Spring for Apache Hadoop - Reference Documentation
Table of Contents
	Preface
	I. Introduction	1. Requirements
	2. Additional Resources

	II. Spring and Hadoop	3. Hadoop Configuration, MapReduce, and Distributed Cache	Using the Spring for Apache Hadoop Namespace
	Configuring Hadoop
	Creating a Hadoop Job	Creating a Hadoop Streaming Job

	Running a Hadoop Job	Using the Hadoop Job tasklet

	Running a Hadoop Tool	Replacing Hadoop shell invocations with tool-runner
	Using the Hadoop Tool tasklet

	Running a Hadoop Jar	Using the Hadoop Jar tasklet

	Configuring the Hadoop DistributedCache
	Map Reduce Generic Options

	4. Working with the Hadoop File System	Configuring the file-system
	Using HDFS Resource Loader
	Scripting the Hadoop API	Using scripts

	Scripting implicit variables	Running scripts
	Using the Scripting tasklet

	File System Shell (FsShell)	DistCp API

	5. Writing and reading data using the Hadoop File System	Store Abstraction	Writing Data	File Naming
	File Rollover
	Partitioning
	Writer Implementations

	Reading Data	Input Splits
	Reader Implementations

	Using Codecs

	Persisting POJO datasets using Kite SDK	Data Formats	Using Avro
	Using Parquet

	Configuring the dataset support
	Writing datasets
	Reading datasets
	Partitioning datasets

	6. Working with HBase	Data Access Object (DAO) Support

	7. Hive integration	Starting a Hive Server
	Using the Hive Thrift Client
	Using the Hive JDBC Client
	Running a Hive script or query	Using the Hive tasklet

	Interacting with the Hive API

	8. Pig support	Running a Pig script	Using the Pig tasklet

	Interacting with the Pig API

	9. Using the runner classes
	10. Security Support	HDFS permissions
	User impersonation (Kerberos)

	11. Yarn Support	Using the Spring for Apache Yarn Namespace
	Using the Spring for Apache Yarn JavaConfig
	Configuring Yarn
	Local Resources
	Container Environment
	Application Client
	Application Master
	Application Container
	Application Master Services	Basic Concepts
	Using JSON
	Converters

	Application Master Service
	Application Master Service Client
	Using Spring Batch	Batch Jobs
	Partitioning	Configuring Master
	Configuring Container

	Using Spring Boot Application Model	Auto Configuration
	Application Files
	Application Classpath	Simple Executable Jar
	Simple Zip Archive

	Container Runners	Custom Runner

	Resource Localizing
	Container as POJO
	Configuration Properties
	Container Groups	Grid Projection
	Group Configuration
	Container Restart
	REST API

	Controlling Applications	Generic Usage
	Using Configuration Properties
	Using YarnPushApplication
	Using YarnSubmitApplication
	Using YarnInfoApplication	Using YarnKillApplication

	Using YarnContainerClusterApplication

	Cli Integration	Build-in Commands
	Implementing Command
	Using Shell

	12. Testing Support	Testing MapReduce	Mini Clusters for MapReduce
	Configuration
	Simplified Testing
	Wordcount Example

	Testing Yarn	Mini Clusters for Yarn
	Configuration
	Simplified Testing
	Multi Context Example

	Testing Boot Based Applications

	III. Developing Spring for Apache Hadoop Applications	13. Guidance and Examples	Scheduling
	Batch Job Listeners

	14. Other Samples

	IV. Other Resources	15. Useful Links

	V. Appendices	A. Using Spring for Apache Hadoop with Amazon EMR	Start up the cluster
	Open an SSH Tunnel as a SOCKS proxy
	Configuring Hadoop to use a SOCKS proxy
	Accessing the file-system
	Shutting down the cluster
	Example configuration

	B. Using Spring for Apache Hadoop with EC2/Apache Whirr	Setting up the Hadoop cluster on EC2 with Apache Whirr

Spring for Apache Hadoop - Reference Documentation

 Costin Leau
Elasticsearch

 Thomas Risberg
Pivotal

 Janne Valkealahti
Pivotal

2.1.0.M3

Copyright © 2011-2014 Pivotal Software, Inc.

 Copies of this document may be made for your own use and for
 distribution to others, provided that you do not charge any fee for such
 copies and further provided that each copy contains this Copyright
 Notice, whether distributed in print or electronically.

Preface

Spring for Apache Hadoop provides extensions to Spring, Spring Batch,
and Spring Integration to build manageable and robust pipeline solutions
around Hadoop.

Spring for Apache Hadoop supports reading from and writing to HDFS,
running various types of Hadoop jobs (Java MapReduce, Streaming),
scripting and HBase, Hive and Pig interactions. An important goal is to
provide excellent support for non-Java based developers to be productive
using Spring for Apache Hadoop and not have to write any Java code to
use the core feature set.

Spring for Apache Hadoop also applies the familiar Spring programming
model to Java MapReduce jobs by providing support for dependency
injection of simple jobs as well as a POJO based MapReduce programming
model that decouples your MapReduce classes from Hadoop specific details
such as base classes and data types.

This document assumes the reader already has a basic familiarity with
the Spring Framework and Hadoop concepts and APIs.

While every effort has been made to ensure that this documentation is
comprehensive and there are no errors, nevertheless some topics might
require more explanation and some typos might have crept in. If you do
spot any mistakes or even more serious errors and you can spare a few
cycles during lunch, please do bring the error to the attention of the
Spring for Apache Hadoop team by raising an issue. Thank you.

Part I. Introduction

Spring for Apache Hadoop provides integration with the Spring Framework
to create and run Hadoop MapReduce, Hive, and Pig jobs as well as work
with HDFS and HBase. If you have simple needs to work with Hadoop,
including basic scheduling, you can add the Spring for Apache Hadoop
namespace to your Spring based project and get going quickly using
Hadoop. As the complexity of your Hadoop application increases, you may
want to use Spring Batch and Spring Integration to regain on the
complexity of developing a large Hadoop application.

This document is the reference guide for Spring for Apache Hadoop
project (SHDP). It explains the relationship between the Spring
framework and Hadoop as well as related projects such as Spring Batch
and Spring Integration. The first part describes the integration with
the Spring framework to define the base concepts and semantics of the
integration and how they can be used effectively. The second part
describes how you can build upon these base concepts and create workflow
based solutions provided by the integration with Spring Batch.

Chapter 1. Requirements

Spring for Apache Hadoop 2.1 is built and tested with JDK 7.0 (generated
jars are usable in JDK 6.0 and above),
Spring Framework 4.0 and is
by default built against Apache Hadoop 2.5.1.

Spring for Apache Hadoop 2.1 supports the following versions and
distributions:

	
Apache Hadoop 2.4.1

	
Apache Hadoop 2.5.1

	
Apache Hadoop 2.6.0

	
Pivotal HD 2.0

	
Pivotal HD 2.1

	
Cloudera CDH5 (2.5.0-cdh5.2.0)

	
Hortonworks Data Platform 2.0

	
Hortonworks Data Platform 2.1

Any distribution compatible with Apache Hadoop 2.2.x or later should be
usable.

Spring for Apache Hadoop 2.1 is tested daily against a number of Hadoop
distributions. See the
test plan page for
current status.

Instructions for setting up project builds using various supported
distributions are provided on the Spring for Apache Hadoop wiki -
https://github.com/spring-projects/spring-hadoop/wiki

Regarding Hadoop-related projects, SDHP supports
HBase 0.94.11, Hive
0.11.0 and Pig 0.11.0 and above. As a rule of
thumb, when using Hadoop-related projects, such as Hive or Pig, use the
required Hadoop version as a basis for discovering the supported
versions.

To take full advantage of Spring for Apache Hadoop you need a running
Hadoop cluster. If you don’t already have one in your environment, a
good first step is to create a single-node cluster. To install the most
recent stable verision of Hadoop, the
Getting
Started page from the official Apache project is a good general
guide. There should be a link for "Single Node Setup".

It is also convenient to download a Virtual Machine where Hadoop is
setup and ready to go. Cloudera, Hortonworks and Pivotal all provide
virtual machines and provide VM downloads on their product pages.
Additionally, the Part V, “Appendices” appendix provides information on how
to use Spring for Apache Hadoop and setup Hadoop with cloud providers,
such as Amazon Web Services.

Chapter 2. Additional Resources

While this documentation acts as a reference for Spring for Hadoop
project, there are number of resources that, while optional, complement
this document by providing additional background and code samples for
the reader to try and experiment with:

	
Spring for Apache Hadoop
samples.
Official repository full of SHDP samples demonstrating the various
project features.

	
Spring Data
Book.
Guide to Spring Data projects, written by the committers behind them.
Covers Spring Data Hadoop stand-alone but in tandem with its siblings
projects. All author royalties from book sales are donated to
Creative Commons organization.

	
Spring Data Book
examples.
Complete running samples for the Spring Data book. Note that some of
them are available inside Spring for Apache Hadoop samples as well.

Part II. Spring and Hadoop

This part of the reference documentation explains the core functionality
that Spring for Apache Hadoop (SHDP) provides to any Spring based application.

Chapter 3, Hadoop Configuration, MapReduce, and Distributed Cache describes the Spring support for bootstrapping,
initializing and working with core Hadoop.

Chapter 4, Working with the Hadoop File System describes the Spring support for interacting with
the Hadoop file system.

Chapter 5, Writing and reading data using the Hadoop File System describes the store abstraction support.

Chapter 6, Working with HBase describes the Spring support for HBase.

Chapter 7, Hive integration describes the Hive integration in SHDP.

Chapter 8, Pig support describes the Pig support in Spring for Apache Hadoop.

Chapter 9, Using the runner classes describes the runner support.

Chapter 10, Security Support describes how to configure and interact
with Hadoop in a secure environment.

Chapter 11, Yarn Support describes the Hadoop YARN support.

Chapter 12, Testing Support describes the Spring testing integration.

Chapter 3. Hadoop Configuration, MapReduce, and Distributed Cache

One of the common tasks when using Hadoop is interacting with its
runtime - whether it is a local setup or a remote cluster, one needs
to properly configure and bootstrap Hadoop in order to submit the
required jobs. This chapter will focus on how Spring for Apache Hadoop
(SHDP) leverages Spring’s lightweight IoC container to simplify the
interaction with Hadoop and make deployment, testing and provisioning
easier and more manageable.

Using the Spring for Apache Hadoop Namespace

To simplify configuration, SHDP provides a dedicated namespace for most
of its components. However, one can opt to configure the beans directly
through the usual <bean> definition. For more information about XML
Schema-based configuration in Spring, see
this
appendix in the Spring Framework reference documentation.

To use the SHDP namespace, one just needs to import it inside the
configuration:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:hdp="http://www.springframework.org/schema/hadoop"[image: 1][image: 2]
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/hadoop
 http://www.springframework.org/schema/hadoop/spring-hadoop.xsd">[image: 3]

 <bean/>

 <hdp:configuration/>[image: 4]
</beans>

	[image: 1]
	
Spring for Apache Hadoop namespace prefix. Any name can do but
throughout the reference documentation, hdp will be used.

	[image: 2]
	
The namespace URI.

	[image: 3]
	
The namespace URI location. Note that even though the location points to
an external address (which exists and is valid), Spring will resolve the
schema locally as it is included in the Spring for Apache Hadoop
library.

	[image: 4]
	
Declaration example for the Hadoop namespace. Notice the prefix usage.

Once imported, the namespace elements can be declared simply by using
the aforementioned prefix. Note that is possible to change the default
namespace, for example from <beans> to <hdp>. This is useful for
configuration composed mainly of Hadoop components as it avoids
declaring the prefix. To achieve this, simply swap the namespace prefix
declarations above:

<?xml version="1.0" encoding="UTF-8"?>
<beans:beans
xmlns="http://www.springframework.org/schema/hadoop"[image: 1]
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:beans="http://www.springframework.org/schema/beans"[image: 2]
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/hadoop http://www.springframework.org/schema/hadoop/spring-hadoop.xsd">

 <beans:bean id ... >[image: 3]

 <configuration ...>[image: 4]

</beans:beans>

	[image: 1]
	
The default namespace declaration for this XML file points to the Spring
for Apache Hadoop namespace.

	[image: 2]
	
The beans namespace prefix declaration.

	[image: 3]
	
Bean declaration using the <beans> namespace. Notice the prefix.

	[image: 4]
	
Bean declaration using the <hdp> namespace. Notice the lack of
prefix (as hdp is the default namespace).

For the remainder of this doc, to improve readability, the XML examples
may simply refer to the <hdp> namespace without the namespace
declaration, where possible.

Configuring Hadoop

In order to use Hadoop, one needs to first configure it namely by
creating a Configuration object. The configuration holds information
about the job tracker, the input, output format and the various other
parameters of the map reduce job.

In its simplest form, the configuration definition is a one liner:

<hdp:configuration />

The declaration above defines a Configuration bean (to be precise a
factory bean of type ConfigurationFactoryBean) named, by default,
hadoopConfiguration. The default name is used, by conventions, by the
other elements that require a configuration - this leads to simple and
very concise configurations as the main components can automatically
wire themselves up without requiring any specific configuration.

For scenarios where the defaults need to be tweaked, one can pass in
additional configuration files:

<hdp:configuration resources="classpath:/custom-site.xml, classpath:/hq-site.xml">

In this example, two additional Hadoop configuration resources are added
to the configuration.

	[image: [Note]]	Note
	
Note that the configuration makes use of Spring’s
Resource
abstraction to locate the file. This allows various search patterns to
be used, depending on the running environment or the prefix specified
(if any) by the value - in this example the classpath is used.

In addition to referencing configuration resources, one can tweak Hadoop
settings directly through Java Properties. This can be quite handy when
just a few options need to be changed:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:hdp="http://www.springframework.org/schema/hadoop"
 xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/hadoop http://www.springframework.org/schema/hadoop/spring-hadoop.xsd">

 <hdp:configuration>
 fs.defaultFS=hdfs://localhost:8020
 hadoop.tmp.dir=/tmp/hadoop
 electric=sea
 </hdp:configuration>
</beans>

One can further customize the settings by avoiding the so called
hard-coded values by externalizing them so they can be replaced at
runtime, based on the existing environment without touching the
configuration:

	[image: [Note]]	Note
	
Usual configuration parameters for fs.defaultFS, mapred.job.tracker
and yarn.resourcemanager.address can be configured using tag
attributes file-system-uri, job-tracker-uri and rm-manager-uri
respectively.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:hdp="http://www.springframework.org/schema/hadoop"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context.xsd
 http://www.springframework.org/schema/hadoop http://www.springframework.org/schema/hadoop/spring-hadoop.xsd">

 <hdp:configuration>
 fs.defaultFS=${hd.fs}
 hadoop.tmp.dir=file://${java.io.tmpdir}
 hangar=${number:18}
 </hdp:configuration>

 <context:property-placeholder location="classpath:hadoop.properties" />
</beans>

Through Spring’s property placeholder
support,
SpEL
and the
environment
abstraction (available in Spring 3.1). one can externalize environment
specific properties from the main code base easing the deployment across
multiple machines. In the example above, the default file system is
replaced based on the properties available in hadoop.properties while
the temp dir is determined dynamically through SpEL. Both approaches
offer a lot of flexbility in adapting to the running environment - in
fact we use this approach extensivly in the Spring for Apache Hadoop
test suite to cope with the differences between the different
development boxes and the CI server.

Additionally, external Properties files can be loaded, Properties
beans (typically declared through Spring’s util namespace). Along with the nested properties declaration, this
allows customized configurations to be easily declared:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:hdp="http://www.springframework.org/schema/hadoop"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:util="http://www.springframework.org/schema/util"
 xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context.xsd
 http://www.springframework.org/schema/util http://www.springframework.org/schema/util/spring-util.xsd
 http://www.springframework.org/schema/hadoop http://www.springframework.org/schema/hadoop/spring-hadoop.xsd">

 <!-- merge the local properties, the props bean and the two properties files -->
 <hdp:configuration properties-ref="props" properties-location="cfg-1.properties, cfg-2.properties">
 star=chasing
 captain=eo
 </hdp:configuration>

 <util:properties id="props" location="props.properties"/>
</beans>

When merging several properties, ones defined locally win. In the
example above the configuration properties are the primary source,
followed by the props bean followed by the external properties file
based on their defined order. While it’s not typical for a configuration
to refer to so many properties, the example showcases the various
options available.

	[image: [Note]]	Note
	
For more properties utilities, including using the System as a source or
fallback, or control over the merging order, consider using Spring’s
PropertiesFactoryBean
(which is what Spring for Apache Hadoop and
util:properties
use underneath).

It is possible to create configurations based on existing ones - this
allows one to create dedicated configurations, slightly different from
the main ones, usable for certain jobs (such as streaming - more on that
#hadoop:job:streaming[below]). Simply use the configuration-ref
attribute to refer to the parent configuration - all its properties
will be inherited and overridden as specified by the child:

<!-- default name is 'hadoopConfiguration' -->
<hdp:configuration>
 fs.defaultFS=${hd.fs}
 hadoop.tmp.dir=file://${java.io.tmpdir}
</hdp:configuration>

<hdp:configuration id="custom" configuration-ref="hadoopConfiguration">
 fs.defaultFS=${custom.hd.fs}
</hdp:configuration>

...

Make sure though that you specify a different name since otherwise,
because both definitions will have the same name, the Spring container
will interpret this as being the same definition (and will usually
consider the last one found).

Another option worth mentioning is register-url-handler which, as the
name implies, automatically registers an URL handler in the running VM.
This allows urls referrencing hdfs resource (by using the hdfs
prefix) to be properly resolved - if the handler is not registered, such
an URL will throw an exception since the VM does not know what hdfs
means.

	[image: [Note]]	Note
	
Since only one URL handler can be registered per VM, at most once, this
option is turned off by default. Due to the reasons mentioned before,
once enabled if it fails, it will log the error but will not throw an
exception. If your hdfs URLs stop working, make sure to investigate
this aspect.

Last but not least a reminder that one can mix and match all these
options to her preference. In general, consider externalizing Hadoop
configuration since it allows easier updates without interfering with
the application configuration. When dealing with multiple, similar
configurations use configuration composition as it tends to keep the
definitions concise, in sync and easy to update.

Table 3.1. hdp:configuration attributes

	Name	Values	Description
	configuration-ref
	Bean Reference
	Reference to existing
Configuration bean

	properties-ref
	Bean Reference
	Reference to existing Properties
bean

	properties-location
	Comma delimited list
	List or Spring Resource
paths

	resources
	Comma delimited list
	List or Spring Resource paths

	file-system-uri
	String
	The HDFS filesystem address. Equivalent to
fs.defaultFS propertys.

	job-tracker-uri
	String
	Job tracker address for HadoopV1. Equivalent
to mapred.job.tracker property.

	rm-manager-uri
	String
	The Yarn Resource manager address for
HadoopV2. Equivalent to yarn.resourcemanager.address property.

Creating a Hadoop Job

Once the Hadoop configuration is taken care of, one needs to actually
submit some work to it. SHDP makes it easy to configure and run Hadoop
jobs whether they are vanilla map-reduce type or streaming. Let us start
with an example:

<hdp:job id="mr-job"
 input-path="/input/" output-path="/ouput/"
 mapper="org.apache.hadoop.examples.WordCount.TokenizerMapper"
 reducer="org.apache.hadoop.examples.WordCount.IntSumReducer"/>

The declaration above creates a typical Hadoop Job: specifies its
input and output, the mapper and the reducer classes. Notice that there
is no reference to the Hadoop configuration above - that’s because, if
not specified, the default naming convention (hadoopConfiguration)
will be used instead. Neither is there to the key or value types - these
two are automatically determined through a best-effort attempt by
analyzing the class information of the mapper and the reducer. Of
course, these settings can be overridden: the former through the
configuration-ref element, the latter through key and value
attributes. There are plenty of options available not shown in the
example (for simplicity) such as the jar (specified directly or by
class), sort or group comparator, the combiner, the partitioner, the
codecs to use or the input/output format just to name a few - they are
supported, just take a look at the SHDP schema (?) or simply trigger
auto-completion (usually CTRL+SPACE) in your IDE; if it supports XML
namespaces and is properly configured it will display the available
elements. Additionally one can extend the default Hadoop configuration
object and add any special properties not available in the namespace or
its backing bean (JobFactoryBean).

It is worth pointing out that per-job specific configurations are
supported by specifying the custom properties directly or referring to
them (more information on the pattern is available
#hadoop:config:properties[here]):

<hdp:job id="mr-job"
 input-path="/input/" output-path="/ouput/"
 mapper="mapper class" reducer="reducer class"
 jar-by-class="class used for jar detection"
 properties-location="classpath:special-job.properties">
 electric=sea
</hdp:job>

<hdp:job> provides additional properties, such as the
#hadoop:generic-options[generic options], however one that is worth
mentioning is jar which allows a job (and its dependencies) to be
loaded entirely from a specified jar. This is useful for isolating jobs
and avoiding classpath and versioning collisions. Note that provisioning
of the jar into the cluster still depends on the target environment -
see the aforementioned #hadoop:generic-options[section] for more info
(such as libs).

Creating a Hadoop Streaming Job

Hadoop
Streaming
job (or in short streaming), is a popular feature of Hadoop as it allows
the creation of Map/Reduce jobs with any executable or script (the
equivalent of using the previous counting words example is to use
cat and
wc commands). While it is
rather easy to start up streaming from the command line, doing so
programatically, such as from a Java environment, can be challenging due
to the various number of parameters (and their ordering) that need to be
parsed. SHDP simplifies such a task - it’s as easy and straightforward
as declaring a job from the previous section; in fact most of the
attributes will be the same:

<hdp:streaming id="streaming"
 input-path="/input/" output-path="/ouput/"
 mapper="${path.cat}" reducer="${path.wc}"/>

Existing users might be wondering how they can pass the command line
arguments (such as -D or -cmdenv). While the former customize the
Hadoop configuration (which has been convered in the previous
#hadoop:config[section]), the latter are supported through the cmd-env
element:

<hdp:streaming id="streaming-env"
 input-path="/input/" output-path="/ouput/"
 mapper="${path.cat}" reducer="${path.wc}">
 <hdp:cmd-env>
 EXAMPLE_DIR=/home/example/dictionaries/
 ...
 </hdp:cmd-env>
</hdp:streaming>

Just like job, streaming supports the
#hadoop:generic-options[generic options]; follow the link for more
information.

Running a Hadoop Job

The jobs, after being created and configured, need to be submitted for
execution to a Hadoop cluster. For non-trivial cases, a coordinating,
workflow solution such as Spring Batch is recommended . However for
basic job submission SHDP provides the job-runner element (backed by
JobRunner class) which submits several jobs sequentially (and waits by
default for their completion):

<hdp:job-runner id="myjob-runner" pre-action="cleanup-script" post-action="export-results" job-ref="myjob" run-at-startup="true"/>

<hdp:job id="myjob" input-path="/input/" output-path="/output/"
 mapper="org.apache.hadoop.examples.WordCount.TokenizerMapper"
 reducer="org.apache.hadoop.examples.WordCount.IntSumReducer" />

Multiple jobs can be specified and even nested if they are not used
outside the runner:

<hdp:job-runner id="myjobs-runner" pre-action="cleanup-script" job-ref="myjob1, myjob2" run-at-startup="true"/>

<hdp:job id="myjob1" ... />
<hdp:streaming id="myjob2" ... />

One or multiple Map-Reduce jobs can be specified through the job
attribute in the order of the execution. The runner will trigger the
execution during the application start-up (notice the run-at-startup
flag which is by default false). Do note that the runner will not run
unless triggered manually or if run-at-startup is set to true.
Additionally the runner (as in fact do all runners in
SHDP) allows one or multiple pre and post actions to be specified to
be executed before and after each run. Typically other runners (such as
other jobs or scripts) can be specified but any JDK Callable can be
passed in. For more information on runners, see the
dedicated chapter.

	[image: [Note]]	Note
	
As the Hadoop job submission and execution (when
wait-for-completion
is
true
) is blocking,
JobRunner
uses a JDK
Executor
to start (or stop) a job. The default implementation,
SyncTaskExecutor
uses the calling thread to execute the job, mimicking the hadoop command
line behaviour. However, as the hadoop jobs are time-consuming, in some
cases this can lead to
application freeze
, preventing normal operations or even application shutdown from
occuring properly. Before going into production, it is recommended to
double-check whether this strategy is suitable or whether a throttled or
pooled implementation is better. One can customize the behaviour through
the
executor-ref
parameter.

The job runner also allows running jobs to be cancelled (or killed) at
shutdown. This applies only to jobs that the runner waits for
(wait-for-completion is true) using a different executor then the
default - that is, using a different thread then the calling one (since
otherwise the calling thread has to wait for the job to finish first
before executing the next task). To customize this behaviour, one should
set the kill-job-at-shutdown attribute to false and/or change the
executor-ref implementation.

Using the Hadoop Job tasklet

For Spring Batch environments, SHDP provides a dedicated tasklet to
execute Hadoop jobs as a step in a Spring Batch workflow. An example
declaration is shown below:

<hdp:job-tasklet id="hadoop-tasklet" job-ref="mr-job" wait-for-completion="true" />

The tasklet above references a Hadoop job definition named "mr-job". By
default, wait-for-completion is true so that the tasklet will wait for
the job to complete when it executes. Setting wait-for-completion to
false will submit the job to the Hadoop cluster but not wait for it to
complete.

Running a Hadoop Tool

It is common for Hadoop utilities and libraries to be started from the
command-line (ex: hadoop jar some.jar). SHDP offers generic support
for such cases provided that the packages in question are built on top
of Hadoop standard infrastructure, namely Tool and ToolRunner classes.
As opposed to the command-line usage, Tool instances benefit from
Spring’s IoC features; they can be parameterized, created and destroyed
on demand and have their properties (such as the Hadoop configuration)
injected.

Consider the typical jar example - invoking a class with some (two in
this case) arguments (notice that the Hadoop configuration properties
are passed as well):

bin/hadoop jar -conf hadoop-site.xml -jt darwin:50020 -Dproperty=value someJar.jar

Since SHDP has first-class support for #hadoop:config[configuring]
Hadoop, the so called generic options aren’t needed any more, even
more so since typically there is only one Hadoop configuration per
application. Through tool-runner element (and its backing ToolRunner
class) one typically just needs to specify the Tool implementation and
its arguments:

<hdp:tool-runner id="someTool" tool-class="org.foo.SomeTool" run-at-startup="true">
 <hdp:arg value="data/in.txt"/>
 <hdp:arg value="data/out.txt"/>

 property=value
</hdp:tool-runner>

Additionally the runner (just like the job runner) allows one or
multiple pre and post actions to be specified to be executed before
and after each run. Typically other runners (such as other jobs or
scripts) can be specified but any JDK Callable can be passed in. Do
note that the runner will not run unless triggered manually or if
run-at-startup is set to true. For more information on runners, see
the dedicated chapter.

The previous example assumes the Tool dependencies (such as its class)
are available in the classpath. If that is not the case, tool-runner
allows a jar to be specified:

<hdp:tool-runner ... jar="myTool.jar">
 ...
</hdp:tool-runner>

The jar is used to instantiate and start the tool - in fact all its
dependencies are loaded from the jar meaning they no longer need to be
part of the classpath. This mechanism provides proper isolation between
tools as each of them might depend on certain libraries with different
versions; rather then adding them all into the same app (which might be
impossible due to versioning conflicts), one can simply point to the
different jars and be on her way. Note that when using a jar, if the
main class (as specified by the
Main-Class
entry) is the target Tool, one can skip specifying the tool as it will
picked up automatically.

Like the rest of the SHDP elements, tool-runner allows the passed
Hadoop configuration (by default hadoopConfiguration but specified in
the example for clarity) to be #hadoop:config:properties[customized]
accordingly; the snippet only highlights the property initialization for
simplicity but more options are available. Since usually the Tool
implementation has a default argument, one can use the tool-class
attribute. However it is possible to refer to another Tool instance or
declare a nested one:

<hdp:tool-runner id="someTool" run-at-startup="true">
 <hdp:tool>
 <bean class="org.foo.AnotherTool" p:input="data/in.txt" p:output="data/out.txt"/>
 </hdp:tool>
</hdp:tool-runner>

This is quite convenient if the Tool class provides setters or richer
constructors. Note that by default the tool-runner does not execute
the Tool until its definition is actually called - this behavior can
be changed through the run-at-startup attribute above.

Replacing Hadoop shell invocations with tool-runner

tool-runner is a nice way for migrating series or shell invocations or
scripts into fully wired, managed Java objects. Consider the following
shell script:

hadoop jar job1.jar -files fullpath:props.properties -Dconfig=config.properties ...
hadoop jar job2.jar arg1 arg2...
...
hadoop jar job10.jar ...

Each job is fully contained in the specified jar, including all the
dependencies (which might conflict with the ones from other jobs).
Additionally each invocation might provide some generic options or
arguments but for the most part all will share the same configuration
(as they will execute against the same cluster).

The script can be fully ported to SHDP, through the tool-runner
element:

<hdp:tool-runner id="job1" tool-class="job1.Tool" jar="job1.jar" files="fullpath:props.properties" properties-location="config.properties"/>
<hdp:tool-runner id="job2" jar="job2.jar">
 <hdp:arg value="arg1"/>
 <hdp:arg value="arg2"/>
</hdp:tool-runner>
<hdp:tool-runner id="job3" jar="job3.jar"/>
...

All the features have been explained in the previous sections but let us
review what happens here. As mentioned before, each tool gets autowired
with the hadoopConfiguration; job1 goes beyond this and uses its own
properties instead. For the first jar, the Tool class is specified,
however the rest assume the jar _Main-Class_es implement the Tool
interface; the namespace will discover them automatically and use them
accordingly. When needed (such as with job1), additional files or libs
are provisioned in the cluster. Same thing with the job arguments.

However more things that go beyond scripting, can be applied to this
configuration - each job can have multiple properties loaded or declared
inlined - not just from the local file system, but also from the
classpath or any url for that matter. In fact, the whole configuration
can be externalized and parameterized (through Spring’s
property
placeholder and/or
Environment
abstraction). Moreover, each job can be ran by itself (through the
JobRunner) or as part of a workflow - either through Spring’s
depends-on or the much more powerful Spring Batch and tool-tasklet.

Using the Hadoop Tool tasklet

For Spring Batch environments, SHDP provides a dedicated tasklet to
execute Hadoop tasks as a step in a Spring Batch workflow. The tasklet
element supports the same configuration options as
#hadoop:tool-runner[tool-runner] except for run-at-startup (which does
not apply for a workflow):

<hdp:tool-tasklet id="tool-tasklet" tool-ref="some-tool" />

Running a Hadoop Jar

SHDP also provides support for executing vanilla Hadoop jars. Thus the
famous
WordCount
example:

bin/hadoop jar hadoop-examples.jar wordcount /wordcount/input /wordcount/output

becomes

<hdp:jar-runner id="wordcount" jar="hadoop-examples.jar" run-at-startup="true">
 <hdp:arg value="wordcount"/>
 <hdp:arg value="/wordcount/input"/>
 <hdp:arg value="/wordcount/output"/>
</hdp:jar-runner>

	[image: [Note]]	Note
	
Just like the
hadoop jar
command, by default the jar support reads the jar’s
Main-Class
if none is specified. This can be customized through the
main-class
attribute.

Additionally the runner (just like the job runner) allows one or
multiple pre and post actions to be specified to be executed before
and after each run. Typically other runners (such as other jobs or
scripts) can be specified but any JDK Callable can be passed in. Do
note that the runner will not run unless triggered manually or if
run-at-startup is set to true. For more information on runners, see
the dedicated chapter.

The jar support provides a nice and easy migration path from jar
invocations from the command-line to SHDP (note that Hadoop
#hadoop:generic-options[generic options] are also supported). Especially
since SHDP enables Hadoop Configuration objects, created during the
jar execution, to automatically inherit the context Hadoop
configuration. In fact, just like other SHDP elements, the jar element
allows #hadoop:config:properties[configurations properties] to be
declared locally, just for the jar run. So for example, if one would use
the following declaration:

<hdp:jar-runner id="wordcount" jar="hadoop-examples.jar" run-at-startup="true">
 <hdp:arg value="wordcount"/>
 ...
 speed=fast
</hdp:jar-runner>

inside the jar code, one could do the following:

assert "fast".equals(new Configuration().get("speed"));

This enabled basic Hadoop jars to use, without changes, the enclosing
application Hadoop configuration.

And while we think it is a useful feature (that is why we added it in
the first place), we strongly recommend using the tool support instead
or migrate to it; there are several reasons for this mainly because
there are no contracts to use, leading to very poor embeddability
caused by:

	
No standard Configuration injection

While SHDP does a best effort to pass the Hadoop configuration to the
jar, there is no guarantee the jar itself does not use a special
initialization mechanism, ignoring the passed properties. After all, a
vanilla Configuration is not very useful so applications tend to
provide custom code to address this.

	
System.exit() calls

Most jar examples out there (including WordCount) assume they are
started from the command line and among other things, call
System.exit, to shut down the JVM, whether the code is succesful or
not. SHDP prevents this from happening (otherwise the entire application
context would shutdown abruptly) but it is a clear sign of poor code
collaboration.

SHDP tries to use sensible defaults to provide the best integration
experience possible but at the end of the day, without any contract in
place, there are no guarantees. Hence using the Tool interface is a
much better alternative.

Using the Hadoop Jar tasklet

Like for the rest of its tasks, for Spring Batch environments, SHDP
provides a dedicated tasklet to execute Hadoop jars as a step in a
Spring Batch workflow. The tasklet element supports the same
configuration options as #hadoop:jar-runner[jar-runner] except for
run-at-startup (which does not apply for a workflow):

<hdp:jar-tasklet id="jar-tasklet" jar="some-jar.jar" />

Configuring the Hadoop DistributedCache

DistributedCache
is a Hadoop facility for distributing application-specific, large,
read-only files (text, archives, jars and so on) efficiently.
Applications specify the files to be cached via urls (hdfs://) using
DistributedCache and the framework will copy the necessary files to
the slave nodes before any tasks for the job are executed on that node.
Its efficiency stems from the fact that the files are only copied once
per job and the ability to cache archives which are un-archived on the
slaves. Note that DistributedCache assumes that the files to be cached
(and specified via hdfs:// urls) are already present on the Hadoop
FileSystem.

SHDP provides first-class configuration for the distributed cache
through its cache element (backed by DistributedCacheFactoryBean
class), allowing files and archives to be easily distributed across
nodes:

<hdp:cache create-symlink="true">
 <hdp:classpath value="/cp/some-library.jar#library.jar" />
 <hdp:cache value="/cache/some-archive.tgz#main-archive" />
 <hdp:cache value="/cache/some-resource.res" />
 <hdp:local value="some-file.txt" />
</hdp:cache>

The definition above registers several resources with the cache (adding
them to the job cache or classpath) and creates symlinks for them. As
described in the DistributedCache
documentation,
the declaration format is (absolute-path#link-name). The link name is
determined by the URI fragment (the text following the # such as
#library.jar or #main-archive above) - if no name is specified, the
cache bean will infer one based on the resource file name. Note that one
does not have to specify the hdfs://node:port prefix as these are
automatically determined based on the configuration wired into the bean;
this prevents environment settings from being hard-coded into the
configuration which becomes portable. Additionally based on the resource
extension, the definition differentiates between archives (.tgz,
.tar.gz, .zip and .tar) which will be uncompressed, and regular
files that are copied as-is. As with the rest of the namespace
declarations, the definition above relies on defaults - since it
requires a Hadoop Configuration and FileSystem objects and none are
specified (through configuration-ref and file-system-ref) it falls
back to the default naming and is wired with the bean named
hadoopConfiguration, creating the FileSystem automatically.

	[image: [Warning]]	Warning
	
Clients setting up a
classpath
in the
DistributedCache
, running on Windows platforms should set the
System
path.separator
property to
:
. Otherwise the classpath will be set incorrectly and will be ignored;
see
HADOOP-9123
bug report for more information.
There are multiple ways to change the path.separator System property
- a quick one being a simple script in Javascript (that uses the Rhino
package bundled with the JDK) that runs at start-up:

<hdp:script language="javascript" run-at-startup="true">
 // set System 'path.separator' to ':' - see HADOOP-9123
 java.lang.System.setProperty("path.separator", ":")
</hdp:script>

Map Reduce Generic Options

The job, streaming and tool all support a subset of
generic
options, specifically archives, files and libs. libs is
probably the most useful as it enriches a job classpath (typically with
some jars) - however the other two allow resources or archives to be
copied throughout the cluster for the job to consume. Whenver faced with
provisioning issues, revisit these options as they can help up
significantly. Note that the fs, jt or conf options are not
supported - these are designed for command-line usage, for bootstrapping
the application. This is no longer needed, as the SHDP offers
first-class support for defining and customizing Hadoop
#hadoop:config[configuration]s.

Chapter 4. Working with the Hadoop File System

A common task in Hadoop is interacting with its file system, whether for
provisioning, adding new files to be processed, parsing results, or
performing cleanup. Hadoop offers several ways to achieve that: one can
use its Java API (namely
FileSystem)
or use the hadoop command line, in particular the file system
shell.
However there is no middle ground, one either has to use the (somewhat
verbose, full of checked exceptions) API or fall back to the command
line, outside the application. SHDP addresses this issue by bridging the
two worlds, exposing both the FileSystem and the fs shell through an
intuitive, easy-to-use Java API. Add your favorite
JVM scripting
language right inside your Spring for Apache Hadoop application and you
have a powerful combination.

Configuring the file-system

The Hadoop file-system, HDFS, can be accessed in various ways - this
section will cover the most popular protocols for interacting with HDFS
and their pros and cons. SHDP does not enforce any specific protocol to
be used - in fact, as described in this section any FileSystem
implementation can be used, allowing even other implementations than
HDFS to be used.

The table below describes the common HDFS APIs in use:

Table 4.1. HDFS APIs

	File System	Comm. Method	Scheme / Prefix	Read / Write	Cross Version
	HDFS
	RPC
	hdfs://
	Read / Write
	Same HDFS version only

	HFTP
	HTTP
	hftp://
	Read only
	Version independent

	WebHDFS
	HTTP (REST)
	webhdfs://
	Read / Write
	Version independent

This chapter focuses on the core file-system protocols supported by
Hadoop. S3 (see the Appendix), FTP and the
rest of the other FileSystem implementations are supported as well -
Spring for Apache Hadoop has no dependency on the underlying system
rather just on the public Hadoop API.

hdfs:// protocol should be familiar to most readers - most docs (and
in fact the previous chapter as well) mention it. It works out of the
box and it’s fairly efficient. However because it is RPC based, it
requires both the client and the Hadoop cluster to share the same
version. Upgrading one without the other causes serialization errors
meaning the client cannot interact with the cluster. As an alternative
one can use hftp:// which is HTTP-based or its more secure brother
hsftp:// (based on SSL) which gives you a version independent protocol
meaning you can use it to interact with clusters with an unknown or
different version than that of the client. hftp is read only (write
operations will fail right away) and it is typically used with disctp
for reading data. webhdfs:// is one of the additions in Hadoop 1.0 and
is a mixture between hdfs and hftp protocol - it provides a
version-independent, read-write, REST-based protocol which means that
you can read and write to/from Hadoop clusters no matter their version.
Furthermore, since webhdfs:// is backed by a REST API, clients in
other languages can use it with minimal effort.

	[image: [Note]]	Note
	
Not all file systems work out of the box. For example WebHDFS needs to
be enabled first in the cluster (through dfs.webhdfs.enabled property,
see this
document
for more information) while the secure hftp, hsftp requires the SSL
configuration (such as certificates) to be specified. More about this
(and how to use hftp/hsftp for proxying) in this
page.

Once the scheme has been decided upon, one can specify it through the
standard Hadoop #hadoop:config[configuration], either through the Hadoop
configuration files or its properties:

<hdp:configuration>
 fs.defaultFS=webhdfs://localhost
 ...
</hdp:configuration>

This instructs Hadoop (and automatically SHDP) what the default, implied
file-system is. In SHDP, one can create additional file-systems
(potentially to connect to other clusters) and specify a different
scheme:

<!-- manually creates the default SHDP file-system named 'hadoopFs' -->
<hdp:file-system uri="webhdfs://localhost"/>

<!-- creates a different FileSystem instance -->
<hdp:file-system id="old-cluster" uri="hftp://old-cluster/"/>

As with the rest of the components, the file systems can be injected
where needed - such as file shell or inside scripts (see the next
section).

Using HDFS Resource Loader

In Spring the ResourceLoader interface is meant to be implemented by
objects that can return (i.e. load) Resource instances.

public interface ResourceLoader {
 Resource getResource(String location);
}

All application contexts implement the ResourceLoader interface, and
therefore all application contexts may be used to obtain Resource
instances.

When you call getResource() on a specific application context, and the
location path specified doesn’t have a specific prefix, you will get
back a Resource type that is appropriate to that particular
application context. For example, assume the following snippet of code
was executed against a ClassPathXmlApplicationContext instance:

Resource template = ctx.getResource("some/resource/path/myTemplate.txt");

What would be returned would be a ClassPathResource; if the same
method was executed against a FileSystemXmlApplicationContext instance,
you’d get back a FileSystemResource. For a WebApplicationContext, you’d
get back a ServletContextResource, and so on.

As such, you can load resources in a fashion appropriate to the
particular application context.

On the other hand, you may also force ClassPathResource to be used,
regardless of the application context type, by specifying the special
classpath: prefix:

Resource template = ctx.getResource("classpath:some/resource/path/myTemplate.txt");

	[image: [Note]]	Note
	
More information about the generic usage of resource loading, check the
Spring Framework Documentation.

Spring Hadoop is adding its own functionality into generic concept of
resource loading. Resource abstraction in Spring has always been a way
to ease resource access in terms of not having a need to know where
there resource is and how it’s accessed. This abstraction also goes
beyond a single resource by allowing to use patterns to access multiple
resources.

Lets first see how HdfsResourceLoader is used manually.

<hdp:file-system />
<hdp:resource-loader id="loader" file-system-ref="hadoopFs" />
<hdp:resource-loader id="loaderWithUser" user="myuser" uri="hdfs://localhost:8020" />

In above configuration we created two beans, one with reference to
existing Hadoop FileSystem bean and one with impersonated user.

// get path '/tmp/file.txt'
Resource resource = loader.getResource("/tmp/file.txt");
// get path '/tmp/file.txt' with user impersonation
Resource resource = loaderWithUser.getResource("/tmp/file.txt");

// get path '/user/<current user>/file.txt'
Resource resource = loader.getResource("file.txt");
// get path '/user/myuser/file.txt'
Resource resource = loaderWithUser.getResource("file.txt");

// get all paths under '/tmp/'
Resource[] resources = loader.getResources("/tmp/*");
// get all paths under '/tmp/' recursively
Resource[] resources = loader.getResources("/tmp/**/*");
// get all paths under '/tmp/' using more complex ant path matching
Resource[] resources = loader.getResources("/tmp/?ile?.txt");

What would be returned in above examples would be instances of
HdfsResources.

If there is a need for Spring Application Context to be aware of
HdfsResourceLoader it needs to be registered using
hdp:resource-loader-registrar namespace tag.

<hdp:file-system />
<hdp:resource-loader file-system-ref="hadoopFs" handle-noprefix="false" />
<hdp:resource-loader-registrar />

	[image: [Note]]	Note
	
On default the HdfsResourceLoader will handle all resource paths without
prefix. Attribute handle-noprefix can be used to control this
behaviour. If this attribute is set to false, non-prefixed resource
uris will be handled by Spring Application Context.

// get 'default.txt' from current user's home directory
Resource[] resources = context.getResources("hdfs:default.txt");
// get all files from hdfs root
Resource[] resources = context.getResources("hdfs:/*");
// let context handle classpath prefix
Resource[] resources = context.getResources("classpath:cfg*properties");

What would be returned in above examples would be instances of
HdfsResources and ClassPathResource for the last one. If requesting
resource paths without existing prefix, this example would fall back
into Spring Application Context. It may be advisable to let
HdfsResourceLoader to handle paths without prefix if your application
doesn’t rely on loading resources from underlying context without
prefixes.

Table 4.2. hdp:resource-loader attributes

	Name	Values	Description
	file-system-ref
	Bean Reference
	Reference to existing Hadoop
FileSystem bean

	use-codecs
	Boolean(defaults to true)
	Indicates whether to use (or
not) the codecs found inside the Hadoop configuration when accessing the
resource input stream.

	user
	String
	The security user (ugi) to use for impersonation at
runtime.

	uri
	String
	The underlying HDFS system URI.

	handle-noprefix
	Boolean(defaults to true)
	Indicates if loader
should handle resource paths without prefix.

Table 4.3. hdp:resource-loader-registrar attributes

	Name	Values	Description
	loader-ref
	Bean Reference
	Reference to existing Hdfs resource
loader bean. Default value is 'hadoopResourceLoader'.

Scripting the Hadoop API

SHDP scripting supports any
JSR-223 (also known as
javax.scripting) compliant scripting engine. Simply add the engine jar
to the classpath and the application should be able to find it. Most
languages (such as Groovy or JRuby) provide JSR-233 support out of the
box; for those that do not see the
scripting project that provides
various adapters.

Since Hadoop is written in Java, accessing its APIs in a native way
provides maximum control and flexibility over the interaction with
Hadoop. This holds true for working with its file systems; in fact all
the other tools that one might use are built upon these. The main entry
point is the org.apache.hadoop.fs.FileSystem abstract class which
provides the foundation of most (if not all) of the actual file system
implementations out there. Whether one is using a local, remote or
distributed store through the FileSystem API she can query and
manipulate the available resources or create new ones. To do so however,
one needs to write Java code, compile the classes and configure them
which is somewhat cumbersome especially when performing simple,
straightforward operations (like copy a file or delete a directory).

JVM scripting languages (such as Groovy,
JRuby, Jython or
Rhino to name just a few) provide a nice
solution to the Java language; they run on the JVM, can interact with
the Java code with no or few changes or restrictions and have a nicer,
simpler, less ceremonial syntax; that is, there is no need to define a
class or a method - simply write the code that you want to execute and
you are done. SHDP combines the two, taking care of the configuration
and the infrastructure so one can interact with the Hadoop environment
from her language of choice.

Let us take a look at a JavaScript example using Rhino (which is part of
JDK 6 or higher, meaning one does not need any extra libraries):

<beans xmlns="http://www.springframework.org/schema/beans" ...>
 <hdp:configuration .../>

 <hdp:script id="inlined-js" language="javascript" run-at-startup="true">
 try {load("nashorn:mozilla_compat.js");} catch (e) {} // for Java 8
 importPackage(java.util);

 name = UUID.randomUUID().toString()
 scriptName = "src/test/resources/test.properties"
 // - FileSystem instance based on 'hadoopConfiguration' bean
 // call FileSystem#copyFromLocal(Path, Path)
 .copyFromLocalFile(scriptName, name)
 // return the file length
 .getLength(name)
 </hdp:script>

</beans>

The script element, part of the SHDP namespace, builds on top of the
scripting support in Spring permitting script declarations to be
evaluated and declared as normal bean definitions. Furthermore it
automatically exposes Hadoop-specific objects, based on the existing
configuration, to the script such as the FileSystem (more on that in
the next section). As one can see, the script is fairly obvious: it
generates a random name (using the UUID class from java.util package)
and then copies a local file into HDFS under the random name. The last
line returns the length of the copied file which becomes the value of
the declaring bean (in this case inlined-js) - note that this might
vary based on the scripting engine used.

	[image: [Note]]	Note
	
The attentive reader might have noticed that the arguments passed to the
FileSystem object are not of type Path but rather String. To avoid the
creation of Path object, SHDP uses a wrapper class SimplerFileSystem
which automatically does the conversion so you don’t have to. For more
information see the implicit variables section.

Note that for inlined scripts, one can use Spring’s property placeholder
configurer to automatically expand variables at runtime. Using one of
the examples seen before:

<beans ... >
 <context:property-placeholder location="classpath:hadoop.properties" />

 <hdp:script language="javascript" run-at-startup="true">
 ...
 tracker=
 ...
 </hdp:script>
</beans>

Notice how the script above relies on the property placeholder to expand
${hd.fs} with the values from hadoop.properties file available in
the classpath.

As you might have noticed, the script element defines a runner for JVM
scripts. And just like the rest of the SHDP runners, it allows one or
multiple pre and post actions to be specified to be executed before
and after each run. Typically other runners (such as other jobs or
scripts) can be specified but any JDK Callable can be passed in. Do
note that the runner will not run unless triggered manually or if
run-at-startup is set to true. For more information on runners, see
the dedicated chapter.

Using scripts

Inlined scripting is quite handy for doing simple operations and coupled
with the property expansion is quite a powerful tool that can handle a
variety of use cases. However when more logic is required or the script
is affected by XML formatting, encoding or syntax restrictions (such as
Jython/Python for which white-spaces are important) one should consider
externalization. That is, rather than declaring the script directly
inside the XML, one can declare it in its own file. And speaking of
Python, consider the variation of the previous example:

<hdp:script location="org/company/basic-script.py" run-at-startup="true"/>

The definition does not bring any surprises but do notice there is no
need to specify the language (as in the case of a inlined declaration)
since script extension (py) already provides that information. Just
for completeness, the basic-script.py looks as follows:

from java.util import UUID
from org.apache.hadoop.fs import Path

print "Home dir is " + str(fs.homeDirectory)
print "Work dir is " + str(fs.workingDirectory)
print "/user exists " + str(fs.exists("/user"))

name = UUID.randomUUID().toString()
scriptName = "src/test/resources/test.properties"
fs.copyFromLocalFile(scriptName, name)
print Path(name).makeQualified(fs)

Scripting implicit variables

To ease the interaction of the script with its enclosing context, SHDP
binds by default the so-called implicit variables. These are:

Table 4.4. Implicit variables

	Name	Type	Description
	cfg
	Configuration
	Hadoop Configuration (relies on hadoopConfiguration bean or singleton type match)

	cl
	ClassLoader
	ClassLoader used for executing the script

	ctx
	ApplicationContext
	Enclosing application context

	ctxRL
	ResourcePatternResolver
	Enclosing application context ResourceLoader

	distcp
	DistCp
	Programmatic access to DistCp

	fs
	FileSystem
	Hadoop File System (relies on 'hadoop-fs' bean or singleton type match,
falls back to creating one based on 'cfg')

	fsh
	FsShell
	File System shell, exposing hadoop 'fs' commands as an API

	hdfsRL
	HdfsResourceLoader
	Hdfs resource loader (relies on 'hadoop-resource-loader' or singleton type
match, falls back to creating one automatically based on 'cfg')

	[image: [Note]]	Note
	
If no Hadoop Configuration can be detected (either by name
hadoopConfiguration or by type), several log warnings will be made and none of the
Hadoop-based variables (namely cfg , distcp , fs , fsh , distcp or hdfsRL) will be bound.

As mentioned in the Description column, the variables are first looked
(either by name or by type) in the application context and, in case they
are missing, created on the spot based on the existing configuration.
Note that it is possible to override or add new variables to the scripts
through the property sub-element that can set values or references to
other beans:

<hdp:script location="org/company/basic-script.js" run-at-startup="true">
 <hdp:property name="foo" value="bar"/>
 <hdp:property name="ref" ref="some-bean"/>
</hdp:script>

Running scripts

The script namespace provides various options to adjust its behaviour
depending on the script content. By default the script is simply
declared - that is, no execution occurs. One however can change that so
that the script gets evaluated at startup (as all the examples in this
section do) through the run-at-startup flag (which is by default
false) or when invoked manually (through the Callable). Similarily, by
default the script gets evaluated on each run. However for scripts that
are expensive and return the same value every time one has various
caching options, so the evaluation occurs only when needed through the
evaluate attribute:

Table 4.5. script attributes

	Name	Values	Description
	run-at-startup
	false(default), true
	Wether the script is
executed at startup or not

	evaluate
	ALWAYS(default), IF_MODIFIED, ONCE
	Wether to
actually evaluate the script when invoked or used a previous value.
ALWAYS means evaluate every time, IF_MODIFIED evaluate if the
backing resource (such as a file) has been modified in the meantime and
ONCE only once.

Using the Scripting tasklet

For Spring Batch environments, SHDP provides a dedicated tasklet to
execute scripts.

<script-tasklet id="script-tasklet">
 <script language="groovy">
 inputPath = "/user/gutenberg/input/word/"
 outputPath = "/user/gutenberg/output/word/"
 if (fsh.test(inputPath)) {
 fsh.rmr(inputPath)
 }
 if (fsh.test(outputPath)) {
 fsh.rmr(outputPath)
 }
 inputFile = "src/main/resources/data/nietzsche-chapter-1.txt"
 fsh.put(inputFile, inputPath)
 </script>
</script-tasklet>

The tasklet above embedds the script as a nested element. You can also
declare a reference to another script definition, using the script-ref
attribute which allows you to externalize the scripting code to an
external resource.

<script-tasklet id="script-tasklet" script-ref="clean-up"/>
 <hdp:script id="clean-up" location="org/company/myapp/clean-up-wordcount.groovy"/>

File System Shell (FsShell)

A handy utility provided by the Hadoop distribution is the file system
shell
which allows UNIX-like commands to be executed against HDFS. One can
check for the existence of files, delete, move, copy directories or
files or set up permissions. However the utility is only available from
the command-line which makes it hard to use from/inside a Java
application. To address this problem, SHDP provides a lightweight, fully
embeddable shell, called FsShell which mimics most of the commands
available from the command line: rather than dealing with System.in or
System.out, one deals with objects.

Let us take a look at using FsShell by building on the previous
scripting examples:

<hdp:script location="org/company/basic-script.groovy" run-at-startup="true"/>

name = UUID.randomUUID().toString()
scriptName = "src/test/resources/test.properties"
fs.copyFromLocalFile(scriptName, name)

// use the shell made available under variable
dir = "script-dir"
if (!fsh.test(dir)) {
 fsh.mkdir(dir); fsh.cp(name, dir); fsh.chmodr(700, dir)
 println "File content is " + fsh.cat(dir + name).toString()
}
println fsh.ls(dir).toString()
fsh.rmr(dir)

As mentioned in the previous section, a FsShell instance is
automatically created and configured for scripts, under the name fsh.
Notice how the entire block relies on the usual commands: test,
mkdir, cp and so on. Their semantics are exactly the same as in the
command-line version however one has access to a native Java API that
returns actual objects (rather than String`s) making it easy to use
them programmatically whether in Java or another language. Furthermore,
the class offers enhanced methods (such as `chmodr which stands for
recursive chmod) and multiple overloaded methods taking advantage of
varargs
so that multiple parameters can be specified. Consult the
API
for more information.

To be as close as possible to the command-line shell, FsShell mimics
even the messages being displayed. Take a look at line 9 which prints
the result of fsh.cat(). The method returns a Collection of Hadoop
Path objects (which one can use programatically). However when
invoking toString on the collection, the same printout as from the
command-line shell is being displayed:

File content is

The same goes for the rest of the methods, such as ls. The same script
in JRuby would look something like this:

require 'java'
name = java.util.UUID.randomUUID().to_s
scriptName = "src/test/resources/test.properties"
$fs.copyFromLocalFile(scriptName, name)

use the shell
dir = "script-dir/"
...
print $fsh.ls(dir).to_s

which prints out something like this:

drwx------ - user supergroup 0 2012-01-26 14:08 /user/user/script-dir
-rw-r--r-- 3 user supergroup 344 2012-01-26 14:08 /user/user/script-dir/520cf2f6-a0b6-427e-a232-2d5426c2bc4e

As you can see, not only can you reuse the existing tools and commands
with Hadoop inside SHDP, but you can also code against them in various
scripting languages. And as you might have noticed, there is no special
configuration required - this is automatically inferred from the
enclosing application context.

	[image: [Note]]	Note
	
The careful reader might have noticed that besides the syntax, there are
some minor differences in how the various languages interact with the
java objects. For example the automatic toString call called in Java for doing automatic String
conversion is not necessarily supported (hence the to_s in Ruby or str
in Python). This is to be expected as each language has its own
semantics - for the most part these are easy to pick up but do pay
attention to details.

DistCp API

Similar to the FsShell, SHDP provides a lightweight, fully embeddable
DistCp
version that builds on top of the distcp from the Hadoop distro. The
semantics and configuration options are the same however, one can use it
from within a Java application without having to use the command-line.
See the
API
for more information:

<hdp:script language="groovy">distcp.copy("${distcp.src}", "${distcp.dst}")</hdp:script>

The bean above triggers a distributed copy relying again on Spring’s
property placeholder variable expansion for its source and destination.

Chapter 5. Writing and reading data using the Hadoop File System

The Store sub-project of Spring for Apache Hadoop provides abstractions
for writing and reading various types of data residing in HDFS. We
currently support different file types either via our own store
accessors or by using the Dataset support in Kite SDK.

Currently, the Store sub-project doesn’t have an XML namespace or
javaconfig based configuration classes as it’s considered to be a
foundational library. However, this may change in future releases.

Store Abstraction

Native store abstractions provide various writer and reader interfaces
so that the end user don’t have to worry about the underlying
implementation actually doing the work on files in HDFS. Implementations
are usually strongly typed and provides constructors and setters for
additional setup to work with naming, compression codecs and everything
else defining the behaviour. Interfaces are meant to be used from
integration components which don’t need to know the internal workings of
writers and readers.

Writing Data

Main interface writing into a store is a DataWriter which have one
method write which simply writes an entity and the backing
implementation will handle the rest.

public interface DataWriter<T> {
 void write(T entity) throws IOException;
}

The DataStoreWriter interface adds methods to close and flush a writer.
Some of the writers have a property to close a stream after an idle time
has been reached but generally this interface is meant for programmatic
control of these operations.

public interface DataStoreWriter<T> extends DataWriter<T>, Flushable, Closeable {
}

File Naming

Different file naming strategies are used to automatically determine the
name of a file to be used. Writers without additional naming
configuration will usually use a given base path as is. As soon as any
type of a strategy is configured, given base path is considered to be a
base directory and the name of the file is resolved by file naming
strategies.

For example, if defined base path is “/tmp/path” and the
StaticFileNamingStrategy with “data” parameter is used then the actual
file path resolved would be “/tmp/path/data”.

Path path = new Path("/tmp/path");
Configuration config = new Configuration();
TextFileWriter writer = new TextFileWriter(config, path, null);
StaticFileNamingStrategy fileNamingStrategy = new StaticFileNamingStrategy("data")
writer.setFileNamingStrategy(fileNamingStrategy);

At first look this may feel a little complicated, but it will make sense
after more file naming strategies are added. These will also provide
facilities for using writers in parallel, or for a re-launched writer to
be able to create a new file based on already existing files in the
directry. For example, RollingFileNamingStrategy will add a simple
increasing value to a file name and will try to initialize itself with
the correct position.

Built-in strategies currently supported are StaticFileNamingStrategy,
RollingFileNamingStrategy, UuidFileNamingStrategy and
CodecFileNamingStrategy. ChainedFileNamingStrategy can be used to chain
multiple strategies together where each individual strategy will provide
its own part.

File Rollover

File rolling strategy is used to determine a condition in a writer when
a current stream should be automatically closed and the next file should
be opened. This is usually done together with RollingFileNamingStrategy
to rollover when a certain file size limit has been reached.

Currently, only one strategy SizeRolloverStrategy is supported.

Partitioning

Partitioning is a concept of choosing a target file on demand either
based on content to be written or any other information available to a
writer at the time of the write operation. While it would be perfectly
alright to use multiple writers manually, the framework already does all
the heavy lifting around partitioning. We work through interfaces and
provide a generic default implementation still allowing to plug a
customized version if there’s a need for it.

PartitionStrategy is a strategy interface defining PartitionResolver and
PartitionKeyResolver.

public interface PartitionStrategy<T,K> {
 PartitionResolver<K> getPartitionResolver();
 PartitionKeyResolver<T, K> getPartitionKeyResolver();
}

PartitionResolver is an interface used to resolve arbitrary partition
keys into a path. We don’t force any specific partition key type in the
interface level itself but usually the implementation needs to be aware
of its type.

public interface PartitionResolver<K> {
 Path resolvePath(K partitionKey);
}

PartitionKeyResolver is an interface which is responsible for creating a
partition key from an entity. This is needed because writer interfaces
allow us to write entities without an explicit partition key.

public interface PartitionKeyResolver<T, K> {
 K resolvePartitionKey(T entity);
}

PartitionDataStoreWriter is an extension of DataStoreWriter adding a
method to write an entity with a partition key. In this context the
partition key is something what the partition strategy is able to use.

public interface PartitionDataStoreWriter<T,K> extends DataStoreWriter<T> {
 void write(T entity, K partitionKey) throws IOException;
}

DefaultPartitionStrategy

DefaultPartitionStrategy is a generic default implementation meant to be
used together with an expression using Spring’s SpEL expression
language. PartitionResolver used in DefaultPartitionStrategy expects
partition key to be a type of Map<String,Object> and partition key
created by PartitionKeyResolver is a DefaultPartitionKey which itself is
a Map<String,Object>.

In order to make it easy to work with SpEL and partitioning, map values
can be directly accessed with keys and additional partitioning methods
has been registered.

Partition Path Expression

SpEL expression is evaluated against a partition key passed into a HDFS
writer.

Accessing Properties

If partition key is a type of Map any property given to a SpEL
expression is automatically resolved from a map.

Custom Methods

In addition to normal SpEL functionality, a few custom methods have been
added to make it easier to build partition paths. These custom methods
can be used to work with normal partition concepts like date formatting,
lists, ranges and hashes.

path

path(String... paths)

You can concatenate paths together with a / delimiter. This method can
be used to make the expression less verbose than using a native SpEL
functionality to combine path parts together. To create a path
part1/part2, expression 'part1' + '/' + 'part2' is equivalent to
path('part1','part2').

Parameters

paths.
Any number of path parts

Return Value

Concatenated value of paths delimited with /.

dateFormat

dateFormat(String pattern)
dateFormat(String pattern, Long epoch)
dateFormat(String pattern, Date date)
dateFormat(String pattern, String datestring)
dateFormat(String pattern, String datestring, String dateformat)

Creates a path using date formatting. Internally this method delegates
to SimpleDateFormat and needs a Date and a pattern.

Method signature with three parameters can be used to create a custom
Date object which is then passed to SimpleDateFormat conversion using a
dateformat pattern. This is useful in use cases where partition should
be based on a date or time string found from a payload content itself.
Default dateformat pattern if omitted is yyyy-MM-dd.

Parameters

pattern.
Pattern compatible with SimpleDateFormat to produce a final output.

epoch.
Timestamp as Long which is converted into a Date.

date.
A Date to be formatted.

dateformat.
Secondary pattern to convert datestring into a Date.

datestring.
Date as a String

Return Value

A path part representation which can be a simple file or directory name
or a directory structure.

list

list(Object source, List<List<Object>> lists)

Creates a partition path part by matching a source against a lists
denoted by lists.

Lets assume that data is being written and it’s possible to extract an
appid from the content. We can automatically do a list based partition
by using a partition method
list(appid,\{\{'1TO3','APP1','APP2','APP3'},\{'4TO6','APP4','APP5','APP6'}}).
This method would create three partitions, 1TO3_list, 4TO6_list and
list. The latter is used if no match is found from partition lists
passed to lists.

Parameters

source.
An Object to be matched against lists.

lists.
A definition of list of lists.

Return Value

A path part prefixed with a matched key i.e. XXX_list or list if no
match.

range

range(Object source, List<Object> list)

Creates a partition path part by matching a source against a list
denoted by list using a simple binary search.

The partition method takes source as first argument and a list as the
second argument. Behind the scenes this is using the JVM’s binarySearch
which works on an Object level so we can pass in anything. Remember that
meaningful range match only works if passed in Object and types in list
are of same type like Integer. Range is defined by a binarySearch itself
so mostly it is to match against an upper bound except the last range in
a list. Having a list of \{1000,3000,5000} means that everything above
3000 will be matched with 5000. If that is an issue then simply adding
Integer.MAX_VALUE as last range would overflow everything above 5000
into a new partition. Created partitions would then be 1000_range,
3000_range and 5000_range.

Parameters

source.
An Object to be matched against list.

list.
A definition of list.

Return Value

A path part prefixed with a matched key i.e. XXX_range.

hash

hash(Object source, int bucketcount)

Creates a partition path part by calculating hashkey using source`s
hashCode and bucketcount. Using a partition method hash(timestamp,2)
would then create partitions named 0_hash, 1_hash and 2_hash.
Number suffixed with hash is simply calculated using _Object.hashCode()
% bucketcount.

Parameters

source.
An Object which hashCode will be used.

bucketcount.
A number of buckets

Return Value

A path part prefixed with a hash key i.e. XXX_hash.

Creating a Custom Partition Strategy

Creating a custom partition strategy is as easy as just implementing
needed interfaces. Custom strategy may be needed in use cases where it
is just not feasible to use SpEL expressions. This will then give total
flexibility to implement partitioning as needed.

Below sample demonstrates how a simple customer id could be used as a
base for partitioning.

public class CustomerPartitionStrategy implements PartitionStrategy<String, String> {

 CustomerPartitionResolver partitionResolver = new CustomerPartitionResolver();
 CustomerPartitionKeyResolver keyResolver = new CustomerPartitionKeyResolver();

 @Override
 public PartitionResolver<String> getPartitionResolver() {
 return partitionResolver;
 }

 @Override
 public PartitionKeyResolver<String, String> getPartitionKeyResolver() {
 return keyResolver;
 }
}

public class CustomerPartitionResolver implements PartitionResolver<String> {

 @Override
 public Path resolvePath(String partitionKey) {
 return new Path(partitionKey);
 }
}

public class CustomerPartitionKeyResolver implements PartitionKeyResolver<String, String> {

 @Override
 public String resolvePartitionKey(String entity) {
 if (entity.startsWith("customer1")) {
 return "customer1";
 } else if (entity.startsWith("customer2")) {
 return "customer2";
 } else if (entity.startsWith("customer3")) {
 return "customer3";
 }
 return null;
 }
}

Writer Implementations

We provide a number of writer implementations to be used based on the
type of file to write.

	
TextFileWriter.
an implementation meant to write a simple text data where entities are
separated by a delimiter. Simple example for this is a text file with
line terminations.

	
DelimitedTextFileWriter.
an extension atop of TextFileWriter where written entity itself is also
delimited. Simple example for this is a csv file.

	
TextSequenceFileWriter.
a similar implementation to TextFileWriter except that backing file is a
Hadoop’s SequenceFile.

	
PartitionTextFileWriter.
wraps multiple TextFileWriters providing automatic partitioning
functionality.

Reading Data

Main interface reading from a store is a DataReader.

public interface DataReader<T> {
 T read() throws IOException;
}

DataStoreReader is an extension of DataReader providing close method for
a reader.

public interface DataStoreReader<T> extends DataReader<T>, Closeable {
}

Input Splits

Some of the HDFS storage and file formats can be read using an input
splits instead of reading a whole file at once. This is a fundamental
concept in Hadoop’s MapReduce to parallelize data processing. Instead of
reading a lot of small files, which would be a source of a Hadoop’s
“small file problem”, one large file can be used. However one need to
remember that not all file formats support input splitting especially
when compression is used.

Support for reading input split is denoted via a Split interface which
simply mark starting and ending positions.

public interface Split {
 long getStart();
 long getLength();
 long getEnd();
}

Interface Splitter defines an contract how Split’s are calculate from a
given path.

public interface Splitter {
 List<Split> getSplits(Path path) throws IOException;
}

We provide few generic Splitter implementations to construct Split’s.

StaticLengthSplitter is used to split input file with a given length.

StaticBlockSplitter is used to split input by used HDFS file block size.
It’s also possible to split further down the road within the blocks
itself.

SlopBlockSplitter is an extension of StaticBlockSplitter which tries to
estimate how much a split can overflow to a next block to taggle
unnecessary overhead if last file block is very small compared to an
actual split size.

Reader Implementations

We provide a number of reader implementations to be used based on the
type of file to read.

	
TextFileReader.
used to read data written by a TextFileWriter.

	
DelimitedTextFileReader.
used to read data writte by a DelimitedTextFileWriter.

	
TextSequenceFileReader.
used to read data written by a TextSequenceFileWriter.

Using Codecs

Supported compression codecs are denoted via an interface CodecInfo
which simply defines if codec supports splitting, what is it’s fully
qualified java class and what is its default file suffix.

public interface CodecInfo {
 boolean isSplittable();
 String getCodecClass();
 String getDefaultSuffix();
}

Codecs provides an enum for easy access to supported codecs.

	
GZIP - org.apache.hadoop.io.compress.GzipCodec

	
SNAPPY - org.apache.hadoop.io.compress.SnappyCodec

	
BZIP2 - org.apache.hadoop.io.compress.BZip2Codec

	
LZO - com.hadoop.compression.lzo.LzoCodec

	
LZOP - com.hadoop.compression.lzo.LzopCodec

	[image: [Note]]	Note
	
Lzo based compression codecs doesn’t exist in maven dependencies due to
licensing restrictions and need for native libraries. Order to use it
add codec classes to classpath and its native libs using
java.library.path.

Persisting POJO datasets using Kite SDK

One common requirement is to persist a large number of POJOs in
serialized form using HDFS. The Kite SDK project
provides a Kite Data Module that provides an API for working with
datasets stored in HDFS. We are using this functionality and provide a
some simple helper classes to aid in configuration and use in a Spring
environment.

Data Formats

The Kite SDK project provides support for writing data using both the
Avro and Parquet data
formats. The data format you choose to use influences the data types you
can use in your POJO classes. We’ll discuss the basics of the Java type
mapping for the two data formats but we recommend that you consult each
project’s documentation for additional details.

	[image: [Note]]	Note
	
Currently, you can’t provide your own schema. This is something that we
are considering changing in upcomming releases. We are also planning to
provide better mapping support in line with the support we currently
provide for NoSQL stores like MongoDB.

Using Avro

When using Avro as the data format the schema generation is based on
reflection of thet POJO class used. Primitive data types and their
corresponding wrapper classes are mapped to the corresponding Avro data
type. More complex types, as well as the POJO itself, are mapped to a
record type consisting of one or more fields.

The table below shows the mapping from some common types:

Table 5.1. Some common Java to Avro data types mapping

	Java type	Avro type	Comment
	String
	string
	[multiblock cell omitted]

	int / Integer
	int
	32-bit signed integer

	long / Long
	long
	64-bit signed integer

	float / Float
	float
	32-bit floating point

	double / Double
	double
	64-bit floating point

	boolean / Boolean
	boolean
	[multiblock cell omitted]

	byte[]
	bytes
	byte array

	java.util.Date
	record
	[multiblock cell omitted]

Using Parquet

When using Parquet as the data format the schema generation is based on
reflection of thet POJO class used. The POJO class must be a proper
JavaBean and not have any nested types. We only support primitive data
types and their corresponding wrapper classes plus byte arrays. We do
rely on the Avro-to-Parquet mapping support that the Kite SDK uses, so
the schema will be generated by Avro.

	[image: [Note]]	Note
	
The Parquet support we currently povide is considered experimental. We
are planning to relax a lot of the restrictions on the POJO class in
upcoming releases.

The table below shows the mapping from some common types:

Table 5.2. Some common Java to Parquet data types mapping

	Java type	Parquet type	Comment
	String
	BINARY/UTF8
	[multiblock cell omitted]

	int / Integer
	INT32
	32-bit signed integer

	long / Long
	INT64
	64-bit signed integer

	float / Float
	FLOAT
	32-bit floating point

	double / Double
	DOUBLE
	64-bit floating point

	boolean / Boolean
	BOOLEAN
	[multiblock cell omitted]

	byte[]
	BINARY/BYTE_ARRAY
	byte array

Configuring the dataset support

In order to use the dataset support you need to configure the following
classes:

	
DatasetRepositoryFactory that needs a
org.apache.hadoop.conf.Configuration so we know how to connect to HDFS
and a base path where the data will be written.

	
DatasetDefinition that defines the dataset you are writing.
Configuration options include the POJO class that is being stored, the
type of format to use (Avro or Parquet). You can also specify whether to
allow null values for all fields (default is false) and an optional
partition strategy to use for the dataset (see below for partitioning).

The following example shows a simple configuration class:

@Configuration
@ImportResource("hadoop-context.xml")
public class DatasetConfig {

 private @Autowired org.apache.hadoop.conf.Configuration hadoopConfiguration;

 @Bean
 public DatasetRepositoryFactory datasetRepositoryFactory() {
 DatasetRepositoryFactory datasetRepositoryFactory = new DatasetRepositoryFactory();
 datasetRepositoryFactory.setConf(hadoopConfiguration);
 datasetRepositoryFactory.setBasePath("/user/spring");
 return datasetRepositoryFactory;
 }

 @Bean
 public DatasetDefinition fileInfoDatasetDefinition() {
 DatasetDefinition definition = new DatasetDefinition();
 definition.setFormat(Formats.AVRO.getName());
 definition.setTargetClass(FileInfo.class);
 definition.setAllowNullValues(false);
 return definition;
 }
}

Writing datasets

To write datasets to Hadoop you should use either the
AvroPojoDatasetStoreWriter or the ParquetDatasetStoreWriter depending on
the data format you want to use.

	[image: [Tip]]	Tip
	
To mark your fields as nullable use the @Nullable annotation
(org.apache.avro.reflect.Nullable). This will result in the schema
defining your field as a union of null and your datatype.

We are using a FileInfo POJO that we have defined to hold some
information based on the files we read from our local file system. The
dataset will be stored in a directory that is the name of the class
using lowercase, so in this case it would be fileinfo. This directory
is placed inside the basePath specified in the configuration of the
DatasetRepositoryFactory.:

package org.springframework.samples.hadoop.dataset;

import org.apache.avro.reflect.Nullable;

public class FileInfo {
 private String name;
 private @Nullable String path;
 private long size;
 private long modified;

 public FileInfo(String name, String path, long size, long modified) {
 this.name = name;
 this.path = path;
 this.size = size;
 this.modified = modified;
 }

 public FileInfo() {
 }

 public String getName() {
 return name;
 }

 public String getPath() {
 return path;
 }

 public long getSize() {
 return size;
 }

 public long getModified() {
 return modified;
 }
}

To create a writer add the following bean definition to your
configuration class:

 @Bean
 public DataStoreWriter<FileInfo> dataStoreWriter() {
 return new AvroPojoDatasetStoreWriter<FileInfo>(FileInfo.class,
 datasetRepositoryFactory(), fileInfoDatasetDefinition());
 }

Next, have your class use the writer bean:

 private DataStoreWriter<FileInfo> writer;

 @Autowired
 public void setDataStoreWriter(DataStoreWriter dataStoreWriter) {
 this.writer = dataStoreWriter;
 }

Now we can use the writer, it will be opened automatically once we start
writing to it:

 FileInfo fileInfo = new FileInfo(file.getName(),
 file.getParent(), (int)file.length(), file.lastModified());
 writer.write(fileInfo);

Once we are done writing we should close the writer:

 try {
 writer.close();
 } catch (IOException e) {
 throw new StoreException("Error closing FileInfo", e);
 }

We should now have dataset containing all the FileInfo entries in a
/user/spring/demo/fileinfo directory:

$ hdfs dfs -ls /user/spring/*
Found 2 items
drwxr-xr-x - spring supergroup 0 2014-06-09 17:09 /user/spring/fileinfo/.metadata
-rw-r--r-- 3 spring supergroup 13824695 2014-06-09 17:10 /user/spring/fileinfo/6876f250-010a-404a-b8c8-0ce1ee759206.avro

The .metadata directory contains dataset information including the
Avro schema:

$ hdfs dfs -cat /user/spring/fileinfo/.metadata/schema.avsc
{
 "type" : "record",
 "name" : "FileInfo",
 "namespace" : "org.springframework.samples.hadoop.dataset",
 "fields" : [{
 "name" : "name",
 "type" : "string"
 }, {
 "name" : "path",
 "type" : ["null", "string"],
 "default" : null
 }, {
 "name" : "size",
 "type" : "long"
 }, {
 "name" : "modified",
 "type" : "long"
 }]
}

Reading datasets

To read datasets to Hadoop we use the DatasetTemplate class.

To create a DatasetTemplate add the following bean definition to your
configuration class:

 @Bean
 public DatasetOperations datasetOperations() {
 DatasetTemplate datasetOperations = new DatasetTemplate();
 datasetOperations.setDatasetRepositoryFactory(datasetRepositoryFactory());
 return datasetOperations;
 }

Next, have your class use the DatasetTemplate:

 private DatasetOperations datasetOperations;

 @Autowired
 public void setDatasetOperations(DatasetOperations datasetOperations) {
 this.datasetOperations = datasetOperations;
 }

Now we can read and count the entries using a RecordCallback callback
interface that gets called once per retrieved record:

 final AtomicLong count = new AtomicLong();
 datasetOperations.read(FileInfo.class, new RecordCallback<FileInfo>() {
 @Override
 public void doInRecord(FileInfo record) {
 count.getAndIncrement();
 }
 });
 System.out.println("File count: " + count.get());

Partitioning datasets

To create datasets that are partitioned on one or more data fields we
use the PartitionStrategy.Builder class that the Kite SDK project
provides.

DatasetDefinition definition = new DatasetDefinition();
definition.setPartitionStrategy(new PartitionStrategy.Builder().year("modified").build());

This option lets you specify one or more paths that will be used to
partition the files that the data is written to based on the content of
the data. You can use any of the FieldPartitioners that are available
for the Kite SDK project. We simply use what is specified to create
the corresponding partition strategy. The following partitioning
functions are available:

	
year, month, day, hour, minute creates partitions based on the value
of a timestamp and creates directories named like "YEAR=2014" (works
well with fields of datatype long)

	
specify function plus field name like:

year("timestamp")

	
optionally, specify a partition name to replace the default one:

year("timestamp", "YY")

	
dateformat creates partitions based on a timestamp and a dateformat
expression provided - creates directories based on the name provided
(works well with fields of datatype long)

	
specify function plus field name, a name for the partition and the
date format like:

dateFormat("timestamp", "Y-M", "yyyyMM")

	
range creates partitions based on a field value and the upper bounds
for each bucket that is specified (works well with fields of datatype
int and string)

	
specify function plus field name and the upper bounds for each
partition bucket like:

range("age", 20, 50, 80, Integer.MAX_VALUE)

	
identity creates partitions based on the exact value of a field
(works well with fields of datatype string, long and int)

	
specify function plus field name, a name for the partition, the type
of the field (String or Integer) and the number of values/buckets for
the partition like:

identity("region", "R", String.class, 10)

	
hash creates partitions based on the hash calculated from the value
of a field divided into a number of buckets that is specified (works
well with all data types)

	
specify function plus field name and number of buckets like:

hash("lastname", 10)

Multiple expressions can be specified by simply chaining them like:

identity("region", "R", String.class, 10).year("timestamp").month("timestamp")

Chapter 6. Working with HBase

SHDP provides basic configuration for HBase
through the hbase-configuration namespace element (or its backing
HbaseConfigurationFactoryBean).

<!-- default bean id is 'hbaseConfiguration' that uses the existing 'hadoopCconfiguration' object -->
<hdp:hbase-configuration configuration-ref="hadoopCconfiguration" />

The above declaration does more than easily create an HBase
configuration object; it will also manage the backing HBase connections:
when the application context shuts down, so will any HBase connections
opened - this behavior can be adjusted through the stop-proxy and
delete-connection attributes:

<!-- delete associated connections but do not stop the proxies -->
<hdp:hbase-configuration stop-proxy="false" delete-connection="true">
 foo=bar
 property=value
</hdp:hbase-configuration>

Additionally, one can specify the ZooKeeper port used by the HBase
server - this is especially useful when connecting to a remote instance
(note one can fully configure HBase including the ZooKeeper host and
port through properties; the attributes here act as shortcuts for easier
declaration):

<!-- specify ZooKeeper host/port -->
<hdp:hbase-configuration zk-quorum="${hbase.host}" zk-port="${hbase.port}">

Notice that like with the other elements, one can specify additional
properties specific to this configuration. In fact hbase-configuration
provides the same properties configuration knobs as
#hadoop:config:properties[hadoop configuration]:

<hdp:hbase-configuration properties-ref="some-props-bean" properties-location="classpath:/conf/testing/hbase.properties"/>

Data Access Object (DAO) Support

One of the most popular and powerful feature in Spring Framework is the
Data Access Object (or DAO)
support.
It makes dealing with data access technologies easy and consistent
allowing easy switch or interconnection of the aforementioned persistent
stores with minimal friction (no worrying about catching exceptions,
writing boiler-plate code or handling resource acquisition and
disposal). Rather than reiterating here the value proposal of the DAO
support, we recommend the DAO
section
in the Spring Framework reference documentation

SHDP provides the same functionality for Apache HBase through its
org.springframework.data.hadoop.hbase package: an HbaseTemplate
along with several callbacks such as TableCallback, RowMapper and
ResultsExtractor that remove the low-level, tedious details for
finding the HBase table, run the query, prepare the scanner, analyze the
results then clean everything up, letting the developer focus on her
actual job (users familiar with Spring should find the class/method
names quite familiar).

At the core of the DAO support lies HbaseTemplate - a high-level
abstraction for interacting with HBase. The template requires an HBase
configuration, once it’s set, the template is thread-safe
and can be reused across multiple instances at the same time:

// default HBase configuration
<hdp:hbase-configuration/>

// wire hbase configuration (using default name 'hbaseConfiguration') into the template
<bean id="htemplate" class="org.springframework.data.hadoop.hbase.HbaseTemplate" p:configuration-ref="hbaseConfiguration"/>

The template provides generic callbacks, for executing logic against the
tables or doing result or row extraction, but also utility methods (the
so-called _one-liner_s) for common operations. Below are some examples
of how the template usage looks like:

// writing to 'MyTable'
template.execute("MyTable", new TableCallback<Object>() {
 @Override
 public Object doInTable(HTable table) throws Throwable {
 Put p = new Put(Bytes.toBytes("SomeRow"));
 p.add(Bytes.toBytes("SomeColumn"), Bytes.toBytes("SomeQualifier"), Bytes.toBytes("AValue"));
 table.put(p);
 return null;
 }
});

// read each row from 'MyTable'
List<String> rows = template.find("MyTable", "SomeColumn", new RowMapper<String>() {
 @Override
 public String mapRow(Result result, int rowNum) throws Exception {
 return result.toString();
 }
}));

The first snippet showcases the generic TableCallback - the most
generic of the callbacks, it does the table lookup and resource cleanup
so that the user code does not have to. Notice the callback signature -
any exception thrown by the HBase API is automatically caught, converted
to Spring’s
DAO
exceptions and resource clean-up applied transparently. The second
example, displays the dedicated lookup methods - in this case find
which, as the name implies, finds all the rows matching the given
criteria and allows user code to be executed against each of them
(typically for doing some sort of type conversion or mapping). If the
entire result is required, then one can use ResultsExtractor instead
of RowMapper.

Besides the template, the package offers support for automatically
binding HBase table to the current thread through HbaseInterceptor and
HbaseSynchronizationManager. That is, each class that performs DAO
operations on HBase can be
wrapped
by HbaseInterceptor so that each table in use, once found, is bound to
the thread so any subsequent call to it avoids the lookup. Once the call
ends, the table is automatically closed so there is no leakage between
requests. Please refer to the Javadocs for more information.

Chapter 7. Hive integration

When working with http://hive.apache.org from a Java environment, one
can choose between the Thrift client or using
the Hive JDBC-like
driver.
Both have their pros and cons but no matter the choice, Spring and SHDP
support both of them.

Starting a Hive Server

SHDP provides a dedicated namespace element for starting a Hive server
as a Thrift service (only when using Hive 0.8 or higher). Simply specify
the host, the port (the defaults are localhost and 10000
respectively) and you’re good to go:

<!-- by default, the definition name is 'hive-server' -->
<hdp:hive-server host="some-other-host" port="10001" />

If needed the Hadoop configuration can be passed in or additional
properties specified. In fact hiver-server provides the same
properties configuration knobs as #hadoop:config:properties[hadoop
configuration]:

<hdp:hive-server host="some-other-host" port="10001" properties-location="classpath:hive-dev.properties" configuration-ref="hadoopConfiguration">
 someproperty=somevalue
 hive.exec.scratchdir=/tmp/mydir
</hdp:hive-server>

The Hive server is bound to the enclosing application context
life-cycle, that is it will automatically startup and shutdown
along-side the application context.

Using the Hive Thrift Client

Similar to the server, SHDP provides a dedicated namespace element for
configuring a Hive client (that is Hive accessing a server node through
the Thrift). Likewise, simply specify the host, the port (the defaults
are localhost and 10000 respectively) and you’re done:

<!-- by default, the definition name is 'hiveClientFactory' -->
<hdp:hive-client-factory host="some-other-host" port="10001" />

Note that since Thrift clients are not thread-safe,
hive-client-factory returns a factory (named
org.springframework.data.hadoop.hive.HiveClientFactory) for creating
HiveClient new instances for each invocation. Furthermore, the client
definition also allows Hive scripts (either declared inlined or
externally) to be executed during initialization, once the client
connects; this is quite useful for doing Hive specific initialization:

<hive-client-factory host="some-host" port="some-port" xmlns="http://www.springframework.org/schema/hadoop">
 <hdp:script>
 DROP TABLE IF EXITS testHiveBatchTable;
 CREATE TABLE testHiveBatchTable (key int, value string);
 </hdp:script>
 <hdp:script location="classpath:org/company/hive/script.q">
 <arguments>ignore-case=true</arguments>
 </hdp:script>
</hive-client-factory>

In the example above, two scripts are executed each time a new Hive
client is created (if the scripts need to be executed only once consider
using a tasklet) by the factory. The first script is defined inline
while the second is read from the classpath and passed one parameter.
For more information on using parameters (or variables) in Hive scripts,
see
this
section in the Hive manual.

Using the Hive JDBC Client

Another attractive option for accessing Hive is through its JDBC driver.
This exposes Hive through the
JDBC API
meaning one can use the standard API or its derived utilities to
interact with Hive, such as the rich
JDBC
support in Spring Framework.

	[image: [Warning]]	Warning
	
Note that the JDBC driver is a work-in-progress and not all the JDBC
features are available (and probably never will since Hive cannot
support all of them as it is not the typical relational database). Do
read the official documentation and examples.

SHDP does not offer any dedicated support for the JDBC integration -
Spring Framework itself provides the needed tools; simply configure Hive
as you would with any other JDBC Driver:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:c="http://www.springframework.org/schema/c"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context.xsd">

 <!-- basic Hive driver bean -->
 <bean id="hive-driver" class="org.apache.hadoop.hive.jdbc.HiveDriver"/>

 <!-- wrapping a basic datasource around the driver -->
 <!-- notice the 'c:' namespace (available in Spring 3.1+) for inlining constructor arguments,
 in this case the url (default is 'jdbc:hive://localhost:10000/default') -->
 <bean id="hive-ds" class="org.springframework.jdbc.datasource.SimpleDriverDataSource"
 c:driver-ref="hive-driver" c:url="${hive.url}"/>

 <!-- standard JdbcTemplate declaration -->
 <bean id="template" class="org.springframework.jdbc.core.JdbcTemplate" c:data-source-ref="hive-ds"/>

 <context:property-placeholder location="hive.properties"/>
</beans>

And that is it! Following the example above, one can use the hive-ds
DataSource bean to manually get a hold of Connections or better yet, use
Spring’s
JdbcTemplate
as in the example above.

Running a Hive script or query

Like the rest of the Spring Hadoop components, a runner is provided out
of the box for executing Hive scripts, either inlined or from various
locations through hive-runner element:

<hdp:hive-runner id="hiveRunner" run-at-startup="true">
 <hdp:script>
 DROP TABLE IF EXITS testHiveBatchTable;
 CREATE TABLE testHiveBatchTable (key int, value string);
 </hdp:script>
 <hdp:script location="hive-scripts/script.q"/>
</hdp:hive-runner>

The runner will trigger the execution during the application start-up
(notice the run-at-startup flag which is by default false). Do note
that the runner will not run unless triggered manually or if
run-at-startup is set to true. Additionally the runner (as in fact
do all runners in SHDP) allows one or multiple pre and
post actions to be specified to be executed before and after each run.
Typically other runners (such as other jobs or scripts) can be specified
but any JDK Callable can be passed in. For more information on
runners, see the dedicated chapter.

Using the Hive tasklet

For Spring Batch environments, SHDP provides a dedicated tasklet to
execute Hive queries, on demand, as part of a batch or workflow. The
declaration is pretty straightforward:

<hdp:hive-tasklet id="hive-script">
 <hdp:script>
 DROP TABLE IF EXITS testHiveBatchTable;
 CREATE TABLE testHiveBatchTable (key int, value string);
 </hdp:script>
 <hdp:script location="classpath:org/company/hive/script.q" />
</hdp:hive-tasklet>

The tasklet above executes two scripts - one declared as part of the
bean definition followed by another located on the classpath.

Interacting with the Hive API

For those that need to programmatically interact with the Hive API,
Spring for Apache Hadoop provides a dedicated
template, similar
to the aforementioned JdbcTemplate. The template handles the
redundant, boiler-plate code, required for interacting with Hive such as
creating a new HiveClient, executing the queries, catching any
exceptions and performing clean-up. One can programmatically execute
queries (and get the raw results or convert them to longs or ints) or
scripts but also interact with the Hive API through the
HiveClientCallback. For example:

<hdp:hive-client-factory ... />
<!-- Hive template wires automatically to 'hiveClientFactory'-->
<hdp:hive-template />

<!-- wire hive template into a bean -->
<bean id="someBean" class="org.SomeClass" p:hive-template-ref="hiveTemplate"/>

public class SomeClass {

 private HiveTemplate template;

 public void setHiveTemplate(HiveTemplate template) { this.template = template; }

 public List<String> getDbs() {
 return hiveTemplate.execute(new HiveClientCallback<List<String>>() {
 @Override
 public List<String> doInHive(HiveClient hiveClient) throws Exception {
 return hiveClient.get_all_databases();
 }
 }));
 }
}

The example above shows a basic container configuration wiring a
HiveTemplate into a user class which uses it to interact with the
HiveClient Thrift API. Notice that the user does not have to handle
the lifecycle of the HiveClient instance or catch any exception (out
of the many thrown by Hive itself and the Thrift fabric) - these are
handled automatically by the template which converts them, like the rest
of the Spring templates, into `DataAccessException`s. Thus the
application only has to track only one exception hierarchy across all
data technologies instead of one per technology.

Chapter 8. Pig support

For Pig users, SHDP provides easy creation and
configuration of PigServer instances for registering and executing
scripts either locally or remotely. In its simplest form, the
declaration looks as follows:

<hdp:pig />

This will create a org.springframework.data.hadoop.pig.PigServerFactory
instance, named pigFactory, a factory that creates PigServer
instances on demand configured with a default PigContext, executing
scripts in MapReduce mode. The factory is needed since PigServer is
not thread-safe and thus cannot be used by multiple objects at the same
time. In typical scenarios however, one might want to connect to a
remote Hadoop tracker and register some scripts automatically so let us
take a look of how the configuration might look like:

<pig-factory exec-type="LOCAL" job-name="pig-script" configuration-ref="hadoopConfiguration" properties-location="pig-dev.properties"
 xmlns="http://www.springframework.org/schema/hadoop">
 source=${pig.script.src}
 <script location="org/company/pig/script.pig">
 <arguments>electric=sea</arguments>
 </script>
 <script>
 A = LOAD 'src/test/resources/logs/apache_access.log' USING PigStorage() AS (name:chararray, age:int);
 B = FOREACH A GENERATE name;
 DUMP B;
 </script>
</pig-factory> />

The example exposes quite a few options so let us review them one by
one. First the top-level pig definition configures the pig instance: the
execution type, the Hadoop configuration used and the job name. Notice
that additional properties can be specified (either by declaring them
inlined or/and loading them from an external file) - in fact,
<hdp:pig-factory/> just like the rest of the libraries configuration
elements, supports common properties attributes as described in the
#hadoop:config:properties[hadoop configuration] section.

The definition contains also two scripts: script.pig (read from the
classpath) to which one pair of arguments, relevant to the script, is
passed (notice the use of property placeholder) but also an inlined
script, declared as part of the definition, without any arguments.

As you can tell, the pig-factory namespace offers several options
pertaining to Pig configuration.

Running a Pig script

Like the rest of the Spring Hadoop components, a runner is provided out
of the box for executing Pig scripts, either inlined or from various
locations through pig-runner element:

<hdp:pig-runner id="pigRunner" run-at-startup="true">
 <hdp:script>
 A = LOAD 'src/test/resources/logs/apache_access.log' USING PigStorage() AS (name:chararray, age:int);
 ...
 </hdp:script>
 <hdp:script location="pig-scripts/script.pig"/>
</hdp:pig-runner>

The runner will trigger the execution during the application start-up
(notice the run-at-startup flag which is by default false). Do note
that the runner will not run unless triggered manually or if
run-at-startup is set to true. Additionally the runner (as in fact
do all runners in SHDP) allows one or multiple pre and
post actions to be specified to be executed before and after each run.
Typically other runners (such as other jobs or scripts) can be specified
but any JDK Callable can be passed in. For more information on
runners, see the dedicated chapter.

Using the Pig tasklet

For Spring Batch environments, SHDP provides a dedicated tasklet to
execute Pig queries, on demand, as part of a batch or workflow. The
declaration is pretty straightforward:

<hdp:pig-tasklet id="pig-script">
 <hdp:script location="org/company/pig/handsome.pig" />
</hdp:pig-tasklet>

The syntax of the scripts declaration is similar to that of the pig
namespace.

Interacting with the Pig API

For those that need to programmatically interact directly with Pig ,
Spring for Apache Hadoop provides a dedicated
template, similar
to the aforementioned HiveTemplate. The template handles the
redundant, boiler-plate code, required for interacting with Pig such as
creating a new PigServer, executing the scripts, catching any
exceptions and performing clean-up. One can programmatically execute
scripts but also interact with the Hive API through the
PigServerCallback. For example:

<hdp:pig-factory ... />
<!-- Pig template wires automatically to 'pigFactory'-->
<hdp:pig-template />

<!-- use component scanning-->
<context:component-scan base-package="some.pkg" />

public class SomeClass {
 @Inject
 private PigTemplate template;

 public Set<String> getDbs() {
 return pigTemplate.execute(new PigCallback<Set<String>() {
 @Override
 public Set<String> doInPig(PigServer pig) throws ExecException, IOException {
 return pig.getAliasKeySet();
 }
 });
 }
}

The example above shows a basic container configuration wiring a
PigTemplate into a user class which uses it to interact with the
PigServer API. Notice that the user does not have to handle the
lifecycle of the PigServer instance or catch any exception - these are
handled automatically by the template which converts them, like the rest
of the Spring templates, into `DataAccessException`s. Thus the
application only has to track only one exception hierarchy across all
data technologies instead of one per technology.

Chapter 9. Using the runner classes

Spring for Apache Hadoop provides for each Hadoop interaction type,
whether it is vanilla Map/Reduce, Hive or Pig, a runner, a dedicated
class used for declarative (or programmatic) interaction. The list below
illustrates the existing runner classes for each type, their name and
namespace element.

Table 9.1. Available _Runner_s

	Type	Name	Namespace element	Description
	Map/Reduce Job
	JobRunner
	job-runner
	Runner for Map/Reduce
jobs, whether vanilla M/R or streaming

	Hadoop Tool
	ToolRunner
	tool-runner
	Runner for Hadoop `Tool`s
(whether stand-alone or as jars).

	Hadoop `jar`s
	JarRunner
	jar-runner
	Runner for Hadoop jars.

	Hive queries and scripts
	HiveRunner
	hive-runner
	Runner for
executing Hive queries or scripts.

	Pig queries and scripts
	PigRunner
	pig-runner
	Runner for
executing Pig scripts.

	JSR-223/JVM scripts
	HdfsScriptRunner
	script
	Runner for executing
JVM 'scripting' languages (implementing the JSR-223 API).

While most of the configuration depends on the underlying type, the
runners share common attributes and behaviour so one can use them in a
predictive, consistent way. Below is a list of common features:

	
declaration does not imply execution

The runner allows a script, a job to run but the execution can be
triggered either programmatically or by the container at start-up.

	
run-at-startup

Each runner can execute its action at start-up. By default, this flag is
set to false. For multiple or on demand execution (such as scheduling)
use the Callable contract (see below).

	
JDK Callable interface

Each runner implements the JDK Callable interface. Thus one can inject
the runner into other beans or its own classes to trigger the execution
(as many or as little times as she wants).

	
pre and post actions

Each runner allows one or multiple, pre or/and post actions to be
specified (to chain them together such as executing a job after another
or perfoming clean up). Typically other runners can be used but any
Callable can be specified. The actions will be executed before and
after the main action, in the declaration order. The runner uses a
fail-safe behaviour meaning, any exception will interrupt the run and
will propagated immediately to the caller.

	
consider Spring Batch

The runners are meant as a way to execute basic tasks. When multiple
executions need to be coordinated and the flow becomes non-trivial, we
strongly recommend using Spring Batch which provides all the features of
the runners and more (a complete, mature framework for batch execution).

Chapter 10. Security Support

Spring for Apache Hadoop is aware of the security constraints of the
running Hadoop environment and allows its components to be configured as
such. For clarity, this document breaks down security into HDFS
permissions and user impersonation (also known as secure Hadoop). The
rest of this document discusses each component and the impact (and
usage) it has on the various SHDP features.

HDFS permissions

HDFS layer provides file permissions designed to be similar to those
present in *nix OS. The official
guide
explains the major components but in short, the access for each file
(whether it’s for reading, writing or in case of directories accessing)
can be restricted to certain users or groups. Depending on the user
identity (which is typically based on the host operating system), code
executing against the Hadoop cluster can see or/and interact with the
file-system based on these permissions. Do note that each HDFS or
FileSystem implementation can have slightly different semantics or
implementation.

SHDP obeys the HDFS permissions, using the identity of the current user
(by default) for interacting with the file system. In particular, the
HdfsResourceLoader considers when doing pattern matching, only the
files that it’s supposed to see and does not perform any privileged
action. It is possible however to specify a different user, meaning the
ResourceLoader interacts with HDFS using that user’s rights - however
this obeys the #security:kerberos[user impersonation] rules. When using
different users, it is recommended to create separate ResourceLoader
instances (one per user) instead of assigning additional permissions or
groups to one user - this makes it easier to manage and wire the
different HDFS views without having to modify the ACLs. Note however
that when using impersonation, the ResourceLoader might (and will
typically) return restricted files that might not be consumed or seen
by the callee.

User impersonation (Kerberos)

Securing a Hadoop cluster can be a difficult task - each machine can
have a different set of users and groups, each with different passwords.
Hadoop relies on
Kerberos, a
ticket-based protocol for allowing nodes to communicate over a
non-secure network to prove their identity to one another in a secure
manner. Unfortunately there is not a lot of documentation on this topic
out there. However there are
some
resources
to get you started.

SHDP does not require any extra configuration - it simply obeys the
security system in place. By default, when running inside a secure
Hadoop, SHDP uses the current user (as expected). It also supports user
impersonation, that is, interacting with the Hadoop cluster with a
different identity (this allows a superuser to submit job or access hdfs
on behalf of another user in a secure way, without leaking
permissions). The major MapReduce components, such as job, streaming
and tool as well as pig support user impersonation through the
user attribute. By default, this property is empty, meaning the
current user is used - however one can specify the different identity
(also known as ugi) to be used by the target component:

<hdp:job id="jobFromJoe" user="joe" .../>

Note that the user running the application (or the current user) must
have the proper kerberos credentials to be able to impersonate the
target user (in this case joe).

Chapter 11. Yarn Support

You’ve propbably seen a lot of topics around Yarn and next version of
Hadoop’s Map Reduce called MapReduce Version 2. Originally Yarn was a
component of MapReduce itself created to overcome some performance
issues in Hadoop’s original design. The fundamental idea of MapReduce v2
is to split up the two major functionalities of the JobTracker, resource
management and job scheduling/monitoring, into separate daemons. The
idea is to have a global Resource Manager (RM) and per-application
Application Master (AM). An application is either a single job in the
classical sense of Map-Reduce jobs or a group of jobs.

Let’s take a step back and see how original MapReduce Version 1 works.
Job Tracker is a global singleton entity responsible for managing
resources like per node Task Trackers and job life-cycle. Task
Tracker is responsible for executing tasks from a Job Tracker and
periodically reporting back the status of the tasks. Naturally there is
a much more going on behind the scenes but the main point of this is
that the Job Tracker has always been a bottleneck in terms of
scalability. This is where Yarn steps in by splitting the load away from
a global resource management and job tracking into per application
masters. Global resource manager can then concentrate in its main task
of handling the management of resources.

	[image: [Note]]	Note
	
Yarn is usually referred as a synonym for MapReduce Version 2.
This is not exactly true and it’s easier to understand the
relationship between those two by saying that MapReduce Version 2
is an application running on top of Yarn.

As we just mentioned MapReduce Version 2 is an application running of
top of Yarn. It is possible to make similar custom Yarn based
application which have nothing to do with MapReduce. Yarn itself
doesn’t know that it is running MapReduce Version 2. While there’s
nothing wrong to do everything from scratch one will soon realise that
steps to learn how to work with Yarn are rather deep. This is where
Spring Hadoop support for Yarn steps in by trying to make things easier
so that user could concentrate on his own code and not having to worry
about framework internals.

Using the Spring for Apache Yarn Namespace

To simplify configuration, SHDP provides a dedicated namespace for
Yarn components. However, one can opt to configure the beans directly
through the usual <bean> definition. For more information about XML
Schema-based configuration in Spring, see
this
appendix in the Spring Framework reference documentation.

To use the SHDP namespace, one just needs to import it inside the
configuration:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:yarn="http://www.springframework.org/schema/yarn"[image: 1][image: 2]
 xmlns:yarn-int="http://www.springframework.org/schema/yarn/integration"[image: 3][image: 4]
 xmlns:yarn-batch="http://www.springframework.org/schema/yarn/batch"[image: 5][image: 6]
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/yarn
 http://www.springframework.org/schema/yarn/spring-yarn.xsd[image: 7]
 http://www.springframework.org/schema/yarn/integration
 http://www.springframework.org/schema/yarn/integration/spring-yarn-integration.xsd[image: 8]
 http://www.springframework.org/schema/yarn/batch
 http://www.springframework.org/schema/yarn/batch/spring-yarn-batch.xsd">[image: 9]

 <bean id ... >

 <yarn:configuration ...>[image: 10]
</beans>

	[image: 1]
	
Spring for Apache Hadoop Yarn namespace prefix for core package. Any
name can do but through out the reference documentation, the yarn will
be used.

	[image: 2]
	
The namespace URI.

	[image: 3]
	
Spring for Apache Hadoop Yarn namespace prefix for integration package.
Any name can do but through out the reference documentation, the
yarn-int will be used.

	[image: 4]
	
The namespace URI.

	[image: 5]
	
Spring for Apache Hadoop Yarn namespace prefix for batch package. Any
name can do but through out the reference documentation, the
yarn-batch will be used.

	[image: 6]
	
The namespace URI.

	[image: 7]
	
The namespace URI location. Note that even though the location points to
an external address (which exists and is valid), Spring will resolve the
schema locally as it is included in the Spring for Apache Hadoop Yarn
library.

	[image: 8]
	
The namespace URI location.

	[image: 9]
	
The namespace URI location.

	[image: 10]
	
Declaration example for the Yarn namespace. Notice the prefix usage.

Once declared, the namespace elements can be declared simply by
appending the aforementioned prefix. Note that is possible to change the
default namespace, for example from <beans> to <yarn>. This is
useful for configuration composed mainly of Hadoop components as it
avoids declaring the prefix. To achieve this, simply swap the namespace
prefix declaration above:

<?xml version="1.0" encoding="UTF-8"?>
<beans:beans
xmlns="http://www.springframework.org/schema/yarn"[image: 1]
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:beans="http://www.springframework.org/schema/beans"[image: 2]
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/yarn
 http://www.springframework.org/schema/yarn/spring-yarn.xsd">

 <beans:bean id ... >[image: 3]

 <configuration ...>[image: 4]

</beans:beans>

	[image: 1]
	
The default namespace declaration for this XML file points to the Spring
for Apache Yarn namespace.

	[image: 2]
	
The beans namespace prefix declaration.

	[image: 3]
	
Bean declaration using the <beans> namespace. Notice the prefix.

	[image: 4]
	
Bean declaration using the <yarn> namespace. Notice the lack of
prefix (as yarn is the default namespace).

Using the Spring for Apache Yarn JavaConfig

It is also possible to work without XML configuration and rely on
Annotation based configuration model. XML and JavaConfig for Spring
YARN are not full replacement for each others but we try to mimic the
behaviour as much as we can.

We basically rely on two concepts when working with JavaConfig. Firstly
an annotation @EnableYarn is used to activate different parts of a
Spring Configuration depending on enable attribute. We can enable
configuration for CONTAINER, APPMASTER or CLIENT. Secondly when
configuration is enabled one can use SpringYarnConfigurerAdapter whose
callback methods can be used to do further configuration for components
familiar from XML.

@Configuration
@EnableYarn(enable=Enable.CONTAINER)
public class ContainerConfiguration extends SpringYarnConfigurerAdapter {

 @Override
 public void configure(YarnContainerConfigurer container) throws Exception {
 container
 .containerClass(MultiContextContainer.class);
 }

}

In above example we enabled configuration for CONTAINER and used
SpringYarnConfigurerAdapter and its configure callback method for
YarnContainerConfigurer. In this method we instructed container class to
be a MultiContextContainer.

@Configuration
@EnableYarn(enable=Enable.APPMASTER)
public class AppmasterConfiguration extends SpringYarnConfigurerAdapter {

 @Override
 public void configure(YarnAppmasterConfigurer master) throws Exception {
 master
 .withContainerRunner();
 }

}

In above example we enabled configuration for APPMASTER and because of
this a callback method for YarnAppmasterConfigurer is called
automatically.

@Configuration
@EnableYarn(enable=Enable.CLIENT)
@PropertySource("classpath:hadoop.properties")
public class ClientConfiguration extends SpringYarnConfigurerAdapter {

 @Autowired
 private Environment env;

 @Override
 public void configure(YarnConfigConfigurer config) throws Exception {
 config
 .fileSystemUri(env.getProperty("hd.fs"))
 .resourceManagerAddress(env.getProperty("hd.rm"));
 }

 @Override
 public void configure(YarnClientConfigurer client) throws Exception {
 Properties arguments = new Properties();
 arguments.put("container-count", "4");
 client
 .appName("multi-context-jc")
 .withMasterRunner()
 .contextClass(AppmasterConfiguration.class)
 .arguments(arguments);
}

In above example we enabled configuration for CLIENT. Here one will
get yet another callback for YarnClientConfigurer. Additionally this
shows how a Hadoop configuration can be customized using a callback for
YarnConfigConfigurer.

Configuring Yarn

In order to use Hadoop and Yarn, one needs to first configure it namely
by creating a YarnConfiguration object. The configuration holds
information about the various parameters of the Yarn system.

	[image: [Note]]	Note
	
Configuration for <yarn:configuration> looks very similar than
<hdp:configuration>. Reason for this is a simple separation for
Hadoop’s YarnConfiguration and JobConf classes.

In its simplest form, the configuration definition is a one liner:

<yarn:configuration />

The declaration above defines a YarnConfiguration bean (to be precise a
factory bean of type ConfigurationFactoryBean) named, by default,
yarnConfiguration. The default name is used, by conventions, by the
other elements that require a configuration - this leads to simple and
very concise configurations as the main components can automatically
wire themselves up without requiring any specific configuration.

For scenarios where the defaults need to be tweaked, one can pass in
additional configuration files:

<yarn:configuration resources="classpath:/custom-site.xml, classpath:/hq-site.xml">

In this example, two additional Hadoop configuration resources are added
to the configuration.

	[image: [Note]]	Note
	
Note that the configuration makes use of Spring’s
Resource
abstraction to locate the file. This allows various search patterns to
be used, depending on the running environment or the prefix specified(if
any) by the value - in this example the classpath is used.

In addition to referencing configuration resources, one can tweak Hadoop
settings directly through Java Properties. This can be quite handy when
just a few options need to be changed:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:yarn="http://www.springframework.org/schema/yarn"
 xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/yarn http://www.springframework.org/schema/yarn/spring-yarn.xsd">

 <yarn:configuration>
 fs.defaultFS=hdfs://localhost:9000
 hadoop.tmp.dir=/tmp/hadoop
 electric=sea
 </yarn:configuration>
</beans>

One can further customize the settings by avoiding the so called
hard-coded values by externalizing them so they can be replaced at
runtime, based on the existing environment without touching the
configuration:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:yarn="http://www.springframework.org/schema/yarn"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context.xsd
 http://www.springframework.org/schema/yarn http://www.springframework.org/schema/yarn/spring-yarn.xsd">

 <yarn:configuration>
 fs.defaultFS=${hd.fs}
 hadoop.tmp.dir=file://${java.io.tmpdir}
 hangar=${number:18}
 </yarn:configuration>

 <context:property-placeholder location="classpath:hadoop.properties" />
</beans>

Through Spring’s property placeholder
support,
SpEL
and the
environment
abstraction (available in Spring 3.1). one can externalize environment
specific properties from the main code base easing the deployment across
multiple machines. In the example above, the default file system is
replaced based on the properties available in hadoop.properties while
the temp dir is determined dynamically through SpEL. Both approaches
offer a lot of flexbility in adapting to the running environment - in
fact we use this approach extensivly in the Spring for Apache Hadoop
test suite to cope with the differences between the different
development boxes and the CI server.

Additionally, external Properties files can be loaded, Properties
beans (typically declared through Spring’s `
 ` namespace). Along with the nested properties declaration, this
allows customized configurations to be easily declared:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:yarn="http://www.springframework.org/schema/yarn"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:util="http://www.springframework.org/schema/util"
 xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context.xsd
 http://www.springframework.org/schema/util http://www.springframework.org/schema/util/spring-util.xsd
 http://www.springframework.org/schema/yarn http://www.springframework.org/schema/yarn/spring-yarn.xsd">

 <!-- merge the local properties, the props bean and the two properties files -->
 <yarn:configuration properties-ref="props" properties-location="cfg-1.properties, cfg-2.properties">
 star=chasing
 captain=eo
 </yarn:configuration>

 <util:properties id="props" location="props.properties"/>
</beans>

When merging several properties, ones defined locally win. In the
example above the configuration properties are the primary source,
followed by the props bean followed by the external properties file
based on their defined order. While it’s not typical for a configuration
to refer to use so many properties, the example showcases the various
options available.

	[image: [Note]]	Note
	
For more properties utilities, including using the System as a source or
fallback, or control over the merging order, consider using Spring’s
PropertiesFactoryBean (which is what Spring for Apache Hadoop Yarn and
util:properties use underneath).

It is possible to create configuration based on existing ones - this
allows one to create dedicated configurations, slightly different from
the main ones, usable for certain jobs (such as streaming - more on that
#yarn:job:streaming[below]). Simply use the configuration-ref
attribute to refer to the parent configuration - all its properties
will be inherited and overridden as specified by the child:

<!-- default name is 'yarnConfiguration' -->
<yarn:configuration>
 fs.defaultFS=${hd.fs}
 hadoop.tmp.dir=file://${java.io.tmpdir}
</yarn:configuration>

<yarn:configuration id="custom" configuration-ref="yarnConfiguration">
 fs.defaultFS=${custom.hd.fs}
</yarn:configuration>

...

Make sure though you specify a different name since otherwise, since
both definitions will have the same name, the Spring container will
interpret this as being the same definition (and will usually consider
the last one found).

Last but not least a reminder that one can mix and match all these
options to her preference. In general, consider externalizing
configuration since it allows easier updates without interfering with
the application configuration. When dealing with multiple, similar
configuration use configuration composition as it tends to keep the
definitions concise, in sync and easy to update.

Table 11.1. yarn:configuration attributes

	Name	Values	Description
	configuration-ref
	Bean Reference
	Reference to existing
Configuration bean

	properties-ref
	Bean Reference
	Reference to existing Properties
bean

	properties-location
	Comma delimited list
	List or Spring Resource
paths

	resources
	Comma delimited list
	List or Spring Resource paths

	fs-uri
	String
	The HDFS filesystem address. Equivalent to
fs.defaultFS property.

	rm-address
	String
	The Yarn Resource manager address. Equivalent to
yarn.resourcemanager.address property.

	scheduler-address
	String
	The Yarn Resource manager scheduler
address. Equivalent to yarn.resourcemanager.scheduler.address
property.

Local Resources

When Application Master or any other Container is run in a hadoop
cluster, there are usually dependencies to various application and
configuration files. These files needs to be localized into a running
Container by making a physical copy. Localization is a process where
dependent files are copied into node’s directory structure and thus can
be used within the Container itself. Yarn itself tries to provide
isolation in a way that multiple containers and applications would not
clash.

In order to use local resources, one needs to create an implementation
of ResourceLocalizer interface. In its simplest form, resource localizer
can be defined as:

<yarn:localresources>
 <yarn:hdfs path="/path/in/hdfs/my.jar"/>
</yarn:localresources>

The declaration above defines a ResourceLocalizer bean (to be precise a
factory bean of type LocalResourcesFactoryBean) named, by default,
yarnLocalresources. The default name is used, by conventions, by the
other elements that require a reference to a resource localizer. It’s
explained later how this reference is used when container launch context
is defined.

It is also possible to define path as pattern. This makes it easier to
pick up all or subset of files from a directory.

<yarn:localresources>
 <yarn:hdfs path="/path/in/hdfs/*.jar"/>
</yarn:localresources>

Behind the scenes it’s not enough to simple have a reference to file in
a hdfs file system. Yarn itself when localizing resources into container
needs to do a consistency check for copied files. This is done by
checking file size and timestamp. This information needs to passed to
yarn together with a file path. Order to do this the one who defines
these beans needs to ask this information from hdfs prior to sending out
resouce localizer request. This kind of behaviour exists to make sure
that once localization is defined, Container will fail fast if
dependant files were replaced during the process.

On default the hdfs base address is coming from a Yarn configuration and
ResourceLocalizer bean will use configuration named
yarnLocalresources. If there is a need to use something else than the
default bean, configuration parameter can be used to make a reference
to other defined configurations.

<yarn:localresources configuration="yarnConfiguration">
 <yarn:hdfs path="/path/in/hdfs/my.jar"/>
</yarn:localresources>

For example, client defining a launch context for Application Master
needs to access dependent hdfs entries. Effectively hdfs entry given to
resource localizer needs to be accessed from a Node Manager.

Yarn resource localizer is using additional parameters to define entry
type and visibility. Usage is described below:

<yarn:localresources>
 <yarn:hdfs path="/path/in/hdfs/my.jar" type="FILE" visibility="APPLICATION"/>
</yarn:localresources>

For convenience it is possible to copy files into hdfs during the
localization process using a yarn:copy tag. Currently base staging
directory is /syarn/staging/xx where xx is a unique identifier per
application instance.

<yarn:localresources>
 <yarn:copy src="file:/local/path/to/files/*jar" staging="true"/>
 <yarn:hdfs path="/*" staging="true"/>
</yarn:localresources>

Table 11.2. yarn:localresources attributes

	Name	Values	Description
	configuration
	Bean Reference
	A reference to configuration bean
name, default is yarnConfiguration

	type
	ARCHIVE, FILE, PATTERN
	Global default if not defined in
entry level

	visibility
	PUBLIC, PRIVATE, APPLICATION
	Global default if not
defined in entry level

Table 11.3. yarn:hdfs attributes

	Name	Values	Description
	path
	HDFS Path
	Path in hdfs

	type
	ARCHIVE, FILE(default), PATTERN
	ARCHIVE -
automatically unarchived by the Node Manager, FILE - regular file,
PATTERN - hybrid between archive and file.

	visibility
	PUBLIC, PRIVATE, APPLICATION(default)
	PUBLIC -
Shared by all users on the node, PRIVATE - Shared among all
applications of the same user on the node, APPLICATION - Shared only
among containers of the same application on the node

	staging
	true, false(default)
	Internal temporary stagind
directory.

Table 11.4. yarn:copy attributes

	Name	Values	Description
	src
	Copy sources
	Comma delimited list of resource patterns

	staging
	true, false(default)
	Internal temporary stagind
directory.

Container Environment

One central concept in Yarn is to use environment variables which then
can be read from a container. While it’s possible to read those variable
at any time it is considered bad design if one chooce to do so. Spring
Yarn will pass variable into application before any business methods are
executed, which makes things more clearly and testing becomes much more
easier.

<yarn:environment/>

The declaration above defines a Map bean (to be precise a factory bean
of type EnvironmentFactoryBean) named, by default, yarnEnvironment.
The default name is used, by conventions, by the other elements that
require a reference to a environment variables.

For conveniance it is possible to define a classpath entry directly into
an environment. Most likely one is about to run some java code with
libraries so classpath needs to be defined anyway.

<yarn:environment include-local-system-env="false">
 <yarn:classpath use-yarn-app-classpath="true" delimiter=":">
 ./*
 </yarn:classpath>
</yarn:environment>

If use-yarn-app-classpath parameter is set to true(default value) a
default yarn entries will be added to classpath automatically. These
entries are on default resolved from a normal
Hadoop Yarn Configuration using its yarn.application.classpath
property or if site-yarn-app-classpath has a any content entries are
resolved from there.

	[image: [Note]]	Note
	
Be carefull if passing environment variables between different systems.
For example if running a client on Windows and passing variables to
Application Master running on Linux, execution wrapper in Yarn may
silently fail.

Table 11.5. yarn:environment attributes

	Name	Values	Description
	include-local-system-env
	true, false(default)
	Defines whether
system environment variables are actually added to this bean.

Table 11.6. classpath attributes

	Name	Values	Description
	use-yarn-app-classpath
	false(default), true
	Defines whether
default yarn entries are added to classpath.

	use-mapreduce-app-classpath
	false(default), true
	Defines
whether default mr entries are added to classpath.

	site-yarn-app-classpath
	Classpath entries
	Defines a comma delimited
list of default yarn application classpath entries.

	site-mapreduce-app-classpath
	Classpath entries
	Defines a comma
delimited list of default mr application classpath entries.

	delimiter
	Delimiter string, default is ":"
	Defines delimiter used
in a classpath string

Application Client

Client is always your entry point when interacting with a Yarn system
whether one is about to submit a new application instance or just
querying Resource Manager for running application(s) status. Currently
support for client is very limited and a simple command to start
Application Master can be defined. If there is just a need to query
Resource Manager, command definition is not needed.

<yarn:client app-name="customAppName">
 <yarn:master-command>
 <![CDATA[
 /usr/local/java/bin/java
 org.springframework.yarn.am.CommandLineAppmasterRunner
 appmaster-context.xml
 yarnAppmaster
 container-count=2
 1><LOG_DIR>/AppMaster.stdout
 2><LOG_DIR>/AppMaster.stderr
]]>
 </yarn:master-command>
</yarn:client>

The declaration above defines a YarnClient bean (to be precise a factory
bean of type YarnClientFactoryBean) named, by default, yarnClient. It
also defines a command launching an Application Master using
<master-command> entry which is also a way to define the raw commands.
If this yarnClient instance is used to submit an application, its name
would come from a app-name attribute.

<yarn:client app-name="customAppName">
 <yarn:master-runner/>
</yarn:client>

For a convinience entry <master-runner> can be used to define same
command entries.

<yarn:client app-name="customAppName">
 <util:properties id="customArguments">
 container-count=2
 </util:properties>
 <yarn:master-runner
 command="java"
 context-file="appmaster-context.xml"
 bean-name="yarnAppmaster"
 arguments="customArguments"
 stdout="<LOG_DIR>/AppMaster.stdout"
 stderr="<LOG_DIR>/AppMaster.stderr" />
</yarn:client>

All previous three examples are effectively identical from Spring Yarn
point of view.

	[image: [Note]]	Note
	
The <LOG_DIR> refers to Hadoop’s dedicated log directory for the running
container.

<yarn:client app-name="customAppName"
 configuration="customConfiguration"
 resource-localizer="customResources"
 environment="customEnv"
 priority="1"
 virtualcores="2"
 memory="11"
 queue="customqueue">
 <yarn:master-runner/>
</yarn:client>

If there is a need to change some of the parameters for the Application
Master submission, memory and virtualcores defines the container
settings. For submission, queue and priority defines how submission
is actually done.

Table 11.7. yarn:client attributes

	Name	Values	Description
	app-name
	Name as string, default is empty
	Yarn submitted
application name

	configuration
	Bean Reference
	A reference to configuration bean
name, default is yarnConfiguration

	resource-localizer
	Bean Reference
	A reference to resource localizer
bean name, default is yarnLocalresources

	environment
	Bean Reference
	A reference to environment bean name,
default is yarnEnvironment

	template
	Bean Reference
	A reference to a bean implementing
ClientRmOperations

	memory
	Memory as integer, default is "64"
	Amount of memory for
appmaster resource

	virtualcores
	Cores as integer, default is "1"
	Number of appmaster
resource virtual cores

	priority
	Priority as integer, default is "0"
	Submission priority

	queue
	Queue string, default is "default"
	Submission queue

Table 11.8. yarn:master-command

	Name	Values	Description
	Entry content
	List of commands
	Commands defined in this entry are
aggregated into a single command line

Table 11.9. yarn:master-runner attributes

	Name	Values	Description
	command
	Main command as string, default is "java"
	Command line
first entry

	context-file
	Name of the Spring context file, default is
"appmaster-context.xml"
	Command line second entry

	bean-name
	Name of the Spring bean, default is "yarnAppmaster"
	Command line third entry

	arguments
	Reference to Java’s Properties
	Added to command line
parameters as key/value pairs separated by '='

	stdout
	Stdout, default is "<LOG_DIR>/AppMaster.stdout"
	Appended
with 1>

	stderr
	Stderr, default is "<LOG_DIR>/AppMaster.stderr"
	Appended
with 2>

Application Master

Application master is responsible for container allocation, launching
and monitoring.

<yarn:master>
 <yarn:container-allocator virtualcores="1" memory="64" priority="0"/>
 <yarn:container-launcher username="whoami"/>
 <yarn:container-command>
 <![CDATA[
 /usr/local/java/bin/java
 org.springframework.yarn.container.CommandLineContainerRunner
 container-context.xml
 1><LOG_DIR>/Container.stdout
 2><LOG_DIR>/Container.stderr
]]>
 </yarn:container-command>
</yarn:master>

The declaration above defines a YarnAppmaster bean (to be precise a bean
of type StaticAppmaster) named, by default, yarnAppmaster. It also
defines a command launching a Container(s) using <container-command>
entry, parameters for allocation using <container-allocator> entry and
finally a launcher parameter using <container-launcher> entry.

Currently there is a simple implementation of StaticAppmaster which is
able to allocate and launch a number of containers. These containers are
monitored by querying resource manager for container execution
completion.

<yarn:master>
 <yarn:container-runner/>
</yarn:master>

For a convinience entry <container-runner> can be used to define same
command entries.

<yarn:master>
 <util:properties id="customArguments">
 some-argument=myvalue
 </util:properties>
 <yarn:container-runner
 command="java"
 context-file="container-context.xml"
 bean-name="yarnContainer"
 arguments="customArguments"
 stdout="<LOG_DIR>/Container.stdout"
 stderr="<LOG_DIR>/Container.stderr" />
</yarn:master>

Table 11.10. yarn:master attributes

	Name	Values	Description
	configuration
	Bean Reference
	A reference to configuration bean
name, default is yarnConfiguration

	resource-localizer
	Bean Reference
	A reference to resource localizer
bean name, default is yarnLocalresources

	environment
	Bean Reference
	A reference to environment bean name,
default is yarnEnvironment

Table 11.11. yarn:container-allocator attributes

	Name	Values	Description
	virtualcores
	Integer
	number of virtual cpu cores of the resource.

	memory
	Integer, as of MBs.
	memory of the resource.

	priority
	Integer
	Assigned priority of a request.

	locality
	Boolean
	If set to true indicates that resources are not
relaxed. Default is FALSE.

Table 11.12. yarn:container-launcher attributes

	Name	Values	Description
	username
	String
	Set the user to whom the container has been
allocated.

Table 11.13. yarn:container-runner attributes

	Name	Values	Description
	command
	Main command as string, default is "java"
	Command line
first entry

	context-file
	Name of the Spring context file, default is
"container-context.xml"
	Command line second entry

	bean-name
	Name of the Spring bean, default is "yarnContainer"
	Command line third entry

	arguments
	Reference to Java’s Properties
	Added to command line
parameters as key/value pairs separated by '='

	stdout
	Stdout, default is "<LOG_DIR>/Container.stdout"
	Appended
with 1>

	stderr
	Stderr, default is "<LOG_DIR>/Container.stderr"
	Appended
with 2>

Application Container

There is very little what Spring Yarn needs to know about the Container
in terms of its configuration. There is a simple contract between
org.springframework.yarn.container.CommandLineContainerRunner and a bean
it’s trying to run on default. Default bean name is yarnContainer.

There is a simple interface
org.springframework.yarn.container.YarnContainer which container needs
to implement.

public interface YarnContainer {
 void run();
 void setEnvironment(Map<String, String> environment);
 void setParameters(Properties parameters);
}

There are few different ways how Container can be defined in Spring xml
configuration. Natively without using namespaces bean can be defined
with a correct name:

<bean id="yarnContainer" class="org.springframework.yarn.container.TestContainer">

Spring Yarn namespace will make it even more simpler. Below example just
defines class which implements needed interface.

<yarn:container container-class="org.springframework.yarn.container.TestContainer"/>

It’s possible to make a reference to existing bean. This is usefull if
bean cannot be instantiated with default constructor.

<bean id="testContainer" class="org.springframework.yarn.container.TestContainer"/>
<yarn:container container-ref="testContainer"/>

It’s also possible to inline the bean definition.

<yarn:container>
 <bean class="org.springframework.yarn.container.TestContainer"/>
</yarn:container>

Application Master Services

It is fairly easy to create an application which launches a few
containers and then leave those to do their tasks. This is pretty much
what Distributed Shell example application in Yarn is doing. In that
example a container is configured to run a simple shell command and
Application Master only tracks when containers have finished. If only
need from a framework is to be able to fire and forget then that’s all
you need, but most likely a real-world Yarn application will need some
sort of collaboration with Application Master. This communication is
initiated either from Application Client or Application Container.

Yarn framework itself doesn’t define any kind of general communication
API for Application Master. There are APIs for communicating with
Container Manager and Resource Manager which are used on within a
layer not necessarily exposed to a user. Spring Yarn defines a general
framework to talk to Application Master through an abstraction and
currently a JSON based rpc system exists.

This chapter concentrates on developer concepts to create a custom
services for Application Master, configuration options for built-in
services can be found from sections below -
#yarn:masterservice[Appmaster Service] and
#yarn:masterserviceclient[Appmaster Service Client].

Basic Concepts

Having a communication framework between Application Master and
Container/Client involves few moving parts. Firstly there has to be
some sort of service running on an Application Master. Secondly user
of this service needs to know where it is and how to connect to it.
Thirtly, if not creating these services from scratch, it’d be nice if
some sort of abstraction already exist.

Contract for appmaster service is very simple, Application Master
Service needs to implement AppmasterService interface be registered
with Spring application context. Actual appmaster instance will then
pick it up from a bean factory.

public interface AppmasterService {
 int getPort();
 boolean hasPort();
 String getHost();
}

Application Master Service framework currently provides integration
for services acting as service for a Client or a Container. Only
difference between these two roles is how the Service Client gets
notified about the address of the service. For the Client this
information is stored within the Hadoop Yarn resource manager. For the
Container this information is passed via environment within the launch
context.

<bean id="yarnAmservice" class="AppmasterServiceImpl" />
<bean id="yarnClientAmservice" class="AppmasterClientServiceImpl" />

Example above shows a default bean names, yarnAmservice and
yarnClientAmservice respectively recognised by Spring Yarn.

Interface AppmasterServiceClient is currently an empty interface just
marking class to be a appmaster service client.

public interface AppmasterServiceClient {
}

Using JSON

Default implementations can be used to exchange messages using a simple
domain classes and actual messages are converted into json and send over
the transport.

<yarn-int:amservice
 service-impl="org.springframework.yarn.integration.ip.mind.TestService"
 default-port="1234"/>
<yarn-int:amservice-client
 service-impl="org.springframework.yarn.integration.ip.mind.DefaultMindAppmasterServiceClient"
 host="localhost"
 port="1234"/>

@Autowired
AppmasterServiceClient appmasterServiceClient;

@Test
public void testServiceInterfaces() throws Exception {
 SimpleTestRequest request = new SimpleTestRequest();
 SimpleTestResponse response =
 (SimpleTestResponse) ((MindAppmasterServiceClient)appmasterServiceClient).
 doMindRequest(request);
 assertThat(response.stringField, is("echo:stringFieldValue"));
}

Converters

When default implementations for Application master services are
exchanging messages, converters are net registered automatically. There
is a namespace tag converters to ease this configuration.

<bean id="mapper"
 class="org.springframework.yarn.integration.support.Jackson2ObjectMapperFactoryBean" />

<yarn-int:converter>
 <bean class="org.springframework.yarn.integration.convert.MindObjectToHolderConverter">
 <constructor-arg ref="mapper"/>
 </bean>
</yarn-int:converter>

<yarn-int:converter>
 <bean class="org.springframework.yarn.integration.convert.MindHolderToObjectConverter">
 <constructor-arg ref="mapper"/>
 <constructor-arg value="org.springframework.yarn.batch.repository.bindings"/>
 </bean>
</yarn-int:converter>

Application Master Service

This section of this document is about configuration, more about general
concepts for see a ?.

Currently Spring Yarn have support for services using Spring Integration
tcp channels as a transport.

<bean id="mapper"
 class="org.springframework.yarn.integration.support.Jackson2ObjectMapperFactoryBean" />

<yarn-int:converter>
 <bean class="org.springframework.yarn.integration.convert.MindObjectToHolderConverter">
 <constructor-arg ref="mapper"/>
 </bean>
</yarn-int:converter>

<yarn-int:converter>
 <bean class="org.springframework.yarn.integration.convert.MindHolderToObjectConverter">
 <constructor-arg ref="mapper"/>
 <constructor-arg value="org.springframework.yarn.integration.ip.mind"/>
 </bean>
</yarn-int:converter>

<yarn-int:amservice
 service-impl="org.springframework.yarn.integration.ip.mind.TestService"/>

If there is a need to manually configure the server side dispatch
channel, a little bit more configuration is needed.

<bean id="serializer"
 class="org.springframework.yarn.integration.ip.mind.MindRpcSerializer" />
<bean id="deserializer"
 class="org.springframework.yarn.integration.ip.mind.MindRpcSerializer" />
<bean id="socketSupport"
 class="org.springframework.yarn.integration.support.DefaultPortExposingTcpSocketSupport" />

<ip:tcp-connection-factory id="serverConnectionFactory"
 type="server"
 port="0"
 socket-support="socketSupport"
 serializer="serializer"
 deserializer="deserializer"/>

<ip:tcp-inbound-gateway id="inboundGateway"
 connection-factory="serverConnectionFactory"
 request-channel="serverChannel" />

<int:channel id="serverChannel" />

<yarn-int:amservice
 service-impl="org.springframework.yarn.integration.ip.mind.TestService"
 channel="serverChannel"
 socket-support="socketSupport"/>

Table 11.14. yarn-int:amservice attributes

	Name	Values	Description
	service-impl
	Class Name
	Full name of the class implementing a
service

	service-ref
	Bean Reference
	Reference to a bean name implementing a
service

	channel
	Spring Int channel
	Custom message dispatching channel

	socket-support
	Socket support reference
	Custom socket support class

Application Master Service Client

This section of this document is about configuration, more about general
concepts for see a ?.

Currently Spring Yarn have support for services using Spring Integration
tcp channels as a transport.

<bean id="mapper"
 class="org.springframework.yarn.integration.support.Jackson2ObjectMapperFactoryBean" />

<yarn-int:converter>
 <bean class="org.springframework.yarn.integration.convert.MindObjectToHolderConverter">
 <constructor-arg ref="mapper"/>
 </bean>
</yarn-int:converter>

<yarn-int:converter>
 <bean class="org.springframework.yarn.integration.convert.MindHolderToObjectConverter">
 <constructor-arg ref="mapper"/>
 <constructor-arg value="org.springframework.yarn.integration.ip.mind"/>
 </bean>
</yarn-int:converter>

<yarn-int:amservice-client
 service-impl="org.springframework.yarn.integration.ip.mind.DefaultMindAppmasterServiceClient"
 host="${SHDP_AMSERVICE_HOST}"
 port="${SHDP_AMSERVICE_PORT}"/>

If there is a need to manually configure the server side dispatch
channel, a little bit more configuration is needed.

<bean id="serializer"
 class="org.springframework.yarn.integration.ip.mind.MindRpcSerializer" />
<bean id="deserializer"
 class="org.springframework.yarn.integration.ip.mind.MindRpcSerializer" />

<ip:tcp-connection-factory id="clientConnectionFactory"
 type="client"
 host="localhost"
 port="${SHDP_AMSERVICE_PORT}"
 serializer="serializer"
 deserializer="deserializer"/>

<ip:tcp-outbound-gateway id="outboundGateway"
 connection-factory="clientConnectionFactory"
 request-channel="clientRequestChannel"
 reply-channel="clientResponseChannel" />

<int:channel id="clientRequestChannel" />
<int:channel id="clientResponseChannel" >
 <int:queue />
</int:channel>

<yarn-int:amservice-client
 service-impl="org.springframework.yarn.integration.ip.mind.DefaultMindAppmasterServiceClient"
 request-channel="clientRequestChannel"
 response-channel="clientResponseChannel"/>

Table 11.15. yarn-int:amservice-client attributes

	Name	Values	Description
	service-impl
	Class Name
	Full name of the class implementing a
service client

	host
	Hostname
	Host of the running appmaster service

	port
	Port
	Port of the running appmaster service

	request-channel
	Reference to Spring Int request channel
	Custom
channel

	response-channel
	Reference to Spring Int response channel
	Custom
channel

Using Spring Batch

In this chapter we assume you are fairly familiar with concepts using
Spring Batch. Many batch processing problems can be solved with single
threaded, single process jobs, so it is always a good idea to properly
check if that meets your needs before thinking about more complex
implementations. When you are ready to start implementing a job with
some parallel processing, Spring Batch offers a range of options. At a
high level there are two modes of parallel processing: single process,
multi-threaded; and multi-process.

Spring Hadoop contains a support for running Spring Batch jobs on a
Hadoop cluster. For better parallel processing Spring Batch partitioned
steps can be executed on a Hadoop cluster as remote steps.

Batch Jobs

Starting point running a Spring Batch Job is always the Application
Master whether a job is just simple job with or without partitioning.
In case partitioning is not used the whole job would be run within the
Application Master and no Containers would be launched. This may
seem a bit odd to run something on Hadoop without using Containers but
one should remember that Application Master is also just a resource
allocated from a Hadoop cluster.

Order to run Spring Batch jobs on a Hadoop cluster, few constraints
exists:

	
Job Context - Application Master is the main entry point of running
the job.

	
Job Repository - Application Master needs to have access to a
repository which is located either in-memory or in a database. These are
the two type natively supported by Spring Batch.

	
Remote Steps - Due to nature how Spring Batch partitioning works,
remote step needs an access to a job repository.

Configuration for Spring Batch Jobs is very similar what is needed for
normal batch configuration because effectively that’s what we are doing.
Only difference is a way a job is launched which in this case is
automatically handled by Application Master. Implementation of a job
launching logic is very similar compared to CommandLineJobRunner found
from a Spring Batch.

<bean id="transactionManager" class="org.springframework.batch.support.transaction.ResourcelessTransactionManager"/>

<bean id="jobRepository" class="org.springframework.batch.core.repository.support.MapJobRepositoryFactoryBean">
 <property name="transactionManager" ref="transactionManager"/>
</bean>

<bean id="jobLauncher" class="org.springframework.batch.core.launch.support.SimpleJobLauncher">
 <property name="jobRepository" ref="jobRepository"/>
</bean>

The declaration above define beans for JobRepository and JobLauncher.
For simplisity we used in-memory repository while it would be possible
to switch into repository working with a database if persistence is
needed. A bean named jobLauncher is later used within the Application
Master to launch jobs.

<bean id="yarnEventPublisher" class="org.springframework.yarn.event.DefaultYarnEventPublisher"/>

<yarn-batch:master/>

The declaration above defines BatchAppmaster bean named, by default,
yarnAppmaster and YarnEventPublisher bean named yarnEventPublisher
which is not created automatically.

Final step to finalize our very simple batch configuration is to define
the actual batch job.

<bean id="hello" class="org.springframework.yarn.examples.PrintTasklet">
 <property name="message" value="Hello"/>
</bean>

<batch:job id="job">
 <batch:step id="master">
 <batch:tasklet transaction-manager="transactionManager" ref="hello"/>
 </batch:step>
</batch:job>

The declaration above defines a simple job and tasklet. Job is named as
job which is the default job name searched by Application Master. It
is possible to use different name by changing the launch configuration.

Table 11.16. yarn-batch:master attributes

	Name	Values	Description
	configuration
	Bean Reference
	A reference to configuration bean
name, default is yarnConfiguration

	resource-localizer
	Bean Reference
	A reference to resource localizer
bean name, default is yarnLocalresources

	environment
	Bean Reference
	A reference to environment bean name,
default is yarnEnvironment

	job-name
	Bean Name Reference
	A name reference to Spring Batch job,
default is job

	job-launcher
	Bean Reference
	A reference to job launcher bean name,
default is jobLauncher. Target is a normal Spring Batch bean
implementing JobLauncher.

Partitioning

Let’s take a quick look how Spring Batch partitioning is handled.
Concept of running a partitioned job involves three things, Remote
steps, Partition Handler and a Partitioner. If we do a little bit
of oversimplification a remote step is like any other step from a user
point of view. Spring Batch itself does not contain implementations for
any proprietary grid or remoting fabrics. Spring Batch does however
provide a useful implementation of PartitionHandler that executes Steps
locally in separate threads of execution, using the TaskExecutor
strategy from Spring. Spring Hadoop provides implementation to execute
Steps remotely on a Hadoop cluster.

	[image: [Note]]	Note
	
For more background information about the Spring Batch Partitioning,
read the Spring Batch reference documentation.

Configuring Master

As we previously mentioned a step executed on a remote host also need to
access a job repository. If job repository would be based on a database
instance, configuration could be similar on a container compared to
application master. In our configuration example the job repository is
in-memory based and remote steps needs access for it. Spring Yarn Batch
contains implementation of a job repository which is able to proxy
request via json requests. Order to use that we need to enable
application client service which is exposing this service.

<bean id="jobRepositoryRemoteService" class="org.springframework.yarn.batch.repository.JobRepositoryRemoteService" >
 <property name="mapJobRepositoryFactoryBean" ref="&jobRepository"/>
</bean>

<bean id="batchService" class="org.springframework.yarn.batch.repository.BatchAppmasterService" >
 <property name="jobRepositoryRemoteService" ref="jobRepositoryRemoteService"/>
</bean>

<yarn-int:amservice service-ref="batchService"/>

he declaration above defines JobRepositoryRemoteService bean named
jobRepositoryRemoteService which is then connected into Application
Master Service exposing job repository via Spring Integration Tcp
channels.

As job repository communication messages are exchanged via custom json
messages, converters needs to be defined.

<bean id="mapper" class="org.springframework.yarn.integration.support.Jackson2ObjectMapperFactoryBean" />

<yarn-int:converter>
 <bean class="org.springframework.yarn.integration.convert.MindObjectToHolderConverter">
 <constructor-arg ref="mapper"/>
 </bean>
</yarn-int:converter>

<yarn-int:converter>
 <bean class="org.springframework.yarn.integration.convert.MindHolderToObjectConverter">
 <constructor-arg ref="mapper"/>
 <constructor-arg value="org.springframework.yarn.batch.repository.bindings"/>
 </bean>
</yarn-int:converter>

Configuring Container

Previously we made a choice to use in-memore job repository running
inside the application master. Now we need to talk to this repository
via client service. We start by adding same converters as in application
master.

<bean id="mapper" class="org.springframework.yarn.integration.support.Jackson2ObjectMapperFactoryBean" />

<yarn-int:converter>
 <bean class="org.springframework.yarn.integration.convert.MindObjectToHolderConverter">
 <constructor-arg ref="mapper"/>
 </bean>
</yarn-int:converter>

<yarn-int:converter>
 <bean class="org.springframework.yarn.integration.convert.MindHolderToObjectConverter">
 <constructor-arg ref="mapper"/>
 <constructor-arg value="org.springframework.yarn.batch.repository.bindings"/>
 </bean>
</yarn-int:converter>

We use general client implementation able to communicate with a service
running on Application Master.

<yarn-int:amservice-client
 service-impl="org.springframework.yarn.integration.ip.mind.DefaultMindAppmasterServiceClient"
 host="${SHDP_AMSERVICE_HOST}"
 port="${SHDP_AMSERVICE_PORT}" />

Remote step is just like any other step.

<bean id="hello" class="org.springframework.yarn.examples.PrintTasklet">
 <property name="message" value="Hello"/>
</bean>

<batch:step id="remoteStep">
 <batch:tasklet transaction-manager="transactionManager" start-limit="100" ref="hello"/>
</batch:step>

We need to have a way to locate the step from an application context.
For this we can define a step locator which is later configured into
running container.

<bean id="stepLocator" class="org.springframework.yarn.batch.partition.BeanFactoryStepLocator"/>

Spring Hadoop contains a custom job repository implementation which is
able to talk back to a remote instance via custom json protocol.

<bean id="transactionManager" class="org.springframework.batch.support.transaction.ResourcelessTransactionManager"/>

<bean id="jobRepository" class="org.springframework.yarn.batch.repository.RemoteJobRepositoryFactoryBean">
 <property name="transactionManager" ref="transactionManager"/>
 <property name="appmasterScOperations" ref="yarnAmserviceClient"/>
</bean>

<bean id="jobExplorer" class="org.springframework.yarn.batch.repository.RemoteJobExplorerFactoryBean">
 <property name="repositoryFactory" ref="&jobRepository" />
</bean>

Finally we define a Container understanding how to work with a remote
steps.

<bean id="yarnContainer" class="org.springframework.yarn.batch.container.DefaultBatchYarnContainer">
 <property name="stepLocator" ref="stepLocator"/>
 <property name="jobExplorer" ref="jobExplorer"/>
 <property name="integrationServiceClient" ref="yarnAmserviceClient"/>
</bean>

Using Spring Boot Application Model

We have additional support for leveraging Spring Boot when creating
applications using Spring YARN. All dependencies for this exists in a
sub-module named spring-yarn-boot which itself depends on Spring
Boot.

Spring Boot extensions in Spring YARN are used to ease following
issues:

	
Create a clear model how application is built, packaged and run on
Hadoop YARN.

	
Automatically configure components depending whether we are on
Client, Appmaster or Container.

	
Create an easy to use externalized configuration model based on Boot’s
ConfigurationProperties.

Before we get into details let’s go through how simple it is to create
and deploy a custom application to a Hadoop cluster. Notice that there
are no need to use XML.

@Configuration
@EnableAutoConfiguration
public class ContainerApplication {

 public static void main(String[] args) {
 SpringApplication.run(ContainerApplication.class, args);
 }

 @Bean
 public HelloPojo helloPojo() {
 return new HelloPojo();
 }

}

In above ContainerApplication, notice how we added @Configuration in a
class level itself and @Bean for a helloPojo() method.

@YarnComponent
public class HelloPojo {

 private static final Log log = LogFactory.getLog(HelloPojo.class);

 @Autowired
 private Configuration configuration;

 @OnContainerStart
 public void publicVoidNoArgsMethod() {
 log.info("Hello from HelloPojo");
 log.info("About to list from hdfs root content");
 FsShell shell = new FsShell(configuration);
 for (FileStatus s : shell.ls(false, "/")) {
 log.info(s);
 }
 }

}

HelloPojo class is a simple POJO in a sense that it doesn’t extend any
Spring YARN base classes. What we did in this class:

	
We’ve added a class level@YarnComponent annotation.

	
We’ve added a method level @OnContainerStart annotation.

	
We’ve @Autowired a Hadoop’s Configuration class.

To demonstrate that we actually have some real functionality in this
class, we simply use Spring Hadoop’s FsShell to list entries from a root
of a HDFS file system. For this we need to have access to Hadoop’s
Configuration which is prepared for you so that you can just autowire
it.

@EnableAutoConfiguration
public class ClientApplication {

 public static void main(String[] args) {
 SpringApplication.run(ClientApplication.class, args)
 .getBean(YarnClient.class)
 .submitApplication();
 }

}

	
@EnableAutoConfiguration tells Spring Boot to start adding beans based
on classpath setting, other beans, and various property settings.

	
Specific auto-configuration for Spring YARN components takes place
since Spring YARN is on the classpath.

The main() method uses Spring Boot’s SpringApplication.run() method
to launch an application. From there we simply request a bean of type
YarnClient and execute its submitApplication() method. What happens
next depends on application configuration, which we go through later in
this document.

@EnableAutoConfiguration
public class AppmasterApplication {

 public static void main(String[] args) {
 SpringApplication.run(AppmasterApplication.class, args);
 }

}

Application class for YarnAppmaster looks even simpler than what we just
did for ClientApplication. Again the main() method uses Spring Boot’s
SpringApplication.run() method to launch an application.

In real life, you most likely need to start adding more custom
functionality to your application component and you’d do that by start
adding more beans. To do that you need to define a Spring @Configuration
or @ComponentScan. AppmasterApplication would then act as your main
starting point to define more custom functionality.

spring:
 hadoop:
 fsUri: hdfs://localhost:8020
 resourceManagerHost: localhost
 yarn:
 appName: yarn-boot-simple
 applicationDir: /app/yarn-boot-simple/
 client:
 files:
 - "file:build/libs/yarn-boot-simple-container-0.1.0.jar"
 - "file:build/libs/yarn-boot-simple-appmaster-0.1.0.jar"
 launchcontext:
 archiveFile: yarn-boot-simple-appmaster-0.1.0.jar
 appmaster:
 containerCount: 1
 launchcontext:
 archiveFile: yarn-boot-simple-container-0.1.0.jar

Final part for your application is its runtime configuration which glues
all the components together which then can be called as a Spring YARN
application. This configuration act as source for Spring Boot’s
@ConfigurationProperties and contains relevant configuration properties
which cannot be auto-discovered or otherwise needs to have an option to
be overwritten by an end user.

You can then write your own defaults for your own environment. Because
these @ConfigurationProperties are resolved at runtime by Spring Boot,
you even have an easy option to overwrite these properties either by
using command-line options or provide additional configuration property
files.

Auto Configuration

Spring Boot is heavily influenced by auto-configuration trying to
predict what user wants to do. These decisions are based on
configuration properties, what’s currently available from a classpath
and generally everything what auto-configurers are able to see.

Auto-configuration is able to see if it’s currently running on a YARN
cluster and can also differentiate between YarnContainer and
YarnAppmaster. Parts of the auto-configuration which cannot be
automatically detected are guarded by a flags in configuration
properties which then allows end-user to either enable or disable these
functionalities.

Application Files

As we already mentioned Spring Boot creates a clear model how you
would work with your application files. Most likely what you need in
your application is jar or zip file(s) having needed application code
and optional configuration properties to customize the application
logic. Customization via an external properties files makes it easier to
change application functionality and reduce a need to hard-code
application logic.

Running an application on YARN needs an instance of YarnAppmaster and
instances of _YarnContainer_s. Both of these containers will need a set
of files and instructions how to execute a container. Based on
auto-configuration and configuration properties we will make few
assumptions how a container is executed.

We are fundamentally supporting three different type of combinations:

	
If a container main archive file is a jar file we expect it to be
packaged with Boot and be self container executable jar archive.

	
If a container main archive is a zip file we expect it to be packages
with Boot. In this case we use a special runner which knows how to run
this exploded archive.

	
User defines a main class to be run and everything this class will
need is already setup.

More detailed functionality can be found from a below sections;
the section called “Application Classpath”, the section called “Container Runners” and
the section called “Configuration Properties”.

Application Classpath

Let’s go through as an examples how a classpath is configured on
different use cases.

Simple Executable Jar

Running a container using an executable jar archive is the most simple
scenario due to classpath limitation imposed by a JVM. Everything needed
for the classpath needs to be inside the archive itself. Boot plugins
for maven and gradle will greatly help to package all library
dependencies into this archive.

spring:
 yarn:
 client:
 launchcontext:
 archiveFile: yarn-boot-appmaster-0.1.0.jar
 appmaster:
 launchcontext:
 archiveFile: yarn-boot-container-0.1.0.jar

Simple Zip Archive

Using a zip archive is basically needed in two use cases. In first case
you want to re-use existing libraries in YARN cluster for your
classpath. In second case you want to add custom classpath entries from
an exploded zip archive.

spring:
 yarn:
 siteYarnAppClasspath: "/path/to/hadoop/libs/*"
 appmaster:
 launchcontext:
 useYarnAppClasspath: true
 archiveFile: yarn-boot-container-0.1.0.zip

In above example you can have a zip archive which doesn’t bundle all
dependant Hadoop YARN libraries. Default classpath entries are then
resolved from siteYarnAppClasspath property.

spring:
 yarn:
 appmaster:
 launchcontext:
 archiveFile: yarn-boot-container-0.1.0.zip
 containerAppClasspath:
 - "./yarn-boot-container-0.1.0.zip/config"
 - "./yarn-boot-container-0.1.0.zip/lib"

In above example you needed to use custom classpath entries from an
exploded zip archive.

Container Runners

Using a propertys spring.yarn.client.launchcontext.archiveFile and
spring.yarn.appmaster.launchcontext.archiveFile respectively, will
indicate that container is run based on an archive file and Boot runners
are used. These runner classes are either used manually when
constructing an actual raw command for container or internally within an
executable jar archive.

However there are times when you may need to work on much lower level.
Maybe you are having trouble using an executable jar archive or Boot
runner is not enough what you want to do. For this use case you would
use propertys spring.yarn.client.launchcontext.runnerClass and
spring.yarn.appmaster.launchcontext.runnerClass.

Custom Runner

spring:
 yarn:
 appmaster:
 launchcontext:
 runnerClass: com.example.MyMainClazz

Resource Localizing

Order for containers to use application files, a YARN resource
localization process needs to do its tasks. We have a few configuration
properties which are used to determine which files are actually
localized into container’s working directory.

spring:
 yarn:
 client:
 localizer:
 patterns:
 - "*appmaster*jar"
 - "*appmaster*zip"
 zipPattern: "*zip"
 propertiesNames: [application]
 propertiesSuffixes: [properties, yml]
 appmaster:
 localizer:
 patterns:
 - "*container*jar"
 - "*container*zip"
 zipPattern: "*zip"
 propertiesNames: [application]
 propertiesSuffixes: [properties, yml]

Above is an example which equals a default functionality when localized
resources are chosen. For example for a container we automatically
choose all files matching a simple patterns *container*jar and
*container*zip. Additionally we choose configuration properties files
matching names application.properties and application.yml. Property
zipPattern is used as an pattern to instruct YARN resource localizer
to triet file as an archive to be automatically exploded.

If for some reason the default functionality and how it can be
configured via configuration properties is not suiteable, one can define
a custom bean to change how things work. Interface
LocalResourcesSelector is used to find localized resources.

public interface LocalResourcesSelector {
 List<Entry> select(String dir);
}

Below you see a logic how a default BootLocalResourcesSelector is
created during the auto-configuration. You would then create a custom
implementation and create it as a bean in your Configuration class. You
would not need to use any Conditionals but not how in auto-configuration
we use @ConditionalOnMissingBean to check if user have already created
his own implementation.

@Configuration
@EnableConfigurationProperties({ SpringYarnAppmasterLocalizerProperties.class })
public static class LocalResourcesSelectorConfig {

 @Autowired
 private SpringYarnAppmasterLocalizerProperties syalp;

 @Bean
 @ConditionalOnMissingBean(LocalResourcesSelector.class)
 public LocalResourcesSelector localResourcesSelector() {
 BootLocalResourcesSelector selector = new BootLocalResourcesSelector(Mode.CONTAINER);
 if (StringUtils.hasText(syalp.getZipPattern())) {
 selector.setZipArchivePattern(syalp.getZipPattern());
 }
 if (syalp.getPropertiesNames() != null) {
 selector.setPropertiesNames(syalp.getPropertiesNames());
 }
 if (syalp.getPropertiesSuffixes() != null) {
 selector.setPropertiesSuffixes(syalp.getPropertiesSuffixes());
 }
 selector.addPatterns(syalp.getPatterns());
 return selector;
 }
}

Your configuration could then look like:

@EnableAutoConfiguration
public class AppmasterApplication {

 @Bean
 public LocalResourcesSelector localResourcesSelector() {
 return MyLocalResourcesSelector();
 }

 public static void main(String[] args) {
 SpringApplication.run(AppmasterApplication.class, args);
 }

}

Container as POJO

In Boot application model if YarnContainer is not explicitly defined
it defaults to DefaultYarnContainer which expects to find a POJO
created as a bean having a specific annotations instructing the actual
functionality.

@YarnComponent is a stereotype annotation itself having a Spring’s
@Component defined in it. This is automatically marking a class to be a
candidate having a @YarnComponent functionality.

Within a POJO class we can use @OnContainerStart annotation to mark a
public method to act as an activator for a method endpoint.

@OnContainerStart
public void publicVoidNoArgsMethod() {
}

Returning type of int participates in a YarnContainer exit value.

@OnContainerStart
public int publicIntNoArgsMethod() {
 return 0;
}

Returning type of boolean participates in a YarnContainer exit value
where true would mean complete and false failed container.

@OnContainerStart
public boolean publicBooleanNoArgsMethod() {
 return true;
}

Returning type of String participates in a YarnContainer exit value
by matching ExitStatus and getting exit value from ExitCodeMapper.

@OnContainerStart
public String publicStringNoArgsMethod() {
 return "COMPLETE";
}

If method throws any Exception YarnContainer is marked as failed.

@OnContainerStart
public void publicThrowsException() {
 throw new RuntimeExection("My Error");
}

Method parameter can be bound with @YarnEnvironments to get access to
current YarnContainer environment variables.

@OnContainerStart
public void publicVoidEnvironmentsArgsMethod(@YarnEnvironments Map<String,String> env) {
}

Method parameter can be bound with @YarnEnvironment to get access to
specific YarnContainer environment variable.

@OnContainerStart
public void publicVoidEnvironmentArgsMethod(@YarnEnvironment("key") String value) {
}

Method parameter can be bound with @YarnParameters to get access to
current YarnContainer arguments.

@OnContainerStart
public void publicVoidParametersArgsMethod(@YarnParameters Properties properties) {
}

Method parameter can be bound with @YarnParameter to get access to a
specific YarnContainer arguments.

@OnContainerStart
public void publicVoidParameterArgsMethod(@YarnParameter("key") String value) {
}

Configuration Properties

Configuration properties can be defined using various methods. See a
Spring Boot dodumentation for details.

Table 11.17. spring.hadoop configuration properties

	Property Name	Required	Type	Default Value
	spring.hadoop.fsUri
	Yes
	String
	null

	spring.hadoop.resourceManagerAddress
	No
	String
	null

	spring.hadoop.resourceManagerSchedulerAddress
	No
	String
	null

	spring.hadoop.resourceManagerHost
	No
	String
	null

	spring.hadoop.resourceManagerPort
	No
	Integer
	8032

	spring.hadoop.resourceManagerSchedulerPort
	No
	Integer
	8030

	spring.hadoop.resources
	No
	List
	null

	spring.hadoop.config
	No
	Map
	null

	spring.hadoop.fsUri
	
A hdfs file system uri for a namenode.

	spring.hadoop.resourceManagerAddress
	
Address of a YARN resource manager.

	spring.hadoop.resourceManagerSchedulerAddress
	
Address of a YARN resource manager scheduler.

	spring.hadoop.resourceManagerHost
	
Hostname of a YARN resource manager.

	spring.hadoop.resourceManagerPort
	
Port of a YARN resource manager.

	spring.hadoop.resourceManagerSchedulerPort
	
Port of a YARN resource manager scheduler. This property is only
needed for an application master.

	spring.hadoop.resources
	
List of Spring resource locations to be initialized in Hadoop
configuration. These resources should be in Hadoop’s own site xml
format and location format can be anything Spring supports. For
example, classpath:/myentry.xml from a classpath or
file:/myentry.xml from a file system.

	spring.hadoop.config
	
Map of generic hadoop configuration properties.

Table 11.18. spring.hadoop.security configuration properties

	Property Name	Required	Type	Default Value
	spring.hadoop.security.authMethod
	No
	String
	null

	spring.hadoop.security.userPrincipal
	No
	String
	null

	spring.hadoop.security.userKeytab
	No
	String
	null

	spring.hadoop.security.namenodePrincipal
	No
	String
	null

	spring.hadoop.security.rmManagerPrincipal
	No
	String
	null

	spring.hadoop.security.authMethod
	
Hadoop security method.

	spring.hadoop.security.userPrincipal
	
Principal for user.

	spring.hadoop.security.userKeytab
	
Path to user keytab file.

	spring.hadoop.security.namenodePrincipal
	
Namenode principal

	spring.hadoop.security.rmManagerPrincipal
	
Resource manager principal

Table 11.19. spring.yarn configuration properties

	Property Name	Required	Type	Default Value
	spring.yarn.applicationDir
	No
	String
	null

	spring.yarn.applicationBaseDir
	No
	String
	null

	spring.yarn.applicationVersion
	No
	String
	null

	spring.yarn.stagingDir
	No
	String
	/spring/staging

	spring.yarn.appName
	No
	String
	null

	spring.yarn.appType
	No
	String
	YARN

	spring.yarn.siteYarnAppClasspath
	No
	String
	null

	spring.yarn.siteMapreduceAppClasspath
	No
	String
	null

	spring.yarn.applicationDir
	
An application home directory in hdfs. If client copies files into a
hdfs during an application submission, files will end up in this
directory. If this property is omitted, a staging directory will be
used instead.

	spring.yarn.applicationBaseDir
	
An applications base directory where build-in application deployment
functionality would create a new application instance. For a normal
application submit operation, this is not needed.

	spring.yarn.applicationVersion
	
An application version identifier used together with
applicationBaseDir in deployment scenarios where applicationDir
cannot be hard coded.

	spring.yarn.stagingDir
	
A global staging base directory in hdfs.

	spring.yarn.appName
	
Defines a registered application name visible from a YARN resource
manager.

	spring.yarn.appType
	
Defines a registered application type used in YARN resource manager.

	spring.yarn.siteYarnAppClasspath
	
Defines a default base YARN application classpath entries.

	spring.yarn.siteMapreduceAppClasspath
	
Defines a default base MR application classpath entries.

Table 11.20. spring.yarn.appmaster configuration properties

	Property Name	Required	Type	Default Value
	spring.yarn.appmaster.appmasterClass
	No
	Class
	null

	spring.yarn.appmaster.containerCount
	No
	Integer
	1

	spring.yarn.appmaster.keepContextAlive
	No
	Boolean
	true

	spring.yarn.appmaster.appmasterClass
	
Fully qualified classname which auto-configuration can automatically
instantiate as a custom application master.

	spring.yarn.appmaster.containerCount
	
Property which is automatically kept in configuration as a hint which
an application master can choose to use when determing how many
containers should be launched.

	spring.yarn.appmaster.keepContextAlive
	
Setting for an application master runner to stop main thread to wait a
latch before continuing. This is needed in cases where main thread
needs to wait event from other threads to be able to exit.

Table 11.21. spring.yarn.appmaster.launchcontext configuration properties

	Property Name	Required	Type	Default Value
	spring.yarn.appmaster.launchcontext.archiveFile
	No
	String
	null

	spring.yarn.appmaster.launchcontext.runnerClass
	No
	Class
	null

	spring.yarn.appmaster.launchcontext.options
	No
	List
	null

	spring.yarn.appmaster.launchcontext.arguments
	No
	Map
	null

	spring.yarn.appmaster.launchcontext.containerAppClasspath
	No
	List
	null

	spring.yarn.appmaster.launchcontext.pathSeparator
	No
	String
	:

	spring.yarn.appmaster.launchcontext.includeBaseDirectory
	No
	Boolean
	true

	spring.yarn.appmaster.launchcontext.useYarnAppClasspath
	No
	Boolean
	true

	spring.yarn.appmaster.launchcontext.useMapreduceAppClasspath
	No
	Boolean
	true

	spring.yarn.appmaster.launchcontext.includeSystemEnv
	No
	Boolean
	true

	spring.yarn.appmaster.launchcontext.locality
	No
	Boolean
	false

	spring.yarn.appmaster.launchcontext.archiveFile
	
Indicates that a container main file is treated as executable jar or
exploded zip.

	spring.yarn.appmaster.launchcontext.runnerClass
	
Indicates a fully qualified class name for a container runner.

	spring.yarn.appmaster.launchcontext.options
	
JVM system options.

	spring.yarn.appmaster.launchcontext.arguments
	
Application arguments.

	spring.yarn.appmaster.launchcontext.containerAppClasspath
	
Additional classpath entries.

	spring.yarn.appmaster.launchcontext.pathSeparator
	
Separator in a classpath.

	spring.yarn.appmaster.launchcontext.includeBaseDirectory
	
If base directory should be added in a classpath.

	spring.yarn.appmaster.launchcontext.useYarnAppClasspath
	
If default yarn application classpath should be added.

	spring.yarn.appmaster.launchcontext.useMapreduceAppClasspath
	
If default mr application classpath should be added.

	spring.yarn.appmaster.launchcontext.includeSystemEnv
	
If system environment variables are added to a container environment.

	spring.yarn.appmaster.launchcontext.locality
	
If set to true indicates that resources are not relaxed.

Table 11.22. spring.yarn.appmaster.localizer configuration properties

	Property Name	Required	Type	Default Value
	spring.yarn.appmaster.localizer.patterns
	No
	List
	null

	spring.yarn.appmaster.localizer.zipPattern
	No
	String
	null

	spring.yarn.appmaster.localizer.propertiesNames
	No
	List
	null

	spring.yarn.appmaster.localizer.propertiesSuffixes
	No
	List
	null

	spring.yarn.appmaster.localizer.patterns
	
A simple patterns to choose localized files.

	spring.yarn.appmaster.localizer.zipPattern
	
A simple pattern to mark a file as archive to be exploded.

	spring.yarn.appmaster.localizer.propertiesNames
	
Base name of a configuration files.

	spring.yarn.appmaster.localizer.propertiesSuffixes
	
Suffixes for a configuration files.

Table 11.23. spring.yarn.appmaster.resource configuration properties

	Property Name	Required	Type	Default Value
	spring.yarn.appmaster.resource.priority
	No
	String
	null

	spring.yarn.appmaster.resource.memory
	No
	String
	null

	spring.yarn.appmaster.resource.virtualCores
	No
	String
	null

	spring.yarn.appmaster.resource.priority
	
Container priority.

	spring.yarn.appmaster.resource.memory
	
Container memory allocation.

	spring.yarn.appmaster.resource.virtualCores
	
Container cpu allocation.

Table 11.24. spring.yarn.appmaster.containercluster configuration properties

	Property Name	Required	Type	Default Value
	spring.yarn.appmaster.containercluster.clusters
	No
	Map
	null

	spring.yarn.appmaster.containercluster.clusters
	
Definitions of container clusters.

spring.yarn.appmaster.containercluster.clusters.<name> configuration.
properties

	Property Name	Required	Type	Default Value
	spring.yarn.appmaster.containercluster.clusters.<name>.resource
	No
	Config
	null

	spring.yarn.appmaster.containercluster.clusters.<name>.launchcontext
	No
	Config
	null

	spring.yarn.appmaster.containercluster.clusters.<name>.localizer
	No
	Config
	null

	spring.yarn.appmaster.containercluster.clusters.<name>.projection
	No
	Config
	null

	spring.yarn.appmaster.containercluster.clusters.<name>.resource
	
Same as spring.yarn.appmaster.resource config property.

	spring.yarn.appmaster.containercluster.clusters.<name>.launchcontext
	
Same as spring.yarn.appmaster.launchcontext config property.

	spring.yarn.appmaster.containercluster.clusters.<name>.localizer
	
Same as spring.yarn.aptpmaster.localizer config property.

	spring.yarn.appmaster.containercluster.clusters.<name>.projection
	
Config collection for a projection settings.

spring.yarn.appmaster.containercluster.clusters.<name>.projection.
configuration properties

	Property Name	Required	Type	Default Value
	spring.yarn.appmaster.containercluster.clusters.<name>.projection.type
	No
	String
	null

	spring.yarn.appmaster.containercluster.clusters.<name>.projection.data
	No
	Map
	null

	spring.yarn.appmaster.containercluster.clusters.<name>.projection.type
	
Type of a projection to use. default is supported on default or any
other projection added via a custom factory.

	spring.yarn.appmaster.containercluster.clusters.<name>.projection.data
	
Map of config keys and values. any takes an integer, hosts as name
to integer map, racks as name to integer map, properties as a
generic map values.

Table 11.25. spring.yarn.endpoints.containercluster configuration properties

	Property Name	Required	Type	Default Value
	spring.yarn.endpoints.containercluster.enabled
	No
	Boolean
	null

	spring.yarn.endpoints.containercluster.enabled
	
Enabling endpoint MVC REST API controlling container clusters.

Table 11.26. spring.yarn.client configuration properties

	Property Name	Required	Type	Default Value
	spring.yarn.client.files
	No
	List
	null

	spring.yarn.client.priority
	No
	Integer
	null

	spring.yarn.client.queue
	No
	String
	null

	spring.yarn.client.clientClass
	No
	Class
	null

	spring.yarn.client.startup.action
	No
	String
	null

	spring.yarn.client.files
	
Files to copy into hdfs during application submission.

	spring.yarn.client.priority
	
Application priority.

	spring.yarn.client.queue
	
Application submission queue.

	spring.yarn.client.clientClass
	
Fully qualified classname which auto-configuration can automatically
instantiate as a custom client.

	spring.yarn.client.startup.action
	
Default action to perform on YarnClient. Currently only one action
named submit is supported. This action is simply calling
submitApplication method on YarnClient.

Table 11.27. spring.yarn.client.launchcontext configuration properties

	Property Name	Required	Type	Default Value
	spring.yarn.client.launchcontext.archiveFile
	No
	String
	null

	spring.yarn.client.launchcontext.runnerClass
	No
	Class
	null

	spring.yarn.client.launchcontext.options
	No
	List
	null

	spring.yarn.client.launchcontext.arguments
	No
	Map
	null

	spring.yarn.client.launchcontext.containerAppClasspath
	No
	List
	null

	spring.yarn.client.launchcontext.pathSeparator
	No
	String
	:

	spring.yarn.client.launchcontext.includeBaseDirectory
	No
	Boolean
	true

	spring.yarn.client.launchcontext.useYarnAppClasspath
	No
	Boolean
	true

	spring.yarn.client.launchcontext.useMapreduceAppClasspath
	No
	Boolean
	true

	spring.yarn.client.launchcontext.includeSystemEnv
	No
	Boolean
	true

	spring.yarn.client.launchcontext.archiveFile
	
Indicates that a container main file is treated as executable jar or
exploded zip.

	spring.yarn.client.launchcontext.runnerClass
	
Indicates a fully qualified class name for a container runner.

	spring.yarn.client.launchcontext.options
	
JVM system options.

	spring.yarn.client.launchcontext.arguments
	
Application arguments.

	spring.yarn.client.launchcontext.containerAppClasspath
	
Additional classpath entries.

	spring.yarn.client.launchcontext.pathSeparator
	
Separator in a classpath.

	spring.yarn.client.launchcontext.includeBaseDirectory
	
If base directory should be added in a classpath.

	spring.yarn.client.launchcontext.useYarnAppClasspath
	
If default yarn application classpath should be added.

	spring.yarn.client.launchcontext.useMapreduceAppClasspath
	
If default mr application classpath should be added.

	spring.yarn.client.launchcontext.includeSystemEnv
	
If system environment variables are added to a container environment.

Table 11.28. spring.yarn.client.localizer configuration properties

	Property Name	Required	Type	Default Value
	spring.yarn.client.localizer.patterns
	No
	List
	null

	spring.yarn.client.localizer.zipPattern
	No
	String
	null

	spring.yarn.client.localizer.propertiesNames
	No
	List
	null

	spring.yarn.client.localizer.propertiesSuffixes
	No
	List
	null

	spring.yarn.client.localizer.patterns
	
A simple patterns to choose localized files.

	spring.yarn.client.localizer.zipPattern
	
A simple pattern to mark a file as archive to be exploded.

	spring.yarn.client.localizer.propertiesNames
	
Base name of a configuration files.

	spring.yarn.client.localizer.propertiesSuffixes
	
Suffixes for a configuration files.

Table 11.29. spring.yarn.client.resource configuration properties

	Property Name	Required	Type	Default Value
	spring.yarn.client.resource.memory
	No
	String
	null

	spring.yarn.client.resource.virtualCores
	No
	String
	null

	spring.yarn.client.resource.memory
	
Application master memory allocation.

	spring.yarn.client.resource.virtualCores
	
Application master cpu allocation.

Table 11.30. spring.yarn.container configuration properties

	Property Name	Required	Type	Default Value
	spring.yarn.container.keepContextAlive
	No
	Boolean
	true

	spring.yarn.container.containerClass
	No
	Class
	null

	spring.yarn.container.keepContextAlive
	
Setting for an application container runner to stop main thread to
wait a latch before continuing. This is needed in cases where main
thread needs to wait event from other threads to be able to exit.

	spring.yarn.container.containerClass
	
Fully qualified classname which auto-configuration can automatically
instantiate as a custom container.

Table 11.31. spring.yarn.batch configuration properties

	Property Name	Required	Type	Default Value
	spring.yarn.batch.name
	No
	String
	null

	spring.yarn.batch.enabled
	No
	Boolean
	false

	spring.yarn.batch.jobs
	No
	List
	null

	spring.yarn.batch.name
	
Comma-delimited list of search patterns to find jobs to run defined
either locally in application context or in job registry.

	spring.yarn.batch.enabled
	
Indicates if batch processing on yarn is enabled.

	spring.yarn.batch.jobs
	
Indicates a list of individual configuration properties for jobs.

Table 11.32. spring.yarn.batch.jobs configuration properties

	Property Name	Required	Type	Default Value
	spring.yarn.batch.jobs.name
	No
	String
	null

	spring.yarn.batch.jobs.enabled
	No
	Boolean
	false

	spring.yarn.batch.jobs.next
	No
	Boolean
	false

	spring.yarn.batch.jobs.failNext
	No
	Boolean
	false

	spring.yarn.batch.jobs.restart
	No
	Boolean
	false

	spring.yarn.batch.jobs.failRestart
	No
	Boolean
	false

	spring.yarn.batch.jobs.parameters
	No
	String
	null

	spring.yarn.batch.jobs.name
	
Name of a job to configure.

	spring.yarn.batch.jobs.enabled
	
Indicates if job is enabled.

	spring.yarn.batch.jobs.next
	
Indicates if job parameters incrementer is used to prepare a job for
next run.

	spring.yarn.batch.jobs.failNext
	
Indicates if job execution should fail if job cannot be prepared for
next execution.

	spring.yarn.batch.jobs.restart
	
Indicates of job should be restarted.

	spring.yarn.batch.jobs.failRestart
	
Indicates if job execution should fail if job cannot be restarted.

	spring.yarn.batch.jobs.parameters
	
Defines a Map of additional job parameters. Keys and values are in
normal format supported by Batch.

Container Groups

Hadoop YARN is a simple resource scheduler and thus doesn’t provide any
higher level functionality for controlling containers for failures or
grouping. Currently these type of features need to be implemented atop
of YARN using a third party components such as Spring YARN. Containers
controlled by YARN are handled as one big pool of resources and any
functionality for grouping containers needs to be implemented within a
custom application master. Spring YARN provides components which can be
used to control containers as groups.

Container Group is a logical representation of containers managed by a
single YARN application. In a typical YARN application a container which
is allocated and launched shares a same configuration for
Resource(memory, cpu), Localized Files(application files) and Launch
Context(process command). Grouping brings a separate configuration for
each group which allows to run different logical applications within a
one application master. Logical application simply mean that different
containers are meant to do totally different things. A simple use case
for such things is an application which needs to run two different types
of containers, admin and worker nodes respectively.

YARN itself is not meant to be a task scheduler meaning you can’t
request a container for specific task which would then run on a Hadoop
cluster. In layman’s terms this simply mean that you can’t associate a
container allocation request for response received from a resource
manager. This decision was made to keep a resource manager relatively
light and spawn all the task activities into an application master. All
the allocated containers are requested and received from YARN
asynchronously thus making a one big pool of resources. All the task
activities needs to be build using this pool. This brings a new concept
of doing a container projection from a single allocated pool of
containers.

Application Master which is meant to be used with container groups
need to implement interface ContainerClusterAppmaster shown below.
Currently one built-in implementation
org.springframework.yarn.am.cluster.ManagedContainerClusterAppmaster
exists.

public interface ContainerClusterAppmaster extends YarnAppmaster {
 Map<String, ContainerCluster> getContainerClusters();
 ContainerCluster createContainerCluster(String clusterId, ProjectionData projection);
 ContainerCluster createContainerCluster(String clusterId,
 String clusterDef, ProjectionData projection, Map<String, Object> extraProperties);
 void startContainerCluster(String id);
 void stopContainerCluster(String id);
 void destroyContainerCluster(String id);
 void modifyContainerCluster(String id, ProjectionData data);
}

Order to use default implementation ManagedContainerClusterAppmaster,
configure it using a spring.yarn.appmaster.appmasterClass
configuration key. If you plan to control this container groups
externally via internal rest api, set
spring.yarn.endpoints.containercluster.enabled to true.

spring:
 yarn:
 appmaster:
 appmasterClass: org.springframework.yarn.am.cluster.ManagedContainerClusterAppmaster
 endpoints:
 containercluster:
 enabled: true

Grid Projection

Container cluster is always associated with a grid projection. This
allows de-coupling of cluster configuration and its grid projection.
Cluster or group is not directly aware of how containers are chosen.

public interface GridProjection {
 boolean acceptMember(GridMember member);
 GridMember removeMember(GridMember member);
 Collection<GridMember> getMembers();
 SatisfyStateData getSatisfyState();
 void setProjectionData(ProjectionData data);
 ProjectionData getProjectionData();
}

GridProjection has its projection configuration in ProjectionData.
SatisfyStateData defines a data object to satisfy a grid projection
state.

Projections are created via GridProjectionFactory beans. Default factory
named as gridProjectionFactory currently handles one different type of
projection named DefaultGridProjection which is registered with name
default. You can replace this factory by defining a bean with a same
name or introduce more factories just by defining your own factory
implementations.

public interface GridProjectionFactory {
 GridProjection getGridProjection(ProjectionData projectionData);
 Set<String> getRegisteredProjectionTypes();
}

Registered types needs to be mapped into projections itself created by a
factory. For example default implementation does mapping of type
default.

Group Configuration

Typical configuration is shown below:

spring:
 hadoop:
 fsUri: hdfs://node1:8020
 resourceManagerHost: node1
 yarn:
 appType: BOOT
 appName: gs-yarn-uimodel
 applicationBaseDir: /app/
 applicationDir: /app/gs-yarn-uimodel/
 appmaster:
 appmasterClass: org.springframework.yarn.am.cluster.ManagedContainerClusterAppmaster
 keepContextAlive: true
 containercluster:
 clusters:
 cluster1:
 projection:
 type: default
 data:
 any: 1
 hosts:
 node3: 1
 node4: 1
 racks:
 rack1: 1
 rack2: 1
 resource:
 priority: 1
 memory: 64
 virtualCores: 1
 launchcontext:
 locality: true
 archiveFile: gs-yarn-uimodel-cont1-0.1.0.jar
 localizer:
 patterns:
 - "*cont1*jar"

These container cluster configurations will also work as a blueprint
when creating groups manually on demand. If projectionType is defined
in a configuration it indicates that a group should be created
automatically.

Container Restart

Currently a simple support for automatically re-starting a failed
container is implemented by a fact that if container goes away group
projection is no longer satisfied and Spring YARN will try to allocate
and start new containers as long as projection is satisfied again.

REST API

While grouping configuration can be static and solely be what’s defined
in a yml file, it would be a nice feature if you could control the
runtime behaviour of these groups externally. REST API provides methods
to create groups with a specific projects, start group, stop group and
modify group projection.

Boot based REST API endpoint need to be explicitly enabled by using a
configuration shown below:

spring:
 yarn:
 endpoints:
 containercluster:
 enabled: true

GET /yarn_containercluster

Returns info about existing clusters

Response Class

ContainerClusters {
 clusters (array[string])
}

Response Schema

{
 "clusters":[
 "<clusterId>"
]
}

POST /yarn_containercluster

Create a new container cluster

Table 11.33. Parameters

	Parameter	Description	Parameter Type	Data Type
	body
	Cluster to be created
	body
	[multiblock cell omitted]

Table 11.34. Response Messages

	HTTP Status Code	Reason	Response Model
	405
	Invalid input
	[multiblock cell omitted]

GET /yarn_containercluster/{clusterId}

Returns info about a container cluster.

Response Class

code,text-- code,text
ContainerCluster {
 id (string): unique identifier for a cluster,
 gridProjection (GridProjection),
 containerClusterState (ContainerClusterState)
}

GridProjection {
 members (array[Member]),
 projectionData (ProjectionData),
 satisfyState (SatisfyState)
}

Member {
 id (string): unique identifier for a member,
}

ProjectionData {
 type (string),
 priority (integer),
 any (integer, optional),
 hosts (map, optional),
 racks (map, optional)
}

SatisfyState {
 removeData (array(string)),
 allocateData (AllocateData)
}

AllocateData {
 any (integer, optional),
 hosts (map, optional),
 racks (map, optional)
}

ContainerClusterState {
 clusterState (string)
}

Response Schema

{
 "id":"",
 "gridProjection":{
 "members":[
 {
 "id":""
 }
],
 "projectionData":{
 "type":"",
 "priority":0,
 "any":0,
 "hosts":{
 },
 "racks":{
 }
 },
 "satisfyState":{
 "removeData":[
],
 "allocateData":{
 "any":0,
 "hosts":{
 },
 "racks":{
 }
 }
 }
 },
 "containerClusterState":{
 "clusterState":""
 }
}

Table 11.35. Parameters

	Parameter	Description	Parameter Type	Data Type
	clusterId
	ID of a cluster needs to be fetched
	path
	string

Table 11.36. Response Messages

	HTTP Status Code	Reason	Response Model
	404
	No such cluster
	[multiblock cell omitted]

PUT /yarn_containercluster/{clusterId}

Modify a container cluster state.

Table 11.37. Parameters

	Parameter	Description	Parameter Type	Data Type
	clusterId
	ID of a cluster needs to be fetched
	path
	string

	body
	Cluster state to be modified
	body
	[multiblock cell omitted]

Table 11.38. Response Messages

	HTTP Status Code	Reason	Response Model
	404
	No such cluster
	[multiblock cell omitted]

	404
	No such action
	[multiblock cell omitted]

PATCH /yarn_containercluster/{clusterId}

Modify a container cluster projection.

Table 11.39. Parameters

	Parameter	Description	Parameter Type	Data Type
	clusterId
	ID of a cluster needs to be fetched
	path
	string

	body
	Cluster to be created
	body
	[multiblock cell omitted]

Table 11.40. Response Messages

	HTTP Status Code	Reason	Response Model
	404
	No such cluster
	[multiblock cell omitted]

DELETE /yarn_containercluster/{clusterId}

Destroy a container cluster.

Table 11.41. Parameters

	Parameter	Description	Parameter Type	Data Type
	clusterId
	ID of a cluster needs to be fetched
	path
	string

Table 11.42. Response Messages

	HTTP Status Code	Reason	Response Model
	404
	No such cluster
	[multiblock cell omitted]

Controlling Applications

We’ve already talked about how resources are localized into a running
container. These resources are always localized from a HDFS file system
which effectively means that the whole process of getting application
files into a newly launched YARN application is a two phase process;
firstly files are copied into HDFS and secondly files are localized from
a HDFS.

When application instance is submitted into YARN, there are two ways how
these application files can be handled. First which is the most obvious
is to just copy all the necessary files into a known location in HDFS
and then instruct YARN to localize files from there. Second method is to
split this into two different stages, first install application files
into HDFS and then submit application from there. At first there seem to
be no difference with these two ways to handle application deployment.
However if files are always copied into HDFS when application is
submitted, you need a physical access to those files. This may not
always be possible so it’s easier if you have a change to prepare these
files by first installing application into HDFS and then just send a
submit command to a YARN resource manager.

To ease a process of handling a full application life cycle, few utility
classes exist which are meant to be used with Spring Boot. These classes
are considered to be a foundational Boot application classes, not a
ready packaged Boot executable jars. Instead you would use these from
your own application whether that application is a Boot or other Spring
based application.

Generic Usage

Internally these applications are executed using a
SpringApplicationBuilder and a dedicated Spring Application Context.
This allows to isolate Boot application instance from your current
context if you have one. One fundamental idea in these applications is
to make it possible to work with Spring profiles and Boot configuration
properties. If your existing application is already using profiles and
configuration properties, simply launching a new Boot would most likely
derive those settings automatically which is something what you may not
want.

AbstractClientApplication which all these built-in applications are
based on contains methods to work with Spring profiles and additional
configuration properties.

Let’s go through all this using an example:

Using Configuration Properties

Below sample is pretty much a similar from all other examples except of
two settings, applicationBaseDir and clientClass. Property
applicationBaseDir defines where in HDFS a new app will be installed.
DefaultApplicationYarnClient defined using clientClass adds better
functionality to guard against starting app which doesn’t exist or not
overwriting existing apps in HDFS.

spring:
 hadoop:
 fsUri: hdfs://localhost:8020
 resourceManagerHost: localhost
 yarn:
 appType: GS
 appName: gs-yarn-appmodel
 applicationBaseDir: /app/
 applicationDir: /app/gs-yarn-appmodel/
 client:
 clientClass: org.springframework.yarn.client.DefaultApplicationYarnClient
 files:
 - "file:build/libs/gs-yarn-appmodel-container-0.1.0.jar"
 - "file:build/libs/gs-yarn-appmodel-appmaster-0.1.0.jar"
 launchcontext:
 archiveFile: gs-yarn-appmodel-appmaster-0.1.0.jar
 appmaster:
 containerCount: 1
 launchcontext:
 archiveFile: gs-yarn-appmodel-container-0.1.0.jar

Using YarnPushApplication

YarnPushApplication is used to push your application into HDFS.

public void doInstall() {
 YarnPushApplication app = new YarnPushApplication();
 app.applicationVersion("version1");
 Properties instanceProperties = new Properties();
 instanceProperties.setProperty("spring.yarn.applicationVersion", "version1");
 app.configFile("application.properties", instanceProperties);
 app.run();
}

In above example we simply created a YarnPushApplication, set its
applicationVersion and executed a run method. We also instructed
YarnPushApplication to write used applicationVersion into a
configuration file named application.properties so that it’d be
available to an application itself.

Using YarnSubmitApplication

YarnSubmitApplication is used to submit your application from HDFS into
YARN.

public void doSubmit() {
 YarnSubmitApplication app = new YarnSubmitApplication();
 app.applicationVersion("version1");
 ApplicationId applicationId = app.run();
}

In above example we simply created a YarnSubmitApplication, set its
applicationVersion and executed a run method.

Using YarnInfoApplication

YarnInfoApplication is used to query application info from a YARN
Resource Manager and HDFS.

public void doListPushed() {
 YarnInfoApplication app = new YarnInfoApplication();
 Properties appProperties = new Properties();
 appProperties.setProperty("spring.yarn.internal.YarnInfoApplication.operation", "PUSHED");
 app.appProperties(appProperties);
 String info = app.run();
 System.out.println(info);
}

public void doListSubmitted() {
 YarnInfoApplication app = new YarnInfoApplication();
 Properties appProperties = new Properties();
 appProperties.setProperty("spring.yarn.internal.YarnInfoApplication.operation", "SUBMITTED");
 appProperties.setProperty("spring.yarn.internal.YarnInfoApplication.verbose", "true");
 appProperties.setProperty("spring.yarn.internal.YarnInfoApplication.type", "GS");
 app.appProperties(appProperties);
 String info = app.run();
 System.out.println(info);
}

In above example we simply created a YarnInfoApplication, and used it to
list installed and running applications. By adding appProperties will
make Boot to pick these properties after every other source of
configuration properties but still allows to pass command-line options
to override everything which is a normal way in Boot.

Using YarnKillApplication

YarnKillApplication is used to kill running application instances.

public void doKill() {
 YarnKillApplication app = new YarnKillApplication();
 Properties appProperties = new Properties();
 appProperties.setProperty("spring.yarn.internal.YarnKillApplication.applicationId", "application_1395058039949_0052");
 app.appProperties(appProperties);
 String info = app.run();
 System.out.println(info);
}

In above example we simply created a YarnKillApplication, and used it to
send a application kill request into a YARN resource manager.

Using YarnContainerClusterApplication

YarnContainerClusterApplication is a simple Boot application which knows
how to talk with Container Cluster MVC Endpoint. More information about
this see javadocs for commands introduced in below chapter.

Cli Integration

Due to nature of being a foundational library, Spring YARN doesn’t
provide a generic purpose client out of a box for communicating with
your application. Reason for this is that Spring YARN is not a product,
but an application build on top of Spring YARN would be a product which
could have its own client. There is no good way of doing a generic
purpose ‘client’ which would suit every needs and anyway user may want
to customize how client works and how his own code is packaged.

We’ve made it as simple as possible to create your own client which can
be used to control applications on YARN and if container clustering is
enabled a similar utility classes can be used to control it. Only thing
what is left for the end user to implement is defining which commands
should be enabled.

Client facing component spring-yarn-boot-cli contains implementation
based on spring-boot-cli which can be used to build application cli’s.
It also container built-in commands which are easy to re-use or extend.

Example above shows a typical main method to use all built-in commands.

public class ClientApplication extends AbstractCli {

 public static void main(String... args) {
 List<Command> commands = new ArrayList<Command>();
 commands.add(new YarnPushCommand());
 commands.add(new YarnPushedCommand());
 commands.add(new YarnSubmitCommand());
 commands.add(new YarnSubmittedCommand());
 commands.add(new YarnKillCommand());
 commands.add(new YarnClustersInfoCommand());
 commands.add(new YarnClusterInfoCommand());
 commands.add(new YarnClusterCreateCommand());
 commands.add(new YarnClusterStartCommand());
 commands.add(new YarnClusterStopCommand());
 commands.add(new YarnClusterModifyCommand());
 commands.add(new YarnClusterDestroyCommand());
 ClientApplication app = new ClientApplication();
 app.registerCommands(commands);
 app.registerCommand(new ShellCommand(commands));
 app.doMain(args);
 }

}

Build-in Commands

Built-in commands can be used to either control YARN applications or
container clusters. All commands are under a package
org.springframework.yarn.boot.cli.

Push Application

java -jar <jar> push - Push new application version

usage: java -jar <jar> push [options]

Option Description
------ -----------
-v, --application-version Application version (default: app)

YarnPushCommand can be used to push an application into hdfs.

List Pushed Applications

java -jar <jar> pushed - List pushed applications

usage: java -jar <jar> pushed [options]

No options specified

YarnPushedCommand can be used to list information about an pushed
applications.

Submit Application

java -jar <jar> submit - Submit application

usage: java -jar <jar> submit [options]

Option Description
------ -----------
-v, --application-version Application version (default: app)

YarnSubmitCommand can be used to submit a new application instance.

List Submitted Applications

java -jar <jar> submitted - List submitted applications

usage: java -jar <jar> submitted [options]

Option Description
------ -----------
-t, --application-type Application type (default: BOOT)
-v, --verbose [Boolean] Verbose output (default: true)

YarnSubmittedCommand can be used to list info about an submitted
applications.

Kill Application

java -jar <jar> kill - Kill application

usage: java -jar <jar> kill [options]

Option Description
------ -----------
-a, --application-id Specify YARN application id

YarnKillCommand can be used to kill a running application instance.

List Clusters Info

java -jar <jar> clustersinfo - List clusters

usage: java -jar <jar> clustersinfo [options]

Option Description
------ -----------
-a, --application-id Specify YARN application id

YarnClustersInfoCommand can be used to list info about existing
clusters.

List Cluster Info

java -jar <jar> clusterinfo - List cluster info

usage: java -jar <jar> clusterinfo [options]

Option Description
------ -----------
-a, --application-id Specify YARN application id
-c, --cluster-id Specify cluster id
-v, --verbose [Boolean] Verbose output (default: true)

YarnClusterInfoCommand can be used to list info about a cluster.

Create Container Cluster

java -jar <jar> clustercreate - Create cluster

usage: java -jar <jar> clustercreate [options]

Option Description
------ -----------
-a, --application-id Specify YARN application id
-c, --cluster-id Specify cluster id
-h, --projection-hosts Projection hosts counts
-i, --cluster-def Specify cluster def id
-p, --projection-type Projection type
-r, --projection-racks Projection racks counts
-w, --projection-any Projection any count

YarnClusterCreateCommand can be used to create a new cluster.

Start Container Cluster

java -jar <jar> clusterstart - Start cluster

usage: java -jar <jar> clusterstart [options]

Option Description
------ -----------
-a, --application-id Specify YARN application id
-c, --cluster-id Specify cluster id

YarnClusterStartCommand can be used to start an existing cluster.

Stop Container Cluster

java -jar <jar> clusterstop - Stop cluster

usage: java -jar <jar> clusterstop [options]

Option Description
------ -----------
-a, --application-id Specify YARN application id
-c, --cluster-id Specify cluster id

YarnClusterStopCommand can be used to stop an existing cluster.

Modify Container Cluster

java -jar <jar> clustermodify - Modify cluster

usage: java -jar <jar> clustermodify [options]

Option Description
------ -----------
-a, --application-id Specify YARN application id
-c, --cluster-id Specify cluster id
-h, --projection-hosts Projection hosts counts
-r, --projection-racks Projection racks counts
-w, --projection-any Projection any count

YarnClusterModifyCommand can be used to modify an existing cluster.

Destroy Container Cluster

java -jar <jar> clusterdestroy - Destroy cluster

usage: java -jar <jar> clusterdestroy [options]

Option Description
------ -----------
-a, --application-id Specify YARN application id
-c, --cluster-id Specify cluster id

YarnClusterDestroyCommand can be used to destroy an existing cluster.

Implementing Command

There are few different ways to implement a custom command. At a lowest
level org.springframework.boot.cli.command.Command need to be
implemented by all commands to be used. Spring boot provides helper
classes named org.springframework.boot.cli.command.AbstractCommand and
org.springframework.boot.cli.command.OptionParsingCommand to easy with
command implementation. All Spring YARN Boot Cli commands are based on
org.springframework.yarn.boot.cli.AbstractApplicationCommand which makes
it easier to execute a boot based application context.

Using Shell

While all commands can be used as is using an executable jar, there is a
little overhead for bootstrapping jvm and Boot application context. To
overcome this problem all commands can be used within a shell instance.
Shell also brings you a command history and all commands are executed
faster because a whole jvm and its libraries are already loaded.

Special command org.springframework.yarn.boot.cli.shell.ShellCommand can
be used to register an internal shell instance which is reusing all
other registered commands.

Spring YARN Cli (v2.1.0.BUILD-SNAPSHOT)
Hit TAB to complete. Type 'help' and hit RETURN for help, and 'exit' to quit.
$
clear clustercreate clusterdestroy clusterinfo
clustermodify clustersinfo clusterstart clusterstop
exit help kill prompt
push pushed submit submitted
$ help submitted
submitted - List submitted applications

usage: submitted [options]

Option Description
------ -----------
-t, --application-type Application type (default: BOOT)
-v, --verbose [Boolean] Verbose output (default: true)

Chapter 12. Testing Support

Hadoop testing has always been a cumbersome process especially if you
try to do testing phase during the normal project build process.
Traditionally developers have had few options like running Hadoop
cluster either as a local or pseudo-distributed mode and then utilise
that to run MapReduce jobs. Hadoop project itself is using a lot of mini
clusters during the tests which provides better tools to run your code
in an isolated environment.

Spring Hadoop and especially its Yarn module faced similar testing
problems. Spring Hadoop provides testing facilities order to make
testing on Hadoop much easier especially if code relies on Spring Hadoop
itself. These testing facilities are also used internally to test Spring
Hadoop, although some test cases still rely on a running Hadoop instance
on a host where project build is executed.

Two central concepts of testing using Spring Hadoop is, firstly fire up
the mini cluster and secondly use the configuration prepared by the mini
cluster to talk to the Hadoop components. Now let’s go through the
general testing facilities offered by Spring Hadoop.

Testing for MapReduce and Yarn in Spring Hadoop is separated into
different packages mostly because these two components doesn’t have hard
dependencies with each others. You will see a lot of similarities when
creating tests for MapReduce and Yarn.

Testing MapReduce

Mini Clusters for MapReduce

Mini clusters usually contain testing components from a Hadoop project
itself. These are clusters for MapReduce Job handling and HDFS which
are all run within a same process. In Spring Hadoop mini clusters are
implementing interface HadoopCluster which provides methods for
lifecycle and configuration. Spring Hadoop provides transitive maven
dependencies against different Hadoop distributions and thus mini
clusters are started using different implementations. This is mostly
because we want to support HadoopV1 and HadoopV2 at a same time. All
this is handled automatically at runtime so everything should be
transparent to the end user.

public interface HadoopCluster {
 Configuration getConfiguration();
 void start() throws Exception;
 void stop();
 FileSystem getFileSystem() throws IOException;
}

Currently one implementation named StandaloneHadoopCluster exists
which supports simple cluster type where a number of nodes can be
defined and then all the nodes will contain utilities for MapReduce
Job handling and HDFS.

There are few ways how this cluster can be started depending on a use
case. It is possible to use StandaloneHadoopCluster directly or
configure and start it through HadoopClusterFactoryBean. Existing
HadoopClusterManager is used in unit tests to cache running clusters.

	[image: [Note]]	Note
	
It’s advisable not to use HadoopClusterManager outside of tests because
literally it is using static fields to cache cluster references. This is
a same concept used in Spring Test order to cache application contexts
between the unit tests within a jvm.

<bean id="hadoopCluster" class="org.springframework.data.hadoop.test.support.HadoopClusterFactoryBean">
 <property name="clusterId" value="HadoopClusterTests"/>
 <property name="autoStart" value="true"/>
 <property name="nodes" value="1"/>
</bean>

Example above defines a bean named hadoopCluster using a factory bean
HadoopClusterFactoryBean. It defines a simple one node cluster which is
started automatically.

Configuration

Spring Hadoop components usually depend on Hadoop configuration
which is then wired into these components during the application context
startup phase. This was explained in previous chapters so we don’t go
through it again. However this is now a catch-22 because we need the
configuration for the context but it is not known until mini cluster has
done its startup magic and prepared the configuration with correct
values reflecting current runtime status of the cluster itself. Solution
for this is to use other bean named ConfigurationDelegatingFactoryBean
which will simply delegate the configuration request into the running
cluster.

<bean id="hadoopConfiguredConfiguration" class="org.springframework.data.hadoop.test.support.ConfigurationDelegatingFactoryBean">
 <property name="cluster" ref="hadoopCluster"/>
</bean>

<hdp:configuration id="hadoopConfiguration" configuration-ref="hadoopConfiguredConfiguration"/>

In the above example we created a bean named
hadoopConfiguredConfiguration using ConfigurationDelegatingFactoryBean
which simple delegates to hadoopCluster bean. Returned bean
hadoopConfiguredConfiguration is type of Hadoop’s Configuration
object so it could be used as it is.

Latter part of the example show how Spring Hadoop namespace is used to
create another Configuration object which is using
hadoopConfiguredConfiguration as a reference. This scenario would make
sense if there is a need to add additional configuration options into
running configuration used by other components. Usually it is suiteable
to use cluster prepared configuration as it is.

Simplified Testing

It is perfecly all right to create your tests from scratch and for
example create the cluster manually and then get the runtime
configuration from there. This just needs some boilerplate code in your
context configuration and unit test lifecycle.

Spring Hadoop adds additional facilities for the testing to make all
this even easier.

@RunWith(SpringJUnit4ClassRunner.class)
public abstract class AbstractHadoopClusterTests implements ApplicationContextAware {
 ...
}

@ContextConfiguration(loader=HadoopDelegatingSmartContextLoader.class)
@MiniHadoopCluster
public class ClusterBaseTestClassTests extends AbstractHadoopClusterTests {
 ...
}

Above example shows the AbstractHadoopClusterTests and how
ClusterBaseTestClassTests is prepared to be aware of a mini cluster.
HadoopDelegatingSmartContextLoader offers same base functionality as the
default DelegatingSmartContextLoader in a spring-test package. One
additional thing what HadoopDelegatingSmartContextLoader does is to
automatically handle running clusters and inject Configuration into the
application context.

@MiniHadoopCluster(configName="hadoopConfiguration", clusterName="hadoopCluster", nodes=1, id="default")

Generally @MiniHadoopCluster annotation allows you to define injected
bean name for mini cluster, its Configurations and a number of nodes you
like to have in a cluster.

Spring Hadoop testing is dependant of general facilities of Spring
Test framework meaning that everything what is cached during the test
are reuseable withing other tests. One need to understand that if
Hadoop mini cluster and its Configuration is injected into an
Application Context, caching happens on a mercy of a Spring Testing
meaning if a test Application Context is cached also mini cluster
instance is cached. While caching is always prefered, one needs to
understant that if tests are expecting vanilla environment to be
present, test context should be dirtied using @DirtiesContext
annotation.

Wordcount Example

Let’s study a proper example of existing MapReduce Job which is
executed and tested using Spring Hadoop. This example is the Hadoop’s
classic wordcount. We don’t go through all the details of this example
because we want to concentrate on testing specific code and
configuration.

<context:property-placeholder location="hadoop.properties" />

<hdp:job id="wordcountJob"
 input-path="${wordcount.input.path}"
 output-path="${wordcount.output.path}"
 libs="file:build/libs/mapreduce-examples-wordcount-*.jar"
 mapper="org.springframework.data.hadoop.examples.TokenizerMapper"
 reducer="org.springframework.data.hadoop.examples.IntSumReducer" />

<hdp:script id="setupScript" location="copy-files.groovy">
 <hdp:property name="localSourceFile" value="data/nietzsche-chapter-1.txt" />
 <hdp:property name="inputDir" value="${wordcount.input.path}" />
 <hdp:property name="outputDir" value="${wordcount.output.path}" />
</hdp:script>

<hdp:job-runner id="runner"
 run-at-startup="false"
 kill-job-at-shutdown="false"
 wait-for-completion="false"
 pre-action="setupScript"
 job-ref="wordcountJob" />

In above configuration example we can see few differences with the
actual runtime configuration. Firstly you can see that we didn’t specify
any kind of configuration for hadoop. This is because it’s is injected
automatically by testing framework. Secondly because we want to
explicitely wait the job to be run and finished, kill-job-at-shutdown
and wait-for-completion are set to false.

@ContextConfiguration(loader=HadoopDelegatingSmartContextLoader.class)
@MiniHadoopCluster
public class WordcountTests extends AbstractMapReduceTests {
 @Test
 public void testWordcountJob() throws Exception {
 // run blocks and throws exception if job failed
 JobRunner runner = getApplicationContext().getBean("runner", JobRunner.class);
 Job wordcountJob = getApplicationContext().getBean("wordcountJob", Job.class);

 runner.call();

 JobStatus finishedStatus = waitFinishedStatus(wordcountJob, 60, TimeUnit.SECONDS);
 assertThat(finishedStatus, notNullValue());

 // get output files from a job
 Path[] outputFiles = getOutputFilePaths("/user/gutenberg/output/word/");
 assertEquals(1, outputFiles.length);
 assertThat(getFileSystem().getFileStatus(outputFiles[0]).getLen(), greaterThan(0l));

 // read through the file and check that line with
 // "themselves 6" was found
 boolean found = false;
 InputStream in = getFileSystem().open(outputFiles[0]);
 BufferedReader reader = new BufferedReader(new InputStreamReader(in));
 String line = null;
 while ((line = reader.readLine()) != null) {
 if (line.startsWith("themselves")) {
 assertThat(line, is("themselves\t6"));
 found = true;
 }
 }
 reader.close();
 assertThat("Keyword 'themselves' not found", found);
 }
}

In above unit test class we simply run the job defined in xml,
explicitely wait it to finish and then check the output content from
HDFS by searching expected strings.

Testing Yarn

Mini Clusters for Yarn

Mini cluster usually contain testing components from a Hadoop project
itself. These are MiniYARNCluster for Resource Manager and
MiniDFSCluster for Datanode and Namenode which are all run within a same
process. In Spring Hadoop mini clusters are implementing interface
YarnCluster which provides methods for lifecycle and configuration.

public interface YarnCluster {
 Configuration getConfiguration();
 void start() throws Exception;
 void stop();
 File getYarnWorkDir();
}

Currently one implementation named StandaloneYarnCluster exists which
supports simple cluster type where a number of nodes can be defined and
then all the nodes will have Yarn Node Manager and Hdfs Datanode,
additionally a Yarn Resource Manager and Hdfs Namenode components
are started.

There are few ways how this cluster can be started depending on a use
case. It is possible to use StandaloneYarnCluster directly or configure
and start it through YarnClusterFactoryBean. Existing YarnClusterManager
is used in unit tests to cache running clusters.

	[image: [Note]]	Note
	
It’s advisable not to use YarnClusterManager outside of tests because
literally it is using static fields to cache cluster references. This is
a same concept used in Spring Test order to cache application contexts
between the unit tests within a jvm.

<bean id="yarnCluster" class="org.springframework.yarn.test.support.YarnClusterFactoryBean">
 <property name="clusterId" value="YarnClusterTests"/>
 <property name="autoStart" value="true"/>
 <property name="nodes" value="1"/>
</bean>

Example above defines a bean named yarnCluster using a factory bean
YarnClusterFactoryBean. It defines a simple one node cluster which is
started automatically. Cluster working directories would then exist
under below paths:

target/YarnClusterTests/
target/YarnClusterTests-dfs/

	[image: [Note]]	Note
	
We rely on base classes from a Hadoop distribution and target base
directory is hardcoded in Hadoop and is not configurable.

Configuration

Spring Yarn components usually depend on Hadoop configuration which
is then wired into these components during the application context
startup phase. This was explained in previous chapters so we don’t go
through it again. However this is now a catch-22 because we need the
configuration for the context but it is not known until mini cluster has
done its startup magic and prepared the configuration with correct
values reflecting current runtime status of the cluster itself. Solution
for this is to use other factory bean class named
ConfigurationDelegatingFactoryBean which will simple delegate the
configuration request into the running cluster.

<bean id="yarnConfiguredConfiguration" class="org.springframework.yarn.test.support.ConfigurationDelegatingFactoryBean">
 <property name="cluster" ref="yarnCluster"/>
</bean>

<yarn:configuration id="yarnConfiguration" configuration-ref="yarnConfiguredConfiguration"/>

In the above example we created a bean named
yarnConfiguredConfiguration using ConfigurationDelegatingFactoryBean
which simple delegates to yarnCluster bean. Returned bean
yarnConfiguredConfiguration is type of Hadoop’s Configuration object
so it could be used as it is.

Latter part of the example show how Spring Yarn namespace is used to
create another Configuration object which is using
yarnConfiguredConfiguration as a reference. This scenario would make
sense if there is a need to add additional configuration options into
running configuration used by other components. Usually it is suiteable
to use cluster prepared configuration as it is.

Simplified Testing

It is perfecly all right to create your tests from scratch and for
example create the cluster manually and then get the runtime
configuration from there. This just needs some boilerplate code in your
context configuration and unit test lifecycle.

Spring Hadoop adds additional facilities for the testing to make all
this even easier.

@RunWith(SpringJUnit4ClassRunner.class)
public abstract class AbstractYarnClusterTests implements ApplicationContextAware {
 ...
}

@ContextConfiguration(loader=YarnDelegatingSmartContextLoader.class)
@MiniYarnCluster
public class ClusterBaseTestClassTests extends AbstractYarnClusterTests {
 ...
}

Above example shows the AbstractYarnClusterTests and how
ClusterBaseTestClassTests is prepared to be aware of a mini cluster.
YarnDelegatingSmartContextLoader offers same base functionality as the
default DelegatingSmartContextLoader in a spring-test package. One
additional thing what YarnDelegatingSmartContextLoader does is to
automatically handle running clusters and inject Configuration into the
application context.

@MiniYarnCluster(configName="yarnConfiguration", clusterName="yarnCluster", nodes=1, id="default")

Generally @MiniYarnCluster annotation allows you to define injected bean
names for mini cluster, its Configurations and a number of nodes you
like to have in a cluster.

Spring Hadoop Yarn testing is dependant of general facilities of
Spring Test framework meaning that everything what is cached during
the test are reuseable withing other tests. One need to understand that
if Hadoop mini cluster and its Configuration is injected into an
Application Context, caching happens on a mercy of a Spring Testing
meaning if a test Application Context is cached also mini cluster
instance is cached. While caching is always prefered, one needs to
understant that if tests are expecting vanilla environment to be
present, test context should be dirtied using @DirtiesContext
annotation.

Spring Test Context configuration works exactly like you’d work with
any other Spring Test based tests. It defaults on finding xml based
config and fall back to Annotation based config. For example if one is
working with JavaConfig a simple static configuration class can be
used within the test class.

For test cases where additional context configuration is not needed a
simple helper annotation @MiniYarnClusterTest can be used.

@MiniYarnClusterTest
public class ActivatorTests extends AbstractBootYarnClusterTests {
 @Test
 public void testSomething(){
 ...
 }
}

In above example a simple test case was created using annontation
@MiniYarnClusterTest. Behind a scenes it’s using junit and prepares a
YARN minicluster for you and injects needed configuration for you.

Drawback of using a composed annotation like this is that the
@Configuration is then applied from an annotation class itself and
user can’t no longer add a static @Configuration class in a test class
itself and expect Spring to pick it up from there which is a normal
behaviour in Spring testing support. If user wants to use a simple
composed annotation and use a custom @Configuration, one can simply
duplicate functionality of this @MiniYarnClusterTest annotation.

@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.TYPE)
@ContextConfiguration(loader=YarnDelegatingSmartContextLoader.class)
@MiniYarnCluster
public @interface CustomMiniYarnClusterTest {

 @Configuration
 public static class Config {
 @Bean
 public String myCustomBean() {
 return "myCustomBean";
 }
 }

}

@RunWith(SpringJUnit4ClassRunner.class)
@CustomMiniYarnClusterTest
public class ComposedAnnotationTests {

 @Autowired
 private ApplicationContext ctx;

 @Test
 public void testBean() {
 assertTrue(ctx.containsBean("myCustomBean"));
 }

}

In above example a custom composed annotation
@CustomMiniYarnClusterTest was created and then used within a test
class. This a great way to put your configuration is one place and still
keep your test class relatively non-verbose.

Multi Context Example

Let’s study a proper example of existing Spring Yarn application and how
this is tested during the build process. Multi Context Example is a
simple Spring Yarn based application which simply launches Application
Master and four Containers and withing those containers a custom code is
executed. In this case simply a log message is written.

In real life there are different ways to test whether Hadoop Yarn
application execution has been succesful or not. The obvious method
would be to check the application instance execution status reported by
Hadoop Yarn. Status of the execution doesn’t always tell the whole truth
so i.e. if application is about to write something into HDFS as an
output that could be used to check the proper outcome of an execution.

This example doesn’t write anything into HDFS and anyway it would be out
of scope of this document for obvious reason. It is fairly
straightforward to check file content from HDFS. One other interesting
method is simply to check to application log files that being the
Application Master and Container logs. Test methods can check exceptions
or expected log entries from a log files to determine whether test is
succesful or not.

In this chapter we don’t go through how Multi Context Example is
configured and what it actually does, for that read the documentation
about the examples. However we go through what needs to be done order to
test this example application using testing support offered by Spring
Hadoop.

In this example we gave instructions to copy library dependencies into
Hdfs and then those entries were used within resouce localizer to tell
Yarn to copy those files into Container working directory. During the
unit testing when mini cluster is launched there are no files present in
Hdfs because cluster is initialized from scratch. Furtunalety Spring
Hadoop allows you to copy files into Hdfs during the localization
process from a local file system where Application Context is executed.
Only thing we need is the actual library files which can be assembled
during the build process. Spring Hadoop Examples build system rely on
Gradle so collecting dependencies is an easy task.

<yarn:localresources>
 <yarn:hdfs path="/app/multi-context/*.jar"/>
 <yarn:hdfs path="/lib/*.jar"/>
</yarn:localresources>

Above configuration exists in application-context.xml and
appmaster-context.xml files. This is a normal application configuration
expecting static files already be present in Hdfs. This is usually done
to minimize latency during the application submission and execution.

<yarn:localresources>
 <yarn:copy src="file:build/dependency-libs/*" dest="/lib/"/>
 <yarn:copy src="file:build/libs/*" dest="/app/multi-context/"/>
 <yarn:hdfs path="/app/multi-context/*.jar"/>
 <yarn:hdfs path="/lib/*.jar"/>
</yarn:localresources>

Above example is from MultiContextTest-context.xml which provides the
runtime context configuration talking with mini cluster during the test
phase.

When we do context configuration for YarnClient during the testing phase
all we need to do is to add copy elements which will transfer needed
libraries into Hdfs before the actual localization process will fire up.
When those files are copied into Hdfs running in a mini cluster we’re
basically in a same point if using a real Hadoop cluster with existing
files.

	[image: [Note]]	Note
	
Running tests which depends on copying files into Hdfs it is mandatory
to use build system which is able to prepare these files for you. You
can’t do this within IDE’s which have its own ways to execute unit
tests.

The complete example of running the test, checking the application
execution status and finally checking the expected state of log files:

@ContextConfiguration(loader=YarnDelegatingSmartContextLoader.class)
@MiniYarnCluster
public class MultiContextTests extends AbstractYarnClusterTests {
 @Test
 @Timed(millis=70000)
 public void testAppSubmission() throws Exception {
 YarnApplicationState state = submitApplicationAndWait();
 assertNotNull(state);
 assertTrue(state.equals(YarnApplicationState.FINISHED));

 File workDir = getYarnCluster().getYarnWorkDir();

 PathMatchingResourcePatternResolver resolver = new PathMatchingResourcePatternResolver();
 String locationPattern = "file:" + workDir.getAbsolutePath() + "/**/*.std*";
 Resource[] resources = resolver.getResources(locationPattern);

 // appmaster and 4 containers should
 // make it 10 log files
 assertThat(resources, notNullValue());
 assertThat(resources.length, is(10));

 for (Resource res : resources) {
 File file = res.getFile();
 if (file.getName().endsWith("stdout")) {
 // there has to be some content in stdout file
 assertThat(file.length(), greaterThan(0l));
 if (file.getName().equals("Container.stdout")) {
 Scanner scanner = new Scanner(file);
 String content = scanner.useDelimiter("\\A").next();
 scanner.close();
 // this is what container will log in stdout
 assertThat(content, containsString("Hello from MultiContextBeanExample"));
 }
 } else if (file.getName().endsWith("stderr")) {
 // can't have anything in stderr files
 assertThat(file.length(), is(0l));
 }
 }
 }
}

Testing Boot Based Applications

In previous sections we showed a generic concepts of unit testing in
Spring Hadoop and Spring YARN. We also have a first class support
for testing Spring Boot based applications made for YARN.

@MiniYarnClusterTest
public class AppTests extends AbstractBootYarnClusterTests {

 @Test
 public void testApp() throws Exception {
 ApplicationInfo info = submitApplicationAndWait(ClientApplication.class, new String[0]);
 assertThat(info.getYarnApplicationState(), is(YarnApplicationState.FINISHED));

 List<Resource> resources = ContainerLogUtils.queryContainerLogs(
 getYarnCluster(), info.getApplicationId());
 assertThat(resources, notNullValue());
 assertThat(resources.size(), is(4));

 for (Resource res : resources) {
 File file = res.getFile();
 String content = ContainerLogUtils.getFileContent(file);
 if (file.getName().endsWith("stdout")) {
 assertThat(file.length(), greaterThan(0l));
 if (file.getName().equals("Container.stdout")) {
 assertThat(content, containsString("Hello from HelloPojo"));
 }
 } else if (file.getName().endsWith("stderr")) {
 assertThat("stderr with content: " + content, file.length(), is(0l));
 }
 }
 }

}

Let’s go through step by step what’s happening in this JUnit class. As
already mentioned earlier we don’t need any existing or running Hadoop
instances, instead testing framework from Spring YARN provides an easy
way to fire up a mini cluster where your tests can be run in an isolated
environment.

	
@ContextConfiguration together with YarnDelegatingSmartContextLoader
tells Spring to prepare a testing context for a mini cluster.
EmptyConfig is a simple helper class to use if there are no additional
configuration for tests.

	
@MiniYarnCluster tells Spring to start a Hadoop’s mini cluster having
components for HDFS and YARN. Hadoop’s configuration from this
minicluster is automatically injected into your testing context.

	
@MiniYarnClusterTest is basically a replacement of @MiniYarnCluster
and @ContextConfiguration having an empty context configuration.

	
AbstractBootYarnClusterTests is a class containing a lot of base
functionality what you need in your tests.

Then it’s time to deploy the application into a running minicluster

	
submitApplicationAndWait() method simply runs your ClientApplication
and expects it to an application deployment. On default it will wait 60
seconds an application to finish and returns an current state.

	
We make sure that we have a correct application state

We use ContainerLogUtils to find our container logs files from a
minicluster.

	
We assert count of a log files

	
We expect some specified content from log file

	
We expect stderr files to be empty

Part III. Developing Spring for Apache Hadoop Applications

This section provides some guidance on how one can use the Spring for
Apache Hadoop project in conjunction with other Spring projects,
starting with the Spring Framework itself, then Spring Batch, and then
Spring Integration.

Chapter 13. Guidance and Examples

Spring for Apache Hadoop provides integration with the Spring Framework
to create and run Hadoop MapReduce, Hive, and Pig jobs as well as work
with HDFS and HBase. If you have simple needs to work with Hadoop,
including basic scheduling, you can add the Spring for Apache Hadoop
namespace to your Spring based project and get going quickly using
Hadoop.

As the complexity of your Hadoop application increases, you may want to
use Spring Batch to regain on the complexity of developing a large
Hadoop application. Spring Batch provides an extension to the Spring
programming model to support common batch job scenarios characterized by
the processing of large amounts of data from flat files, databases and
messaging systems. It also provides a workflow style processing model,
persistent tracking of steps within the workflow, event notification, as
well as administrative functionality to start/stop/restart a workflow.
As Spring Batch was designed to be extended, Spring for Apache Hadoop
plugs into those extensibilty points, allowing for Hadoop related
processing to be a first class citizen in the Spring Batch processing
model.

Another project of interest to Hadoop developers is Spring Integration.
Spring Integration provides an extension of the Spring programming model
to support the well-known Enterprise
Integration Patterns. It enables lightweight messaging within
Spring-based applications and supports integration with external systems
via declarative adapters. These adapters are of particular interest to
Hadoop developers, as they directly support common Hadoop use-cases such
as polling a directory or FTP folder for the presence of a file or group
of files. Then once the files are present, a message is sent internally
to the application to do additional processing. This additional
processing can be calling a Hadoop MapReduce job directly or starting a
more complex Spring Batch based workflow. Similarly, a step in a Spring
Batch workflow can invoke functionality in Spring Integration, for
example to send a message though an email adapter.

No matter if you use the Spring Batch project with the Spring Framework
by itself or with additional extentions such as Spring Batch and Spring
Integration that focus on a particular domain, you will benefit from the
core values that Spring projects bring to the table, namely enabling
modularity, reuse and extensive support for unit and integration
testing.

Scheduling

Spring Batch integrates with a variety of job schedulers and is not a
scheduling framework. There are many good enterprise schedulers
available in both the commercial and open source spaces such as Quartz,
Tivoli, Control-M, etc. It is intended to work in conjunction with a
scheduler, not replace a scheduler. As a lightweight solution, you can
use Spring’s built in scheduling support that will give you cron-like
and other basic scheduling trigger functionality. See the
Task Execution
and Scheduling documention for more info. A middle ground it to use
Spring’s Quartz integration, see
Using
the OpenSymphony Quartz Scheduler for more information. The Spring
Batch distribution contains an example, but this documentation will be
updated to provide some more directed examples with Hadoop, check for
updates on the main web site of
Spring for Apache Hadoop.

Batch Job Listeners

Spring Batch lets you attach listeners at the job and step levels to
perform additional processing. For example, at the end of a job you can
perform some notification or perhaps even start another Spring Batch
job. As a brief example, implement the interface
JobExecutionListener
and configure it into the Spring Batch job as shown below.

<batch:job id="job1">
 <batch:step id="import" next="wordcount">
 <batch:tasklet ref="script-tasklet"/>
 </batch:step>

 <batch:step id="wordcount">
 <batch:tasklet ref="wordcount-tasklet" />
 </batch:step>

 <batch:listeners>
 <batch:listener ref="simpleNotificatonListener"/>
 </batch:listeners>

</batch:job>

<bean id="simpleNotificatonListener" class="com.mycompany.myapp.SimpleNotificationListener"/>

Chapter 14. Other Samples

The sample applications have been moved into their own repository so
they can be developed independently of the Spring for Apache Hadoop
release cycle. They can be found on GitHub
https://github.com/spring-projects/spring-hadoop-samples/.

The
wiki
page for the Spring for Apache Hadoop project has more documentation
for building and running the examples and there is also some
instructions in the README file of each example.

Part IV. Other Resources

In addition to this reference documentation, there are a number of other
resources that may help you learn how to use Hadoop and Spring
framework. These additional, third-party resources are enumerated in
this section.

Chapter 15. Useful Links

	
Spring for Apache Hadoop
Home Page

	
Spring Data Home Page

	
Spring Data Book Home Page

	
Spring Blog

	
Apache Hadoop Home Page

	
Pivotal HD Home Page

Part V. Appendices

Appendix A. Using Spring for Apache Hadoop with Amazon EMR

A popular option for creating on-demand Hadoop cluster is Amazon Elastic
Map Reduce or Amazon EMR
service. The user can through the command-line, API or a web UI
configure, start, stop and manage a Hadoop cluster in the cloud
without having to worry about the actual set-up or hardware resources
used by the cluster. However, as the setup is different then a locally
available cluster, so does the interaction between the application that
want to use it and the target cluster. This section provides information
on how to setup Amazon EMR with Spring for Apache Hadoop so the changes
between a using a local, pseudo-distributed or owned cluster and EMR are
minimal.

	[image: [Important]]	Important
	
This chapter assumes the user is familiar with Amazon EMR and the cost
associated with it and its related services - we strongly recommend
getting familiar with the official EMR documentation.

One of the big differences when using Amazon EMR versus a local cluster
is the lack of access of the file system server and the job tracker.
This means submitting jobs or reading and writing to the file-system
isn’t available out of the box - which is understandable for security
reasons. If the cluster would be open, if could be easily abused while
charging its rightful owner. However, it is fairly straight-forward to
get access to both the file system and the job tracker so the deployment
flow does not have to change.

Amazon EMR allows clusters to be created through the management console,
through the API or the command-line. This documentation will focus on
the
command-line
but the setup is not limited to it - feel free to adjust it according to
your needs or preference. Make sure to properly setup the
credentials
so that the S3 file-system can be properly accessed.

Start up the cluster

	[image: [Important]]	Important
	
Make sure you read the whole chapter before starting up the EMR cluster

A nice feature of Amazon EMR is starting a cluster for an indefinite
period. That is rather then submitting a job and creating the cluster
until it finished, one can create a cluster (along side a job) but
request to be kept alive even if there is no work for it. This is
easily
done through the --create --alive parameters:

./elastic-mapreduce --create --alive

The output will be similar to this:

Created job flow

One can verify the results in the console through the list command or
through the web management console. Depending on the cluster setup and
the user account, the Hadoop cluster initialization should be complete
anywhere between 1 to 5 minutes. The cluster is ready once its state
changes from STARTING/PROVISIONING to WAITING.

	[image: [Note]]	Note
	
By default, each newly created cluster has a new public IP that is not
typically reused. To simplify the setup, one can use
Amazon Elastic IP, that is a static, predefined IP, so that she knows before-hand the
cluster address. Refer to this
section inside the EMR documentation for more information. As an
alternative, one can use the EC2 API in combinatioon with the EMR API
to retrieve the private IP of address of the master node of her cluster
or even programatically configure and start the EMR cluster on demand
without having to hard-code the private IPs.

However, to remotely access the cluster from outside (as oppose to just
running a jar within the cluster), one needs to tweak the cluster
settings just a tiny bit - as mentioned below.

Open an SSH Tunnel as a SOCKS proxy

Due to security reasons, the EMR cluster is not exposed to the outside
world and is bound only to the machine internal IP. While you can open
up the firewall to allow access (note that you also have to do some port
forwarding since again, Hadoop is bound to the cluster internal IP
rather then all available network cards), it is recommended to use a SSH
tunnel instead. The SSH tunnel provides a secure connection between your
machine on the cluster preventing any snooping or man-in-the-middle
attacks. Further more it is quite easy to automate and be executed along
side the cluster creation, programmatically or through some script. The
Amazon EMR docs have dedicated sections on
SSH
Setup and Configuration and on opening a
SSH
Tunnel to the master node so please refer to them. Make sure to setup
the SSH tunnel as a SOCKS proxy, that is to redirect all calls to remote
ports - this is crucial when working with Hadoop (or other applications)
that use a range of ports for communication.

Configuring Hadoop to use a SOCKS proxy

Once the tunnel or the SOCKS proxy is in place, one needs to configure
Hadoop to use it. By default, Hadoop makes connections directly to its
target which is fine for regular use, but in this case, we need to use
the SOCKS proxy to pass through the firewall. One can do so through the
hadoop.rpc.socket.factory.class.default and hadoop.socks.server
properties:

hadoop.rpc.socket.factory.class.default=org.apache.hadoop.net.SocksSocketFactory
this configure assumes the SOCKS proxy is opened on local port 6666
hadoop.socks.server=localhost:6666

At this point, all Hadoop communication will go through the SOCKS proxy
at localhost on port 6666. The main advantage is that all the IPs,
domain names, ports are resolved on the 'remote' side of the proxy so
one can just start using the remote cluster IPs. However, only the
Hadoop client needs to use the proxy - to avoid having the client
configuration be read by the cluster nodes (which would mean the nodes
would try to use a SOCKS proxy on the remote side as well), make sure
the master node (and thus all its nodes) hadoop-site.xml marks the
default network setting as final (see this
blog
post for a detailed explanation):

<property>
 <name>hadoop.rpc.socket.factory.class.default</name>
 <value>org.apache.hadoop.net.StandardSocketFactory</value>
 <final>true</final>
</property>

Simply pass this configuration (and other options that you might have)
to the master node using a
bootstrap
action. One can find this file ready for usage, already deployed to
Amazon S3 at
s3://dist.springframework.org/release/SHDP/emr-settings.xml.
Simply pass the file to command-line used for firing up the EMR cluster:

./elastic-mapreduce --create --alive --bootstrap-action s3://elasticmapreduce/bootstrap-actions/configure-hadoop --args "--site-config-file,s3://dist.springframework.org/release/SHDP/emr-settings.xml"

	[image: [Note]]	Note
	
For security reasons, we recommend copying the 'emr-settings.xml' file
to one of your S3 buckets and use that location instead.

Accessing the file-system

Amazon EMR offers Simple Storage Service, also known as
S3 service, as means for durable read-write
storage for EMR. While the cluster is active, one can write additional
data to HDFS but unless S3 is used, the data will be lost once the
cluster shuts down. Note that when using an S3 location for the first
time, the proper
access
permissions needs to be setup. Accessing S3 is easier then the job
tracker - in fact the Hadoop distribution provides not one but two
file-system
implementations
for S3:

Table A.1. Hadoop S3 File Systems

	Name	URI Prefix	Access Method	Description
	S3 Native FS
	s3n://
	S3 Native
	Native access to S3. The recommended
file-system as the data is read/written in its native format and can be
used not just by Hadoop but also other systems without any translation.
The down-side is that it does not support large files (5GB) out of the
box (though there is a work-around through the
multipart
upload feature).

	S3 Block FS
	s3://
	Block Based
	The files are stored as blocks
(similar to the underlying structure in HDFS). This is somewhat more
efficient in terms of renames and file sizes but requires a dedicated
bucket and is not inter-operable with other S3 tools.

To access the data in S3 one can either use an HDFS file-system on top
of it, which requires no extra setup, or copy the data from S3 to the
HDFS cluster using manual tools,
distcp
with S3, its dedicated version
s3distcp,
Hadoop
DistributedCache
(which SHDP #hadoop:distributed-cache[supports] as well) or third-party
tools such as s3cmd.

For newbies and development we recommend accessing the S3 directly
through the File-System abstraction as in most cases, its performance is
close to that of the data inside the native HDFS. When dealing with data
that is read multiple times, copying the data from S3 locally inside the
cluster might improve performance but we advice running some performance
tests first.

Shutting down the cluster

Once the cluster is no longer needed for a longer period of time, one
can shut it down fairly
straight
forward:

./elastic-mapreduce --terminate

Note that the EMR cluster is billed by the hour and since the time is
rounded upwards, starting and shutting down the cluster repeateadly
might end up being more expensive then just keeping it alive. Consult
the
documentation
for more information.

Example configuration

To put it all together, to use Amazon EMR one can use the following
work-flow with SHDP:

	
Start an alive cluster using the bootstrap action to guarantees the
cluster does NOT use a socks proxy. Open a SSH tunnel, in SOCKS mode, to
the EMR cluster.

Start the cluster for an indefinite period. Once the server is up,
create an SSH tunnel,in SOCKS mode, to the remote cluster. This allows
the client to communicate directly with the remote nodes as if they are
part of the same network.This step does not have to be repeated unless
the cluster is terminated - one can (and should) submit multiple jobs to
it.

	
Configure SHDP

	
Once the cluster is up and the SSH tunnel/SOCKS proxy is in place,
point SHDP to the new configuration. The example below shows how the
configuration can look like:

hadoop-context.xml

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:hdp="http://www.springframework.org/schema/hadoop"
 xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context.xsd
 http://www.springframework.org/schema/hadoop http://www.springframework.org/schema/hadoop/spring-hadoop.xsd">

<!-- property placeholder backed by hadoop.properties -->
<context:property-placeholder location="hadoop.properties"/>

<!-- Hadoop FileSystem using a placeholder and emr.properties -->
<hdp:configuration properties-location="emr.properties" file-system-uri="${hd.fs}" job-history-uri="${hd.jh}/>

hadoop.properties

Amazon EMR
S3 bucket backing the HDFS S3 fs
hd.fs=s3n://my-working-bucket/
job tracker pointing to the EMR internal IP
hd.jh=10.123.123.123:10020

emr.properties

Amazon EMR
Use a SOCKS proxy
hadoop.rpc.socket.factory.class.default=org.apache.hadoop.net.SocksSocketFactory
hadoop.socks.server=localhost:6666

S3 credentials
for s3:// uri
fs.s3.awsAccessKeyId=XXXXXXXXXXXXXXXXXXXX
fs.s3.awsSecretAccessKey=XX

for s3n:// uri
fs.s3n.awsAccessKeyId=XXXXXXXXXXXXXXXXXXXX
fs.s3n.awsSecretAccessKey=XX

Spring Hadoop is now ready to talk to your Amazon EMR cluster. Try it
out!

	[image: [Note]]	Note
	
The inquisitive reader might wonder why the example above uses two
properties file, hadoop.properties and emr.properties
instead of just one. While one file is enough, the example tries to
isolate the EMR configuration into a separate configuration (especially
as it contains security credentials).

	
Shutdown the tunnel and the cluster

Once the jobs submitted are completed, unless new jobs are shortly
scheduled, one can shutdown the cluster. Just like the first step, this
is optional. Again, make sure you understand the billing process first.

Appendix B. Using Spring for Apache Hadoop with EC2/Apache Whirr

As mentioned above, those interested in using on-demand Hadoop clusters
can use Amazon Elastic Map Reduce (or Amazon EMR) service. An
alternative to that, for those that want maximum control over the
cluster, is to use Amazon Elastic Compute Cloud or
EC2. EC2 is in fact the service on top of
which Amazon EMR runs and that is, a resizable, configurable compute
capacity in the cloud.

	[image: [Important]]	Important
	
This chapter assumes the user is familiar with Amazon EC2 and the
cost associated with it and its related services - we strongly recommend
getting familiar with the official EC2 documentation .

Just like Amazon EMR, using EC2 means the Hadoop cluster (or whatever
service you run on it) runs in the cloud and thus 'development' access
to it, is different then when running the service in local network.
There are various tips and tools out there that can handle the initial
provisioning and configure the access to the cluster. Such a solution is
Apache Whirr which is a set of libraries for
running cloud services. Though it provides a Java API as well, one can
easily configure, start and stop services from the command-line.

Setting up the Hadoop cluster on EC2 with Apache Whirr

The Whirr
documentation
provides more detail on how to interact with the various cloud providers
out-there through Whirr. In case of EC2, one needs Java 6 (which is
required by Apache Hadoop), an account on EC2 and an SSH client
(available out of the box on *nix platforms and freely downloadable
(such as PuTTY) on Windows). Since Whirr does most of the heavy lifting,
one needs to tell Whirr what Cloud provider and account is used, either
by setting some environment properties or through the
~/.whirr/credentials file:

whirr.provider=aws-ec2
whirr.identity=your-aws-key
whirr.credential=your-aws-secret

Now instruct Whirr to configure a Hadoop cluster on EC2 - just add the
following properties to a configuration file (say hadoop.properties):

whirr.cluster-name=myhadoopcluster
whirr.instance-templates=1 hadoop-jobtracker+hadoop-namenode,1 hadoop-datanode+hadoop-tasktracker
whirr.provider=aws-ec2
whirr.private-key-file=${sys:user.home}/.ssh/id_rsa
whirr.public-key-file=${sys:user.home}/.ssh/id_rsa.pub

The configuration above assumes the SSH keys for your user have been
already generated. Now start your Hadoop cluster:

bin/whirr launch-cluster --config hadoop.properties

As with Amazon EMR, one cannot correct to the Hadoop cluster from
outside - however Whirr provides out of the box the feature to create an
SSH tunnel to create a SOCKS proxy (on port 6666). When a cluster is
created, Whirr creates a script to launch the cluster which may be found
in ~/.whirr/cluster-name. Run it as a follows (in a new terminal
window):

~/.whirr/myhadoopcluster/hadoop-proxy.sh

At this point, one can just the #emr:socks[SOCKS proxy] configuration
from the Amazon EMR section to configure the Hadoop client.

To destroy the cluster, one can use the Amazon EMR console or Whirr
itself:

bin/whirr destroy-cluster --config hadoop.properties

images/callouts/5.png

images/callouts/8.png

images/note.png

images/callouts/6.png

images/callouts/7.png

images/callouts/4.png

images/tip.png

images/callouts/9.png

images/callouts/10.png

images/warning.png

images/callouts/3.png

images/callouts/1.png

images/callouts/2.png

images/important.png

