

 Oliver Gierke

 PREFACE

Project metadata

	
Version control - http://github.com/spring-projects/spring-data-jpa﻿

	
Bugtracker - https://jira.spring.io/browse/DATAJPA﻿

	
Release repository - https://repo.spring.io/libs-release﻿

	
Milestone repository - https://repo.spring.io/libs-milestone﻿

	
Snapshot repository - https://repo.spring.io/libs-snapshot﻿

 Oliver Gierke

 NEW & NOTEWORTHY

What’s new in Spring Data JPA 1.11

	
Improved compatibility with Hibernate 5.2.

	
Support any-match mode for [query-by-example]﻿.

	
Paged query execution optimizations.

	
Support for exists﻿ projection in repository query derivation.

What’s new in Spring Data JPA 1.10

	
Support for [projections]﻿ in repository query methods.

	
Support for [query-by-example]﻿.

	
The following annotations have been enabled to build own, composed annotations: @EntityGraph﻿, @Lock﻿, @Modifying﻿, @Query﻿, @QueryHints﻿ and @Procedure﻿.

	
Support for Contains﻿ keyword on collection expressions.

	
AttributeConverters for ZoneId﻿ of JSR-310 and ThreeTenBP.

	
Upgrade to Querydsl 4, Hibernate 5, OpenJPA 2.4 and EclipseLink 2.6.1.

 Oliver Gierke

 DEPENDENCIES

Due to different inception dates of individual Spring Data modules, most of them carry different major and minor version numbers. The easiest way to find compatible ones is by relying on the Spring Data Release Train BOM we ship with the compatible versions defined. In a Maven project you’d declare this dependency in the <dependencyManagement />﻿ section of your POM:

Using the Spring Data release train BOM

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.springframework.data</groupId>
 <artifactId>spring-data-releasetrain</artifactId>
 <version>${release-train}</version>
 <scope>import</scope>
 <type>pom</type>
 </dependency>
 </dependencies>
</dependencyManagement>

The current release train version is Kay-M4﻿. The train names are ascending alphabetically and currently available ones are listed here﻿. The version name follows the following pattern: ${name}-${release}﻿ where release can be one of the following:

	
BUILD-SNAPSHOT﻿ - current snapshots

	
M1﻿, M2﻿ etc. - milestones

	
RC1﻿, RC2﻿ etc. - release candidates

	
RELEASE﻿ - GA release

	
SR1﻿, SR2﻿ etc. - service releases

A working example of using the BOMs can be found in our Spring Data examples repository﻿. If that’s in place declare the Spring Data modules you’d like to use without a version in the <dependencies />﻿ block.

Declaring a dependency to a Spring Data module

<dependencies>
 <dependency>
 <groupId>org.springframework.data</groupId>
 <artifactId>spring-data-jpa</artifactId>
 </dependency>
<dependencies>

Dependency management with Spring Boot

Spring Boot already selects a very recent version of Spring Data modules for you. In case you want to upgrade to a newer version nonetheless, simply configure the property spring-data-releasetrain.version﻿ to the train name and iteration﻿ you’d like to use.

Spring Framework

The current version of Spring Data modules require Spring Framework in version 5.0.0.RC2 or better. The modules might also work with an older bugfix version of that minor version. However, using the most recent version within that generation is highly recommended.

 Oliver Gierke

 WORKING WITH SPRING DATA REPOSITORIES

The goal of Spring Data repository abstraction is to significantly reduce the amount of boilerplate code required to implement data access layers for various persistence stores.

Spring Data repository documentation and your module﻿

This chapter explains the core concepts and interfaces of Spring Data repositories. The information in this chapter is pulled from the Spring Data Commons module. It uses the configuration and code samples for the Java Persistence API (JPA) module. Adapt the XML namespace declaration and the types to be extended to the equivalents of the particular module that you are using. [repositories.namespace-reference]﻿ covers XML configuration which is supported across all Spring Data modules supporting the repository API, [repository-query-keywords]﻿ covers the query method keywords supported by the repository abstraction in general. For detailed information on the specific features of your module, consult the chapter on that module of this document.

Core concepts

The central interface in Spring Data repository abstraction is Repository﻿ (probably not that much of a surprise). It takes the domain class to manage as well as the id type of the domain class as type arguments. This interface acts primarily as a marker interface to capture the types to work with and to help you to discover interfaces that extend this one. The CrudRepository﻿ provides sophisticated CRUD functionality for the entity class that is being managed.

CrudRepository interface

public interface CrudRepository<T, ID extends Serializable>
 extends Repository<T, ID> {

 <S extends T> S save(S entity); ①

 T findOne(ID primaryKey); ②

 Iterable<T> findAll(); ③

 Long count(); ④

 void delete(T entity); ⑤

 boolean exists(ID primaryKey); ⑥

 // … more functionality omitted.
}

	① Saves the given entity.

	② Returns the entity identified by the given id.

	③ Returns all entities.

	④ Returns the number of entities.

	⑤ Deletes the given entity.

	⑥ Indicates whether an entity with the given id exists.

We also provide persistence technology-specific abstractions like e.g. JpaRepository﻿ or MongoRepository﻿. Those interfaces extend CrudRepository﻿ and expose the capabilities of the underlying persistence technology in addition to the rather generic persistence technology-agnostic interfaces like e.g. CrudRepository.

On top of the CrudRepository﻿ there is a PagingAndSortingRepository﻿ abstraction that adds additional methods to ease paginated access to entities:

PagingAndSortingRepository

public interface PagingAndSortingRepository<T, ID extends Serializable>
 extends CrudRepository<T, ID> {

 Iterable<T> findAll(Sort sort);

 Page<T> findAll(Pageable pageable);
}

Accessing the second page of User﻿ by a page size of 20 you could simply do something like this:

PagingAndSortingRepository<User, Long> repository = // … get access to a bean
Page<User> users = repository.findAll(new PageRequest(1, 20));

In addition to query methods, query derivation for both count and delete queries, is available.

Derived Count Query

public interface UserRepository extends CrudRepository<User, Long> {

 Long countByLastname(String lastname);
}

Derived Delete Query

public interface UserRepository extends CrudRepository<User, Long> {

 Long deleteByLastname(String lastname);

 List<User> removeByLastname(String lastname);

}

Query methods

Standard CRUD functionality repositories usually have queries on the underlying datastore. With Spring Data, declaring those queries becomes a four-step process:

	
Declare an interface extending Repository or one of its subinterfaces and type it to the domain class and ID type that it will handle.

interface PersonRepository extends Repository<Person, Long> { … }

	
Declare query methods on the interface.

interface PersonRepository extends Repository<Person, Long> {
 List<Person> findByLastname(String lastname);
}

	
Set up Spring to create proxy instances for those interfaces. Either via JavaConfig﻿:

import org.springframework.data.jpa.repository.config.EnableJpaRepositories;

@EnableJpaRepositories
class Config {}

or via XML configuration﻿:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jpa="http://www.springframework.org/schema/data/jpa"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/data/jpa
 http://www.springframework.org/schema/data/jpa/spring-jpa.xsd">

 <jpa:repositories base-package="com.acme.repositories"/>

</beans>

The JPA namespace is used in this example. If you are using the repository abstraction for any other store, you need to change this to the appropriate namespace declaration of your store module which should be exchanging jpa﻿ in favor of, for example, mongodb﻿.

Also, note that the JavaConfig variant doesn’t configure a package explictly as the package of the annotated class is used by default. To customize the package to scan use one of the basePackage…﻿ attribute of the data-store specific repository @Enable…﻿-annotation.

	
Get the repository instance injected and use it.

public class SomeClient {

 @Autowired
 private PersonRepository repository;

 public void doSomething() {
 List<Person> persons = repository.findByLastname("Matthews");
 }
}

The sections that follow explain each step in detail.

Defining repository interfaces

As a first step you define a domain class-specific repository interface. The interface must extend Repository and be typed to the domain class and an ID type. If you want to expose CRUD methods for that domain type, extend CrudRepository﻿ instead of Repository﻿.

Fine-tuning repository definition

Typically, your repository interface will extend Repository﻿, CrudRepository﻿ or PagingAndSortingRepository﻿. Alternatively, if you do not want to extend Spring Data interfaces, you can also annotate your repository interface with @RepositoryDefinition﻿. Extending CrudRepository﻿ exposes a complete set of methods to manipulate your entities. If you prefer to be selective about the methods being exposed, simply copy the ones you want to expose from CrudRepository﻿ into your domain repository.

This allows you to define your own abstractions on top of the provided Spring Data Repositories functionality.

Selectively exposing CRUD methods

@NoRepositoryBean
interface MyBaseRepository<T, ID extends Serializable> extends Repository<T, ID> {

 T findOne(ID id);

 T save(T entity);
}

interface UserRepository extends MyBaseRepository<User, Long> {
 User findByEmailAddress(EmailAddress emailAddress);
}

In this first step you defined a common base interface for all your domain repositories and exposed findOne(…)﻿ as well as save(…)﻿.These methods will be routed into the base repository implementation of the store of your choice provided by Spring Data ,e.g. in the case if JPA SimpleJpaRepository﻿, because they are matching the method signatures in CrudRepository﻿. So the UserRepository﻿ will now be able to save users, and find single ones by id, as well as triggering a query to find Users﻿ by their email address.

Note, that the intermediate repository interface is annotated with @NoRepositoryBean﻿. Make sure you add that annotation to all repository interfaces that Spring Data should not create instances for at runtime.

Using Repositories with multiple Spring Data modules

Using a unique Spring Data module in your application makes things simple hence, all repository interfaces in the defined scope are bound to the Spring Data module. Sometimes applications require using more than one Spring Data module. In such case, it’s required for a repository definition to distinguish between persistence technologies. Spring Data enters strict repository configuration mode because it detects multiple repository factories on the class path. Strict configuration requires details on the repository or the domain class to decide about Spring Data module binding for a repository definition:

	
If the repository definition extends the module-specific repository﻿, then it’s a valid candidate for the particular Spring Data module.

	
If the domain class is annotated with the module-specific type annotation﻿, then it’s a valid candidate for the particular Spring Data module. Spring Data modules accept either 3rd party annotations (such as JPA’s @Entity﻿) or provide own annotations such as @Document﻿ for Spring Data MongoDB/Spring Data Elasticsearch.

Repository definitions using Module-specific Interfaces

interface MyRepository extends JpaRepository<User, Long> { }

@NoRepositoryBean
interface MyBaseRepository<T, ID extends Serializable> extends JpaRepository<T, ID> {
 …
}

interface UserRepository extends MyBaseRepository<User, Long> {
 …
}

MyRepository﻿ and UserRepository﻿ extend JpaRepository﻿ in their type hierarchy. They are valid candidates for the Spring Data JPA module.

Repository definitions using generic Interfaces

interface AmbiguousRepository extends Repository<User, Long> {
 …
}

@NoRepositoryBean
interface MyBaseRepository<T, ID extends Serializable> extends CrudRepository<T, ID> {
 …
}

interface AmbiguousUserRepository extends MyBaseRepository<User, Long> {
 …
}

AmbiguousRepository﻿ and AmbiguousUserRepository﻿ extend only Repository﻿ and CrudRepository﻿ in their type hierarchy. While this is perfectly fine using a unique Spring Data module, multiple modules cannot distinguish to which particular Spring Data these repositories should be bound.

Repository definitions using Domain Classes with Annotations

interface PersonRepository extends Repository<Person, Long> {
 …
}

@Entity
public class Person {
 …
}

interface UserRepository extends Repository<User, Long> {
 …
}

@Document
public class User {
 …
}

PersonRepository﻿ references Person﻿ which is annotated with the JPA annotation @Entity﻿ so this repository clearly belongs to Spring Data JPA. UserRepository﻿ uses User﻿ annotated with Spring Data MongoDB’s @Document﻿ annotation.

Repository definitions using Domain Classes with mixed Annotations

interface JpaPersonRepository extends Repository<Person, Long> {
 …
}

interface MongoDBPersonRepository extends Repository<Person, Long> {
 …
}

@Entity
@Document
public class Person {
 …
}

This example shows a domain class using both JPA and Spring Data MongoDB annotations. It defines two repositories, JpaPersonRepository﻿ and MongoDBPersonRepository﻿. One is intended for JPA and the other for MongoDB usage. Spring Data is no longer able to tell the repositories apart which leads to undefined behavior.

Repository type details﻿ and identifying domain class annotations﻿ are used for strict repository configuration identify repository candidates for a particular Spring Data module. Using multiple persistence technology-specific annotations on the same domain type is possible to reuse domain types across multiple persistence technologies, but then Spring Data is no longer able to determine a unique module to bind the repository.

The last way to distinguish repositories is scoping repository base packages. Base packages define the starting points for scanning for repository interface definitions which implies to have repository definitions located in the appropriate packages. By default, annotation-driven configuration uses the package of the configuration class. The base package in XML-based configuration﻿ is mandatory.

Annotation-driven configuration of base packages

@EnableJpaRepositories(basePackages = "com.acme.repositories.jpa")
@EnableMongoRepositories(basePackages = "com.acme.repositories.mongo")
interface Configuration { }

Defining query methods

The repository proxy has two ways to derive a store-specific query from the method name. It can derive the query from the method name directly, or by using a manually defined query. Available options depend on the actual store. However, there’s got to be a strategy that decides what actual query is created. Let’s have a look at the available options.

Query lookup strategies

The following strategies are available for the repository infrastructure to resolve the query. You can configure the strategy at the namespace through the query-lookup-strategy﻿ attribute in case of XML configuration or via the queryLookupStrategy﻿ attribute of the Enable${store}Repositories annotation in case of Java config. Some strategies may not be supported for particular datastores.

	
CREATE﻿ attempts to construct a store-specific query from the query method name. The general approach is to remove a given set of well-known prefixes from the method name and parse the rest of the method. Read more about query construction in Query creation﻿.

	
USE_DECLARED_QUERY﻿ tries to find a declared query and will throw an exception in case it can’t find one. The query can be defined by an annotation somewhere or declared by other means. Consult the documentation of the specific store to find available options for that store. If the repository infrastructure does not find a declared query for the method at bootstrap time, it fails.

	
CREATE_IF_NOT_FOUND﻿ (default) combines CREATE﻿ and USE_DECLARED_QUERY﻿. It looks up a declared query first, and if no declared query is found, it creates a custom method name-based query. This is the default lookup strategy and thus will be used if you do not configure anything explicitly. It allows quick query definition by method names but also custom-tuning of these queries by introducing declared queries as needed.

Query creation

The query builder mechanism built into Spring Data repository infrastructure is useful for building constraining queries over entities of the repository. The mechanism strips the prefixes find…By﻿, read…By﻿, query…By﻿, count…By﻿, and get…By﻿ from the method and starts parsing the rest of it. The introducing clause can contain further expressions such as a Distinct﻿ to set a distinct flag on the query to be created. However, the first By﻿ acts as delimiter to indicate the start of the actual criteria. At a very basic level you can define conditions on entity properties and concatenate them with And﻿ and Or﻿.

Query creation from method names

public interface PersonRepository extends Repository<User, Long> {

 List<Person> findByEmailAddressAndLastname(EmailAddress emailAddress, String lastname);

 // Enables the distinct flag for the query
 List<Person> findDistinctPeopleByLastnameOrFirstname(String lastname, String firstname);
 List<Person> findPeopleDistinctByLastnameOrFirstname(String lastname, String firstname);

 // Enabling ignoring case for an individual property
 List<Person> findByLastnameIgnoreCase(String lastname);
 // Enabling ignoring case for all suitable properties
 List<Person> findByLastnameAndFirstnameAllIgnoreCase(String lastname, String firstname);

 // Enabling static ORDER BY for a query
 List<Person> findByLastnameOrderByFirstnameAsc(String lastname);
 List<Person> findByLastnameOrderByFirstnameDesc(String lastname);
}

The actual result of parsing the method depends on the persistence store for which you create the query. However, there are some general things to notice.

	
The expressions are usually property traversals combined with operators that can be concatenated. You can combine property expressions with AND﻿ and OR﻿. You also get support for operators such as Between﻿, LessThan﻿, GreaterThan﻿, Like﻿ for the property expressions. The supported operators can vary by datastore, so consult the appropriate part of your reference documentation.

	
The method parser supports setting an IgnoreCase﻿ flag for individual properties (for example, findByLastnameIgnoreCase(…)﻿) or for all properties of a type that support ignoring case (usually String﻿ instances, for example, findByLastnameAndFirstnameAllIgnoreCase(…)﻿). Whether ignoring cases is supported may vary by store, so consult the relevant sections in the reference documentation for the store-specific query method.

	
You can apply static ordering by appending an OrderBy﻿ clause to the query method that references a property and by providing a sorting direction (Asc﻿ or Desc﻿). To create a query method that supports dynamic sorting, see Special parameter handling﻿.

Property expressions

Property expressions can refer only to a direct property of the managed entity, as shown in the preceding example. At query creation time you already make sure that the parsed property is a property of the managed domain class. However, you can also define constraints by traversing nested properties. Assume a Person﻿ has an Address﻿ with a ZipCode﻿. In that case a method name of

List<Person> findByAddressZipCode(ZipCode zipCode);

creates the property traversal x.address.zipCode﻿. The resolution algorithm starts with interpreting the entire part (AddressZipCode﻿) as the property and checks the domain class for a property with that name (uncapitalized). If the algorithm succeeds it uses that property. If not, the algorithm splits up the source at the camel case parts from the right side into a head and a tail and tries to find the corresponding property, in our example, AddressZip﻿ and Code﻿. If the algorithm finds a property with that head it takes the tail and continue building the tree down from there, splitting the tail up in the way just described. If the first split does not match, the algorithm move the split point to the left (Address﻿, ZipCode﻿) and continues.

Although this should work for most cases, it is possible for the algorithm to select the wrong property. Suppose the Person﻿ class has an addressZip﻿ property as well. The algorithm would match in the first split round already and essentially choose the wrong property and finally fail (as the type of addressZip﻿ probably has no code﻿ property).

To resolve this ambiguity you can use _﻿ inside your method name to manually define traversal points. So our method name would end up like so:

List<Person> findByAddress_ZipCode(ZipCode zipCode);

As we treat underscore as a reserved character we strongly advise to follow standard Java naming conventions (i.e. not﻿ using underscores in property names but camel case instead).

Special parameter handling

To handle parameters in your query you simply define method parameters as already seen in the examples above. Besides that the infrastructure will recognize certain specific types like Pageable﻿ and Sort﻿ to apply pagination and sorting to your queries dynamically.

Using Pageable, Slice and Sort in query methods

Page<User> findByLastname(String lastname, Pageable pageable);

Slice<User> findByLastname(String lastname, Pageable pageable);

List<User> findByLastname(String lastname, Sort sort);

List<User> findByLastname(String lastname, Pageable pageable);

The first method allows you to pass an org.springframework.data.domain.Pageable﻿ instance to the query method to dynamically add paging to your statically defined query. A Page﻿ knows about the total number of elements and pages available. It does so by the infrastructure triggering a count query to calculate the overall number. As this might be expensive depending on the store used, Slice﻿ can be used as return instead. A Slice﻿ only knows about whether there’s a next Slice﻿ available which might be just sufficient when walking through a larger result set.

Sorting options are handled through the Pageable﻿ instance too. If you only need sorting, simply add an org.springframework.data.domain.Sort﻿ parameter to your method. As you also can see, simply returning a List﻿ is possible as well. In this case the additional metadata required to build the actual Page﻿ instance will not be created (which in turn means that the additional count query that would have been necessary not being issued) but rather simply restricts the query to look up only the given range of entities.

To find out how many pages you get for a query entirely you have to trigger an additional count query. By default this query will be derived from the query you actually trigger.

Limiting query results

The results of query methods can be limited via the keywords first﻿ or top﻿, which can be used interchangeably. An optional numeric value can be appended to top/first to specify the maximum result size to be returned.
If the number is left out, a result size of 1 is assumed.

Limiting the result size of a query with Top﻿ and First﻿

User findFirstByOrderByLastnameAsc();

User findTopByOrderByAgeDesc();

Page<User> queryFirst10ByLastname(String lastname, Pageable pageable);

Slice<User> findTop3ByLastname(String lastname, Pageable pageable);

List<User> findFirst10ByLastname(String lastname, Sort sort);

List<User> findTop10ByLastname(String lastname, Pageable pageable);

The limiting expressions also support the Distinct﻿ keyword. Also, for the queries limiting the result set to one instance, wrapping the result into an Optional﻿ is supported.

If pagination or slicing is applied to a limiting query pagination (and the calculation of the number of pages available) then it is applied within the limited result.

Note that limiting the results in combination with dynamic sorting via a Sort﻿ parameter allows to express query methods for the 'K' smallest as well as for the 'K' biggest elements.

Streaming query results

The results of query methods can be processed incrementally by using a Java 8 Stream<T>﻿ as return type. Instead of simply wrapping the query results in a Stream﻿ data store specific methods are used to perform the streaming.

Stream the result of a query with Java 8 Stream<T>﻿

@Query("select u from User u")
Stream<User> findAllByCustomQueryAndStream();

Stream<User> readAllByFirstnameNotNull();

@Query("select u from User u")
Stream<User> streamAllPaged(Pageable pageable);

A Stream﻿ potentially wraps underlying data store specific resources and must therefore be closed after usage. You can either manually close the Stream﻿ using the close()﻿ method or by using a Java 7 try-with-resources block.

Working with a Stream<T>﻿ result in a try-with-resources block

try (Stream<User> stream = repository.findAllByCustomQueryAndStream()) {
 stream.forEach(…);
}

Not all Spring Data modules currently support Stream<T>﻿ as a return type.

Async query results

Repository queries can be executed asynchronously using Spring’s asynchronous method execution capability﻿. This means the method will return immediately upon invocation and the actual query execution will occur in a task that has been submitted to a Spring TaskExecutor.

@Async
Future<User> findByFirstname(String firstname); ①

@Async
CompletableFuture<User> findOneByFirstname(String firstname); ②

@Async
ListenableFuture<User> findOneByLastname(String lastname); ③

	① Use java.util.concurrent.Future﻿ as return type.

	② Use a Java 8 java.util.concurrent.CompletableFuture﻿ as return type.

	③ Use a org.springframework.util.concurrent.ListenableFuture﻿ as return type.

Creating repository instances

In this section you create instances and bean definitions for the repository interfaces defined. One way to do so is using the Spring namespace that is shipped with each Spring Data module that supports the repository mechanism although we generally recommend to use the Java-Config style configuration.

XML configuration

Each Spring Data module includes a repositories element that allows you to simply define a base package that Spring scans for you.

Enabling Spring Data repositories via XML

<?xml version="1.0" encoding="UTF-8"?>
<beans:beans xmlns:beans="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://www.springframework.org/schema/data/jpa"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/data/jpa
 http://www.springframework.org/schema/data/jpa/spring-jpa.xsd">

 <repositories base-package="com.acme.repositories" />

</beans:beans>

In the preceding example, Spring is instructed to scan com.acme.repositories﻿ and all its sub-packages for interfaces extending Repository﻿ or one of its sub-interfaces. For each interface found, the infrastructure registers the persistence technology-specific FactoryBean﻿ to create the appropriate proxies that handle invocations of the query methods. Each bean is registered under a bean name that is derived from the interface name, so an interface of UserRepository﻿ would be registered under userRepository﻿. The base-package﻿ attribute allows wildcards, so that you can define a pattern of scanned packages.

Using filters

By default the infrastructure picks up every interface extending the persistence technology-specific Repository﻿ sub-interface located under the configured base package and creates a bean instance for it. However, you might want more fine-grained control over which interfaces bean instances get created for. To do this you use <include-filter />﻿ and <exclude-filter />﻿ elements inside <repositories />﻿. The semantics are exactly equivalent to the elements in Spring’s context namespace. For details, see Spring reference documentation﻿ on these elements.

For example, to exclude certain interfaces from instantiation as repository, you could use the following configuration:

Using exclude-filter element

<repositories base-package="com.acme.repositories">
 <context:exclude-filter type="regex" expression=".*SomeRepository" />
</repositories>

This example excludes all interfaces ending in SomeRepository﻿ from being instantiated.

JavaConfig

The repository infrastructure can also be triggered using a store-specific @Enable${store}Repositories﻿ annotation on a JavaConfig class. For an introduction into Java-based configuration of the Spring container, see the reference documentation.[1]

A sample configuration to enable Spring Data repositories looks something like this.

Sample annotation based repository configuration

@Configuration
@EnableJpaRepositories("com.acme.repositories")
class ApplicationConfiguration {

 @Bean
 public EntityManagerFactory entityManagerFactory() {
 // …
 }
}

The sample uses the JPA-specific annotation, which you would change according to the store module you actually use. The same applies to the definition of the EntityManagerFactory﻿ bean. Consult the sections covering the store-specific configuration.

Standalone usage

You can also use the repository infrastructure outside of a Spring container, e.g. in CDI environments. You still need some Spring libraries in your classpath, but generally you can set up repositories programmatically as well. The Spring Data modules that provide repository support ship a persistence technology-specific RepositoryFactory that you can use as follows.

Standalone usage of repository factory

RepositoryFactorySupport factory = … // Instantiate factory here
UserRepository repository = factory.getRepository(UserRepository.class);

Custom implementations for Spring Data repositories

Often it is necessary to provide a custom implementation for a few repository methods. Spring Data repositories easily allow you to provide custom repository code and integrate it with generic CRUD abstraction and query method functionality.

Adding custom behavior to single repositories

To enrich a repository with custom functionality you first define an interface and an implementation for the custom functionality. Use the repository interface you provided to extend the custom interface.

Interface for custom repository functionality

interface UserRepositoryCustom {
 public void someCustomMethod(User user);
}

Implementation of custom repository functionality

class UserRepositoryImpl implements UserRepositoryCustom {

 public void someCustomMethod(User user) {
 // Your custom implementation
 }
}

The most important bit for the class to be found is the Impl﻿ postfix of the name on it compared to the core repository interface (see below).

The implementation itself does not depend on Spring Data and can be a regular Spring bean. So you can use standard dependency injection behavior to inject references to other beans like a JdbcTemplate﻿, take part in aspects, and so on.

Changes to the your basic repository interface

interface UserRepository extends CrudRepository<User, Long>, UserRepositoryCustom {

 // Declare query methods here
}

Let your standard repository interface extend the custom one. Doing so combines the CRUD and custom functionality and makes it available to clients.

Configuration

If you use namespace configuration, the repository infrastructure tries to autodetect custom implementations by scanning for classes below the package we found a repository in. These classes need to follow the naming convention of appending the namespace element’s attribute repository-impl-postfix﻿ to the found repository interface name. This postfix defaults to Impl﻿.

Configuration example

<repositories base-package="com.acme.repository" />

<repositories base-package="com.acme.repository" repository-impl-postfix="FooBar" />

The first configuration example will try to look up a class com.acme.repository.UserRepositoryImpl﻿ to act as custom repository implementation, whereas the second example will try to lookup com.acme.repository.UserRepositoryFooBar﻿.

Resolution of ambiguity

If multiple implementations with matching class names get found in different packages, Spring Data uses the bean names to identify the correct one to use.

Given the following two custom implementations for the UserRepository﻿ introduced above the first implementation will get picked.
Its bean name is userRepositoryImpl﻿ matches that of the repository interface (userRepository﻿) plus the postfix Impl﻿.

Resolution of amibiguous implementations

package com.acme.impl.one;

class UserRepositoryImpl implements UserRepositoryCustom {

 // Your custom implementation
}

package com.acme.impl.two;

@Component("specialCustomImpl")
class UserRepositoryImpl implements UserRepositoryCustom {

 // Your custom implementation
}

If you annotate the UserRepository﻿ interface with @Component("specialCustom")﻿ the bean name plus Impl﻿ matches the one defined for the repository implementation in com.acme.impl.two﻿ and it will be picked instead of the first one.

Manual wiring

The approach just shown works well if your custom implementation uses annotation-based configuration and autowiring only, as it will be treated as any other Spring bean. If your custom implementation bean needs special wiring, you simply declare the bean and name it after the conventions just described. The infrastructure will then refer to the manually defined bean definition by name instead of creating one itself.

Manual wiring of custom implementations

<repositories base-package="com.acme.repository" />

<beans:bean id="userRepositoryImpl" class="…">
 <!-- further configuration -->
</beans:bean>

Adding custom behavior to all repositories

The preceding approach is not feasible when you want to add a single method to all your repository interfaces. To add custom behavior to all repositories, you first add an intermediate interface to declare the shared behavior.

An interface declaring custom shared behavior

@NoRepositoryBean
public interface MyRepository<T, ID extends Serializable>
 extends PagingAndSortingRepository<T, ID> {

 void sharedCustomMethod(ID id);
}

Now your individual repository interfaces will extend this intermediate interface instead of the Repository﻿ interface to include the functionality declared. Next, create an implementation of the intermediate interface that extends the persistence technology-specific repository base class. This class will then act as a custom base class for the repository proxies.

Custom repository base class

public class MyRepositoryImpl<T, ID extends Serializable>
 extends SimpleJpaRepository<T, ID> implements MyRepository<T, ID> {

 private final EntityManager entityManager;

 public MyRepositoryImpl(JpaEntityInformation entityInformation,
 EntityManager entityManager) {
 super(entityInformation, entityManager);

 // Keep the EntityManager around to used from the newly introduced methods.
 this.entityManager = entityManager;
 }

 public void sharedCustomMethod(ID id) {
 // implementation goes here
 }
}

The class needs to have a constructor of the super class which the store-specific repository factory implementation is using. In case the repository base class has multiple constructors, override the one taking an EntityInformation﻿ plus a store specific infrastructure object (e.g. an EntityManager﻿ or a template class).

The default behavior of the Spring <repositories />﻿ namespace is to provide an implementation for all interfaces that fall under the base-package﻿. This means that if left in its current state, an implementation instance of MyRepository﻿ will be created by Spring. This is of course not desired as it is just supposed to act as an intermediary between Repository﻿ and the actual repository interfaces you want to define for each entity. To exclude an interface that extends Repository﻿ from being instantiated as a repository instance, you can either annotate it with @NoRepositoryBean﻿ (as seen above) or move it outside of the configured base-package﻿.

The final step is to make the Spring Data infrastructure aware of the customized repository base class. In JavaConfig this is achieved by using the repositoryBaseClass﻿ attribute of the @Enable…Repositories﻿ annotation:

Configuring a custom repository base class using JavaConfig

@Configuration
@EnableJpaRepositories(repositoryBaseClass = MyRepositoryImpl.class)
class ApplicationConfiguration { … }

A corresponding attribute is available in the XML namespace.

Configuring a custom repository base class using XML

<repositories base-package="com.acme.repository"
 base-class="….MyRepositoryImpl" />

Publishing events from aggregate roots

Entities managed by repositories are aggregate roots.
In a Domain-Driven Design application, these aggregate roots usually publish domain events.
Spring Data provides an annotation @DomainEvents﻿ you can use on a method of your aggregate root to make that publication as easy as possible.

Exposing domain events from an aggregate root

class AnAggregateRoot {

 @DomainEvents ①
 Collection<Object> domainEvents() {
 // … return events you want to get published here
 }

 @AfterDomainEventsPublication ②
 void callbackMethod() {
 // … potentially clean up domain events list
 }
}

	① The method using @DomainEvents﻿ can either return a single event instance or a collection of events. It must not take any arguments.

	② After all events have been published, a method annotated with @AfterDomainEventsPublication﻿. It e.g. can be used to potentially clean the list of events to be published.

The methods will be called every time one of a Spring Data repository’s save(…)﻿ methods is called.

Spring Data extensions

This section documents a set of Spring Data extensions that enable Spring Data usage in a variety of contexts. Currently most of the integration is targeted towards Spring MVC.

Querydsl Extension

Querydsl﻿ is a framework which enables the construction of statically typed SQL-like queries via its fluent API.

Several Spring Data modules offer integration with Querydsl via QueryDslPredicateExecutor﻿.

QueryDslPredicateExecutor interface

public interface QueryDslPredicateExecutor<T> {

 T findOne(Predicate predicate); ①

 Iterable<T> findAll(Predicate predicate); ②

 long count(Predicate predicate); ③

 boolean exists(Predicate predicate); ④

 // … more functionality omitted.
}

	① Finds and returns a single entity matching the Predicate﻿.

	② Finds and returns all entities matching the Predicate﻿.

	③ Returns the number of entities matching the Predicate﻿.

	④ Returns if an entity that matches the Predicate﻿ exists.

To make use of Querydsl support simply extend QueryDslPredicateExecutor﻿ on your repository interface.

Querydsl integration on repositories

interface UserRepository extends CrudRepository<User, Long>, QueryDslPredicateExecutor<User> {

}

The above enables to write typesafe queries using Querydsl Predicate﻿ s.

Predicate predicate = user.firstname.equalsIgnoreCase("dave")
 .and(user.lastname.startsWithIgnoreCase("mathews"));

userRepository.findAll(predicate);

Web support

This section contains the documentation for the Spring Data web support as it is implemented as of Spring Data Commons in the 1.6 range. As it the newly introduced support changes quite a lot of things we kept the documentation of the former behavior in Legacy web support﻿.

Spring Data modules ships with a variety of web support if the module supports the repository programming model. The web related stuff requires Spring MVC JARs on the classpath, some of them even provide integration with Spring HATEOAS [2]. In general, the integration support is enabled by using the @EnableSpringDataWebSupport﻿ annotation in your JavaConfig configuration class.

Enabling Spring Data web support

@Configuration
@EnableWebMvc
@EnableSpringDataWebSupport
class WebConfiguration { }

The @EnableSpringDataWebSupport﻿ annotation registers a few components we will discuss in a bit. It will also detect Spring HATEOAS on the classpath and register integration components for it as well if present.

Alternatively, if you are using XML configuration, register either SpringDataWebSupport﻿ or HateoasAwareSpringDataWebSupport﻿ as Spring beans:

Enabling Spring Data web support in XML

<bean class="org.springframework.data.web.config.SpringDataWebConfiguration" />

<!-- If you're using Spring HATEOAS as well register this one *instead* of the former -->
<bean class="org.springframework.data.web.config.HateoasAwareSpringDataWebConfiguration" />

Basic web support

The configuration setup shown above will register a few basic components:

	
A DomainClassConverter﻿ to enable Spring MVC to resolve instances of repository managed domain classes from request parameters or path variables.

	
HandlerMethodArgumentResolver﻿ implementations to let Spring MVC resolve Pageable and Sort instances from request parameters.

DomainClassConverter

The DomainClassConverter﻿ allows you to use domain types in your Spring MVC controller method signatures directly, so that you don’t have to manually lookup the instances via the repository:

A Spring MVC controller using domain types in method signatures

@Controller
@RequestMapping("/users")
public class UserController {

 @RequestMapping("/{id}")
 public String showUserForm(@PathVariable("id") User user, Model model) {

 model.addAttribute("user", user);
 return "userForm";
 }
}

As you can see the method receives a User instance directly and no further lookup is necessary. The instance can be resolved by letting Spring MVC convert the path variable into the id type of the domain class first and eventually access the instance through calling findOne(…)﻿ on the repository instance registered for the domain type.

Currently the repository has to implement CrudRepository﻿ to be eligible to be discovered for conversion.

HandlerMethodArgumentResolvers for Pageable and Sort

The configuration snippet above also registers a PageableHandlerMethodArgumentResolver﻿ as well as an instance of SortHandlerMethodArgumentResolver﻿. The registration enables Pageable﻿ and Sort﻿ being valid controller method arguments

Using Pageable as controller method argument

@Controller
@RequestMapping("/users")
public class UserController {

 @Autowired UserRepository repository;

 @RequestMapping
 public String showUsers(Model model, Pageable pageable) {

 model.addAttribute("users", repository.findAll(pageable));
 return "users";
 }
}

This method signature will cause Spring MVC try to derive a Pageable instance from the request parameters using the following default configuration:

Table 1. Request parameters evaluated for Pageable instances

	page﻿

	Page you want to retrieve, 0 indexed and defaults to 0.

	size﻿

	Size of the page you want to retrieve, defaults to 20.

	sort﻿

	Properties that should be sorted by in the format property,property(,ASC|DESC)﻿. Default sort direction is ascending. Use multiple sort﻿ parameters if you want to switch directions, e.g. ?sort=firstname&sort=lastname,asc﻿.

To customize this behavior register a bean implementing the interface PageableHandlerMethodArgumentResolverCustomizer﻿ or SortHandlerMethodArgumentResolverCustomizer﻿ respectively. It’s customize()﻿ method will get called allowing you to change settings. Like in the following example.

@Bean SortHandlerMethodArgumentResolverCustomizer sortCustomizer() {
 return s -> s.setPropertyDelimiter("<-->");
}

If setting the properties of an existing MethodArgumentResolver﻿ isn’t sufficient for your purpose extend either SpringDataWebConfiguration﻿ or the HATEOAS-enabled equivalent and override the pageableResolver()﻿ or sortResolver()﻿ methods and import your customized configuration file instead of using the @Enable﻿-annotation.

In case you need multiple Pageable﻿ or Sort﻿ instances to be resolved from the request (for multiple tables, for example) you can use Spring’s @Qualifier﻿ annotation to distinguish one from another. The request parameters then have to be prefixed with ${qualifier}_﻿. So for a method signature like this:

public String showUsers(Model model,
 @Qualifier("foo") Pageable first,
 @Qualifier("bar") Pageable second) { … }

you have to populate foo_page﻿ and bar_page﻿ etc.

The default Pageable﻿ handed into the method is equivalent to a new PageRequest(0, 20)﻿ but can be customized using the @PageableDefaults﻿ annotation on the Pageable﻿ parameter.

Hypermedia support for Pageables

Spring HATEOAS ships with a representation model class PagedResources﻿ that allows enriching the content of a Page﻿ instance with the necessary Page﻿ metadata as well as links to let the clients easily navigate the pages. The conversion of a Page to a PagedResources﻿ is done by an implementation of the Spring HATEOAS ResourceAssembler﻿ interface, the PagedResourcesAssembler﻿.

Using a PagedResourcesAssembler as controller method argument

@Controller
class PersonController {

 @Autowired PersonRepository repository;

 @RequestMapping(value = "/persons", method = RequestMethod.GET)
 HttpEntity<PagedResources<Person>> persons(Pageable pageable,
 PagedResourcesAssembler assembler) {

 Page<Person> persons = repository.findAll(pageable);
 return new ResponseEntity<>(assembler.toResources(persons), HttpStatus.OK);
 }
}

Enabling the configuration as shown above allows the PagedResourcesAssembler﻿ to be used as controller method argument. Calling toResources(…)﻿ on it will cause the following:

	
The content of the Page﻿ will become the content of the PagedResources﻿ instance.

	
The PagedResources﻿ will get a PageMetadata﻿ instance attached populated with information form the Page﻿ and the underlying PageRequest﻿.

	
The PagedResources﻿ gets prev﻿ and next﻿ links attached depending on the page’s state. The links will point to the URI the method invoked is mapped to. The pagination parameters added to the method will match the setup of the PageableHandlerMethodArgumentResolver﻿ to make sure the links can be resolved later on.

Assume we have 30 Person instances in the database. You can now trigger a request GET http://localhost:8080/persons﻿﻿ and you’ll see something similar to this:

{ "links" : [{ "rel" : "next",
 "href" : "http://localhost:8080/persons?page=1&size=20 }
],
 "content" : [
 … // 20 Person instances rendered here
],
 "pageMetadata" : {
 "size" : 20,
 "totalElements" : 30,
 "totalPages" : 2,
 "number" : 0
 }
}

You see that the assembler produced the correct URI and also picks up the default configuration present to resolve the parameters into a Pageable﻿ for an upcoming request. This means, if you change that configuration, the links will automatically adhere to the change. By default the assembler points to the controller method it was invoked in but that can be customized by handing in a custom Link﻿ to be used as base to build the pagination links to overloads of the PagedResourcesAssembler.toResource(…)﻿ method.

Querydsl web support

For those stores having QueryDSL﻿ integration it is possible to derive queries from the attributes contained in a Request﻿ query string.

This means that given the User﻿ object from previous samples a query string

?firstname=Dave&lastname=Matthews

can be resolved to

QUser.user.firstname.eq("Dave").and(QUser.user.lastname.eq("Matthews"))

using the QuerydslPredicateArgumentResolver﻿.

The feature will be automatically enabled along @EnableSpringDataWebSupport﻿ when Querydsl is found on the classpath.

Adding a @QuerydslPredicate﻿ to the method signature will provide a ready to use Predicate﻿ which can be executed via the QueryDslPredicateExecutor﻿.

Type information is typically resolved from the methods return type. Since those information does not necessarily match the domain type it might be a good idea to use the root﻿ attribute of QuerydslPredicate﻿.

@Controller
class UserController {

 @Autowired UserRepository repository;

 @RequestMapping(value = "/", method = RequestMethod.GET)
 String index(Model model, @QuerydslPredicate(root = User.class) Predicate predicate, ①
 Pageable pageable, @RequestParam MultiValueMap<String, String> parameters) {

 model.addAttribute("users", repository.findAll(predicate, pageable));

 return "index";
 }
}

	① Resolve query string arguments to matching Predicate﻿ for User﻿.

The default binding is as follows:

	
Object﻿ on simple properties as eq﻿.

	
Object﻿ on collection like properties as contains﻿.

	
Collection﻿ on simple properties as in﻿.

Those bindings can be customized via the bindings﻿ attribute of @QuerydslPredicate﻿ or by making use of Java 8 default methods﻿ adding the QuerydslBinderCustomizer﻿ to the repository interface.

interface UserRepository extends CrudRepository<User, String>,
 QueryDslPredicateExecutor<User>, ①
 QuerydslBinderCustomizer<QUser> { ②

 @Override
 default public void customize(QuerydslBindings bindings, QUser user) {

 bindings.bind(user.username).first((path, value) -> path.contains(value)) ③
 bindings.bind(String.class)
 .first((StringPath path, String value) -> path.containsIgnoreCase(value)); ④
 bindings.excluding(user.password); ⑤
 }
}

	① QueryDslPredicateExecutor﻿ provides access to specific finder methods for Predicate﻿.

	② QuerydslBinderCustomizer﻿ defined on the repository interface will be automatically picked up and shortcuts @QuerydslPredicate(bindings=…​)﻿.

	③ Define the binding for the username﻿ property to be a simple contains binding.

	④ Define the default binding for String﻿ properties to be a case insensitive contains match.

	⑤ Exclude the password﻿ property from Predicate﻿ resolution.

Repository populators

If you work with the Spring JDBC module, you probably are familiar with the support to populate a DataSource﻿ using SQL scripts. A similar abstraction is available on the repositories level, although it does not use SQL as the data definition language because it must be store-independent. Thus the populators support XML (through Spring’s OXM abstraction) and JSON (through Jackson) to define data with which to populate the repositories.

Assume you have a file data.json﻿ with the following content:

Data defined in JSON

[{ "_class" : "com.acme.Person",
 "firstname" : "Dave",
 "lastname" : "Matthews" },
 { "_class" : "com.acme.Person",
 "firstname" : "Carter",
 "lastname" : "Beauford" }]

You can easily populate your repositories by using the populator elements of the repository namespace provided in Spring Data Commons. To populate the preceding data to your PersonRepository , do the following:

Declaring a Jackson repository populator

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:repository="http://www.springframework.org/schema/data/repository"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/data/repository
 http://www.springframework.org/schema/data/repository/spring-repository.xsd">

 <repository:jackson2-populator locations="classpath:data.json" />

</beans>

This declaration causes the data.json﻿ file to
be read and deserialized via a Jackson ObjectMapper﻿.

The type to which the JSON object will be unmarshalled to will be determined by inspecting the _class﻿ attribute of the JSON document. The infrastructure will eventually select the appropriate repository to handle the object just deserialized.

To rather use XML to define the data the repositories shall be populated with, you can use the unmarshaller-populator﻿ element. You configure it to use one of the XML marshaller options Spring OXM provides you with. See the Spring reference documentation﻿ for details.

Declaring an unmarshalling repository populator (using JAXB)

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:repository="http://www.springframework.org/schema/data/repository"
 xmlns:oxm="http://www.springframework.org/schema/oxm"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/data/repository
 http://www.springframework.org/schema/data/repository/spring-repository.xsd
 http://www.springframework.org/schema/oxm
 http://www.springframework.org/schema/oxm/spring-oxm.xsd">

 <repository:unmarshaller-populator locations="classpath:data.json"
 unmarshaller-ref="unmarshaller" />

 <oxm:jaxb2-marshaller contextPath="com.acme" />

</beans>

Legacy web support

Domain class web binding for Spring MVC

Given you are developing a Spring MVC web application you typically have to resolve domain class ids from URLs. By default your task is to transform that request parameter or URL part into the domain class to hand it to layers below then or execute business logic on the entities directly. This would look something like this:

@Controller
@RequestMapping("/users")
public class UserController {

 private final UserRepository userRepository;

 @Autowired
 public UserController(UserRepository userRepository) {
 Assert.notNull(repository, "Repository must not be null!");
 this.userRepository = userRepository;
 }

 @RequestMapping("/{id}")
 public String showUserForm(@PathVariable("id") Long id, Model model) {

 // Do null check for id
 User user = userRepository.findOne(id);
 // Do null check for user

 model.addAttribute("user", user);
 return "user";
 }
}

First you declare a repository dependency for each controller to look up the entity managed by the controller or repository respectively. Looking up the entity is boilerplate as well, as it’s always a findOne(…)﻿ call. Fortunately Spring provides means to register custom components that allow conversion between a String﻿ value to an arbitrary type.

PropertyEditors

For Spring versions before 3.0 simple Java PropertyEditors﻿ had to be used. To integrate with that, Spring Data offers a DomainClassPropertyEditorRegistrar﻿, which looks up all Spring Data repositories registered in the ApplicationContext﻿ and registers a custom PropertyEditor﻿ for the managed domain class.

<bean class="….web.servlet.mvc.annotation.AnnotationMethodHandlerAdapter">
 <property name="webBindingInitializer">
 <bean class="….web.bind.support.ConfigurableWebBindingInitializer">
 <property name="propertyEditorRegistrars">
 <bean class="org.springframework.data.repository.support.DomainClassPropertyEditorRegistrar" />
 </property>
 </bean>
 </property>
</bean>

If you have configured Spring MVC as in the preceding example, you can configure your controller as follows, which reduces a lot of the clutter and boilerplate.

@Controller
@RequestMapping("/users")
public class UserController {

 @RequestMapping("/{id}")
 public String showUserForm(@PathVariable("id") User user, Model model) {

 model.addAttribute("user", user);
 return "userForm";
 }
}

1 JavaConfig in the Spring reference documentation﻿

2 Spring HATEOAS - https://github.com/SpringSource/spring-hateoas﻿﻿

 Oliver Gierke

 JPA REPOSITORIES

This chapter will point out the specialties for repository support for JPA. This builds on the core repository support explained in [repositories]﻿. So make sure you’ve got a sound understanding of the basic concepts explained there.

Introduction

Spring namespace

The JPA module of Spring Data contains a custom namespace that allows defining repository beans. It also contains certain features and element attributes that are special to JPA. Generally the JPA repositories can be set up using the repositories﻿ element:

Setting up JPA repositories using the namespace

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jpa="http://www.springframework.org/schema/data/jpa"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/data/jpa
 http://www.springframework.org/schema/data/jpa/spring-jpa.xsd">

 <jpa:repositories base-package="com.acme.repositories" />

</beans>

Using this element looks up Spring Data repositories as described in [repositories.create-instances]﻿. Beyond that it activates persistence exception translation for all beans annotated with @Repository﻿ to let exceptions being thrown by the JPA persistence providers be converted into Spring’s DataAccessException﻿ hierarchy.

Custom namespace attributes

Beyond the default attributes of the repositories﻿ element the JPA namespace offers additional attributes to gain more detailed control over the setup of the repositories:

Table 1. Custom JPA-specific attributes of the repositories element

	entity-manager-factory-ref﻿

	Explicitly wire the EntityManagerFactory﻿ to be used with the repositories being detected by the repositories﻿ element. Usually used if multiple EntityManagerFactory﻿ beans are used within the application. If not configured we will automatically lookup the EntityManagerFactory﻿ bean with the name entityManagerFactory﻿ in the ApplicationContext﻿.

	transaction-manager-ref﻿

	Explicitly wire the PlatformTransactionManager﻿ to be used with the repositories being detected by the repositories﻿ element. Usually only necessary if multiple transaction managers and/or EntityManagerFactory﻿ beans have been configured. Default to a single defined PlatformTransactionManager﻿ inside the current ApplicationContext﻿.

Note that we require a PlatformTransactionManager﻿ bean named transactionManager﻿ to be present if no explicit transaction-manager-ref﻿ is defined.

Annotation based configuration

The Spring Data JPA repositories support cannot only be activated through an XML namespace but also using an annotation through JavaConfig.

Spring Data JPA repositories using JavaConfig

@Configuration
@EnableJpaRepositories
@EnableTransactionManagement
class ApplicationConfig {

 @Bean
 public DataSource dataSource() {

 EmbeddedDatabaseBuilder builder = new EmbeddedDatabaseBuilder();
 return builder.setType(EmbeddedDatabaseType.HSQL).build();
 }

 @Bean
 public LocalContainerEntityManagerFactoryBean entityManagerFactory() {

 HibernateJpaVendorAdapter vendorAdapter = new HibernateJpaVendorAdapter();
 vendorAdapter.setGenerateDdl(true);

 LocalContainerEntityManagerFactoryBean factory = new LocalContainerEntityManagerFactoryBean();
 factory.setJpaVendorAdapter(vendorAdapter);
 factory.setPackagesToScan("com.acme.domain");
 factory.setDataSource(dataSource());
 return factory;
 }

 @Bean
 public PlatformTransactionManager transactionManager() {

 JpaTransactionManager txManager = new JpaTransactionManager();
 txManager.setEntityManagerFactory(entityManagerFactory());
 return txManager;
 }
}

It’s important to create LocalContainerEntityManagerFactoryBean﻿ and not EntityManagerFactory﻿ directly since the former also participates in exception translation mechanisms besides simply creating EntityManagerFactory﻿.

The just shown configuration class sets up an embedded HSQL database using the EmbeddedDatabaseBuilder﻿ API of spring-jdbc. We then set up a EntityManagerFactory﻿ and use Hibernate as sample persistence provider. The last infrastructure component declared here is the JpaTransactionManager﻿. We finally activate Spring Data JPA repositories using the @EnableJpaRepositories﻿ annotation which essentially carries the same attributes as the XML namespace does. If no base package is configured it will use the one the configuration class resides in.

Persisting entities

Saving entities

Saving an entity can be performed via the CrudRepository.save(…)﻿-Method. It will persist or merge the given entity using the underlying JPA EntityManager﻿. If the entity has not been persisted yet Spring Data JPA will save the entity via a call to the entityManager.persist(…)﻿ method, otherwise the entityManager.merge(…)﻿ method will be called.

Entity state detection strategies

Spring Data JPA offers the following strategies to detect whether an entity is new or not:

Table 2. Options for detection whether an entity is new in Spring Data JPA

	Id-Property inspection (default﻿)

	By default Spring Data JPA inspects the identifier property of the given entity. If the identifier property is null﻿, then the entity will be assumed as new, otherwise as not new.

	Implementing Persistable﻿

	If an entity implements Persistable﻿, Spring Data JPA will delegate the new detection to the isNew(…)﻿ method of the entity. See the JavaDoc﻿ for details.

	Implementing EntityInformation﻿

	You can customize the EntityInformation﻿ abstraction used in the SimpleJpaRepository﻿ implementation by creating a subclass of JpaRepositoryFactory﻿ and overriding the getEntityInformation(…)﻿ method accordingly. You then have to register the custom implementation of JpaRepositoryFactory﻿ as a Spring bean. Note that this should be rarely necessary. See the JavaDoc﻿ for details.

Query methods

Query lookup strategies

The JPA module supports defining a query manually as String or have it being derived from the method name.

Declared queries

Although getting a query derived from the method name is quite convenient, one might face the situation in which either the method name parser does not support the keyword one wants to use or the method name would get unnecessarily ugly. So you can either use JPA named queries through a naming convention (see Using JPA NamedQueries﻿ for more information) or rather annotate your query method with @Query﻿ (see Using @Query﻿ for details).

Query creation

Generally the query creation mechanism for JPA works as described in [repositories.query-methods]﻿. Here’s a short example of what a JPA query method translates into:

Query creation from method names

public interface UserRepository extends Repository<User, Long> {

 List<User> findByEmailAddressAndLastname(String emailAddress, String lastname);
}

We will create a query using the JPA criteria API from this but essentially this translates into the following query: select u from User u where u.emailAddress = ?1 and u.lastname = ?2﻿. Spring Data JPA will do a property check and traverse nested properties as described in [repositories.query-methods.query-property-expressions]﻿. Here’s an overview of the keywords supported for JPA and what a method containing that keyword essentially translates to.

Table 3. Supported keywords inside method names

	Keyword
	Sample
	JPQL snippet

	And﻿

	findByLastnameAndFirstname﻿

	… where x.lastname = ?1 and x.firstname = ?2﻿

	Or﻿

	findByLastnameOrFirstname﻿

	… where x.lastname = ?1 or x.firstname = ?2﻿

	Is,Equals﻿

	findByFirstname﻿,findByFirstnameIs﻿,findByFirstnameEquals﻿

	… where x.firstname = ?1﻿

	Between﻿

	findByStartDateBetween﻿

	… where x.startDate between ?1 and ?2﻿

	LessThan﻿

	findByAgeLessThan﻿

	… where x.age < ?1﻿

	LessThanEqual﻿

	findByAgeLessThanEqual﻿

	… where x.age <= ?1﻿

	GreaterThan﻿

	findByAgeGreaterThan﻿

	… where x.age > ?1﻿

	GreaterThanEqual﻿

	findByAgeGreaterThanEqual﻿

	… where x.age >= ?1﻿

	After﻿

	findByStartDateAfter﻿

	… where x.startDate > ?1﻿

	Before﻿

	findByStartDateBefore﻿

	… where x.startDate < ?1﻿

	IsNull﻿

	findByAgeIsNull﻿

	… where x.age is null﻿

	IsNotNull,NotNull﻿

	findByAge(Is)NotNull﻿

	… where x.age not null﻿

	Like﻿

	findByFirstnameLike﻿

	… where x.firstname like ?1﻿

	NotLike﻿

	findByFirstnameNotLike﻿

	… where x.firstname not like ?1﻿

	StartingWith﻿

	findByFirstnameStartingWith﻿

	… where x.firstname like ?1﻿ (parameter bound with appended %﻿)

	EndingWith﻿

	findByFirstnameEndingWith﻿

	… where x.firstname like ?1﻿ (parameter bound with prepended %﻿)

	Containing﻿

	findByFirstnameContaining﻿

	… where x.firstname like ?1﻿ (parameter bound wrapped in %﻿)

	OrderBy﻿

	findByAgeOrderByLastnameDesc﻿

	… where x.age = ?1 order by x.lastname desc﻿

	Not﻿

	findByLastnameNot﻿

	… where x.lastname <> ?1﻿

	In﻿

	findByAgeIn(Collection<Age> ages)﻿

	… where x.age in ?1﻿

	NotIn﻿

	findByAgeNotIn(Collection<Age> age)﻿

	… where x.age not in ?1﻿

	True﻿

	findByActiveTrue()﻿

	… where x.active = true﻿

	False﻿

	findByActiveFalse()﻿

	… where x.active = false﻿

	IgnoreCase﻿

	findByFirstnameIgnoreCase﻿

	… where UPPER(x.firstame) = UPPER(?1)﻿

In﻿ and NotIn﻿ also take any subclass of Collection﻿ as parameter as well as arrays or varargs. For other syntactical versions of the very same logical operator check [repository-query-keywords]﻿.

Using JPA NamedQueries

The examples use simple <named-query />﻿ element and @NamedQuery﻿ annotation. The queries for these configuration elements have to be defined in JPA query language. Of course you can use <named-native-query />﻿ or @NamedNativeQuery﻿ too. These elements allow you to define the query in native SQL by losing the database platform independence.

XML named query definition

To use XML configuration simply add the necessary <named-query />﻿ element to the orm.xml﻿ JPA configuration file located in META-INF﻿ folder of your classpath. Automatic invocation of named queries is enabled by using some defined naming convention. For more details see below.

XML named query configuration

<named-query name="User.findByLastname">
 <query>select u from User u where u.lastname = ?1</query>
</named-query>

As you can see the query has a special name which will be used to resolve it at runtime.

Annotation configuration

Annotation configuration has the advantage of not needing another configuration file to be edited, probably lowering maintenance costs. You pay for that benefit by the need to recompile your domain class for every new query declaration.

Annotation based named query configuration

@Entity
@NamedQuery(name = "User.findByEmailAddress",
 query = "select u from User u where u.emailAddress = ?1")
public class User {

}

Declaring interfaces

To allow execution of these named queries all you need to do is to specify the UserRepository﻿ as follows:

Query method declaration in UserRepository

public interface UserRepository extends JpaRepository<User, Long> {

 List<User> findByLastname(String lastname);

 User findByEmailAddress(String emailAddress);
}

Spring Data will try to resolve a call to these methods to a named query, starting with the simple name of the configured domain class, followed by the method name separated by a dot. So the example here would use the named queries defined above instead of trying to create a query from the method name.

Using @Query

Using named queries to declare queries for entities is a valid approach and works fine for a small number of queries. As the queries themselves are tied to the Java method that executes them you actually can bind them directly using the Spring Data JPA @Query﻿ annotation rather than annotating them to the domain class. This will free the domain class from persistence specific information and co-locate the query to the repository interface.

Queries annotated to the query method will take precedence over queries defined using @NamedQuery﻿ or named queries declared in orm.xml﻿.

Declare query at the query method using @Query

public interface UserRepository extends JpaRepository<User, Long> {

 @Query("select u from User u where u.emailAddress = ?1")
 User findByEmailAddress(String emailAddress);
}

Using advanced LIKE﻿ expressions

The query execution mechanism for manually defined queries using @Query allows the definition of advanced LIKE﻿ expressions inside the query definition.

Advanced like-expressions in @Query

public interface UserRepository extends JpaRepository<User, Long> {

 @Query("select u from User u where u.firstname like %?1")
 List<User> findByFirstnameEndsWith(String firstname);
}

In the just shown sample LIKE﻿ delimiter character %﻿ is recognized and the query transformed into a valid JPQL query (removing the %﻿). Upon query execution the parameter handed into the method call gets augmented with the previously recognized LIKE﻿ pattern.

Native queries

The @Query﻿ annotation allows to execute native queries by setting the nativeQuery﻿ flag to true.

Declare a native query at the query method using @Query

public interface UserRepository extends JpaRepository<User, Long> {

 @Query(value = "SELECT * FROM USERS WHERE EMAIL_ADDRESS = ?1", nativeQuery = true)
 User findByEmailAddress(String emailAddress);
}

Note, that we currently don’t support execution of dynamic sorting for native queries as we’d have to manipulate the actual query declared and we cannot do this reliably for native SQL. You can however use native queries for pagination by specifying the count query yourself:

Declare native count queries for pagination at the query method using @Query

public interface UserRepository extends JpaRepository<User, Long> {

 @Query(value = "SELECT * FROM USERS WHERE LASTNAME = ?1",
 countQuery = "SELECT count(*) FROM USERS WHERE LASTNAME = ?1",
 nativeQuery = true)
 Page<User> findByLastname(String lastname, Pageable pageable);
}

This also works with named native queries by adding the suffix .count﻿ to a copy of your query. Be aware that you probably must register a result set mapping for your count query, though.

Using Sort

Sorting can be done be either providing a PageRequest﻿ or using Sort﻿ directly. The properties actually used within the Order﻿ instances of Sort﻿ need to match to your domain model, which means they need to resolve to either a property or an alias used within the query. The JPQL defines this as a state_field_path_expression﻿.

Using any non referenceable path expression leads to an Exception.

Using Sort﻿ together with @Query﻿ however allows you to sneak in non path checked Order﻿ instances containing functions﻿ within the ORDER BY﻿ clause. This is possible because the Order﻿ is just appended to the given query string. By default we will reject any Order﻿ instance containing function calls, but you can use JpaSort.unsafe﻿ to add potentially unsafe ordering.

Using Sort and JpaSort

public interface UserRepository extends JpaRepository<User, Long> {

 @Query("select u from User u where u.lastname like ?1%")
 List<User> findByAndSort(String lastname, Sort sort);

 @Query("select u.id, LENGTH(u.firstname) as fn_len from User u where u.lastname like ?1%")
 List<Object[]> findByAsArrayAndSort(String lastname, Sort sort);
}

repo.findByAndSort("lannister", new Sort("firstname")); ①
repo.findByAndSort("stark", new Sort("LENGTH(firstname)")); ②
repo.findByAndSort("targaryen", JpaSort.unsafe("LENGTH(firstname)")); ③
repo.findByAsArrayAndSort("bolton", new Sort("fn_len")); ④

	① Valid Sort﻿ expression pointing to property in domain model.

	② Invalid Sort﻿ containing function call. Thows Exception.

	③ Valid Sort﻿ containing explicitly unsafe﻿ Order﻿.

	④ Valid Sort﻿ expression pointing to aliased function.

Using named parameters

By default Spring Data JPA will use position based parameter binding as described in all the samples above. This makes query methods a little error prone to refactoring regarding the parameter position. To solve this issue you can use @Param﻿ annotation to give a method parameter a concrete name and bind the name in the query.

Using named parameters

public interface UserRepository extends JpaRepository<User, Long> {

 @Query("select u from User u where u.firstname = :firstname or u.lastname = :lastname")
 User findByLastnameOrFirstname(@Param("lastname") String lastname,
 @Param("firstname") String firstname);
}

Note that the method parameters are switched according to the occurrence in the query defined.

Spring 4 fully supports Java 8’s parameter name discovery based on the -parameters﻿ compiler flag. Using this flag in your build as an alternative to debug information, you can omit the @Param﻿ annotation for named parameters.

Using SpEL expressions

As of Spring Data JPA release 1.4 we support the usage of restricted SpEL template expressions in manually defined queries via @Query﻿. Upon query execution these expressions are evaluated against a predefined set of variables. We support the following list of variables to be used in a manual query.

Table 4. Supported variables inside SpEL based query templates

	Variable
	Usage
	Description

	entityName﻿

	select x from #{#entityName} x﻿

	Inserts the entityName﻿ of the domain type associated with the given Repository. The entityName﻿ is resolved as follows: If the domain type has set the name property on the @Entity﻿ annotation then it will be used. Otherwise the simple class-name of the domain type will be used.

The following example demonstrates one use case for the #{#entityName}﻿ expression in a query string where you want to define a repository interface with a query method with a manually defined query. In order not to have to state the actual entity name in the query string of a @Query﻿ annotation one can use the #{#entityName}﻿ Variable.

The entityName﻿ can be customized via the @Entity﻿ annotation. Customizations via orm.xml﻿ are not supported for the SpEL expressions.

Using SpEL expressions in repository query methods - entityName

@Entity
public class User {

 @Id
 @GeneratedValue
 Long id;

 String lastname;
}

public interface UserRepository extends JpaRepository<User,Long> {

 @Query("select u from #{#entityName} u where u.lastname = ?1")
 List<User> findByLastname(String lastname);
}

Of course you could have just used User in the query declaration directly but that would require you to change the query as well. The reference to #entityName﻿ will pick up potential future remappings of the User class to a different entity name (e.g. by using @Entity(name = "MyUser")﻿.

Another use case for the #{#entityName}﻿ expression in a query string is if you want to define a generic repository interface with specialized repository interfaces for a concrete domain type. In order not to have to repeat the definition of custom query methods on the concrete interfaces you can use the entity name expression in the query string of the @Query﻿ annotation in the generic repository interface.

Using SpEL expressions in repository query methods - entityName with inheritance

@MappedSuperclass
public abstract class AbstractMappedType {
 …
 String attribute
}

@Entity
public class ConcreteType extends AbstractMappedType { … }

@NoRepositoryBean
public interface MappedTypeRepository<T extends AbstractMappedType>
 extends Repository<T, Long> {

 @Query("select t from #{#entityName} t where t.attribute = ?1")
 List<T> findAllByAttribute(String attribute);
}

public interface ConcreteRepository
 extends MappedTypeRepository<ConcreteType> { … }

In the example the interface MappedTypeRepository﻿ is the common parent interface for a few domain types extending AbstractMappedType﻿. It also defines the generic method findAllByAttribute(…)﻿ which can be used on instances of the specialized repository interfaces. If you now invoke findByAllAttribute(…)﻿ on ConcreteRepository﻿ the query being executed will be select t from ConcreteType t where t.attribute = ?1﻿.

Modifying queries

All the sections above describe how to declare queries to access a given entity or collection of entities. Of course you can add custom modifying behaviour by using facilities described in [repositories.custom-implementations]﻿. As this approach is feasible for comprehensive custom functionality, you can achieve the execution of modifying queries that actually only need parameter binding by annotating the query method with @Modifying﻿:

Declaring manipulating queries

@Modifying
@Query("update User u set u.firstname = ?1 where u.lastname = ?2")
int setFixedFirstnameFor(String firstname, String lastname);

This will trigger the query annotated to the method as updating query instead of a selecting one. As the EntityManager﻿ might contain outdated entities after the execution of the modifying query, we do not automatically clear it (see JavaDoc of EntityManager.clear()﻿ for details) since this will effectively drop all non-flushed changes still pending in the EntityManager﻿. If you wish the EntityManager﻿ to be cleared automatically you can set @Modifying﻿ annotation’s clearAutomatically﻿ attribute to true﻿.

Derived delete queries

Spring Data JPA also supports derived delete queries that allow you to avoid having to declare the JPQL query explicitly.

Using a derived delete query

interface UserRepository extends Repository<User, Long> {

 void deleteByRoleId(long roleId);

 @Modifying
 @Query("delete from User u where user.role.id = ?1")
 void deleteInBulkByRoleId(long roleId);
}

Although the deleteByRoleId(…)﻿ method looks like it’s basically producing the same result as the deleteInBulkByRoleId(…)﻿, there is an important difference between the two method declarations in terms of the way they get executed.
As the name suggests, the latter method will issue a single JPQL query (i.e. the one defined in the annotation) against the database.
This means, even currently loaded instances of User﻿ won’t see lifecycle callbacks invoked.

To make sure lifecycle queries are actually invoked, an invocation of deleteByRoleId(…)﻿ will actually execute a query and then deleting the returned instances one by one, so that the persistence provider can actually invoke @PreRemove﻿ callbacks on those entities.

In fact, a derived delete query is a shortcut for executing the query and then calling CrudRepository.delete(Iterable<User> users)﻿ on the result and keep behavior in sync with the implementations of other delete(…)﻿ methods in CrudRepository﻿.

Applying query hints

To apply JPA query hints to the queries declared in your repository interface you can use the @QueryHints﻿ annotation. It takes an array of JPA @QueryHint﻿ annotations plus a boolean flag to potentially disable the hints applied to the addtional count query triggered when applying pagination.

Using QueryHints with a repository method

public interface UserRepository extends Repository<User, Long> {

 @QueryHints(value = { @QueryHint(name = "name", value = "value")},
 forCounting = false)
 Page<User> findByLastname(String lastname, Pageable pageable);
}

The just shown declaration would apply the configured @QueryHint﻿ for that actually query but omit applying it to the count query triggered to calculate the total number of pages.

Configuring Fetch- and LoadGraphs

The JPA 2.1 specification introduced support for specifiying Fetch- and LoadGraphs that we also support via the @EntityGraph﻿ annotation which allows to reference a @NamedEntityGraph﻿ definition, that can be annotated on an entity, to be used to configure the fetch plan of the resulting query. The type (Fetch / Load) of the fetching can be configured via the type﻿ attribute on the @EntityGraph﻿ annotation. Please have a look at the JPA 2.1 Spec 3.7.4 for further reference.

Defining a named entity graph on an entity.

@Entity
@NamedEntityGraph(name = "GroupInfo.detail",
 attributeNodes = @NamedAttributeNode("members"))
public class GroupInfo {

 // default fetch mode is lazy.
 @ManyToMany
 List<GroupMember> members = new ArrayList<GroupMember>();

 …
}

Referencing a named entity graph definition on an repository query method.

@Repository
public interface GroupRepository extends CrudRepository<GroupInfo, String> {

 @EntityGraph(value = "GroupInfo.detail", type = EntityGraphType.LOAD)
 GroupInfo getByGroupName(String name);

}

It is also possible to define ad-hoc﻿ entity graphs via @EntityGraph﻿. The provided attributePaths﻿ will be translated into the according EntityGraph﻿ without the need of having to explicitly add @NamedEntityGraph﻿ to your domain types.

Using AD-HOC entity graph definition on an repository query method.

@Repository
public interface GroupRepository extends CrudRepository<GroupInfo, String> {

 @EntityGraph(attributePaths = { "members" })
 GroupInfo getByGroupName(String name);

}

Projections

Spring Data Repositories usually return the domain model when using query methods. However, sometimes, you may need to alter the view of that model for various reasons. In this section, you will learn how to define projections to serve up simplified and reduced views of resources.

Look at the following domain model:

@Entity
public class Person {

 @Id @GeneratedValue
 private Long id;
 private String firstName, lastName;

 @OneToOne
 private Address address;
 …
}

@Entity
public class Address {

 @Id @GeneratedValue
 private Long id;
 private String street, state, country;

 …
}

This Person﻿ has several attributes:

	
id﻿ is the primary key

	
firstName﻿ and lastName﻿ are data attributes

	
address﻿ is a link to another domain object

Now assume we create a corresponding repository as follows:

interface PersonRepository extends CrudRepository<Person, Long> {

 Person findPersonByFirstName(String firstName);
}

Spring Data will return the domain object including all of its attributes. There are two options just to retrieve the address﻿ attribute. One option is to define a repository for Address﻿ objects like this:

interface AddressRepository extends CrudRepository<Address, Long> {}

In this situation, using PersonRepository﻿ will still return the whole Person﻿ object. Using AddressRepository﻿ will return just the Address﻿.

However, what if you do not want to expose address﻿ details at all? You can offer the consumer of your repository service an alternative by defining one or more projections.

Simple Projection

interface NoAddresses { ①

 String getFirstName(); ②

 String getLastName(); ③
}

This projection has the following details:

	① A plain Java interface making it declarative.

	② Export the firstName﻿.

	③ Export the lastName﻿.

The NoAddresses﻿ projection only has getters for firstName﻿ and lastName﻿ meaning that it will not serve up any address information. The query method definition returns in this case NoAdresses﻿ instead of Person﻿.

interface PersonRepository extends CrudRepository<Person, Long> {

 NoAddresses findByFirstName(String firstName);
}

Projections declare a contract between the underlying type and the method signatures related to the exposed properties. Hence it is required to name getter methods according to the property name of the underlying type. If the underlying property is named firstName﻿, then the getter method must be named getFirstName﻿ otherwise Spring Data is not able to look up the source property. This type of projection is also called closed projection﻿. Closed projections expose a subset of properties hence they can be used to optimize the query in a way to reduce the selected fields from the data store. The other type is, as you might imagine, an open projection﻿.

Remodelling data

So far, you have seen how projections can be used to reduce the information that is presented to the user. Projections can be used to adjust the exposed data model. You can add virtual properties to your projection. Look at the following projection interface:

Renaming a property

interface RenamedProperty { ①

 String getFirstName(); ②

 @Value("#{target.lastName}")
 String getName(); ③
}

This projection has the following details:

	① A plain Java interface making it declarative.

	② Export the firstName﻿.

	③ Export the name﻿ property. Since this property is virtual it requires @Value("#{target.lastName}")﻿ to specify the property source.

The backing domain model does not have this property so we need to tell Spring Data from where this property is obtained.
Virtual properties are the place where @Value﻿ comes into play. The name﻿ getter is annotated with @Value﻿ to use SpEL expressions﻿ pointing to the backing property lastName﻿. You may have noticed lastName﻿ is prefixed with target﻿ which is the variable name pointing to the backing object. Using @Value﻿ on methods allows defining where and how the value is obtained.

Some applications require the full name of a person. Concatenating strings with String.format("%s %s", person.getFirstName(), person.getLastName())﻿ would be one possibility but this piece of code needs to be called in every place the full name is required. Virtual properties on projections leverage the need for repeating that code all over.

interface FullNameAndCountry {

 @Value("#{target.firstName} #{target.lastName}")
 String getFullName();

 @Value("#{target.address.country}")
 String getCountry();
}

In fact, @Value﻿ gives full access to the target object and its nested properties. SpEL expressions are extremly powerful as the definition is always applied to the projection method. Let’s take SpEL expressions in projections to the next level.

Imagine you had the following domain model definition:

@Entity
public class User {

 @Id @GeneratedValue
 private Long id;
 private String name;

 private String password;
 …
}

This example may seem a bit contrived, but it is possible with a richer domain model and many projections, to accidentally leak such details. Since Spring Data cannot discern the sensitivity of such data, it is up to the developers to avoid such situations. Storing a password as plain-text is discouraged. You really should not do this. For this example, you could also replace password﻿ with anything else that is secret.

In some cases, you might keep the password﻿ as secret as possible and not expose it more than it should be. The solution is to create a projection using @Value﻿ together with a SpEL expression.

interface PasswordProjection {
 @Value("#{(target.password == null || target.password.empty) ? null : '******'}")
 String getPassword();
}

The expression checks whether the password is null﻿ or empty and returns null﻿ in this case, otherwise six asterisks to indicate a password was set.

Stored procedures

The JPA 2.1 specification introduced support for calling stored procedures via the JPA criteria query API. We Introduced the @Procedure﻿ annotation for declaring stored procedure metadata on a repository method.

The definition of the pus1inout procedure in HSQL DB.

/;
DROP procedure IF EXISTS plus1inout
/;
CREATE procedure plus1inout (IN arg int, OUT res int)
BEGIN ATOMIC
 set res = arg + 1;
END
/;

Metadata for stored procedures can be configured via the NamedStoredProcedureQuery﻿ annotation on an entity type.

StoredProcedure metadata definitions on an entity.

@Entity
@NamedStoredProcedureQuery(name = "User.plus1", procedureName = "plus1inout", parameters = {
 @StoredProcedureParameter(mode = ParameterMode.IN, name = "arg", type = Integer.class),
 @StoredProcedureParameter(mode = ParameterMode.OUT, name = "res", type = Integer.class) })
public class User {}

Stored procedures can be referenced from a repository method in multiple ways. The stored procedure to be called can either be defined directly via the value﻿ or procedureName﻿ attribute of the @Procedure﻿ annotation or indirectly via the name﻿ attribute. If no name is configured the name of the repository method is used as a fallback.

Referencing explicitly mapped procedure with name "plus1inout" in database.

@Procedure("plus1inout")
Integer explicitlyNamedPlus1inout(Integer arg);

Referencing implicitly mapped procedure with name "plus1inout" in database via procedureName﻿ alias.

@Procedure(procedureName = "plus1inout")
Integer plus1inout(Integer arg);

Referencing explicitly mapped named stored procedure "User.plus1IO" in EntityManager.

@Procedure(name = "User.plus1IO")
Integer entityAnnotatedCustomNamedProcedurePlus1IO(@Param("arg") Integer arg);

Referencing implicitly mapped named stored procedure "User.plus1" in EntityManager via method-name.

@Procedure
Integer plus1(@Param("arg") Integer arg);

Specifications

JPA 2 introduces a criteria API that can be used to build queries programmatically. Writing a criteria﻿ you actually define the where-clause of a query for a domain class. Taking another step back these criteria can be regarded as predicate over the entity that is described by the JPA criteria API constraints.

Spring Data JPA takes the concept of a specification from Eric Evans' book "Domain Driven Design", following the same semantics and providing an API to define such specifications using the JPA criteria API. To support specifications you can extend your repository interface with the JpaSpecificationExecutor﻿ interface:

public interface CustomerRepository extends CrudRepository<Customer, Long>, JpaSpecificationExecutor {
 …
}

The additional interface carries methods that allow you to execute specifications in a variety of ways. For example, the findAll﻿ method will return all entities that match the specification:

List<T> findAll(Specification<T> spec);

The Specification﻿ interface is defined as follows:

public interface Specification<T> {
 Predicate toPredicate(Root<T> root, CriteriaQuery<?> query,
 CriteriaBuilder builder);
}

Okay, so what is the typical use case? Specifications can easily be used to build an extensible set of predicates on top of an entity that then can be combined and used with JpaRepository﻿ without the need to declare a query (method) for every needed combination. Here’s an example:

Specifications for a Customer

public class CustomerSpecs {

 public static Specification<Customer> isLongTermCustomer() {
 return new Specification<Customer>() {
 public Predicate toPredicate(Root<Customer> root, CriteriaQuery<?> query,
 CriteriaBuilder builder) {

 LocalDate date = new LocalDate().minusYears(2);
 return builder.lessThan(root.get(_Customer.createdAt), date);
 }
 };
 }

 public static Specification<Customer> hasSalesOfMoreThan(MontaryAmount value) {
 return new Specification<Customer>() {
 public Predicate toPredicate(Root<T> root, CriteriaQuery<?> query,
 CriteriaBuilder builder) {

 // build query here
 }
 };
 }
}

Admittedly the amount of boilerplate leaves room for improvement (that will hopefully be reduced by Java 8 closures) but the client side becomes much nicer as you will see below. The _Customer﻿ type is a metamodel type generated using the JPA Metamodel generator (see the Hibernate implementation’s documentation for example﻿). So the expression _Customer.createdAt﻿ is asuming the Customer﻿ having a createdAt﻿ attribute of type Date﻿. Besides that we have expressed some criteria on a business requirement abstraction level and created executable Specifications﻿. So a client might use a Specification﻿ as follows:

Using a simple Specification

List<Customer> customers = customerRepository.findAll(isLongTermCustomer());

Okay, why not simply create a query for this kind of data access? You’re right. Using a single Specification﻿ does not gain a lot of benefit over a plain query declaration. The power of specifications really shines when you combine them to create new Specification﻿ objects. You can achieve this through the Specifications﻿ helper class we provide to build expressions like this:

Combined Specifications

MonetaryAmount amount = new MonetaryAmount(200.0, Currencies.DOLLAR);
List<Customer> customers = customerRepository.findAll(
 where(isLongTermCustomer()).or(hasSalesOfMoreThan(amount)));

As you can see, Specifications﻿ offers some glue-code methods to chain and combine Specification﻿ instances. Thus extending your data access layer is just a matter of creating new Specification﻿ implementations and combining them with ones already existing.

Query by Example

Introduction

This chapter will give you an introduction to Query by Example and explain how to use Examples.

Query by Example (QBE) is a user-friendly querying technique with a simple interface. It allows dynamic query creation and does not require to write queries containing field names. In fact, Query by Example does not require to write queries using store-specific query languages at all.

Usage

The Query by Example API consists of three parts:

	
Probe: That is the actual example of a domain object with populated fields.

	
ExampleMatcher﻿: The ExampleMatcher﻿ carries details on how to match particular fields. It can be reused across multiple Examples.

	
Example﻿: An Example﻿ consists of the probe and the ExampleMatcher﻿. It is used to create the query.

Query by Example is suited for several use-cases but also comes with limitations:

When to use﻿

	
Querying your data store with a set of static or dynamic constraints

	
Frequent refactoring of the domain objects without worrying about breaking existing queries

	
Works independently from the underlying data store API

Limitations﻿

	
No support for nested/grouped property constraints like firstname = ?0 or (firstname = ?1 and lastname = ?2)﻿

	
Only supports starts/contains/ends/regex matching for strings and exact matching for other property types

Before getting started with Query by Example, you need to have a domain object. To get started, simply create an interface for your repository:

Sample Person object

public class Person {

 @Id
 private String id;
 private String firstname;
 private String lastname;
 private Address address;

 // … getters and setters omitted
}

This is a simple domain object. You can use it to create an Example﻿. By default, fields having null﻿ values are ignored, and strings are matched using the store specific defaults. Examples can be built by either using the of﻿ factory method or by using ExampleMatcher﻿﻿. Example﻿ is immutable.

Simple Example

Person person = new Person(); ①
person.setFirstname("Dave"); ②

Example<Person> example = Example.of(person); ③

	① Create a new instance of the domain object

	② Set the properties to query

	③ Create the Example﻿

Examples are ideally be executed with repositories. To do so, let your repository interface extend QueryByExampleExecutor<T>﻿. Here’s an excerpt from the QueryByExampleExecutor﻿ interface:

The QueryByExampleExecutor﻿

public interface QueryByExampleExecutor<T> {

 <S extends T> S findOne(Example<S> example);

 <S extends T> Iterable<S> findAll(Example<S> example);

 // … more functionality omitted.
}

You can read more about Query by Example Execution﻿ below.

Example matchers

Examples are not limited to default settings. You can specify own defaults for string matching, null handling and property-specific settings using the ExampleMatcher﻿.

Example matcher with customized matching

Person person = new Person(); ①
person.setFirstname("Dave"); ②

ExampleMatcher matcher = ExampleMatcher.matching() ③
 .withIgnorePaths("lastname") ④
 .withIncludeNullValues() ⑤
 .withStringMatcherEnding(); ⑥

Example<Person> example = Example.of(person, matcher); ⑦

	① Create a new instance of the domain object.

	② Set properties.

	③ Create an ExampleMatcher﻿ to expect all values to match. It’s usable at this stage even without further configuration.

	④ Construct a new ExampleMatcher﻿ to ignore the property path lastname﻿.

	⑤ Construct a new ExampleMatcher﻿ to ignore the property path lastname﻿ and to include null values.

	⑥ Construct a new ExampleMatcher﻿ to ignore the property path lastname﻿, to include null values, and use perform suffix string matching.

	⑦ Create a new Example﻿ based on the domain object and the configured ExampleMatcher﻿.

By default the ExampleMatcher﻿ will expect all values set on the probe to match. If you want to get results matching any of the predicates defined implicitly, use ExampleMatcher.matchingAny()﻿.

You can specify behavior for individual properties (e.g. "firstname" and "lastname", "address.city" for nested properties). You can tune it with matching options and case sensitivity.

Configuring matcher options

ExampleMatcher matcher = ExampleMatcher.matching()
 .withMatcher("firstname", endsWith())
 .withMatcher("lastname", startsWith().ignoreCase());
}

Another style to configure matcher options is by using Java 8 lambdas. This approach is a callback that asks the implementor to modify the matcher. It’s not required to return the matcher because configuration options are held within the matcher instance.

Configuring matcher options with lambdas

ExampleMatcher matcher = ExampleMatcher.matching()
 .withMatcher("firstname", match -> match.endsWith())
 .withMatcher("firstname", match -> match.startsWith());
}

Queries created by Example﻿ use a merged view of the configuration. Default matching settings can be set at ExampleMatcher﻿ level while individual settings can be applied to particular property paths. Settings that are set on ExampleMatcher﻿ are inherited by property path settings unless they are defined explicitly. Settings on a property patch have higher precedence than default settings.

Table 5. Scope of ExampleMatcher﻿ settings

	Setting
	Scope

	Null-handling

	ExampleMatcher﻿

	String matching

	ExampleMatcher﻿ and property path

	Ignoring properties

	Property path

	Case sensitivity

	ExampleMatcher﻿ and property path

	Value transformation

	Property path

Executing an example

In Spring Data JPA you can use Query by Example with Repositories.

Query by Example using a Repository

public interface PersonRepository extends JpaRepository<Person, String> { … }

public class PersonService {

 @Autowired PersonRepository personRepository;

 public List<Person> findPeople(Person probe) {
 return personRepository.findAll(Example.of(probe));
 }
}

Only SingularAttribute﻿ properties can currently be used for property matching.

Property specifier accepts property names (e.g. "firstname" and "lastname"). You can navigate by chaining properties together with dots ("address.city"). You can tune it with matching options and case sensitivity.

Table 6. StringMatcher﻿ options

	Matching
	Logical result

	DEFAULT﻿ (case-sensitive)

	firstname = ?0﻿

	DEFAULT﻿ (case-insensitive)

	LOWER(firstname) = LOWER(?0)﻿

	EXACT﻿ (case-sensitive)

	firstname = ?0﻿

	EXACT﻿ (case-insensitive)

	LOWER(firstname) = LOWER(?0)﻿

	STARTING﻿ (case-sensitive)

	firstname like ?0 + '%'﻿

	STARTING﻿ (case-insensitive)

	LOWER(firstname) like LOWER(?0) + '%'﻿

	ENDING﻿ (case-sensitive)

	firstname like '%' + ?0﻿

	ENDING﻿ (case-insensitive)

	LOWER(firstname) like '%' + LOWER(?0)﻿

	CONTAINING﻿ (case-sensitive)

	firstname like '%' + ?0 + '%'﻿

	CONTAINING﻿ (case-insensitive)

	LOWER(firstname) like '%' + LOWER(?0) + '%'﻿

Transactionality

CRUD methods on repository instances are transactional by default. For reading operations the transaction configuration readOnly﻿ flag is set to true, all others are configured with a plain @Transactional﻿ so that default transaction configuration applies. For details see JavaDoc of CrudRepository﻿. If you need to tweak transaction configuration for one of the methods declared in a repository simply redeclare the method in your repository interface as follows:

Custom transaction configuration for CRUD

public interface UserRepository extends CrudRepository<User, Long> {

 @Override
 @Transactional(timeout = 10)
 public List<User> findAll();

 // Further query method declarations
}

This will cause the findAll()﻿ method to be executed with a timeout of 10 seconds and without the readOnly﻿ flag.

Another possibility to alter transactional behaviour is using a facade or service implementation that typically covers more than one repository. Its purpose is to define transactional boundaries for non-CRUD operations:

Using a facade to define transactions for multiple repository calls

@Service
class UserManagementImpl implements UserManagement {

 private final UserRepository userRepository;
 private final RoleRepository roleRepository;

 @Autowired
 public UserManagementImpl(UserRepository userRepository,
 RoleRepository roleRepository) {
 this.userRepository = userRepository;
 this.roleRepository = roleRepository;
 }

 @Transactional
 public void addRoleToAllUsers(String roleName) {

 Role role = roleRepository.findByName(roleName);

 for (User user : userRepository.findAll()) {
 user.addRole(role);
 userRepository.save(user);
 }
}

This will cause call to addRoleToAllUsers(…)﻿ to run inside a transaction (participating in an existing one or create a new one if none already running). The transaction configuration at the repositories will be neglected then as the outer transaction configuration determines the actual one used. Note that you will have to activate <tx:annotation-driven />﻿ or use @EnableTransactionManagement﻿ explicitly to get annotation based configuration at facades working. The example above assumes you are using component scanning.

Transactional query methods

To allow your query methods to be transactional simply use @Transactional﻿ at the repository interface you define.

Using @Transactional at query methods

@Transactional(readOnly = true)
public interface UserRepository extends JpaRepository<User, Long> {

 List<User> findByLastname(String lastname);

 @Modifying
 @Transactional
 @Query("delete from User u where u.active = false")
 void deleteInactiveUsers();
}

Typically you will want the readOnly flag set to true as most of the query methods will only read data. In contrast to that deleteInactiveUsers()﻿ makes use of the @Modifying﻿ annotation and overrides the transaction configuration. Thus the method will be executed with readOnly﻿ flag set to false﻿.

It’s definitely reasonable to use transactions for read only queries and we can mark them as such by setting the readOnly﻿ flag. This will not, however, act as check that you do not trigger a manipulating query (although some databases reject INSERT﻿ and UPDATE﻿ statements inside a read only transaction). The readOnly﻿ flag instead is propagated as hint to the underlying JDBC driver for performance optimizations. Furthermore, Spring will perform some optimizations on the underlying JPA provider. E.g. when used with Hibernate the flush mode is set to NEVER﻿ when you configure a transaction as readOnly﻿ which causes Hibernate to skip dirty checks (a noticeable improvement on large object trees).

Locking

To specify the lock mode to be used the @Lock﻿ annotation can be used on query methods:

Defining lock metadata on query methods

interface UserRepository extends Repository<User, Long> {

 // Plain query method
 @Lock(LockModeType.READ)
 List<User> findByLastname(String lastname);
}

This method declaration will cause the query being triggered to be equipped with the LockModeType﻿ READ﻿. You can also define locking for CRUD methods by redeclaring them in your repository interface and adding the @Lock﻿ annotation:

Defining lock metadata on CRUD methods

interface UserRepository extends Repository<User, Long> {

 // Redeclaration of a CRUD method
 @Lock(LockModeType.READ);
 List<User> findAll();
}

Auditing

Basics

Spring Data provides sophisticated support to transparently keep track of who created or changed an entity and the point in time this happened. To benefit from that functionality you have to equip your entity classes with auditing metadata that can be defined either using annotations or by implementing an interface.

Annotation based auditing metadata

We provide @CreatedBy﻿, @LastModifiedBy﻿ to capture the user who created or modified the entity as well as @CreatedDate﻿ and @LastModifiedDate﻿ to capture the point in time this happened.

An audited entity

class Customer {

 @CreatedBy
 private User user;

 @CreatedDate
 private DateTime createdDate;

 // … further properties omitted
}

As you can see, the annotations can be applied selectively, depending on which information you’d like to capture. For the annotations capturing the points in time can be used on properties of type JodaTimes DateTime﻿, legacy Java Date﻿ and Calendar﻿, JDK8 date/time types as well as long﻿/Long﻿.

Interface-based auditing metadata

In case you don’t want to use annotations to define auditing metadata you can let your domain class implement the Auditable﻿ interface. It exposes setter methods for all of the auditing properties.

There’s also a convenience base class AbstractAuditable﻿ which you can extend to avoid the need to manually implement the interface methods. Be aware that this increases the coupling of your domain classes to Spring Data which might be something you want to avoid. Usually the annotation based way of defining auditing metadata is preferred as it is less invasive and more flexible.

AuditorAware

In case you use either @CreatedBy﻿ or @LastModifiedBy﻿, the auditing infrastructure somehow needs to become aware of the current principal. To do so, we provide an AuditorAware<T>﻿ SPI interface that you have to implement to tell the infrastructure who the current user or system interacting with the application is. The generic type T﻿ defines of what type the properties annotated with @CreatedBy﻿ or @LastModifiedBy﻿ have to be.

Here’s an example implementation of the interface using Spring Security’s Authentication﻿ object:

Implementation of AuditorAware based on Spring Security

class SpringSecurityAuditorAware implements AuditorAware<User> {

 public User getCurrentAuditor() {

 Authentication authentication = SecurityContextHolder.getContext().getAuthentication();

 if (authentication == null || !authentication.isAuthenticated()) {
 return null;
 }

 return ((MyUserDetails) authentication.getPrincipal()).getUser();
 }
}

The implementation is accessing the Authentication﻿ object provided by Spring Security and looks up the custom UserDetails﻿ instance from it that you have created in your UserDetailsService﻿ implementation. We’re assuming here that you are exposing the domain user through that UserDetails﻿ implementation but you could also look it up from anywhere based on the Authentication﻿ found.

JPA Auditing

General auditing configuration

Spring Data JPA ships with an entity listener that can be used to trigger capturing auditing information. So first you have to register the AuditingEntityListener﻿ inside your orm.xml﻿ to be used for all entities in your persistence contexts:

Auditing configuration orm.xml

<persistence-unit-metadata>
 <persistence-unit-defaults>
 <entity-listeners>
 <entity-listener class="….data.jpa.domain.support.AuditingEntityListener" />
 </entity-listeners>
 </persistence-unit-defaults>
</persistence-unit-metadata>

You can also enable the AuditingEntityListener﻿ per entity using the @EntityListeners﻿ annotation:

@Entity
@EntityListeners(AuditingEntityListener.class)
public class MyEntity {

}

Note that the auditing feature requires spring-aspects.jar﻿ to be on the classpath.

With that in place, activating auditing functionality is just a matter of adding the Spring Data JPA auditing﻿ namespace element to your configuration:

Activating auditing using XML configuration

<jpa:auditing auditor-aware-ref="yourAuditorAwareBean" />

As of Spring Data JPA 1.5, auditing can be enabled by annotating a configuration class with the @EnableJpaAuditing annotation.

Activating auditing via Java configuration

@Configuration
@EnableJpaAuditing
class Config {

 @Bean
 public AuditorAware<AuditableUser> auditorProvider() {
 return new AuditorAwareImpl();
 }
}

If you expose a bean of type AuditorAware﻿ to the ApplicationContext﻿, the auditing infrastructure will pick it up automatically and use it to determine the current user to be set on domain types. If you have multiple implementations registered in the ApplicationContext﻿, you can select the one to be used by explicitly setting the auditorAwareRef﻿ attribute of @EnableJpaAuditing﻿.

Miscellaneous

Using JpaContext in custom implementations

When working with multiple EntityManager﻿ instances and custom repository implementations﻿ you’ll need to make sure you wire the correct EntityManager﻿ into the repository implementation class. This could be solved by explicitly naming the EntityManager﻿ in the @PersistenceContext﻿ annotation or using @Qualifier﻿ in case the EntityManager﻿ is injected via @Autowired﻿.

As of Spring Data JPA 1.9, we ship a class JpaContext﻿ that allows to obtain the EntityManager﻿ by managed domain class assuming it’s only managed by one of the EntityManager﻿ instances in the application.

Using JpaContext in a custom repository implementation

class UserRepositoryImpl implements UserRepositoryCustom {

 private final EntityManager em;

 @Autowired
 public UserRepositoryImpl(JpaContext context) {
 this.em = context.getEntityManagerByManagedType(User.class);
 }

 …
}

This approach has the advantage that the repository does not have to be touched to alter the reference to the persistence unit in case the domain type gets assigned to a different persistence unit.

Merging persistence units

Spring supports having multiple persistence units out of the box. Sometimes, however, you might want to modularize your application but still make sure that all these modules run inside a single persistence unit at runtime. To do so Spring Data JPA offers a PersistenceUnitManager﻿ implementation that automatically merges persistence units based on their name.

Using MergingPersistenceUnitmanager

<bean class="….LocalContainerEntityManagerFactoryBean">
 <property name="persistenceUnitManager">
 <bean class="….MergingPersistenceUnitManager" />
 </property>
</bean>

Classpath scanning for @Entity classes and JPA mapping files

A plain JPA setup requires all annotation mapped entity classes listed in orm.xml﻿. Same applies to XML mapping files. Spring Data JPA provides a ClasspathScanningPersistenceUnitPostProcessor that gets a base package configured and optionally takes a mapping filename pattern. It will then scan the given package for classes annotated with @Entity or @MappedSuperclass and also loads the configuration files matching the filename pattern and hands them to the JPA configuration. The PostProcessor has to be configured like this:

Using ClasspathScanningPersistenceUnitPostProcessor

<bean class="….LocalContainerEntityManagerFactoryBean">
 <property name="persistenceUnitPostProcessors">
 <list>
 <bean class="org.springframework.data.jpa.support.ClasspathScanningPersistenceUnitPostProcessor">
 <constructor-arg value="com.acme.domain" />
 <property name="mappingFileNamePattern" value="**/*Mapping.xml" />
 </bean>
 </list>
 </property>
</bean>

As of Spring 3.1 a package to scan can be configured on the LocalContainerEntityManagerFactoryBean directly to enable classpath scanning for entity classes. See the JavaDoc﻿ for details.

CDI integration

Instances of the repository interfaces are usually created by a container, which Spring is the most natural choice when working with Spring Data. There’s sophisticated support to easily set up Spring to create bean instances documented in [repositories.create-instances]﻿. As of version 1.1.0 Spring Data JPA ships with a custom CDI extension that allows using the repository abstraction in CDI environments. The extension is part of the JAR so all you need to do to activate it is dropping the Spring Data JPA JAR into your classpath.

You can now set up the infrastructure by implementing a CDI Producer for the EntityManagerFactory﻿ and EntityManager﻿:

class EntityManagerFactoryProducer {

 @Produces
 @ApplicationScoped
 public EntityManagerFactory createEntityManagerFactory() {
 return Persistence.createEntityManagerFactory("my-presistence-unit");
 }

 public void close(@Disposes EntityManagerFactory entityManagerFactory) {
 entityManagerFactory.close();
 }

 @Produces
 @RequestScoped
 public EntityManager createEntityManager(EntityManagerFactory entityManagerFactory) {
 return entityManagerFactory.createEntityManager();
 }

 public void close(@Disposes EntityManager entityManager) {
 entityManager.close();
 }
}

The necessary setup can vary depending on the JavaEE environment you run in. It might also just be enough to redeclare a EntityManager﻿ as CDI bean as follows:

class CdiConfig {

 @Produces
 @RequestScoped
 @PersistenceContext
 public EntityManager entityManager;
}

In this example, the container has to be capable of creating JPA EntityManagers﻿ itself. All the configuration does is re-exporting the JPA EntityManager﻿ as CDI bean.

The Spring Data JPA CDI extension will pick up all EntityManagers availables as CDI beans and create a proxy for a Spring Data repository whenever an bean of a repository type is requested by the container. Thus obtaining an instance of a Spring Data repository is a matter of declaring an @Injected﻿ property:

class RepositoryClient {

 @Inject
 PersonRepository repository;

 public void businessMethod() {
 List<Person> people = repository.findAll();
 }
}

 Oliver Gierke

 NAMESPACE REFERENCE

The <repositories /> element

The <repositories />﻿ element triggers the setup of the Spring Data repository infrastructure. The most important attribute is base-package﻿ which defines the package to scan for Spring Data repository interfaces.[1]

Table 1. Attributes

	Name
	Description

	base-package﻿

	Defines the package to be used to be scanned for repository interfaces extending *Repository (actual interface is determined by specific Spring Data module) in auto detection mode. All packages below the configured package will be scanned, too. Wildcards are allowed.

	repository-impl-postfix﻿

	Defines the postfix to autodetect custom repository implementations. Classes whose names end with the configured postfix will be considered as candidates. Defaults to Impl﻿.

	query-lookup-strategy﻿

	Determines the strategy to be used to create finder queries. See [repositories.query-methods.query-lookup-strategies]﻿ for details. Defaults to create-if-not-found﻿.

	named-queries-location﻿

	Defines the location to look for a Properties file containing externally defined queries.

	consider-nested-repositories﻿

	Controls whether nested repository interface definitions should be considered. Defaults to false﻿.

1 see [repositories.create-instances.spring]﻿

 Oliver Gierke

 POPULATORS NAMESPACE REFERENCE

The <populator /> element

The <populator />﻿ element allows to populate the a data store via the Spring Data repository infrastructure.[1]

Table 1. Attributes

	Name
	Description

	locations﻿

	Where to find the files to read the objects from the repository shall be populated with.

1 see [repositories.create-instances.spring]﻿

 Oliver Gierke

 REPOSITORY QUERY KEYWORDS

Supported query keywords

The following table lists the keywords generally supported by the Spring Data repository query derivation mechanism. However, consult the store-specific documentation for the exact list of supported keywords, because some listed here might not be supported in a particular store.

Table 1. Query keywords

	Logical keyword
	Keyword expressions

	AND﻿

	And﻿

	OR﻿

	Or﻿

	AFTER﻿

	After﻿, IsAfter﻿

	BEFORE﻿

	Before﻿, IsBefore﻿

	CONTAINING﻿

	Containing﻿, IsContaining﻿, Contains﻿

	BETWEEN﻿

	Between﻿, IsBetween﻿

	ENDING_WITH﻿

	EndingWith﻿, IsEndingWith﻿, EndsWith﻿

	EXISTS﻿

	Exists﻿

	FALSE﻿

	False﻿, IsFalse﻿

	GREATER_THAN﻿

	GreaterThan﻿, IsGreaterThan﻿

	GREATER_THAN_EQUALS﻿

	GreaterThanEqual﻿, IsGreaterThanEqual﻿

	IN﻿

	In﻿, IsIn﻿

	IS﻿

	Is﻿, Equals﻿, (or no keyword)

	IS_EMPTY﻿

	IsEmpty﻿, Empty﻿

	IS_NOT_EMPTY﻿

	IsNotEmpty﻿, NotEmpty﻿

	IS_NOT_NULL﻿

	NotNull﻿, IsNotNull﻿

	IS_NULL﻿

	Null﻿, IsNull﻿

	LESS_THAN﻿

	LessThan﻿, IsLessThan﻿

	LESS_THAN_EQUAL﻿

	LessThanEqual﻿, IsLessThanEqual﻿

	LIKE﻿

	Like﻿, IsLike﻿

	NEAR﻿

	Near﻿, IsNear﻿

	NOT﻿

	Not﻿, IsNot﻿

	NOT_IN﻿

	NotIn﻿, IsNotIn﻿

	NOT_LIKE﻿

	NotLike﻿, IsNotLike﻿

	REGEX﻿

	Regex﻿, MatchesRegex﻿, Matches﻿

	STARTING_WITH﻿

	StartingWith﻿, IsStartingWith﻿, StartsWith﻿

	TRUE﻿

	True﻿, IsTrue﻿

	WITHIN﻿

	Within﻿, IsWithin﻿

 Oliver Gierke

 REPOSITORY QUERY RETURN TYPES

Supported query return types

The following table lists the return types generally supported by Spring Data repositories. However, consult the store-specific documentation for the exact list of supported return types, because some listed here might not be supported in a particular store.

Geospatial types like (GeoResult﻿, GeoResults﻿, GeoPage﻿) are only available for data stores that support geospatial queries.

Table 1. Query return types

	Return type
	Description

	void﻿

	Denotes no return value.

	Primitives

	Java primitives.

	Wrapper types

	Java wrapper types.

	T﻿

	An unique entity. Expects the query method to return one result at most. In case no result is found null﻿ is returned. More than one result will trigger an IncorrectResultSizeDataAccessException﻿.

	Iterator<T>﻿

	An Iterator﻿.

	Collection<T>﻿

	A Collection﻿.

	List<T>﻿

	A List﻿.

	Optional<T>﻿

	A Java 8 or Guava Optional﻿. Expects the query method to return one result at most. In case no result is found Optional.empty()﻿/Optional.absent()﻿ is returned. More than one result will trigger an IncorrectResultSizeDataAccessException﻿.

	Option<T>﻿

	An either Scala or JavaSlang Option﻿ type. Semantically same behavior as Java 8’s Optional﻿ described above.

	Stream<T>﻿

	A Java 8 Stream﻿.

	Future<T>﻿

	A Future﻿. Expects method to be annotated with @Async﻿ and requires Spring’s asynchronous method execution capability enabled.

	CompletableFuture<T>﻿

	A Java 8 CompletableFuture﻿. Expects method to be annotated with @Async﻿ and requires Spring’s asynchronous method execution capability enabled.

	ListenableFuture﻿

	A org.springframework.util.concurrent.ListenableFuture﻿. Expects method to be annotated with @Async﻿ and requires Spring’s asynchronous method execution capability enabled.

	Slice﻿

	A sized chunk of data with information whether there is more data available. Requires a Pageable﻿ method parameter.

	Page<T>﻿

	A Slice﻿ with additional information, e.g. the total number of results. Requires a Pageable﻿ method parameter.

	GeoResult<T>﻿

	A result entry with additional information, e.g. distance to a reference location.

	GeoResults<T>﻿

	A list of GeoResult<T>﻿ with additional information, e.g. average distance to a reference location.

	GeoPage<T>﻿

	A Page﻿ with GeoResult<T>﻿, e.g. average distance to a reference location.

 Oliver Gierke

 FREQUENTLY ASKED QUESTIONS

Common

	
I’d like to get more detailed logging information on what methods are called inside JpaRepository﻿, e.g. How can I gain them?

	
You can make use of CustomizableTraceInterceptor﻿ provided by Spring:

<bean id="customizableTraceInterceptor" class="
 org.springframework.aop.interceptor.CustomizableTraceInterceptor">
 <property name="enterMessage" value="Entering $[methodName]($[arguments])"/>
 <property name="exitMessage" value="Leaving $[methodName](): $[returnValue]"/>
</bean>

<aop:config>
 <aop:advisor advice-ref="customizableTraceInterceptor"
 pointcut="execution(public * org.springframework.data.jpa.repository.JpaRepository+.*(..))"/>
</aop:config>

Infrastructure

	
Currently I have implemented a repository layer based on HibernateDaoSupport﻿. I create a SessionFactory﻿ by using Spring’s AnnotationSessionFactoryBean﻿. How do I get Spring Data repositories working in this environment?

	
You have to replace AnnotationSessionFactoryBean﻿ with the HibernateJpaSessionFactoryBean﻿ as follows:

Looking up a SessionFactory from a HibernateEntityManagerFactory

<bean id="sessionFactory" class="org.springframework.orm.jpa.vendor.HibernateJpaSessionFactoryBean">
 <property name="entityManagerFactory" ref="entityManagerFactory"/>
</bean>

Auditing

	
I want to use Spring Data JPA auditing capabilities but have my database already set up to set modification and creation date on entities. How to prevent Spring Data from setting the date programmatically.

	
Just use the set-dates﻿ attribute of the auditing﻿ namespace element to false.

 Oliver Gierke

 GLOSSARY

	
AOP

	
Aspect oriented programming

	
Commons DBCP

	
Commons DataBase Connection Pools - Library of the Apache foundation offering pooling implementations of the DataSource interface.

	
CRUD

	
Create, Read, Update, Delete - Basic persistence operations

	
DAO

	
Data Access Object - Pattern to separate persisting logic from the object to be persisted

	
Dependency Injection

	
Pattern to hand a component’s dependency to the component from outside, freeing the component to lookup the dependant itself. For more information see http://en.wikipedia.org/wiki/Dependency_Injection﻿﻿.

	
EclipseLink

	
Object relational mapper implementing JPA - http://www.eclipselink.org﻿﻿

	
Hibernate

	
Object relational mapper implementing JPA - http://www.hibernate.org﻿﻿

	
JPA

	
Java Persistence API

	
Spring

	
Java application framework - http://projects.spring.io/spring-framework﻿﻿

OEBPS/nav.xhtml

Spring Data JPA - Reference Documentation

Table of Contents

		Preface

		New & Noteworthy

		Dependencies

		Working with Spring Data Repositories

		JPA Repositories

		Namespace reference

		Populators namespace reference

		Repository query keywords

		Repository query return types

		Frequently asked questions

		Glossary

OEBPS/images/jacket/cover.png
Asciidoctor EPUB3

OEBPS/images/avatars/default.jpg

OEBPS/images/headshots/default.jpg

