Spring Data JPA - Reference
Documentation

Oliver Gierke, Thomas Darimont, Christoph Strobl

Version 1.10.0.M1, 2016-02-12

Table of Contents

=3 (P 1
1. Project metadataooiituun 2
2. DEPENACNCIES . . oottt e 3

2.1. Dependency management with Spring Boot........... ... i 4
2.2.Spring FrameworkK.o 4
3. Working with Spring Data Repositories.t 5
3.1 COTE COMCEPLS . vttt ittt ettt ettt ittt e 5
3.2.Query methodsot e 7
3.3. Defining repository interfaces e 8
3.3.1. Fine-tuning repository definition.ot 9
3.4. Defining query Methods.ooiiii e 9
3.4.1. Query looKup Strategiesttt e 10
3.4.2. QUETY CreatioN . ..o vttt ittt 10
3.4.3. PrOpPerty eXPreSSIONS ... uuuuuuiiet ettt ettt 11
3.4.4. Special parameter handling i e 12
3.4.5. LImiting qUery resullSooiiiiiiiiiii e 13
3.4.6. Streaming qUErY IeSUltS.t 13
3.4.7. ASYNC qQUETY TeSULLSo vt e 14
3.5. Creating repository INSTANCES.ottt i 15
3.5.1. XML configuration.ttt e 15
3.5.2.JavaContigo e 16
3.5.3. Standalone USaget e 16
3.6. Custom implementations for Spring Data repositoriesc.cooiiiiinneo... 17
3.6.1. Adding custom behavior to single repositoriesooiiiiiiiiiiiiia, 17
3.6.2. Adding custom behavior to all repositoriesooiiiiiiiiiiiiiiiiiia 19
3.7. SPring Data eXteNSIONS. . ..ottt ettt ettt 20
3.7.1. WED SUPPOTT . oottt e 20
3.7.2. RePOSItOTY POPUIATOTLS. . o v vttt e 27
3.7.3. Legacy Web SUPPOTITttt e 29

Reference DOCUMENtAtIONttt e et 31

4. JPA REPOSITOTIES . . o o oottt ettt ettt e e 32

4.1 INrOAUCTION .« ..t e 32
4.1.1. SPrING NAMESPACE . . oottt et ettt ettt ettt e et ettt ettt 32
4.1.2. Annotation based configuration i 33
4.2. Persisting entitiesttt i e 35
4.2.1. SaVING NTITIES. . . oottt 35
4.3.Query Methods.ottt 35

4.3.1. Query looKUP Strategles outiii it 35

4.3.2. QUETY CTEATION . . o vttt ettt ettt e ettt e e e e e e e et ittt et e i 35

4.3.3. Using JPA NamMedQUETIESottt ettt ettt e it eiianeans 37
4.3.4. USING @QUETY . . o ettt et ettt ettt e e e et e e e et e e e ie e iae e 38
4.3.5. Using Nnamed ParaImieterS vu ettt et ttie ettt ie e et iae e iae e 39
4.3.6. USING SPEL EXPIreSSIONS . . ettt ettt ettt ee ettt e e et iiee e eiae e 40
4.3.7. MOAIfYING QUETIES . . oo ettt ettt ettt e et e e e e e i 42
4.3.8. Applying query hints.ot e 43
4.3.9. Configuring Fetch- and LoadGraphst i 43

4.4, STOTEA PrOCEAUTES . . o o vttt ettt ettt ettt e e et e e e et e e e et ee e iee e eenns 44
4.5, SPECIfICAtIONS . ..ottt e 45
4.6. TranSacCtionalifyo vttt e e 47
4.6.1. Transactional query methods. ..ot i e 49

A7 LOCKII G . « ettt ettt e e e e e e 50
A8, AUAIING . oottt ettt e e e 51
4.8.1. BaASICS ottt e 51

4.9, JPA AUAITING . ..ttt e e e et e e 52
4.9.1. General auditing configurationc.oi ittt e 52

5. MISCEIIANEOUS.ttt e 55
5.1. Using JpaContext in custom implementationsoueiiiuinneeiinneeennnnnnnn 55
5.2. Merging PersiStenCe UNItSuuu ettt ettt et ettt 55
5.2.1. Classpath scanning for @Entity classes and JPA mapping files 56

5.3, CDI INEEEratioN . . .o ettt ettt et e e e e e e e e e 56

2N 0 13 4 Lo 1 - A 58
Appendix A: Namespace FefereNCettt ettt ettt 59
The <repositories /> elemMentttt e e e e 59
Appendix B: Populators namespace referenceoouuiiiiiiinet i 60
The <populator /> elementttt e e 60
Appendix C: Repository query KeyWordsouiuuinitiiee it iiiiee i 61
Supported qUEry KEYWOTIASttt ettt e e 61
Appendix D: Repository qUETY FetUIT tYPeS . o oottt t ettt ettt iee et iiee e iaeeann 63
Y00 0) oJo) u=To Mo LD T=) iy 20 (= 000w o1 2 =T PP 63
Appendix E: Frequently asked qUESTIONSittuint it i eiiaeeen 65
(670 40314410 0 65
INFTaStTUCTUTE . . oot e et et 65
AU . . .t e 65

APPENAIX F: GlOSSATY . .ottt e et e e e e 66

© 2008-2015 The original authors.

Copies of this document may be made for your own use and for
distribution to others, provided that you do not charge any fee for
such copies and further provided that each copy contains this
Copyright Notice, whether distributed in print or electronically.

NOTE

Preface

Chapter 1. Project metadata

 Version control - http://github.com/spring-projects/spring-data-jpa
* Bugtracker - https://jira.spring.io/browse/DATAJPA
* Release repository - https://repo.spring.io/libs-release

* Milestone repository - https://repo.spring.io/libs-milestone

Snapshot repository - https://repo.spring.io/libs-snapshot

http://github.com/spring-projects/spring-data-jpa
https://jira.spring.io/browse/DATAJPA
https://repo.spring.io/libs-release
https://repo.spring.io/libs-milestone
https://repo.spring.io/libs-snapshot

Chapter 2. Dependencies

Due to different inception dates of individual Spring Data modules, most of them carry different
major and minor version numbers. The easiest way to find compatible ones is by relying on the
Spring Data Release Train BOM we ship with the compatible versions defined. In a Maven project
youw’d declare this dependency in the <dependencyManagement /> section of your POM:

Example 1. Using the Spring Data release train BOM

<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.data</groupld>
<artifactId>spring-data-releasetrain</artifactId>
<version>${release-train}</version>
<scope>import</scope>
<type>pom</type>
</dependency>
</dependencies>
</dependencyManagement>

The current release train version is Hopper-M1. The train names are ascending alphabetically and
currently available ones are listed here. The version name follows the following pattern: ${name}-
${release} where release can be one of the following:

BUILD-SNAPSHOT - current snapshots

M1, M2 etc. - milestones

RCT, RC2 etc. - release candidates

RELEASE - GA release

SR1, SR2 etc. - service releases

A working example of using the BOMs can be found in our Spring Data examples repository. If
that’s in place declare the Spring Data modules you’d like to use without a version in the
<dependencies /> block.

Example 2. Declaring a dependency to a Spring Data module

<dependencies>
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-jpa</artifactld>
</dependency>
<dependencies>

https://github.com/spring-projects/spring-data-commons/wiki/Release-planning
https://github.com/spring-projects/spring-data-examples/tree/master/bom

2.1. Dependency management with Spring Boot

Spring Boot already selects a very recent version of Spring Data modules for you. In case you want
to upgrade to a newer version nonetheless, simply configure the property spring-data-
releasetrain.version to the train name and iteration you’d like to use.

2.2. Spring Framework

The current version of Spring Data modules require Spring Framework in version 4.1.9.RELEASE or
better. The modules might also work with an older bugfix version of that minor version. However,
using the most recent version within that generation is highly recommended.

Chapter 3. Working with Spring Data
Repositories

The goal of Spring Data repository abstraction is to significantly reduce the amount of boilerplate
code required to implement data access layers for various persistence stores.

Spring Data repository documentation and your module

This chapter explains the core concepts and interfaces of Spring Data
repositories. The information in this chapter is pulled from the Spring Data
Commons module. It uses the configuration and code samples for the Java
Persistence API (JPA) module. Adapt the XML namespace declaration and the

IMPORTANT types to be extended to the equivalents of the particular module that you are
using. Namespace reference covers XML configuration which is supported
across all Spring Data modules supporting the repository API, Repository
query keywords covers the query method keywords supported by the
repository abstraction in general. For detailed information on the specific
features of your module, consult the chapter on that module of this
document.

3.1. Core concepts

The central interface in Spring Data repository abstraction is Repository (probably not that much of
a surprise). It takes the domain class to manage as well as the id type of the domain class as type
arguments. This interface acts primarily as a marker interface to capture the types to work with
and to help you to discover interfaces that extend this one. The CrudRepository provides
sophisticated CRUD functionality for the entity class that is being managed.

Example 3. CrudRepository interface
public interface CrudRepository<T, ID extends Serializable>

extends Repository<T, ID> {

<S extends T> S save(S entity); @
T findOne(ID primaryKey); @
Iterable<T> findAl1l(); ©
Long count(); @
void delete(T entity); ®
boolean exists(ID primaryKey); ®

// -+ more functionality omitted.

@ Saves the given entity.

@ Returns the entity identified by the given id.
® Returns all entities.

@ Returns the number of entities.

® Deletes the given entity.

® Indicates whether an entity with the given id exists.

We also provide persistence technology-specific abstractions like e.g. JpaRepository
or MongoRepository. Those interfaces extend CrudRepository and expose the
capabilities of the underlying persistence technology in addition to the rather
generic persistence technology-agnostic interfaces like e.g. CrudRepository.

NOTE

On top of the CrudRepository there is a PagingAndSortingRepository abstraction that adds additional
methods to ease paginated access to entities:

Example 4. PagingAndSortingRepository
public interface PagingAndSortingRepository<T, ID extends Serializable>
extends CrudRepository<T, ID> {
Iterable<T> findAl1l(Sort sort);

Page<T> findAl1(Pageable pageable);
}

Accessing the second page of User by a page size of 20 you could simply do something like this:

PagingAndSortingRepository<User, Long> repository = // -+ get access to a bean
Page<User> users = repository.findAll(new PageRequest(1, 20));

In addition to query methods, query derivation for both count and delete queries, is available.

Example 5. Derived Count Query

public interface UserRepository extends CrudRepository<User, Long> {

Long countBylLastname(String lastname);

}

Example 6. Derived Delete Query

public interface UserRepository extends CrudRepository<User, Long> {
Long deleteBylLastname(String lastname);

List<User> removeBylLastname(String lastname);

3.2. Query methods

Standard CRUD functionality repositories usually have queries on the underlying datastore. With
Spring Data, declaring those queries becomes a four-step process:

1. Declare an interface extending Repository or one of its subinterfaces and type it to the domain
class and ID type that it will handle.

interface PersonRepository extends Repository<Person, Long> { -+ }
2. Declare query methods on the interface.

interface PersonRepository extends Repository<Person, Long> {
List<Person> findByLastname(String lastname);

}

3. Set up Spring to create proxy instances for those interfaces. Either via JavaConfig:

import org.springframework.data.jpa.repository.config.Enable]paRepositories;

@EnablelpaRepositories
class Config {}

or via XML configuration:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:jpa="http://www.springframework.org/schema/data/jpa"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/data/jpa
http://www.springframework.org/schema/data/jpa/spring-jpa.xsd">

<jpa:repositories base-package="com.acme.repositories"/>

</beans>

The JPA namespace is used in this example. If you are using the repository abstraction for any
other store, you need to change this to the appropriate namespace declaration of your store
module which should be exchanging jpa in favor of, for example, mongodb.

Also, note that the JavaConfig variant doesn’t configure a package explictly as the package of the
annotated class is used by default. To customize the package to scan use one of the
basePackage: - attribute of the data-store specific repository @Enable::--annotation.

4. Get the repository instance injected and use it.

public class SomeClient {

@Autowired
private PersonRepository repository;

public void doSomething() {
List<Person> persons = repository.findByLastname("Matthews");
}
}

The sections that follow explain each step in detail.

3.3. Defining repository interfaces

As a first step you define a domain class-specific repository interface. The interface must extend
Repository and be typed to the domain class and an ID type. If you want to expose CRUD methods

for that domain type, extend CrudRepository instead of Repository.

3.3.1. Fine-tuning repository definition

Typically, your repository interface will extend Repository, CrudRepository or
PagingAndSortingRepository. Alternatively, if you do not want to extend Spring Data interfaces, you
can also annotate your repository interface with @RepositoryDefinition. Extending CrudRepository
exposes a complete set of methods to manipulate your entities. If you prefer to be selective about
the methods being exposed, simply copy the ones you want to expose from CrudRepository into your
domain repository.

NOTE This allows you to define your own abstractions on top of the provided Spring Data
Repositories functionality.

Example 7. Selectively exposing CRUD methods

interface MyBaseRepository<T, ID extends Serializable> extends Repository<T, ID> {
T findOne(ID id);

T save(T entity);
}

interface UserRepository extends MyBaseRepository<User, Long> {
User findByEmailAddress(EmailAddress emailAddress);
}

In this first step you defined a common base interface for all your domain repositories and exposed
findOne(---) as well as save(::r).These methods will be routed into the base repository
implementation of the store of your choice provided by Spring Data ,e.g. in the case if JPA
SimpleJpaRepository, because they are matching the method signatures in CrudRepository. So the
UserRepository will now be able to save users, and find single ones by id, as well as triggering a
query to find Users by their email address.

Note, that the intermediate repository interface is annotated with @NoRepositoryBean.
NOTE Make sure you add that annotation to all repository interfaces that Spring Data
should not create instances for at runtime.

3.4. Defining query methods

The repository proxy has two ways to derive a store-specific query from the method name. It can
derive the query from the method name directly, or by using a manually defined query. Available
options depend on the actual store. However, there’s got to be a strategy that decides what actual
query is created. Let’s have a look at the available options.

3.4.1. Query lookup strategies

The following strategies are available for the repository infrastructure to resolve the query. You can
configure the strategy at the namespace through the query-lookup-strategy attribute in case of XML
configuration or via the querylLookupStrategy attribute of the Enable${store}Repositories annotation
in case of Java config. Some strategies may not be supported for particular datastores.

» CREATE attempts to construct a store-specific query from the query method name. The general
approach is to remove a given set of well-known prefixes from the method name and parse the
rest of the method. Read more about query construction in Query creation.

» USE_DECLARED_QUERY tries to find a declared query and will throw an exception in case it can’t
find one. The query can be defined by an annotation somewhere or declared by other means.
Consult the documentation of the specific store to find available options for that store. If the
repository infrastructure does not find a declared query for the method at bootstrap time, it
fails.

o CREATE_IF_NOT_FOUND (default) combines CREATE and USE_DECLARED_QUERY. It looks up a declared
query first, and if no declared query is found, it creates a custom method name-based query.
This is the default lookup strategy and thus will be used if you do not configure anything
explicitly. It allows quick query definition by method names but also custom-tuning of these
queries by introducing declared queries as needed.

3.4.2. Query creation

The query builder mechanism built into Spring Data repository infrastructure is useful for building
constraining queries over entities of the repository. The mechanism strips the prefixes find---By,
read---By, query---By, count--'By, and get::-By from the method and starts parsing the rest of it. The
introducing clause can contain further expressions such as a Distinct to set a distinct flag on the
query to be created. However, the first By acts as delimiter to indicate the start of the actual criteria.
At a very basic level you can define conditions on entity properties and concatenate them with And
and Or.

10

Example 8. Query creation from method names

public interface PersonRepository extends Repository<User, Long> {

List<Person> findByEmailAddressAndLastname(EmailAddress emailAddress, String
lastname);

// Enables the distinct flag for the query

List<Person> findDistinctPeopleBylLastnameOrFirstname(String lastname, String
firstname);

List<Person> findPeopleDistinctBylLastnameOrFirstname(String lastname, String
firstname);

// Enabling ignoring case for an individual property

List<Person> findByLastnameIgnoreCase(String lastname);

// Enabling ignoring case for all suitable properties

List<Person> findByLastnameAndFirstnameAllIgnoreCase(String lastname, String
firstname);

// Enabling static ORDER BY for a query
List<Person> findByLastnameOrderByFirstnameAsc(String lastname);
List<Person> findByLastnameOrderByFirstnameDesc(String lastname);

}

The actual result of parsing the method depends on the persistence store for which you create the
query. However, there are some general things to notice.

* The expressions are usually property traversals combined with operators that can be
concatenated. You can combine property expressions with AND and OR. You also get support for
operators such as Between, LessThan, GreaterThan, Like for the property expressions. The
supported operators can vary by datastore, so consult the appropriate part of your reference
documentation.

* The method parser supports setting an IgnoreCase flag for individual properties (for example,
findByLastnameIgnoreCase(::+)) or for all properties of a type that support ignoring case (usually
String instances, for example, findByLastnameAndFirstnameAllIgnoreCase(::-)). Whether ignoring
cases is supported may vary by store, so consult the relevant sections in the reference
documentation for the store-specific query method.

* You can apply static ordering by appending an OrderBy clause to the query method that
references a property and by providing a sorting direction (Asc or Desc). To create a query
method that supports dynamic sorting, see Special parameter handling.

3.4.3. Property expressions

Property expressions can refer only to a direct property of the managed entity, as shown in the
preceding example. At query creation time you already make sure that the parsed property is a
property of the managed domain class. However, you can also define constraints by traversing
nested properties. Assume a Person has an Address with a ZipCode. In that case a method name of

11

List<Person> findByAddressZipCode(ZipCode zipCode);

creates the property traversal x.address.zipCode. The resolution algorithm starts with interpreting
the entire part (AddressZipCode) as the property and checks the domain class for a property with
that name (uncapitalized). If the algorithm succeeds it uses that property. If not, the algorithm splits
up the source at the camel case parts from the right side into a head and a tail and tries to find the
corresponding property, in our example, AddressZip and Code. If the algorithm finds a property with
that head it takes the tail and continue building the tree down from there, splitting the tail up in the
way just described. If the first split does not match, the algorithm move the split point to the left
(Address, ZipCode) and continues.

Although this should work for most cases, it is possible for the algorithm to select the wrong
property. Suppose the Person class has an addressZip property as well. The algorithm would match
in the first split round already and essentially choose the wrong property and finally fail (as the
type of addressZip probably has no code property).

To resolve this ambiguity you can use _ inside your method name to manually define traversal
points. So our method name would end up like so:

List<Person> findByAddress_ZipCode(ZipCode zipCode);

As we treat underscore as a reserved character we strongly advise to follow standard Java naming
conventions (i.e. not using underscores in property names but camel case instead).

3.4.4. Special parameter handling

To handle parameters in your query you simply define method parameters as already seen in the
examples above. Besides that the infrastructure will recognize certain specific types like Pageable
and Sort to apply pagination and sorting to your queries dynamically.

Example 9. Using Pageable, Slice and Sort in query methods

Page<User> findBylLastname(String lastname, Pageable pageable);
Slice<User> findByLastname(String lastname, Pageable pageable);
List<User> findByLastname(String lastname, Sort sort);

List<User> findBylLastname(String lastname, Pageable pageable);

The first method allows you to pass an org.springframework.data.domain.Pageable instance to the
query method to dynamically add paging to your statically defined query. A Page knows about the
total number of elements and pages available. It does so by the infrastructure triggering a count
query to calculate the overall number. As this might be expensive depending on the store used,
Slice can be used as return instead. A Slice only knows about whether there’s a next Slice

12

available which might be just sufficient when walking thought a larger result set.

Sorting options are handled through the Pageable instance too. If you only need sorting, simply add
an org.springframework.data.domain.Sort parameter to your method. As you also can see, simply
returning a List is possible as well. In this case the additional metadata required to build the actual
Page instance will not be created (which in turn means that the additional count query that would
have been necessary not being issued) but rather simply restricts the query to look up only the
given range of entities.

To find out how many pages you get for a query entirely you have to trigger an
NOTE additional count query. By default this query will be derived from the query you
actually trigger.

3.4.5. Limiting query results

The results of query methods can be limited via the keywords first or top, which can be used
interchangeably. An optional numeric value can be appended to top/first to specify the maximum
result size to be returned. If the number is left out, a result size of 1 is assumed.

Example 10. Limiting the result size of a query with Top and First

User findFirstByOrderByLastnameAsc();

User findTopByOrderByAgeDesc();

Page<User> queryFirst10ByLastname(String lastname, Pageable pageable);
Slice<User> findTop3BylLastname(String lastname, Pageable pageable);
List<User> findFirst10BylLastname(String lastname, Sort sort);

List<User> findTop10ByLastname(String lastname, Pageable pageable);

The limiting expressions also support the Distinct keyword. Also, for the queries limiting the result
set to one instance, wrapping the result into an Optional is supported.

If pagination or slicing is applied to a limiting query pagination (and the calculation of the number
of pages available) then it is applied within the limited result.

Note that limiting the results in combination with dynamic sorting via a Sort
NOTE parameter allows to express query methods for the 'K' smallest as well as for the 'K'
biggest elements.

3.4.6. Streaming query results

The results of query methods can be processed incrementally by using a Java 8 Stream<T> as return
type. Instead of simply wrapping the query results in a Stream data store specific methods are used

13

to perform the streaming.

Example 11. Stream the result of a query with Java 8 Stream<T>

("select u from User u")
Stream<User> findA11ByCustomQueryAndStream();

Stream<User> readAl1ByFirstnameNotNull();

("select u from User u")
Stream<User> streamAl1Paged(Pageable pageable);

A Stream potentially wraps underlying data store specific resources and must
NOTE therefore be closed after usage. You can either manually close the Stream using the
close() method or by using a Java 7 try-with-resources block.

Example 12. Working with a Stream<T> result in a try-with-resources block

try (Stream<User> stream = repository.findA11ByCustomQueryAndStream()) {
stream.forEach(::);

}

NOTE Not all Spring Data modules currently support Stream<T> as a return type.

3.4.7. Async query results

Repository queries can be executed asynchronously using Spring’s asynchronous method execution
capability. This means the method will return immediately upon invocation and the actual query
execution will occur in a task that has been submitted to a Spring TaskExecutor.

Future<User> findByFirstname(String firstname); ©)
CompletableFuture<User> findOneByFirstname(String firstname); @

ListenableFuture<User> findOneBylLastname(String lastname); ®

@ Use java.util.concurrent.Future as return type.
@ Use aJava 8 java.util.concurrent.CompletableFuture as return type.

® Use aorg.springframework.util.concurrent.ListenableFuture as return type.

14

http://docs.spring.io/spring/docs/current/spring-framework-reference/html#scheduling
http://docs.spring.io/spring/docs/current/spring-framework-reference/html#scheduling

3.5. Creating repository instances

In this section you create instances and bean definitions for the repository interfaces defined. One
way to do so is using the Spring namespace that is shipped with each Spring Data module that
supports the repository mechanism although we generally recommend to use the Java-Config style
configuration.

3.5.1. XML configuration

Each Spring Data module includes a repositories element that allows you to simply define a base
package that Spring scans for you.

Example 13. Enabling Spring Data repositories via XML

<?xml version="1.0" encoding="UTF-8"7>
<beans:beans xmlns:beans="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://www.springframework.org/schema/data/jpa"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/data/jpa
http://www.springframework.org/schema/data/jpa/spring-jpa.xsd">

<repositories base-package="com.acme.repositories" />

</beans:beans>

In the preceding example, Spring is instructed to scan com.acme.repositories and all its sub-
packages for interfaces extending Repository or one of its sub-interfaces. For each interface found,
the infrastructure registers the persistence technology-specific FactoryBean to create the
appropriate proxies that handle invocations of the query methods. Each bean is registered under a
bean name that is derived from the interface name, so an interface of UserRepository would be
registered under userRepository. The base-package attribute allows wildcards, so that you can define
a pattern of scanned packages.

Using filters

By default the infrastructure picks up every interface extending the persistence technology-specific
Repository sub-interface located under the configured base package and creates a bean instance for
it. However, you might want more fine-grained control over which interfaces bean instances get
created for. To do this you use <include-filter /> and <exclude-filter /> elements inside
<repositories />. The semantics are exactly equivalent to the elements in Spring’s context
namespace. For details, see Spring reference documentation on these elements.

For example, to exclude certain interfaces from instantiation as repository, you could use the
following configuration:

15

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/beans.html#beans-scanning-filters

Example 14. Using exclude-filter element

<repositories base-package="com.acme.repositories">
<context:exclude-filter type="regex" expression=".*SomeRepository" />
</repositories>

This example excludes all interfaces ending in SomeRepository from being instantiated.

3.5.2. JavaConfig

The repository infrastructure can also be triggered using a store-specific
@Enable§{store}Repositories annotation on a JavaConfig class. For an introduction into Java-based
configuration of the Spring container, see the reference documentation. [1: JavaConfig in the Spring
reference documentation]

A sample configuration to enable Spring Data repositories looks something like this.

Example 15. Sample annotation based repository configuration

("com.acme.repositories")
class ApplicationConfiguration {

public EntityManagerFactory entityManagerFactory() {
/]
}
¥

The sample uses the JPA-specific annotation, which you would change according to
the store module you actually use. The same applies to the definition of the
EntityManagerFactory bean. Consult the sections covering the store-specific
configuration.

NOTE

3.5.3. Standalone usage

You can also use the repository infrastructure outside of a Spring container, e.g. in CDI
environments. You still need some Spring libraries in your classpath, but generally you can set up
repositories programmatically as well. The Spring Data modules that provide repository support
ship a persistence technology-specific RepositoryFactory that you can use as follows.

16

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/beans.html#beans-java
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/beans.html#beans-java

Example 16. Standalone usage of repository factory

RepositoryFactorySupport factory = --+ // Instantiate factory here
UserRepository repository = factory.getRepository(UserRepository.class);

3.6. Custom implementations for Spring Data
repositories

Often it is necessary to provide a custom implementation for a few repository methods. Spring Data
repositories easily allow you to provide custom repository code and integrate it with generic CRUD
abstraction and query method functionality.

3.6.1. Adding custom behavior to single repositories

To enrich a repository with custom functionality you first define an interface and an
implementation for the custom functionality. Use the repository interface you provided to extend
the custom interface.

Example 17. Interface for custom repository functionality

interface UserRepositoryCustom {
public void someCustomMethod(User user);

}

Example 18. Implementation of custom repository functionality

class UserRepositoryImpl implements UserRepositoryCustom {

public void someCustomMethod(User user) {
// Your custom implementation

}
}

NOTE The most important bit for the class to be found is the Impl postfix of the name on it
compared to the core repository interface (see below).

The implementation itself does not depend on Spring Data and can be a regular Spring bean. So you

can use standard dependency injection behavior to inject references to other beans like a

JdbTemplate, take part in aspects, and so on.

17

Example 19. Changes to the your basic repository interface

interface UserRepository extends CrudRepository<User, Long>, UserRepositoryCustom

{

// Declare query methods here

}

Let your standard repository interface extend the custom one. Doing so combines the CRUD and
custom functionality and makes it available to clients.

Configuration

If you use namespace configuration, the repository infrastructure tries to autodetect custom
implementations by scanning for classes below the package we found a repository in. These classes
need to follow the naming convention of appending the namespace element’s attribute repository-
impl-postfix to the found repository interface name. This postfix defaults to Impl.

Example 20. Configuration example

<repositories base-package="com.acme.repository" />

<repositories base-package="com.acme.repository" repository-impl-postfix="FooBar"
/>

The first configuration example will try to look up a class com.acme.repository.UserRepositoryImpl
to act as custom repository implementation, whereas the second example will try to lookup
com.acme.repository.UserRepositoryFooBar.

Manual wiring

The approach just shown works well if your custom implementation uses annotation-based
configuration and autowiring only, as it will be treated as any other Spring bean. If your custom
implementation bean needs special wiring, you simply declare the bean and name it after the
conventions just described. The infrastructure will then refer to the manually defined bean
definition by name instead of creating one itself.

Example 21. Manual wiring of custom implementations

<repositories base-package="com.acme.repository" />
<beans:bean id="userRepositoryImpl" class="--+">

<!-- further configuration -->
</beans:bean>

18

3.6.2. Adding custom behavior to all repositories

The preceding approach is not feasible when you want to add a single method to all your repository
interfaces. To add custom behavior to all repositories, you first add an intermediate interface to
declare the shared behavior.

Example 22. An interface declaring custom shared behavior

public interface MyRepository<T, ID extends Serializable>
extends PagingAndSortingRepository<T, ID> {

void sharedCustomMethod(ID id);
}

Now your individual repository interfaces will extend this intermediate interface instead of the
Repository interface to include the functionality declared. Next, create an implementation of the
intermediate interface that extends the persistence technology-specific repository base class. This
class will then act as a custom base class for the repository proxies.

Example 23. Custom repository base class

public class MyRepositoryImpl<T, ID extends Serializable>
extends SimpleJpaRepository<T, ID> implements MyRepository<T, ID> {

private final EntityManager entityManager;

public MyRepositoryImpl(JpaEntityInformation entityInformation,
EntityManager entityManager) {
super(entityInformation, entityManager);

// Keep the EntityManager around to used from the newly introduced methods.
this.entityManager = entityManager;

}

public void sharedCustomMethod(ID id) {
// implementation goes here
}
}

The class needs to have a constructor of the super class which the store-specific
repository factory implementation is using. In case the repository base class
has multiple constructors, override the one taking an EntityInformation plus a
store specific infrastructure object (e.g. an EntityManager or a template class).

WARNING

The default behavior of the Spring <repositories /> namespace is to provide an implementation for

19

all interfaces that fall under the base-package. This means that if left in its current state, an
implementation instance of MyRepository will be created by Spring. This is of course not desired as it
is just supposed to act as an intermediary between Repository and the actual repository interfaces
you want to define for each entity. To exclude an interface that extends Repository from being
instantiated as a repository instance, you can either annotate it with @NoRepositoryBean (as seen
above) or move it outside of the configured base-package.

The final step is to make the Spring Data infrastructure aware of the customized repository base
class. In JavaConfig this is achieved by using the repositoryBaseClass attribute of the @Enable
---Repositories annotation:

Example 24. Configuring a custom repository base class using JavaConfig

(repositoryBaseClass = MyRepositoryImpl.class)
class ApplicationConfiguration { -+ }

A corresponding attribute is available in the XML namespace.
Example 25. Configuring a custom repository base class using XML

<repositories base-package="com.acme.repository"
repository-base-class=":--.MyRepositoryImpl" />

3.7. Spring Data extensions

This section documents a set of Spring Data extensions that enable Spring Data usage in a variety of
contexts. Currently most of the integration is targeted towards Spring MVC.

3.7.1. Web support

This section contains the documentation for the Spring Data web support as it is
implemented as of Spring Data Commons in the 1.6 range. As it the newly
introduced support changes quite a lot of things we kept the documentation of the
former behavior in Legacy web support.

NOTE

Spring Data modules ships with a variety of web support if the module supports the repository
programming model. The web related stuff requires Spring MVC JARs on the classpath, some of
them even provide integration with Spring HATEOAS [2: Spring HATEOAS -
https://github.com/SpringSource/spring-hateoas]. In general, the integration support is enabled by
using the @EnableSpringDatallebSupport annotation in your JavaConfig configuration class.

20

https://github.com/SpringSource/spring-hateoas

Example 26. Enabling Spring Data web support

@Configuration
@EnableWebMvc
@EnableSpringDataWebSupport
class WebConfiguration { }

The @EnableSpringDataWebSupport annotation registers a few components we will discuss in a bit. It
will also detect Spring HATEOAS on the classpath and register integration components for it as well
if present.

Alternatively, if you are using XML configuration, register either SpringDataWebSupport or
HateoasAwareSpringDataWebSupport as Spring beans:

Example 27. Enabling Spring Data web support in XML

<bean class="org.springframework.data.web.config.SpringDataWebConfiguration" />

<!-- If you're using Spring HATEOAS as well register this one *instead* of the
former -->

<bean class=
"org.springframework.data.web.config.HateoasAwareSpringDataWebConfiguration" />

Basic web support

The configuration setup shown above will register a few basic components:

* A DomainClassConverter to enable Spring MVC to resolve instances of repository managed
domain classes from request parameters or path variables.

* HandlerMethodArgumentResolver implementations to let Spring MVC resolve Pageable and Sort
instances from request parameters.

DomainClassConverter

The DomainClassConverter allows you to use domain types in your Spring MVC controller method
signatures directly, so that you don’t have to manually lookup the instances via the repository:

21

Example 28. A Spring MVC controller using domain types in method signatures

("/users")
public class UserController {

(ll/{_id}")
public String showUserForm(("id") User user, Model model) {

model.addAttribute("user", user);
return "userForm";

}
}

As you can see the method receives a User instance directly and no further lookup is necessary. The
instance can be resolved by letting Spring MVC convert the path variable into the id type of the
domain class first and eventually access the instance through calling findOne(::+) on the repository
instance registered for the domain type.

Currently the repository has to implement CrudRepository to be eligible to be

NOTE
discovered for conversion.

HandlerMethodArgumentResolvers for Pageable and Sort

The configuration snippet above also registers a PageableHandlerMethodArgumentResolver as well as
an instance of SortHandlerMethodArgumentResolver. The registration enables Pageable and Sort being
valid controller method arguments

Example 29. Using Pageable as controller method argument

("/users")
public class UserController {

UserRepository repository;

public String showUsers(Model model, Pageable pageable) {

model.addAttribute("users", repository.findAll(pageable));
return "users";

}
}

This method signature will cause Spring MVC try to derive a Pageable instance from the request
parameters using the following default configuration:

22

Table 1. Request parameters evaluated for Pageable instances
P3age Page you want to retrieve, 0 indexed and defaults to 0.
size Size of the page you want to retrieve, defaults to 20.

sort Properties that should be sorted by in the format property,property(,ASC|DESC). Default sort
direction is ascending. Use multiple sort parameters if you want to switch directions, e.g.
?sort=firstname&sort=1astname,asc.

To customize this behavior extend either SpringDataWebConfiguration or the HATEOAS-enabled
equivalent and override the pageableResolver() or sortResolver() methods and import your
customized configuration file instead of using the @Enable-annotation.

In case you need multiple Pageable or Sort instances to be resolved from the request (for multiple
tables, for example) you can use Spring’s @Qualifier annotation to distinguish one from another.
The request parameters then have to be prefixed with ${qualifier}_. So for a method signature like
this:

public String showUsers(Model model,
("foo") Pageable first,
("bar") Pageable second) { '+ }

you have to populate foo_page and bar_page etc.

The default Pageable handed into the method is equivalent to a new PageRequest(@, 20) but can be
customized using the @PageableDefaults annotation on the Pageable parameter.

Hypermedia support for Pageables

Spring HATEOAS ships with a representation model class PagedResources that allows enriching the
content of a Page instance with the necessary Page metadata as well as links to let the clients easily
navigate the pages. The conversion of a Page to a PagedResources is done by an implementation of
the Spring HATEOAS ResourceAssembler interface, the PagedResourcesAssembler.

23

Example 30. Using a PagedResourcesAssembler as controller method argument

class PersonController {
PersonRepository repository;

(value = "/persons", method = RequestMethod.GET)
HttpEntity<PagedResources<Person>> persons(Pageable pageable,
PagedResourcesAssembler assembler) {

Page<Person> persons = repository.findAll(pageable);
return new ResponseEntity<>(assembler.toResources(persons), HttpStatus.0K);

}
}

Enabling the configuration as shown above allows the PagedResourcesAssembler to be used as
controller method argument. Calling toResources(::) on it will cause the following:

» The content of the Page will become the content of the PagedResources instance.

* The PagedResources will get a PageMetadata instance attached populated with information form
the Page and the underlying PageRequest.

* The PagedResources gets prev and next links attached depending on the page’s state. The links
will point to the URI the method invoked is mapped to. The pagination parameters added to the
method will match the setup of the PageableHandlerMethodArgumentResolver to make sure the
links can be resolved later on.

Assume we have 30 Person instances in the database. You can now trigger a request GET
http://localhost:8080/persons and youwll see something similar to this:

{ "links" : [{ "rel" : "next",
"href" : "http://localhost:8080/persons?page=1&size=20 }

1),
"content" : [

=+ // 20 Person instances rendered here
Il
"pageMetadata” : {

"size" : 20,

"totalElements" : 30,

"totalPages" : 2,

"number" : 0

You see that the assembler produced the correct URI and also picks up the default configuration
present to resolve the parameters into a Pageable for an upcoming request. This means, if you

24

http://localhost:8080/persons

change that configuration, the links will automatically adhere to the change. By default the
assembler points to the controller method it was invoked in but that can be customized by handing
in a custom Link to be used as base to build the pagination links to overloads of the
PagedResourcesAssembler.toResource(') method.

QueryDSL web support

For those stores having QueryDSL integration it is possible to derive queries from the attributes
contained in a Request query string.

This means that given the User object from previous samples a query string

?firstname=Dave&lastname=Matthews

can be resolved to

QUser.user.firstname.eq("Dave").and(QUser.user.lastname.eq("Matthews"))

using the Queryds1PredicateArgumentResolver.

NOTE The feature will be automatically enabled along @EnableSpringDataWebSupport when
Querydsl is found on the classpath.

Adding a @QuerydslPredicate to the method signature will provide a ready to use Predicate which

can be executed via the QueryDs1PredicateExecutor.

Type information is typically resolved from the methods return type. Since those

TIP information does not necessarily match the domain type it might be a good idea to use
the root attribute of Queryds1Predicate.

25

http://www.querydsl.com/

@Controller
class UserController {

@Autowired UserRepository repository;

@RequestMapping(value = "/", method = RequestMethod.GET)

String index(Model model, @QuerydsliPredicate(root = User.class) Predicate
predicate, @

Pageable pageable, @RequestParam MultiValueMap<String, String>
parameters) {

model.addAttribute("users", repository.findAll(predicate, pageable));

return "index";
}
}

@ Resolve query string arguments to matching Predicate for User.

The default binding is as follows:

* Object on simple properties as eq.
* Object on collection like properties as contains.

* Collection on simple properties as in.

Those bindings can be customized via the bindings attribute of @Queryds1Predicate or by making use
of Java 8 default methods adding the Queryds1BinderCustomizer to the repository interface.

26

interface UserRepository extends CrudRepository<User, String>,
QueryDs1PredicateExecutor<User>,

@

Queryds1BinderCustomizer<QUser> {

@

default public void customize(QuerydslBindings bindings, QUser user) {

bindings.bind(user.username).first((path, value) -> path.contains(value))

®
bindings.bind(String.class)
.first((StringPath path, String value) -> path.containsIgnoreCase(value));
@
bindings.excluding(user.password);
}
}

@ QueryDs1PredicateExecutor provides access to specific finder methods for Predicate.

@ Queryds1BinderCustomizer defined on the repository interface will be automatically picked
up and shortcuts @QuerydslPredicate(bindings=---).

® Define the binding for the username property to be a simple contains binding.
@ Define the default binding for String properties to be a case insensitive contains match.

® Exclude the password property from Predicate resolution.

3.7.2. Repository populators

If you work with the Spring JDBC module, you probably are familiar with the support to populate a
DataSource using SQL scripts. A similar abstraction is available on the repositories level, although it
does not use SQL as the data definition language because it must be store-independent. Thus the
populators support XML (through Spring’s OXM abstraction) and JSON (through Jackson) to define
data with which to populate the repositories.

Assume you have a file data. json with the following content:

Example 31. Data defined in JSON

[{ "_class" : "com.acme.Person",
"firstname" : "Dave",

"lastname" : "Matthews" },

{ " class" : "com.acme.Person",
"firstname" : "Carter",

"lastname" : "Beauford" }]

27

You can easily populate your repositories by using the populator elements of the repository
namespace provided in Spring Data Commons. To populate the preceding data to your
PersonRepository, do the following:

Example 32. Declaring a Jackson repository populator

<?xml version="1.0" encoding="UTF-8"7>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:repository="http://www.springframework.org/schema/data/repository"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/data/repository
http://www.springframework.org/schema/data/repository/spring-repository.xsd">

<repository:jackson2-populator locations="classpath:data.json" />

</beans>

This declaration causes the data. json file to be read and deserialized via a Jackson ObjectMapper.

The type to which the JSON object will be unmarshalled to will be determined by inspecting the
_class attribute of the JSON document. The infrastructure will eventually select the appropriate
repository to handle the object just deserialized.

To rather use XML to define the data the repositories shall be populated with, you can use the
unmarshaller-populator element. You configure it to use one of the XML marshaller options Spring
OXM provides you with. See the Spring reference documentation for details.

28

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/oxm.html

Example 33. Declaring an unmarshalling repository populator (using JAXB)

<?xml version="1.0" encoding="UTF-8"7>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xmlns:repository="http://www.springframework.org/schema/data/repository"
xmlns:oxm="http://www.springframework.org/schema/oxm"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/data/repository
http://www.springframework.org/schema/data/repository/spring-repository.xsd
http://www.springframework.org/schema/oxm
http://www.springframework.org/schema/oxm/spring-oxm.xsd">

<repository:unmarshaller-populator locations="classpath:data.json"
unmarshaller-ref="unmarshaller" />

<oxm:jaxb2-marshaller contextPath="com.acme" />

</beans>

3.7.3. Legacy web support

Domain class web binding for Spring MVC

Given you are developing a Spring MVC web application you typically have to resolve domain class
ids from URLs. By default your task is to transform that request parameter or URL part into the
domain class to hand it to layers below then or execute business logic on the entities directly. This
would look something like this:

29

@Controller
@RequestMapping("/users")
public class UserController {

private final UserRepository userRepository;

@Autowired

public UserController(UserRepository userRepository) {
Assert.notNull(repository, "Repository must not be null!");
this.userRepository = userRepository;

}

@RequestMapping("/{id}")
public String showUserForm(@PathVariable("id") Long id, Model model) {

// Do null check for id
User user = userRepository.findOne(id);
// Do null check for user

model.addAttribute("user", user);
return "user";

First you declare a repository dependency for each controller to look up the entity managed by the
controller or repository respectively. Looking up the entity is boilerplate as well, as it’s always a
findOne(---) call. Fortunately Spring provides means to register custom components that allow
conversion between a String value to an arbitrary type.

PropertyEditors

For Spring versions before 3.0 simple Java PropertyEditors had to be used. To integrate with that,
Spring Data offers a DomainClassPropertyEditorRegistrar, which looks up all Spring Data
repositories registered in the ApplicationContext and registers a custom PropertyEditor for the
managed domain class.

<bean class=":--.web.servlet.mvc.annotation.AnnotationMethodHandlerAdapter">
<property name="webBindingInitializer">
<bean class="++-.web.bind.support.ConfigurableWebBindingInitializer">

<property name="propertyEditorRegistrars">
<bean class=
"org.springframework.data.repository.support.DomainClassPropertyEditorRegistrar" />
</property>
</bean>
</property>
</bean>

If you have configured Spring MVC as in the preceding example, you can configure your controller

30

as follows, which reduces a lot of the clutter and boilerplate.

("/users")
public class UserController {

("/{id}")
public String showUserForm(("id") User user, Model model) {

model.addAttribute("user", user);
return "userForm";

}
}

Reference Documentation

31

Chapter 4. JPA Repositories

This chapter will point out the specialties for repository support for JPA. This builds on the core
repository support explained in Working with Spring Data Repositories. So make sure you’ve got a
sound understanding of the basic concepts explained there.

4.1. Introduction

4.1.1. Spring namespace

The JPA module of Spring Data contains a custom namespace that allows defining repository beans.
It also contains certain features and element attributes that are special to JPA. Generally the JPA
repositories can be set up using the repositories element:

Example 34. Setting up JPA repositories using the namespace

<?xml version="1.0" encoding="UTF-8"7>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:jpa="http://www.springframework.org/schema/data/jpa"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/data/jpa
http://www.springframework.org/schema/data/jpa/spring-jpa.xsd">

<jpa:repositories base-package="com.acme.repositories" />

</beans>

Using this element looks up Spring Data repositories as described in Creating repository instances.
Beyond that it activates persistence exception translation for all beans annotated with @Repository
to let exceptions being thrown by the JPA persistence providers be converted into Spring’s
DataAccessException hierarchy.

Custom namespace attributes

Beyond the default attributes of the repositories element the JPA namespace offers additional
attributes to gain more detailed control over the setup of the repositories:

Table 2. Custom JPA-specific attributes of the repositories element

entity-manager- Explicitly wire the EntityManagerFactory to be used with the repositories

factory-ref being detected by the repositories element. Usually used if multiple
EntityManagerFactory beans are used within the application. If not
configured we will automatically lookup the EntityManagerFactory bean with
the name entityManagerFactory in the ApplicationContext.

32

transaction-manager- Explicitly wire the PlatformTransactionManager to be used with the

ref repositories being detected by the repositories element. Usually only
necessary if multiple transaction managers and/or EntityManagerFactory
beans have been configured. Default to a single defined
PlatformTransactionManager inside the current ApplicationContext.

Note that we require a PlatformTransactionManager bean named transactionManager to be present if
no explicit transaction-manager-ref is defined.

4.1.2. Annotation based configuration

The Spring Data JPA repositories support cannot only be activated through an XML namespace but
also using an annotation through JavaConfig.

33

Example 35. Spring Data JPA repositories using JavaConfig

class ApplicationConfig {

public DataSource dataSource() {

EmbeddedDatabaseBuilder builder = new EmbeddedDatabaseBuilder();
return builder.setType(EmbeddedDatabaseType.HSQL).build();
}

public EntityManagerFactory entityManagerFactory() {

HibernateJpaVendorAdapter vendorAdapter = new HibernatelpaVendorAdapter();
vendorAdapter.setGenerateDd1(true);

LocalContainerEntityManagerFactoryBean factory = new
LocalContainerEntityManagerFactoryBean();
factory.setJpaVendorAdapter(vendorAdapter);
factory.setPackagesToScan("com.acme.domain");
factory.setDataSource(dataSource());
factory.afterPropertiesSet();

return factory.getObject();
}

public PlatformTransactionManager transactionManager() {

JpaTransactionManager txManager = new JpaTransactionManager();
txManager.setEntityManagerFactory(entityManagerFactory());
return txManager;
}
}

The just shown configuration class sets up an embedded HSQL database using the
EmbeddedDatabaseBuilder API of spring-jdbc. We then set up a EntityManagerFactory and use
Hibernate as sample persistence provider. The last infrastructure component declared here is the
JpaTransactionManager. We finally activate Spring Data JPA repositories wusing the
@EnablelpaRepositories annotation which essentially carries the same attributes as the XML
namespace does. If no base package is configured it will use the one the configuration class resides
in.

34

4.2. Persisting entities

4.2.1. Saving entities

Saving an entity can be performed via the CrudRepository.save(::-)-Method. It will persist or merge
the given entity using the underlying JPA EntityManager. If the entity has not been persisted yet
Spring Data JPA will save the entity via a call to the entityManager.persist(:--) method, otherwise
the entityManager.merge(-+) method will be called.

Entity state detection strategies

Spring Data JPA offers the following strategies to detect whether an entity is new or not:

Table 3. Options for detection whether an entity is new in Spring Data JPA

Id-Property inspection By default Spring Data JPA inspects the identifier property of the given
(default) entity. If the identifier property is null, then the entity will be assumed as
new, otherwise as not new.

Implementing If an entity implements Persistable, Spring Data JPA will delegate the

Persistable new detection to the isNew(::-) method of the entity. See the JavaDoc for
details.

Implementing You can customize the EntityInformation abstraction used in the

EntityInformation SimpleJpaRepository implementation by creating a subclass of

JpaRepositoryFactory and overriding the getEntityInformation(-:-)
method accordingly. You then have to register the custom
implementation of JpaRepositoryFactory as a Spring bean. Note that this
should be rarely necessary. See the JavaDoc for details.

4.3. Query methods

4.3.1. Query lookup strategies

The JPA module supports defining a query manually as String or have it being derived from the
method name.

Declared queries

Although getting a query derived from the method name is quite convenient, one might face the
situation in which either the method name parser does not support the keyword one wants to use
or the method name would get unnecessarily ugly. So you can either use JPA named queries
through a naming convention (see Using JPA NamedQueries for more information) or rather
annotate your query method with @Query (see Using @Query for details).

4.3.2. Query creation

Generally the query creation mechanism for JPA works as described in Query methods. Here’s a
short example of what a JPA query method translates into:

35

http://docs.spring.io/spring-data/data-commons/docs/current/api/index.html?org/springframework/data/domain/Persistable.html
http://docs.spring.io/spring-data/data-jpa/docs/current/api/index.html?org/springframework/data/jpa/repository/support/JpaRepositoryFactory.html

Example 36. Query creation from method names

public interface UserRepository extends Repository<User, Long> {

List<User> findByEmailAddressAndLastname(String emailAddress, String lastname);

}

We will create a query using the JPA criteria API from this but essentially this translates into
the following query: select u from User u where u.emailAddress = 71 and u.lastname = 72.
Spring Data JPA will do a property check and traverse nested properties as described in
Property expressions. Here’s an overview of the keywords supported for JPA and what a
method containing that keyword essentially translates to.

Table 4. Supported keywords inside method names

Keyword
And

Or

Is,Equals

Between
LessThan

LessThanEqua
1

GreaterThan

GreaterThanE
qual

After
Before
IsNull

IsNotNull,No
tNull

Like
NotLike
StartingWith

EndingWith

Containing

36

Sample

findByLastnameAndFirstname

findByLastnameOrFirstname

findByFirstname,findByFirstnameIs,fin

dByFirstnameEquals
findByStartDateBetween
findByAgelLessThan
findByAgeLessThanEqual

findByAgeGreaterThan
findByAgeGreaterThanEqual

findByStartDateAfter
findByStartDateBefore
findByAgeIsNull
findByAge(Is)NotNull

findByFirstnamelike
findByFirstnameNotLike
findByFirstnameStartingWith

findByFirstnameEndingWith

findByFirstnameContaining

JPQL snippet

* where x.lastname

72
++ where
72

* where
* where
* where

* where

* where

* where

* where
* where
* where

* where

* where

* where

X

X

?1 and x.firstname =

.lastname = ?1 or x.firstname =

.firstname = 17

.startDate between 1?7 and 72
.age < 71

.age < 71

.age > 71

.age >= 71

.startDate > 71
.startDate < 71
.age is null

.age not null

.firstname like 71

.firstname not like ?1

- where x.firstname like ?1 (parameter
bound with appended %)

- where x.firstname like ?1 (parameter
bound with prepended %)

 where x.firstname like ?1 (parameter
bound wrapped in %)

Keyword Sample JPQL snippet

OrderBy findByAgeOrderByLastnameDesc &” where x.age = ?1 order by x.lastname
esc

Not findByLastnameNot -+ where x.lastname <> ?1

In findByAgeIn(Collection<Age> ages) -+ where x.age in ?1

NotIn findByAgeNotIn(Collection<Age> age) - where x.age not in ?1

True findByActiveTrue() -+ where x.active = true

False findByActiveFalse() -+ where x.active = false

IgnoreCase findByFirstnameIgnoreCase -+ where UPPER(x.firstame) = UPPER(?1)

In and NotIn also take any subclass of Collection as parameter as well as arrays or
NOTE varargs. For other syntactical versions of the very same logical operator check
Repository query keywords.

4.3.3. Using JPA NamedQueries

The examples use simple <named-query /> element and @NamedQuery annotation. The
queries for these configuration elements have to be defined in JPA query language.

NOTE Of course you can use <named-native-query /> or @NamedNativeQuery too. These
elements allow you to define the query in native SQL by losing the database
platform independence.

XML named query definition

To use XML configuration simply add the necessary <named-query /> element to the orm.xml JPA
configuration file located in META-INF folder of your classpath. Automatic invocation of named
queries is enabled by using some defined naming convention. For more details see below.

Example 37. XML named query configuration
<named-query name="User.findByLastname">

<query>select u from User u where u.lastname = ?1</query>
</named-query>

As you can see the query has a special name which will be used to resolve it at runtime.

Annotation configuration

Annotation configuration has the advantage of not needing another configuration file to be edited,
probably lowering maintenance costs. You pay for that benefit by the need to recompile your
domain class for every new query declaration.

37

Example 38. Annotation based named query configuration

(name = "User.findByEmailAddress",
query = "select u from User u where u.emailAddress = ?1")
public class User {

}

Declaring interfaces

To allow execution of these named queries all you need to do is to specify the UserRepository as
follows:

Example 39. Query method declaration in UserRepository

public interface UserRepository extends JpaRepository<User, Long> {
List<User> findBylLastname(String lastname);

User findByEmailAddress(String emailAddress);
}

Spring Data will try to resolve a call to these methods to a named query, starting with the simple
name of the configured domain class, followed by the method name separated by a dot. So the
example here would use the named queries defined above instead of trying to create a query from
the method name.

4.3.4. Using @Query

Using named queries to declare queries for entities is a valid approach and works fine for a small
number of queries. As the queries themselves are tied to the Java method that executes them you
actually can bind them directly using the Spring Data JPA @Query annotation rather than annotating
them to the domain class. This will free the domain class from persistence specific information and
co-locate the query to the repository interface.

Queries annotated to the query method will take precedence over queries defined using
@NamedQuery or named queries declared in orm.xml.

38

Example 40. Declare query at the query method using @Query

public interface UserRepository extends JpaRepository<User, Long> {

("select u from User u where u.emailAddress = ?1")
User findByEmailAddress(String emailAddress);
+

Using advanced LIKE expressionsThe query execution mechanism for manually defined queries
using @Query allow the definition of advanced LIKE expressions inside the query definition.

Example 41. Advanced like-expressions in @Query

public interface UserRepository extends JpaRepository<User, Long> {

("select u from User u where u.firstname like %?1")
List<User> findByFirstnameEndsWith(String firstname);
}

In the just shown sample LIKE delimiter character % is recognized and the query transformed into a
valid JPQL query (removing the %). Upon query execution the parameter handed into the method
call gets augmented with the previously recognized LIKE pattern.

Native queriesThe @Query annotation allows to execute native queries by setting the nativeQuery flag
to true. Note, that we currently don’t support execution of pagination or dynamic sorting for native
queries as we’d have to manipulate the actual query declared and we cannot do this reliably for
native SQL.

Example 42. Declare a native query at the query method using @Query

public interface UserRepository extends JpaRepository<User, Long> {

(value = "SELECT * FROM USERS WHERE EMAIL_ADDRESS = 70", nativeQuery =
true)
User findByEmailAddress(String emailAddress);

}

4.3.5. Using named parameters

By default Spring Data JPA will use position based parameter binding as described in all the
samples above. This makes query methods a little error prone to refactoring regarding the
parameter position. To solve this issue you can use @Param annotation to give a method parameter a
concrete name and bind the name in the query.

39

Example 43. Using named parameters

public interface UserRepository extends JpaRepository<User, Long> {

("select u from User u where u.firstname = :firstname or u.lastname =
:lastname")

User findByLastnameOrFirstname(("lastname") String lastname,
("firstname") String firstname);

Note that the method parameters are switched according to the occurrence in the query defined.

4.3.6. Using SpEL expressions

As of Spring Data JPA release 1.4 we support the usage of restricted SpEL template expressions in
manually defined queries via @Query. Upon query execution these expressions are evaluated against

a predefined set of variables. We support the following list of variables to be used in a manual
query.

Table 5. Supported variables inside SpEL based query templates

Variab Usage Description
le

entityN select x from

_ Inserts the entityName of the domain type associated with the given
ame #{#entityName} x

Repository. The entityName is resolved as follows: If the domain
type has set the name property on the @Entity annotation then it

will be used. Otherwise the simple class-name of the domain type
will be used.

The following example demonstrates one use case for the #{#entityName} expression in a query
string where you want to define a repository interface with a query method with a manually

defined query. In order not to have to state the actual entity name in the query string of a @Query
annotation one can use the #{#entityName} Variable.

NOTE The entityName can be customized via the @Entity annotation. Customizations via
orm.xml are not supported for the SpEL expressions.

40

Example 44. Using SpEL expressions in repository query methods - entityName

public class User {

Long id;

String lastname;

}
public interface UserRepository extends JpaRepository<User,Long> {

("select u from #{#entityName} u where u.lastname = ?1")
List<User> findBylLastname(String lastname);

}

Of course you could have just used User in the query declaration directly but that would require
you to change the query as well. The reference to #entityName will pick up potential future
remappings of the User class to a different entity name (e.g. by using @Entity(name = "MyUser").

Another use case for the #{#entityName} expression in a query string is if you want to define a
generic repository interface with specialized repository interfaces for a concrete domain type. In
order not to have to repeat the definition of custom query methods on the concrete interfaces you
can use the entity name expression in the query string of the @Query annotation in the generic
repository interface.

41

Example 45. Using SpEL expressions in repository query methods - entityName with inheritance

public abstract class AbstractMappedType {

String attribute
}

public class ConcreteType extends AbstractMappedType { - }

public interface MappedTypeRepository<T extends AbstractMappedType>
extends Repository<T, Long> {

("select t from #{#ientityName} t where t.attribute = ?1")
List<T> findA11ByAttribute(String attribute);
}

public interface ConcreteRepository
extends MappedTypeRepository<ConcreteType> { -+ }

In the example the interface MappedTypeRepository is the common parent interface for a few domain
types extending AbstractMappedType. It also defines the generic method findAl1ByAttribute(::-)
which can be used on instances of the specialized repository interfaces. If you now invoke
findByAllAttribute(:-*) on ConcreteRepository the query being executed will be select t from
ConcreteType t where t.attribute = 71.

4.3.7. Modifying queries

All the sections above describe how to declare queries to access a given entity or collection of
entities. Of course you can add custom modifying behaviour by using facilities described in Custom
implementations for Spring Data repositories. As this approach is feasible for comprehensive
custom functionality, you can achieve the execution of modifying queries that actually only need
parameter binding by annotating the query method with @Modifying:

Example 46. Declaring manipulating queries

("update User u set u.firstname = ?1 where u.lastname = 72")
int setFixedFirstnameFor(String firstname, String lastname);

This will trigger the query annotated to the method as updating query instead of a selecting one. As
the EntityManager might contain outdated entities after the execution of the modifying query, we do
not automatically clear it (see JavaDoc of EntityManager.clear() for details) since this will
effectively drop all non-flushed changes still pending in the EntityManager. If you wish the

42

EntityManager to be cleared automatically you can set @Modifying annotation’s clearAutomatically
attribute to true.

4.3.8. Applying query hints

To apply JPA query hints to the queries declared in your repository interface you can use the
@QueryHints annotation. It takes an array of JPA @QueryHint annotations plus a boolean flag to
potentially disable the hints applied to the addtional count query triggered when applying
pagination.

Example 47. Using QueryHints with a repository method

public interface UserRepository extends Repository<User, Long> {

(value = { (name = "name", value = "value")},
forCounting = false)
Page<User> findByLastname(String lastname, Pageable pageable);

}

The just shown declaration would apply the configured @QueryHint for that actually query but omit
applying it to the count query triggered to calculate the total number of pages.

4.3.9. Configuring Fetch- and LoadGraphs

The JPA 2.1 specification introduced support for specifiying Fetch- and LoadGraphs that we also
support via the @EntityGraph annotation which allows to reference a @NamedEntityGraph definition,
that can be annotated on an entity, to be used to configure the fetch plan of the resulting query. The
type (Fetch / Load) of the fetching can be configured via the type attribute on the @EntityGraph
annotation. Please have a look at the JPA 2.1 Spec 3.7.4 for further reference.

Example 48. Defining a named entity graph on an entity.

(name = "GroupInfo.detail",
attributeNodes = ("members"))
public class GroupInfo {
// default fetch mode is lazy.

List<GroupMember> members = new Arraylist<GroupMember>();

43

Example 49. Referencing a named entity graph definition on an repository query method.

public interface GroupRepository extends CrudRepository<GroupInfo, String> {

(value = "GroupInfo.detail”, type = EntityGraphType.LOAD)
GroupInfo getByGroupName(String name);

4.4. Stored procedures

The JPA 2.1 specification introduced support for calling stored procedures via the JPA criteria query
API. We Introduced the @Procedure annotation for declaring stored procedure metadata on a
repository method.

Example 50. The definition of the puslinout procedure in HSQL DB.

/5
DROP procedure IF EXISTS pluslinout
/5
CREATE procedure pluslinout (IN arg int, OUT res int)
BEGIN ATOMIC
set res = arg *

Metadata for stored procedures can be configured via the NamedStoredProcedureQuery annotation on
an entity type.

Example 51. StoredProcedure metadata definitions on an entity.

(name = "User.plus1", procedureName = "pluslinout",
parameters = {

(mode = ParameterMode.IN, name = "arg", type = Integer

.class),

ParameterMode.OUT, name = "res", type =

(mode
Integer.class) })
public class User {}

Stored procedures can be referenced from a repository method in multiple ways. The stored
procedure to be called can either be defined directly via the value or procedureName attribute of the
@Procedure annotation or indirectly via the name attribute. If no name is configured the name of the
repository method is used as a fallback.

44

Example 52. Referencing explicitly mapped procedure with name "pluslinout” in database.

("pluslinout™)
Integer explicitlyNamedPlusTlinout(Integer arg);

Example 53. Referencing implicitly mapped procedure with name "pluslinout” in database via
procedureName alias.

(procedureName = "pluslinout™)
Integer pluslinout(Integer arg);

Example 54. Referencing explicitly mapped named stored procedure "User.plus110" in EntityManager.

(name = "User.plus1I0")
Integer entityAnnotatedCustomNamedProcedurePlus1I0(("arg") Integer arg);

Example 55. Referencing implicitly mapped named stored procedure "User.plus1” in EntityManager
via method-name.

Integer plusi(("arg") Integer arg);

4.5. Specifications

JPA 2 introduces a criteria API that can be used to build queries programmatically. Writing a
criteria you actually define the where-clause of a query for a domain class. Taking another step
back these criteria can be regarded as predicate over the entity that is described by the JPA criteria
API constraints.

Spring Data JPA takes the concept of a specification from Eric Evans' book "Domain Driven Design",
following the same semantics and providing an API to define such specifications using the JPA
criteria API. To support specifications you can extend your repository interface with the
JpaSpecificationExecutor interface:

public interface CustomerRepository extends CrudRepository<Customer, Long>,
JpaSpecificationExecutor {

}

45

The additional interface carries methods that allow you to execute specifications in a variety of
ways. For example, the findAll method will return all entities that match the specification:

List<T> findA11(Specification<T> spec);

The Specification interface is defined as follows:

public interface Specification<T> {
Predicate toPredicate(Root<T> root, CriteriaQuery<?> query,
CriteriaBuilder builder);

Okay, so what is the typical use case? Specifications can easily be used to build an extensible set of
predicates on top of an entity that then can be combined and used with JpaRepository without the
need to declare a query (method) for every needed combination. Here’s an example:

Example 56. Specifications for a Customer

public class CustomerSpecs {

public static Specification<Customer> isLongTermCustomer() {
return new Specification<Customer>() {
public Predicate toPredicate(Root<Customer> root, CriteriaQuery<?> query,
CriteriaBuilder builder) {

LocalDate date = new LocalDate().minusYears(2);
return builder.lessThan(root.get(_Customer.createdAt), date);

}
};
}

public static Specification<Customer> hasSalesOfMoreThan(MontaryAmount value) {
return new Specification<Customer>() {
public Predicate toPredicate(Root<T> root, CriteriaQuery<?> query,
CriteriaBuilder builder) {

// build query here

Admittedly the amount of boilerplate leaves room for improvement (that will hopefully be reduced
by Java 8 closures) but the client side becomes much nicer as you will see below. The _Customer type
is a metamodel type generated using the JPA Metamodel generator (see the Hibernate
implementation’s documentation for example). So the expression _Customer.createdAt is asuming

46

http://docs.jboss.org/hibernate/jpamodelgen/1.0/reference/en-US/html_single/#whatisit
http://docs.jboss.org/hibernate/jpamodelgen/1.0/reference/en-US/html_single/#whatisit

the Customer having a createdAt attribute of type Date. Besides that we have expressed some criteria
on a business requirement abstraction level and created executable Specifications. So a client
might use a Specification as follows:

Example 57. Using a simple Specification

List<Customer> customers = customerRepository.findAl1(isLongTermCustomer());

Okay, why not simply create a query for this kind of data access? You're right. Using a single
Specification does not gain a lot of benefit over a plain query declaration. The power of
specifications really shines when you combine them to create new Specification objects. You can
achieve this through the Specifications helper class we provide to build expressions like this:

Example 58. Combined Specifications

MonetaryAmount amount = new MonetaryAmount(200.0, Currencies.DOLLAR);
List<Customer> customers = customerRepository.findAl1(
where(isLongTermCustomer()).or(hasSalesOfMoreThan(amount)));

As you can see, Specifications offers some glue-code methods to chain and combine
Specification instances. Thus extending your data access layer is just a matter of creating new
Specification implementations and combining them with ones already existing.

4.6. Transactionality

CRUD methods on repository instances are transactional by default. For reading operations the
transaction configuration readOnly flag is set to true, all others are configured with a plain
@Transactional so that default transaction configuration applies. For details see JavaDoc of
CrudRepository. If you need to tweak transaction configuration for one of the methods declared in a
repository simply redeclare the method in your repository interface as follows:

47

Example 59. Custom transaction configuration for CRUD

public interface UserRepository extends CrudRepository<User, Long> {
@Override
@Transactional(timeout = 10)

public List<User> findAll();

// Further query method declarations

This will cause the findA11l() method to be executed with a timeout of 10 seconds and without
the readOnly flag.

Another possibility to alter transactional behaviour is using a facade or service implementation
that typically covers more than one repository. Its purpose is to define transactional boundaries for
non-CRUD operations:

48

Example 60. Using a facade to define transactions for multiple repository calls

class UserManagementImpl implements UserManagement {

private final UserRepository userRepository;
private final RoleRepository roleRepository;

public UserManagementImpl(UserRepository userRepository,
RoleRepository roleRepository) {
this.userRepository = userRepository;
this.roleRepository = roleRepository;

}

public void addRoleToAllUsers(String roleName) {
Role role = roleRepository.findByName(roleName);

for (User user : userRepository.findA11()) {
user.addRole(role);
userRepository.save(user);

}

This will cause call to addRoleToAllUsers(::+) to run inside a transaction (participating in an
existing one or create a new one if none already running). The transaction configuration at the
repositories will be neglected then as the outer transaction configuration determines the
actual one used. Note that you will have to activate <tx:annotation-driven /> or use
@EnableTransactionManagement explicitly to get annotation based configuration at facades
working. The example above assumes you are using component scanning.

4.6.1. Transactional query methods

To allow your query methods to be transactional simply use @Transactional at the repository
interface you define.

49

Example 61. Using @Transactional at query methods

(readOnly = true)
public interface UserRepository extends JpaRepository<User, Long> {

List<User> findByLastname(String lastname);

("delete from User u where u.active = false")
void deletelInactiveUsers();

}

Typically you will want the readOnly flag set to true as most of the query methods will only
read data. In contrast to that deleteInactiveUsers() makes use of the @Modifying annotation
and overrides the transaction configuration. Thus the method will be executed with readOnly
flag set to false.

It’s definitely reasonable to use transactions for read only queries and we can mark
them as such by setting the readOnly flag. This will not, however, act as check that
you do not trigger a manipulating query (although some databases reject INSERT and
UPDATE statements inside a read only transaction). The readOnly flag instead is

NOTE propagated as hint to the underlying JDBC driver for performance optimizations.
Furthermore, Spring will perform some optimizations on the underlying JPA
provider. E.g. when used with Hibernate the flush mode is set to NEVER when you
configure a transaction as readOnly which causes Hibernate to skip dirty checks (a
noticeable improvement on large object trees).

4.7. Locking

To specify the lock mode to be used the @Lock annotation can be used on query methods:

Example 62. Defining lock metadata on query methods

interface UserRepository extends Repository<User, Long> {

// Plain query method
(LockModeType.READ)
List<User> findByLastname(String lastname);

}

This method declaration will cause the query being triggered to be equipped with the LockModeType
READ. You can also define locking for CRUD methods by redeclaring them in your repository
interface and adding the @Lock annotation:

50

Example 63. Defining lock metadata on CRUD methods

interface UserRepository extends Repository<User, Long> {

// Redeclaration of a CRUD method
(LockModeType.READ);
List<User> findAl1l();
}

4.8. Auditing

4.8.1. Basics

Spring Data provides sophisticated support to transparently keep track of who created or changed
an entity and the point in time this happened. To benefit from that functionality you have to equip
your entity classes with auditing metadata that can be defined either using annotations or by
implementing an interface.

Annotation based auditing metadata

We provide @CreatedBy, @LastModifiedBy to capture the user who created or modified the entity as
well as @CreatedDate and @LastModifiedDate to capture the point in time this happened.

Example 64. An audited entity

class Customer {
private User user;

private DateTime createdDate;

// +++ further properties omitted
}

As you can see, the annotations can be applied selectively, depending on which information you’d
like to capture. For the annotations capturing the points in time can be used on properties of type
JodaTimes DateTime, legacy Java Date and Calendar, JDK8 date/time types as well as long/Long.

Interface-based auditing metadata

In case you don’t want to use annotations to define auditing metadata you can let your domain
class implement the Auditable interface. It exposes setter methods for all of the auditing properties.

51

There’s also a convenience base class AbstractAuditable which you can extend to avoid the need to
manually implement the interface methods. Be aware that this increases the coupling of your
domain classes to Spring Data which might be something you want to avoid. Usually the annotation
based way of defining auditing metadata is preferred as it is less invasive and more flexible.

AuditorAware

In case you use either @CreatedBy or @LastModifiedBy, the auditing infrastructure somehow needs to
become aware of the current principal. To do so, we provide an AuditorAware<T> SPI interface that
you have to implement to tell the infrastructure who the current user or system interacting with
the application is. The generic type T defines of what type the properties annotated with @CreatedBy
or @LastModifiedBy have to be.

Here’s an example implementation of the interface using Spring Security’s Authentication object:

Example 65. Implementation of AuditorAware based on Spring Security

class SpringSecurityAuditorAware implements AuditorAware<User> {
public User getCurrentAuditor() {

Authentication authentication = SecurityContextHolder.getContext()
.getAuthentication();

if (authentication == null || !authentication.isAuthenticated()) {
return null;

}

return ((MyUserDetails) authentication.getPrincipal()).getUser();
}
}

The implementation is accessing the Authentication object provided by Spring Security and looks
up the custom UserDetails instance from it that you have created in your UserDetailsService
implementation. We’re assuming here that you are exposing the domain user through that
UserDetails implementation but you could also look it up from anywhere based on the
Authentication found.

4.9. JPA Auditing

4.9.1. General auditing configuration

Spring Data JPA ships with an entity listener that can be used to trigger capturing auditing
information. So first you have to register the AuditingEntitylListener inside your orm.xml to be used
for all entities in your persistence contexts:

52

Example 66. Auditing configuration orm.xml

<persistence-unit-metadata>
<persistence-unit-defaults>
<entity-listeners>
<entity-listener class="---.data.jpa.domain.support.AuditingEntitylListener"”
/>
</entity-listeners>
</persistence-unit-defaults>
</persistence-unit-metadata>

You can also enable the AuditingEntitylListener per entity using the @EntitylListeners annotation:

@Entity
@EntitylListeners(AuditingEntitylistener.class)
public class MyEntity {

}

Note that the auditing feature requires spring-aspects.jar to be on the classpath.

With that in place, activating auditing functionality is just a matter of adding the Spring Data JPA
auditing namespace element to your configuration:

Example 67. Activating auditing using XML configuration

<jpa:auditing auditor-aware-ref="yourAuditorAwareBean" />

As of Spring Data JPA 1.5, auditing can be enabled by annotating a configuration class with the
@EnableJpaAuditing annotation.

53

Example 68. Activating auditing via Java configuration

@Configuration
@EnablelpaAuditing
class Config {

@Bean
public AuditorAware<AuditableUser> auditorProvider() {
return new AuditorAwareImpl();

}
}

If you expose a bean of type AuditorAware to the ApplicationContext, the auditing infrastructure will
pick it up automatically and use it to determine the current user to be set on domain types. If you
have multiple implementations registered in the ApplicationContext, you can select the one to be
used by explicitly setting the auditorAwareRef attribute of @EnableJpaAuditing.

54

Chapter 5. Miscellaneous

5.1. Using JpaContext in custom implementations

When working with multiple EntityManager instances and custom repository implementations
you’ll need to make sure you wire the correct EntityManager into the repository implementation
class. This could be solved by explicitly naming the EntityManager in the @PersistenceContext
annotation or using @Qualifier in case the EntityManager is injected via @Autowired.

As of Spring Data JPA 1.9, we ship a class JpaContext that allows to obtain the EntityManager by
managed domain class assuming it’s only managed by one of the EntityManager instances in the
application.

Example 69. Using JpaContext in a custom repository implementation

class UserRepositoryImpl implements UserRepositoryCustom {

private final EntityManager em;

public UserRepositoryImpl(JpaContext context) {
this.em = context.getEntityManagerByManagedType(User.class);

}

This approach has the advantage that the repository does not have to be touched to alter the
reference to the persistence unit in case the domain type gets assigned to a different persistence
unit.

5.2. Merging persistence units

Spring supports having multiple persistence units out of the box. Sometimes, however, you might
want to modularize your application but still make sure that all these modules run inside a single
persistence unit at runtime. To do so Spring Data JPA offers a PersistenceUnitManager
implementation that automatically merges persistence units based on their name.

55

Example 70. Using MergingPersistenceUnitmanager

<bean class=":'-.LocalContainerEntityManagerFactoryBean">
<property name="persistenceUnitManager">
<bean class=":--.MergingPersistenceUnitManager" />
</property>
</bean>

5.2.1. Classpath scanning for @Entity classes and JPA mapping files

A plain JPA setup requires all annotation mapped entity classes listed in orm.xml. Same applies to
XML mapping files. Spring Data JPA provides a ClasspathScanningPersistenceUnitPostProcessor
that gets a base package configured and optionally takes a mapping filename pattern. It will then
scan the given package for classes annotated with @Entity or @MappedSuperclass and also loads
the configuration files matching the filename pattern and hands them to the JPA configuration. The
PostProcessor has to be configured like this:

Example 71. Using ClasspathScanningPersistenceUnitPostProcessor

<bean class="+'-.LocalContainerEntityManagerFactoryBean">
<property name="persistenceUnitPostProcessors">
<list>

<bean class=
"org.springframework.data.jpa.support.ClasspathScanningPersistencelUnitPostProcesso

r">
<constructor-arg value="com.acme.domain" />
<property name="mappingFileNamePattern" value="**/*Mapping.xml" />
</bean>
</list>
</property>
</bean>

As of Spring 3.1 a package to scan can be configured on the
NOTE LocalContainerEntityManagerFactoryBean directly to enable classpath scanning for
entity classes. See the JavaDoc for details.

5.3. CDI integration

Instances of the repository interfaces are usually created by a container, which Spring is the most
natural choice when working with Spring Data. There’s sophisticated support to easily set up Spring
to create bean instances documented in Creating repository instances. As of version 1.1.0 Spring
Data JPA ships with a custom CDI extension that allows using the repository abstraction in CDI
environments. The extension is part of the JAR so all you need to do to activate it is dropping the
Spring Data JPA JAR into your classpath.

56

http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/orm/jpa/LocalContainerEntityManagerFactoryBean.html#setPackagesToScan(java.lang.String...)

You can now set up the infrastructure by implementing a CDI Producer for the EntityManagerFactory
and EntityManager

class EntityManagerFactoryProducer {

public EntityManagerFactory createEntityManagerFactory() {
return Persistence.createEntityManagerFactory("my-presistence-unit");

}

public void close(EntityManagerFactory entityManagerFactory) {
entityManagerFactory.close();

}

public EntityManager createEntityManager(EntityManagerFactory entityManagerFactory)
{

return entityManagerFactory.createEntityManager();

}

public void close(EntityManager entityManager) {
entityManager.close();

}
}

The necessary setup can vary depending on the JavaEE environment you run in. It might also just
be enough to redeclare a EntityManager as CDI bean as follows:

class CdiConfig {

public EntityManager entityManager;
}

In this example, the container has to be capable of creating JPA EntityManagers itself. All the
configuration does is re-exporting the JPA EntityManager as CDI bean.

The Spring Data JPA CDI extension will pick up all EntityManagers availables as CDI beans and
create a proxy for a Spring Data repository whenever an bean of a repository type is requested by
the container. Thus obtaining an instance of a Spring Data repository is a matter of declaring an
@Injected property:

57

class RepositoryClient {

PersonRepository repository;

public void businessMethod() {
List<Person> people = repository.findAll();

}
}

Appendix

58

Appendix A: Namespace reference

The <repositories /> element

The <repositories /> element triggers the setup of the Spring Data repository infrastructure. The
most important attribute is base-package which defines the package to scan for Spring Data
repository interfaces. [3: see XML configuration]

Table 6. Attributes

Name

base-package

repository-impl-
postfix

query-Llookup-strategy

named-queries-location

consider-nested-
repositories

Description

Defines the package to be used to be scanned for repository interfaces
extending *Repository (actual interface is determined by specific Spring
Data module) in auto detection mode. All packages below the configured
package will be scanned, too. Wildcards are allowed.

Defines the postfix to autodetect custom repository implementations.
Classes whose names end with the configured postfix will be considered
as candidates. Defaults to Impl.

Determines the strategy to be used to create finder queries. See Query
lookup strategies for details. Defaults to create-if-not-found.

Defines the location to look for a Properties file containing externally
defined queries.

Controls whether nested repository interface definitions should be
considered. Defaults to false.

59

Appendix B: Populators namespace
reference

The <populator /> element

The <populator /> element allows to populate the a data store via the Spring Data repository
infrastructure. [4: see XML configuration]

Table 7. Attributes

Name Description
locations Where to find the files to read the objects from the repository shall be
populated with.

60

Appendix C: Repository query keywords
Supported query keywords

The following table lists the keywords generally supported by the Spring Data repository query
derivation mechanism. However, consult the store-specific documentation for the exact list of
supported keywords, because some listed here might not be supported in a particular store.

Table 8. Query keywords

Logical keyword Keyword expressions

AND And

OR Or

AFTER After, IsAfter

BEFORE Before, IsBefore

CONTAINING Containing, IsContaining, Contains
BETWEEN

ENDING_WITH

EXISTS
FALSE

GREATER_THAN

GREATER_THAN_EQUALS

Between, IsBetween

EndingWith, IsEndingWith, EndsWith
Exists

False, IsFalse

GreaterThan, IsGreaterThan

GreaterThanEqual, IsGreaterThanEqual

IN In, IsIn

IS Is, Equals, (or no keyword)
IS_NOT_NULL NotNull, IsNotNull

IS_NULL Null, IsNull

LESS_THAN

LESS_THAN_EQUAL

LessThan, IsLessThan

LessThanEqual, IsLessThanEqual

LIKE Like, IsLike

NEAR Near, IsNear

NOT Not, IsNot

NOT_IN NotIn, IsNotIn
NOT_LIKE NotLike, IsNotLike
REGEX

STARTING_WITH

TRUE

Regex, MatchesRegex, Matches
StartingWith, IsStartingWith, StartsWith

True, IsTrue

61

Logical keyword
WITHIN

62

Keyword expressions

Within, IsWithin

Appendix D: Repository query return types

Supported query return types

The following table lists the return types generally supported by Spring Data repositories. However,
consult the store-specific documentation for the exact list of supported return types, because some
listed here might not be supported in a particular store.

NOTE

Geospatial types like (GeoResult, GeoResults, GeoPage) are only available for data

stores that support geospatial queries.

Table 9. Query return types

Return type
void

Primitives
Wrapper types
-

Iterator<T>
Collection<T>
List<T>

Optional<T>

Stream<T>

Future<T>

CompletableFuture<T>

ListenableFuture

Slice

Page<T>

Description

Denotes no return value.
Java primitives.

Java wrapper types.

An unique entity. Expects the query method to return one result at most.
In case no result is found null is returned. More than one result will
trigger an IncorrectResultSizeDataAccessException.

An Iterator.
A Collection.
A List.

A Java 8 or Guava Optional. Expects the query method to return one
result at most. In case no result is found Optional.empty()
/Optional.absent() is returned. More than one result will trigger an
IncorrectResultSizeDataAccessException.

AJava 8 Stream.

A Future. Expects method to be annotated with @Async and requires
Spring’s asynchronous method execution capability enabled.

AJava 8 CompletableFuture. Expects method to be annotated with @Async
and requires Spring’s asynchronous method execution capability
enabled.

A org.springframework.util.concurrent.ListenableFuture. Expects method
to be annotated with @Async and requires Spring’s asynchronous method
execution capability enabled.

A sized chunk of data with information whether there is more data
available. Requires a Pageable method parameter.

A Slice with additional information, e.g. the total number of results.
Requires a Pageable method parameter.

63

Return type Description

GeoResult<T> A result entry with additional information, e.g. distance to a reference
location.
GeoResults<T> A list of GeoResult<T> with additional information, e.g. average distance to

a reference location.

GeoPage<T> A Page with GeoResult<T>, e.g. average distance to a reference location.

64

Appendix E: Frequently asked questions

Common

I’d like to get more detailed logging information on what methods are called inside JpaRepository, e.g.
How can I gain them?

You can make use of CustomizableTraceInterceptor provided by Spring:

<bean id="customizableTracelnterceptor" class="
org.springframework.aop.interceptor.CustomizableTraceInterceptor">
<property name="enterMessage" value="Entering $[methodName]($[arguments])"/>
<property name="exitMessage" value="Leaving $[methodName](): $[returnValue]"/>
</bean>

<aop:config>
<aop:advisor advice-ref="customizableTraceInterceptor"
pointcut="execution(public *
org.springframework.data.jpa.repository.JpaRepository+.*(..))"/>
</aop:config>

Infrastructure

Currently I have implemented a repository layer based on HibernateDaoSupport. I create a
SessionFactory by using Spring’s AnnotationSessionFactoryBean. How do I get Spring Data repositories
working in this environment?
You have to replace AnnotationSessionFactoryBean with the HibernateJpaSessionFactoryBean as
follows:

Example 72. Looking up a SessionFactory from a HibernateEntityManagerFactory

<bean id="sessionFactory" class=
"org.springframework.orm.jpa.vendor.HibernateJpaSessionFactoryBean">

<property name="entityManagerFactory" ref="entityManagerFactory"/>
</bean>

Auditing

I'want to use Spring Data JPA auditing capabilities but have my database already set up to set
modification and creation date on entities. How to prevent Spring Data from setting the date
programmatically.

Just use the set-dates attribute of the auditing namespace element to false.

65

Appendix F: Glossary

AOP

Aspect oriented programming

Commons DBCP

Commons DataBase Connection Pools - Library of the Apache foundation offering pooling

implementations of the DataSource interface.

CRUD

Create, Read, Update, Delete - Basic persistence operations

DAO

Data Access Object - Pattern to separate persisting logic from the object to be persisted

Dependency Injection

Pattern to hand a component’s dependency to the component from outside, freeing the

component to lookup the dependant itself. For more
http://en.wikipedia.org/wiki/Dependency_Injection.

EclipseLink

Object relational mapper implementing JPA - http://www.eclipselink.org

Hibernate

Object relational mapper implementing JPA - http://www.hibernate.org

JPA

Java Persistence API

Spring

Java application framework - http://projects.spring.io/spring-framework

66

information see

http://en.wikipedia.org/wiki/Dependency_Injection
http://www.eclipselink.org
http://www.hibernate.org
http://projects.spring.io/spring-framework

	Spring Data JPA - Reference Documentation
	Table of Contents
	Preface
	Chapter 1. Project metadata
	Chapter 2. Dependencies
	2.1. Dependency management with Spring Boot
	2.2. Spring Framework

	Chapter 3. Working with Spring Data Repositories
	3.1. Core concepts
	3.2. Query methods
	3.3. Defining repository interfaces
	3.3.1. Fine-tuning repository definition

	3.4. Defining query methods
	3.4.1. Query lookup strategies
	3.4.2. Query creation
	3.4.3. Property expressions
	3.4.4. Special parameter handling
	3.4.5. Limiting query results
	3.4.6. Streaming query results
	3.4.7. Async query results

	3.5. Creating repository instances
	3.5.1. XML configuration
	3.5.2. JavaConfig
	3.5.3. Standalone usage

	3.6. Custom implementations for Spring Data repositories
	3.6.1. Adding custom behavior to single repositories
	3.6.2. Adding custom behavior to all repositories

	3.7. Spring Data extensions
	3.7.1. Web support
	3.7.2. Repository populators
	3.7.3. Legacy web support

	Reference Documentation
	Chapter 4. JPA Repositories
	4.1. Introduction
	4.1.1. Spring namespace
	4.1.2. Annotation based configuration

	4.2. Persisting entities
	4.2.1. Saving entities

	4.3. Query methods
	4.3.1. Query lookup strategies
	4.3.2. Query creation
	4.3.3. Using JPA NamedQueries
	4.3.4. Using @Query
	4.3.5. Using named parameters
	4.3.6. Using SpEL expressions
	4.3.7. Modifying queries
	4.3.8. Applying query hints
	4.3.9. Configuring Fetch- and LoadGraphs

	4.4. Stored procedures
	4.5. Specifications
	4.6. Transactionality
	4.6.1. Transactional query methods

	4.7. Locking
	4.8. Auditing
	4.8.1. Basics

	4.9. JPA Auditing
	4.9.1. General auditing configuration

	Chapter 5. Miscellaneous
	5.1. Using JpaContext in custom implementations
	5.2. Merging persistence units
	5.2.1. Classpath scanning for @Entity classes and JPA mapping files

	5.3. CDI integration

	Appendix
	Appendix A: Namespace reference
	The <repositories /> element

	Appendix B: Populators namespace reference
	The <populator /> element

	Appendix C: Repository query keywords
	Supported query keywords

	Appendix D: Repository query return types
	Supported query return types

	Appendix E: Frequently asked questions
	Common
	Infrastructure
	Auditing

	Appendix F: Glossary

