository instance is just a
matter of dependency injecting it into a client.

Example 91. Sorted access to Person entities

public class PersonRepositoryTests {

ReactivePersonRepository repository;

public void sortsElementsCorrectly() {
Flux<Person> persons = repository.findAl11(Sort.by(new Order(ASC, "lastname"

)));
}
}

12.4. Features

Spring Data’s Reactive MongoDB support comes with a reduced feature set compared to the
blocking MongoDB Repositories.

Following features are supported:

146

* Query Methods using String queries and Query Derivation
* Geo-spatial repository queries

* Repository delete queries

MongoDB JSON based query methods and field restriction

Full-text search queries

* Projections

WARNING Reactive Repositories do not support Type-safe Query methods using Querydsl.

12.4.1. Geo-spatial repository queries

As you’ve just seen there are a few keywords triggering geo-spatial operations within a MongoDB
query. The Near keyword allows some further modification. Let’s have look at some examples:

Example 92. Advanced Near queries

public interface PersonRepository extends ReactiveMongoRepository<Person, String>

// { 'location' : { '$near' : [point.x, point.y], '$maxDistance' : distance}}
Flux<Person> findByLocationNear(Point location, Distance distance);

}

Adding a Distance parameter to the query method allows restricting results to those within the
given distance. If the Distance was set up containing a Metric we will transparently use $nearSphere
instead of $code.

Reactive Geo-spatial repository queries support the domain type and GeoResult<T>
results within a reactive wrapper type. GeoPage and GeoResults are not supported as

NOTE they contradict the deferred result approach with pre-calculating the average
distance. Howevery, you can still pass in a Pageable argument to page results
yourself.

Example 93. Using Distance with Metrics

Point point = new Point(43.7, 48.8);
Distance distance = new Distance(200, Metrics.KILOMETERS);
+ = repository.findBylLocationNear(point, distance);
// {'location' : {'$nearSphere' : [43.7, 48.8], '$maxDistance’
0.03135711885774796}}

As you can see using a Distance equipped with a Metric causes $nearSphere clause to be added
instead of a plain $near. Beyond that the actual distance gets calculated according to the Metrics
used.

147

NOTE

Using @GeoSpatiallndexed(type = GeoSpatialIndexType.GEO_2DSPHERE) on the target
property forces usage of $nearSphere operator.

Geo-near queries

public interface PersonRepository extends ReactiveMongoRepository<Person, String>

// {'geoNear' : 'location', 'near' : [x, y] }
Flux<GeoResult<Person>> findByLocationNear(Point location);

// No metric: {'geoNear' : 'person', 'near' : [x, y], maxDistance : distance }
// Metric: {'geoNear' : 'person', 'near' : [x, y], 'maxDistance' : distance,
// "distanceMultiplier' : metric.multiplier, 'spherical' : true }

Flux<GeoResult<Person>> findByLocationNear(Point location, Distance distance);

// Metric: {'geoNear' : 'person', 'near' : [x, y], 'minDistance’ : min,

// 'maxDistance’ : max, 'distanceMultiplier' : metric.multiplier,

// "spherical’ : true }

Flux<GeoResult<Person>> findByLocationNear (Point location, Distance min, Distance
max);

// {'geoNear' : 'location', 'near' : [x, y] }

}

Flux<GeoResult<Person>> findByLocationNear(Point location);

12.5. Infinite Streams with Tailable Cursors

By default, MongoDB will automatically close a cursor when the client has exhausted all results in
the cursor. Closing a cursors turns a Stream into a finite stream. However, for capped collections
you may use a Tailable Cursor that remains open after the client exhausts the results in the initial
cursor. Using tailable Cursors with a reactive approach allows construction of infinite streams. A
tailable Cursor remains open until it’s closed. It emits data as data arrives in a capped collection.
Using Tailable Cursors with Collections is not possible as its result would never complete.

Spring Data MongoDB Reactive Repository support supports infinite streams by annotating a query
method with @TailableCursor. This works for methods returning Flux or Observable wrapper types.

148

https://docs.mongodb.com/manual/core/tailable-cursors/

public interface PersonRepository extends ReactiveMongoRepository<Person, String> {

@Tailable
Flux<Person> findByFirstname(String firstname);

}

Flux<Person> stream = repository.findByFirstname("Joe");

Disposable subscription = stream.doOnNext(System.out::println).subscribe();
iyl

// Later: Dispose the stream
subscription.dispose();

149

Chapter 13. Auditing

13.1. Basics

Spring Data provides sophisticated support to transparently keep track of who created or changed
an entity and the point in time this happened. To benefit from that functionality you have to equip
your entity classes with auditing metadata that can be defined either using annotations or by
implementing an interface.

13.1.1. Annotation based auditing metadata

We provide @CreatedBy, @LastModifiedBy to capture the user who created or modified the entity as
well as @CreatedDate and @LastModifiedDate to capture the point in time this happened.

Example 94. An audited entity

class Customer {
private User user;

private DateTime createdDate;

// -+ further properties omitted
}

As you can see, the annotations can be applied selectively, depending on which information you’d
like to capture. For the annotations capturing the points in time can be used on properties of type
JodaTimes DateTime, legacy Java Date and Calendar, JDK8 date/time types as well as long/Long.

13.1.2. Interface-based auditing metadata

In case you don’t want to use annotations to define auditing metadata you can let your domain
class implement the Auditable interface. It exposes setter methods for all of the auditing properties.

There’s also a convenience base class AbstractAuditable which you can extend to avoid the need to
manually implement the interface methods. Be aware that this increases the coupling of your
domain classes to Spring Data which might be something you want to avoid. Usually the annotation
based way of defining auditing metadata is preferred as it is less invasive and more flexible.

13.1.3. AuditorAware

In case you use either @CreatedBy or @LastModifiedBy, the auditing infrastructure somehow needs to
become aware of the current principal. To do so, we provide an AuditorAware<T> SPI interface that
you have to implement to tell the infrastructure who the current user or system interacting with

150

the application is. The generic type T defines of what type the properties annotated with @CreatedBy
or @LastModifiedBy have to be.

Here’s an example implementation of the interface using Spring Security’s Authentication object:

Example 95. Implementation of AuditorAware based on Spring Security

class SpringSecurityAuditorAware implements AuditorAware<User> {
public User getCurrentAuditor() {

Authentication authentication = SecurityContextHolder.getContext()
.getAuthentication();

if (authentication == null || !authentication.isAuthenticated()) {
return null;

}

return ((MyUserDetails) authentication.getPrincipal()).getUser();

}
}

The implementation is accessing the Authentication object provided by Spring Security and looks
up the custom UserDetails instance from it that you have created in your UserDetailsService
implementation. We’re assuming here that you are exposing the domain user through that
UserDetails implementation but you could also look it up from anywhere based on the
Authentication found.

13.2. General auditing configuration

Activating auditing functionality is just a matter of adding the Spring Data Mongo auditing
namespace element to your configuration:

Example 96. Activating auditing using XML configuration

<mongo:auditing mapping-context-ref="customMappingContext" auditor-aware-ref=
"yourAuditorAwareImpl"/>

Since Spring Data MongoDB 1.4 auditing can be enabled by annotating a configuration class with
the @EnableMongoAuditing annotation.

151

Example 97. Activating auditing using JavaConfig

@Configuration
@EnableMongoAuditing
class Config {

@Bean
public AuditorAware<AuditableUser> myAuditorProvider() {
return new AuditorAwareImpl();

}
}

If you expose a bean of type AuditorAware to the ApplicationContext, the auditing infrastructure will
pick it up automatically and use it to determine the current user to be set on domain types. If you
have multiple implementations registered in the ApplicationContext, you can select the one to be
used by explicitly setting the auditorAwareRef attribute of @EnableJpaAuditing.

152

Chapter 14. Mapping

Rich mapping support is provided by the MappingMongoConverter. MappingMongoConverter has a rich
metadata model that provides a full feature set of functionality to map domain objects to MongoDB
documents.The mapping metadata model is populated using annotations on your domain objects.
However, the infrastructure is not limited to using annotations as the only source of metadata
information. The MappingMongoConverter also allows you to map objects to documents without
providing any additional metadata, by following a set of conventions.

In this section we will describe the features of the MappingMongoConverter. How to use conventions
for mapping objects to documents and how to override those conventions with annotation based
mapping metadata.

14.1. Convention based Mapping

MappingMongoConverter has a few conventions for mapping objects to documents when no additional
mapping metadata is provided. The conventions are:

* The short Java class name is mapped to the collection name in the following manner. The class
com.bigbank.SavingsAccount maps to savingsAccount collection name.
* All nested objects are stored as nested objects in the document and not as DBRefs

» The converter will use any Spring Converters registered with it to override the default mapping
of object properties to document field/values.

* The fields of an object are used to convert to and from fields in the document. Public JavaBean
properties are not used.

* You can have a single non-zero argument constructor whose constructor argument names
match top level field names of document, that constructor will be used. Otherwise the zero arg
constructor will be used. if there is more than one non-zero argument constructor an exception
will be thrown.

14.1.1. How the _id field is handled in the mapping layer

MongoDB requires that you have an _id field for all documents. If you don’t provide one the driver
will assign a Objectld with a generated value. The "_id" field can be of any type the, other than
arrays, so long as it is unique. The driver naturally supports all primitive types and Dates. When
using the MappingMongoConverter there are certain rules that govern how properties from the Java
class is mapped to this _id field.

The following outlines what field will be mapped to the _id document field:

* A field annotated with @Id (org.springframework.data.annotation.Id) will be mapped to the _id
field.

* A field without an annotation but named id will be mapped to the _id field.

¢ The default field name for identifiers is _id and can be customized via the @Field annotation.

Table 7. Examples for the translation of _id field definitions

153

Field definition Resulting Id-Fieldname in MongoDB

Stringid _id
@Field Stringid _id
@Field("x") Stringid X

@Id String x _id
@Field("x") @Id String x _id

The following outlines what type conversion, if any, will be done on the property mapped to the _id
document field.

 If a field named 1id is declared as a String or BigInteger in the Java class it will be converted to
and stored as an Objectld if possible. Objectld as a field type is also valid. If you specify a value
for id in your application, the conversion to an ObjectId is detected to the MongoDBdriver. If the
specified id value cannot be converted to an Objectld, then the value will be stored as is in the
document’s _id field.

* If a field named 1id id field is not declared as a String, BigInteger, or ObjectID in the Java class
then you should assign it a value in your application so it can be stored 'as-is' in the document’s
_id field.

* If no field named 1id is present in the Java class then an implicit _id file will be generated by the
driver but not mapped to a property or field of the Java class.

When querying and updating MongoTemplate will use the converter to handle conversions of the
Query and Update objects that correspond to the above rules for saving documents so field names
and types used in your queries will be able to match what is in your domain classes.

14.2. Data mapping and type conversion

This section explain how types are mapped to a MongoDB representation and vice versa. Spring
Data MongoDB supports all types that can be represented as BSON, MongoDB’s internal document
format. In addition to these types, Spring Data MongoDB provides a set of built-in converters to
map additional types. You can provide your own converters to adjust type conversion, see
Overriding Mapping with explicit Converters for further details.

Table 8. Type
Type Type Sample
convers
ion
String native {"firstname" : "Dave"}

double, Double, float, Float native {"weight" : 42.5}
int, Integer, short, Short native {'height" : 42}
32-bit
integer
long, Long native {"height" : 42}
64-bit
integer

154

Type

Date, Timestamp
byte[]

java.util.UUID (Legacy
UUID)

Date
ObjectId

Array, List, BasicDBList

boolean, Boolean
null

Document

Decimali128

AtomicInteger
calling get() before the
actual conversion

AtomiclLong
calling get() before the
actual conversion

BigInteger

BigDecimal

URL

Locale

char, Character

NamedMongoScript

java.util.Currency

LocalDate
(Joda, Java 8, JSR310-
BackPort)

Type

convers
ion
native

native

native

native
native
native
native
native
native
native

converte
r

32-bit
integer

converte
r

64-bit
integer

converte
r
String

converte
r
String

converte
T

converte
T

converte
T

converte
r
Code

converte
r

converte
r

Sample

{"date" :
{"bin" : { "$binary" :

{"uuid" : { "$binary" :
"$type" : l|03" }}

ISODate("2019-11-12723:00:00.8097")%}
"AQIDBA::", n$typeu : u@@u }}
"MEaf1CFQ61Sphaa3b9At1A==",

{"date" : ISODate("2019-11-12723:00:00.809Z")}
{"_id" : ObjectId("5707a2690364aba3136ab870")}

{"cookies" : [-+ 1}

{"active" : true}

{"value" : null}

{"value" : { -+ }}

{"value" : NumberDecimal(::-)}

{"value" : "741" }

{"value" : "741" }

{"value" : "741" }

{"value" : "741.99" }

{"website" : "http://projects.spring.io/spring-data-
mongodb/" }

{"locale : "en_US" }

{"Char" : llall }

{"_id" : "script name", value: (some javascript code)}

{"currencyCode" : "EUR"}

{"date" : ISODate("2019-11-12T00:00:00.000Z")}

155

Type Type Sample
convers

ion
LocalDateTime, LocalTime, converte {"date" : ISODate("2019-11-12723:00:00.809Z")}
Instant r

(Joda, Java 8, JSR310-
BackPort)
DateTime (]Oda) converte {"date" : ISODate("2019-11-12T723:00:00.809Z")}
r
ZoneId (Java 8, JSR310- converte {"zoneld" : "ECT - Europe/Paris"}
BackPort) r
Box converte {"box" : { "first" : { "x" : 1.0, "y" : 2.0} , "second"
r s { """ 3.0, "y" i 4.0}
Polygon converte {'polygon" : { "points" : [{ "x" : 1.0, "y" : 2.0} , {
: "' 3.0 0, "y 4.0}, { "x" : 4.0, "y : 5.0}]1)
Circle converte {"circle" : { "center" : { "x" : 1.0, "y" : 2.0} ,
o "radius" : 3.0 , "metric" : "NEUTRAL"}}
Point converte {"point" : { "x" : 1.0, "y" : 2.0}}
r
GeoJsonPoint converte {"point" : { "type" : "Point" , "coordinates" : [3.0 ,
. 4.0] 1}
GeoJsonMultiPoint converte 1"geolsonLineString" : {"type":"MultiPoint",
r "coordinates": [[0, 01, [0,11, [1,11113}
Sphere converte {"sphere" : { "center" : { "x" : 1.0, "y" : 2.0} ,
o "radius" : 3.0 , "metric" : "NEUTRAL"}}
GeoJsonPolygon converte 1"polygon" : { "type" : "Polygon", "coordinates" : [[[
r 0,01, [3,61,[6,1], [0,0]]1]}}
GeoJsonMultiPolygon converte {"geoJsonMultiPolygon" : { "type" : "MultiPolygon",
r "coordinates" : [[[[-73.958 , 40.8003] , [-73.9498

, 40.7968 1 11, [[[-73.973 , 40.7648] , [-73.9588
, 40.8003 1 111 }}

GeoJsonLineString converte { "geoJsonLineString" : { "type" : "LineString",

"coordinates" : [[40,51, [41,6111}
GeoJsonMultilineString converte 1"geolsonLineString" : { "type" : "MultilineString",
coordinates: [[[-73.97162 , 40.78205], [-73.96374 ,
40.77715 1 1, [[-73.97880 , 40.77247 1, [-73.97036 ,
40.76811 1 11 }}

r

r

14.3. Mapping Configuration

Unless explicitly configured, an instance of MappingMongoConverter is created by default when
creating a MongoTemplate. You can create your own instance of the MappingMongoConverter so as to tell
it where to scan the classpath at startup your domain classes in order to extract metadata and
construct indexes. Also, by creating your own instance you can register Spring converters to use for
mapping specific classes to and from the database.

You can configure the MappingMongoConverter as well as com.mongodb.MongoClient and

156

MongoTemplate either using Java or XML based metadata. Here is an example using Spring’s Java
based configuration

Example 98. @Configuration class to configure MongoDB mapping support

public class GeoSpatialAppConfig extends AbstractMongoConfiguration {

public MongoClient mongoClient() {
return new MongoClient("localhost");

}

public String getDatabaseName() {
return "database";

}

public String getMappingBasePackage() {
return "com.bigbank.domain";

}

// the following are optional

public CustomConversions customConversions() throws Exception {
List<Converter<?, ?>> converterList = new ArraylList<Converter<?, 7>>();
converterList.add(new org.springframework.data.mongodb.test
.PersonReadConverter());
converterList.add(new org.springframework.data.mongodb.test
.PersonWriteConverter());
return new CustomConversions(converterList);

}

public LoggingEventListener<MongoMappingEvent> mappingEventsListener() {
return new LoggingEventListener<MongoMappingEvent>();

}
}

AbstractMongoConfiguration requires you to implement methods that define a
com.mongodb.MongoClient as well as provide a database name. AbstractMongoConfiguration also has a
method you can override named getMappingBasePackage(:--) which tells the converter where to scan
for classes annotated with the @Document annotation.

You can add additional converters to the converter by overriding the method

157

afterMappingMongoConverterCreation. Also shown in the above example is a LoggingEventListener
which logs MongoMappingEvent s that are posted onto Spring’s ApplicationContextEvent infrastructure.

AbstractMongoConfiguration will create a MongoTemplate instance and registered

NOTE
with the container under the name mongoTemplate.

You can also override the method UserCredentials getUserCredentials() to provide the username
and password information to connect to the database.

Spring’s MongoDB namespace enables you to easily enable mapping functionality in XML

158

Example 99. XML schema to configure MongoDB mapping support

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:mongo="http://www.springframework.org/schema/data/mongo"
xsi:schemalocation="http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-3.0.xsd
http://www.springframework.org/schema/data/mongo
http://www.springframework.org/schema/data/mongo/spring-mongo-1.0.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

<!-- Default bean name is 'mongo’' -->
<mongo:mongo-client host="localhost" port="27017"/>

<mongo:db-factory dbname="database" mongo-ref="mongoClient"/>

<!-- by default look for a Mongo object named 'mongo’' - default name used for
the converter is 'mappingConverter' -->
<mongo:mapping-converter base-package="com.bigbank.domain">
<mongo:custom-converters>
<mongo:converter ref="readConverter"/>
<mongo:converter>
<bean class="org.springframework.data.mongodb.test.PersonWriteConverter"/>
</mongo:converter>
</mongo: custom-converters>
</mongo:mapping-converter>

<bean id="readConverter" class=
"org.springframework.data.mongodb.test.PersonReadConverter"/>

<!-- set the mapping converter to be used by the MongoTemplate -->
<bean id="mongoTemplate" class=
"org.springframework.data.mongodb.core.MongoTemplate">
<constructor-arg name="mongoDbFactory" ref="mongoDbFactory"/>
<constructor-arg name="mongoConverter" ref="mappingConverter"/>
</bean>

<bean class=
"org.springframework.data.mongodb.core.mapping.event.LoggingEventListener"/>

</beans>

The base-package property tells it where to scan for classes annotated with the
@org.springframework.data.mongodb.core.mapping.Document annotation.

159

14.4. Metadata based Mapping

To take full advantage of the object mapping functionality inside the Spring Data/MongoDB support,
you should annotate your mapped objects with the @Document annotation. Although it is not
necessary for the mapping framework to have this annotation (your POJOs will be mapped
correctly, even without any annotations), it allows the classpath scanner to find and pre-process
your domain objects to extract the necessary metadata. If you don’t use this annotation, your
application will take a slight performance hit the first time you store a domain object because the
mapping framework needs to build up its internal metadata model so it knows about the properties
of your domain object and how to persist them.

Example 100. Example domain object

package com.mycompany.domain;
public class Person {
private ObjectId id;

private Integer ssn;

private String firstName;

private String lastName;

}

The @Id annotation tells the mapper which property you want to use for the
MongoDB _id property and the @Indexed annotation tells the mapping
framework to call createIndex(:::) on that property of your document,
making searches faster.

IMPORTANT

IMPORTANT Automatic index creation is only done for types annotated with @Document.

14.4.1. Mapping annotation overview

The MappingMongoConverter can use metadata to drive the mapping of objects to documents. An
overview of the annotations is provided below
» @Id - applied at the field level to mark the field used for identity purpose.

» @Document - applied at the class level to indicate this class is a candidate for mapping to the
database. You can specify the name of the collection where the database will be stored.

 @DBRef - applied at the field to indicate it is to be stored using a com.mongodb.DBRef.

160

» @Indexed - applied at the field level to describe how to index the field.

» @CompoundIndex - applied at the type level to declare Compound Indexes

* @GeoSpatiallndexed - applied at the field level to describe how to geoindex the field.
 @TextIndexed - applied at the field level to mark the field to be included in the text index.
* @Language - applied at the field level to set the language override property for text index.

* @Transient - by default all private fields are mapped to the document, this annotation excludes
the field where it is applied from being stored in the database

* @PersistenceConstructor - marks a given constructor - even a package protected one - to use
when instantiating the object from the database. Constructor arguments are mapped by name
to the key values in the retrieved Document.

* @Value - this annotation is part of the Spring Framework . Within the mapping framework it can
be applied to constructor arguments. This lets you use a Spring Expression Language statement
to transform a key’s value retrieved in the database before it is used to construct a domain
object. In order to reference a property of a given document one has to use expressions like:
@Value("#root.myProperty") where root refers to the root of the given document.

* @Field - applied at the field level and described the name of the field as it will be represented in
the MongoDB BSON document thus allowing the name to be different than the fieldname of the
class.

* @Version - applied at field level is used for optimistic locking and checked for modification on
save operations. The initial value is zero which is bumped automatically on every update.

The mapping metadata infrastructure is defined in a separate spring-data-commons project that is
technology agnostic. Specific subclasses are using in the MongoDB support to support annotation
based metadata. Other strategies are also possible to put in place if there is demand.

Here is an example of a more complex mapping.

(

(name = "age_idx", def = "{'lastName': 1, 'age': -1}")

1))

public class Person<T extends Address> {

private String id;

(unique = true)
private Integer ssn;

("fName")

private String firstName;

private String lastName;

161

private Integer age;

private Integer accountTotal;

private List<Account> accounts;

private T address;

public Person(Integer ssn) {
this.ssn = ssn;

}

public Person(Integer ssn, String firstName, String lastName, Integer age, T
address) {
this.ssn = ssn;
this.firstName = firstName;
this.lastName = lastName;
this.age = age;
this.address = address;

}

public String getId() {
return 1id;

}

// no setter for Id. (getter is only exposed for some unit testing)

public Integer getSsn() {
return ssn;

}

// other getters/setters omitted

14.4.2. Customized Object Construction

The mapping subsystem allows the customization of the object construction by annotating a
constructor with the @PersistenceConstructor annotation. The values to be used for the constructor
parameters are resolved in the following way:

 If a parameter is annotated with the @Value annotation, the given expression is evaluated and
the result is used as the parameter value.

« If the Java type has a property whose name matches the given field of the input document, then
it’s property information is used to select the appropriate constructor parameter to pass the
input field value to. This works only if the parameter name information is present in the java
.class files which can be achieved by compiling the source with debug information or using the

162

new -parameters command-line switch for javac in Java 8.

* Otherwise a MappingException will be thrown indicating that the given constructor parameter
could not be bound.

class OrderItem {

private String 1id;
private int quantity;
private double unitPrice;

OrderItem(String id, ("#root.qty ?: 0") int quantity, double unitPrice) {
this.id = id;
this.quantity = quantity;
this.unitPrice = unitPrice;

}

// getters/setters ommitted
}

Document input = new Document("id", "4711");
input.put("unitPrice", 2.5);

input.put("qty",5);

OrderItem item = converter.read(OrderItem.class, input);

The SpEL expression in the @Value annotation of the quantity parameter falls back
to the value 0 if the given property path cannot be resolved.

NOTE

Additional examples for using the @PersistenceConstructor annotation can be found in the
MappingMongoConverterUnitTests test suite.

14.4.3. Compound Indexes

Compound indexes are also supported. They are defined at the class level, rather than on individual
properties.

Compound indexes are very important to improve the performance of queries that

NOTE
involve criteria on multiple fields

Here’s an example that creates a compound index of lastName in ascending order and age in
descending order:

163

https://github.com/spring-projects/spring-data-mongodb/blob/master/spring-data-mongodb/src/test/java/org/springframework/data/mongodb/core/convert/MappingMongoConverterUnitTests.java

Example 101. Example Compound Index Usage

package com.mycompany.domain;

({
(name = "age_idx", def = "{'lastName': 1, 'age': -1}")
3]

public class Person {

private ObjectId 1id;
private Integer age;
private String firstName;
private String lastName;

14.4.4. Text Indexes
NOTE The text index feature is disabled by default for mongodb v.2.4.

Creating a text index allows accumulating several fields into a searchable full text index. It is only
possible to have one text index per collection so all fields marked with @TextIndexed are combined
into this index. Properties can be weighted to influence document score for ranking results. The
default language for the text index is english, to change the default language set
@Document(language="spanish") to any language you want. Using a property called language or
@Language allows to define a language override on a per document base.

164

Example 102. Example Text Index Usage
(language = "spanish")
class SomeEntity {
String foo;
String lang;

Nested nested;

}

class Nested {

(weight=5) String bar;
String roo;

14.4.5. Using DBRefs

The mapping framework doesn’t have to store child objects embedded within the document. You
can also store them separately and use a DBRef to refer to that document. When the object is loaded
from MongoDB, those references will be eagerly resolved and you will get back a mapped object
that looks the same as if it had been stored embedded within your master document.

Here’s an example of using a DBRef to refer to a specific document that exists independently of the
object in which it is referenced (both classes are shown in-line for brevity’s sake):

165

public class Account {

private ObjectId id;
private Float total;

}

public class Person {

private ObjectId id;
private Integer ssn;

private List<Account> accounts;

}

There’s no need to use something like @0neToMany because the mapping framework sees that you
want a one-to-many relationship because there is a List of objects. When the object is stored in
MongoDB, there will be a list of DBRefs rather than the Account objects themselves.

The mapping framework does not handle cascading saves. If you change an
Account object that is referenced by a Person object, you must save the
Account object separately. Calling save on the Person object will not
automatically save the Account objects in the property accounts.

IMPORTANT

14.4.6. Mapping Framework Events

Events are fired throughout the lifecycle of the mapping process. This is described in the Lifecycle
Events section.

Simply declaring these beans in your Spring ApplicationContext will cause them to be invoked
whenever the event is dispatched.

14.4.7. Overriding Mapping with explicit Converters

When storing and querying your objects it is convenient to have a MongoConverter instance handle
the mapping of all Java types to Documents. However, sometimes you may want the MongoConverter
s do most of the work but allow you to selectively handle the conversion for a particular type or to
optimize performance.

To selectively handle the conversion yourself, register one or more one or more
org.springframework.core.convert.converter.Converter instances with the MongoConverter.

166

Spring 3.0 introduced a core.convert package that provides a general type
NOTE conversion system. This is described in detail in the Spring reference
documentation section entitled Spring Type Conversion.

The method customConversions in AbstractMongoConfiguration can be used to configure Converters.
The examples here at the beginning of this chapter show how to perform the configuration using
Java and XML.

Below is an example of a Spring Converter implementation that converts from a Document to a
Person PO]JO.

public class PersonReadConverter implements Converter<Document, Person> {

public Person convert(Document source) {
Person p = new Person((ObjectId) source.get("_id"), (String) source.get("name"));
p.setAge((Integer) source.get("age"));
return p;
}
}

Here is an example that converts from a Person to a Document.

public class PersonWriteConverter implements Converter<Person, Document> {

public Document convert(Person source) {
Document document = new Document();
document.put("”_id", source.getId());
document.put("name", source.getFirstName());
document.put("age", source.getAge());
return document;

}

}

167

http://docs.spring.io/spring/docs/5.0.0.RC2/spring-framework-reference/html/validation.html#core-convert

Chapter 15. Cross Store support

Sometimes you need to store data in multiple data stores and these data stores can be of different
types. One might be relational while the other a document store. For this use case we have created
a separate module in the MongoDB support that handles what we call cross-store support. The
current implementation is based on JPA as the driver for the relational database and we allow
select fields in the Entities to be stored in a Mongo database. In addition to allowing you to store
your data in two stores we also coordinate persistence operations for the non-transactional
MongoDB store with the transaction life-cycle for the relational database.

15.1. Cross Store Configuration

Assuming that you have a working JPA application and would like to add some cross-store
persistence for MongoDB. What do you have to add to your configuration?

First of all you need to add a dependency on the module. Using Maven this is done by adding a
dependency to your pom:

Example 103. Example Maven pom.xml with spring-data-mongodb-cross-store dependency

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi=

"http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<!-- Spring Data -->

<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-mongodb-cross-store</artifactId>
<version>${spring.data.mongo.version}</version>

</dependency>

</project>

Once this is done we need to enable Aspect] for the project. The cross-store support is implemented
using Aspect] aspects so by enabling compile time Aspect] support the cross-store features will
become available to your project. In Maven you would add an additional plugin to the <build>
section of the pom:

Example 104. Example Maven pom.xml with Aspect] plugin enabled

168

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi=

"http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<build>
<plugins>

<plugin>
<groupId>org.codehaus.mojo</groupIld>
<artifactId>aspectj-maven-plugin</artifactId>
<version>1.0</version>
<dependencies>
<!-- NB: You must use Maven 2.0.9 or above or these are ignored (see
MNG-2972) -->
<dependency>
<groupId>org.aspectj</groupld>
<artifactId>aspectjrt</artifactId>
<version>${aspectj.version}</version>
</dependency>
<dependency>
<groupId>org.aspectj</groupld>
<artifactId>aspectjtools</artifactId>
<version>${aspectj.version}</version>
</dependency>
</dependencies>
<executions>
<execution>
<goals>
<goal>compile</goal>
<goal>test-compile</goal>
</goals>
</execution>
</executions>
<configuration>
<outxml>true</outxml>
<aspectlibraries>
<aspectlibrary>
<groupId>org.springframework</groupId>
<artifactId>spring-aspects</artifactld>
</aspectlLibrary>
<aspectlibrary>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-mongodb-cross-store</artifactId>
</aspectlibrary>
</aspectLibraries>

169

<source>1.6</source>
<target>1.6</target>
</confiquration>
</plugin>

</plugins>
</build>

</project>

Finally, you need to configure your project to use MongoDB and also configure the aspects that are
used. The following XML snippet should be added to your application context:

170

Example 105. Example application context with MongoDB and cross-store aspect support

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:jdbe="http://www.springframework.org/schema/jdbc"
xmlns:jpa="http://www.springframework.org/schema/data/jpa"
xmlns:mongo="http://www.springframework.org/schema/data/mongo"
xsi:schemalocation="http://www.springframework.org/schema/data/mongo
http://www.springframework.org/schema/data/mongo/spring-mongo.xsd
http://www.springframework.org/schema/jdbc
http://www.springframework.org/schema/jdbc/spring-jdbc-3.0.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/data/jpa
http://www.springframework.org/schema/data/jpa/spring-jpa-1.0.xsd">

<!-- Mongo config -->
<mongo:mongo-client host="localhost" port="27017"/>

<bean id="mongoTemplate" class=
"org.springframework.data.mongodb.core.MongoTemplate">
<constructor-arg name="mongoClient" ref="mongoClient"/>
<constructor-arg name="databaseName" value="test"/>
<constructor-arg name="defaultCollectionName" value="cross-store"/>
</bean>

<bean class="org.springframework.data.mongodb.core.MongoExceptionTranslator"/>

<!-- Mongo cross-store aspect config -->
<bean class=
"org.springframework.data.persistence.document.mongo.MongoDocumentBacking"
factory-method="aspectOf">
<property name="changeSetPersister" ref="mongoChangeSetPersister"/>
</bean>
<bean id="mongoChangeSetPersister"
class=
"org.springframework.data.persistence.document.mongo.MongoChangeSetPersister">
<property name="mongoTemplate" ref="mongoTemplate"/>
<property name="entityManagerFactory" ref="entityManagerFactory"/>
</bean>

</beans>

171

15.2. Writing the Cross Store Application

We are assuming that you have a working JPA application so we will only cover the additional steps
needed to persist part of your Entity in your Mongo database. First you need to identify the field
you want persisted. It should be a domain class and follow the general rules for the Mongo
mapping support covered in previous chapters. The field you want persisted in MongoDB should be
annotated using the @RelatedDocument annotation. That is really all you need to do!. The cross-store
aspects take care of the rest. This includes marking the field with @Transient so it won’t be persisted
using JPA, keeping track of any changes made to the field value and writing them to the database on
successful transaction completion, loading the document from MongoDB the first time the value is
used in your application. Here is an example of a simple Entity that has a field annotated with
@RelatedDocument.

Example 106. Example of Entity with @RelatedDocument

public class Customer {
(strategy = GenerationType.IDENTITY)
private Long 1id;
private String firstName;

private String lastName;
private SurveyInfo surveyInfo;

// getters and setters omitted

}

172

Example 107. Example of domain class to be stored as document

public class SurveyInfo {
private Map<String, String> questionsAndAnswers;

public SurveyInfo() {
this.questionsAndAnswers = new HashMap<String, String>();

}

public SurveyInfo(Map<String, String> questionsAndAnswers) {
this.questionsAndAnswers = questionsAndAnswers;

}

public Map<String, String> getQuestionsAndAnswers() {
return questionsAndAnswers;

}

public void setQuestionsAndAnswers(Map<String, String> questionsAndAnswers) {

this.questionsAndAnswers = questionsAndAnswers;

}

public SurveyInfo addQuestionAndAnswer(String question, String answer) {

this.questionsAndAnswers.put(question, answer);
return this;
}
}

Once the SurveyInfo has been set on the Customer object above the MongoTemplate that was
configured above is used to save the SurveyInfo along with some metadata about the JPA Entity is
stored in a MongoDB collection named after the fully qualified name of the JPA Entity class. The

following code:

Example 108. Example of code using the JPA Entity configured for cross-store persistence

Customer customer = new Customer();
customer.setFirstName("Sven");
customer.setLastName("0lafsen");

SurveyInfo surveyInfo = new SurveyInfo()
.addQuestionAndAnswer ("age", "22")
.addQuestionAndAnswer("married", "Yes")
.addQuestionAndAnswer ("citizenship", "Norwegian");

customer.setSurveyInfo(surveyInfo);

customerRepository.save(customer);

Executing the code above results in the following JSON document stored in MongoDB.

173

Example 109. Example of JSON document stored in MongoDB

{ "_id" : ObjectId("4d9e8b6e3c55287f87d4b79e"),

"_entity_id" : 1,

"_entity_class" :
"org.springframework.data.mongodb.examples.custsvc.domain.Customer",

"_entity_field_name" : "surveyInfo",
"questionsAndAnswers" : { "married" : "Yes",
llage" : ||22|l,
"citizenship" : "Norwegian" },

_entity_field_class" :
"org.springframework.data.mongodb.examples.custsvc.domain.SurveyInfo"

174

Chapter 16. Logging support

An appender for Log4j is provided in the maven module "spring-data-mongodb-log4j". Note, there is
no dependency on other Spring Mongo modules, only the MongoDB driver.

16.1. MongoDB Log4j Configuration

Here is an example configuration

log4j.rootCategory=INFO, mongo

log4j.appender.mongo=org.springframework.data.document.mongodb.1log4j.MongoLog4jAppende
.

log4j.appender.mongo.layout=org.apache.log4j.PatternLayout
log4j.appender.mongo.layout.ConversionPattern=%d %p [%c] - <%m>%n
log4j.appender.mongo.host = localhost

log4j.appender.mongo.port = 27017

log4j.appender.mongo.database = logs

log4j.appender.mongo.collectionPattern = %X{year}%X{month}
log4j.appender.mongo.applicationId = my.application
log4j.appender.mongo.warnOrHigherWriteConcern = FSYNC_SAFE

log4j.category.org.apache.activemq=ERROR
log4j.category.org.springframework.batch=DEBUG
log4j.category.org.springframework.data.document.mongodb=DEBUG
log4j.category.org.springframework.transaction=INFO

The important configuration to look at aside from host and port is the database and
collectionPattern. The variables year, month, day and hour are available for you to use in forming a
collection name. This is to support the common convention of grouping log information in a
collection that corresponds to a specific time period, for example a collection per day.

There is also an applicationld which is put into the stored message. The document stored from
logging as the following keys: level, name, applicationId, timestamp, properties, traceback, and
message.

16.1.1. Using authentication

The MongoDB Log4j appender can be configured to use username/password authentication.
Authentication is performed using the specified database. A different authenticationDatabase can be
specified to override the default behavior.

175

t...
log4j.appender.mongo.username = admin
log4j.appender.mongo.password = test

log4j.appender.mongo.authenticationDatabase = logs
...

Authentication failures lead to exceptions during logging and are propagated to the
caller of the logging method.

NOTE

176

Chapter 17. JMX support

The JMX support for MongoDB exposes the results of executing the 'serverStatus' command on the
admin database for a single MongoDB server instance. It also exposes an administrative MBean,
MongoAdmin which will let you perform administrative operations such as drop or create a
database. The JMX features build upon the JMX feature set available in the Spring Framework. See
here for more details.

17.1. MongoDB JMX Configuration

Spring’s Mongo namespace enables you to easily enable JMX functionality

177

http://docs.spring.io/spring/docs/5.0.0.RC2/spring-framework-reference/html/jmx.html

Example 110. XML schema to configure MongoDB

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:mongo="http://www.springframework.org/schema/data/mongo"
xsi:schemalocation="
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-3.0.xsd
http://www.springframework.org/schema/data/mongo
http://www.springframework.org/schema/data/mongo/spring-mongo-1.0.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

<!-- Default bean name is 'mongo' -->
<mongo:mongo-client host="localhost" port="27017"/>

<!-- by default look for a Mongo object named 'mongo' -->
<mongo: jmx/>

<context:mbean-export/>
<!-- To translate any MongoExceptions thrown in @Repository annotated classes
<context:annotation-config/>

<bean id="registry" class=
"org.springframework.remoting.rmi.RmiRegistryFactoryBean" p:port="1099" />

<!-- Expose JMX over RMI -->
<bean id="serverConnector" class=
"org.springframework.jmx.support.ConnectorServerFactoryBean"
depends-on="registry"
p:objectName="connector:name=rmi"
p:servicelrl=
"service:jmx:rmi://localhost/jndi/rmi://localhost:1099/myconnector” />

</beans>

This will expose several MBeans

AssertMetrics
* BackgroundFlushingMetrics
e BtreeIndexCounters

¢ ConnectionMetrics

GloballLoclMetrics

178

* MemoryMetrics
* OperationCounters
* ServerInfo

* MongoAdmin

This is shown below in a screenshot from JConsole

Java Monitoring & Management Console - pid: 8120 org.springframework. data. document. mongodb..

L OX

|£| Connection Window Help
==

| Overvigw | Memary | Threads || Classes | Y1 Summary | MBeans |

Operation invacation

=3 MImplementation

! {3 com. mongodb -
{3 cam.sun. management ¥l [G opDatabase] (pl String b

E-{23) java.util. logging
-{33) javax. management.remote.rmi
B@ org.springframework . dats. document. rmongodb
. =23 Mongoadrmin
=~ org.springframework.data.document. mongodb. Mongoadmin #0 .
E‘ﬁ ¥0id [ateDatabase] {pl | String |)

‘-getDatabaseStats

- Motifications

=13 org.springframewaork. data.document. mongodh. monitor
BH2) Assertvetrics
-3 BackgroundFlushingvetrics ! !
B E.treeglndex(bunterg Javalang String getDatabaseStats] (pl | String |)
) ConnectionMetrics
() GlobalLockMetrics
) Memoryietrics
[Oper ationCounters
[+ ServerInfo

179

Chapter 18. MongoDB 3.0 Support

Spring Data MongoDB allows usage of both MongoDB Java driver generations 2 and 3 when
connecting to a MongoDB 2.6/3.0 server running MMap.v1 or a MongoDB server 3.0 using MMap.v1
or the WiredTiger storage engine.

Please refer to the driver and database specific documentation for major

NOTE
differences between those.

Operations that are no longer valid using a 3.x MongoDB Java driver have been

NOTE
deprecated within Spring Data and will be removed in a subsequent release.

18.1. Using Spring Data MongoDB with MongoDB 3.0

18.1.1. Configuration Options

Some of the configuration options have been changed / removed for the mongo-java-driver. The
following options will be ignored using the generation 3 driver:

* autoConnectRetry
* maxAutoConnectRetryTime

¢ slaveOk

Generally it is recommended to use the <mongo:mongo-client --- /> and <mongo:client-options -+ />
elements instead of <mongo:mongo -+ /> when doing XML based configuration, since those elements
will only provide you with attributes valid for the 3 generation java driver.

<?xml version="1.0" encoding="UTF-8"7>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xmlns:mongo="http://www.springframework.org/schema/data/mongo"
xsi:schemalocation="http://www.springframework.org/schema/data/mongo

http://www.springframework.org/schema/data/mongo/spring-mongo.xsd

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<mongo:mongo-client host="127.0.0.1" port="27017">
<mongo:client-options write-concern="NORMAL" />

</mongo:mongo-client>

</beans>

18.1.2. WriteConcern and WriteConcernChecking

The WriteConcern.NONE, which had been used as default by Spring Data MongoDB, was removed in
3.0. Therefore in a MongoDB 3 environment the WriteConcern will be defaulted to

180

WriteConcern.UNACKNOWLEGED. In case WriteResultChecking.EXCEPTION is enabled the WriteConcern will
be altered to WriteConcern.ACKNOWLEDGED for write operations, as otherwise errors during execution
would not be throw correctly, since simply not raised by the driver.

18.1.3. Authentication

MongoDB Server generation 3 changed the authentication model when connecting to the DB.
Therefore some of the configuration options available for authentication are no longer valid. Please
use the MongoClient specific options for setting credentials via MongoCredential to provide
authentication data.

@Configuration
public class ApplicationContextEventTestsAppConfig extends AbstractMongoConfiguration
{

@0verride
public String getDatabaseName() {
return "database";

}

@0verride

@Bean

public MongoClient mongoClient() {

return new MongoClient(singletonList(new ServerAddress("127.0.0.1", 27017)),
singletonList(MongoCredential.createCredential("name", "db", "pwd".toCharArray(

))));

}
}

In order to use authentication with XML configuration use the credentials attribue on <mongo-
client>.

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:mongo="http://www.springframework.org/schema/data/mongo"
xsi:schemalocation="http://www.springframework.org/schema/data/mongo

http://www.springframework.org/schema/data/mongo/spring-mongo.xsd

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<mongo:mongo-client credentials="user:password@database" />

</beans>

18.1.4. Other things to be aware of

This section covers additional things to keep in mind when using the 3.0 driver.

181

* IndexOperations.resetIndexCache() is no longer supported.

* Any MapReduceOptions.extraOption is silently ignored.

* WriteResult does not longer hold error information but throws an Exception.

* MongoOperations.executeInSession(---) no longer calls requestStart / requestDone.

* Index name generation has become a driver internal operations, still we use the 2.x schema to
generate names.

* Some Exception messages differ between the generation 2 and 3 servers as well as between
MMap.v1 and WiredTiger storage engine.

182

Appendix

183

Appendix A: Namespace reference

The <repositories /> element

The <repositories /> element triggers the setup of the Spring Data repository infrastructure. The
most important attribute is base-package which defines the package to scan for Spring Data
repository interfaces. [3: see XML configuration]

Table 9. Attributes

Name

base-package

repository-impl-

postfix

query-lookup-strategy

named-queries-location

consider-nested-
repositories

184

Description

Defines the package to be used to be scanned for repository interfaces
extending *Repository (actual interface is determined by specific Spring
Data module) in auto detection mode. All packages below the configured
package will be scanned, too. Wildcards are allowed.

Defines the postfix to autodetect custom repository implementations.
Classes whose names end with the configured postfix will be considered
as candidates. Defaults to Impl.

Determines the strategy to be used to create finder queries. See Query
lookup strategies for details. Defaults to create-if-not-found.

Defines the location to look for a Properties file containing externally
defined queries.

Controls whether nested repository interface definitions should be
considered. Defaults to false.

Appendix B: Populators namespace
reference

The <populator /> element

The <populator /> element allows to populate the a data store via the Spring Data repository
infrastructure. [4: see XML configuration]

Table 10. Attributes

Name Description
locations Where to find the files to read the objects from the repository shall be
populated with.

185

Appendix C: Repository query keywords
Supported query keywords

The following table lists the keywords generally supported by the Spring Data repository query
derivation mechanism. However, consult the store-specific documentation for the exact list of
supported keywords, because some listed here might not be supported in a particular store.

Table 11. Query keywords

Logical keyword Keyword expressions

AND And

OR Or

AFTER After, IsAfter

BEFORE Before, IsBefore

CONTAINING Containing, IsContaining, Contains
BETWEEN Between, IsBetween

ENDING_WITH EndingWith, IsEndingWith, EndsWith
EXISTS Exists

FALSE

GREATER_THAN

GREATER_THAN_EQUALS

False, IsFalse
GreaterThan, IsGreaterThan

GreaterThanEqual, IsGreaterThanEqual

IN In, IsIn

IS Is, Equals, (or no keyword)
IS_EMPTY IsEmpty, Empty
IS_NOT_EMPTY IsNotEmpty, NotEmpty
IS_NOT_NULL NotNull, IsNotNull

IS_NULL Null, IsNull

LESS_THAN

LESS_THAN_EQUAL

LessThan, IsLessThan

LessThanEqual, IsLessThanEqual

LIKE Like, IsLike

NEAR Near, IsNear

NOT Not, IsNot

NOT_IN NotIn, IsNotIn

NOT_LIKE NotLike, IsNotLike

REGEX Regex, MatchesRegex, Matches
STARTING_WITH StartingWith, IsStartingWith, StartsWith
TRUE True, IsTrue

WITHIN

186

Within, IsWithin

Appendix D: Repository query return types

Supported query return types

The following table lists the return types generally supported by Spring Data repositories. However,
consult the store-specific documentation for the exact list of supported return types, because some
listed here might not be supported in a particular store.

NOTE

Geospatial types like (GeoResult, GeoResults, GeoPage) are only available for data

stores that support geospatial queries.

Table 12. Query return types

Return type
void

Primitives
Wrapper types
I

Iterator<T>
Collection<T>
List<T>
Optional<T>

Option<T>

Stream<T>

Future<T>

CompletableFuture<T>

ListenableFuture

Slice

Page<T>

GeoResult<T>

Description

Denotes no return value.
Java primitives.

Java wrapper types.

An unique entity. Expects the query method to return one result at most.
In case no result is found null is returned. More than one result will
trigger an IncorrectResultSizeDataAccessException.

An Iterator.
A Collection.
A List.

A Java 8 or Guava Optional. Expects the query method to return one
result at most. In case no result is found Optional.empty()
/Optional.absent() is returned. More than one result will trigger an
IncorrectResultSizeDataAccessException.

An either Scala or JavaSlang Option type. Semantically same behavior as
Java 8’s Optional described above.

AJava 8 Stream.

A Future. Expects method to be annotated with @Async and requires
Spring’s asynchronous method execution capability enabled.

AJava 8 CompletableFuture. Expects method to be annotated with @Async
and requires Spring’s asynchronous method execution capability
enabled.

Aorg.springframework.util.concurrent.ListenableFuture. Expects method
to be annotated with @Async and requires Spring’s asynchronous method
execution capability enabled.

A sized chunk of data with information whether there is more data
available. Requires a Pageable method parameter.

A Slice with additional information, e.g. the total number of results.
Requires a Pageable method parameter.

A result entry with additional information, e.g. distance to a reference
location.

187

Return type Description

GeoResults<T> A list of GeoResult<T> with additional information, e.g. average distance to
a reference location.

GeoPage<T> A Page with GeoResult<T>, e.g. average distance to a reference location.

188

	Spring Data MongoDB - Reference Documentation
	Table of Contents
	Preface
	Chapter 1. Knowing Spring
	Chapter 2. Knowing NoSQL and Document databases
	Chapter 3. Requirements
	Chapter 4. Additional Help Resources
	4.1. Support
	4.1.1. Community Forum
	4.1.2. Professional Support

	4.2. Following Development

	Chapter 5. New & Noteworthy
	5.1. What’s new in Spring Data MongoDB 2.0
	5.2. What’s new in Spring Data MongoDB 1.10
	5.3. What’s new in Spring Data MongoDB 1.9
	5.4. What’s new in Spring Data MongoDB 1.8
	5.5. What’s new in Spring Data MongoDB 1.7

	Chapter 6. Dependencies
	6.1. Dependency management with Spring Boot
	6.2. Spring Framework

	Chapter 7. Working with Spring Data Repositories
	7.1. Core concepts
	7.2. Query methods
	7.3. Defining repository interfaces
	7.3.1. Fine-tuning repository definition
	7.3.2. Using Repositories with multiple Spring Data modules

	7.4. Defining query methods
	7.4.1. Query lookup strategies
	7.4.2. Query creation
	7.4.3. Property expressions
	7.4.4. Special parameter handling
	7.4.5. Limiting query results
	7.4.6. Streaming query results
	7.4.7. Async query results

	7.5. Creating repository instances
	7.5.1. XML configuration
	7.5.2. JavaConfig
	7.5.3. Standalone usage

	7.6. Custom implementations for Spring Data repositories
	7.6.1. Adding custom behavior to single repositories
	7.6.2. Adding custom behavior to all repositories

	7.7. Publishing events from aggregate roots
	7.8. Spring Data extensions
	7.8.1. Querydsl Extension
	7.8.2. Web support
	7.8.3. Repository populators
	7.8.4. Legacy web support

	Reference Documentation
	Chapter 8. Introduction
	8.1. Document Structure

	Chapter 9. MongoDB support
	9.1. Getting Started
	9.2. Examples Repository
	9.3. Connecting to MongoDB with Spring
	9.3.1. Registering a Mongo instance using Java based metadata
	9.3.2. Registering a Mongo instance using XML based metadata
	9.3.3. The MongoDbFactory interface
	9.3.4. Registering a MongoDbFactory instance using Java based metadata
	9.3.5. Registering a MongoDbFactory instance using XML based metadata

	9.4. Introduction to MongoTemplate
	9.4.1. Instantiating MongoTemplate
	9.4.2. WriteResultChecking Policy
	9.4.3. WriteConcern
	9.4.4. WriteConcernResolver

	9.5. Saving, Updating, and Removing Documents
	9.5.1. How the _id field is handled in the mapping layer
	9.5.2. Type mapping
	9.5.3. Methods for saving and inserting documents
	9.5.4. Updating documents in a collection
	9.5.5. Upserting documents in a collection
	9.5.6. Finding and Upserting documents in a collection
	9.5.7. Methods for removing documents
	9.5.8. Optimistic locking

	9.6. Querying Documents
	9.6.1. Querying documents in a collection
	9.6.2. Methods for querying for documents
	9.6.3. GeoSpatial Queries
	9.6.4. GeoJSON Support
	9.6.5. Full Text Queries
	9.6.6. Collations

	9.7. Query by Example
	9.7.1. Introduction
	9.7.2. Usage
	9.7.3. Example matchers
	9.7.4. Executing an example

	9.8. Map-Reduce Operations
	9.8.1. Example Usage

	9.9. Script Operations
	9.9.1. Example Usage

	9.10. Group Operations
	9.10.1. Example Usage

	9.11. Aggregation Framework Support
	9.11.1. Basic Concepts
	9.11.2. Supported Aggregation Operations
	9.11.3. Projection Expressions

	9.12. Overriding default mapping with custom converters
	9.12.1. Saving using a registered Spring Converter
	9.12.2. Reading using a Spring Converter
	9.12.3. Registering Spring Converters with the MongoConverter
	9.12.4. Converter disambiguation

	9.13. Index and Collection management
	9.13.1. Methods for creating an Index
	9.13.2. Accessing index information
	9.13.3. Methods for working with a Collection

	9.14. Executing Commands
	9.14.1. Methods for executing commands

	9.15. Lifecycle Events
	9.16. Exception Translation
	9.17. Execution callbacks
	9.18. GridFS support

	Chapter 10. Reactive MongoDB support
	10.1. Getting Started
	10.2. Connecting to MongoDB with Spring and the Reactive Streams Driver
	10.2.1. Registering a MongoClient instance using Java based metadata
	10.2.2. The ReactiveMongoDatabaseFactory interface
	10.2.3. Registering a ReactiveMongoDatabaseFactory instance using Java based metadata

	10.3. Introduction to ReactiveMongoTemplate
	10.3.1. Instantiating ReactiveMongoTemplate
	10.3.2. WriteResultChecking Policy
	10.3.3. WriteConcern
	10.3.4. WriteConcernResolver

	10.4. Saving, Updating, and Removing Documents
	10.5. Infinite Streams
	10.6. Execution callbacks

	Chapter 11. MongoDB repositories
	11.1. Introduction
	11.2. Usage
	11.3. Query methods
	11.3.1. Repository delete queries
	11.3.2. Geo-spatial repository queries
	11.3.3. MongoDB JSON based query methods and field restriction
	11.3.4. JSON based queries with SpEL expressions
	11.3.5. Type-safe Query methods
	11.3.6. Full-text search queries
	11.3.7. Projections

	11.4. Miscellaneous
	11.4.1. CDI Integration

	Chapter 12. Reactive MongoDB repositories
	12.1. Introduction
	12.2. Reactive Composition Libraries
	12.3. Usage
	12.4. Features
	12.4.1. Geo-spatial repository queries

	12.5. Infinite Streams with Tailable Cursors

	Chapter 13. Auditing
	13.1. Basics
	13.1.1. Annotation based auditing metadata
	13.1.2. Interface-based auditing metadata
	13.1.3. AuditorAware

	13.2. General auditing configuration

	Chapter 14. Mapping
	14.1. Convention based Mapping
	14.1.1. How the _id field is handled in the mapping layer

	14.2. Data mapping and type conversion
	14.3. Mapping Configuration
	14.4. Metadata based Mapping
	14.4.1. Mapping annotation overview
	14.4.2. Customized Object Construction
	14.4.3. Compound Indexes
	14.4.4. Text Indexes
	14.4.5. Using DBRefs
	14.4.6. Mapping Framework Events
	14.4.7. Overriding Mapping with explicit Converters

	Chapter 15. Cross Store support
	15.1. Cross Store Configuration
	15.2. Writing the Cross Store Application

	Chapter 16. Logging support
	16.1. MongoDB Log4j Configuration
	16.1.1. Using authentication

	Chapter 17. JMX support
	17.1. MongoDB JMX Configuration

	Chapter 18. MongoDB 3.0 Support
	18.1. Using Spring Data MongoDB with MongoDB 3.0
	18.1.1. Configuration Options
	18.1.2. WriteConcern and WriteConcernChecking
	18.1.3. Authentication
	18.1.4. Other things to be aware of

	Appendix
	Appendix A: Namespace reference
	The <repositories /> element

	Appendix B: Populators namespace reference
	The <populator /> element

	Appendix C: Repository query keywords
	Supported query keywords

	Appendix D: Repository query return types
	Supported query return types

