

 Costin Leau , David Turanski , John Blum , Oliver Gierke

 PREFACE

Spring Data GemFire focuses on integrating the Spring Framework’s powerful, non-invasive programming model and concepts with Pivotal GemFire, simplifying configuration, development and providing high-level abstractions. This document assumes the reader already has a basic familiarity with the Spring Framework and Pivotal GemFire concepts and APIs.

While every effort has been made to ensure this documentation is comprehensive and there are no errors, some topics might require more explanation and some typos might have crept in. If you do spot any mistakes or even more serious errors and you can spare a few cycles, please do bring the errors to the attention of the Spring Data GemFire team by raising an issue﻿. Thank you.

 Costin Leau , David Turanski , John Blum , Oliver Gierke

 INTRODUCTION

This reference guide for Spring Data GemFire explains how to use the Spring Framework to configure
and develop applications with Pivotal GemFire. It presents the basic concepts, semantics and provides numerous examples
to help you get started.

Spring Data GemFire started as a top-level Spring project called Spring GemFire (SGF) and since then
has been moved under the Spring Data umbrella project and renamed accordingly.

 Costin Leau , David Turanski , John Blum , Oliver Gierke

 REQUIREMENTS

Spring Data GemFire requires JDK 6.0 or above, Spring Framework﻿ 3
and Pivotal GemFire﻿ 6.6 or above (version 7 or above is recommended).

 Costin Leau , David Turanski , John Blum , Oliver Gierke

 NEW FEATURES

As of the 1.2.0 release, this project, formerly known as Spring GemFire, has been renamed to Spring Data GemFire
to reflect that it is now a component of the Spring Data﻿ project.

New in the 1.2 Release

	
Full support for GemFire configuration via the SDG gfe﻿ namespace. Now GemFire components may be configured completely without requiring a native cache.xml﻿ file.

	
WAN Gateway support for GemFire 6.6.x. See [bootstrap:gateway]﻿.

	
Spring Data Repository support using a dedicated SDG namespace, gfe-data﻿. See [gemfire-repositories]﻿

	
Namespace support for registering GemFire Functions. See [bootstrap:function]﻿

	
A top-level <disk-store>﻿ element has been added to the SDG gfe﻿ namespace to allow sharing of persist stores among Regions,
and other components that support persistent backup or overflow. See [bootstrap-diskstore]﻿

The <*-region>﻿ elements no longer allow a nested <disk-store>﻿ element.

	
GemFire Sub-Regions are supported via nested <*-region>﻿ elements.

	
A <local-region>﻿ element has been added to configure a Local Region.

	
Support for the re-designed WAN Gateway in GemFire 7.0.

New in the 1.3 Release

	
Annotation support for GemFire Functions. It is now possible to declare and register Functions written as POJOs using annotations. In addition, Function executions are defined as
annotated interfaces, similar to the way Spring Data Repositories work. See [function-annotations]﻿.

	
Added a <datasource>﻿ element to the SDG gfe-data﻿ namespace to simplify establishing a basic client connection﻿ to a GemFire data grid.

	
Added a <json-region-autoproxy>﻿ element to the SDG gfe-data﻿ namespace to support JSON﻿ features introduced
in GemFire 7.0, enabling Spring AOP to perform the necessary conversions automatically on Region operations.

	
Upgraded to GemFire 7.0.1 and added namespace support for new AsyncEventQueue attributes.

	
Added support for setting subscription interest policy on Regions.

	
Support for void returns on Function executions. See [function-annotations]﻿ for complete details.

	
Support for persisting Local Regions. See [bootstrap:region:local]﻿ and [bootstrap:region:common:attributes]﻿.

	
Support for entry time-to-live and entry idle-time on a GemFire Client Cache. See [bootstrap:cache:client]﻿.

	
Support for multiple Spring Data GemFire web-based applications using a single GemFire cluster, operating concurrently inside tc Server.

	
Support for concurrency-checks-enabled on all GemFire Cache Region definitions using the SDG gfe﻿ namespace. See [bootstrap:region:common:attributes]﻿.

	
Support for Cache Loaders and Cache Writers on Client, Local Regions. See [bootstrap:region:common:loaders-writers]﻿.

	
Support for registering CacheListeners, AsyncEventQueues and Gateway Senders on GemFire Cache Sub-Regions.

	
Support for PDX persistent keys in GemFire Regions.

	
Support for correct Partition Region bean creation in a Spring context when collocation is specified with the colocated-with﻿ attribute.

	
Full support for GemFire Cache Sub-Regions using proper, nested <*-region>﻿ element syntax in the SDG gfe﻿ namespace.

	
Upgraded Spring Data GemFire to Spring Framework 3.2.8.

	
Upgraded Spring Data GemFire to Spring Data Commons 1.7.1.

New in the 1.4 Release

	
Upgrades Spring Data GemFire to GemFire 7.0.2.

	
Upgrades Spring Data GemFire to Spring Data Commons 1.8.0.

	
Upgrades Spring Data GemFire to Spring Framework 3.2.9.

	
Integrates Spring Data GemFire with Spring Boot, which includes both a spring-boot-starter-data-gemfire﻿ POM
along with a Spring Boot sample application demonstrating GemFire Cache Transactions configured with SDG
and bootstrapped with Spring Boot.

	
Support for bootstrapping a Spring Context in a GemFire Server when started from Gfsh.
See [gemfire-bootstrap]﻿ for more details.

	
Support for persisting application domain object/entities to multiple GemFire Cache Regions.
See [mapping.entities]﻿ for more details.

	
Support for persisting application domain object/entities to GemFire Cache Sub-Regions, avoiding collisions
when Sub-Regions are uniquely identifiable, but identically named.
See [mapping.entities]﻿ for more details.

	
Adds strict XSD type rules to, and full support for, Data Policies and Region Shortcuts on all GemFire
Cache Region types.

	
Changed the default behavior of SDG <*-region>﻿ elements from lookup to always create a new Region
along with an option to restore old behavior using the ignore-if-exists﻿ attribute.
See Common Region Attributes﻿ and [bootstrap:region:common:regions-subregions-lookups-caution]﻿
for more details.

	
Enables Spring Data GemFire to be fully built and ran on JDK 7 and JDK 8 (Note, however, GemFire has not yet
been fully tested and supported on JDK 8;
See GemFire User Guide﻿
for additional details.

New in the 1.5 Release

	
Upgrades Spring Data GemFire to Spring Data Commons 1.9.0

	
Upgrades Spring Data GemFire to Spring Framework 4.0.7

	
Reference Guide migrated to Asciidoc

	
Renewed support for deploying Spring Data GemFire in an OSGi container.

	
Removed all default values in the Spring Data GemFire XML namespace Region-type elements, relying on GemFire defaults
instead.

	
Added convenience to automatically create Disk Store directory locations without the need to create them manually,
as required by GemFire.

	
SDG annotated Functions can now be executed from Gfsh.

	
Enable GemFire GatewayReceivers to be started manually.

	
Support for Auto Region Lookups. See [bootstrap:region:auto-lookup]﻿ for further details.

	
Support for Region Templates See [bootstrap:region:common:region-templates]﻿ for further details.

New in the 1.6 Release

	
Upgrades Spring Data GemFire to GemFire 8.0.

	
Adds support for GemFire 8’s new Cluster-based Configuration.

	
Enables 'auto-reconnect' functionality to be employed in Spring-configured GemFire Servers.

	
Allows the creation of concurrent and parallel Async Event Queues and Gateway Senders.

	
Adds support for GemFire 8’s Region data compression.

	
Adds attributes to set both critical and warning percentages on Disk Store usage.

	
Supports the capability to add the new EventSubstitutionFilters to GatewaySenders.

New in the 1.7 Release

	
Upgrades Spring Data GemFire to GemFire 8.1.0.

	
Early Access support for Apache Geode.

	
Support for adding Spring defined Cache Listeners, Loaders and Writers on "existing" GemFire Regions configured in Spring XML,
cache.xml﻿ or even with GemFire’s Cluster Config﻿.

	
Spring JavaConfig support added to SpringContextBootstrappingInitializer﻿.

	
Support for custom ClassLoaders﻿ in SpringContextBootstrappingInitializer﻿ to load Spring-defined bean classes.

	
Support for LazyWiringDeclarableSupport﻿ re-initialization and complete replacement for WiringDeclarableSupport﻿.

	
Adds locators﻿ and servers﻿ attributes to the <gfe:pool>﻿ element allowing variable Locator/Server
endpoint lists configured with Spring’s property placeholders.

	
Enables the use of <gfe-data:datasource>﻿ element with non-Spring configured GemFire Servers.

	
Multi-Index definition and creation support.

	
[bootstrap:region:expiration:annotation]﻿

	
[gemfire-repositories.oql-extension]﻿

	
[bootstrap:snapshot]﻿

New in the 1.8 Release

	
Upgrades Spring Data GemFire to GemFire 8.2.0.

 Costin Leau , David Turanski , John Blum , Oliver Gierke

 DOCUMENT STRUCTURE

The following chapters explain the core functionality offered by Spring Data GemFire.

[bootstrap]﻿ describes the configuration support provided for bootstrapping, configuring, initializing and accessing GemFire Caches, Cache Servers, Regions, and related Distributed System components.

[apis]﻿ explains the integration between the GemFire APIs and the various data access features available in Spring, such as transaction management and exception translation.

[serialization]﻿ describes the enhancements for GemFire (de)serialization and management of associated objects.

[mapping]﻿ describes persistence mapping for POJOs stored in GemFire using Spring Data.

[gemfire-repositories]﻿ describes how to create and use GemFire Repositories using Spring Data.

[function-annotations]﻿ describes how to create and use GemFire Functions using annotations.

[gemfire-bootstrap]﻿ describes how to bootstrap a Spring ApplicationContext running in a GemFire Server using Gfsh.

[samples]﻿ describes the samples provided with the distribution to illustrate the various features available in Spring Data GemFire.

 Costin Leau , David Turanski , John Blum , Oliver Gierke

 BOOTSTRAPPING GEMFIRE THROUGH THE SPRING CONTAINER

Spring Data GemFire provides full configuration and initialization of the GemFire data grid through Spring’s IoC container and provides several classes that simplify the configuration of GemFire components including Caches, Regions, WAN Gateways, Persistence Backup, and other Distributed System components to support a variety of scenarios with minimal effort.

This section assumes basic familiarity with GemFire. For more information see the product documentation﻿.

Advantages of using Spring over GemFire cache.xml﻿

As of release 1.2.0, Spring Data GemFire’s XML namespace supports full configuration of the GemFire in-memory data grid.
In fact, Spring Data GemFire’s XML namespace is considered to be the preferred way to configure GemFire.
GemFire will continue to support native cache.xml﻿ for legacy reasons, but GemFire application developers can now do
everything in Spring XML and take advantage of the many wonderful things Spring has to offer such as
modular XML configuration, property placeholders and overrides, SpEL, and environment profiles. Behind the
XML namespace, Spring Data GemFire makes extensive use of Spring’s FactoryBean﻿ pattern to simplify the creation,
configuration and initialization of GemFire components.

For example, GemFire provides several callback interfaces, such as CacheListener﻿, CacheWriter﻿, and CacheLoader﻿,
that allow developers to add custom event handlers. Using Spring’s IoC container, these callbacks may be configured
as normal Spring beans and injected into GemFire components. This is a significant improvement over native cache.xml﻿,
which provides relatively limited configuration options and requires callbacks to implement GemFire’s Declarable﻿ interface
(see [apis:declarable]﻿ to see how you can still use Declarables﻿ within Spring’s IoC/DI container).

In addition, IDEs such as the Spring Tool Suite (STS) provide excellent support for Spring XML namespaces, such as
code completion, pop-up annotations, and real time validation, making them easy to use.

Using the Core Spring Data GemFire Namespace

To simplify configuration, Spring Data GemFire provides a dedicated XML namespace for configuring core GemFire components.
It is also possible to configure beans directly using Spring’s standard <bean> definition. However, as of
Spring Data GemFire 1.2.0, all bean properties are exposed via the XML namespace so there is little benefit to using
raw bean definitions. For more information about XML Schema-based configuration in Spring, see
this﻿ appendix
in the Spring Framework reference documentation.

Spring Data Repository support uses a separate XML namespace. See [gemfire-repositories]﻿ for more information
on how to configure Spring Data GemFire Repositories.

To use the Spring Data GemFire XML namespace, simply declare it in your Spring XML configuration meta-data:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:gfe="http://www.springframework.org/schema/gemfire" ① ②
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/gemfire http://www.springframework.org/schema/gemfire/spring-gemfire.xsd"> ③

 <bean id ... >

 <gfe:cache ...> ④

</beans>

	① Spring GemFire namespace prefix. Any name will do but through out the reference documentation, gfe﻿ will be used.

	② The namespace URI.

	③ The namespace URI location. Note that even though the location points to an external address (which exists and is valid), Spring will resolve the schema locally as it is included in the Spring Data GemFire library.

	④ Declaration example for the GemFire namespace. Notice the prefix usage.

It is possible to change the default namespace, for example from beans﻿ to gfe﻿. This is useful for configuration
composed mainly of GemFire components as it avoids declaring the prefix. To achieve this, simply swap the namespace
prefix declaration above:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/gemfire" ①
 xmlns:beans="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" ②
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/gemfire http://www.springframework.org/schema/gemfire/spring-gemfire.xsd">

 <beans:bean id ... > ③

 <cache ...> ④

</beans>

	① The default namespace declaration for this XML file points to the Spring Data GemFire namespace.

	② The beans﻿ namespace prefix declaration.

	③ Bean declaration using the beans﻿ namespace. Notice the prefix.

	④ Bean declaration using the gfe﻿ namespace. Notice the lack of prefix (as the default namespace is used).

Configuring a GemFire Cache

In order to use GemFire, a developer needs to either create a new Cache﻿ or connect to an existing one.
In the current version of GemFire, there can be only one open Cache per VM (or per ClassLoader﻿ to be
technically correct). In most cases the Cache should only be created once.

This section describes the creation and configuration of a full Cache member, appropriate for peer-to-peer
cache topologies and cache servers. A full cache is also commonly used for standalone applications, integration tests
and proofs of concept. In a typical production system, most application processes will act as cache clients
and will create a ClientCache﻿ instance instead. This is described in the sections Configuring a GemFire Client Cache﻿
and Client Region﻿

A cache with default configuration can be created with a very simple declaration:

<gfe:cache/>

Upon initialization, a Spring application context containing this cache definition will register a CacheFactoryBean﻿
to create a Spring bean named gemfireCache﻿ referencing a GemFire Cache﻿ instance. This will either be an
existing cache, or if one does not already exist, a newly created one. Since no additional properties were specified,
a newly created cache will apply the default cache configuration.

All Spring Data GemFire components that depend on the cache respect this naming convention so that there is no need
to explicitly declare the cache dependency. If you prefer, you can make the dependency explicit via the cache-ref﻿
attribute provided by various namespace elements. Also, you can easily override the cache’s bean name:

<gfe:cache id="my-cache"/>

Starting with Spring Data GemFire 1.2.0, the GemFire Cache﻿ may be fully configured using Spring. However, GemFire’s
native XML configuration file, cache.xml﻿, is also supported. For scenarios in which the GemFire Cache needs to be
configured natively, simply provide a reference to the GemFire configuration file using the cache-xml-location﻿
attribute:

<gfe:cache id="cache-using-native-xml" cache-xml-location="classpath:cache.xml"/>

In this example, if the cache needs to be created, it will use the file named cache.xml﻿ located in the classpath root.

Note that the configuration makes use of Spring’s Resource﻿﻿
abstraction to locate the file. This allows various search patterns to be used, depending on the runtime environment
or the prefix specified (if any) in the resource location.

In addition to referencing an external configuration file one can specify GemFire properties﻿
using any of Spring’s common properties support features. For example, one can use the properties﻿ element
defined in the util﻿ namespace to define properties directly or load properties from a properties file. The latter is
recommended for externalizing environment specific settings outside the application configuration:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:gfe="http://www.springframework.org/schema/gemfire"
 xmlns:util="http://www.springframework.org/schema/util"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/gemfire http://www.springframework.org/schema/gemfire/spring-gemfire.xsd
 http://www.springframework.org/schema/util http://www.springframework.org/schema/util/spring-util.xsd">

 <util:properties id="gemfireProperties" location="file:/pivotal/gemfire/gemfire.properties"/>

 <gfe:cache properties-ref="gemfireProperties"/>

</beans>

The cache settings apply only if a new cache needs to be created. If an open cache already exists in the VM,
these settings will be ignored.

Advanced Cache Configuration

For advanced cache configuration, the cache﻿ element provides a number of configuration options exposed as attributes
or child elements:

 ①
<gfe:cache
 close="false"
 copy-on-read="true"
 critical-heap-percentage="70"
 eviction-heap-percentage="60"
 enable-auto-reconnect="false" ②
 lock-lease="120"
 lock-timeout="60"
 message-sync-interval="1"
 pdx-serializer-ref="myPdxSerializer"
 pdx-persistent="true"
 pdx-disk-store="diskStore"
 pdx-read-serialized="false"
 pdx-ignore-unread-fields="true"
 search-timeout="300"
 use-cluster-configuration="false" ③
 lazy-init="true">

 <gfe:transaction-listener ref="myTransactionListener"/> ④

 <gfe:transaction-writer> ⑤
 <bean class="org.springframework.data.gemfire.example.TransactionListener"/>
 </gfe:transaction-writer>

 <gfe:gateway-conflict-resolver ref="myGatewayConflictResolver"/> ⑥

 <gfe:dynamic-region-factory/> ⑦

 <gfe:jndi-binding jndi-name="myDataSource" type="ManagedDataSource"/> ⑧

</gfe:cache>

	① Various cache options are supported by attributes. For further information regarding anything shown in this example, please consult the GemFire product documentation﻿.
The close﻿ attribute determines if the cache should be closed when the Spring application context is closed. The default is true﻿ however for cases in which multiple application contexts use the cache (common in web applications), set this value to false﻿.
The lazy-init﻿ attribute determines if the cache should be initialized before another bean references it. The default is true﻿ however in some cases it may be convenient to set this value to false﻿.

	② Setting the enable-auto-reconnect﻿ attribute to true (default is false), allows a disconnected GemFire member to automatically reconnect and rejoin a GemFire cluster.
See the GemFire product documentation﻿ for more details.

	③ Setting the use-cluster-configuration﻿ attribute to true (default is false) to enable a GemFire member to retrieve the common, shared Cluster-based configuration from a Locator.
See the GemFire product documentation﻿ for more details.

	④ An example of a TransactionListener﻿ callback declaration using a bean reference. The referenced bean must implement
TransactionListener﻿.
TransactionListener(s)﻿ can be implemented to handle transaction related events.

	⑤ An example of a TransactionWriter﻿ callback declaration using an inner bean declaration this time. The bean must implement
TransactionWriter﻿.
TransactionWriter﻿ is a callback that is allowed to veto a transaction.

	⑥ An example of a GatewayConflictResolver﻿ declaration using a bean reference. The referenced bean must implement
GatewayConflictResolver﻿.
GatewayConflictResolver is a Cache-level plugin that is called upon to decide what to do with events that originate in other systems and arrive through the WAN Gateway.

	⑦ Enable GemFire’s DynamicRegionFactory﻿,
which provides a distributed region creation service.

	⑧ Declares a JNDI binding to enlist an external DataSource in a GemFire transaction.

The use-bean-factory-locator﻿ attribute (not shown) deserves a mention. The factory bean responsible for
creating the cache uses an internal Spring type called a BeanFactoryLocator﻿ to enable user classes declared in
GemFire’s native cache.xml﻿ to be registered as Spring beans. The BeanFactoryLocator﻿ implementation also permits
only one bean definition for a cache with a given id. In certain situations, such as running JUnit integration tests
from within Eclipse, it is necessary to disable the BeanFactoryLocator﻿ by setting this value to false to prevent
an exception. This exception may also arise during JUnit tests running from a build script. In this case the test runner
should be configured to fork a new JVM for each test (in maven, set <forkmode>always</forkmode>﻿) . Generally, there is
no harm in setting this value to false.

Enabling PDX Serialization

The example above includes a number of attributes related to GemFire’s enhanced serialization framework, PDX.
While a complete discussion of PDX is beyond the scope of this reference guide, it is important to note that PDX
is enabled by registering a PDX serializer which is done via the pdx-serializer﻿ attribute. GemFire provides
an implementation class com.gemstone.gemfire.pdx.ReflectionBasedAutoSerializer﻿, however it is common for developers
to provide their own implementation. The value of the attribute is simply a reference to a Spring bean that implements
the required interface. More information on serialization support can be found in [serialization]﻿

Enabling auto-reconnect

Setting the <gfe:cache enable-auto-reconnect="[true|false*]>﻿ attribute to true should be done with care.

Generally, enabling 'auto-reconnect' should only be done in cases where Spring Data GemFire’s XML namespace is used to
configure and bootstrap a new GemFire Server data node to add to the cluster. In other words, 'auto-reconnect'
should not be used when Spring Data GemFire is used to develop and build an GemFire application that also happens
to be a peer cache member of the GemFire cluster.

The main reason is most GemFire applications use references to the GemFire cache or regions in order to perform
data access operations. The references are "injected" by the Spring container into application components (e.g. DAOs
or Repositories) for use by the application. When a member (such as the application) is forcefully disconnected
from the rest of the cluster, presumably because the member (the application) has become unresponsive for
a period of time, or network partition separates one or more members (along with the application peer cache member) into
a group that is too small to act as the distributed system, the member will shutdown and all GemFire component references
(e.g. Cache, Regions, etc) become invalid.

Essentially, the current forced-disconnect processing in each member dismantles the system from the ground up.
It shuts down the JGroups stack, puts the Distributed System in a shut-down state and then closes the Cache.
This effectively loses all in-memory information.

After being disconnected from a distributed system and successfully shutting down, the GemFire member then restarts in a
"reconnecting" state, while periodically attempting to rejoin the distributed system. If the member succeeds in reconnecting,
the member rebuilds its "view" of the distributed system from existing members and receives a new distributed system ID.

This means the cache, regions and other GemFire components are reconstructed and all old references that may have been
injected into application are now stale and no longer valid.

GemFire makes no guarantee, even when using the GemFire public Java API, that application cache, region or other
component references will be automatically refreshed by the reconnect operation. As such, applications must take care
to refresh their own references.

Unfortunately there is no way to be "notified" of a disconnect and subsequently a reconnect event. If so, the application
developer would then have a clean way to know when to call ConfigurableApplicationContext.refresh(), if even applicable
for an application to do so, which is why this "feature" of GemFire 8 is not recommended for peer cache GemFire applications.

For more information about 'auto-reconnect', see GemFire’s product documentation﻿.

Using Cluster-based Configuration

GemFire 8’s new Cluster-based Configuration Service is a convenient way for a member joining the cluster to get a
"consistent view" of the cluster, by using the shared, persistent configuration maintained by a Locator, ensuring
the member’s configuration will be compatible with the GemFire distributed system when the member joins.

This feature of Spring Data GemFire (setting the use-cluster-configuration﻿ attribute to true) works in the same way
as the cache-xml-location﻿ attribute, except the source of the GemFire configuration meta-data comes from a network
Locator as opposed to a native cache.xml﻿ file.

All GemFire native configuration meta-data, whether from cache.xml﻿ or from the Cluster Configuration Service,
gets applied before any Spring XML configuration meta-data. As such, Spring’s config serves to "augment" the
native GemFire configuration meta-data, which would most likely be specific to the application.

Again, to enable this feature, just specify the following in the Spring XML config:

 <gfe:cache use-cluster-configuration="true"/>

While certain GemFire tools, like Gfsh, have their actions "recorded" when any schema-like change is made
(e.g. gfsh>create region --name=Example --type=PARTITION﻿) to the cluster, Spring Data GemFire’s configuration meta-data
specified with the XML namespace is not recorded. The same is true when using GemFire’s public Java API directly;
it too is not recorded.

For more information on GemFire’s Cluster Configuration Service, see the
product documentation﻿.

Configuring a GemFire Cache Server

In Spring Data GemFire 1.1 dedicated support for configuring a CacheServer﻿ was added, allowing complete configuration through the Spring container:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:gfe="http://www.springframework.org/schema/gemfire"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/gemfire http://www.springframework.org/schema/gemfire/spring-gemfire.xsd
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context.xsd">

 <gfe:cache />

 <!-- Advanced example depicting various cache server configuration options -->
 <gfe:cache-server id="advanced-config" auto-startup="true"
 bind-address="localhost" port="${gfe.port.6}" host-name-for-clients="localhost"
 load-poll-interval="2000" max-connections="22" max-threads="16"
 max-message-count="1000" max-time-between-pings="30000"
 groups="test-server">

 <gfe:subscription-config eviction-type="ENTRY" capacity="1000" disk-store="file://${java.io.tmpdir}"/>
 </gfe:cache-server>

 <context:property-placeholder location="classpath:cache-server.properties"/>

</beans>

The configuration above illustrates the cache-server﻿ element and the many options available.

Rather than hard-coding the port, this configuration uses Spring’s context﻿ namespace to declare a property-placeholder﻿. property placeholder﻿ reads one or more properties file and then replaces property placeholders with values at runtime. This allows administrators to change such values without having to touch the main application configuration. Spring also provides SpEL﻿ and the environment abstraction﻿ one to support externalization of environment specific properties from the main code base, easing the deployment across multiple machines.

To avoid initialization problems, the `CacheServer`s started by Spring Data GemFire will start after﻿ the container has been fully initialized. This allows potential regions, listeners, writers or instantiators defined declaratively to be fully initialized and registered before the server starts accepting connections. Keep this in mind when programmatically configuring these items as the server might start after your components and thus not be seen by the clients connecting right away.

Configuring a GemFire Client Cache

Another configuration addition in Spring Data GemFire 1.1 is the dedicated support for configuring ClientCache﻿. This is similar to a cache﻿ in both usage and definition and supported by org.springframework.data.gemfire.clientClientCacheFactoryBean﻿.

<beans>
 <gfe:client-cache />
</beans>

client-cache﻿ supports much of the same options as the cache﻿ element. However as opposed to a full﻿ cache, a client cache connects to a remote cache server through a pool. By default a pool is created to connect to a server on localhost﻿ port 40404﻿. The the default pool is used by all client regions unless the region is configured to use a different pool.

Pools can be defined through the pool﻿ element; The client side pool﻿ can be used to configure connectivity to the server for individual entities or for the entire cache. For example, to customize the default pool used by client-cache﻿, one needs to define a pool and wire it to cache definition:

<beans>
 <gfe:client-cache id="simple" pool-name="my-pool"/>

 <gfe:pool id="my-pool" subscription-enabled="true">
 <gfe:locator host="${locatorHost}" port="${locatorPort}"/>
 </gfe:pool>
</beans>

The <client-cache> tag also includes a ready-for-events﻿ attribute. If set to true﻿, the client cache initialization will include ClientCache.readyForEvents()﻿.

Client side configuration is covered in more detail in Client Region﻿.

Using the GemFire Data Access Namespace

In addition to the core gfe﻿ namespace, Spring Data GemFire provides a gfe-data﻿ namespace intended primarily to simplify the development of GemFire client applications. This namespace currently supports for GemFire repositories﻿ and function execution﻿ and a <datasource>﻿ tag that offers a convenient way to connect to the data grid.

An Easy Way to Connect to GemFire

For many applications, A basic connection to a GemFire grid, using default values is sufficient. Spring Data GemFire’s <datasource>﻿ tag provides a simple way to access data. The data source creates a client cache and connection pool. In addition, it will query the member servers for all existing root regions and create a proxy (empty) client region for each one.

<gfe-data:datasource>
 <locator host="somehost" port="1234"/>
</gfe-data:datasource>

The datasource tag is syntactically similar to <gfe:pool>﻿. It may be configured with one or more locator or server tags to connect to an existing data grid. Additionally, all attributes available to configure a pool are supported. This configuration will automatically create ClientRegion beans for each region defined on members connected to the locator, so they may be seamlessly referenced by Spring Data mapping annotations, GemfireTemplate, and wired into application classes.

Of course, you can explicitly configure client regions. For example, if you want to cache data in local memory:

<gfe-data:datasource>
 <locator host="somehost" port="1234"/>
</gfe-data:datasource>

<gfe:client-region id="Customer" shortcut="CACHING_PROXY"/>

Configuring a GemFire Region

A region is required to store and retrieve data from the cache. Region﻿ is an interface extending java.util.Map﻿ and enables basic data access using familiar key-value semantics. The Region﻿ interface is wired into classes that require it so the actual region type is decoupled from the programming model . Typically each region is associated with one domain object, similar to a table in a relational database.

GemFire implements the following types of regions:

	
Replicated﻿ - Data is replicated across all cache members that define the region. This provides very high read performance but writes take longer to perform the replication.

	
Partioned﻿ - Data is partitioned into buckets among cache members that define the region. This provides high read and write performance and is suitable for very large data sets that are too big for a single node.

	
Local﻿ - Data only exists on the local node.

	
Client﻿ - Technically a client region is a local region that acts as a proxy to a replicated or partitioned region hosted on cache servers. It may hold data created or fetched locally. Alternately, it can be empty. Local updates are synchronized to the cache server. Also, a client region may subscribe to events in order to stay synchronized with changes originating from remote processes that access the same region.

For more information about the various region types and their capabilities as well as configuration options, please refer to the GemFire Developer’s Guide﻿ and community site﻿.

Using an externally configured Region

For referencing Regions already configured through GemFire cache.xml﻿ file, use the lookup-region﻿ element. Simply declare the target Region name with the`name` attribute;
for example, to declare a bean definition named region-bean﻿ for an existing region named Orders﻿ one can use the following bean definition:

<gfe:lookup-region id="region-bean" name="Orders"/>

If the name﻿ is not specified, the bean’s id﻿ will be used. The example above becomes:

<!-- lookup for a region called 'Orders' -->
<gfe:lookup-region id="Orders"/>

If the Region does not exist, an initialization exception will be thrown. For configuring new GemFire Regions, proceed to the appropriate sections below.

Note, in the previous examples, since no cache name was defined, the default naming convention (gemfireCache﻿) was used. Alternately, one can reference the cache bean through the cache-ref﻿ attribute:

<gfe:cache id="cache"/>
<gfe:lookup-region id="region-bean" name="Orders" cache-ref="cache"/>

lookup-region﻿ provides a simple way of retrieving existing, pre-configured Regions without exposing the Region semantics or setup infrastructure.

Auto Region Lookup

New, as of Spring Data GemFire 1.5, is the ability to "auto-lookup" all Regions defined in GemFire’s native cache.xml file, and imported into Spring config
using the`cache-xml-location` attribute on the <gfe:cache>﻿ element in the GFE XML namespace.

For instance, given a GemFire cache.xml﻿ file of…​

<?xml version="1.0"?>
<!DOCTYPE cache PUBLIC "-//GemStone Systems, Inc.//GemFire Declarative Caching 7.0//EN"
 "http://www.gemstone.com/dtd/cache7_0.dtd">
<cache>
 <region name="Parent" refid="REPLICATE">
 <region name="Child" refid="REPLICATE"/>
 </region>
</cache>

A user may import the cache.xml﻿ file as follows…​

<gfe:cache cache-xml-location="cache.xml"/>

A user can then use the <gfe:lookup-region>﻿ element (e.g. <gfe:lookup-region id="Parent"/>﻿) to reference specific
GemFire Regions as beans in the Spring context, or the user may choose to import all GemFire Regions defined
in cache.xml﻿ with the new…​

<gfe:auto-region-lookup/>

Spring Data GemFire will automatically create Spring beans referencing all GemFire Regions defined in cache.xml﻿
that have not been explicitly added to the Spring context with <gfe:lookup-region>﻿ bean declarations.

It is important to realize that Spring Data GemFire uses a Spring BeanPostProcessor﻿
to post process the Cache after it is both created and initialized to determine the Regions defined in GemFire to add
as beans in the Spring context.

You may inject these "auto-looked-up" Regions like any other bean defined in the Spring context with 1 exception; you
may need to define a depends-on﻿ association with the ‘gemfireCache’ bean as follows…​

package example;

import ...

@Repository("appDao")
@DependsOn("gemfireCache")
public class ApplicationDao extends DaoSupport {

 @Resource(name = "Parent")
 private Region<?, ?> parent;

 @Resource(name = "/Parent/Child")
 private Region<?, ?> child;

 ...
}

The above Java example is applicable when using the Spring context’s component-scan﻿ functionality.

If you are declaring your components using Spring XML, then you would do…​

<bean class="example.ApplicationDao" depends-on="gemfireCache"/>

This ensures the GemFire Cache and all the Regions defined in cache.xml﻿ get created before any components
with auto-wire references when using the new <gfe:auto-region-lookup>﻿ element.

Configuring Regions

Spring Data GemFire provides comprehensive support for configuring any type of GemFire Region via the following elements:

	
Local Region <local-region>﻿

	
Replicated Region <replicated-region>﻿

	
Partitioned Region <partitioned-region>﻿

	
Client Region <client-region>﻿

For a comprehensive description of Region types﻿ please consult the GemFire product documentation.

Common Region Attributes

The following table(s) list attributes available for various region types:

Table 1. Common Region Attributes

	Name
	Values
	Description

	cache-ref

	GemFire Cache bean name﻿

	The name of the bean defining the GemFire Cache (by default 'gemfireCache').

	close

	boolean, default:false (Note: The default was true prior to 1.3.0)﻿

	Indicates whether the Region should be closed at shutdown.

	cloning-enabled

	boolean, default:false﻿

	When true, the updates are applied to a clone of the value and then the clone is saved to the cache. When false, the value is modified in place in the cache.

	concurrency-checks-enabled

	boolean, default:true﻿

	Determines whether members perform checks to provide consistent handling for concurrent or out-of-order updates to distributed Regions.

	data-policy

	See GemFire’s Data Policy﻿﻿

	The Region’s Data Policy. Note, not all Data Policies are supported for every Region type.

	destroy

	boolean, default:false﻿

	Indicates whether the Region should be destroyed at shutdown.

	disk-store-ref

	The name of a configured Disk Store.﻿

	A reference to a bean created via the disk-store﻿ element.

	disk-synchronous

	boolean, default:true﻿

	Indicates whether Disk Store writes are synchronous.

	enable-gateway

	boolean, default:false﻿

	Indicates whether the Region will synchronize entries over a WAN Gateway.

	hub-id

	The name of the Gateway Hub.﻿

	This will automatically set enable-gateway to true. If enable-gateway is explicitly set to false, an exception will be thrown.

	id

	Any valid bean name.﻿

	Will also be the Region name by default.

	ignore-if-exists

	boolean, default:false﻿

	Ignores this bean definition configuration if the Region already exists in the GemFire Cache, resulting in a lookup instead.

	ignore-jta

	boolean, default:false﻿

	Indicates whether the Region participates in JTA transactions.

	index-update-type

	synchronous or asynchronous, default:synchronous﻿

	Indicates whether indices will be updated synchronously or asynchronously on entry creation.

	initial-capacity

	integer, default:16﻿

	The initial memory allocation for number of Region entries.

	key-constraint

	Any valid, fully-qualified Java class name.﻿

	The expected key type.

	load-factor

	float, default:.75﻿

	Sets the initial parameters on the underlying java.util.ConcurrentHashMap used for storing Region entries.

	name

	Any valid Region name.﻿

	The name of the Region definition. If not specified, it will assume the value of the id attribute (the bean name).

	persistent

	boolean, default:false﻿

	Indicates whether the Region persists entries to a Disk Store (disk).

	shorcut

	*See http://gemfire.docs.pivotal.io/7.0.2/javadocs/japi/com/gemstone/gemfire/cache/RegionShortcut.html﻿

	The RegionShortcut for this Region. Allows easy initialization of the region based on pre-defined defaults.

	statistics

	boolean, default:false﻿

	Indicates whether the Region reports statistics.

	template

	The name of a Region Template.﻿

	A reference to a bean created via one of the *region-template﻿ elements.

	value-constraint

	Any valid, fully-qualified Java class name.﻿

	The expected value type.

Cache Listeners

CacheListeners﻿ are registered with a Region to handle Region events such as entries being created, updated, destroyed,
etc. A CacheListener﻿ can be any bean that implements the CacheListener﻿﻿ interface.
A Region may have multiple listeners, declared using the cache-listener﻿ element enclosed in a *-region﻿ element.

In the example below, there are two CacheListener’s﻿ declared. The first references a top-level named Spring bean;
the second is an anonymous inner bean definition.

<gfe:replicated-region id="region-with-listeners">
 <gfe:cache-listener>
 <!-- nested cache listener reference -->
 <ref bean="c-listener"/>
 <!-- nested cache listener declaration -->
 <bean class="some.pkg.AnotherSimpleCacheListener"/>
 </gfe:cache-listener>

 <bean id="c-listener" class="some.pkg.SimpleCacheListener"/>
</gfe:replicated-region>

The following example uses an alternate form of the cache-listener﻿ element with a ref﻿ attribute. This allows for
more concise configuration for a single cache listener. Note that the namespace only allows a single cache-listener﻿
element so either the style above or below must be used.

Using ref﻿ and a nested declaration in a cache-listener﻿, or similar element, is illegal. The two options
are mutually exclusive and using both on the same element will result in an exception.

<beans>
 <gfe:replicated-region id="region-with-one listener">
 <gfe:cache-listener ref="c-listener"/>
 </gfe:replicated-region>

 <bean id="c-listener" class="some.pkg.SimpleCacheListener"/>
 </beans>

Bean Reference Conventions

The cache-listener﻿ element is an example of a common pattern used in the namespace anywhere GemFire provides
a callback interface to be implemented in order to invoke custom code in response to Cache or Region events.
Using Spring’s IoC container, the implementation is a standard Spring bean. In order to simplify the configuration,
the schema allows a single occurrence of the cache-listener﻿ element, but it may contain nested bean references
and inner bean definitions in any combination if multiple instances are permitted. The convention is to use
the singular form (i.e., cache-listener﻿ vs cache-listeners﻿) reflecting that the most common scenario will in fact
be a single instance. We have already seen examples of this pattern in the advanced cache﻿ configuration example.

Cache Loaders and Cache Writers

Similar to cache-listener﻿, the namespace provides cache-loader﻿ and cache-writer﻿ elements to register
these respective components for a Region. A CacheLoader﻿ is invoked on a cache miss to allow an entry to be loaded
from an external data source, a database for example. A CacheWriter﻿ is invoked before an entry is created or updated,
intended for synchronizing to an external data source. The difference is GemFire only supports at most a single instance
of each for each Region. However, either declaration style may be used.

See CacheLoader﻿﻿ and CacheWriter﻿﻿ for more details.

Subregions

In Release 1.2.0, Spring Data GemFire added support for subregions, allowing regions to be arranged in a hierarchical relationship. For example, GemFire allows for a /Customer/Address﻿ region and a different /Employee/Address﻿ region. Additionally, a subregion may have it’s own subregions and its own configuration. A subregion does not inherit attributes from the parent region. Regions types may be mixed and matched subject to GemFire constraints. A subregion is naturally declared as a child element of a region. The subregion’s name attribute is the simple name. The above example might be configured as: [source,nonxml]

<beans>

 <gfe:replicated-region name="Customer">
 <gfe:replicated-region name="Address"/>
 </gfe:replicated-region>

 <gfe:replicated-region name="Employee">
 <gfe:replicated-region name="Address"/>
 </gfe:replicated-region>

</beans>

Note that the Monospaced ([id])﻿ attribute is not permitted for a subregion. The subregions will be created with bean names /Customer/Address﻿ and /Employee/Address﻿, respectively. So they may be injected using the full path name into other beans that use them, such as GemfireTemplate﻿. The full path should also be used in OQL query strings.

Region Templates

Also new as of Spring Data GemFire 1.5 is Region Templates. This feature allows developers to define common Region
configuration settings and attributes once and reuse the configuration among many Region bean definitions declared
in the Spring context.

Spring Data GemFire introduces 5 new tags to the SDG XML namespace (XSD):

Table 2. Region Template Tags

	Tag Name
	Description

	<gfe:region-template>﻿

	Defines common, generic Region attributes; extends regionType﻿ in the SDG 1.5 XSD

	<gfe:local-region-template>﻿

	Defines common, 'Local' Region attributes; extends localRegionType﻿ in the SDG 1.5 XSD

	<gfe:partitioned-region-template>﻿

	Defines common, 'PARTITION' Region attributes; extends partitionedRegionType﻿ in the SDG 1.5 XSD

	<gfe:replicated-region-template>﻿

	Defines common, 'REPLICATE' Region attributes; extends replicatedRegionType﻿ in the SDG 1.5 XSD

	<gfe:client-region-template>﻿

	Defines common, 'Client' Region attributes; extends clientRegionType﻿ in the SDG 1.5 XSD

In addition to the new tags, <gfe:*-region>﻿ elements along with the <gfe:*-region-template>﻿ elements have
a template﻿ attribute used to define the Region Template from which to inherit the Region configuration. Even
Region templates may inherit from other Region Templates.

Here is an example of 1 possible configuration…​

<gfe:async-event-queue id="AEQ" persistent="false" parallel="false" dispatcher-threads="4">
 <gfe:async-event-listener>
 <bean class="example.AeqListener"/>
 </gfe:async-event-listener>
</gfe:async-event-queue>

<gfe:region-template id="BaseRegionTemplate" cloning-enabled="true"
 concurrency-checks-enabled="false" disk-synchronous="false"
 ignore-jta="true" initial-capacity="51" key-constraint="java.lang.Long"
 load-factor="0.85" persistent="false" statistics="true"
 value-constraint="java.lang.String">
 <gfe:cache-listener>
 <bean class="example.CacheListenerOne"/>
 <bean class="example.CacheListenerTwo"/>
 </gfe:cache-listener>
 <gfe:entry-ttl timeout="300" action="INVALIDATE"/>
 <gfe:entry-tti timeout="600" action="DESTROY"/>
</gfe:region-template>

<gfe:region-template id="ExtendedRegionTemplate" template="BaseRegionTemplate"
 index-update-type="asynchronous" cloning-enabled="false"
 concurrency-checks-enabled="true" key-constraint="java.lang.Integer"
 load-factor="0.55">
 <gfe:cache-loader>
 <bean class="example.CacheLoader"/>
 </gfe:cache-loader>
 <gfe:cache-writer>
 <bean class="example.CacheWriter"/>
 </gfe:cache-writer>
 <gfe:membership-attributes required-roles="readWriteNode" loss-action="limited-access" resumption-action="none"/>
 <gfe:async-event-queue-ref bean="AEQ"/>
</gfe:region-template>

<gfe:partitioned-region-template id="PartitionRegionTemplate" template="ExtendedRegionTemplate"
 copies="1" local-max-memory="1024" total-max-memory="16384" recovery-delay="60000"
 startup-recovery-delay="15000" enable-async-conflation="false"
 enable-subscription-conflation="true" load-factor="0.70"
 value-constraint="java.lang.Object">
 <gfe:partition-resolver>
 <bean class="example.PartitionResolver"/>
 </gfe:partition-resolver>
 <gfe:eviction type="ENTRY_COUNT" threshold="8192000" action="OVERFLOW_TO_DISK"/>
</gfe:partitioned-region-template>

<gfe:partitioned-region id="TemplateBasedPartitionRegion" template="PartitionRegionTemplate"
 copies="2" local-max-memory="8192" total-buckets="91" disk-synchronous="true"
 enable-async-conflation="true" ignore-jta="false" key-constraint="java.util.Date"
 persistent="true">
 <gfe:cache-writer>
 <bean class="example.CacheWriter"/>
 </gfe:cache-writer>
 <gfe:membership-attributes required-roles="admin,root" loss-action="no-access" resumption-action="reinitialize"/>
 <gfe:partition-listener>
 <bean class="example.PartitionListener"/>
 </gfe:partition-listener>
 <gfe:subscription type="ALL"/>
</gfe:partitioned-region>

Region Templates will even work for Subregions. Notice that 'TemplateBasedPartitionRegion' extends 'PartitionRegionTemplate'
which extends 'ExtendedRegionTemplate' which extends 'BaseRegionTemplate'. Attributes and sub-elements defined in
subsequent, inherited Region bean definitions override what is in the parent.

Under-the-hood…​

Spring Data GemFire applies Region Templates when the Spring application context configuration meta-data is parsed﻿,
and therefore, must be declared in the order of inheritance, in other words, parent templates before children. This
ensures the proper configuration is applied, especially when element attributes or sub-elements are "overridden".

It is equally important to remember the Region types must only inherit from other similar typed Regions.
For instance, it is not possible for a <gfe:replicated-region>﻿ to inherit from a <gfe:partitioned-region-template>﻿.

Region Templates are single-inheritance.

A Word of Caution on Regions, Subregions and Lookups

Prior to Spring Data GemFire 1.4, one of the underlying properties of the high-level replicated-region﻿,
partitioned-region﻿, local-region﻿ and client-region﻿ elements in Spring Data GemFire’s XML namespace,
which correspond to GemFire’s Region types based on Data Policy, is that these elements perform a lookup first
before attempting to create the region. This is done in case the region already exists, which might be the case
if the region was defined in GemFire’s native configuration, e.g. cache.xml﻿, thereby avoiding any errors.
This was by design, though subject to change.

The Spring team highly recommends that the replicated-region﻿, partitioned-region﻿, local-region﻿
and client-region﻿ elements be strictly used only for defining new regions. One of the problems with these elements
doing a lookup first is, if the developer assumed that defining a bean definition for a REPLICATE region would create
a new region, however, consequently a region with the same name already exists having different semantics for
eviction, expiration, subscription and/or other attributes, this could adversely affect application logic
and/or expectations thereby violating application requirements.

Recommended Practice - Only use the replicated-region﻿, partitioned-region﻿, local-region﻿
and client-region﻿ XML namespace elements for defining new regions.

However, because the high-level region elements perform a lookup first, this can cause problems for
dependency injected region resources to application code, like DAOs or Repositories.

Take for instance the following native GemFire configuration file (e.g. cachel.xml﻿)…​

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE cache PUBLIC "-//GemStone Systems, Inc.//GemFire Declarative Caching 7.0//EN"
"http://www.gemstone.com/dtd/cache7_0.dtd">
<cache>
 <region name="Customers" refid="REPLICATE">
 <region name="Accounts" refid="REPLICATE">
 <region name="Orders" refid="REPLICATE">
 <region name="Items" refid="REPLICATE"/>
 </region>
 </region>
 </region>
</cache>

Also, consider that you might have defined a DAO as follows…​

public class CustomerAccountDao extends GemDaoSupport {

 @Resource(name = "Customers/Accounts")
 private Region customersAccounts;

 ...
}

Here, we are injecting a reference to the Customers/Accounts﻿ GemFire Region in our DAO. As such, it is not uncommon for a developer to define beans for all or some of these regions in Spring XML configuration meta-data as follows…​

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:gfe="http://www.springframework.org/schema/gemfire"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/gemfire http://www.springframework.org/schema/gemfire/spring-gemfire.xsd">

 <gfe:cache cache-xml-location="classpath:cache.xml"/>

 <gfe:lookup-region name="Customers/Accounts"/>
 <gfe:lookup-region name="Customers/Accounts/Orders"/>
</beans>

Here the Customers/Accounts﻿ and Customers/Accounts/Orders﻿ GemFire Regions are referenced as beans in the Spring context as "Customers/Accounts" and "Customers/Accounts/Orders", respectively. The nice thing about using the lookup-region﻿ element and the corresponding syntax above is that it allows a developer to reference a subregion directly without unnecessarily defining a bean for the parent region (e.g. Customers﻿).

However, if now the developer changes his/her configuration meta-data syntax to using the nested format, like so…​

<gfe:lookup-region name="Customers">
 <gfe:lookup-region name="Accounts">
 <gfe:lookup-region name="Orders"/>
 </gfe:lookup-region>
</gfe:lookup-region>

Or, perhaps the developer erroneously chooses to use the high-level replicated-region﻿ element, which will do a lookup first, as in…​

<gfe:replicated-region name="Customers" persistent="true">
 <gfe:replicated-region name="Accounts" persistent="true">
 <gfe:replicated-region name="Orders" persistent="true"/>
 </gfe:replicated-region>
</gfe:replicated-region>

Then the region beans defined in the Spring context will consist of the following: { "Customers", "/Customers/Accounts", "/Customers/Accounts/Orders" }.﻿ This means the dependency injected reference (i.e. @Resource(name = "Customers/Accounts"))﻿ is now broken since no bean with name "Customers/Accounts" is defined.

GemFire is flexible in referencing both parent regions and subregions. The parent can be referenced as "/Customers" or "Customers" and the child as "/Customers/Accounts" or just "Customers/Accounts". However, Spring Data GemFire is very specific when it comes to naming beans after regions, typically always using the forward slash (/) to represents subregions (e.g. "/Customers/Accounts").

Therefore, it is recommended that users use either the nested lookup-region﻿ syntax as illustrated above, or define direct references with a leading forward slash (/) like so…​

<gfe:lookup-region name="/Customers/Accounts"/>
<gfe:lookup-region name="/Customers/Accounts/Orders"/>

The example above where the nested replicated-region﻿ elements were used to reference the subregions serves to illustrate the problem stated earlier. Are the Customers, Accounts and Orders Regions/Subregions persistent or not? Not, since the regions were defined in native GemFire configuration (i.e. cache.xml﻿) and will exist by the time the cache is initialized, or once the <gfe:cache>﻿ bean is created. Since the high-level region XML namespace abstractions, like replicated-region﻿, perform the lookup first, it uses the regions as defined in the cache.xml﻿ configuration file.

Data Persistence

Regions can be made persistent. GemFire ensures that all the data you put into a region that is configured for persistence will be written to disk in a way that it can be recovered the next time you create the region. This allows data to be recovered after a machine or process failure or after an orderly shutdown and restart of GemFire.

To enable persistence with Spring Data GemFire, simply set the persistent﻿ attribute to true:

<gfe:partitioned-region id="persitent-partition" persistent="true"/>

Persistence for partitioned regions is supported from GemFire 6.5 onwards - configuring this option on a previous release will trigger an initialization exception.

Persistence may also be configured using the data-policy﻿ attribute, set to one of GemFire’s data policy settings﻿. For instance…​

<gfe:partitioned-region id="persitent-partition" data-policy="PERSISTENT_PARTITION"/>

The data policy must match the region type and must also agree with the persistent﻿ attribute if explicitly set. An initialization exception will be thrown if, for instance, the persistent﻿ attribute is set to false, yet a persistent data policy was specified.

When persisting regions, it is recommended to configure the storage through the disk-store﻿ element for maximum efficiency. The diskstore is referenced using the disk-store-ref attribute. Additionally, the region may perform disk writes synchronously or asynchronously:

<gfe:partitioned-region id="persitent-partition" persistent="true" disk-store-ref="myDiskStore" disk-synchronous="true"/>

This is discussed further in Configuring a Disk Store﻿

Subscription Interest Policy

GemFire allows configuration of subscriptions to control peer to peer event handling﻿. Spring Data GemFire provides a <gfe:subscription/>﻿ to set the interest policy on replicated and partitioned regions to either ALL﻿ or CACHE_CONTENT﻿.

<gfe:partitioned-region id="subscription-partition">
 <gfe:subscription type="CACHE_CONTENT"/>
</gfe:partitioned-region>

Data Eviction and Overflowing

Based on various constraints, each region can have an eviction policy in place for evicting data from memory.
Currently, in GemFire, eviction applies to the least recently used entry (also known as
LRU﻿). Evicted entries are either destroyed
or paged to disk (also known as overflow﻿).

Spring Data GemFire supports all eviction policies (entry count, memory and heap usage) for both partitioned-region﻿
and replicated-region﻿ as well as client-region﻿, through the nested eviction﻿ element. For example, to configure
a partition to overflow to disk if its size is more then 512 MB, one could use the following configuration:

<gfe:partitioned-region id="overflow-partition">
 <gfe:eviction type="MEMORY_SIZE" threshold="512" action="OVERFLOW_TO_DISK"/>
</gfe:partitioned-region>

Replicas cannot use a local destroy﻿ eviction since that would invalidate them. See the GemFire docs
for more information.

When configuring regions for overflow, it is recommended to configure the storage through the disk-store﻿ element
for maximum efficiency.

For a detailed description of eviction policies, see the GemFire documentation (such as
this﻿ page).

Data Expiration

GemFire allows you to control how long entries exist in the cache. Expiration is driven by elapsed time, as opposed to
Eviction, which is driven by memory usage. Once an entry expires it may no longer be accessed from the cache.

GemFire supports the following Expiration types:

	
Time-to-Live (TTL)﻿ - The amount of time, in seconds, the object may remain in the cache after the last creation
or update. For entries, the counter is set to zero for create and put operations. Region counters are reset when
the Region is created and when an entry has its counter reset.

	
Idle Timeout (TTI)﻿ - The amount of time, in seconds, the object may remain in the cache after the last access.
The Idle Timeout counter for an object is reset any time its TTL counter is reset. In addition, an entry’s Idle Timeout
counter is reset any time the entry is accessed through a get operation or a netSearch . The Idle Timeout counter for a
Region is reset whenever the Idle Timeout is reset for one of its entries.

Each of these may be applied to the Region itself or entries in the Region. Spring Data GemFire provides <region-ttl>﻿,
<region-tti>﻿, <entry-ttl>﻿ and <entry-tti>﻿ Region child elements to specify timeout values and expiration actions.

Annotation-based Data Expiration

As of Spring Data GemFire 1.7, a developer now has the ability to define Expiration policies and settings on individual
Region Entry values, or rather, application domain objects directly. For instance, a developer might define Expiration
settings on a Session-based application domain object like so…​

@Expiration(timeout = "1800", action = "INVALIDATE")
public static class SessionBasedApplicationDomainObject {
}

In addition, a developer may also specify Expiration type specific settings on Region Entries using @IdleTimeoutExpiration﻿
and @TimeToLiveExpiration﻿ for Idle Timeout (TTI) and Time-to-Live (TTL) Expiration, respectively…​

@TimeToLiveExpiration(timeout = "3600", action = "LOCAL_DESTROY")
@IdleTimeoutExpiration(timeout = "1800", action = "LOCAL_INVALIDATE")
@Expiration(timeout = "1800", action = "INVALIDATE")
public static class AnotherSessionBasedApplicationDomainObject {
}

Both @IdleTimeoutExpiration﻿ and @TimeToLiveExpiration﻿ take precedence over the generic @Expiration﻿ annotation
when more than one Expiration annotation type is specified, as shown above. Though, neither @IdleTimeoutExpiration﻿
nor @TimeToLiveExpiration﻿ overrides the other; rather they may compliment each other when different Region Entry
Expiration types, such as TTL and TTI, are configured.

All @Expiration-based annotations apply only to Region Entry values. Expiration for a "Region" is not covered
by Spring Data GemFire’s Expiration annotation support. However, GemFire and Spring Data GemFire do allow you to set
Region Expiration using the SDG XML namespace, like so…​

<gfe:*-region id="Example" persistent="false">
 <gfe:region-ttl timeout="600" action="DESTROY"/>
 <gfe:region-tti timeout="300" action="INVALIDATE"/>
</gfe:*-region>

Spring Data GemFire’s @Expiration annotation support is implemented with GemFire’s CustomExpiry﻿﻿ interface.
See GemFire’s User Guide﻿ for more details

The Spring Data GemFire AnnotationBasedExpiration﻿ class (and CustomExpiry﻿ implementation) is specifically responsible
for processing the SDG @Expiration annotations and applying the Expiration policy and settings appropriately
for Region Entry Expiration on request.

To use Spring Data GemFire to configure specific GemFire Regions to appropriately apply the Expiration policy
and settings applied to your application domain objects annotated with @Expiration-based annotations, you must…​

	
Define a Spring bean in the Spring ApplicationContext of type AnnotationBasedExpiration﻿ using the appropriate
constructor or one of the convenient factory methods. When configuring Expiration for a specific Expiration type,
such as Idle Timeout or Time-to-Live, then you should use one of the factory methods of the AnnotationBasedExpiration﻿
class, like so…​

<bean id="ttlExpiration" class="org.springframework.data.gemfire.support.AnnotationBasedExpiration"
 factory-method="forTimeToLive"/>

<gfe:partitioned-region id="Example" persistent="false">
 <gfe:custom-entry-ttl ref="ttlExpiration"/>
</gfe:partitioned-region>

To configure Idle Timeout (TTI) Expiration instead, then you would of course use the forIdleTimeout﻿ factory method
along with the <gfe:custom-entry-tti ref="ttiExpiration"/>﻿ element to set TTI.

	
(optional) Annotate your application domain objects that will be stored in the Region with Expiration policies
and custom settings using one of Spring Data GemFire’s @Expiration annotations: @Expiration﻿, @IdleTimeoutExpiration﻿
and/or @TimeToLiveExpiration﻿

	
(optional) In cases where particular application domain objects have not been annotated with Spring Data GemFire’s
@Expiration annotations at all, but the GemFire Region is configured to use SDG’s custom AnnotationBasedExpiration﻿ class
to determine the Expiration policy and settings for objects stored in the Region, then it is possible to set "default"
Expiration attributes on the AnnotationBasedExpiration﻿ bean by doing the following…​

<bean id="defaultExpirationAttributes" class="com.gemstone.gemfire.cache.ExpirationAttributes">
 <constructor-arg value="600"/>
 <constructor-arg value="#{T(com.gemstone.gemfire.cache.ExpirationAction).DESTROY}"/>
</bean>

<bean id="ttiExpiration" class="org.springframework.data.gemfire.support.AnnotationBasedExpiration"
 factory-method="forIdleTimeout">
 <constructor-arg ref="defaultExpirationAttributes"/>
</bean>

<gfe:partitioned-region id="Example" persistent="false">
 <gfe:custom-entry-tti ref="ttiExpiration"/>
</gfe:partitioned-region>

You may have noticed that the Spring Data GemFire’s @Expiration annotations use String as the attributes type, rather
than and perhaps more appropriately being strongly typed, i.e. int﻿ for 'timeout' and SDG’S ExpirationActionType﻿
for 'action'. Why is that?

Well, enter one of Spring Data GemFire’s other features, leveraging Spring’s core infrastructure
for configuration convenience: Property Placeholders and Spring Expression Language (SpEL).

For instance, a developer can specify both the Expiration 'timeout' and 'action' using Property Placeholders
in the @Expiration annotation attributes…​

@TimeToLiveExpiration(timeout = "${gemfire.region.entry.expiration.ttl.timeout}"
 action = "${gemfire.region.entry.expiration.ttl.action}")
public class ExampleApplicationDomainObject {
}

Then, in your Spring context XML or in JavaConfig, you would declare the following beans…​

<util:properties id="expirationSettings">
 <prop key="gemfire.region.entry.expiration.ttl.timeout">600</prop>
 <prop key="gemfire.region.entry.expiration.ttl.action">INVALIDATE</prop>
 ...
</util:properties>

<context:property-placeholder properties-ref="expirationProperties"/>

This is both convenient when multiple application domain objects might share similar Expiration policies and settings,
or when you wish to externalize the configuration.

However, a developer may want more dynamic Expiration configuration determined by the state of the running system.
This is where the power of SpEL comes in and is the recommended approach. Not only can you refer to beans
in the Spring context and access bean properties, invoke methods, etc, the values for Expiration 'timeout' and 'action'
can be strongly typed. For example (building on the example above)…​

<util:properties id="expirationSettings">
 <prop key="gemfire.region.entry.expiration.ttl.timeout">600</prop>
 <prop key="gemfire.region.entry.expiration.ttl.action">#{T(org.springframework.data.gemfire.ExpirationActionType).DESTROY}</prop>
 <prop key="gemfire.region.entry.expiration.tti.action">#{T(com.gemstone.gemfire.cache.ExpirationAction).INVALIDATE}</prop>
 ...
</util:properties>

<context:property-placeholder properties-ref="expirationProperties"/>

Then, on your application domain object…​

@TimeToLiveExpiration(timeout = "@expirationSettings['gemfire.region.entry.expiration.ttl.timeout']"
 action = "@expirationSetting['gemfire.region.entry.expiration.ttl.action']")
public class ExampleApplicationDomainObject {
}

You can imagine that the 'expirationSettings' bean could be a more interesting and useful object rather than a simple
instance of java.util.Properties﻿. In this example, even the Properties ('expirationSettings') using using SpEL
to based the action value on the actual Expiration action enumerated types leading to more quickly identified failures
if the types ever change.

All of this has been demonstrated and tested in the Spring Data GemFire test suite, by way of example. See the
source﻿ for further details.

Local Region

Spring Data GemFire offers a dedicated local-region﻿ element for creating local regions. Local regions, as the name
implies, are standalone meaning they do not share data with any other distributed system member. Other than that,
all common region configuration options are supported. A minimal declaration looks as follows (again, the example
relies on the Spring Data GemFire namespace naming conventions to wire the cache):

<gfe:local-region id="myLocalRegion" />

Here, a local region is created (if one doesn’t exist already). The name of the region is the same as the bean id
(myLocalRegion) and the bean assumes the existence of a GemFire cache named gemfireCache﻿.

Replicated Region

One of the common region types is a replicated region﻿ or replica﻿. In short, when a region is configured to be
a replicated region, every member that hosts that region stores a copy of the region’s entries locally. Any update to
a replicated region is distributed to all copies of the region. When a replica is created, it goes through
an initialization stage in which it discovers other replicas and automatically copies all the entries. While one replica
is initializing you can still continue to use the other replica.

Spring Data GemFire offers a replicated-region﻿ element. A minimal declaration looks as follows.
All common configuration options are available for replicated regions.

<gfe:replicated-region id="simpleReplica" />

Partitioned Region

Another region type supported out of the box by the Spring Data GemFire namespace is the partitioned region. To quote the GemFire docs:

"A partitioned region is a region where data is divided between peer servers hosting the region so that each peer stores a subset of the data. When using a partitioned region, applications are presented with a logical view of the region that looks like a single map containing all of the data in the region. Reads or writes to this map are transparently routed to the peer that hosts the entry that is the target of the operation. […​] GemFire divides the domain of hashcodes into buckets. Each bucket is assigned to a specific peer, but may be relocated at any time to another peer in order to improve the utilization of resources across the cluster."

A partition is created using the partitioned-region﻿ element. Its configuration options are similar to that of the replicated-region﻿ plus the partion specific features such as the number of redundant copies, total maximum memory, number of buckets, partition resolver and so on. Below is a quick example on setting up a partition region with 2 redundant copies:

<!-- bean definition named 'distributed-partition' backed by a region named 'redundant' with 2 copies
and a nested resolver declaration -->
<gfe:partitioned-region id="distributed-partition" copies="2" total-buckets="4" name="redundant">
 <gfe:partition-resolver>
 <bean class="some.pkg.SimplePartitionResolver"/>
 </gfe:partition-resolver>
</gfe:partitioned-region>

partitioned-region﻿ Options

The following table offers a quick overview of configuration options specific to partitioned regions. These are in addition to the common region configuration options described above.

Table 3. partitioned-region options

	Name
	Values
	Description

	partition-resolver

	bean name﻿

	The name of the partitioned resolver used by this region, for custom partitioning.

	partition-listener

	bean name﻿

	The name of the partitioned listener used by this region, for handling partition events.

	copies

	0..4

	The number of copies for each partition for high-availability. By default, no copies are created meaning there is no redundancy. Each copy provides extra backup at the expense of extra storage.

	colocated-with

	valid region name﻿

	The name of the partitioned region with which this newly created partitioned region is colocated.

	local-max-memory

	positive integer﻿

	The maximum amount of memory, in megabytes, to be used by the region in this﻿ process.

	total-max-memory

	any integer value﻿

	The maximum amount of memory, in megabytes, to be used by the region in all﻿ processes.

	recovery-delay

	any long value﻿

	The delay in milliseconds that existing members will wait before satisfying redundancy after another member crashes. -1 (the default) indicates that redundancy will not be recovered after a failure.

	startup-recovery-delay

	any long value﻿

	The delay in milliseconds that new members will wait before satisfying redundancy. -1 indicates that adding new members will not trigger redundancy recovery. The default is to recover redundancy immediately when a new member is added.

Client Region

GemFire supports various deployment topologies for managing and distributing data. The topic is outside the scope of this documentation however to quickly recap, they can be classified in short in: peer-to-peer (p2p), client-server, and wide area cache network (or WAN). In the last two scenarios, it is common to declare client﻿ regions which connect to a cache server. Spring Data GemFire offers dedicated support for such configuration through Configuring a GemFire Client Cache﻿, client-region﻿ and pool﻿ elements. As the names imply, the former defines a client region while the latter defines connection pools to be used/shared by the various client regions.

Below is a typical client region configuration:

<!-- client region using the default client-cache pool -->
<gfe:client-region id="simple">
 <gfe:cache-listener ref="c-listener"/>
</gfe:client-region>

<!-- region using its own dedicated pool -->
<gfe:client-region id="complex" pool-name="gemfire-pool">
 <gfe:cache-listener ref="c-listener"/>
</gfe:client-region>

<bean id="c-listener" class="some.pkg.SimpleCacheListener"/>

<!-- pool declaration -->
<gfe:pool id="gemfire-pool" subscription-enabled="true">
 <gfe:locator host="someHost" port="40403"/>
</gfe:pool>

As with the other region types, client-region﻿ supports CacheListener``s﻿ as well as a single CacheLoader﻿ or CacheWriter﻿. It also requires a connection pool﻿ for connecting to a server. Each client can have its own pool or they can share the same one.

In the above example, the pool is configured with a locator﻿. The locator is a separate process used to discover cache servers in the distributed system and are recommended for production systems. It is also possible to configure the pool to connect directly to one or more cache servers using the server﻿ element.

For a full list of options to set on the client and especially on the pool, please refer to the Spring Data GemFire schema ([appendix-schema]﻿) and the GemFire documentation.

Client Interests

To minimize network traffic, each client can define its own 'interest', pointing out to GemFire, the data it actually needs. In Spring Data GemFire, interests can be defined for each client, both key-based and regular-expression-based types being supported; for example:

<gfe:client-region id="complex" pool-name="gemfire-pool">
 <gfe:key-interest durable="true" result-policy="KEYS">
 <bean id="key" class="java.lang.String">
 <constructor-arg value="someKey" />
 </bean>
 </gfe:key-interest>
 <gfe:regex-interest pattern=".*" receive-values="false"/>
</gfe:client-region>

A special key ALL_KEYS﻿ means interest is registered for all keys (identical to a regex interest of .*﻿). The receive-values﻿ attribute indicates whether or not the values are received for create and update events. If true, values are received; if false, only invalidation events are received - refer to the GemFire documentation for more details.

JSON Support

Gemfire 7.0 introduced support for caching JSON documents with OQL query support. These are stored internally as PdxInstance﻿ types using the JSONFormatter﻿ to perform conversion to and from JSON strings. Spring Data GemFire provides a <gfe-data:json-region-autoproxy/>﻿ tag to enable a AOP with Spring﻿ component to advise appropriate region operations, effectively encapsulating the JSONFormatter, allowing your application to work directly with JSON strings. In addition, Java objects written to JSON configured regions will be automatically converted to JSON using the Jackson ObjectMapper. Reading these values will return a JSON string.

By default, <gfe-data:json-region-autoproxy/>﻿ will perform the conversion on all regions. To apply this feature to selected regions, provide a comma delimited list of their ids via the region-refs﻿ attribute. Other attributes include a pretty-print﻿ flag (false by default) and convert-returned-collections﻿. By default the results of region operations getAll() and values() will be converted for configured regions. This is done by creating a parallel structure in local memory. This can incur significant overhead for large collections. Set this flag to false to disable automatic conversion for these operation. NOTE: Certain region operations, specifically those that use GemFire’s proprietary Region.Entry such as entries(boolean), entrySet(boolean) and getEntry() type are not targeted for AOP advice. In addition, the entrySet() method which returns a Set<java.util.Map.Entry<?,?>> is not affected.

<gfe-data:json-region-autoproxy pretty-print="true" region-refs="myJsonRegion" convert-returned-collections="true"/>

This feature also works with seamlessly with GemfireTemplate operations, provided that the template is declared as a Spring bean. Currently native QueryService operations are not supported.

Creating an Index

GemFire allows the creation of indexes (or indices) to improve the performance of (common) queries.
Spring Data GemFire allows indices to be declared through the index﻿ element:

<gfe:index id="myIndex" expression="someField" from="/someRegion"/>

Before creating an Index, Spring Data GemFire will verify whether an Index with the same name already exists.
If an Index with the same name does exist, by default, SDG will "override" the existing Index by removing the old Index
first followed by creating a new Index with the same name based on the new definition, regardless if the old definition
was the same or not. To prevent the named Index definition change, especially when the old and new Index definitions
may not match, set the override﻿ property to false, which effectively returns the existing Index definition by name.

Note that index declarations are not bound to a Region but rather are top-level elements (just like gfe:cache﻿).
This allows one to declare any number of indices on any Region whether they are just created or already exist
- an improvement over GemFire’s native cache.xml﻿. By default, the index relies on the default cache declaration
but one can customize it accordingly or use a pool (if need be) - see the namespace schema for the full set of options.

Configuring a Disk Store

As of Release 1.2.0, Spring Data GemFire supports disk store configuration via a top level disk-store﻿ element.

Prior to Release 1.2.0, disk-store﻿ was a child element of *-region﻿. If you have regions configured with disk storage using a prior release of Spring Data GemFire and want to upgrade to the latest release, move the disk-store element to the top level, assign an id and use the region’s disk-store-ref﻿ attribute. Also, disk-synchronous﻿ is now a region level attribute.

<gfe:disk-store id="diskStore1" queue-size="50" auto-compact="true"
 max-oplog-size="10" time-interval="9999">
 <gfe:disk-dir location="/gemfire/store1/" max-size="20"/>
 <gfe:disk-dir location="/gemfire/store2/" max-size="20"/>
</gfe:disk-store>

Disk stores are used by regions for file system persistent backup or overflow storage of evicted entries, and persistent backup of WAN gateways. Note that multiple components may share the same disk store. Also multiple directories may be defined for a single disk store. Please refer to the GemFire documentation for an explanation of the configuration options.

Using the GemFire Snapshot Service

Spring Data GemFire supports Cache﻿ and Region﻿ snapshots using GemFire’s Snapshot Service﻿.
The out-of-the-box Snapshot Service support offers several convenient features to simply the use of GemFire’s Cache﻿
and Region﻿ Snapshot Service APIs.

As GemFire documentation﻿ describes,
snapshots allow you to save and subsequently reload the data later, which can be useful for moving data between environments,
say from production to a staging or test environment in order to reproduce data-related issues in a controlled context.
You can imagine combining Spring Data GemFire’s Snapshot Service support with Spring’s bean definition profiles﻿
to load snapshot data specific to the environment as necessary.

Spring Data GemFire’s support for GemFire’s Snapshot Service begins with the <gfe-data:snapshot-service>﻿ element
from the GFE Data Access Namespace. For example, I might define Cache-wide snapshots to be loaded as well as saved
with a couple snapshot imports and a single data export definition as follows:

<gfe-data:snapshot-service id="gemfireCacheSnapshotService">
 <gfe-data:snapshot-import location="/absolute/filesystem/path/to/import/fileOne.snapshot"/>
 <gfe-data:snapshot-import location="relative/filesystem/path/to/import/fileTwo.snapshot"/>
 <gfe-data:snapshot-export
 location="/absolute/or/relative/filesystem/path/to/export/directory"/>
</gfe-data:snapshot-service>

You can define as many imports and/or exports as you like. You can define just imports or just exports. The file locations
and directory paths can be absolute, or relative to the Spring Data GemFire application JVM process’s working directory.

This is a pretty simple example and the snapshot service defined in this case refers to the GemFire Cache﻿, having a
default name of gemfireCache﻿ (as described in Configuring a GemFire Cache﻿). If you name your cache bean definition something
different, than you can use the cache-ref﻿ attribute to refer to the cache bean by name:

<gfe:cache id="myCache"/>
...
<gfe-data:snapshot-service id="mySnapshotService" cache-ref="myCache">
...
</gfe-data:snapshot-service>

It is also straightforward to define a snapshot service for a GemFire Region by specifying the region-ref﻿ attribute:

<gfe:partitioned-region id="Example" persistent="false" .../>
...
<gfe-data:snapshot-service id="gemfireCacheRegionSnapshotService" region-ref="Example">
 <gfe-data:snapshot-import location="relative/path/to/import/example.snapshot/>
 <gfe-data:snapshot-export location="/path/to/export/example.snapshot/>
</gfe-data:snapshot-service>

When the region-ref﻿ attribute is specified the Spring Data GemFire SnapshotServiceFactoryBean﻿ resolves
the region-ref﻿ attribute to a Region bean defined in the Spring context and then proceeds to create a
RegionSnapshotService﻿.
Again, the snapshot import and export definitions function the same way, however, the location﻿ must refer to a file
on export.

GemFire is strict about imported snapshot files actually existing before they are referenced. For exports,
GemFire will create the snapshot file if it does not already exist. If the snapshot file for export already exists,
the data will be overwritten.

Spring Data GemFire includes a suppress-import-on-init﻿ attribute to the <gfe-data:snapshot-service>﻿ element
to suppress the configured snapshot service from trying to import data into the Cache or a Region on initialization.
This is useful when data exported from 1 Region is used to feed the import of another Region, for example.

Snapshot Location

For a Cache﻿-based SnapshotService (i.e. a GemFire CacheSnapshotService﻿)
a developer would typically pass it a directory containing all the snapshot files to load rather than individual snapshot files,
as the overloaded load﻿ method
in the CacheSnapshotService﻿ API indicates.

Of course, a developer may use the other, overloaded load(:File[], :SnapshotFormat, :SnapshotOptions)﻿ method
variant to get specific about which snapshot files are to be loaded into the GemFire Cache﻿.

However, Spring Data GemFire recognizes that a typical developer workflow might be to extract and export data from one environment
into several snapshot files, zip all of them up, and then conveniently move the ZIP file to another environment for import.

As such, Spring Data GemFire enables the developer to specify a JAR or ZIP file on import for a Cache﻿-based SnapshotService
as follows:

 <gfe-data:snapshot-service id="cacheBasedSnapshotService" cache-ref="gemfireCache">
 <gfe-data:snapshot-import location="/path/to/snapshots.zip"/>
 </gfe-data:snapshot-service>

Spring Data GemFire will conveniently extract the provided ZIP file and treat it like a directory import (load).

Snapshot Filters

The real power of defining multiple snapshot imports and exports is realized through the use of snapshot filters.
Snapshot filters implement GemFire’s SnapshotFilter﻿ interface
and are used to filter Region entries for inclusion into the Region on import and for inclusion into the snapshot on export.

Spring Data GemFire makes it brain dead simple to utilize snapshot filters on import and export using the filter-ref﻿
attribute or an anonymous, nested bean definition:

<gfe:cache/>

<gfe:partitioned-region id="Admins" persistent="false"/>
<gfe:partitioned-region id="Guests" persistent="false"/>

<bean id="activeUsersFilter" class="org.example.app.gemfire.snapshot.filter.ActiveUsersFilter/>

<gfe-data:snapshot-service id="adminsSnapshotService" region-ref="Admins">
 <gfe-data:snapshot-import location="/path/to/import/users.snapshot">
 <bean class="org.example.app.gemfire.snapshot.filter.AdminsFilter/>
 </gfe-data:snapshot-import>
 <gfe-data:snapshot-export location="/path/to/export/active/admins.snapshot"
 filter-ref="activeUsersFilter"/>
</gfe-data:snapshot-service>

<gfe-data:snapshot-service id="guestsSnapshotService" region-ref="Guests">
 <gfe-data:snapshot-import location="/path/to/import/users.snapshot">
 <bean class="org.example.app.gemfire.snapshot.filter.GuestsFilter/>
 </gfe-data:snapshot-import>
 <gfe-data:snapshot-export location="/path/to/export/active/guests.snapshot"
 filter-ref="activeUsersFilter"/>
</gfe-data:snapshot-service>

In addition, more complex snapshot filters can be expressed with the ComposableSnapshotFilter﻿ Spring Data GemFire class.
This class implements GemFire’s SnapshotFilter﻿ interface
as well as the Composite﻿ software design pattern. In a nutshell, the
Composite﻿ design pattern allows developers to compose multiple objects
of the same type and treat the conglomerate as single instance of the object type, a very powerful and useful abstraction
to be sure.

The ComposableSnapshotFilter﻿ has two factory methods, 'and'﻿ and 'or'﻿, allowing developers to logically combine individual
snapshot filters using the AND and OR logical operators, respectively. The factory methods just take a list of snapshot filters.

One is only limited by his/her imagination to leverage this powerful construct, for instance:

<bean id="activeUsersSinceFilter" class="org.springframework.data.gemfire.snapshot.filter.ComposableSnapshotFilter"
 factory-method="and">
 <constructor-arg index="0">
 <list>
 <bean class="org.example.app.gemfire.snapshot.filter.ActiveUsersFilter"/>
 <bean class="org.example.app.gemfire.snapshot.filter.UsersSinceFilter"
 p:since="2015-01-01"/>
 </list>
 </constructor-arg>
</bean>

You could then go onto combine the activesUsersSinceFilter﻿ with another filter using 'or'﻿ like so:

<bean id="covertOrActiveUsersSinceFilter" class="org.springframework.data.gemfire.snapshot.filter.ComposableSnapshotFilter"
 factory-method="or">
 <constructor-arg index="0">
 <list>
 <ref bean="activeUsersSinceFilter"/>
 <bean class="org.example.app.gemfire.snapshot.filter.CovertUsersFilter"/>
 </list>
 </constructor-arg>
</bean>

Snapshot Events

By default, Spring Data GemFire uses GemFire’s Snapshot Services on startup to import data and shutdown to export data.
However, you may want to trigger periodic, event-based snapshots, for either import or export from within your application.

For this purpose, Spring Data GemFire defines two additional Spring application events (extending Spring’s ApplicationEvent﻿ class)
for imports and exports, respectively: ImportSnapshotApplicationEvent﻿ and ExportSnapshotApplicationEvent﻿.

The two application events can be targeted at the entire GemFire Cache, or individual GemFire Regions. The constructors
of these ApplicationEvent﻿ classes accept an optional Region pathname (e.g. "/Example") as well as 0 or more
SnapshotMetadata﻿ instances.

The array of SnapshotMetadata﻿ is used to override the snapshot meta-data defined by <gfe-data:snapshot-import>﻿
and <gfe-data:snapshot-export>﻿ sub-elements in XML, which will be used in cases where snapshot application events
do not explicitly provide SnapshotMetadata﻿. Each individual SnapshotMetadata﻿ instance can define it’s own location﻿
and filters﻿ properties.

Import/export snapshot application events are received by all snapshot service beans defined in the Spring application context.
However, import/export events are only processed by "matching" snapshot service beans.

A Region-based [Import|Export]SnapshotApplicationEvent﻿ matches if the snapshot service bean defined is a RegionSnapshotService﻿
and it’s Region reference (as determined by region-ref﻿) matches the Region’s pathname specified by the snapshot application event.
A Cache-based [Import|Export]SnapshotApplicationEvent﻿ (i.e. a snapshot application event without a Region pathname) triggers
all snapshot service beans, including any RegionSnapshotService﻿ beans, to perform either an import or export, respectively.

It is very easy to use Spring’s ApplicationEventPublisher﻿ interface
to fire import and/or export snapshot application events from your application like so:

@Component
public class ExampleApplicationComponent {

 @Autowired
 private ApplicationEventPublisher eventPublisher;

 @Resource(name = "Example")
 private Region<?, ?> example;

 public void someMethod() {
 ...

 SnapshotFilter myFilter = ...;

 SnapshotMetadata exportSnapshotMetadata = new SnapshotMetadata(new File(System.getProperty("user.dir"),
 "/path/to/export/data.snapshot"), myFilter, null);

 eventPublisher.publishEvent(new ExportSnapshotApplicationEvent(this, example.getFullPath(), exportSnapshotMetadata);

 ...
 }
}

In this particular example, only the "/Example" Region’s SnapshotService bean will pick up and handle the export event,
saving the filtered "/Example" Region’s data to the "data.snapshot" file in a sub-direcrtory of the application’s
working directory.

Using Spring application events and messaging subsystem is a good way to keep your application loosely coupled. It is
also not difficult to imagine that the snapshot application events could be fired on a periodic basis using Spring’s
Scheduling﻿ services.

Configuring GemFire’s Function Service

As of Release 1.3.0, Spring Data GemFire provides annotation﻿ support for implementing and registering functions. Spring Data GemFire also provides namespace support for registering GemFire Functions﻿ for remote function execution. Please refer to the GemFire documentation for more information on the function execution framework. Functions are declared as Spring beans and must implement the com.gemstone.gemfire.cache.execute.Function﻿ interface or extend com.gemstone.gemfire.cache.execute.FunctionAdapter﻿. The namespace uses a familiar pattern to declare functions:

<gfe:function-service>
 <gfe:function>
 <bean class="com.company.example.Function1"/>
 <ref bean="function2"/>
 </gfe:function>
</gfe:function-service>

<bean id="function2" class="com.company.example.Function2"/>

Configuring WAN Gateways

WAN gateways provide a way to synchronize GemFire distributed systems across geographic distributed areas. As of Release 1.2.0, Spring Data GemFire provides namespace support for configuring WAN gateways as illustrated in the following examples:

WAN Configuration in GemFire 7.0

GemFire 7.0 introduces new APIs for WAN configuration. While the original APIs provided in GemFire 6 are still supported, it is recommended that you use the new APIs if you are using GemFire 7.0. The Spring Data GemFire namespace supports either. In the example below, GatewaySender`s are configured for a partitioned region by adding child elements to the region (`gateway-sender﻿ and gateway-sender-ref﻿). The GatewaySender﻿ may register EventFilter`s and `TransportFilters﻿. Also shown below is an example configuration of an AsyncEventQueue﻿ which must also be wired into a region (not shown).

<gfe:partitioned-region id="region-inner-gateway-sender" >
 <gfe:gateway-sender
 remote-distributed-system-id="1">
 <gfe:event-filter>
 <bean class="org.springframework.data.gemfire.example.SomeEventFilter"/>
 </gfe:event-filter>
 <gfe:transport-filter>
 <bean class="org.springframework.data.gemfire.example.SomeTransportFilter"/>
 </gfe:transport-filter>
 </gfe:gateway-sender>
 <gfe:gateway-sender-ref bean="gateway-sender"/>
</gfe:partitioned-region>

<gfe:async-event-queue id="async-event-queue" batch-size="10" persistent="true" disk-store-ref="diskstore"
 maximum-queue-memory="50">
 <gfe:async-event-listener>
 <bean class="org.springframework.data.gemfire.example.SomeAsyncEventListener"/>
 </gfe:async-event-listener>
</gfe:async-event-queue>

<gfe:gateway-sender id="gateway-sender" remote-distributed-system-id="2">
 <gfe:event-filter>
 <ref bean="event-filter"/>
 <bean class="org.springframework.data.gemfire.example.SomeEventFilter"/>
 </gfe:event-filter>
 <gfe:transport-filter>
 <ref bean="transport-filter"/>
 <bean class="org.springframework.data.gemfire.example.SomeTransportFilter"/>
 </gfe:transport-filter>
</gfe:gateway-sender>

<bean id="event-filter" class="org.springframework.data.gemfire.example.AnotherEventFilter"/>
<bean id="transport-filter" class="org.springframework.data.gemfire.example.AnotherTransportFilter"/>

On the other end of a GatewaySender﻿ is a corresponding GatewayReceiver﻿ to receive gateway events. The GatewayReceiver﻿ may also be configured with `EventFilter`s and `TransportFilter`s.

<gfe:gateway-receiver id="gateway-receiver"
 start-port="12345" end-port="23456" bind-address="192.168.0.1">
 <gfe:transport-filter>
 <bean class="org.springframework.data.gemfire.example.SomeTransportFilter"/>
 </gfe:transport-filter>
</gfe:gateway-receiver>

Please refer to the GemFire product document for a detailed explanation of all the configuration options.

WAN Configuration in GemFire 6.6

<gfe:cache/>

<gfe:replicated-region id="region-with-gateway" enable-gateway="true" hub-id="gateway-hub"/>

<gfe:gateway-hub id="gateway-hub" manual-start="true">
 <gfe:gateway gateway-id="gateway">
 <gfe:gateway-listener>
 <bean class="com.company.example.MyGatewayListener"/>
 </gfe:gateway-listener>
 <gfe:gateway-queue maximum-queue-memory="5" batch-size="3"
 batch-time-interval="10" />
 </gfe:gateway>

 <gfe:gateway gateway-id="gateway2">
 <gfe:gateway-endpoint port="1234" host="host1" endpoint-id="endpoint1"/>
 <gfe:gateway-endpoint port="2345" host="host2" endpoint-id="endpoint2"/>
 </gfe:gateway>
</gfe:gateway-hub>

A region may synchronize all or part of its contents to a gateway hub used to access one or more remote systems. The region must set enable-gateway﻿ to true﻿ and specify the hub-id﻿.

If just a hub-id is specified, Spring Data GemFire automatically assumes that the gateway should be enabled.

Please refer to the GemFire product document for a detailed explanation of all the configuration options.

 Costin Leau , David Turanski , John Blum , Oliver Gierke

 WORKING WITH THE GEMFIRE APIS

Once the GemFire Cache and Regions have been configured they can be injected and used inside application objects. This chapter describes the integration with Spring’s Transaction Management functionality and DaoException﻿ hierarchy. It also covers support for dependency injection of GemFire managed objects.

Exception Translation

Using a new data access technology requires not only accommodating a new API but also handling exceptions specific to that technology. To accommodate this case, Spring Framework provides a technology agnostic, consistent exception hierarchy﻿ that abstracts the application from proprietary (and usually checked) exceptions to a set of focused runtime exceptions. As mentioned in the Spring Framework documentation, exception translation﻿ can be applied transparently to your data access objects through the use of the @Repository﻿ annotation and AOP by defining a PersistenceExceptionTranslationPostProcessor﻿ bean. The same exception translation functionality is enabled when using GemFire as long as at least a CacheFactoryBean﻿ is declared, e.g. using a <gfe:cache/>﻿ declaration, as it acts as an exception translator which is automatically detected by the Spring infrastructure and used accordingly.

GemfireTemplate

As with many other high-level abstractions provided by the Spring projects, Spring Data GemFire provides a template﻿ that simplifies GemFire data access. The class provides several one-line﻿ methods, for common region operations but also the ability to execute﻿ code against the native GemFire API without having to deal with GemFire checked exceptions for example through the GemfireCallback﻿.

The template class requires a GemFire Region﻿ instance and once configured is thread-safe and should be reused across multiple classes:

<bean id="gemfireTemplate" class="org.springframework.data.gemfire.GemfireTemplate" p:region-ref="someRegion"/>

Once the template is configured, one can use it alongside GemfireCallback﻿ to work directly with the GemFire Region﻿, without having to deal with checked exceptions, threading or resource management concerns:

template.execute(new GemfireCallback<Iterable<String>>() {
 public Iterable<String> doInGemfire(Region reg) throws GemFireCheckedException, GemFireException {
 // working against a Region of String
 Region<String, String> region = reg;

 region.put("1", "one");
 region.put("3", "three");

 return region.query("length < 5");
 }
});

For accessing the full power of the GemFire query language, one can use the find﻿ and findUnique﻿ which, as opposed to the query﻿ method, can execute queries across multiple regions, execute projections, and the like. The find﻿ method should be used when the query selects multiple items (through`SelectResults`) and the latter, findUnique﻿, as the name suggests, when only one object is returned.

Support for Spring Cache Abstraction

Since 1.1, Spring Data GemFire provides an implementation of the Spring 3.1 cache abstraction﻿. To use GemFire as a backing implementation, simply add GemfireCacheManager﻿ to your configuration:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:cache="http://www.springframework.org/schema/cache"
 xmlns:gfe="http://www.springframework.org/schema/gemfire"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/gemfire http://www.springframework.org/schema/gemfire/spring-gemfire.xsd
 http://www.springframework.org/schema/cache http://www.springframework.org/schema/cache/spring-cache.xsd">

 <!-- turn on declarative caching -->
 <cache:annotation-driven/>

 <gfe:cache id="gemfire-cache"/>

 <!-- declare GemFire Cache Manager -->
 <bean id="cacheManager" class="org.springframework.data.gemfire.support.GemfireCacheManager" p:cache-ref="gemfire-cache">
</beans>

Transaction Management

One of the most popular features of Spring Framework is transaction management﻿. If you are not familiar with it, we strongly recommend reading﻿ about it as it offers a consistent programming model that works transparently across multiple APIs and can be configured either programmatically or declaratively (the most popular choice).

For GemFire, Spring Data GemFire provides a dedicated, per-cache, transaction manager that, once declared, allows Region operations to be executed atomically through Spring:

<gfe:transaction-manager id="tx-manager" cache-ref="cache"/>

The example above can be simplified even more by eliminating the cache-ref﻿ attribute if the GemFire Cache is defined under the default name`gemfireCache`. As with the other Spring Data GemFire namespace elements, if the Cache bean name is not configured, the aforementioned naming convention will used. Additionally, the transaction manager name is`gemfireTransactionManager` if not explicitly specified.

Currently, GemFire supports optimistic transactions with read committed﻿ isolation. Furthermore, to guarantee this isolation, developers should avoid making in-place﻿ changes that manually modify values present in the Cache. To prevent this from happening, the transaction manager configures the Cache to use copy on read﻿ semantics, meaning a clone of the actual value is created, each time a read is performed. This behavior can be disabled if needed through the copyOnRead﻿ property. For more information on the semantics of the underlying GemFire transaction manager, see the GemFire documentation﻿.

GemFire Continuous Query Container

A powerful functionality offered by GemFire is continuous querying﻿ (or CQ). In short, CQ allows one to create a query and automatically be notified when new data that gets added to GemFire matches the query. Spring GemFire provides dedicated support for CQs through the org.springframework.data.gemfire.listener﻿ package and its listener container﻿; very similar in functionality and naming to the JMS integration in Spring Framework; in fact, users familiar with the JMS support in Spring, should feel right at home. Basically Spring Data GemFire allows methods on POJOs to become end-points for CQ - simply define the query and indicate the method that should be notified when there is a match - Spring Data GemFire takes care of the rest. This is similar Java EE’s message-driven bean style, but without any requirement for base class or interface implementations, based on GemFire.

Currently, continuous queries are supported by GemFire only in client/server topologies. Additionally the pool used is required to have the subscription﻿ property enabled. Please refer to the documentation for more information.

Continuous Query Listener Container

Spring Data GemFire simplifies the creation, registration, life-cycle and dispatch of CQs by taking care of the infrastructure around them through ContinuousQueryListenerContainer﻿ which does all the heavy lifting on behalf of the user - users familiar with EJB and JMS should find the concepts familiar as it is designed as close as possible to the support in Spring Framework and its message-driven POJOs (MDPs)

ContinuousQueryListenerContainer﻿ acts as an event (or message) listener container; it is used to receive the events from the registered CQs and drive the POJOs that are injected into it. The listener container is responsible for all threading of message reception and dispatches into the listener for processing. It acts as the intermediary between an EDP (Event Driven POJO) and the event provider and takes care of creation and registration of CQs (to receive events), resource acquisition and release, exception conversion and the like. This allows you as an application developer to write the (possibly complex) business logic associated with receiving an event (and reacting to it), and delegates boilerplate GemFire infrastructure concerns to the framework.

The container is fully customizable - one can chose either to use the CQ thread to perform the dispatch (synchronous delivery) or a new thread (from an existing pool for examples) for an asynchronous approach by defining the suitable java.util.concurrent.Executor﻿ (or Spring’s TaskExecutor﻿). Depending on the load, the number of listeners or the runtime environment, one should change or tweak the executor to better serve her needs - in particular in managed environments (such as app servers), it is highly recommended to pick a a proper TaskExecutor﻿ to take advantage of its runtime.

The ContinuousQueryListenerAdapter﻿ and ContinuousQueryListener﻿

The ContinuousQueryListenerAdapter﻿ class is the final component in Spring Data GemFire CQ support: in a nutshell, it allows you to expose almost any﻿ class as a EDP (there are of course some constraints) - it implements ContinuousQueryListener﻿, a simpler listener interface similar to GemFire CqListener﻿.

Consider the following interface definition. Notice the various event handling methods and their parameters:

public interface EventDelegate {
 void handleEvent(CqEvent event);
 void handleEvent(Operation baseOp);
 void handleEvent(Object key);
 void handleEvent(Object key, Object newValue);
 void handleEvent(Throwable th);
 void handleQuery(CqQuery cq);
 void handleEvent(CqEvent event, Operation baseOp, byte[] deltaValue);
 void handleEvent(CqEvent event, Operation baseOp, Operation queryOp, Object key, Object newValue);
}

public class DefaultEventDelegate implements EventDelegate {
 // implementation elided for clarity...
}

In particular, note how the above implementation of the EventDelegate﻿ interface (the above DefaultEventDelegate﻿ class) has no﻿ GemFire dependencies at all. It truly is a POJO that we will make into an EDP via the following configuration (note that the class doesn’t have to implement an interface, one is present only to better show case the decoupling between contract and implementation).

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:gfe="http://www.springframework.org/schema/gemfire"
 xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/gemfire http://www.springframework.org/schema/gemfire/spring-gemfire.xsd">

 <gfe:client-cache pool-name="client"/>

 <gfe:pool id="client" subscription-enabled="true">
 <gfe:server host="localhost" port="40404"/>
 </gfe:pool>

 <gfe:cq-listener-container>
 <!-- default handle method -->
 <gfe:listener ref="listener" query="SELECT * from /region"/ >
 <gfe:listener ref="another-listener" query="SELECT * from /another-region" name="my-query" method="handleQuery"/>
 </gfe:cq-listener-container>

 <bean id="listener" class="gemfireexample.DefaultMessageDelegate"/>
 <bean id="another-listener" class="gemfireexample.DefaultMessageDelegate"/>
 ...
<beans>

The example above shows some of the various forms that a listener can have; at its minimum the listener reference and the actual query definition are required. It’s possible however to specify a name for the resulting continuous query (useful for monitoring) but also the name of the method (the default is handleEvent﻿). The specified method can have various argument types, the EventDelegate﻿ interface lists the allowed types.

The example above uses the Spring Data GemFire namespace to declare the event listener container and automatically register the listeners. The full blown, beans﻿ definition is displayed below:

<!-- this is the Event Driven POJO (MDP) -->
<bean id="eventListener" class="org.springframework.data.gemfire.listener.adapter.ContinuousQueryListenerAdapter">
 <constructor-arg>
 <bean class="gemfireexample.DefaultEventDelegate"/>
 </constructor-arg>
</bean>

<!-- and this is the event listener container... -->
<bean id="gemfireListenerContainer" class="org.springframework.data.gemfire.listener.ContinuousQueryListenerContainer">
 <property name="cache" ref="gemfireCache"/>
 <property name="queryListeners">
 <!-- set of listeners -->
 <set>
 <bean class="org.springframework.data.gemfire.listener.ContinuousQueryDefinition" >
 <constructor-arg value="SELECT * from /region" />
 <constructor-arg ref="eventListener" />
 </bean>
 </set>
 </property>
</bean>

Each time an event is received, the adapter automatically performs type translation between the GemFire event and the required method argument(s) transparently. Any exception caused by the method invocation is caught and handled by the container (by default, being logged).

Wiring Declarable﻿ components

GemFire XML configuration (usually named cache.xml﻿ allows user﻿ objects to be declared as part of the configuration. Usually these objects are CacheLoader`s or other pluggable callback components supported by GemFire. Using native GemFire configuration, each user type declared through XML must implement the `Declarable﻿ interface which allows arbitrary parameters to be passed to the declared class through a Properties﻿ instance.

In this section we describe how you can configure these pluggable components defined in cache.xml﻿ using Spring while keeping your Cache/Region configuration defined in cache.xml﻿ This allows your pluggable components to focus on the application logic and not the location or creation of DataSources or other collaboration objects.

However, if you are starting a green field project, it is recommended that you configure Cache, Region, and other pluggable components directly in Spring. This avoids inheriting from the Declarable﻿ interface or the base class presented in this section. See the following sidebar for more information on this approach.

ELIMINATE DECLARABLE﻿ COMPONENTS

One can configure custom types entirely through Spring as mentioned in [bootstrap:region]﻿. That way, one does not have to implement the Declarable﻿ interface and also benefits from all the features of the Spring IoC container (not just dependency injection but also life-cycle and instance management).

As an example of configuring a Declarable﻿ component using Spring, consider the following declaration (taken from the Declarable﻿ javadoc):

<cache-loader>
 <class-name>com.company.app.DBLoader</class-name>
 <parameter name="URL">
 <string>jdbc://12.34.56.78/mydb</string>
 </parameter>
</cache-loader>

To simplify the task of parsing, converting the parameters and initializing the object, Spring Data GemFire offers a base class (WiringDeclarableSupport﻿) that allows GemFire user objects to be wired through a template﻿ bean definition or, in case that is missing, perform autowiring through the Spring container. To take advantage of this feature, the user objects need to extend WiringDeclarableSupport﻿ which automatically locates the declaring BeanFactory﻿ and performs wiring as part of the initialization process.

WHY IS A BASE CLASS NEEDED?

In the current GemFire release there is no concept of an object factory﻿ and the types declared are instantiated and used as is. In other words, there is no easy way to manage object creation outside GemFire.

Configuration using template﻿ definitions

When used, WiringDeclarableSupport﻿ tries to first locate an existing bean definition and use that as wiring template. Unless specified, the component class name will be used as an implicit bean definition name. Let’s see how our DBLoader﻿ declaration would look in that case:

public class DBLoader extends WiringDeclarableSupport implements CacheLoader {
 private DataSource dataSource;

 public void setDataSource(DataSource ds){
 this.dataSource = ds;
 }

 public Object load(LoaderHelper helper) { ... }
}

<cache-loader>
 <class-name>com.company.app.DBLoader</class-name>
 <!-- no parameter is passed (use the bean implicit name
 that is the class name) -->
</cache-loader>

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:p="http://www.springframework.org/schema/p"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean id="dataSource" ... />

 <!-- template bean definition -->
 <bean id="com.company.app.DBLoader" abstract="true" p:dataSource-ref="dataSource"/>
</beans>

In the scenario above, as no parameter was specified, a bean with the id/name com.company.app.DBLoader﻿ was used as a template for wiring the instance created by GemFire. For cases where the bean name uses a different convention, one can pass in the bean-name﻿ parameter in the GemFire configuration:

<cache-loader>
 <class-name>com.company.app.DBLoader</class-name>
 <!-- pass the bean definition template name
 as parameter -->
 <parameter name="bean-name">
 <string>template-bean</string>
 </parameter>
</cache-loader>

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:p="http://www.springframework.org/schema/p"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean id="dataSource" ... />

 <!-- template bean definition -->
 <bean id="template-bean" abstract="true" p:dataSource-ref="dataSource"/>

</beans>

The template﻿ bean definitions do not have to be declared in XML - any format is allowed (Groovy, annotations, etc..).

Configuration using auto-wiring and annotations

If no bean definition is found, by default, WiringDeclarableSupport﻿ will autowire﻿ the declaring instance. This means that unless any dependency injection metadata﻿ is offered by the instance, the container will find the object setters and try to automatically satisfy these dependencies. However, one can also use JDK 5 annotations to provide additional information to the auto-wiring process. We strongly recommend reading the dedicated chapter﻿ in the Spring documentation for more information on the supported annotations and enabling factors.

For example, the hypothetical DBLoader﻿ declaration above can be injected with a Spring-configured DataSource﻿ in the following way:

public class DBLoader extends WiringDeclarableSupport implements CacheLoader {
 // use annotations to 'mark' the needed dependencies
 @javax.inject.Inject
 private DataSource dataSource;

 public Object load(LoaderHelper helper) { ... }
}

<cache-loader>
 <class-name>com.company.app.DBLoader</class-name>
 <!-- no need to declare any parameters anymore
 since the class is auto-wired -->
</cache-loader>

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context.xsd">

 <!-- enable annotation processing -->
 <context:annotation-config/>

</beans>

By using the JSR-330 annotations, the cache loader code has been simplified since the location and creation of the DataSource has been externalized and the user code is concerned only with the loading process. The DataSource﻿ might be transactional, created lazily, shared between multiple objects or retrieved from JNDI - these aspects can be easily configured and changed through the Spring container without touching the DBLoader﻿ code.

 Costin Leau , David Turanski , John Blum , Oliver Gierke

 WORKING WITH GEMFIRE SERIALIZATION

To improve overall performance of the data grid, GemFire supports a dedicated serialization protocol (PDX) that is both faster and offers more compact results over the standard Java serialization and works transparently across various language platforms﻿ (such as Java﻿, .NET﻿ and C++). This chapter discusses the various ways in which Spring Data GemFire simplifies and improves GemFire custom serialization in Java.

Wiring deserialized instances

It is fairly common for serialized objects to have transient data. Transient data is often dependent on the node or environment where it lives at a certain point in time, for example a DataSource. Serializing such information is useless (and potentially even dangerous) since it is local to a certain VM/machine. For such cases, Spring Data GemFire offers a special Instantiator﻿﻿ that performs wiring for each new instance created by GemFire during deserialization.

Through such a mechanism, one can rely on the Spring container to inject (and manage) certain dependencies making it easy to split transient from persistent data and have rich domain objects﻿ in a transparent manner (Spring users might find this approach similar to that of @Configurable﻿﻿). The WiringInstantiator﻿ works just like WiringDeclarableSupport﻿, trying to first locate a bean definition as a wiring template and following to autowiring otherwise. Please refer to the previous section ([apis:declarable]﻿) for more details on wiring functionality.

To use this Instantiator﻿, simply declare it as a usual bean:

<bean id="instantiator" class="org.springframework.data.gemfire.serialization.WiringInstantiator">
 <!-- DataSerializable type -->
 <constructor-arg>org.pkg.SomeDataSerializableClass</constructor-arg>
 <!-- type id -->
 <constructor-arg>95</constructor-arg>
</bean>

During the container startup, once it is being initialized, the instantiator﻿ will, by default, register itself with the GemFire system and perform wiring on all instances of SomeDataSerializableClass﻿ created by GemFire during deserialization.

Auto-generating custom `Instantiator`s

For data intensive applications, a large number of instances might be created on each machine as data flows in. Out of the box, GemFire uses reflection to create new types but for some scenarios, this might prove to be expensive. As always, it is good to perform profiling to quantify whether this is the case or not. For such cases, Spring Data GemFire allows the automatic generation of Instatiator﻿ classes which instantiate a new type (using the default constructor) without the use of reflection:

<bean id="instantiator-factory" class="org.springframework.data.gemfire.serialization.InstantiatorFactoryBean">
 <property name="customTypes">
 <map>
 <entry key="org.pkg.CustomTypeA" value="1025"/>
 <entry key="org.pkg.CustomTypeB" value="1026"/>
 </map>
 </property>
</bean>

The definition above, automatically generated two Instantiator`s for two classes, namely `CustomTypeA﻿ and CustomTypeB﻿ and registers them with GemFire, under user id 1025﻿ and 1026﻿. The two instantiators avoid the use of reflection and create the instances directly through Java code.

 Costin Leau , David Turanski , John Blum , Oliver Gierke

 POJO MAPPING

Entity Mapping

Spring Data GemFire provides support to map entities that will be stored in a GemFire data grid. The mapping metadata is defined using annotations at the domain classes just like this:

Mapping a domain class to a GemFire Region

@Region("People")
public class Person {

 @Id Long id;
 String firstname;
 String lastname;

 @PersistenceConstructor
 public Person(String firstname, String lastname) {
 // …
 }

 …
}

The first thing you see here is the @Region﻿ annotation that can be used to customize the Region in which the Person﻿ class is stored in. The @Id﻿ annotation can be used to annotate the property that shall be used as the Cache key. The @PersistenceConstructor﻿ annotation actually helps disambiguating multiple potentially available constructors taking parameters and explicitly marking the one annotated as the one to be used to create entities. With none or only a single constructor you can omit the annotation.

In addition to storing entities in top-level Regions, entities can be stored in GemFire Sub-Regions, as so:

@Region("/Users/Admin")
public class Admin extends User {
 …
}

@Region("/Users/Guest")
public class Guest extends User {
 …
}

Be sure to use the full-path of the GemFire Region, as defined in Spring Data GemFire XML namespace configuration meta-data, as specified in the id﻿ or name﻿ attributes of the <*-region>﻿ bean definition.

As alternative to specifying the Region in which the entity will be stored using the @Region﻿ annotation on the entity class, you can also specify the @Region﻿ annotation on the entity’s Repository﻿ abstraction. See [gemfire-repositories]﻿ for more details.

However, let’s say you want to store a Person in multiple GemFire Regions (e.g. People﻿ and Customers﻿), then you can define your corresponding Repository﻿ interface abstractions like so:

@Region("People")
public interface PersonRepository extends GemfireRepository<Person, String> {
…
}

@Region("Customers")
public interface CustomerRepository extends GemfireRepository<Person, String> {
...
}

Mapping PDX Serializer

Spring Data GemFire provides a custom PDXSerializer﻿ implementation that uses the mapping information to customize entity serialization. Beyond that it allows customizing the entity instantiation by using the Spring Data EntityInstantiator﻿ abstraction. By default the serializer uses a ReflectionEntityInstantiator﻿ that will use the persistence constructor of the mapped entity (either the single declared one or explicitly annoted with @PersistenceConstructor﻿). To provide values for constructor parameters it will read fields with name of the constructor parameters from the PDXReader﻿ supplied.

Using @Value on entity constructor parameters

public class Person {

 public Person(@Value("#root.foo") String firstname, @Value("bean") String lastname) {
 // …
 }

}

The entity annotated as such will get the field foo﻿ read from the PDXReader﻿ and handed as constructor parameter value for firstname﻿. The value for lastname﻿ will be the Spring bean with name bean﻿.

 Costin Leau , David Turanski , John Blum , Oliver Gierke

 GEMFIRE REPOSITORIES

Introduction

Spring Data GemFire provides support to use the Spring Data Repository abstraction to easily persist entities
into GemFire and execute queries. A general introduction to the Repository programming model has been provided
here﻿.

Spring Configuration

To bootstrap Spring Data Repositories you use the <repositories/>﻿ element from the GemFire Data namespace:

Bootstrap GemFire Repositories

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:gfe-data="http://www.springframework.org/schema/data/gemfire"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/data/gemfire
 http://www.springframework.org/schema/data/gemfire/spring-data-gemfire.xsd>

 <gfe-data:repositories base-package="com.acme.repository" />

</beans>

This configuration snippet will look for interfaces below the configured base package and create Repository instances
for those interfaces backed by a SimpleGemFireRepository﻿. Note that you have to have your domain classes correctly
mapped to configured Regions or the bootstrap process will fail otherwise.

Executing OQL Queries

The GemFire Repositories allow the definition of query methods to easily execute OQL Queries against the Region
the managed entity is mapped to.

Sample Repository

@Region("myRegion")
public class Person { … }

public interface PersonRepository extends CrudRepository<Person, Long> {

 Person findByEmailAddress(String emailAddress);

 Collection<Person> findByFirstname(String firstname);

 @Query("SELECT * FROM /Person p WHERE p.firstname = $1")
 Collection<Person> findByFirstnameAnnotated(String firstname);

 @Query("SELECT * FROM /Person p WHERE p.firstname IN SET $1")
 Collection<Person> findByFirstnamesAnnotated(Collection<String> firstnames);
}

The first method listed here will cause the following query to be derived: SELECT x FROM /MyRegion x WHERE x.emailAddress = $1﻿.
The second method works the same way except it’s returning all entities found whereas the first one expects
a single result value. In case the supported keywords are not sufficient to declare your query or the method name
gets to verbose you can annotate the query methods with @Query﻿ as seen for methods 3 and 4.

Table 1. Supported keywords for query methods

	Keyword
	Sample
	Logical result

	GreaterThan﻿

	findByAgeGreaterThan(int age)﻿

	x.age > $1﻿

	GreaterThanEqual﻿

	findByAgeGreaterThanEqual(int age)﻿

	x.age >= $1﻿

	LessThan﻿

	findByAgeLessThan(int age)﻿

	x.age < $1﻿

	LessThanEqual﻿

	findByAgeLessThanEqual(int age)﻿

	x.age ⇐ $1﻿

	IsNotNull﻿, NotNull﻿

	findByFirstnameNotNull()﻿

	x.firstname =! NULL﻿

	IsNull﻿, Null﻿

	findByFirstnameNull()﻿

	x.firstname = NULL﻿

	In﻿

	findByFirstnameIn(Collection<String> x)﻿

	x.firstname IN SET $1﻿

	NotIn﻿

	findByFirstnameNotIn(Collection<String> x)﻿

	x.firstname NOT IN SET $1﻿

	(No keyword)

	findByFirstname(String name)﻿

	x.firstname = $1﻿

	Like﻿

	findByFirstnameLike(String name)﻿

	x.firstname LIKE $1﻿

	Not﻿

	findByFirstnameNot(String name)﻿

	x.firstname != $1﻿

	IsTrue﻿, True﻿

	findByActiveIsTrue()﻿

	x.active = true﻿

	IsFalse﻿, False﻿

	findByActiveIsFalse()﻿

	x.active = false﻿

OQL Query Extensions with Annotations

Many query languages, such as Pivotal GemFire’s OQL (Object Query Language), have extensions that are not directly
supported by the Spring Data Commons Repository infrastructure.

One of Spring Data Commons' Repository infrastructure goals is to function as the lowest common denominator to maintain
support and portability across the widest array of data stores available and in use for application development today.
Technically, this means developers can access multiple different data stores supported by Spring Data Commons within
their applications by reusing their existing application-specific Repository interfaces, a very convenient and powerful
abstraction.

To support GemFire’s OQL Query language extensions and maintain portability across data stores, Spring Data GemFire
adds support for OQL Query extensions by way of Java Annotations. These new Annotations will be ignored by other
Spring Data Repository implementations (e.g. Spring Data Redis) that don’t have similar query language extensions.

For instance, many data stores will most likely not implement GemFire’s OQL IMPORT﻿ keyword. By implementing IMPORT﻿
as an Annotation (@Import﻿) rather than as part of the query method signature (specifically, the method 'name'),
this will not interfere with the parsing infrastructure when evaluating the query method name to construct
the appropriate data store language appropriate query.

Currently, the set of OQL Query language extensions that are supported by Spring Data GemFire include:

Table 2. Supported OQL Query extensions for query methods

	Keyword
	Annotation
	Description
	Arguments

	HINT﻿

	@Hint﻿

	OQL Query Index Hints

	String[]﻿ (e.g. @Hint({ "IdIdx", "TxDateIdx" }))

	IMPORT﻿

	@Import﻿

	Qualify application-specific types.

	String﻿ (e.g. @Import("org.example.app.domain.Type"))

	LIMIT﻿

	@Limit﻿

	Limit the returned query result set.

	Integer﻿ (e.g. @Limit(10); default is Integer.MAX_VALUE)

	TRACE﻿

	@Trace﻿

	Enable OQL Query specific debugging.

	NA

As an example, suppose you have a Customers﻿ application domain type and corresponding GemFire Region along with a
CustomerRepository﻿ and a query method to lookup Customers﻿ by last name, like so…​

Sample Repository

package ...;

import org.springframework.data.annotation.Id;
import org.springframework.data.gemfire.mapping.Region;
...

@Region("Customers")
public class Customer ... {

 @Id
 private Long id;

 ...
}

package ...;

import org.springframework.data.gemfire.repository.GemfireRepository;
...

public interface CustomerRepository extends GemfireRepository<Customer, Long> {

 @Trace
 @Limit(10)
 @Hint("LastNameIdx")
 @Import("org.example.app.domain.Customer")
 List<Customer> findByLastName(String lastName);

 ...
}

This will result in the following OQL Query:

<TRACE> <HINT 'LastNameIdx'> IMPORT org.example.app.domain.Customer; SELECT * FROM /Customers c WHERE c.lastName = $1 LIMIT 10﻿

Spring Data GemFire’s Repository extension support is careful not to create conflicting declaratives when
the Query Annotation extensions are used in combination with the @Query﻿ annotation.

For instance, suppose you have a raw @Query﻿ annotated query method defined in your CustomerRepository﻿ like so…​

CustomerRepository

public interface CustomerRepository extends GemfireRepository<Customer, Long> {

 @Trace
 @Limit(10)
 @Hint("CustomerIdx")
 @Import("org.example.app.domain.Customer")
 @Query("<TRACE> <HINT 'ReputationIdx'> SELECT DISTINCT * FROM /Customers c WHERE c.reputation > $1 ORDER BY c.reputation DESC LIMIT 5")
 List<Customer> findDistinctCustomersByReputationGreaterThanOrderByReputationDesc(Integer reputation);
}

This query method results in the following OQL Query:

IMPORT org.example.app.domain.Customer; <TRACE> <HINT 'ReputationIdx'> SELECT DISTINCT * FROM /Customers c WHERE c.reputation > $1
ORDER BY c.reputation DESC LIMIT 5﻿

As you can see, the @Limit(10)﻿ annotation will not override the LIMIT﻿ defined explicitly in the raw query. As well,
@Hint("CustomerIdx")﻿ annotation does not override the HINT﻿ explicitly defined in the raw query. Finally, the
@Trace﻿ annotation is redundant and has no additional effect.

The "ReputationIdx" Index is probably not the most sensible index given the number of Customers who will possibly have
the same value for their reputation, which will effectively reduce the effectiveness of the index. Please choose
indexes and other optimizations wisely as an improper or poorly choosen index and have the opposite effect on your
performance given the overhead in maintaining the index. The "ReputationIdx" was only used to serve the purpose
of the example.

 Costin Leau , David Turanski , John Blum , Oliver Gierke

 ANNOTATION SUPPORT FOR FUNCTION EXECUTION

Introduction

Spring Data GemFire 1.3.0 introduces annotation support to simplify working with
GemFire Function Execution﻿.
The GemFire API provides classes to implement and register Functions﻿
deployed to Cache servers that may be invoked remotely by member applications, typically cache clients.
Functions may execute in parallel, distributed among multiple servers, combining results in a map-reduce pattern,
or may be targeted at a single server. A Function execution may be also be targeted to a specific Region.

GemFire also provides APIs to support remote execution of Functions targeted to various defined scopes
(Region, member groups, servers, etc.) and the ability to aggregate results. The API also provides certain
runtime options. The implementation and execution of remote Functions, as with any RPC protocol, requires
some boilerplate code. Spring Data GemFire, true to Spring’s core value proposition, aims to hide the mechanics
of remote Function execution and allow developers to focus on POJO programming and business logic. To this end,
Spring Data GemFire introduces annotations to declaratively register public methods as GemFire Functions, and
the ability to invoke registered Functions remotely via annotated interfaces.

Implementation vs Execution

There are two separate concerns to address. First is the Function implementation (server) which must interact with
the FunctionContext﻿
to obtain the invocation arguments, the ResultsSender﻿
and other execution context information. The Function implementation typically accesses the Cache and or Region
and is typically registered with the FunctionService﻿
under a unique Id. The application invoking a Function (the client) does not depend on the implementation. To invoke
a Function remotely, the application instantiates an Execution﻿
providing the Function ID, invocation arguments, the Function target or scope (Region, server, servers,
member, members). If the Function produces a result, the invoker uses a ResultCollector﻿
to aggregate and acquire the execution results. In certain scenarios, a custom ResultCollector implementation
is required and may be registered with the Execution.

'Client' and 'Server' are used here in the context of Function execution which may have a different meaning
than client and server in a client-server Cache topology. While it is common for a member with a Client Cache
to invoke a Function on one or more Cache Server members it is also possible to execute Functions in a peer-to-peer
(P2P) configuration

Implementing a Function

Using GemFire APIs, the FunctionContext provides a runtime invocation context including the client’s calling arguments
and a ResultSender interface to send results back to the client. Additionally, if the Function is executed on a Region,
the FunctionContext is an instance of RegionFunctionContext which provides additional context such as the target Region
and any Filter (set of specific keys) associated with the Execution. If the Region is a PARTITION Region, the Function
should use the PartitionRegionHelper to extract only the local data.

Using Spring, a developer can write a simple POJO and enable the Spring container to bind one or more of it’s
public methods to a Function. The signature for a POJO method intended to be used as a Function must generally
conform to the the client’s execution arguments. However, in the case of a Region execution, the Region data
must also be provided (presumably the data held in the local partition if the Region is a PARTITION Region).
Additionally the Function may require the Filter that was applied, if any. This suggests that the client and server
may share a contract for the calling arguments but that the method signature may include additional parameters
to pass values provided by the FunctionContext. One possibility is that the client and server share a common interface,
but this is not required. The only constraint is that the method signature includes the same sequence
of calling arguments with which the Function was invoked after the additional parameters are resolved.

For example, suppose the client provides a String and int as the calling arguments. These are provided
by the FunctionContext as an array:

Object[] args = new Object[]{"hello", 123}﻿

Then the Spring container should be able to bind to any method signature similar to the following. Let’s ignore
the return type for the moment:

public Object method1(String s1, int i2) {...}
public Object method2(Map<?,?> data, String s1, int i2) {...}
public Object method3(String s1, Map<?,?>data, int i2) {...}
public Object method4(String s1, Map<?,?> data, Set<?> filter, int i2) {...}
public void method4(String s1, Set<?> filter, int i2, Region<?,?> data) {...}
public void method5(String s1, ResultSender rs, int i2);
public void method6(FunctionContest fc);

The general rule is that once any additional arguments, i.e. Region data and Filter, are resolved,
the remaining arguments must correspond exactly, in order and type, to the expected calling parameters.
The method’s return type must be void or a type that may be serialized (either java.io.Serializable,
DataSerializable, or PDX serializable). The latter is also a requirement for the calling arguments.
The Region data should normally be defined as a Map, to facilitate unit testing, but may also be of type Region
if necessary. As shown in the example above, it is also valid to pass the FunctionContext itself, or the ResultSender,
if you need to control how the results are returned to the client.

Annotations for Function Implementation

The following example illustrates how annotations are used to expose a POJO as a GemFire Function:

@Component
public class ApplicationFunctions {

 @GemfireFunction
 public String function1(String value, @RegionData Map<?,?> data, int i2) { ... }

 @GemfireFunction("myFunction", HA=true, optimizedForWrite=true, batchSize=100)
 public List<String> function2(String value, @RegionData Map<?,?> data, int i2, @Filter Set<?> keys) { ... }

 @GemfireFunction(hasResult=true)
 public void functionWithContext(FunctionContext functionContext) { ... }

}

Note that the class itself must be registered as a Spring bean. Here the @Component﻿ annotation is used, but you may
register the bean by any method provided by Spring (e.g. XML configuration or Java configuration class). This allows
the Spring container to create an instance of this class and wrap it in a
PojoFunctionWrapper﻿ (PFW).
Spring creates one PFW instance for each method annotated with @GemfireFunction﻿. Each will all share the same
target object instance to invoke the corresponding method.

The fact that the Function class is a Spring bean may offer other benefits since it shares the ApplicationContext
with GemFire components such as a Cache and Regions. These may be injected into the class if necessary.

Spring creates the wrapper class and registers the Function with GemFire’s Function Service. The Function id used
to register the Functions must be unique. By convention it defaults to the simple (unqualified) method name. Note that
this annotation also provides configuration attributes, HA﻿ and optimizedForWrite﻿ which correspond to properties
defined by GemFire’s Function interface. If the method’s return type is void, then the hasResult﻿ property
is automatically set to false﻿; otherwise it is set to true﻿.

For void﻿ return types, the annotation provides a hasResult﻿ attribute that can be set to true to override
this convention, as shown in the functionWithContext﻿ method above. Presumably, the intention is to use the
ResultSender directly to send results to the caller.

The PFW implements GemFire’s Function interface, binds the method parameters, and invokes the target method in
its execute()﻿ method. It also sends the method’s return value using the ResultSender.

Batching Results

If the return type is a Collection or Array, then some consideration must be given to how the results are returned.
By default, the PFW returns the entire Collection at once. If the number of items is large, this may incur
a performance penalty. To divide the payload into small sections (sometimes called chunking), you can set
the batchSize﻿ attribute, as illustrated in function2﻿, above.

If you need more control of the ResultSender, especially if the method itself would use too much memory
to create the Collection, you can pass the ResultSender, or access it via the FunctionContext, to use it directly
within the method.

Enabling Annotation Processing

In accordance with Spring standards, you must explicitly activate annotation processing for @GemfireFunction using XML:

<gfe:annotation-driven/>

or by annotating a Java configuration class:

@EnableGemfireFunctions

Executing a Function

A process invoking a remote Function needs to provide calling arguments, a Function id, the execution target
(onRegion, onServers, onServer, onMember, onMembers) and optionally a Filter set. All a developer need do is
define an interface supported by annotations. Spring will create a dynamic proxy for the interface which will
use the FunctionService to create an Execution, invoke the Execution and coerce the results to a defined return type,
if necessary. This technique is very similar to the way Spring Data Repositories work, thus some of the configuration
and concepts should be familiar. Generally a single interface definition maps to multiple Function executions,
one corresponding to each method defined in the interface.

Annotations for Function Execution

To support client-side Function execution, the following annotations are provided: @OnRegion﻿, @OnServer﻿,
@OnServers﻿, @OnMember﻿, @OnMembers﻿. These correspond to the Execution implementations GemFire’s FunctionService
provides. Each annotation exposes the appropriate attributes. These annotations also provide an optional
resultCollector﻿ attribute whose value is the name of a Spring bean implementing
ResultCollector﻿
to use for the execution.

The proxy interface binds all declared methods to the same execution configuration. Although it is expected
that single method interfaces will be common, all methods in the interface are backed by the same proxy instance
and therefore all share the same configuration.

Here are some examples:

@OnRegion(region="someRegion", resultCollector="myCollector")
public interface FunctionExecution {

 @FunctionId("function1")
 String doIt(String s1, int i2);

 String getString(Object arg1, @Filter Set<Object> keys) ;

}

By default, the Function id is the simple (unqualified) method name. @FunctionId﻿ is used to bind this invocation
to a different Function id.

Enabling Annotation Processing

The client-side uses Spring’s component scanning capability to discover annotated interfaces. To enable
Function execution annotation processing, you can use XML:

<gfe-data:function-executions base-package="org.example.myapp.functions"/>

Note that the function-executions﻿ element is provided in the gfe-data﻿ namespace. The base-package﻿ attribute
is required to avoid scanning the entire classpath. Additional filters are provided as described in the Spring
reference﻿.

Optionally, a developer can annotate her Java configuration class:

@EnableGemfireFunctionExecutions(basePackages = "org.example.myapp.functions")

Programmatic Function Execution

Using the annotated interface as described in the previous section, simply wire your interface into a bean
that will invoke the Function:

@Component
 public class MyApp {

 @Autowired FunctionExecution functionExecution;

 public void doSomething() {
 functionExecution.doIt("hello", 123);
 }

}

Alternately, you can use a Function Execution template directly. For example GemfireOnRegionFunctionTemplate﻿ creates
an onRegion﻿ Function execution. For example:

Set<?,?> myFilter = getFilter();
Region<?,?> myRegion = getRegion();
GemfireOnRegionOperations template = new GemfireOnRegionFunctionTemplate(myRegion);
String result = template.executeAndExtract("someFunction",myFilter,"hello","world",1234);

Internally, Function executions always return a List. executeAndExtract﻿ assumes a singleton List containing the result
and will attempt to coerce that value into the requested type. There is also an execute﻿ method that returns the List
itself. The first parameter is the Function id. The Filter argument is optional. The following arguments are a
variable argument List.

Function Execution with PDX

When using Spring Data GemFire’s Function annotation support combined with GemFire’s PDX serialization﻿,
there are a few logistical things to keep in mind.

As explained above, and by way of example, typically developers will define GemFire Functions using POJO classes
annotated with Spring Data GemFire Function annotations﻿
as so…​

public class OrderFunctions {

 @GemfireFunction(...)
 Order process(@RegionData data, Order order, OrderSource orderSourceEnum, Integer count);

}

the Integer count parameter is an arbitrary argument as is the separation of the Order and OrderSource Enum,
which might be logical to combine. However, the arguments were setup this way to demonstrate the problem with
Function executions in the context of PDX.

Your Order and OrderSource enum might be as follows…​

public class Order ... {

 private Long orderNumber;
 private Calendar orderDateTime;
 private Customer customer;
 private List<Item> items

 ...
}

public enum OrderSource {
 ONLINE,
 PHONE,
 POINT_OF_SALE
 ...
}

Of course, a developer may define a Function Execution interface to call the 'process' GemFire Server Function…​

@OnServer
public interface OrderProcessingFunctions {
 Order process(Order order, OrderSource orderSourceEnum, Integer count);
}

Clearly, this process(..)﻿ Order Function is being called from a client-side, client Cache (<gfe:client-cache/>﻿)
member-based application. This means that the Function arguments must be serializable. The same is true when
invoking peer-to-peer member Functions (@OnMember(s)) between peers in the cluster. Any form of `distribution﻿
requires the data transmitted between client and server, or peers to be serializable.

Now, if the developer has configured GemFire to use PDX for serialization (instead of Java serialization, for instance)
it is common for developers to set the read-serialized﻿ attribute to true﻿ on the GemFire server(s)…​

<gfe:cache …​ pdx-read-serialized="true"/>﻿

This causes all values read from the Cache (i.e. Regions) as well as information passed between client and servers,
or peers to remain in serialized form, include, but not limited to Function arguments.

GemFire will only serialize application domain object types that you have specifically configured (registered),
either using GemFire’s ReflectionBasedAutoSerializer﻿,
or specifically (and recommended) using a "custom" GemFire PdxSerializer﻿
for your application domain types.

What is less than apparent, is that GemFire automatically handles Java Enum types regardless of whether they are
explicitly configured (registered with a ReflectionBasedAutoSerializer﻿ regex pattern to the classes﻿ parameter,
or handled by a "custom" GemFire PdxSerializer﻿) or not, and despite the fact that Java Enums implement
java.io.Serializable﻿.

So, when a developer has pdx-read-serialized﻿ set to true﻿ on the GemFire Servers on which the GemFire Functions
(including Spring Data GemFire registered, Function annotated POJO classes), then the developer may encounter surprising
behavior when invoking the Function Execution.

What the developer may pass as arguments when invoking the Function is…​

 orderProcessingFunctions.process(new Order(123, customer, Calendar.getInstance(), items), OrderSource.ONLINE, 400);

But, in actuality, what GemFire executes the Function on the Server is…​

 process(regionData, order:PdxInstance, :PdxInstanceEnum, 400);

Notice that the Order﻿ and OrderSource﻿ have passed to the Function as PDX instances﻿.
Again, this is all because read-serialized﻿ is set to true on the GemFire Server, which may be necessary in cases
where the GemFire Servers are interacting with multiple different client types (e.g. native clients).

This flies in the face of Spring Data GemFire’s, "strongly-typed", Function annotated POJO class method signatures,
as the developer is expecting application domain object types (not PDX serialized objects).

So, as of Spring Data GemFire (SDG) 1.6﻿, SDG introduces enhanced Function support to automatically convert method
arguments that are of type PDX to the desired application domain object types when the developer of the Function
expects his Function arguments to be "strongly-typed".

However, this also requires the developer to explicitly register a GemFire PdxSerializer﻿ on the GemFire Servers
where the SDG annotated POJO Function is registered and used, e.g. …​

<bean id="customPdxSerializer" class="x.y.z.serialization.pdx.MyCustomPdxSerializer"/>

<gfe:cache ... pdx-serializer-ref="customPdxSerializeer" pdx-read-serialized="true"/>

Alternatively, a developer my use GemFire’s ReflectionBasedAutoSerializer﻿.
Of course, it is recommend to use a "custom" PdxSerializer﻿ where possible to maintain finer grained control over your
serialization strategy.

Finally, Spring Data GemFire is careful not to convert your Function arguments if you really want to treat your
Function arguments generically, or as one of GemFire’s PDX types…​

@GemfireFunction
public Object genericFunction(String value, Object domainObject, PdxInstanceEnum enum) {
 ...
}

Spring Data GemFire will only convert PDX type data to corresponding application domain object types
if and only if the corresponding application domain object types are on the classpath the the Function annotated
POJO method expects it.

For a good example of "custom", "composed" application-specific GemFire PdxSerializers﻿ as well as appropriate
POJO Function parameter type handling based on the method signature, see Spring Data GemFire’s
ClientCacheFunctionExecutionWithPdxIntegrationTest﻿ class.

 Costin Leau , David Turanski , John Blum , Oliver Gierke

 BOOTSTRAPPING A SPRING APPLICATIONCONTEXT IN GEMFIRE

Introduction

Normally, a Spring-based application will bootstrap GemFire﻿ using Spring Data GemFire’s XML namespace. Just by specifying a <gfe:cache/>﻿ element in Spring Data GemFire configuration meta-data, a single, peer GemFire Cache instance will be created and initialized with default settings in the same JVM process as your application.

However, sometimes it is a requirement, perhaps imposed by your IT operations team, that GemFire must be fully managed and operated using the provided GemFire tool suite, such as with Gfsh﻿. Using Gfsh﻿, even though the application and GemFire will share the same JVM process, GemFire will bootstrap your Spring application context rather than the other way around. So, using this approach GemFire, instead of an application server, or a Java main class using Spring Boot, will bootstrap and host your application.

Keep in mind, however, that GemFire is not an application server. In addition, there are limitations to using this approach where GemFire Cache configuration is concerned.

Using GemFire to Bootstrap a Spring Context Started with Gfsh

In order to bootstrap a Spring application context in GemFire when starting a GemFire Server process using Gfsh, a user must make use of GemFire’s Initalizer﻿ functionality. An Initializer﻿ can be used to specify a callback application that is launched after the Cache is initialized by GemFire.

An Initializer﻿ is specified within an initializer﻿ element using a minimal snippet of GemFire’s native configuration meta-data inside a cache.xml﻿ file. The cache.xml﻿ file is required in order to bootstrap the Spring application context, much like a minimal snippet of Spring XML config is needed to bootstrap a Spring application context configured with component scanning (e.g. <context:component-scan base-packages="…​"/>﻿)

As of Spring Data GemFire 1.4, such an Initializer﻿ is already conveniently provided by the framework, the org.springframework.data.gemfire.support.SpringContextBootstrappingInitializer﻿. The typical, yet minimal configuration for this class inside GemFire’s cache.xml﻿ file will look like the following:

<?xml version="1.0"?>
<!DOCTYPE cache PUBLIC "-//GemStone Systems, Inc.//GemFire Declarative Caching 7.0//EN"
 "http://www.gemstone.com/dtd/cache7_0.dtd">

<cache>
 <initializer>
 <class-name>org.springframework.data.gemfire.support.SpringContextBootstrappingInitializer</class-name>
 <parameter name="contextConfigLocations">
 <string>classpath:application-context.xml</string>
 </parameter>
 </initializer>
</cache>

The SpringContextBootstrappingInitializer﻿ class follows similar conventions as Spring’s ContextLoaderListener class for bootstrapping a Spring context inside a Web Application, where application context configuration files are specified with the contextConfigLocations﻿ Servlet Context Parameter. In addition, the SpringContextBootstrappingInitializer﻿ class can also be used with a basePackages﻿ parameter to specify a comma-separated list of base package containing the appropriately annotated application components that the Spring container will search using component scanning and create Spring beans for:

<?xml version="1.0"?>
<!DOCTYPE cache PUBLIC "-//GemStone Systems, Inc.//GemFire Declarative Caching 7.0//EN"
 "http://www.gemstone.com/dtd/cache7_0.dtd">

<cache>
 <initializer>
 <class-name>org.springframework.data.gemfire.support.SpringContextBootstrappingInitializer</class-name>
 <parameter name="basePackages">
 <string>org.mycompany.myapp.services,org.mycompany.myapp.dao,...</string>
 </parameter>
 </initializer>
</cache>

Then, with a properly configured and constructed CLASSPATH﻿ along with the cache.xml﻿ file shown above specified as a command-line option when starting a GemFire Server in Gfsh, the command-line would be:

gfsh>start server --name=Server1 --log-level=config ...
			--classpath="/path/to/spring-data-gemfire-1.4.0.jar:/path/to/application/classes.jar"
			--cache-xml-file="/path/to/gemfire/cache.xml"

The application-context.xml﻿ can be any valid Spring context configuration meta-data including all the SDG namespace elements. The only limitation with this approach is that the GemFire Cache cannot be configured using the Spring Data GemFire namespace. In other words, none of the <gfe:cache/>﻿ element attributes, such as cache-xml-location﻿, properties-ref﻿, critical-heap-percentage﻿, pdx-serializer-ref﻿, lock-lease﻿, etc can be specified. If used, these attributes will be ignored. The main reason for this is that GemFire itself has already created an initialized the Cache before the Initializer﻿ gets invoked. As such, the Cache will already exist and since it is a "Singleton", it cannot be re-initialized or have any of it’s configuration augmented.

Lazy-Wiring GemFire Components

Spring Data GemFire already provides existing support for wiring GemFire components (such as CacheListeners, CacheLoaders or CacheWriters) that are declared and created by GemFire in cache.xml﻿ using the WiringDeclarableSupport﻿ class as described in [apis:declarable:autowiring]﻿. However, this only works when Spring does the bootstrapping (i.e. bootstraps GemFire). When your Spring application context is the one bootstrapped by GemFire, then these GemFire components go unnoticed since the Spring application context does not even exist yet! The Spring application context will not get created until GemFire calls the Initializer﻿, which occurs after all the other GemFire components and configuration have already been created and initialized.

So, in order to solve this problem, a new LazyWiringDeclarableSupport﻿ class was introduced, that is, in a sense, Spring application context aware. The intention of this abstract base class is that any implementing class will register itself to be configured by the Spring application context created by GemFire after the Initializer﻿ is called. In essence, this give your GemFire managed component a chance to be configured and auto-wired with Spring beans defined in the Spring application context.

In order for your GemFire application component to be auto-wired by the Spring container, create a application class that extends the LazyWiringDeclarableSupport﻿ and annotate any class member that needs to be provided as a Spring bean dependency, similar to:

public static final class UserDataSourceCacheLoader extends LazyWiringDeclarableSupport implements CacheLoader<String, User> {

 @Autowired
 private DataSource userDataSource;

 ...
}

As implied by the CacheLoader example above, you might necessarily (although, rare) have defined both a Region and CacheListener component in GemFire cache.xml﻿. The CacheLoader may need access to an application DAO, or perhaps Spring application context defined JDBC Data Source for loading "Users" into a GemFire Cache REPLICATE﻿ Region on start. Of course, one should be careful in mixing the different life-cycles of GemFire and the Spring Container together in this manner as not all use cases and scenarios are supported. The GemFire cache.xml﻿ configuration would be similar to the following (which comes from SDG’s test suite):

<?xml version="1.0"?>
<!DOCTYPE cache PUBLIC "-//GemStone Systems, Inc.//GemFire Declarative Caching 7.0//EN"
 "http://www.gemstone.com/dtd/cache7_0.dtd">

<cache>
 <region name="Users" refid="REPLICATE">
 <region-attributes initial-capacity="101" load-factor="0.85">
 <key-constraint>java.lang.String</key-constraint>
 <value-constraint>org.springframework.data.gemfire.repository.sample.User</value-constraint>
 <cache-loader>
 <class-name>org.springframework.data.gemfire.support.SpringContextBootstrappingInitializerIntegrationTest$UserDataStoreCacheLoader</class-name>
 </cache-loader>
 </region-attributes>
 </region>
 <initializer>
 <class-name>org.springframework.data.gemfire.support.SpringContextBootstrappingInitializer</class-name>
 <parameter name="basePackages">
 <string>org.springframework.data.gemfire.support.sample</string>
 </parameter>
 </initializer>
</cache>

 Costin Leau , David Turanski , John Blum , Oliver Gierke

 SAMPLE APPLICATIONS

Sample applications are now maintained in the Spring Data GemFire Examples﻿ repository.

The Spring Data GemFire project also includes one sample application. Named "Hello World", the sample demonstrates how to configure and use GemFire inside a Spring application. At runtime, the sample offers a shell﻿ to the user allowing him to run various commands against the grid. It provides an excellent starting point for users unfamiliar with the essential components or the Spring and GemFire concepts.

The sample is bundled with the distribution and is Maven-based. One can easily import them into any Maven-aware IDE (such as Spring Tool Suite﻿) or run them from the command-line.

Hello World

The Hello World sample demonstrates the core functionality of the Spring GemFire project. It bootstraps GemFire, configures it, executes arbitrary commands against it and shuts it down when the application exits. Multiple instances can be started at the same time as they will work with each other sharing data without any user intervention.

Running under Linux

If you experience networking problems when starting GemFire or the samples, try adding the following system property java.net.preferIPv4Stack=true﻿ to the command line (insert -Djava.net.preferIPv4Stack=true﻿). For an alternative (global) fix especially on Ubuntu see this link﻿

Starting and stopping the sample

Hello World is designed as a stand-alone java application. It features a Main﻿ class which can be started either from your IDE of choice (in Eclipse/STS through Run As/Java Application﻿) or from the command line through Maven using mvn exec:java﻿. One can also use java﻿ directly on the resulting artifact if the classpath is properly set.

To stop the sample, simply type exit﻿ at the command line or press Ctrl+C﻿ to stop the VM and shutdown the Spring container.

Using the sample

Once started, the sample will create a shared data grid and allow the user to issue commands against it. The output will likely look as follows:

INFO: Created GemFire Cache [Spring GemFire World] v. X.Y.Z
INFO: Created new cache region [myWorld]
INFO: Member xxxxxx:50694/51611 connecting to region [myWorld]
Hello World!
Want to interact with the world ? ...
Supported commands are:

get <key> - retrieves an entry (by key) from the grid
put <key> <value> - puts a new entry into the grid
remove <key> - removes an entry (by key) from the grid
...

For example to add new items to the grid one can use:

-> Bold Section qName:emphasis level:5, chunks:[put 1 unu] attrs:[role:bold]
INFO: Added [1=unu] to the cache
null
-> Bold Section qName:emphasis level:5, chunks:[put 1 one] attrs:[role:bold]
INFO: Updated [1] from [unu] to [one]
unu
-> Bold Section qName:emphasis level:5, chunks:[size] attrs:[role:bold]
1
-> Bold Section qName:emphasis level:5, chunks:[put 2 two] attrs:[role:bold]
INFO: Added [2=two] to the cache
null
-> Bold Section qName:emphasis level:5, chunks:[size] attrs:[role:bold]
2

Multiple instances can be created at the same time. Once started, the new VMs automatically see the existing region and its information:

INFO: Connected to Distributed System ['Spring GemFire World'=xxxx:56218/49320@yyyyy]
Hello World!
...

-> Bold Section qName:emphasis level:5, chunks:[size] attrs:[role:bold]
2
-> Bold Section qName:emphasis level:5, chunks:[map] attrs:[role:bold]
[2=two] [1=one]
-> Bold Section qName:emphasis level:5, chunks:[query length = 3] attrs:[role:bold]
[one, two]

Experiment with the example, start (and stop) as many instances as you want, run various commands in one instance and see how the others react. To preserve data, at least one instance needs to be alive all times - if all instances are shutdown, the grid data is completely destroyed (in this example - to preserve data between runs, see the GemFire documentations).

Hello World Sample Explained

Hello World uses both Spring XML and annotations for its configuration. The initial boostrapping configuration is app-context.xml﻿ which includes the cache configuration, defined under cache-context.xml﻿ file and performs classpath scanning﻿ for Spring components﻿. The cache configuration defines the GemFire cache, region and for illustrative purposes a simple cache listener that acts as a logger.

The main beans﻿ are HelloWorld﻿ and CommandProcessor﻿ which rely on the GemfireTemplate﻿ to interact with the distributed fabric. Both classes use annotations to define their dependency and life-cycle callbacks.

 Costin Leau , David Turanski , John Blum , Oliver Gierke

 USEFUL LINKS

	
Spring Data GemFire Home Page﻿

	
Pivotal GemFire Home Page﻿

	
Pivotal GemFire Documentation﻿

	
Pivotal GemFire Knowledge Base﻿

	
Pivotal GemFire Community Home Page﻿

	
VMWare vFabric GemFire Community Home Page﻿

	
Spring Data GemFire Forum (StackOverflow)﻿

	
Spring Data GemFire Forum (spring.io archive)﻿

 Costin Leau , David Turanski , John Blum , Oliver Gierke

 NAMESPACE REFERENCE

The <repositories /> element

The <repositories />﻿ element triggers the setup of the Spring Data repository infrastructure. The most important attribute is base-package﻿ which defines the package to scan for Spring Data repository interfaces.[1]

Table 1. Attributes

	Name
	Description

	base-package﻿

	Defines the package to be used to be scanned for repository interfaces extending *Repository (actual interface is determined by specific Spring Data module) in auto detection mode. All packages below the configured package will be scanned, too. Wildcards are allowed.

	repository-impl-postfix﻿

	Defines the postfix to autodetect custom repository implementations. Classes whose names end with the configured postfix will be considered as candidates. Defaults to Impl﻿.

	query-lookup-strategy﻿

	Determines the strategy to be used to create finder queries. See [repositories.query-methods.query-lookup-strategies]﻿ for details. Defaults to create-if-not-found﻿.

	named-queries-location﻿

	Defines the location to look for a Properties file containing externally defined queries.

	consider-nested-repositories﻿

	Controls whether nested repository interface definitions should be considered. Defaults to false﻿.

1 see [repositories.create-instances.spring]﻿

 Costin Leau , David Turanski , John Blum , Oliver Gierke

 POPULATORS NAMESPACE REFERENCE

The <populator /> element

The <populator />﻿ element allows to populate the a data store via the Spring Data repository infrastructure.[1]

Table 1. Attributes

	Name
	Description

	locations﻿

	Where to find the files to read the objects from the repository shall be populated with.

1 see [repositories.create-instances.spring]﻿

 Costin Leau , David Turanski , John Blum , Oliver Gierke

 REPOSITORY QUERY KEYWORDS

Supported query keywords

The following table lists the keywords generally supported by the Spring Data repository query derivation mechanism. However, consult the store-specific documentation for the exact list of supported keywords, because some listed here might not be supported in a particular store.

Table 1. Query keywords

	Logical keyword
	Keyword expressions

	AND﻿

	And﻿

	OR﻿

	Or﻿

	AFTER﻿

	After﻿, IsAfter﻿

	BEFORE﻿

	Before﻿, IsBefore﻿

	CONTAINING﻿

	Containing﻿, IsContaining﻿, Contains﻿

	BETWEEN﻿

	Between﻿, IsBetween﻿

	ENDING_WITH﻿

	EndingWith﻿, IsEndingWith﻿, EndsWith﻿

	EXISTS﻿

	Exists﻿

	FALSE﻿

	False﻿, IsFalse﻿

	GREATER_THAN﻿

	GreaterThan﻿, IsGreaterThan﻿

	GREATER_THAN_EQUALS﻿

	GreaterThanEqual﻿, IsGreaterThanEqual﻿

	IN﻿

	In﻿, IsIn﻿

	IS﻿

	Is﻿, Equals﻿, (or no keyword)

	IS_NOT_NULL﻿

	NotNull﻿, IsNotNull﻿

	IS_NULL﻿

	Null﻿, IsNull﻿

	LESS_THAN﻿

	LessThan﻿, IsLessThan﻿

	LESS_THAN_EQUAL﻿

	LessThanEqual﻿, IsLessThanEqual﻿

	LIKE﻿

	Like﻿, IsLike﻿

	NEAR﻿

	Near﻿, IsNear﻿

	NOT﻿

	Not﻿, IsNot﻿

	NOT_IN﻿

	NotIn﻿, IsNotIn﻿

	NOT_LIKE﻿

	NotLike﻿, IsNotLike﻿

	REGEX﻿

	Regex﻿, MatchesRegex﻿, Matches﻿

	STARTING_WITH﻿

	StartingWith﻿, IsStartingWith﻿, StartsWith﻿

	TRUE﻿

	True﻿, IsTrue﻿

	WITHIN﻿

	Within﻿, IsWithin﻿

 Costin Leau , David Turanski , John Blum , Oliver Gierke

 REPOSITORY QUERY RETURN TYPES

Supported query return types

The following table lists the return types generally supported by Spring Data repositories. However, consult the store-specific documentation for the exact list of supported return types, because some listed here might not be supported in a particular store.

Geospatial types like (GeoResult﻿, GeoResults﻿, GeoPage﻿) are only available for data stores that support geospatial queries.

Table 1. Query return types

	Return type
	Description

	void﻿

	Denotes no return value.

	Primitives

	Java primitives.

	Wrapper types

	Java wrapper types.

	T﻿

	An unique entity. Expects the query method to return one result at most. In case no result is found null﻿ is returned. More than one result will trigger an IncorrectResultSizeDataAccessException﻿.

	Iterator<T>﻿

	An Iterator﻿.

	Collection<T>﻿

	A Collection﻿.

	List<T>﻿

	A List﻿.

	Optional<T>﻿

	A Java 8 or Guava Optional﻿. Expects the query method to return one result at most. In case no result is found Optional.empty()﻿/Optional.absent()﻿ is returned. More than one result will trigger an IncorrectResultSizeDataAccessException﻿.

	Stream<T>﻿

	A Java 8 Stream﻿.

	Future<T>﻿

	A Future﻿. Expects method to be annotated with @Async﻿ and requires Spring’s asynchronous method execution capability enabled.

	CompletableFuture<T>﻿

	A Java 8 CompletableFuture﻿. Expects method to be annotated with @Async﻿ and requires Spring’s asynchronous method execution capability enabled.

	ListenableFuture﻿

	A org.springframework.util.concurrent.ListenableFuture﻿. Expects method to be annotated with @Async﻿ and requires Spring’s asynchronous method execution capability enabled.

	Slice﻿

	A sized chunk of data with information whether there is more data available. Requires a Pageable﻿ method parameter.

	Page<T>﻿

	A Slice﻿ with additional information, e.g. the total number of results. Requires a Pageable﻿ method parameter.

	GeoResult<T>﻿

	A result entry with additional information, e.g. distance to a reference location.

	GeoResults<T>﻿

	A list of GeoResult<T>﻿ with additional information, e.g. average distance to a reference location.

	GeoPage<T>﻿

	A Page﻿ with GeoResult<T>﻿, e.g. average distance to a reference location.

 Costin Leau , David Turanski , John Blum , Oliver Gierke

 SPRING DATA GEMFIRE SCHEMA

Spring Data GemFire Core Schema (gfe)

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<xsd:schema xmlns="http://www.springframework.org/schema/gemfire"
 xmlns:beans="http://www.springframework.org/schema/beans"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:repository="http://www.springframework.org/schema/data/repository"
 xmlns:tool="http://www.springframework.org/schema/tool"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.springframework.org/schema/gemfire"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 version="1.8">
 <xsd:import namespace="http://www.springframework.org/schema/beans" />
 <xsd:import namespace="http://www.springframework.org/schema/context" />
 <xsd:import namespace="http://www.springframework.org/schema/tool" />
 <!-- -->
 <xsd:annotation>
 <xsd:documentation><![CDATA[
 Namespace support for the Spring GemFire project.
]]></xsd:documentation>
 </xsd:annotation>
 <!-- -->
 <xsd:complexType name="cacheBaseType">
 <xsd:sequence>
 <xsd:element name="transaction-listener" type="beanDeclarationType" minOccurs="0" maxOccurs="unbounded">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Registers a bean as a TransactionListener with the CacheTransactionManager. The bean must implement com.gemstone.gemfire.cache.TransactionListener
and may be nested or referenced.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="transaction-writer" type="beanDeclarationType" minOccurs="0" maxOccurs="1">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Registers a bean as a TransactionWriter with the CacheTransactionManager. The bean must implement com.gemstone.gemfire.cache.TransactionWriter
and may be nested or referenced.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="gateway-conflict-resolver" minOccurs="0" maxOccurs="1">
 <xsd:annotation>
 <xsd:documentation
 source="com.gemstone.gemfire.cache.util.GatewayConflictResolver"><![CDATA[
A gateway conflict resolver for this cache. A gateway conflict resolver handles conflicts in the case of concurrent updates using a WAN gateway. The bean
must implement com.gemstone.gemfire.cache.util.GatewayConflictResolver. Requires Gemfire version 7.0 or higher.
]]></xsd:documentation>
 <xsd:appinfo>
 <tool:annotation>
 <tool:exports
 type="com.gemstone.gemfire.cache.util.GatewayConflictResolver" />
 </tool:annotation>
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:any namespace="##other" processContents="skip" minOccurs="0" maxOccurs="unbounded">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Inner bean definition of the gateway conflict resolver.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:any>
 </xsd:sequence>
 <xsd:attribute name="ref" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The name of the gateway conflict resolver bean referred by this declaration. Used as a convenience method. If no reference exists,
use inner bean declarations.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="dynamic-region-factory" minOccurs="0" maxOccurs="1">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Enables Dynamic Regions and specifies their configuration.
]]></xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:attribute name="disk-dir" type="xsd:string">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Specifies the directory path for disk persistence for dynamic regions.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="persistent" type="xsd:string"
 default="true">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Enables persistence for dynamic regions.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="register-interest" type="xsd:string"
 default="true">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Specifies whether dynamic regions register interest in all keys in a corresponding server region.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="jndi-binding" type="jndiBindingType" minOccurs="0" maxOccurs="unbounded">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Configures a data source to be bound to a JNDI context for use with Gemfire transactions
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The name of the cache definition (by default "gemfireCache").]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="cache-xml-location" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation source="org.springframework.core.io.Resource"><![CDATA[
The location of the GemFire cache xml file, as a Spring resource location: a URL, a "classpath:" pseudo URL,
or a relative file path.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="properties-ref" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation source="java.util.Properties"><![CDATA[
The bean name of a Java Properties object that will be used for property substitution. For loading properties
consider using a dedicated utility such as the <util:*/> namespace and its 'properties' element.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="lazy-init" default="true">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Determines if the cache should be initialized automatically. Normally the cache will be lazily initialized, i.e., during creation of another bean references it.
For cases in which there are no declared dependencies on the cache, set this attribute to false.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="use-bean-factory-locator" type="xsd:string" use="optional" default="true">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Indicates whether a bean factory locator is enabled (default) for this cache definition or not. The locator stores
the enclosing bean factory reference to allow auto-wiring of Spring beans into GemFire managed classes. Usually disabled
when the same cache is used in multiple application context/bean factories inside the same VM.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="close" default="true">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Determines if the cache should be closed when the application context is closed. This value is
true by default but should be set to false if deploying multiple applications in a jvm that share the
same cache instance.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="copy-on-read" type="xsd:string" use="optional" default="false">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Controls whether entry value retrieval methods return direct references to the entry value objects in the cache (false)
or copies of the objects (true).
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="critical-heap-percentage">
 <xsd:annotation>
 <xsd:documentation
 source="com.gemstone.gemfire.cache.control.ResourceManager"><![CDATA[
Set the percentage of heap at or above which the cache is considered in danger of becoming inoperable
due to garbage collection pauses or out of memory exceptions. Changing this value can cause a LowMemoryException to
be thrown during certain cache operation. This feature requires additional VM flags to perform properly (see the
JavaDocs for com.gemstone.gemfire.cache.control.ResourceManager for more information).
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="eviction-heap-percentage">
 <xsd:annotation>
 <xsd:documentation
 source="com.gemstone.gemfire.cache.control.ResourceManager"><![CDATA[
Set the percentage of heap at or above which the eviction should begin on Regions configured for HeapLRU eviction.
This feature requires additional VM flags to perform properly (see the
JavaDocs for com.gemstone.gemfire.cache.control.ResourceManager for more information).
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="pdx-serializer-ref" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Sets the PDX serializer for the cache. If this serializer is set, it will be consulted to see if it can serialize any
domain classes which are added to the cache in portable data exchange (PDX) format.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="pdx-persistent" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Control whether the type metadata for PDX objects is persisted to disk.
Set to true if you are using persistent regions, WAN gateways or GemFire's JSON support.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="pdx-disk-store" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Sets the name of the disk store to use for PDX meta data. When serializing objects in the PDX format,
the type definitions are persisted to disk. This setting controls which disk store is used for that persistence.
If not set, the metadata will go in the default disk store.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="pdx-read-serialized" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Sets the object preference to PdxInstance type. When a cached object that was serialized as a PDX is read from the cache
a PdxInstance will be returned instead of the actual domain class. The PdxInstance is an interface that provides run time
access to the fields of a PDX without deserializing the entire PDX. The PdxInstance implementation is a light weight wrapper
that simply refers to the raw bytes of the PDX that are kept in the cache. Using this method applications can choose to
access PdxInstance instead of Java object.

Note that a PdxInstance is only returned if a serialized PDX is found in the cache. If the cache contains a deserialized PDX,
then a domain class instance is returned instead of a PdxInstance.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="pdx-ignore-unread-fields" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Controls whether pdx ignores fields that were unread during deserialization. The default is to preserve unread fields be
including their data during serialization. But if you configure the cache to ignore unread fields then their data will be
lost during serialization.

You should only set this attribute to true if you know this member will only be reading cache data. In this use case you
do not need to pay the cost of preserving the unread fields since you will never be reserializing pdx data.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:complexType>
 <!-- -->
 <xsd:element name="cache">
 <xsd:annotation>
 <xsd:documentation
 source="org.springframework.data.gemfire.CacheFactoryBean"><![CDATA[
Defines a GemFire Cache instance used for creating or retrieving 'regions'.
]]></xsd:documentation>
 <xsd:appinfo>
 <tool:annotation>
 <tool:exports type="com.gemstone.gemfire.cache.Cache" />
 </tool:annotation>
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:complexContent>
 <xsd:extension base="cacheBaseType">
 <xsd:attribute name="enable-auto-reconnect" type="xsd:string" use="optional" default="false">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
By default, GemFire 8.0 and later will attempt to reconnect and reinitialize the cache when the peer member has been
forced out of the distributed system by a network-partition event, or has otherwise been shunned by other members.

An auto-reconnect causes all GemFire component references (e.g. Cache, Regions, AEQs, Gateways, etc) that may have been
injected into SDG application components to become stale. Even when using GemFire's public Java API directly,
GemFire makes no guarantees to automatically refresh any stale references used by application objects.

Therefore, in Spring Data GemFire, the default behavior will be to not 'auto-reconnect'. Automatically reconnecting
is not recommended for applications that are also peer member Caches (i.e. GemFire Servers) that inject
GemFire components, such as the Cache or Regions, into application objects (e.g. @Repository POJOs).

Enabling 'auto-reconnect' is only recommended when bootstrapping a GemFire Server's within a Spring context using
Spring Data GemFire XML namespace and configuration meta-data to configure GemFire instead of GemFire's cache.xml.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="lock-lease" type="xsd:string"
 use="optional" default="120">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The timeout, in seconds, for implicit and explicit object lock leases. This affects both automatic locking and manual locking.
Once a lock is obtained, it can remain in force for the lock lease time period before being automatically cleared by the system
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="lock-timeout" type="xsd:string"
 use="optional" default="60">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The timeout, in seconds, for implicit object lock requests. This setting affects automatic locking only,
 and does not apply to manual locking. If a lock request does not return before the specified timeout period,
 it is cancelled and returns with a failure.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="message-sync-interval" type="xsd:string"
 use="optional" default="1">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Used for client subscription queue synchronization when this member acts as a server to clients and server redundancy is used.
Sets the frequency (in seconds) at which the primary server sends messages to its secondary servers to remove queued events
that have already been processed by the clients.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="search-timeout" type="xsd:string" use="optional" default="300">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
How many seconds a netSearch operation can wait for data before timing out.
You may want to change this based on your knowledge of the network load or other factors.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="use-cluster-configuration" type="xsd:string" use="optional" default="false">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Enables this Spring Data GemFire configured peer member Cache node to participate in cluster-wide configuration
by receiving it's configuration meta-data (in the form of cache.xml) from a Locator, with persistent configuration
enabled, running in the cluster.

The cluster-wide configuration is a shared, persistent and consistent view of the cluster when the member joins
the cluster and requests the cluster configuration from the Locator.

Spring Data GemFire disables this GemFire 8 feature by default assuming that the primary configuration for this
member will be defined in Spring Data GemFire's XML namespace configuration meta-data. However, this feature is useful
in a production setting to set the base configuration of the member and augment that cluster-wide configuration
with Spring configuration meta-data that is specific to the application's needs.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 </xsd:element>
 <!-- -->
 <xsd:element name="client-cache">
 <xsd:annotation>
 <xsd:documentation
 source="org.springframework.data.gemfire.client.ClientCacheFactoryBean"><![CDATA[
Defines a GemFire Client Cache instance used for creating or retrieving 'regions'.
]]></xsd:documentation>
 <xsd:appinfo>
 <tool:annotation>
 <tool:exports type="com.gemstone.gemfire.cache.client.ClientCache" />
 </tool:annotation>
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:complexContent>
 <xsd:extension base="cacheBaseType">
 <xsd:attribute name="durable-client-id" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Used only for clients in a client/server installation. If set, this indicates that the client is durable
and identifies the client. The ID is used by servers to reestablish any messaging that was interrupted
by client downtime. The default value is unset. In addition, this attribute value overrides any setting
specified in gemfire.properties passed using 'properties-ref'.

]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="durable-client-timeout" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Used only for clients in a client/server installation. Number of seconds this client can remain disconnected
from its server and have the server continue to accumulate durable events for it. The default value is 300 seconds.
In addition, this attribute value overrides any setting specified in gemfire.properties passed using 'properties-ref'.
Also, durable-client-timeout is only used if durable-client-id is set.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="keep-alive" type="xsd:string" use="optional" default="false">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Boolean value indicating whether the server should keep the durable client's queues alive for the timeout period.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="pool-name" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The name of the pool used by this client.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="ready-for-events" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Notifies the server that this durable client is ready to receive updates.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 </xsd:element>
 <!-- -->
 <xsd:element name="transaction-manager">
 <xsd:annotation>
 <xsd:documentation
 source="org.springframework.data.gemfire.GemfireTransactionManager"><![CDATA[
Defines a GemFire Transaction Manager instance for a single GemFire cache.
]]></xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:attribute name="id" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The name of the transaction manager definition (by default "gemfireTransactionManager").]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="cache-ref" type="xsd:string" use="optional"
 default="gemfireCache">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The name of the bean defining the GemFire cache (by default 'gemfireCache').
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="copy-on-read" type="xsd:string"
 use="optional" default="true">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Indicates whether the cache returns direct references or copies of the objects (default) it manages.
While copies imply additional work for every fetch operation, direct references can cause dirty reads
across concurrent threads in the same VM, whether or not transactions are used.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>
 <!-- nested bean definition -->
 <xsd:complexType name="beanDeclarationType">
 <xsd:sequence>
 <xsd:any namespace="##other" processContents="skip" minOccurs="0" maxOccurs="1">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Inner bean definition. The nested declaration serves as an alternative to bean references (using
both in the same definition) is illegal.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:any>
 </xsd:sequence>
 <xsd:attribute name="ref" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The name of the bean referred by this declaration. If no reference exists, use an inner bean declaration.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:complexType>
 <!-- -->
 <xsd:element name="auto-region-lookup">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
GFE namespace element enabling GemFire Cache Regions to be automatically looked up and defined as beans in the Spring
context when those Regions are defined outside of Spring config, such as in GemFire's native cache.xml or with
GemFire 8's new cluster-based configuration service.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <!-- -->
 <xsd:complexType name="baseLookupRegionType">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Defines a lookup Subregion
]]></xsd:documentation>
 <xsd:appinfo>
 <tool:annotation>
 <tool:exports type="com.gemstone.gemfire.cache.Region" />
 </tool:annotation>
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:complexContent>
 <xsd:extension base="basicRegionType">
 <xsd:sequence>
 <xsd:element name="cache-listener" minOccurs="0" maxOccurs="1">
 <xsd:annotation>
 <xsd:documentation source="com.gemstone.gemfire.cache.CacheListener"><![CDATA[
A cache listener definition for this region. A cache listener handles region or entry related events (that occur after
various operations on the region). Multiple listeners can be declared in a nested manner.

Note: Avoid the risk of deadlock. Since the listener is invoked while holding a lock on the entry generating the event,
it is easy to generate a deadlock by interacting with the region. For this reason, it is highly recommended to use some
other thread for accessing the region and not waiting for it to complete its task.
]]></xsd:documentation>
 <xsd:appinfo>
 <tool:annotation>
 <tool:exports type="com.gemstone.gemfire.cache.CacheListener" />
 </tool:annotation>
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:any namespace="##other" processContents="skip" minOccurs="0" maxOccurs="unbounded">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Inner bean definition of the cache listener.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:any>
 </xsd:sequence>
 <xsd:attribute name="ref" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The name of the cache listener bean referred by this declaration. Used as a convenience method. If no reference exists,
use inner bean declarations.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="cache-loader" type="beanDeclarationType" minOccurs="0" maxOccurs="1">
 <xsd:annotation>
 <xsd:documentation source="com.gemstone.gemfire.cache.CacheLoader"><![CDATA[
The cache loader definition for this region. A cache loader allows data to be placed into a region.
]]></xsd:documentation>
 <xsd:appinfo>
 <tool:annotation>
 <tool:exports type="com.gemstone.gemfire.cache.CacheLoader" />
 </tool:annotation>
 </xsd:appinfo>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="cache-writer" type="beanDeclarationType" minOccurs="0" maxOccurs="1">
 <xsd:annotation>
 <xsd:documentation source="com.gemstone.gemfire.cache.CacheWriter"><![CDATA[
The cache writer definition for this region. A cache writer acts as a dedicated synchronous listener that is notified
before a region or an entry is modified. A typical example would be a writer that updates the database.

Note: Only one CacheWriter is invoked. GemFire will always prefer the local one (if it exists) otherwise it will
arbitrarily pick one.
]]></xsd:documentation>
 <xsd:appinfo>
 <tool:annotation>
 <tool:exports type="com.gemstone.gemfire.cache.CacheWriter" />
 </tool:annotation>
 </xsd:appinfo>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="region-ttl" type="expirationType" minOccurs="0" maxOccurs="1">
 <xsd:annotation>
 <xsd:documentation><![CDATA[[
Time to live configuration for the region itself. Default: no expiration.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="region-tti" type="expirationType" minOccurs="0" maxOccurs="1">
 <xsd:annotation>
 <xsd:documentation><![CDATA[[
Time to idle (or idle timeout) configuration for the region itself. Default: no expiration.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:choice>
 <xsd:element name="entry-ttl" type="expirationType" minOccurs="0" maxOccurs="1">
 <xsd:annotation>
 <xsd:documentation><![CDATA[[
Time to live configuration for the region entries. Default: no expiration.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="custom-entry-ttl" type="customExpirationType" minOccurs="0" maxOccurs="1">
 <xsd:annotation>
 <xsd:appinfo>
 <tool:annotation>
 <tool:exports type="com.gemstone.gemfire.cache.CustomExpiry" />
 </tool:annotation>
 </xsd:appinfo>
 <xsd:documentation><![CDATA[[
CustomExpiry Time-to-Live (TTL) configuration for the Region Entries. The default is no expiration.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 </xsd:choice>
 <xsd:choice>
 <xsd:element name="entry-tti" type="expirationType" minOccurs="0" maxOccurs="1">
 <xsd:annotation>
 <xsd:documentation><![CDATA[[
Time to idle (or idle timeout) configuration for the region entries. Default: no expiration.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="custom-entry-tti" type="customExpirationType" minOccurs="0" maxOccurs="1">
 <xsd:annotation>
 <xsd:appinfo>
 <tool:annotation>
 <tool:exports type="com.gemstone.gemfire.cache.CustomExpiry" />
 </tool:annotation>
 </xsd:appinfo>
 <xsd:documentation><![CDATA[[
CustomExpiry Time-to-Idle (or Idle Timeout, TTI) configuration for the Region entries. The default is no expiration.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 </xsd:choice>
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="gateway-sender" type="baseGatewaySenderType"/>
 <xsd:element name="gateway-sender-ref">
 <xsd:complexType>
 <xsd:attribute name="bean" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The name of the gateway sender bean referred by this declaration. Used as a convenience method. If no reference exists,
use inner bean declarations.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>
 </xsd:choice>
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="async-event-queue" type="baseAsyncEventQueueType"/>
 <xsd:element name="async-event-queue-ref">
 <xsd:complexType>
 <xsd:attribute name="bean" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The name of the gateway sender bean referred by this declaration. Used as a convenience method. If no reference exists,
use inner bean declarations.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>
 </xsd:choice>
 <xsd:group ref="subRegionGroup" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="cloning-enabled" type="xsd:string">
 <xsd:annotation>
 <xsd:documentation><![CDATA[[
Determines how fromDelta applies deltas to the local cache for delta propagation. When true, the updates are applied
to a clone of the value and then the clone is saved to the cache. When false, the value is modified in place
in the cache. GemFire default is false.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="eviction-maximum" type="xsd:string">
 <xsd:annotation>
 <xsd:documentation><![CDATA[[
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <!-- -->
 <xsd:complexType name="lookupRegionType">
 <xsd:complexContent>
 <xsd:extension base="baseLookupRegionType">
 <xsd:attributeGroup ref="topLevelRegionAttributes" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <!-- -->
 <xsd:complexType name="lookupSubRegionType">
 <xsd:complexContent>
 <xsd:extension base="baseLookupRegionType">
 <xsd:attribute name="name" type="xsd:string" use="required">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The name of the region definition.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <!-- -->
 <xsd:element name="lookup-region" type="lookupRegionType"/>
 <!-- -->
 <xsd:complexType name="basicRegionType">
 <xsd:annotation>
 <xsd:appinfo>
 <tool:annotation>
 <tool:exports type="com.gemstone.gemfire.cache.Region" />
 </tool:annotation>
 </xsd:appinfo>
 </xsd:annotation>
 </xsd:complexType>
 <!-- -->
 <xsd:complexType name="basicSubRegionType">
 <xsd:complexContent>
 <xsd:extension base="baseLookupRegionType">
 <xsd:attribute name="name" type="xsd:string">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The name of the region definition.]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <!-- -->
 <xsd:complexType name="baseReadOnlyRegionType" abstract="true">
 <xsd:complexContent>
 <xsd:extension base="basicRegionType">
 <xsd:sequence>
 <xsd:element name="cache-listener" minOccurs="0" maxOccurs="1">
 <xsd:annotation>
 <xsd:documentation source="com.gemstone.gemfire.cache.CacheListener"><![CDATA[
A cache listener definition for this region. A cache listener handles region or entry related events (that occur after
various operations on the region). Multiple listeners can be declared in a nested manner.

Note: Avoid the risk of deadlock. Since the listener is invoked while holding a lock on the entry generating the event,
it is easy to generate a deadlock by interacting with the region. For this reason, it is highly recommended to use some
other thread for accessing the region and not waiting for it to complete its task.
]]></xsd:documentation>
 <xsd:appinfo>
 <tool:annotation>
 <tool:exports type="com.gemstone.gemfire.cache.CacheListener" />
 </tool:annotation>
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:any namespace="##other" processContents="skip" minOccurs="0" maxOccurs="unbounded">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Inner bean definition of the cache listener.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:any>
 </xsd:sequence>
 <xsd:attribute name="ref" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The name of the cache listener bean referred by this declaration. Used as a convenience method. If no reference exists,
use inner bean declarations.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="compressor" type="beanDeclarationType" minOccurs="0" maxOccurs="1">
 <xsd:annotation>
 <xsd:documentation source="com.gemstone.gemfire.compression.Compressor"><![CDATA[
The Compressor definition for this Region. A Compressor registers a custom class that implements Compressor
to support compression on a Region.
]]></xsd:documentation>
 <xsd:appinfo>
 <tool:annotation>
 <tool:exports type="com.gemstone.gemfire.compression.Compressor"/>
 </tool:annotation>
 </xsd:appinfo>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="region-ttl" type="expirationType" minOccurs="0" maxOccurs="1">
 <xsd:annotation>
 <xsd:documentation><![CDATA[[
Time to live configuration for the region itself. Default: no expiration.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="region-tti" type="expirationType" minOccurs="0" maxOccurs="1">
 <xsd:annotation>
 <xsd:documentation><![CDATA[[
Time to idle (or idle timeout) configuration for the region itself. Default: no expiration.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:choice>
 <xsd:element name="entry-ttl" type="expirationType" minOccurs="0" maxOccurs="1">
 <xsd:annotation>
 <xsd:documentation><![CDATA[[
Time to live configuration for the region entries. Default: no expiration.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="custom-entry-ttl" type="customExpirationType" minOccurs="0" maxOccurs="1">
 <xsd:annotation>
 <xsd:appinfo>
 <tool:annotation>
 <tool:exports type="com.gemstone.gemfire.cache.CustomExpiry" />
 </tool:annotation>
 </xsd:appinfo>
 <xsd:documentation><![CDATA[[
CustomExpiry Time-to-Live (TTL) configuration for the Region Entries. The default is no expiration.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 </xsd:choice>
 <xsd:choice>
 <xsd:element name="entry-tti" type="expirationType" minOccurs="0" maxOccurs="1">
 <xsd:annotation>
 <xsd:documentation><![CDATA[[
Time to idle (or idle timeout) configuration for the region entries. Default: no expiration.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="custom-entry-tti" type="customExpirationType" minOccurs="0" maxOccurs="1">
 <xsd:annotation>
 <xsd:appinfo>
 <tool:annotation>
 <tool:exports type="com.gemstone.gemfire.cache.CustomExpiry" />
 </tool:annotation>
 </xsd:appinfo>
 <xsd:documentation><![CDATA[[
CustomExpiry Time-to-Idle (or Idle Timeout, TTI) configuration for the Region entries. The default is no expiration.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 </xsd:choice>
 </xsd:sequence>
 <xsd:attribute name="cloning-enabled" type="xsd:string">
 <xsd:annotation>
 <xsd:documentation><![CDATA[[
Determines how fromDelta applies deltas to the local cache for delta propagation. When true, the updates are applied
to a clone of the value and then the clone is saved to the cache. When false, the value is modified in place
in the cache. GemFire default is false.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="close" type="xsd:string" default="false">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Indicates whether the defined Region should be closed at shutdown. Close performs a local destroy but leaves behind
the Region disk files. Additionally, close notifies listeners and callbacks.

Default is false

Note, Regions are automatically closed when the Cache closes.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="concurrency-checks-enabled" type="xsd:string">
 <xsd:annotation>
 <xsd:documentation><![CDATA[[
Determines whether members perform checks to provide consistent handling for concurrent or out-of-order updates to
distributed Regions. GemFire default is true.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="destroy" type="xsd:string" default="false">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Indicates whether the defined region should be destroyed or not at shutdown. Destroy cascades to all entries and subregions.
After the destroy, this region object can not be used any more and any attempt to use this region object will get
RegionDestroyedException.

Default is false, meaning that regions are not destroyed.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="disk-store-ref" type="xsd:string">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Indicates the id of the disk store to use for persistence or overflow.

Note this attribute only applies if a disk store is configured for this region.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="disk-synchronous" type="xsd:string">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
For Regions that write to disk, boolean that specifies whether disk writes are done synchronously for the region.
GemFire default is true.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="ignore-if-exists" type="xsd:string" default="false">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Indicates whether the Region bean definition should perform a "lookup" first, using any existing Region already defined
with the same name in the Cache (thus, reverting to pre-1.4.0 behavior, e.g. 1.3.x), before attempting to create
the Region

The default is false, meaning the default behavior is always attempt to "create" the Region first.

Prior to 1.4.0, the default behavior was to perform a "lookup" first and then try to "create" the Region.
This functionality is useful in situations where multiple Spring context configuration files exists and 1 or more
define the same Region with the same semantics, such that the application dynamically loads configuration files,
or creates new Spring contexts as needed and application components (e.g. application DAOs) have runtime dependencies
on those Regions.

WARNING...

It is recommended that this feature be used carefully as the first bean definition to create the Region wins.
So if there are multiple, conflicting bean definitions (with difference semantics for evictions/expiration, etc)
for the "same" Region (by name), then this can cause confusion or have unexpected consequences for the application.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="ignore-jta" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Indicates whether operations on this Region participates in active JTA transactions or ignores them and operates
outside of transactions. This is primarily used in cache loaders, writers, and listeners that need to perform
non-transactional operations on a Region, such as caching a result set. GemFire default is false.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="initial-capacity" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Sets the initial capacity (number of entries) for the Region. GemFire default is 16.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="key-constraint" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The fully qualified class name of the expected key type
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="load-factor" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[[
Together with the initial-capacity Region attribute, sets the initial parameters on the underlying
java.util.ConcurrentHashMap used for storing Region entries. This must be a floating point number
between 0 and 1, inclusive. GemFire default value is 0.75.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="persistent" type="xsd:string">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Indicates whether the defined region is persistent. GemFire ensures that all the data you put into a region that
 is configured for persistence will be written to disk in a way that it can be recovered the next time you create the
region. This allows data to be recovered after a machine or process failure or after an orderly shutdown and restart
of GemFire.

Default is false, meaning the regions are not persisted.

Note: Persistence for partitioned regions is supported only from GemFire 6.5 onwards.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="statistics" type="xsd:string">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Boolean specifying whether to gather statistics on the Region. Statistics must be enabled to use expiration on the
Region. GemFire default is false.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="template" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation>
 Specifies the parent, template Region from which to inherit the Region attribute configuration.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="value-constraint" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The fully qualified class name of the expected value type
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <!-- -->
 <xsd:complexType name="readOnlyRegionType">
 <xsd:complexContent>
 <xsd:extension base="baseReadOnlyRegionType">
 <xsd:attributeGroup ref="topLevelRegionAttributes" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <!-- -->
 <xsd:complexType name="readOnlySubRegionType">
 <xsd:complexContent>
 <xsd:extension base="baseReadOnlyRegionType">
 <xsd:attribute name="name" type="xsd:string" use="required">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The name of the region definition.]]>
 </xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <!-- -->
 <xsd:complexType name="baseRegionType" abstract="true">
 <xsd:complexContent>
 <xsd:extension base="baseReadOnlyRegionType">
 <xsd:sequence minOccurs="0" maxOccurs="1">
 <xsd:element name="cache-loader" type="beanDeclarationType" minOccurs="0" maxOccurs="1">
 <xsd:annotation>
 <xsd:documentation source="com.gemstone.gemfire.cache.CacheLoader"><![CDATA[
The cache loader definition for this region. A cache loader allows data to be placed into a region.
]]></xsd:documentation>
 <xsd:appinfo>
 <tool:annotation>
 <tool:exports type="com.gemstone.gemfire.cache.CacheLoader" />
 </tool:annotation>
 </xsd:appinfo>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="cache-writer" type="beanDeclarationType" minOccurs="0" maxOccurs="1">
 <xsd:annotation>
 <xsd:documentation source="com.gemstone.gemfire.cache.CacheWriter"><![CDATA[
The cache writer definition for this region. A cache writer acts as a dedicated synchronous listener that is notified
before a region or an entry is modified. A typical example would be a writer that updates the database.

Note: Only one CacheWriter is invoked. GemFire will always prefer the local one (if it exists) otherwise it will
arbitrarily pick one.
]]></xsd:documentation>
 <xsd:appinfo>
 <tool:annotation>
 <tool:exports type="com.gemstone.gemfire.cache.CacheWriter" />
 </tool:annotation>
 </xsd:appinfo>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="membership-attributes" minOccurs="0" maxOccurs="1">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Establishes reliability requirements and behavior for a region. Use this to configure the region to require one or more membership roles to be running in the system for reliable access to the region.
]]></xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:attribute name="required-roles" type="xsd:string" use="required">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
A comma delimited list of required role names
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="loss-action" type="xsd:string" default="no-access">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Set one of the following values to specify how access to the Region is affected when one or more required roles are lost:
(full-access, limited-access, no-access, or reconnect). GemFire default is 'no-access' when required-roles is
specified, and in SDG, the required-roles attribute is required.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="resumption-action" type="xsd:string" default="reinitialize">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Specifies how the Region is affected by resumption of reliability when one or more missing required roles return
to the distributed membership: (none or reinitialize). GemFire default is reinitialize when required-roles is
specified, and in SDG, the required-roles attribute is required.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="gateway-sender" type="baseGatewaySenderType"/>
 <xsd:element name="gateway-sender-ref">
 <xsd:complexType>
 <xsd:attribute name="bean" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The name of the gateway sender bean referred by this declaration. Used as a convenience method. If no reference exists,
use inner bean declarations.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>
 </xsd:choice>
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="async-event-queue" type="baseAsyncEventQueueType"/>
 <xsd:element name="async-event-queue-ref">
 <xsd:complexType>
 <xsd:attribute name="bean" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The name of the gateway sender bean referred by this declaration. Used as a convenience method. If no reference exists,
use inner bean declarations.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>
 </xsd:choice>
 </xsd:sequence>
 <xsd:attribute name="enable-gateway" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Specifies if WAN Gateway communications are enabled for this Region (true or false) (Deprecated since Gemfire v 7.0)
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="hub-id" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Specifies if WAN Gateway hub id if enable-gateway is true. (Deprecated since Gemfire v 7.0)
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="index-update-type" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Specifies whether Region indexes are maintained synchronously with Region modifications, or asynchronously
in a background thread. GemFire default is synchronous.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <!-- -->
 <xsd:complexType name="regionType">
 <xsd:complexContent>
 <xsd:extension base="baseRegionType">
 <xsd:attributeGroup ref="topLevelRegionAttributes" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <!-- -->
 <xsd:complexType name="subRegionType">
 <xsd:complexContent>
 <xsd:extension base="baseRegionType">
 <xsd:attribute name="name" type="xsd:string" use="required">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
 The name of the region definition.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <!-- -->
 <xsd:element name="region-template" type="regionType">
 <xsd:annotation>
 <xsd:documentation source="org.springframework.data.gemfire.RegionFactoryBean"><![CDATA[
Defines a template for creating multiple GemFire Regions that all share a common attribute configuration.
]]></xsd:documentation>
 <xsd:appinfo>
 <tool:annotation>
 <tool:exports type="com.gemstone.gemfire.cache.Region"/>
 </tool:annotation>
 </xsd:appinfo>
 </xsd:annotation>
 </xsd:element>
 <!-- -->
 <xsd:group name="subRegionGroup">
 <xsd:choice>
 <xsd:element name="lookup-region" type="lookupSubRegionType"/>
 <xsd:element name="replicated-region" type="replicatedSubRegionType"/>
 <xsd:element name="partitioned-region" type="partitionedSubRegionType"/>
 <xsd:element name="local-region" type="localSubRegionType"/>
 <xsd:element name="client-region" type="clientSubRegionType"/>
 </xsd:choice>
 </xsd:group>
 <!-- -->
 <xsd:attributeGroup name="topLevelRegionAttributes">
 <xsd:attribute name="id" type="xsd:string" use="required">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The id of the region bean definition.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="cache-ref" type="xsd:string" use="optional" default="gemfireCache">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The name of the bean defining the GemFire cache (by default 'gemfireCache').
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="name" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The name of the region definition. If no specified, it will have the value of the id attribute (that is, the bean name).
Required for subregions.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:attributeGroup>
 <!-- -->
 <xsd:attributeGroup name="distributedRegionAttributes">
 <xsd:attribute name="enable-async-conflation" type="xsd:string">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
For TCP/IP distributions between peers, specifies whether to allow aggregation of asynchronous messages sent
by the producer member for the Region. This is a special-purpose boolean attribute that applies only when
asynchronous queues are used for slow consumers. A false value disables conflation so that all asynchronous messages
are sent individually. GemFire default is false (even though GemFire User Guide states it is true).
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="enable-subscription-conflation" type="xsd:string">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Indicates whether the Region can conflate its messages to the client. GemFire default is false.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="multicast-enabled" type="xsd:string">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Boolean that indicates whether distributed operations on a region should use multicasting. To enable this, multicast must be enabled for the
distributed system with the mcast-port gemfire.properties setting.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:attributeGroup>
 <!-- -->
 <xsd:complexType name="baseReplicatedRegionType" abstract="true">
 <xsd:annotation>
 <xsd:documentation source="org.springframework.data.gemfire.RegionFactoryBean"><![CDATA[
Defines a GemFire Replicated Region instance. Each Replicated Region contains a complete copy of the data.
As well as high availability, replication provides excellent performance as each Region contains a complete,
up-to-date copy of the data.
]]></xsd:documentation>
 <xsd:appinfo>
 <tool:annotation>
 <tool:exports type="com.gemstone.gemfire.cache.Region" />
 </tool:annotation>
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:complexContent>
 <xsd:extension base="baseRegionType">
 <xsd:sequence>
 <xsd:element name="subscription" minOccurs="0" maxOccurs="1">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Subscription policy for the replicated region.
]]></xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:attribute name="type" type="xsd:string" use="optional"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="eviction" minOccurs="0" maxOccurs="1">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Eviction policy for the replicated region.
]]></xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:complexContent>
 <xsd:extension base="evictionType">
 <xsd:attribute name="action" type="xsd:string" fixed="OVERFLOW_TO_DISK">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Set to the following Eviction Actions (Note LOCAL_DESTROY is not available for Replicated Regions):

OVERFLOW_TO_DISK - Entry is overflowed to disk and the value set to null in memory. For Partitioned Regions,
this provides the most reliable read behavior across the region.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 </xsd:element>
 <xsd:group ref="subRegionGroup" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attributeGroup ref="distributedRegionAttributes"/>
 <xsd:attribute name="concurrency-level">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Provides an estimate of the maximum number of application threads that will concurrently access a region entry at one time.
This attribute does not apply to partitioned regions. This attribute helps GemFire optimize the use of system resources and
reduce thread contention. This sets an initial parameter on the underlying java.util.ConcurrentHashMap used for storing region entries.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="data-policy" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Specifies the data policy for this region (EMPTY, REPLICATE, PERSISTENT_REPLICATE). Setting 'data-policy' is not
stictly necessary, but if set, then the value must agree with the 'persistent' attribute if also specified.
]]></xsd:documentation>
 </xsd:annotation>
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="EMPTY"/>
 <xsd:enumeration value="REPLICATE"/>
 <xsd:enumeration value="PERSISTENT_REPLICATE"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 <xsd:attribute name="is-lock-grantor" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Indicates whether the Region is a lock grantor. This attribute is only relevant for Regions with global scope,
as only they allow locking. GemFire default is false.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="scope" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Specifies the Scope for this Region: distributed-ack, distributed-no-ack, global

Scope determines how updates to Region Entries are distributed to the other Caches in the Distributed System where
the Region and Entry are defined. Scope also determines whether to allow remote invocation of some of
the Region’s event handlers.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="shortcut" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The RegionShortcut for this region. Allows easy initialization of the region based on pre-defined defaults.
]]></xsd:documentation>
 </xsd:annotation>
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="REPLICATE"/>
 <xsd:enumeration value="REPLICATE_HEAP_LRU"/>
 <xsd:enumeration value="REPLICATE_OVERFLOW"/>
 <xsd:enumeration value="REPLICATE_PERSISTENT"/>
 <xsd:enumeration value="REPLICATE_PERSISTENT_OVERFLOW"/>
 <xsd:enumeration value="REPLICATE_PROXY"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <!-- -->
 <xsd:complexType name="replicatedRegionType">
 <xsd:complexContent>
 <xsd:extension base="baseReplicatedRegionType">
 <xsd:attributeGroup ref="topLevelRegionAttributes" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <!-- -->
 <xsd:complexType name="replicatedSubRegionType">
 <xsd:complexContent>
 <xsd:extension base="baseReplicatedRegionType">
 <xsd:attribute name="name" type="xsd:string" use="required">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The name of the region definition.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <!-- -->
 <xsd:element name="replicated-region-template" type="replicatedRegionType">
 <xsd:annotation>
 <xsd:documentation source="org.springframework.data.gemfire.ReplicatedRegionFactoryBean"><![CDATA[
Defines a template for creating multiple GemFire REPLICATE Regions that all share a common attribute configuration.
]]></xsd:documentation>
 <xsd:appinfo>
 <tool:annotation>
 <tool:exports type="com.gemstone.gemfire.cache.Region"/>
 </tool:annotation>
 </xsd:appinfo>
 </xsd:annotation>
 </xsd:element>
 <!-- -->
 <xsd:element name="replicated-region" type="replicatedRegionType"/>
 <!-- -->
 <xsd:complexType name="basePartitionedRegionType" abstract="true">
 <xsd:annotation>
 <xsd:documentation
 source="org.springframework.data.gemfire.RegionFactoryBean"><![CDATA[
Defines a GemFire Partitioned Region instance. Through partitioning, the data is split across Regions.
Partitioning is useful when the amount of data to store is too large for one member to hold and work
with as if it were a single entity. One can configure the Partitioned Region to store redundant copies
in different members, for high availability in case of an application failure.
]]></xsd:documentation>
 <xsd:appinfo>
 <tool:annotation>
 <tool:exports type="com.gemstone.gemfire.cache.Region" />
 </tool:annotation>
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:complexContent>
 <xsd:extension base="baseRegionType">
 <xsd:sequence>
 <xsd:element name="partition-resolver" type="beanDeclarationType" minOccurs="0" maxOccurs="1">
 <xsd:annotation>
 <xsd:documentation source="com.gemstone.gemfire.cache.PartitionResolver"><![CDATA[
The partition resolver definition for this region, allowing for custom partitioning. GemFire uses the resolver to
colocate data based on custom criterias (such as colocating trades by month and year).
]]></xsd:documentation>
 <xsd:appinfo>
 <tool:annotation>
 <tool:exports type="com.gemstone.gemfire.cache.PartitionResolver" />
 </tool:annotation>
 </xsd:appinfo>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="partition-listener" minOccurs="0" maxOccurs="1">
 <xsd:annotation>
 <xsd:documentation
 source="com.gemstone.gemfire.cache.partition.PartitionListener"><![CDATA[
The PartitionListener definition for this Region. Defines a callback for Partitioned Regions, invoked when
a Partition Region is created or any Bucket in a Partitioned Region becomes primary.
]]></xsd:documentation>
 <xsd:appinfo>
 <tool:annotation>
 <tool:exports type="com.gemstone.gemfire.cache.partition.PartitionListener" />
 </tool:annotation>
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:any namespace="##other" processContents="skip" minOccurs="0" maxOccurs="unbounded">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Inner bean definition of the ParitionListener.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:any>
 </xsd:sequence>
 <xsd:attribute name="ref" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The name of the PartitionListener bean referred to by this declaration. Used for convenience. If no reference exists,
use inner bean declarations.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="fixed-partition" minOccurs="0" maxOccurs="unbounded">
 <xsd:annotation>
 <xsd:documentation
 source="com.gemstone.gemfire.cache.partition.FixedPartitionAttributes"><![CDATA[
 Create a fixed partition with the given attributes. Required for a FixedPartitionResolver.
]]></xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:attribute name="partition-name" type="xsd:string"
 use="required">
 <xsd:annotation>
 <xsd:documentation
 source="com.gemstone.gemfire.cache.partition.FixedPartitionAttributes"><![CDATA[
Specifies the fixed partition name
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="primary" use="optional"
 default="true">
 <xsd:annotation>
 <xsd:documentation
 source="com.gemstone.gemfire.cache.partition.FixedPartitionAttributes"><![CDATA[
Specifies if this member is primary for this partition
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="num-buckets" use="optional">
 <xsd:annotation>
 <xsd:documentation
 source="com.gemstone.gemfire.cache.partition.FixedPartitionAttributes"><![CDATA[
Specifies the number of buckets to allocate to the fixed partition
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="subscription" minOccurs="0" maxOccurs="1">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Subscription policy for the partitioned region.
]]></xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:attribute name="type" type="xsd:string" use="optional"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="eviction" minOccurs="0" maxOccurs="1">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Eviction policy for the partitioned region.
]]></xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:complexContent>
 <xsd:extension base="evictionType">
 <xsd:attribute name="action" type="xsd:string" default="LOCAL_DESTROY">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Set to one of the following Eviction Actions:

LOCAL_DESTROY - Entry is destroyed locally. Not available for Replicated Regions.

OVERFLOW_TO_DISK - Entry is overflowed to disk and the value set to null in memory. For Partitioned Regions,
this provides the most reliable read behavior across the region.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attributeGroup ref="distributedRegionAttributes" />
 <xsd:attribute name="copies" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The number of copies (0-3) of each partition for high-availability. By default, no copies are created meaning
there is no redundancy. Each copy provides extra backup at the expense of extra storage. GemFire default is 0, or
no redundancy.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="colocated-with" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The name of the partitioned region with which this newly created partitioned region is colocated.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="data-policy" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Specifies the data policy for this region (PARTITION, PERSISTENT_PARTITION). Setting 'data-policy' is not
stictly necessary, but if set, then the value must agree with the 'persistent' attribute if also specified.
]]></xsd:documentation>
 </xsd:annotation>
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="PARTITION"/>
 <xsd:enumeration value="PERSISTENT_PARTITION"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 <xsd:attribute name="local-max-memory" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The maximum amount of memory, in megabytes, to be used by the Region in this process. If not set, a default of 90%
of available heap is used.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="total-max-memory" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The maximum amount of memory, in megabytes, to be used by the region in all process.

Note: This setting must be the same in all processes using the region.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="total-buckets" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The total number of hash buckets to be used by the Region in all processes.

A Bucket is the smallest unit of data management in a Partitioned Region. Entries are stored in Buckets and Buckets may
move from one VM to another. Buckets may also have copies, depending on redundancy to provide high availability in the
face of VM failure.

The number of Buckets should be prime, and as a rough guide, at the least four times the number of partition VMs.
However, there is significant overhead to managing a Bucket, particularly for higher values of redundancy.

Note: This setting must be the same in all processes using the Region.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="recovery-delay" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Applies when copies is greater than zero. The number of milliseconds to wait after a member crashes
before reestablishing redundancy for the Region. A setting of -1 disables automatic recovery of redundancy
after member failure. Gemfire default is -1.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="shortcut" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The RegionShortcut for this region. Allows easy initialization of the region based on pre-defined defaults.
]]></xsd:documentation>
 </xsd:annotation>
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="PARTITION"/>
 <xsd:enumeration value="PARTITION_HEAP_LRU"/>
 <xsd:enumeration value="PARTITION_OVERFLOW"/>
 <xsd:enumeration value="PARTITION_PERSISTENT"/>
 <xsd:enumeration value="PARTITION_PERSISTENT_OVERFLOW"/>
 <xsd:enumeration value="PARTITION_PROXY"/>
 <xsd:enumeration value="PARTITION_PROXY_REDUNDANT"/>
 <xsd:enumeration value="PARTITION_REDUNDANT"/>
 <xsd:enumeration value="PARTITION_REDUNDANT_HEAP_LRU"/>
 <xsd:enumeration value="PARTITION_REDUNDANT_OVERFLOW"/>
 <xsd:enumeration value="PARTITION_REDUNDANT_PERSISTENT"/>
 <xsd:enumeration value="PARTITION_REDUNDANT_PERSISTENT_OVERFLOW"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 <xsd:attribute name="startup-recovery-delay" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Applies when copies is greater than zero. The number of milliseconds a newly started member should wait
before trying to satisfy redundancy of Region data stored on other members. A setting of -1 disables automatic recovery
of redundancy after new members join. GemFire default is 0, meaning the default is to recover redundancy immediately
when a new member joins the cluster.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <!-- -->
 <xsd:complexType name="partitionedRegionType">
 <xsd:complexContent>
 <xsd:extension base="basePartitionedRegionType">
 <xsd:attributeGroup ref="topLevelRegionAttributes" />
 </xsd:extension>
 <!-- subRegions not supported -->
 </xsd:complexContent>
 </xsd:complexType>
 <!-- -->
 <xsd:complexType name="partitionedSubRegionType">
 <xsd:complexContent>
 <xsd:extension base="basePartitionedRegionType">
 <xsd:attribute name="name" type="xsd:string" use="required">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The name of the region definition.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:extension>
 <!-- subRegions not supported -->
 </xsd:complexContent>
 </xsd:complexType>
 <!-- -->
 <xsd:element name="partitioned-region-template" type="partitionedRegionType">
 <xsd:annotation>
 <xsd:documentation source="org.springframework.data.gemfire.PartitionedRegionFactoryBean"><![CDATA[
Defines a template for creating multiple GemFire PARTITION Regions that all share a common attribute configuration.
]]></xsd:documentation>
 <xsd:appinfo>
 <tool:annotation>
 <tool:exports type="com.gemstone.gemfire.cache.Region"/>
 </tool:annotation>
 </xsd:appinfo>
 </xsd:annotation>
 </xsd:element>
 <!-- -->
 <xsd:element name="partitioned-region" type="partitionedRegionType"/>
 <!-- -->
 <xsd:complexType name="baseLocalRegionType" abstract="true">
 <xsd:annotation>
 <xsd:documentation
 source="org.springframework.data.gemfire.ReplicatedRegionFactoryBean"><![CDATA[
Defines a GemFire Local Region instance. Each Local Region is scoped only to the local JVM.
]]></xsd:documentation>
 <xsd:appinfo>
 <tool:annotation>
 <tool:exports type="com.gemstone.gemfire.cache.Region"/>
 </tool:annotation>
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:complexContent>
 <xsd:extension base="baseRegionType">
 <xsd:sequence minOccurs="1" maxOccurs="1">
 <xsd:element name="eviction" minOccurs="0" maxOccurs="1">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Eviction policy for the replicated region.
]]></xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:complexContent>
 <xsd:extension base="evictionType">
 <xsd:attribute name="action" type="xsd:string">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Set to one of the following Eviction Actions:

LOCAL_DESTROY - Entry is destroyed locally. Not available for Replicated Regions.

OVERFLOW_TO_DISK - Entry is overflowed to disk and the value set to null in memory. For Partitioned Regions,
this provides the most reliable read behavior across the region.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 </xsd:element>
 <xsd:group ref="subRegionGroup" minOccurs="0" maxOccurs="unbounded" />
 </xsd:sequence>
 <xsd:attribute name="concurrency-level">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Provides an estimate of the maximum number of application threads that will concurrently access a region entry at one time.
This attribute does not apply to partitioned regions. This attribute helps GemFire optimize the use of system resources and
reduce thread contention. This sets an initial parameter on the underlying java.util.ConcurrentHashMap used for storing region entries.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="data-policy" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Specifies the data policy for this region (NORMAL or PRELOADED). Setting 'data-policy' is not stictly necessary,
but if set, then the value must agree with the 'persistent' attribute if also specified.
]]></xsd:documentation>
 </xsd:annotation>
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="NORMAL"/>
 <xsd:enumeration value="PRELOADED"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 <xsd:attribute name="shortcut" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The RegionShortcut for this region. Allows easy initialization of the region based on pre-defined defaults.
]]></xsd:documentation>
 </xsd:annotation>
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="LOCAL"/>
 <xsd:enumeration value="LOCAL_HEAP_LRU"/>
 <xsd:enumeration value="LOCAL_OVERFLOW"/>
 <xsd:enumeration value="LOCAL_PERSISTENT"/>
 <xsd:enumeration value="LOCAL_PERSISTENT_OVERFLOW"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <!-- -->
 <xsd:complexType name="localRegionType">
 <xsd:complexContent>
 <xsd:extension base="baseLocalRegionType">
 <xsd:attributeGroup ref="topLevelRegionAttributes" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <!-- -->
 <xsd:complexType name="localSubRegionType">
 <xsd:complexContent>
 <xsd:extension base="baseLocalRegionType">
 <xsd:attribute name="name" type="xsd:string" use="required">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The name of the region definition.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <!-- -->
 <xsd:element name="local-region-template" type="localRegionType">
 <xsd:annotation>
 <xsd:documentation source="org.springframework.data.gemfire.LocalRegionFactoryBean"><![CDATA[
Defines a template for creating multiple GemFire Local Regions that all share a common attribute configuration.
]]></xsd:documentation>
 <xsd:appinfo>
 <tool:annotation>
 <tool:exports type="com.gemstone.gemfire.cache.Region"/>
 </tool:annotation>
 </xsd:appinfo>
 </xsd:annotation>
 </xsd:element>
 <!-- -->
 <xsd:element name="local-region" type="localRegionType"/>
 <!-- -->
 <xsd:complexType name="expirationType">
 <xsd:attribute name="timeout" type="xsd:string" default="0">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Number of seconds before a region or an entry expires. If timeout is not specified, it defaults to zero
(which means no expiration).
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="action" type="xsd:string" default="INVALIDATE">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Action that should take place when a Region or an Entry expires. Valid values include: DESTROY, INVALIDATE,
LOCAL_DESTROY, LOCAL_INVALIDATE. Note, the default GemFire Expiration Action is INVALIDATE.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:complexType>
 <!-- -->
 <xsd:complexType name="customExpirationType">
 <xsd:sequence>
 <xsd:any namespace="##other" processContents="skip" minOccurs="0" maxOccurs="1">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Inner bean definition of the CustomExpiry.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:any>
 </xsd:sequence>
 <xsd:attribute name="ref" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The name of the CustomExpiry bean referred by this declaration. Used as a convenience method. If no reference exists,
use inner bean declarations.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:complexType>
 <!-- -->
 <xsd:complexType name="evictionType">
 <xsd:sequence minOccurs="0" maxOccurs="1">
 <xsd:element name="object-sizer" type="beanDeclarationType">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Entity computing sizes for objects stored into the grid.
]]></xsd:documentation>
 <xsd:appinfo>
 <tool:annotation>
 <tool:exports type="com.gemstone.gemfire.cache.util.ObjectSizer" />
 </tool:annotation>
 </xsd:appinfo>
 </xsd:annotation>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="threshold" type="xsd:string">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The threshold (or limit) against which the eviction algorithm runs. Once the threshold is reached, eviction is performed.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="type" type="xsd:string" default="ENTRY_COUNT">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The 'type' of eviction performed, or algorithm used to perform eviction on the Region entries. Eviction types include:
ENTRY_COUNT: Considers the number of entries in the Region before performing an eviction.
HEAP_PERCENTAGE: Considers the amount of heap used (through the GemFire resource manager) before performing an eviction.
MEMORY_SIZE: Considers the amount of memory consumed by the Region before performing an eviction.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:complexType>
 <!-- -->
 <xsd:complexType name="baseDiskStoreType">
 <xsd:sequence>
 <xsd:element name="disk-dir" minOccurs="0" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:attribute name="location" type="xsd:string" use="required">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Directory on the file system for storing data.

Note: the directory must already exist.
]]></xsd:documentation>
 <xsd:appinfo>
 <tool:annotation>
 <tool:exports type="com.gemstone.gemfire.cache.DiskStore" />
 </tool:annotation>
 </xsd:appinfo>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="max-size" type="xsd:string"
 default="2147483647">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The maximum size (in megabytes) of data stored in each directory. Default value is 2,147,483,647 which is two petabytes.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="allow-force-compaction" type="xsd:string" default="false">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Indicates whether forced compaction is allowed for regions using this disk store
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="auto-compact" type="xsd:string" default="true">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Indicates whether or not the operation logs are automatically compacted or not. Default is true.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="compaction-threshold" type="xsd:string" default="50">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Sets the threshold at which an oplog will become compactable. Until it reaches this threshold the oplog will not be compacted.
The threshold is a percentage in the range 0..100. When the amount of garbage in an oplog exceeds this percentage then when a
compaction is done and this garbage will be cleaned up freeing up disk space. Garbage is created by entry destroys,
entry updates, and region destroys.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="disk-usage-critical-percentage" type="xsd:string">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Disk usage above this threshold generates an error message and shuts down the member's cache. For example,
if the threshold is set to 99%, then falling under 10 GB of free disk space on a 1 TB drive generates the error
and shuts down the cache.

Set to "0" (zero) to disable. GemFire default is 99%.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="disk-usage-warning-percentage" type="xsd:string">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Disk usage above this threshold generates a warning message. For example, if the threshold is set to 90%,
then on a 1 TB drive falling under 100 GB of free disk space generates the warning.

Set to "0" (zero) to disable. GemFire default is 90%.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="max-oplog-size" type="xsd:string" default="1024">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Sets the maximum size in megabytes a single oplog (operation log) is allowed to be. When an oplog is created this
amount of file space will be immediately reserved.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="queue-size" type="xsd:string" default="0">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The maximum number of operations that can be asynchronously queued. Once this many pending async operations have been
queued async ops will begin blocking until some of the queued ops have been flushed to disk.
Considered only for asynchronous writing.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="time-interval" type="xsd:string" default="1000">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Sets the number of milliseconds that can elapse before unwritten data is written to disk.
It is considered only for asynchronous writing.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="write-buffer-size" type="xsd:string" default="32768">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Indicates the write buffer size in bytes
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:complexType>
 <!-- -->
 <xsd:complexType name="diskStoreType">
 <xsd:complexContent>
 <xsd:extension base="baseDiskStoreType">
 <xsd:attribute name="id" type="xsd:string" use="required">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The name of the disk store bean definition. This is also used as the disk store name]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="cache-ref" type="xsd:string" use="optional" default="gemfireCache">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The name of the bean defining the GemFire cache (by default 'gemfireCache').
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <!-- -->
 <xsd:element name="disk-store" type="diskStoreType" />
 <!-- -->
 <xsd:complexType name="baseClientRegionType" abstract="true">
 <xsd:annotation>
 <xsd:documentation
 source="org.springframework.data.gemfire.client.ClientRegionFactoryBean"><![CDATA[
Defines a GemFire client region instance. A client region is connected to a (long-lived) farm of GemFire servers from
which it receives its data. The client can hold some data locally or forward all requests to the server.
]]></xsd:documentation>
 <xsd:appinfo>
 <tool:annotation>
 <tool:exports type="com.gemstone.gemfire.cache.Region" />
 </tool:annotation>
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:complexContent>
 <xsd:extension base="baseReadOnlyRegionType">
 <xsd:sequence>
 <xsd:element name="cache-loader" type="beanDeclarationType" minOccurs="0" maxOccurs="1">
 <xsd:annotation>
 <xsd:documentation source="com.gemstone.gemfire.cache.CacheLoader"><![CDATA[
The cache loader definition for this region. A cache loader allows data to be placed into a region.
]]></xsd:documentation>
 <xsd:appinfo>
 <tool:annotation>
 <tool:exports type="com.gemstone.gemfire.cache.CacheLoader" />
 </tool:annotation>
 </xsd:appinfo>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="cache-writer" type="beanDeclarationType" minOccurs="0" maxOccurs="1">
 <xsd:annotation>
 <xsd:documentation source="com.gemstone.gemfire.cache.CacheWriter"><![CDATA[
The cache writer definition for this region. A cache writer acts as a dedicated synchronous listener that is notified
before a region or an entry is modified. A typical example would be a writer that updates the database.

Note: Only one CacheWriter is invoked. GemFire will always prefer the local one (if it exists) otherwise it will
arbitrarily pick one.
]]></xsd:documentation>
 <xsd:appinfo>
 <tool:annotation>
 <tool:exports type="com.gemstone.gemfire.cache.CacheWriter" />
 </tool:annotation>
 </xsd:appinfo>
 </xsd:annotation>
 </xsd:element>
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="key-interest">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Key based interest. If the key is a List, then all the keys in the List will be registered. The key can also be the
special token 'ALL_KEYS', which will register interest in all keys in the region. In effect, this will cause an update
to any key in this region in the CacheServer to be pushed to the client.
]]></xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:complexContent>
 <xsd:extension base="interestType">
 <xsd:sequence minOccurs="0" maxOccurs="1">
 <xsd:any namespace="##other" processContents="skip" minOccurs="0" maxOccurs="unbounded">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Inner bean definition of the client key interest.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:any>
 </xsd:sequence>
 <xsd:attribute name="key-ref" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The name of the client key interest bean referred by this declaration. Used as a convenience method. If no reference exists,
use the inner bean declaration.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="regex-interest">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Regular expression based interest. If the pattern is '.*' then all keys of any type will be pushed to the client.
]]></xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:complexContent>
 <xsd:extension base="interestType">
 <xsd:attribute name="pattern" type="xsd:string" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 </xsd:element>
 </xsd:choice>
 <xsd:element name="eviction" minOccurs="0" maxOccurs="1">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Eviction policy for the partitioned region.
]]></xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:complexContent>
 <xsd:extension base="evictionType">
 <xsd:attribute name="action" type="xsd:string" default="LOCAL_DESTROY">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Set to one of the following Eviction Actions:

LOCAL_DESTROY - Entry is destroyed locally. Not available for Replicated Regions.

OVERFLOW_TO_DISK - Entry is overflowed to disk and the value set to null in memory. For Partitioned Regions,
this provides the most reliable read behavior across the region.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 </xsd:element>
 <xsd:group ref="subRegionGroup" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="concurrency-level">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Provides an estimate of the maximum number of application threads that will concurrently access a Region entry
at one time. This attribute does not apply to Partitioned Regions. This attribute helps GemFire optimize the use of
system resources and reduce thread contention. This sets an initial parameter on the underlying
java.util.ConcurrentHashMap used for storing Region entries.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="data-policy" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The data policy for this client region. Can be either 'EMPTY' or 'NORMAL' (the default). In case persistence or overflow
are configured for this region, this parameter will be ignored.

EMPTY - causes data to never be stored in local memory. The region will always appear empty. It can be used for zero
footprint producers that only want to distribute their data to others and for zero footprint consumers that only want
to see events.

NORMAL - causes data that this region is interested in to be stored in local memory. It allows the contents in this
cache to differ from other caches.
]]></xsd:documentation>
 </xsd:annotation>
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="EMPTY"/>
 <xsd:enumeration value="NORMAL"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 <xsd:attribute name="pool-name" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The name of the pool used by this client. If not set, a default pool (initialized when using client-cache) will be used.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="shortcut" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The ClientRegionShortcut for this region. Allows easy initialization of the region based on pre-defined defaults.
]]></xsd:documentation>
 </xsd:annotation>
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="PROXY"/>
 <xsd:enumeration value="CACHING_PROXY"/>
 <xsd:enumeration value="CACHING_PROXY_HEAP_LRU"/>
 <xsd:enumeration value="CACHING_PROXY_OVERFLOW"/>
 <xsd:enumeration value="LOCAL"/>
 <xsd:enumeration value="LOCAL_HEAP_LRU"/>
 <xsd:enumeration value="LOCAL_OVERFLOW"/>
 <xsd:enumeration value="LOCAL_PERSISTENT"/>
 <xsd:enumeration value="LOCAL_PERSISTENT_OVERFLOW"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <!-- -->
 <xsd:complexType name="clientRegionType">
 <xsd:complexContent>
 <xsd:extension base="baseClientRegionType">
 <xsd:attributeGroup ref="topLevelRegionAttributes" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <!-- -->
 <xsd:complexType name="clientSubRegionType">
 <xsd:complexContent>
 <xsd:extension base="baseClientRegionType">
 <xsd:attribute name="name" type="xsd:string" use="required">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The name of the region definition.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <!-- -->
 <xsd:element name="client-region-template" type="clientRegionType">
 <xsd:annotation>
 <xsd:documentation source="org.springframework.data.gemfire.ClientRegionFactoryBean"><![CDATA[
Defines a template for creating multiple GemFire Client Regions that all share a common attribute configuration.
]]></xsd:documentation>
 <xsd:appinfo>
 <tool:annotation>
 <tool:exports type="com.gemstone.gemfire.cache.Region"/>
 </tool:annotation>
 </xsd:appinfo>
 </xsd:annotation>
 </xsd:element>
 <!-- -->
 <xsd:element name="client-region" type="clientRegionType">
 <xsd:annotation>
 <xsd:documentation source="org.springframework.data.gemfire.ClientRegionFactoryBean"><![CDATA[
Defines a GemFire Client Region
]]></xsd:documentation>
 <xsd:appinfo>
 <tool:annotation>
 <tool:exports type="com.gemstone.gemfire.cache.Region"/>
 </tool:annotation>
 </xsd:appinfo>
 </xsd:annotation>
 </xsd:element>
 <!-- -->
 <xsd:complexType name="connectionType">
 <xsd:attribute name="host" type="xsd:string">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The host name or ip address of the connection.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="port">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The port number of the connection (between 1 and 65535 inclusive).
]]></xsd:documentation>
 </xsd:annotation>
 <xsd:simpleType>
 <xsd:restriction base="xsd:string" />
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:complexType>
 <!-- -->
 <xsd:complexType name="interestType" abstract="true">
 <xsd:attribute name="durable" type="xsd:string" use="optional" default="false">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Indicates whether the Registered Interest is durable or not. Default is false.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="receive-values" type="xsd:string" use="optional" default="true">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Indicates whether values are received with create and update events on keys of interest (true)
or only invalidations are received and the value will be received on the next get instead (false).
Default is true.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="result-policy" type="xsd:string" use="optional" default="KEYS_VALUES">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The result policy for this interest. Can be one of 'KEYS', 'KEYS_VALUES' (the default) or 'NONE'.

KEYS - Initializes the local Cache with the keys satisfying the request.
KEYS_VALUES - Initializes the local Cache with the keys and current values satisfying the request.
NONE - Does not initialize the local Cache.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:complexType>
 <!-- -->
 <xsd:element name="pool">
 <xsd:annotation>
 <xsd:documentation
 source="org.springframework.data.gemfire.client.PoolFactoryBean"><![CDATA[
Defines a pool for connections from a client to a set of GemFire Cache Servers.

Note that in order to instantiate a pool, a GemFire cache needs to be already started.
]]></xsd:documentation>
 <xsd:appinfo>
 <tool:annotation>
 <tool:exports type="com.gemstone.gemfire.cache.client.Pool" />
 </tool:annotation>
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:choice>
 <xsd:element name="locator" type="connectionType" minOccurs="0" maxOccurs="unbounded" />
 <xsd:element name="server" type="connectionType" minOccurs="0" maxOccurs="unbounded" />
 </xsd:choice>
 <xsd:attribute name="id" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The name of the pool definition (by default "gemfirePool").
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="free-connection-timeout" type="xsd:string" use="optional"/>
 <xsd:attribute name="idle-timeout" type="xsd:string" use="optional"/>
 <xsd:attribute name="load-conditioning-interval" type="xsd:string" use="optional"/>
 <xsd:attribute name="keep-alive" type="xsd:string" use="optional" default="false"/>
 <xsd:attribute name="locators" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Comma-delimited list of Locator endpoints used by this Pool in the form of: host1[port1],host2[port2],...,hostN[portN]
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="max-connections" type="xsd:string" use="optional"/>
 <xsd:attribute name="min-connections" type="xsd:string" use="optional"/>
 <xsd:attribute name="multi-user-authentication" type="xsd:string" use="optional"/>
 <xsd:attribute name="ping-interval" type="xsd:string" use="optional"/>
 <xsd:attribute name="pr-single-hop-enabled" type="xsd:string" use="optional"/>
 <xsd:attribute name="read-timeout" type="xsd:string" use="optional"/>
 <xsd:attribute name="retry-attempts" type="xsd:string" use="optional"/>
 <xsd:attribute name="server-group" type="xsd:string" use="optional"/>
 <xsd:attribute name="servers" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Comma-delimited list of Server endpoints used by this Pool in the form of: host1[port1],host2[port2],...,hostN[portN]
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="socket-buffer-size" type="xsd:string" use="optional"/>
 <xsd:attribute name="statistic-interval" type="xsd:string" use="optional"/>
 <xsd:attribute name="subscription-ack-interval" type="xsd:string" use="optional"/>
 <xsd:attribute name="subscription-enabled" type="xsd:string" use="optional"/>
 <xsd:attribute name="subscription-message-tracking-timeout" type="xsd:string" use="optional"/>
 <xsd:attribute name="subscription-redundancy" type="xsd:string" use="optional"/>
 <xsd:attribute name="thread-local-connections" type="xsd:string" use="optional"/>
 </xsd:complexType>
 </xsd:element>
 <!-- -->
 <xsd:element name="cache-server">
 <xsd:annotation>
 <xsd:documentation
 source="org.springframework.data.gemfire.server.CacheServerFactoryBean"><![CDATA[
Defines a Cache Server for feeding data to remote gemfire clients to a server GemFire Cache Servers.
Note: In order to instantiate a cacheserver, a GemFire cache needs to be avaialble in the VM.
]]></xsd:documentation>
 <xsd:appinfo>
 <tool:annotation>
 <tool:exports type="com.gemstone.gemfire.cache.server.CacheServer" />
 </tool:annotation>
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence minOccurs="0" maxOccurs="1">
 <xsd:element name="subscription-config" minOccurs="0" maxOccurs="1">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The client subscription configuration that is used to control a clients use of server resources towards notification queues.
]]></xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:attribute name="eviction-type" type="xsd:string" use="optional" default="NONE"/>
 <xsd:attribute name="capacity" type="xsd:string" use="optional" default="1"/>
 <xsd:attribute name="disk-store" type="xsd:string" use="optional"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The name of the cache server definition (by default "gemfireServer").
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="cache-ref" type="xsd:string" use="optional" default="gemfireCache">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The name of the bean defining the GemFire cache (by default 'gemfireCache').
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="auto-startup" type="xsd:string" use="optional" default="true"/>
 <xsd:attribute name="bind-address" type="xsd:string" use="optional" />
 <xsd:attribute name="port" type="xsd:string" use="optional" default="40404">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The port number of the server.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="host-name-for-clients" type="xsd:string" use="optional" />
 <xsd:attribute name="load-poll-interval" type="xsd:string" use="optional" default="5000"/>
 <xsd:attribute name="max-connections" type="xsd:string" use="optional" default="800"/>
 <xsd:attribute name="max-threads" type="xsd:string" use="optional" default="0" />
 <xsd:attribute name="max-message-count" type="xsd:string" use="optional" default="230000"/>
 <xsd:attribute name="max-time-between-pings" type="xsd:string" use="optional" default="60000"/>
 <xsd:attribute name="message-time-to-live" type="xsd:string" use="optional" default="180"/>
 <xsd:attribute name="socket-buffer-size" type="xsd:string" use="optional" default="32768"/>
 <xsd:attribute name="notify-by-subscription" type="xsd:string" use="optional" default="true"/>
 <xsd:attribute name="groups" type="xsd:string" use="optional" default="">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The server groups that this server will be a member of given as a comma separated values list.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="load-probe-ref" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The name of the bean defining the CacheServer Load Probe.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>
 <!-- -->
 <xsd:element name="cq-listener-container">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Container for continuous query listeners. All listeners will be hosted by the same container.
]]></xsd:documentation>
 <xsd:appinfo>
 <tool:annotation>
 <tool:exports
 type="org.springframework.data.gemfire.listener.ContinuousQueryListenerContainer" />
 </tool:annotation>
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="listener" type="listenerType" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
identifier of the listener (optional)
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="cache" type="xsd:string" default="gemfireCache">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
A reference (by name) to the GemFire Cache bean. Default is "gemfireCache".
]]></xsd:documentation>
 <xsd:appinfo>
 <tool:annotation kind="ref">
 <tool:expected-type type="com.gemstone.gemfire.cache.RegionService" />
 </tool:annotation>
 </xsd:appinfo>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="pool-name" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The name of the GemFire Pool used by the container.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="auto-startup" type="xsd:string" use="optional" default="true"/>
 <xsd:attribute name="error-handler" type="xsd:string">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
A reference to a Spring ErrorHandler strategy handling any errors that may occur when the container executes the CQs.
]]></xsd:documentation>
 <xsd:appinfo>
 <tool:annotation kind="ref">
 <tool:expected-type type="org.springframework.util.ErrorHandler"/>
 </tool:annotation>
 </xsd:appinfo>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="phase" type="xsd:string">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The lifecycle phase within which this container should start and stop. The lower the value the earlier this container
will start and the later it will stop. The default is Integer.MAX_VALUE meaning the container will start as late
as possible and stop as soon as possible.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="task-executor" type="xsd:string">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
A reference to a Spring TaskExecutor (or standard JDK 1.5 Executor) for executing GemFire CQ listener invokers.
The default is a SimpleAsyncTaskExecutor.
]]></xsd:documentation>
 <xsd:appinfo>
 <tool:annotation kind="ref">
 <tool:expected-type type="java.util.concurrent.Executor"/>
 </tool:annotation>
 </xsd:appinfo>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>
 <!-- -->
 <xsd:complexType name="listenerType">
 <xsd:attribute name="ref" type="xsd:string" use="required">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The bean name of the listener object, implementing the ContinuousQueryListener interface or defining the specified listener method.
Required.
]]></xsd:documentation>
 <xsd:appinfo>
 <tool:annotation kind="ref" />
 </xsd:appinfo>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="query" type="xsd:string" use="required">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The query for the GemFire continuous query.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="name" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The name of the resulting GemFire ContinuousQuery (CQ). Useful for monitoring and statistics-based querying.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="method" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The name of the listener method to invoke. If not specified, the target bean is supposed to implement the ContinuousQueryListener
interface or provide a method named 'handleEvent'.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="durable" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Whether the resulting GemFire continuous query is durable or not.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:complexType>
 <!-- -->
 <xsd:element name="index">
 <xsd:annotation>
 <xsd:documentation
 source="org.springframework.data.gemfire.IndexFactoryBean"><![CDATA[
Defines a GemFire index.
]]></xsd:documentation>
 <xsd:appinfo>
 <tool:annotation>
 <tool:exports type="com.gemstone.gemfire.cache.query.Index" />
 </tool:annotation>
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:attribute name="id" type="xsd:string">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The name of the index bean definition. If property 'name' is not set, it will be used as the index name as well.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="cache-ref" type="xsd:string" use="optional" default="gemfireCache">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The name of the bean defining the GemFire cache (by default 'gemfireCache').
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="name" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The name of the index.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="pool-name" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The name of the pool used by the index. Used usually in client scenarios.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="define" type="xsd:string" use="optional" default="false">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Boolean condition used to lazily create this index once all indexes with define set to true are defined
(i.e. declared and defined in the Spring context as Spring beans).
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="expression" type="xsd:string" use="required" />
 <xsd:attribute name="from" type="xsd:string" use="required">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Corresponds to the regionPath parameter in createIndex methods.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="imports" type="xsd:string" use="optional" />
 <xsd:attribute name="override" type="xsd:string" use="optional" default="true">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Indicates whether the index is created even if there is an index with the same name (default) or not.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="type" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The type of index: FUNCTIONAL, HASH, PRIMARY_KEY.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>
 <!-- -->
 <xsd:complexType name="jndiBindingType">
 <xsd:sequence>
 <xsd:element name="jndi-prop" type="configPropertyType" minOccurs="0" maxOccurs="unbounded">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Specifies a vendor-specific property
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="jndi-name" type="xsd:string" use="required">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The JNDI name for this DataSource. Will be prefixed with "java:/"
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="type" type="xsd:string" use="required">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Specifies the DataSource implementation: ManagedDataSource, PooledDataSource, SimpleDataSource, or XAPooledDataSource.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="blocking-timeout-seconds" type="xsd:string"
 use="optional" />
 <xsd:attribute name="conn-pooled-datasource-class" type="xsd:string"
 use="optional" />
 <xsd:attribute name="connection-url" type="xsd:string"
 use="optional" />
 <xsd:attribute name="idle-timeout-seconds" type="xsd:string"
 use="optional" />
 <xsd:attribute name="init-pool-size" type="xsd:string"
 use="optional" />
 <xsd:attribute name="jdbc-driver-class" type="xsd:string"
 use="optional" />
 <xsd:attribute name="login-timeout-seconds" type="xsd:string"
 use="optional" />
 <xsd:attribute name="managed-connection-factory-class"
 type="xsd:string" use="optional" />
 <xsd:attribute name="max-pool-size" type="xsd:string"
 use="optional" />
 <xsd:attribute name="password" type="xsd:string" use="optional" />
 <xsd:attribute name="user-name" type="xsd:string" use="optional" />
 <xsd:attribute name="xa-datasource-class" type="xsd:string"
 use="optional" />
 <xsd:attribute name="transaction-type" type="xsd:string"
 use="optional" />
 </xsd:complexType>
 <!-- -->
 <xsd:complexType name="configPropertyType" mixed="true">
 <xsd:attribute name="key" type="xsd:string" use="required">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Specifies the property key.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="type" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Specifies the data type if other than java.lang.String.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:complexType>
 <!-- -->
 <xsd:complexType name="baseGatewaySenderType">
 <xsd:annotation>
 <xsd:documentation source="com.gemstone.gemfire.cache.wan.GatewaySender"><![CDATA[
A gateway sender gateway definition (requires Gemfire 7.0 or later)
]]></xsd:documentation>
 <xsd:appinfo>
 <tool:annotation>
 <tool:exports type="com.gemstone.gemfire.cache.wan.GatewaySender" />
 </tool:annotation>
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="event-filter" type="gatewayEventFilterType" minOccurs="0" maxOccurs="1"/>
 <xsd:element name="event-substitution-filter" type="gatewayEventSubstitutionFilterType" minOccurs="0" maxOccurs="1"/>
 <xsd:element name="transport-filter" type="gatewayTransportFilterType" minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Optionally specifies the GemFire GatewaySender id. By default, this value is the bean id or a generated value
if an inner bean.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="remote-distributed-system-id" type="xsd:string" use="required">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Integer that uniquely identifies the remote GemFire cluster to which this GatewaySender will send Region Events.
This value corresponds to the distributed-system-id property specified in Locators for the remote cluster.
This attribute is required.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="alert-threshold" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Maximum number of milliseconds that a Region Event can remain in the GatewaySender Queue before GemFire logs an alert.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="enable-batch-conflation" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Boolean value that determines whether GemFire should conflate messages. GemFire default is false.
NOTE, this attribute is deprecated in favor of the common WAN Queue attribute, 'batch-conflation-enabled'. If both
attributes are specified, then 'batch-conflation-enabled' takes precedence.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="manual-start" type="xsd:string" default="false">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Boolean value that specifies whether you need to manually start the GatewaySender. If you supply a null value,
the default is "false" and the GatewaySender attempts to start automatically.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="socket-buffer-size" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Size of the socket buffer that sends messages to remote sites. This size should match the size of the
socket-buffer-size attribute of remote GatewayReceivers that process Region Events.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="socket-read-timeout" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Amount of time in milliseconds that the GatewaySender will wait to receive an acknowledgment from a remote site.
By default this is set to 0, which means there is no timeout. If you do set this timeout, you must set it to
a minimum of 30000 (milliseconds). Setting it to a lower number will generate an error message and reset the value
to the default of 0.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attributeGroup ref="commonWANQueueAttributes"/>
 </xsd:complexType>
 <!-- -->
 <xsd:attributeGroup name="commonWANQueueAttributes">
 <xsd:attribute name="batch-conflation-enabled" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Boolean value that determines whether GemFire should conflate messages. GemFire default is false.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="batch-size" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Maximum number of messages that a batch can contain.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="batch-time-interval" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Maximum number of milliseconds that can elapse between sending batches.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="disk-store-ref" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Named DiskStore to use for storing the Queue overflow, or for persisting the Queue. If you specify a value,
the named DiskStore must exist. If you specify a null value, GemFire uses the Default DiskStore for overflow
and Queue persistence.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="disk-synchronous" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
For Regions that write to disk, a boolean that specifies whether disk writes are done synchronously (true)
for the Region or asynchronously (false).
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="dispatcher-threads" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Number of dispatcher threads that are used to process Region Events from a GatewaySender Queue
or Asynchronous Event Queue.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="maximum-queue-memory" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Maximum amount of memory in megabytes that the Queue can consume before overflowing to disk.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="order-policy" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
When the dispatcher-threads attribute is greater than 1, order-policy configures the way in which multiple
dispatcher threads process Region Events from a serial Gateway Queue or serial Asynchronous Event Queue.
This attribute can have one of the following values:

KEY - When distributing Region Events from the local Queue, multiple dispatcher threads preserve the order of key updates.
THREAD - When distributing Region Events from the local Queue, multiple dispatcher threads preserve the order
in which a given thread added Region Events to the Queue.
PARTITION - When distributing Region Events from the local Queue, multiple dispatcher threads preserve the order
in which Region Events were added to the local Queue. For a Partitioned Region, this means that all Region Events
delivered to a specific partition are delivered in the same order to the remote GemFire site. For a Distributed Region,
this means that all key updates delivered to the local GatewaySender Queue are distributed to the remote site
in the same order.

You cannot configure the order-policy for a parallel Event Queue, because parallel Queues cannot preserve event
ordering for Regions. Only the ordering of events for a given partition (or in a given Queue of a Distributed Region)
can be preserved.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="parallel" type="xsd:string">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Value of "true" or "false" specifying the type of GatewaySender or AsyncEventQueue that GemFire creates.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="persistent" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Boolean value that determines whether GemFire persists the Gateway Queue or AsyncEventQueue.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:attributeGroup>
 <!-- -->
 <xsd:complexType name="gatewayReceiverType">
 <xsd:annotation>
 <xsd:documentation source="com.gemstone.gemfire.cache.wan.GatewayReceiver"><![CDATA[
A gateway receiver definition (requires Gemfire 7.0 or later)
]]></xsd:documentation>
 <xsd:appinfo>
 <tool:annotation>
 <tool:exports type="com.gemstone.gemfire.cache.wan.GatewayReceiver" />
 </tool:annotation>
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="transport-filter" type="gatewayTransportFilterType"
 minOccurs="0" maxOccurs="1" />
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The id of this bean definition
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="cache-ref" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The id of the cache - default is gemfireCache
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="bind-address" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Specifies the bind address (IP address or host name) for the gateway receiver
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="hostname-for-senders" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Attribute where you can specify an IP address or hostname for gateway sender connections.
If you configure hostname-for-senders, locators will use the provided hostname or IP address
when instructing gateway senders on how to connect to gateway receivers. If you provide ""
or null as the value, by default the gateway receiver's bind-address will be sent to clients.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="start-port" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Specifies the lower end of a port range to use for the gateway receiver
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="end-port" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Specifies the upper end of a port range to use for the gateway receiver
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="manual-start" type="xsd:string" default="false">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Specifies if the gateway receiver is manually (true) or automatically (false) started. Default is an automatic start (false).
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="maximum-time-between-pings" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Specifies the maximum time between pings in milliseconds
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="socket-buffer-size" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Specifies the socket buffer size in bytes
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:complexType>
 <!-- -->
 <xsd:complexType name="baseAsyncEventQueueType">
 <xsd:annotation>
 <xsd:documentation source="com.gemstone.gemfire.cache.wan.AsyncEventQueue"><![CDATA[
An async event queue definition (requires Gemfire 7.0 or later)
]]></xsd:documentation>
 <xsd:appinfo>
 <tool:annotation>
 <tool:exports type="com.gemstone.gemfire.cache.wan.AsyncEventQueue" />
 </tool:annotation>
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="async-event-listener" minOccurs="1" maxOccurs="1">
 <xsd:annotation>
 <xsd:documentation
 source="com.gemstone.gemfire.cache.wan.AsyncEventListener"><![CDATA[
An AsyncEventListener bean definition for this AsyncEventQueue. (requires Gemfire 7.0)
]]></xsd:documentation>
 <xsd:appinfo>
 <tool:annotation>
 <tool:exports type="com.gemstone.gemfire.cache.wan.AsyncEventListener"/>
 </tool:annotation>
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:any namespace="##other" processContents="skip"
 minOccurs="0" maxOccurs="unbounded">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Inner bean definition of the async event listener
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:any>
 </xsd:sequence>
 <xsd:attribute name="ref" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The name of the async event listener bean referred by this declaration. Used as a convenience method. If no reference exists,
use inner bean declarations.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Optionally specifies the GemFire AsyncEventQueue id. By default this value is the bean id or a generated value
if an inner bean.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attributeGroup ref="commonWANQueueAttributes" />
 </xsd:complexType>
 <!-- -->
 <xsd:element name="gateway-sender">
 <xsd:complexType>
 <xsd:complexContent>
 <xsd:extension base="baseGatewaySenderType">
 <xsd:attribute name="id" type="xsd:string" use="required">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The id of this bean definition.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="cache-ref" type="xsd:string"
 use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The id of the cache - default is gemfireCache
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 </xsd:element>
 <!-- -->
 <xsd:element name="async-event-queue">
 <xsd:complexType>
 <xsd:complexContent>
 <xsd:extension base="baseAsyncEventQueueType">
 <xsd:attribute name="id" type="xsd:string" use="required">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The id of this bean definition.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="cache-ref" type="xsd:string"
 use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The id of the cache - default is gemfireCache
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 </xsd:element>
 <!-- -->
 <xsd:element name="gateway-receiver" type="gatewayReceiverType" />
 <!-- -->
 <xsd:element name="function-service">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="function" minOccurs="0" maxOccurs="1">
 <xsd:annotation>
 <xsd:documentation source="com.gemstone.gemfire.cache.execute.Function"><![CDATA[
Declares one or more remote functions for this cache and register's with them the FunctionService. each bean
must implement com.gemstone.gemfire.cache.execute.Function
]]></xsd:documentation>
 <xsd:appinfo>
 <tool:annotation>
 <tool:exports type="com.gemstone.gemfire.cache.execute.Function" />
 </tool:annotation>
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:any namespace="##other" processContents="skip"
 minOccurs="0" maxOccurs="unbounded">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Inner bean definition of the remote function.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:any>
 </xsd:sequence>
 <xsd:attribute name="ref" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The name of the remote function bean referred by this declaration. Used as a convenience method. If no reference exists,
use inner bean declarations.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The id of the function service (optional)
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>
 <!-- -->
 <xsd:complexType name="gatewayEventFilterType">
 <xsd:annotation>
 <xsd:documentation source="com.gemstone.gemfire.cache.wan.GatewayEventFilter"><![CDATA[
A Gateway Event Filter for this GatewaySender.
]]></xsd:documentation>
 <xsd:appinfo>
 <tool:annotation>
 <tool:exports type="com.gemstone.gemfire.cache.wan.GatewayEventFilter"/>
 </tool:annotation>
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:any namespace="##other" processContents="skip" minOccurs="0" maxOccurs="unbounded">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Inner bean definition(s) to declare and add GatewayEventFilter(s) to the GatewaySender.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:any>
 </xsd:sequence>
 <xsd:attribute name="ref" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The name of the GatewaySender Event Filter bean referred to by this declaration.
Used for convenience. If no reference exists, use inner bean declarations.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:complexType>
 <!-- -->
 <xsd:complexType name="gatewayEventSubstitutionFilterType">
 <xsd:annotation>
 <xsd:documentation source="com.gemstone.gemfire.cache.wan.GatewayEventSubstitutionFilter"><![CDATA[
A Gateway Event Substitution Filter for this GatewaySender.
]]></xsd:documentation>
 <xsd:appinfo>
 <tool:annotation>
 <tool:exports type="com.gemstone.gemfire.cache.wan.GatewayEventSubstitutionFilter"/>
 </tool:annotation>
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:any namespace="##other" processContents="skip" minOccurs="0" maxOccurs="1">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Inner bean definition to declare and add a single GatewayEventSubstitutionFilter to the GatewaySender.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:any>
 </xsd:sequence>
 <xsd:attribute name="ref" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The name of the GatewaySender Event Sustitution Filter bean referred to by this declaration.
Used for convenience. If no reference exists, use inner bean declarations.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:complexType>
 <!-- -->
 <xsd:complexType name="gatewayTransportFilterType">
 <xsd:annotation>
 <xsd:documentation source="com.gemstone.gemfire.cache.wan.GatewayTransportFilter"><![CDATA[
A Gateway Transport Filter for this GatewaySender.
]]></xsd:documentation>
 <xsd:appinfo>
 <tool:annotation>
 <tool:exports type="com.gemstone.gemfire.cache.wan.GatewayTransportFilter"/>
 </tool:annotation>
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:any namespace="##other" processContents="skip" minOccurs="0" maxOccurs="unbounded">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Inner bean definition(s) for the Gateway Transport Filter(s) to add to this GatewaySender.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:any>
 </xsd:sequence>
 <xsd:attribute name="ref" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The name of the GatewaySender Transport Filter bean referred to by this declaration.
Used for convenience. If no reference exists, use inner bean declarations.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:complexType>
 <!-- GemFire 6 WAN Gateway schema -->
 <xsd:complexType name="gatewayHubType">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Deprecated as of Gemfire 7
]]></xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="gateway" type="gatewayType" minOccurs="0" maxOccurs="unbounded">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Deprecated as of Gemfire 7
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:string" use="required">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The id of this GatewayHub.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="cache-ref" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The id of the cache - default is gemfireCache
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="bind-address" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Specifies the bind address (IP address or host name) for the gateway hub
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="port" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The port for this hub (integer value, if not specified, Gemfire will select an open port)
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="manual-start" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Specifies if the gateway hub is manually (true) or automatically(false) started
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="max-connections" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Sets the maximum number of Gateway connections allowed.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="max-time-between-pings" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Sets the maximum amount of time between client pings.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="socket-buffer-size" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Specifies the socket buffer size in bytes
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="startup-policy" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Specifies the startup policy (primary,secondary, none) for the gateway hub
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:complexType>
 <!-- -->
 <xsd:complexType name="gatewayEndpointType">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Deprecated as of Gemfire 7
]]></xsd:documentation>
 </xsd:annotation>
 <xsd:attribute name="endpoint-id" type="xsd:string" use="required"/>
 <xsd:attribute name="host" type="xsd:string" use="required"/>
 <xsd:attribute name="port" type="xsd:string" use="required"/>
 </xsd:complexType>
 <!-- -->
 <xsd:complexType name="gatewayQueueType">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Deprecated as of Gemfire 7
]]></xsd:documentation>
 </xsd:annotation>
 <xsd:attribute name="alert-threshold" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Specifies the alert threshold in miliseconds, indicating the maximum time elapsed from when the gateway sent the message
to when the acknowldgement was received from the gateway receiver.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="batch-size" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Specifies the batch size
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="batch-time-interval" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The maximum time interval that can elapse before a partial batch is sent from a GatewaySender to its corresponding GatewayReceiver.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="disk-store-ref" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Indicates the id of disk store to use for persistence
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="enable-batch-conflation" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Specifies whether batch conflation is enabled (true or false)
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="maximum-queue-memory" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Specifies the maximum memory in MB to allocate for the queue
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="persistent" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Specifies whether persistence is enabled: true or false(default)
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:complexType>
 <!-- -->
 <xsd:complexType name="gatewayType">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Deprecated as of Gemfire 7
]]></xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:choice>
 <xsd:element name="gateway-endpoint" type="gatewayEndpointType" minOccurs="1" maxOccurs="unbounded"/>
 <xsd:element name="gateway-listener" minOccurs="1" maxOccurs="1">
 <xsd:annotation>
 <xsd:documentation
 source="com.gemstone.gemfire.cache.util.GatewayEventListener"><![CDATA[
An gateway event listener definition for the gateway
]]></xsd:documentation>
 <xsd:appinfo>
 <tool:annotation>
 <tool:exports type="com.gemstone.gemfire.cache.util.GatewayEventListener"/>
 </tool:annotation>
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:any namespace="##other" processContents="skip" minOccurs="0" maxOccurs="unbounded">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Inner bean definition of the gateway event listener
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:any>
 </xsd:sequence>
 <xsd:attribute name="ref" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
The name of the gateway event listener bean referred by this declaration. Used as a convenience method. If no reference exists,
use inner bean declarations.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>
 </xsd:choice>
 <xsd:element name="gateway-queue" type="gatewayQueueType" minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 <xsd:attribute name="gateway-id" type="xsd:string" use="required">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Specifies the id for this gateway
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="concurrency-level" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Specifies the number of parallel threads
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="order-policy" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Specifies the order policy - This only applies if parallel is enabled:
KEY: Indicates that events will be parallelized based on the event's key,
PARTITION:Indicates that events will be parallelized based on the event's: partition (using the PartitionResolver)
THREAD:Indicates that events will be parallelized based on the event's originating member and thread
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="socket-buffer-size" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Specifies the socket buffer size in bytes
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="socket-read-timeout" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Specifies the socket read timeout in milliseconds
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:complexType>
 <!-- -->
 <xsd:element name="gateway-hub" type="gatewayHubType">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Deprecated as of Gemfire 7
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <!-- End GemFire 6 WAN Gateway schema -->
 <!-- Function Annotation Support -->
 <xsd:element name="annotation-driven">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
 Enables gemfire annotations.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:element>
</xsd:schema>

Spring Data GemFire Data Access Schema (gfe-data)

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<xsd:schema xmlns="http://www.springframework.org/schema/data/gemfire"
 xmlns:beans="http://www.springframework.org/schema/beans"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:gfe="http://www.springframework.org/schema/gemfire"
 xmlns:repository="http://www.springframework.org/schema/data/repository"
 xmlns:tool="http://www.springframework.org/schema/tool"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.springframework.org/schema/data/gemfire"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 version="1.8">
 <xsd:import namespace="http://www.springframework.org/schema/beans"/>
 <xsd:import namespace="http://www.springframework.org/schema/context"
 schemaLocation="http://www.springframework.org/schema/context/spring-context.xsd" />
 <xsd:import namespace="http://www.springframework.org/schema/data/repository"
 schemaLocation="http://www.springframework.org/schema/data/repository/spring-repository.xsd"/>
 <xsd:import namespace="http://www.springframework.org/schema/gemfire"
 schemaLocation="http://www.springframework.org/schema/gemfire/spring-gemfire.xsd"/>
 <xsd:import namespace="http://www.springframework.org/schema/tool"/>
 <!-- -->
 <xsd:annotation>
 <xsd:documentation><![CDATA[
 Namespace support for the Spring Data GemFire Client side data access.
]]></xsd:documentation>
 </xsd:annotation>
 <!-- Repositories -->
 <xsd:element name="repositories">
 <xsd:complexType>
 <xsd:complexContent>
 <xsd:extension base="repository:repositories">
 <xsd:attributeGroup ref="gemfire-repository-attributes"/>
 <xsd:attributeGroup ref="repository:repository-attributes"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 </xsd:element>
 <!-- -->
 <xsd:attributeGroup name="gemfire-repository-attributes">
 <xsd:attribute name="mapping-context-ref" type="mappingContextRef">
 <xsd:annotation>
 <xsd:documentation>
 The reference to a MappingContext. If not set a default one will be created.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:attributeGroup>
 <!-- -->
 <xsd:simpleType name="mappingContextRef">
 <xsd:annotation>
 <xsd:appinfo>
 <tool:annotation kind="ref">
 <tool:assignable-to type="org.springframework.data.gemfire.GemfireMappingContext"/>
 </tool:annotation>
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:union memberTypes="xsd:string"/>
 </xsd:simpleType>
 <!-- Function Executions -->
 <xsd:element name="function-executions">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
 Enables component scanning for annotated function execution interfaces.
]]></xsd:documentation>
 </xsd:annotation>

 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="include-filter" type="context:filterType" minOccurs="0" maxOccurs="unbounded">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
 Controls which eligible types to include for component scanning.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="exclude-filter" type="context:filterType" minOccurs="0" maxOccurs="unbounded">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
 Controls which eligible types to exclude for component scanning.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="base-package" type="xsd:string" use="required">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
 Defines the base package where function execution interfaces will be tried to be detected.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>
 <!-- DataSource -->
 <xsd:element name="datasource">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Defines a connection from a Cache client to a set of GemFire Cache Servers.
]]></xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:choice minOccurs="1" maxOccurs="1">
 <xsd:element name="locator" type="gfe:connectionType"
 minOccurs="1" maxOccurs="unbounded" />
 <xsd:element name="server" type="gfe:connectionType"
 minOccurs="1" maxOccurs="unbounded" />
 </xsd:choice>

 <xsd:attribute name="free-connection-timeout"
 type="xsd:string" use="optional" />
 <xsd:attribute name="idle-timeout" type="xsd:string"
 use="optional" />
 <xsd:attribute name="load-conditioning-interval"
 type="xsd:string" use="optional" />
 <xsd:attribute name="max-connections" type="xsd:string"
 use="optional" />
 <xsd:attribute name="min-connections" type="xsd:string"
 use="optional" />
 <xsd:attribute name="multi-user-authentication"
 type="xsd:string" use="optional" />
 <xsd:attribute name="ping-interval" type="xsd:string"
 use="optional" />
 <xsd:attribute name="pr-single-hop-enabled"
 type="xsd:string" use="optional" />
 <xsd:attribute name="read-timeout" type="xsd:string"
 use="optional" />
 <xsd:attribute name="retry-attempts" type="xsd:string"
 use="optional" />
 <xsd:attribute name="server-group" type="xsd:string"
 use="optional" />
 <xsd:attribute name="socket-buffer-size" type="xsd:string"
 use="optional" />
 <xsd:attribute name="statistic-interval" type="xsd:string"
 use="optional" />
 <xsd:attribute name="subscription-ack-interval"
 type="xsd:string" use="optional" />
 <xsd:attribute name="subscription-enabled"
 type="xsd:string" use="optional" />
 <xsd:attribute name="subscription-message-tracking-timeout"
 type="xsd:string" use="optional" />
 <xsd:attribute name="subscription-redundancy"
 type="xsd:string" use="optional" />
 <xsd:attribute name="thread-local-connections"
 type="xsd:string" use="optional" />
 </xsd:complexType>
 </xsd:element>
 <!-- JSON support -->
 <xsd:element name="json-region-autoproxy">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Enables A Spring AOP proxy to perform automatic conversion to and from JSON for appropriate region operations
]]></xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:attribute name="region-refs" use="optional" type="xsd:string">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
A comma delimited string of region names to include for JSON conversion. By default all regions are included.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="pretty-print" use="optional" type="xsd:string">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
A boolean value to specify whether returned JSON strings are pretty printed, false by default.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="convert-returned-collections" use="optional" type="xsd:string">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
A boolean value to specify whether Collections returned by Region.getAll(), Region.values() should be converted from the
native GemFire PdxInstance type. True, by default but will incur significant overhead for large collections.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="snapshot-service">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Access to GemFire's Snapshot Service for taking snapshots of GemFire Cache and Region data.
]]></xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="snapshot-import" type="snapshotMetadataType" minOccurs="0" maxOccurs="unbounded">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Specifies meta-data for a snapshot import.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="snapshot-export" type="snapshotMetadataType" minOccurs="0" maxOccurs="unbounded">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Specifies meta-data for a snapshot export.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:string" use="required">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
ID of the GemFire [Cache|Region] SnapshotService bean in the Spring context.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="cache-ref" type="xsd:string" use="optional" default="gemfireCache">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
(Optional) Name of the GemFire Cache bean from which to extract data and record a snapshot (by default 'gemfireCache').
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="region-ref" type="xsd:string" use="optional">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
(Optional) Name of the GemFire Region bean from which to extract data and record a snapshot.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="suppress-import-on-init" type="xsd:string" default="false">
 <xsd:annotation>
 <xsd:documentation>
 Determines whether imports are suppressed on initialization of the GemFire Snapshot Service.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>
 <xsd:complexType name="snapshotMetadataType">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Declares an element type defining snapshot meta-data.
]]></xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:any namespace="##other" processContents="skip" minOccurs="0" maxOccurs="1">
 <xsd:annotation>
 <xsd:documentation><![CDATA[
Inner bean definition. The nested declaration serves as an alternative to bean references (using
both in the same definition) is illegal.
]]></xsd:documentation>
 </xsd:annotation>
 </xsd:any>
 </xsd:sequence>
 <xsd:attribute name="location" type="xsd:string" use="required"/>
 <xsd:attribute name="format" type="xsd:string" use="optional" default="GEMFIRE"/>
 <xsd:attribute name="filter-ref" type="xsd:string" use="optional"/>
 </xsd:complexType>
</xsd:schema>

OEBPS/nav.xhtml

Spring Data GemFire Reference Guide

Table of Contents

		Preface

		Introduction

		Requirements

		New Features

		Document Structure

		Bootstrapping GemFire through the Spring Container

		Working with the GemFire APIs

		Working with GemFire Serialization

		POJO mapping

		GemFire Repositories

		Annotation Support for Function Execution

		Bootstrapping a Spring ApplicationContext in GemFire

		Sample Applications

		Useful Links

		Namespace reference

		Populators namespace reference

		Repository query keywords

		Repository query return types

		Spring Data GemFire Schema

OEBPS/images/jacket/cover.png
Asciidoctor EPUB3

OEBPS/images/avatars/default.jpg

OEBPS/images/headshots/default.jpg

