Good Relationships

The Spring Data Neo4j Guide Book

2.0.0.RC1

Copyright © 2010 - 2011 Michael Hunger, David Montag

Copies of this document may be made for your own use and for distribution to others, provided
that you do not charge any fee for such copies and further provided that each copy contains this
Copyright Notice, whether distributed in print or electronically. Copyright 2010-2011 Neo Technology

Foreword Dy RO JONNSONoiiiiiiiii et e e e e e e e e e e e e e s e et bt e e e e aeeeseannneeees \Y;

Foreword by Emil EIfFEmMooe e Vi
ADOUL this QUIE DOOK ... e e e st e e e e e s e et reeeeaeeas Vii
1. The Spring Data NEO4] PrOjECLuuuuuurururuiuiuiniuinininnnrninnnnnnnnnrnrnnnrnrnnenn————————————" vii
2. FEEADACKei e e e e e e e e e anreeeeans Vii
3. FOrmat Of the BOOKccuuiiiiiiiiie ettt e e s e e e e e e e st r e e e e e e e e annnes Vii
4. ACKNOWIEUGEMENTS ...ttt e e e e nnee e e e Vii
I U 1o = PSP PPPRPPPPPPRP 1
O T g oo [0 Tor o To T U o] o =" A PEPRR 2
A I T TR o 1 0T = o 3
2.1, REQUITEH SELUP ...eeiiiiiiiieeeiiiee ettt et e e e e e e e e e s nnrn e e e 3

3. The domain MOGELueiiiiee e e e e e s e e e e e e e e eneeeeas 5
4. LEAIMNING NEOAeeiiiiiiiiee ettt et et e e et e e e st et e e e sbe e e e e ennbe e e e s anrnreeeans 7
5. SPring Dala NEOJ ..ottt e e s et a e e e s et e e e e e e e 8
6. ANNotating the dOMEINooiiiiiiiiiee e e e ea e 9
T INAEXING oo 10
o = o0 1=] (0] 1 = PSP 11
9. REIBLIONSNIPS ...eeeeeiiiiie ettt e et e e et e e e e e e e e e e e nnnees 13
9.1. Creating rel@tionShiPSccuiiiiiie s 13

9.2. Accessing related entitieSuvveieeeee e 14

9.3. Accessing the relationship entitieScoooiiiiiiiiiiiie e 14

10, GEL T TUNNING .o 16
10.1. Populating the datalaseccevveeiiiiiei e 16
10.2. INSPECLiNg the datBSIOrec..viiiiiiiiiee e 16
10.2.1. NeoClipse VISUAIZALIONcoviiiiiiiieiiiiiie e 16

10.2.2. The NEO4) Shellooooiiiiee e 17

L1 WED VIBIWS ettt ettt e ettt e ettt e e e sttt e e e et e e e e nnbe e e e s anbn e e e e e nnnneeas 19
I S = o o 11 o SRR 20
11.2. LiStiNG FESUILS ..o 20

12, AAING SOCIEL ...t 23
0 R U L 23
12.2. RENGS FOr MOVIESveiiiiiiieie ettt s 24

G AN (o T 0o IS = ol PSRRI 25
T4, IMIOFE UL ettt n e b e ne e 29
BT o o 1T I T - Y 32
16. RECOMMENUALIONSveeeeieeeei ittt e e e e e e s et e e e e e e e s e st ae e e e e e e e s s ansbeaeeeaeeeeseannseeeeeeeens 35
17, INBOA] SEIVE ...ttt ettt e et e e e sttt e e e et e e e e b b e e e e snb e e e e e nneeas 36
17.1. GEttiNg NEOZJ-SEIVENoeiiiiiiiiie ettt et e s 36
17.2. Other @PPrOACNES ...t e e e e e e r e e e e 37

S T O Tox [o SO 38
[1. Reference DOCUMENEELIONieiiiiieiiee ettt e e e et e e e e e e e s et e e e e e e e s aennnnneeeeeeeeeaanns 39
Reference DOCUMENLELIONuuiiiiiiiee et e e e et e e e e e e e et e e e e e e e s eenneaneeeeeaeeeaanns x
1. Spring Data and Spring Data NEO4]cccoiiiieieiiiiiieeeeiieee e X

2. Reference Documentation OVENVIEWc..uvviiieiiee et e e e e e Xl

19, INtroduCtion 10 NEOA]vvveiiieee it e e e a e e e e e eneeees 43
19.1. What is a graph database?ceeviiiiiiiiiie e 43
19.2. ADOUL NBOJeeeeeiiiiiee ettt e et e e et e e et e e e et e e e e s e e e e enneeeeennneeeeeans 43
19.3. GraphDatabasESEIVICEcoouvviieiiiiiee ettt 43
19.4. Creating nodes and relationSNIPScvveiieiiiiieee e 44

Spring Data Graph (2.0.0.RC1) ii

Good Relationships

19.5. Graph tralVerSaleveieiiiiiie e 44
RS ST 1 a0t o PSR 44
19.7. Querying With CYPREr ... e e 45
19.8. Gremlin a Graph Traversal DSLccccciiiiiiiiii e 46
20. Programming MOTE!ccooiiiiiieiiiiiie et e e e e s e e e a e 47
20.1. Object Graph MaPPINGccoiurreeeiireiee et e s e s e e e e snnreeeeenees 47
20.2. ASPECET SUPPONT ...ieteieieee e e e e ettt e e e e ettt e e e e e e e s bbb et e e e e e s e annebreeeeeaeeeaanns 47
20.2.1. ASPECEI IDE SUPPOITuvvvururuenrunneunnnnrunsnnnnnsnansnnsesssennssnnrsnsrnsernnnnennnnnn 48
20.3. Simple Object Graph Mappingceceeeeiiiiiiiiiiie e 48
20.4. DEfiNiNG NOAE ENLITIESuuuuiii e arararnranannnnnnnnnes 49
20.4.1. @NodeEntity: The basic building blocK ... 49
20.4.2. @GraphProperty: Optional annotation for property fields....................... 50
20.4.3. @Indexed: Making entities searchable by field value.............................. 50
20.4.4. @Query: fields as query result VIBWSccooiiiiiiiieieee e e 50
20.4.5. @GraphTraversal: fields as traversal result VIeWScccvveeeeeeeiiennnne, 50
20.5. Relating node entitiesccooeeeeiii i, 51
20.5.1. @RelatedTo: Connecting Node entitieSccvvveeeeeeeeeiiiciiieeee e 51
20.5.2. @RelationshipEntity: Rich relationships ..., 52
20.5.3. @RelatedToVia: Accessing relationship entitiescceveevivieeeiiiieeeens 53
P20 ST 1 1o (=] o PSRRI 53
20.6.1. Exact and NUMENC iNAEXcuvvveeiiiiiieeiiiiee et e e 53
20.6.2. FUITEXE INAEXESeveeeiieeee et 54
20.6.3. Manual iNOEX BCCESScoveeeiiiiieee e ettt e e e e e e e e e e e e e e e e e snnreeeeeeaee s 55
20.6.4. Indexing iN NeO4J TEMPIELEccoiuvvreeiiiiiee e 55
20.7. NEOA TEMPIELEeeeieiiiieie ettt e e e e e e 55
20.7.1. BaSIC OPEraliONSceviiiiiieee e e s eeiiiee e e e e e e e e e eirre e e e e e e s s st an e e e e e e e s e nnneees 55
20.7.2. RESUIL .o 56
20.7.3. INAEXING .oeeiieeeiiiieee e e e e e e e e s e re e e e e s 56
20.7.4. Graph traversalooiiiiie e 56
20.7.5. Cypher QUENTEScoiuiiiieeiiiiee ettt 57
20.7.6. Gremlin SCIPLS ...uvviiieiiiie ettt e e 57
20.7.7. TraNSACHIONSeeviiieiieeee e e eeciieie e e e e e s et e e e e e e e s st e e e e e e e s s ennnnaraaeeaens 57
20.7.8. NEOA] REST SEIVENviiiieiiiiiieeiiieee sttt 57
20.8. CRUD With rEPOSITONESuuviiiiieeieeeciiiiiee e e et e e e e s r e e e e e e e ennnees 57
20.8.1. CRUDREPOSITONY ...eeeeeiuiieeeeiiiiireasiiieeeeniieeeessnsseeeessnneeessnssenesssseeessanes 57
20.8.2. IndexRepository and NamedindexRePOSItOrycccvvevviieveeiiiiieeennns 58
20.8.3. TraverSalREPOSITONYuvvieiiiiiieeiiiiiee ettt e e anes 58
20.8.4. CyPher-QUENTEScoiuieieeeiiiiiie ettt e e e 58
20.8.5. Creating rEPOSITONESuueiiieeeiicciiieeie e e e e e e e e e e e e e e eneees 60
20.8.6. COMPOSING FEPOSITONESuvviiieiieeeei ittt e e earrre e e e 61
20.9. Projecting entitieSccooeeeiiiiei 62
20.10. Geospatial QUENTEScciiiiiee ettt e e 63
20.11. Introduced MENOASeeviiieeiiiiiiiie e e e 64
20.12. TraNSACHIONS ..eiveeeeiiciiiiieiee e e e e ee ettt e e e e e e e s s et ae e e eeeessasntbeaereaaeeesansssssaneeaaeesans 65
20.13. Detached NOOE ENLILIESeeeiiiiiiee e 67
20.13.1. Relating detached entitieScceveeeiiiiiiiiiiiice e 67
20.14. Entity type repreSentalionccccceeiereieirieisieisissssse s nnnas 68
20.15. Bean validation (JSR-303)c.cueeeiiiiiereeiiiiieeeeiiereeesieeeeessneeeeessneeeeesnnneeeeans 69
21, ENVIFONMENE SEEUD ..ottt ettt et e e e e e s e e e s e s 70

Spring Data Graph (2.0.0.RC1) i

Good Relationships

21.1. Gradle CONFIGQUIATONueiieiiiiie ettt snbaeeeeane 70
21.2. ANt/IVY CONFIQUIBLIONuvviiiiieee i e e e e e e e 70
21.3. Maven CONfIQUIALIONccuviieieeeee e cciiieee e e e e e e e e e s s sra e e e e e e e s e e anneees 71

2 0 Tt R (= 01) (] == 71

21.3.2. DEPENUENCIES ...ttt 71

21.3.3. Aspectd build configuIrationcoccveeeiiiiiieeniiee e 72

21.4. SPring CONFIQUIALIONccoiureieeiiiiiee ettt et e et e e e s nnnneeas 72
2140, XML NAMESPACE .cooieiee ettt 72

21.4.2. Java-based bean configurationccccoeiiiiiiirie e, 73

22. CroSS-StOrE PEFSISLENCEuuuuuuuiniuiuniii e annaanannnnnsnsnsnnnnnnnnnnnnnnnnnnnnns 75
22,1, Partial @NLITIESeeeeiiiiee et e e e e e e e nneees 75
22.2. CroSS-StOre annNOAiONSuvveeiieeeesieiiiiieiereee e e s et e e e ae e s s s enneeeeeeeeeeeesaneneeees 75
22.2.1. @NodeEntity(partial = "trUE™)ccoiiuiieeiiiiiiee e 75

22.2.2. @GIaphPIOPEITY ...uvvveiieei et 75

22.2.3. EXGIMPIE oo 76

22.3. Configuring Cross-StOre PErSILENCEccooeeeeee e 76

23, SAMPIE COUE ...ttt et e e e e e s et e e e e e e e e e e nnnneeeeeas 78
P20 T I 1 11 0o 1 o o o PSPPSR 78
23.2. Hello Worlds sample appliCationceeeeiiiieieeiiiiiee i 78
23.3. IMDB sample appliCationceeieeiiiiiiiiiiiee e e eeccirree e e e e e e e e e e eanees 78
23.4. MyRestaurants sample appliCationccooiiiiiiieiieee e 79

23.5. MyRestaurant-Social sample appliCationccccccciiiiiiiiiiiiiiieeeens 79

24, Performance CONSIAEIELIONSiocueiiiiiiieeeeei ettt e e e e e e et e e e e e e e s eenneeee e e e e e e e eennees 81
24.1. When is Spring Data NEO4] Mgtovveiiiiiieeiiieec e 81

25. ASPECEI TELAIISeeeeeiiiii e 82
26. NEO] SEIVEL ..ocoiiicetieeeee et e e e e et e e e e e s e et e e e e eae e s s s bt ae e e aeeeeaannrrraareaan 83
26.1. SEIVEr EXIENSION ..eeiiiiiiiiieiiieiee ettt et e e e et e e st e e e s nnnne e e e e nnees 83
26.2. Using Spring Data Neodj as a REST clientcoociiieeeieeiiiiiieeee e, 84

Spring Data Graph (2.0.0.RC1) iv

Foreword by Rod Johnson

I’m excited about Spring Data Neo4j for several reasons.

First, this project is in a very important space. We are in an era of transition. A very few years
ago, arelational database was a given for storing nearly all the datain nearly all applications. While
relational databases remain important, new application requirements and massive data proliferation
have prompted a richer choice of data stores. Graph databases have some very interesting strengths,
and Neodj isproving itself valuable in many applications. It's a choice you should add to your tool box.

Second, Spring Data Neo4j is an innovative project, which makesit easy to work with one of the most
interesting new data stores. Unfortunately, the proliferation of new data stores has not been matched
by innovation in programming models to work with them. Ironically, just after modern ORM mapping
made working with relational data in Java relatively easy, the data store disruption occurred, and
devel opers were back to sguare one: struggling once more with clumsy, low level APIs. Working with
most non-relational technologiesisoverly complex and imposestoo much work on developers. Spring
Data Neo4dj makes working with Neo4j amazingly easy, and therefore has the potential to make you
more successful as a developer. Its use of Aspect] to eliminate persistence code from your domain
model is truly innovative, and on the cutting edge of today’ s Java technol ogies.

Third, I'm excited about Spring Data Neo4j for personal reasons. | no longer get to write code as often
as| would like. My initial convictions that Spring and AspectJ could both make building applications
with Neodj dramatically easier and cross-store object navigation possible gave me an excuse for a
much-needed coding binge early in 2010. Thisled to a prototype of what became Spring Data Neodj —
at times written paired with Emil. I’m sure the vast majority of my code has long since been replaced
(probably for the better) by coders who aren't rusty — thanks Michael and Thomas! — but | retain
my pleasant memories.

Finally, Spring Data Neo4j is part of the broader Spring Data project: one of the key areas in which
Spring is innovating to help meet new application requirements. | encourage you to explore Spring
Data, and — better still — become involved in the community and contribute.

Enjoy the Spring Data Neo4j book, and happy coding!

Rod Johnson, Founder, Spring and SV P, Application Platform, VMware

Spring Data Graph (2.0.0.RC1) Y

Foreword by Emil Eifrem

"Spring is the most popular middleware on the planet,” | thought to myself as | walked up to Rod
Johnson in late 2009 at the JAOO conference in Aarhus, Denmark. Rod had just given an introductory
presentation about Spring Roo and when he was done | told him "Great talk. You're clearly building
astack for the future. What about support for non-relational databases?'

We started talking and quickly agreed that NOSQL will play an important role in emerging stacks.
Now, ayear and half later, Spring Data Neo4j isavailableinitsfirst stable release and I'm blown away
by the result. Never before in any environment, in any programming framework, in any stack, has it
been so easy and intuitive to tap into the power of a graph database like Neo4j. It's a testament to the
efforts by an awesome team of four hackers from Neo Technology and VMware: Michael Hunger,
David Montag, Thomas Risberg and Mark Pollack.

The Spring framework revolutionized how we all wrote enterprise Java applications and today it's
used by millions of enterprise developers. Graph databases al so stand out in the NOSQL crowd when
it comes to enterprise adoption. You can find graph databases used in areas as diverse as network
management, fraud detection, cloud management, anything with social data, geo and location services,
master data management, bioinformatics, configuration databases, and much more.

Spring developers deserve access to the best tools available to solve their problem. Sometimes that's
arelational database accessed through JPA. But more often than not, a graph database like Neo4j is
the perfect fit for your project. | hope that Spring Data Neo4j will give you access to the power and
flexibility of graph databases while retaining the familiar productivity and convenience of the Spring
framework.

Enjoy the Spring Data Neo4j guide book and welcome to the wonderful world of graph databases!

Emil Eifrem, CEO of Neo Technology

Spring Data Graph (2.0.0.RC1) Vi

About this guide book

1. The Spring Data Neo4j Project

Welcome to the Spring Data Neo4j Guide Book. Thank you for taking the time to get an in depth ook
into Spring Data Neo4j. This project is part of the Spring Data project, which brings the convenient
programming model of the Spring Framework to modern NOSQL databases. Spring Data Neo4j, as
the name alludes to, aims to provide support for the graph database Neo4;.

2. Feedback

It was written by developers for developers. Hopefully we've created a guide that is well received by
our peers.

If you have any feedback on Spring Data Neo4j or this book, please provide it via the SpringSource
JRA, the SpringSource NOSQL Forum, github comments or issues, or the Neo4j mailing list.

3. Format of the Book

This book is presented as a duplex book, a term coined by Martin Fowler. A duplex book consists
of at least two parts. The first part is an easily accessible tutorial or narrative that gives the reader an
overview of the topics contained in the book. It contains lots of examples and discussion topics. This
part of the book is highly suited for cover-to-cover reading.

We chose atutorial describing the creation of aweb application that allows movie enthusiasts to find
their favorite movies, rate them, connect with fellow movie geeks, and enjoy social features such as
recommendations. The application is running on Neo4j using Spring Data Neo4j and the well-known
Spring Web Stack.

The second part of the book is the classic reference documentation, containing detailed information
about the library. It discusses the programming model, the underlying assumptions, and internals, as
well as the APIsfor the object-graph mapping. The reference documentation istypically used to look
up concrete bits of information, or to drill down into certain topics. For hackerswanting to really delve
into Spring Data Neo4j, it can of course also be read cover-to-cover.

4. Acknowledgements

We would like to thank everyone who contributed to this book, especially Mark Pollack and Thomas
Risberg, the leads of the Spring Data Project, who helped a lot during the development of the
library as well as sharing great feedback about the book. Also Oliver Gierke, our local German
VMWare/SpringSource engineer, who invested alot of time discussing various aspectsof thelibrary as
well as providing the superb foundations for the Spring Data Repositories. Wetortured Andy Clement,
the AspectJ project lead, with many questions and issues around our advanced Aspect] usage which
caused some headaches. He always quickly solved our issues and gave us excellent answers.

We also appreciate very much the foresight of Rod Johnson and Emil Eifrem to initiate the project, and
now also providing great forewords. Their leadership inspired collaboration between the engineering
teams at SpringSource and Neo Technology, a tremendous help during the making of Spring Data
Neo4j.

Spring Data Graph (2.0.0.RC1) Vii

http://spring.neo4j.org
http://springsource.org/spring-data
http://neo4j.org
http://spring.neo4j.org/issues
http://spring.neo4j.org/issues
http://spring.neo4j.org/discussion
http://github.com/SpringSource/spring-data-neo4j/issues
http://neo4j.org/forums/
http://martinfowler.com/bliki/DuplexBook.html

About this guide book

Last but not least we thank our vibrant community, both in the Spring Forums as well as on the
Neodj Mailing list and on many other places on the internet for giving us feedback, reporting issues
and suggesting improvements. Without that important feedback we wouldn't be where we are today.
Especially Jean-Pierre Bergamin and Alfredas Chmieliauskas provided exceptional feedback and
contributions.

Enjoy the book!

Spring Data Graph (2.0.0.RC1) viii

Part |. Tutorial

CINEASTS

Thefirst part of the book provides atutorial that walks through the creation of a complete web application called
cineasts.net, built with Spring Data Neo4j. Cineasts are people who love movies, and the site is a gathering place
for moviegoers. For cineasts.net we decided to add a social aspect to the rating of movies, allowing friends to
share their scores and get recommendations for new friends and movies.

The tutorial takes the reader through the steps necessary to create the application. It provides the configuration
and code examples that are needed to understand what's happening in Spring Data Neo4j. The complete source
code for the app is available on Github.

Spring Data Graph (2.0.0.RC1) 1

http://spring.neo4j.org/cineasts

Chapter 1. Introducing our project

Allow me to introduce Cineasts.net

Once upon a time we wanted to build a social movie database. At first there was only the name:
Cineasts, the movie enthusi asts who have a burning passion for movies. So we went ahead and bought
the domain cineasts.net, and so the project was almost done.

We had some ideas about the domain model too. There would obviously be actors playing roles in
movies. We also needed someone to rate the movies - enter the cineast. And cineasts being the social
people they are, they wanted to make friends with other fellow cineasts. Imagine instantly finding
someone to watch amovie with, or share movie preferences with. Even better, finding new friends and
movies based on what you and your friends like.

When we looked for possible sources of data, IMDB was our first stop. But they're a bit expensive for
our taste, charging $15k USD for data access. Fortunately, we found TheM oviedb.org which provides
user-generated datafor free. They also have liberal terms and conditions, and anice API for retrieving
the data.

We had many moreideas, but wewanted to get something out there quickly. Hereishow we envisioned
the final website:

-
-

\ X}

¥ CINEASTS

b spring — ‘ | :.‘ springdatagraph

Spring Data Graph (2.0.0.RC1) 2

http://cineasts.net
http://themoviedb.org

Chapter 2. The Spring stack

Being Spring developers, we naturally choose components from the Spring stack to do all the heavy
lifting. After al, we have the concept etched out, so we're aready halfway there.

What database would fit both the complex network of cineasts, movies, actors, roles, ratings, and
friends, while also being able to support the recommendation algorithms that we had in mind? We
had no idea

But hold your horses, there is this new Spring Data project, started in 2010, which brings the
convenience of the Spring programming model to NOSQL databases. That should bein line with what
we aready know, providing us with a quick start. We had a look at the list of projects supporting
the different NOSQL databases out there. Only one of them mentioned the kind of social network
we were thinking of - Spring Data Neo4j for the Neo4j graph database. Neo4j's slogan of "vaue in
relationships" plus "Enterprise NOSQL" and the accompanying docs looked like what we needed. We
decided to giveit atry.

2.1. Required setup

To set up the project we created a public github account and began setting up the infrastructure
for a spring web project using Maven as the build system. So we added the dependencies
for the Spring Framework libraries, added the web.xmi for the Di spatcherServlet, and the
appl i cati onCont ext . xni in the webapp directory.

Example 2.1. Project pom.xml

<properties>
<spring. versi on>3. 0. 6. RELEASE</ spri ng. ver si on>
</ properties>

<dependenci es>

<dependency>
<groupl d>or g. spri ngf ramewor k</ gr oupl d>
<l-- abbreviated for all the dependencies -->

<artifactld>spring-(core, context, aop, aspects,tx,webmsc)</artifactld>
<versi on>${spri ng. ver si on} </ versi on>

</ dependency>

<dependency>
<gr oupl d>or g. spri ngf ramewor k</ gr oupl d>
<artifactld>spring-test</artifactld>
<versi on>${spring. versi on} </ versi on>
<scope>t est </ scope>

</ dependency>

</ dependenci es>

Spring Data Graph (2.0.0.RC1) 3

The Spring stack

Example 2.2. Project web.xml

<l i stener>
<l i stener-class>org. springframewor k. web. cont ext. Cont ext Loader Li st ener</|i stener-cl ass>
</listener>

<servl et >
<servl et - nane>di spat cher Ser vl et </ ser vl et - nane>
<servl et -cl ass>org. spri ngfranmewor k. web. servl et. Di spat cher Servl et </ servl et -cl ass>
<l oad- on- st art up>1</1| oad-on-start up>

</ servl et >

<servl et - mappi ng>
<servl et - nane>di spat cher Ser vl et </ ser vl et - nane>
<url-pattern>/</url-pattern>

</ servl et - mappi ng>

With this setup in place we were ready for the first spike: creating a simple MovieController showing
astatic view. See the Spring Framework documentation for information on doing this.

Example 2.3. applicationContext.xml

<?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
<beans xm ns="http://ww. springframework. or g/ schena/ beans"
xm ns: cont ext ="http://ww. springfranmework. or g/ schema/ cont ext "
xm ns: tx="http://ww. springframework. or g/ schenma/ t x"
xsi : schemalLocat i on="
http://ww. springframework. or g/ schenma/ beans
http://ww. springframework. or g/ schenma/ beans/ spri ng- beans- 3. 0. xsd
http://ww. springframework. or g/ schema/ t x
http://ww. springframework. or g/ schema/t x/ spring-tx-3.0.xsd
http://ww. spri ngfranework. or g/ schena/ cont ext
http://ww. springframework. or g/ schenma/ cont ext/ spri ng-cont ext - 3. 0. xsd" >

<cont ext: annot ati on-confi g/ >
<cont ext: spri ng- confi gured/ >
<cont ext : conponent - scan base- package="or g. neo4j . ci neasts">
<cont ext: exclude-filter type="annotation"
expressi on="org. spri ngf ramewor k. st ereotype. Control l er"/>
</ cont ext : conponent - scan>

<t x:annot ati on-driven node="proxy"/>
</ beans>

Example 2.4. dispatcher Servlet-serviet.xml

<mvc: annot ati on-driven/ >

<nvc:resources mappi ng="/images/**" | ocati on="/images/"/>
<mvc:resources mappi ng="/resources/**" | ocati on="/resources/"/>

<cont ext : conponent - scan base- package="or g. neo4j . ci neasts.controller"/>

<bean id="vi ewResol ver"
cl ass="org. spri ngframewor k. web. servl et. vi ew. | nt er nal Resour ceVi ewResol ver"
p: prefix="/WEB-| NF/ vi ews/" p:suffix=".jsp"/>

We spun up Tomcat in STS with the App and it worked fine. For completeness we also added Jetty
to the maven-config and tested it by invoking nvn jetty: run to seeif there were any obvious issues
with the config. It al seemed to work just fine.

Spring Data Graph (2.0.0.RC1) 4

Chapter 3. The domain model
Setting the stage

We wanted to outline the domain model before diving into library details. We also looked at the data
model of the TheMoviedb.org data to confirm that it matched our expectations.

FRIEND®

User
Iualiln
name g RATED i_ E;:Hml
F’A‘E‘E&JF Y. * aTdrs
vate() |

L Lefriend()

[Acter)

Wiarme

| Flﬂﬂ&&lﬂ()

In Java code this looks pretty straightforward:

Spring Data Graph (2.0.0.RC1) 5

The domain model

Example 3.1. Domain model

class Myvie {
String id;
String title;
int year;
Set <Rol e> cast;

}

class Actor {

String id;

String nang;

Set <Mbvi e> fi | mogr aphy;

Rol e pl ayedl n(Movie novie, String role) { ... }
}

class Role {
Movi e novi e;
Actor actor;
String role;

}

class User {
String |ogin;
String nane;
String password;
Set <Rati ng> ratings;
Set <User > friends;
Rating rate(Movie novie, int stars, String comment) { ... }
voi d befriend(User user) { ... }

}

class Rating {
User user;
Movi e novi e;
int stars;
String coment;

Then we wrote some simpl e tests to show that the basic design of the domain is good enough so far.
Just creating a movie populating it with actors and having it rated by a user and its friends.

Spring Data Graph (2.0.0.RC1) 6

Chapter 4. Learning Neo4j
Graphs ahead

Now we needed to figure out how to store our chosen domain model in the chosen database. First we
read up about graph databases, in particular our chosen one, Neo4j. The Neodj data model consists of
nodes and rel ationships, both of which can have key/value-style properties. Relationshipsarefirst-class
citizens in Neo4j, meaning we can link together nodes into semantically rich networks. This really
appealed to us. Then we found that we were also able to index nodes and rel ationships by { key, value}
pairs. We also found that we could traverse relationships both imperatively using the core API, and
declaratively using a query-like Traversal Description. Besides those programmatic traversals there
was the powerful graph query language called Cypher and an interesting looking DSL named Gremlin.
So lots of ways of working with the graph.

We also learned that Neo4j isfully transactional and therefore upholds ACID guarantees for our data.
Durability is actually a good thing and we didn't have to scale to trillions of users and movies yet.
Thisisunusual for NOSQL databases, but easier for usto get our head around than non-transactional
eventual consistency. It also made usfeel safe, though it also meant that we had to manage transactions.
Something to keep in mind for later.

We started out by doing some prototyping with the Neo4j core API to get afeeling for that. And also
to see, what the domain might look like when it's saved in the graph database. After adding the Maven
dependency for Neo4j, we were ready to go.

Example 4.1. Neodj Maven dependency

<dependency>
<gr oupl d>or g. neodj </ gr oupl d>
<artifactld>neodj</artifactld>
<ver si on>1. 5</ ver si on>

</ dependency>

Example 4.2. Neo4dj core API (transaction code omitted)

enum Rel ati onshi pTypes i npl enents Rel ati onshi pType { ACTS_IN };

G aphDat abaseServi ce gds = new EnbeddedG aphDat abase("/path/to/store");
Node f orrest=gds. creat eNode();

forrest.setProperty(“title","Forrest Gunp");
forrest.setProperty("year", 1994);

gds. i ndex() . for Nodes("novi es").add(forrest,"id", 1);

Node t om=gds. cr eat eNode();
tom set Property("nanme", " Tom Hanks");

Rel ati onshi p rol e=tom creat eRel ati onshi pTo(forrest, ACTS IN);
rol e.setProperty("role","Forrest");

Node novi e=gds. i ndex() . for Nodes("novies").get("id",1).getSingle();
assert Equal s("Forrest Gunp", novie.getProperty("title"));
for (Relationship role : novie.getRelationshi ps(ACTS_I N, | NCOM NG) {
Node act or =rol e. get & her Node(novi e) ;
assert Equal s(" Tom Hanks", actor.getProperty("nanme"));
assert Equal s("Forrest”, role.getProperty(“role"));

Spring Data Graph (2.0.0.RC1) 7

http://neo4j.org
http://docs.neo4j.org/chunked/milestone/indexing.html
http://docs.neo4j.org/chunked/milestone/tutorials-java-embedded-traversal.html
http://docs.neo4j.org/chunked/milestone/cypher-query-lang.html
https://github.com/tinkerpop/gremlin/wiki
http://en.wikipedia.org/wiki/ACID

Chapter 5. Spring Data Neo4j
Conjuring magic

Sofar it had al been pure Spring Framework and Neo4j. However, using the Neo4j codein our domain
classes polluted them with graph database details. For this application, we wanted to keep the domain
classes clean. Spring Data Neo4j promised to do the heavy lifting for us, so we continued investigating
it.

Spring Data Neo4j comes with two mapping modes. The more powerful one depends heavily
on Aspect], see Chapter 25, Aspect] details, so we ignored it for the time being. The simple
direct POJO-mapping copies the data out of the graph and into our entities. Good enough for a
web-application like ours.

Thefirst step was to configure Maven:

Example 5.1. Spring Data Neodj Maven configuration

<dependency>
<groupl d>or g. spri ngf ramewor k. dat a</ gr oupl d>
<artifactld>spring-data-neodj</artifactld>
<ver si on>2. 0. 0. RC1</ ver si on>

</ dependency>

The Spring context configuration was even easier, thanks to a provided namespace:

Example 5.2. Spring Data Neo4j context configuration

<beans xm ns="http://ww. springfranmewor k. or g/ schema/ beans" ...
xm ns: neodj ="http://wwm. springframework. or g/ schenma/ dat a/ neo4j "
xsi :schemaLocation="... http://ww:.springframework. org/ schena/ dat a/ neo4j
http: // ww. spri ngfranewor k. or g/ schena/ dat a/ neo4j / spri ng- neo4j - 2. 0. xsd" >

<neo4j:config storeDirectory="data/graph. db"/>

</ beans>

Spring Data Graph (2.0.0.RC1) 8

Chapter 6. Annotating the domain

Decorations

L ooking at the Spring Data Neo4j documentation, we found asimple Hello World example and tried to
understand it. We al so spotted a compact reference card which helped usalot. The entity classes were
annotated with @odeEnt i ty. That was simple, so we added the annotation to our domain classes too.
Entity classes representing rel ationships were instead annotated with @el at i onshi pEnt i t y. Property
fields were taken care of automatically. The only additional field we had to providefor all entitieswas
aid-field to store the node- and relationship-ids.

Example 6.1. Movie classwith annotation

@\odeEntity
class Myvie {
@ aphl d Long nodel d;
String id;
String title;
int year;
Set <Rol e> cast ;

It was time to put our entities to a test. How could we now be assured that an attribute really was
persisted to the graph store? We wanted to load the entity and check the attribute. Either we could
have aNeo4j Tenpl at e injected and useitsfi ndone(i d, t ype) method to load the entity. Or useamore
versatile Reposi t ory. The same goes for persisting entities, both Neo4j Tenpl at e Or the Reposi tory
could be used. We decided to keep things simple for now.

S0 here's what our test ended up looking like:

Example 6.2. First test case

@\ut owi red Neo4j Tenpl ate tenpl ate;

@est @ransactional public void persistedMvovi eShoul dBeRetri evabl eFronGraphDb() {
Movi e forrestGunp = tenpl ate. save(new Myvi e("Forrest Gunp", 1994));
Movi e retrievedvbvie = tenpl ate. fi ndOne(forrest Gunp. get Nodel d(), Mbvi e. cl ass);
assert Equal ("retrieved novi e natches persisted one", forrestQunp, retrievedMvie);
assertEqual ("retrieved novie title natches", "Forrest Gunp", retrievedMovie.getTitle());

As Neo4j istransactional, we have to provide the transactional boundaries for mutating operations.

Spring Data Graph (2.0.0.RC1) 9

http://spring.neo4j.org/helloworld
http://spring.neo4j.org/notes

Chapter 7. Indexing

Do | know you?

Thereisan @Indexed annotation for fields. We wanted to try this out, and use it to guide the next test.
We added @Indexed to thei d field of the Movie class. Thisfield isintended to represent the external
ID that will be used in URIsand will be stable across database imports and updates. Thistime we went

with a simple GraphRepository to retrieve the indexed movie.
Example 7.1. Exact Indexing for Movieid

@\odeEntity class Mvie {
@ndexed String id;
String title;
int year;

}

@\ut owi red Neo4j Tenpl ate tenpl ate;

@est @ransacti onal
public voi d persistedMvi eShoul dBeRet ri evabl eFronG aphDb() {
int id =1,
Movi e forrest Gunp = tenpl ate. save(new Mvie(id, "Forrest Gunp", 1994));
G aphReposi t ory<Movi e> novi eRepository =
tenpl at e. reposi t or yFor (Movi e. cl ass);
Movi e retrievedvbvi e = novi eRepository. fi ndByPropertyVal ue("id", id);
assert Equal ("retrieved novi e matches persisted one", forrestGunp, retrievedMvie);

assert Equal ("retrieved novie title natches", "Forrest CGunp", retrievedMovie.getTitle());

Spring Data Graph (2.0.0.RC1)

10

Chapter 8. Repositories
Serving a good cause

We wanted to add repositories with domain-specific operations. Interestingly there was support for a
very advanced repository infrastructure. Y ou just declare an entity specific repository interface and
get al commonly used methods for free without implementing aline of boilerplate code.

So we started by creating a movie-related repository, simply by creating an empty interface.

Example 8.1. Movierepository

package org.neo4j.cineasts.repository;
public interface MvieRepository extends G aphRepository<Mvie> {}

Then we enabled repository support in the Spring context configuration by simply adding:

Example 8.2. Repository context configuration

<neo4j :repositories base-package="org. neodj.cineasts.repository"/>

Besides the existing repository operations (like CRUD, and lots of different querying) it was possible
to declare custom methods, we dived into that later. Those methods names could be more domain
centric and expressive than the generic operations. For simple use-caseslikefinding by id'sthisisgood
enough. So we first let Spring autowire our Movi eControl | er With the Movi eReposi t ory. That way
we could perform simple persistence operations.

Example 8.3. Usage of a repository
@\ut owi red Movi eRepository repo;
Movi e novie = repo. findByPropertyVal ue("id", novi el d);

We went on exploring the repository infrastructure. A very cool feature was something that we so far
only heard from Grails developers. Deriving queries from method names. Impressive. So we had a
more explict method for the id lookup.

Example 8.4. Derived movie-repository query method

public interface MvieRepository extends G aphRepository<Mvie> {
Movi e get Movi eByl d(String id);
}

In our wildest dreams we imagined the method names we would come up with and what kinds of
queries those could generate. But some, more complex gueries would be cumbersome to read and
write. So in those cases it is better to just annotate the finder method. We did this much later, and
just wanted to give you a peek in the future. There is much more, you can do with repositories, it is
worthwile to explore.

Spring Data Graph (2.0.0.RC1) 11

Repositories

Example 8.5. Annotated movie-repository query method

public interface MvieRepository extends G aphRepository<Mvie> {
@uery("start user=node: User ({0}) match user-[r: RATED] - >novie return novie order by r.stars desc lim
It erabl e<Movi e> get TopRat edMovi es(User uer);

}

Spring Data Graph (2.0.0.RC1) 12

Chapter 9. Relationships
A convincing act

Our application was not yet very much fun yet, just storing movies and actors. After al, the power isin
the relationshi ps between them. Fortunately, Neo4j treats relationships asfirst class citizens, allowing
them to be addressed individually and assigned properties. That allowsfor representing them asentities
if needed.

9.1. Creating relationships

Rel ationshipswithout properties (*anonymous' relationships) don't requireany @el at i onshi pEntity
classes. "Unfortunately" we had none of those, because our relationships were richer. Therefore
we went with the Rol e relationship between Mvie and Actor. It had to be annotated with
@rel ati onshi pEntity and the @t ar t Node and @ndNode had to be marked. So our Role looked like
this:

Actor Role |
ttle
name 3 ALTS N i
movies htle A
) cast

Example 9.1. Role class

@Rel ati onshi pEntity

class Role {
@bt art Node Actor actor;
@ndNode Mbvi e novi e;
String role;

When writing atest for the Rol e we tried to create the relationship entity just by instantiating it with
newand saving it with the template, but we got an exception saying that it misses the relationship-type.

We had to add it to the @rel ati onshi pEntity as an attribute. Another way to create instances of
relationship-entitiesisto usethe methods provided by thetemplate, likecr eat eRel at i onshi pBet ween.

Spring Data Graph (2.0.0.RC1) 13

Relationships

Example 9.2. Relating actorsto movies

class Actor {

public Role playedl n(Mvie nmovie, String rol eName) {
Rol e role = new Rol e(this, nmovie, rol eNane);
this.roles.add(rol e);
return role;

Rol e rol e = tonHanks. pl ayedl n(forrest Gunp, "Forrest Gunp");

/'l either save the actor
t enpl at e. save(t onHanks) ;
/'l or the role

tenpl at e. save(rol e);

/] alternative approach
Rol e rol e = tenpl ate. creat eRel ati onshi pBet ween(actor, novie, Role.class, "ACTS_IN');

9.2. Accessing related entities

Now we wanted to find connected entities. We already had fields for the relationships in both classes.
It was time to annotate them correctly. The Neo4j relationship type and direction were easy to figure
out. The direction even defaulted to outgoing, so we only had to specify it for the movie.

Example 9.3. @RelatedTo usage

@NodeEntity
class Movie {
@ ndexed int id;
String title;
int year;
@Rel at edTo(type = "ACTS_IN', direction = Direction.|NCOM NG
Set <Act or > cast;

}

@NodeEntity
class Actor {
@ ndexed int id;
String nane;
@Rel at edTo(type = "ACTS_I N')
Set <Mbvi e> novi es;

public Rol e playedl n(Mvie nmovie, String rol eNanme) {
return new Rol e(this, novie, rol eNane);

}

Changes to the collections of related entities are reflected into the graph on saving of the entity.

We made sure to add some tests for using the relationshhips, so we were assured that the collections
worked as advertised.

9.3. Accessing the relationship entities

But we still couldn't access the Role relationships. It turned out that there was a separate annotation
@rel at edToVi a for accessing the actual relationship entities. And we could to declare the field as an

Spring Data Graph (2.0.0.RC1) 14

Relationships

I t er abl e<Rol e>, with read-only semanticsor onacol | ecti on or Set field with modifying semantics.
So off we went, creating our first real relationship (just kidding).

Example 9.4. @RelatedToVia usage

@NodeEntity
class Myvie {
@ ndexed int id;
String title;
int year;
@Rel at edTo(type = "ACTS_IN', direction = Direction.| NCOM NG
Set <Act or > cast;

@Rel at edToVi a(type = "ACTS_IN', direction = Direction.| NCOM NG
It er abl e<Rol es> rol es;

After watching the tests pass, we were confident that the changes to the relationship fields were really
stored to the underlying relationshipsin the graph. Wewere pretty satisfied with persisting our domain.

Spring Data Graph (2.0.0.RC1) 15

Chapter 10. Get it running
Curtains up!

Now we had a pretty complete application. It wastime to put it to the test.

10.1. Populating the database

Beforewe opened the gateswe needed to add some moviedata. So wewroteasmall classfor populating
the database which could be called from our controller. To makeit safe to call several times we added
index lookupsto check for existing entries. A simple/ popul at e endpoint for the controller that called
it would be enough for now.

Example 10.1. Populating the database - Controller

@servi ce
public cl ass Dat abasePopul ator {

@r ansacti onal
public List<Mvie> popul at eDat abase() {
Act or tonHanks = new Actor("1", "Tom Hanks");
Movi e forrest Gunp = new Movie("1", "Forrest Gunp");
t omHanks. pl ayedl n(forrest Gunp, "Forrest");
tenpl at e. save(forrest Gunp);
return asLi st (forrestGunp);

}

@ontrol | er
public class MvieController {

@\ut owi red private Dat abasePopul at or popul at or;

@Request Mappi ng(val ue = "/ popul ate", method = Request Met hod. POST)
public String popul at eDat abase(Model nodel) {

Col | ecti on<Mbvi e> novi es = popul at or. popul at eDat abase() ;

nodel . addAt tri but e(" novi es", novi es) ;

return "/ novies/list";

Accessing the URI showed added movies on screen.

10.2. Inspecting the datastore

Being the geeks we are, we also wanted to inspect the raw data in the database. Reading the Neo4j
docs, there were a couple of different ways of going about this.

10.2.1. Neoclipse visualization

First we tried Neoclipse, an Eclipse RCP application/plugin that opens an existing graph store and
visualizes its content. After getting an exception about concurrent access, we learned that we have to
use Neoclipse in read-only mode when our webapp was still running. Good to know.

Spring Data Graph (2.0.0.RC1) 16

http://docs.neo4j.org/
http://docs.neo4j.org/

Get it running

fAno Neoclipse

=

le|E®y B

[Cot e+ =R [Fapm~ -0

2 Micha 7 Belinda McClory 0 Marc Aden
o ERIENTT
0 olliver
RATED
@ Carrie-Anne Moss @Jce Pantoliano
D Laurence Fishburne
70 Marcus Chong 72 The Marrix 0 Keanu Reeves
LA 2 Paul Goddard
% Maw Doran \ DIREET]
2 Anthony Ray Parker DIRE? 0 Gloria Foster
0 David Aston
0 Julian Arahanga \ % Andy Wachowski
T Hugo Weaving D Lana Wachowski
] properties 23 1S ¥ 7 B|[%° relationship types &2 14 ¥4 24 | T | WY~
Property Walue Relationship type W In % Out

¥ Properties -

typt.a. % org.neu4J.c|neasts.domam.M.uv|e m DIRECTED

description @ Meo is a young software engineer and part-time har FRIEND

genre Action RATED

homepage @ http:/ fwhatisthematrix.warnerbros.com/

id () 603 4

imageUr| @ http:/ fcfl.imgobject.com/posters/606/4bc309d0I ¥
[e — ——— —————)« >

Traversal depth: 3 Nodes: 19 Relationships: 18

10.2.2. The Neo4j Shell

For console junkies there was also a shell that was able to connect to a running Neo4j instance (if it
was started with the enabl e_r enot e_shel | =t r ue parameter), or reads an existing graph store directly.

Example 10.2. Starting the Neo4j Shell

bash# neo4j-shell -readonly -path data/graph. db
bash# neo4j-shell -readonly -port 1337

The shell was very similar to a standard Bash shell. We were able to cd to between the nodes, and
I s the relationships and properties. There were also more advanced commands for indexing, queries

and traversals.

Spring Data Graph (2.0.0.RC1)

17

Get it running

Example 10.3. Neodj Shell usage

neo4j - sh[readonly] (0)$ hel p

Avai |l abl e commands: index dbinfo Is rmalias set eval mv gsh env rnrel nkrel
trav help pwd paths ... man cd

Use man <conmand> for info about each conmand.

neodj - sh[readonly] (0)$ index --cd -g User |ogin mcha

neodj -sh[readonly] (Mcha,1)$ Is

* __type__ =[org.neodj.cineasts. donmain. User]
*| ogin =[m cha]

*name =[M cha]

*rol es =[ROLE_ADM N, ROLE_USER]

(nme) --[FRIEND]-> (Qliver, 2)

(me) --[RATED]-> (The Matri x, 3)

neo4j -sh[readonly] (Mcha,1)$ Is 2

* _type__ =[org.neodj.cineasts. donmain. User]
*| ogi n =[ollie]

*name =[Aliver]

*rol es =[ROLE_USER]

(Aliver,2) <-[FRIEND]-- (ne)
neo4dj - sh[readonly] (Mcha,1)$ cd 3

neo4j - sh[readonly] (The Matrix,3)$ Is

* _ _type__ =[org. neo4j . ci neast s. donai n. Movi e]

*description =[Neo is a young software engi neer and part-tine hacker who is singled
*genre =[Acti on]

*homepage =[http://whatisthematri x. war ner bros. coni]
*studi o =[Warner Bros. Pictures]

*tagline =[Wel come to the Real World.]

*title =[The Matri x]

*trailer =[htt p: // ww. yout ube. conf wat ch?v=UVbyepZ21pl]
*version =[324]

(me) <-[ACTS_IN]-- (Marc Aden, 19)
(nme) <-[ACTS_IN-- (David Aston, 18)

(nme) <-[ACTS_IN-- (Keanu Reeves, 6)
(nme) <-[DI RECTED]-- (Andy Wachowski, 5)
(nme) <-[DI RECTED] -- (Lana Wachowski , 4)
(nme) <-[RATED]-- (Mcha, 1)

-

Spring Data Graph (2.0.0.RC1)

18

Chapter 11. Web views
Showing off

After having put some data in the graph database, we also wanted to show it to the user. Adding the
controller method to show a single movie with its attributes and cast in a JSP was straightforward.
It basically just involved using the repository to look the movie up and add it to the model, and then
forwarding to the/ movi es/ show view and voil&

Example 11.1. Controller for showing movies

@Request Mappi ng(val ue = "/ novi es/ {novi el d}",
nmet hod = Request Met hod. GET, headers = "Accept=text/htm ")
public String singleMvieViewfinal Mdel nodel, @athVariable String novield) {
Movi e novie = repository.get Movi e(novi el d);
nodel . addAttri bute("id", novield);
if (novie !'= null) {
nodel . addAttri but e(" novi e", novie);
nodel . addAttri bute("stars", novie.getStars());

}

return "/ novi es/ show'

Example 11.2. Populating the database - JSP /movies/show

<% page sessi on="fal se" %
<Yg@taglib uri="http://ww.springfranmework.org/tags" prefix="s" %
<U@taglib prefix="c" uri="http://java.sun.conifjsp/jstl/core" %

<c: choose>
<c:when test="%{not enpty novie}">
<h2>${movie.title} (${stars} Stars)</h2>
<c:if test="%${not enpty novie.roles}">

<c:forEach items="${novie.roles}" var="rol e">

<c:out value="${rol e.actor.nane}" /> as
<c:out value="${role.nane}" />

</ c: forEach>
</ ul >
</c:if>
</ c: when>
<c: ot her wi se>
No Movie with id ${id} found
</ c: ot her wi se>
</ c: choose>

The Ul had now evolved to this:

Spring Data Graph (2.0.0.RC1) 19

Web views

-
=

3y CINEASTS

TheMovieDb.org
IMDb

Amazon
CineButler

Google Movies

Homepage

11.1. Searching

p—

- - f A -
= o - A
\ L4 \ 24 \ 4
- - 7 -

Anthony Ray Paul Goddard as Joe Pantoliano asMatt Doran as
Parker as Dozer Agent Brown Cypher Mouse

-

-
% 3] % }
| 4 - -a
3 &
= ot =

Belinda McClory Marcus Chong asGlorla Foster as Carrie-Anne
as Switch Tank) Oracle Moss as Trinity
- -
“ -

v &

A T 4 A L 4
}"\ 3 = =

Hugo Weaving asLaur;ence David Aston as Marc Aden as
Agent Smith Fishburne as Rhineheart Choi
Morpheus

Micha

-
-
-
A L 4

~
-

Julian Arahanga
as Apoc

¥

1

Keanu Reeves as
Neo

The next thing wasto allow usersto search for movies, so we needed some fulltext search capabilities.
Asthedefault index provider implementation of Neo4j isbased on Apache L ucene, we were delighted
to see that fulltext indexes were supported out of the box.

We happily annotated thetitle field of the Movie classwith @ ndexed(ful I text = true).Next thing

we got an exception telling us that we had to specify a separate index name. So we simply changed it

to @ ndexed(ful I text = true,

i ndexName = "search").

Finding the seemed to be a sweetspot of derived finder methods. Just a method hame, no annotations.

Cool stuff and you could even tell it that it should return pages of movies, its size and offset specified

by a Pat hRequest which also contains sort information.

Example 11.3. Sear ching for movies

public interface MvieRepository ... {
Page<Movi e> findByTitle(String title, PageRequest page);

}

11.2. Listing results

Wethen used thisresult in the controller to render a page of movies, driven by asearch box. Themovie
properties and the cast were accessible through the getters in the domain classes.

Spring Data Graph (2.0.0.RC1)

20

http://lucene.apache.org/java/docs/index.html

Web views

Example 11.4. Sear ch controller

@Request Mappi ng(val ue = "/ novi es",

nmet hod = Request Met hod. CET, headers = "Accept=text/htm ")

public String findMvovi es(Mbdel nodel, @RequestParan("qg") String query) {
Page<Movi e> novies = repository.findByTitle(query, new PageRequest (0, 20));
nodel . addAttri but e(" novi es", novi es);
nodel . addAttri but e("query", query);
return "/novies/list";

Example 11.5. Sear ch Results JSP

<h2>Movi es</ h2>

<c: choose>
<c:when test="${not enpty novies}">

<dl class="Ilistings">
<c:forEach itenms="${novies}" var="novie">
<dt >
<c: out value="${novie.title}" />

</ dt>
<dd>
<c:out value="${novie.description}" escapeXnl ="true" />
</ dd>
</ c: for Each>
</ dl >
</ c: when>

<c: ot herw se>
No novi es found for query " ${query}"
</ c: ot her wi se>
</ c: choose>

The Ul now looked like this:

Spring Data Graph (2.0.0.RC1)

21

Web views

-—
-
-

"

3 CINEASTS

e

T X X X
The Matrix @ 2 @ @ 4

i
|
| e i
RE {.nh.ﬂ-:u
i

The Matrix Reloaded

) 4y
!
v

MATRI
REATILLTTR

The Matrix Revolutions

Micha Logout

Spring Data Graph (2.0.0.RC1)

22

Chapter 12. Adding social
Movies 2.0

So far, the website had only been a plain old movie database (POMD?). We now wanted to add a
touch of social to it.

12.1. Users

So we started out by taking the User class that we'd aready coded and made it a full-fledged Spring
Data Neodj entity. We added the ability to make friends and to rate movies. With that we also added
asimple UserRepository that was able to look up users by ID.

Example 12.1. Social entities

@NodeEntity

class User {
@ ndexed String |ogin;
String nane;
String password;

@Rel at edToVi a(type = RATED)
It er abl e<Rati ng> rati ngs;

@Rel at edTo(type = "FRI END', direction=Direction. BOTH)
Set <User > fri ends;

public Rating rate(Movie novie, int stars, String coment) {
return rel ateTo(novi e, Rating.class, "RATED').rate(stars, comment);
}
public void befriend(User user) {
this.friends.add(user);
}
}

@Rel ati onshi pEntity
class Rating {
@5t art Node User user;
@ndNode Movi e novi e;
int stars;
String comment;
public Rating rate(int stars, String coment) {
this.stars = stars; this.comment = coment;
return this;

We extended the DatabasePopulator to add some users and ratings to theinitial setup.

Spring Data Graph (2.0.0.RC1) 23

Adding socia

Example 12.2. Populate users and ratings

@ransacti onal

public List<Mvie> popul at eDat abase() {
Act or tonHanks = new Actor("1", "Tom Hanks").persist();
Movi e forestGunp = new Movie("1", "Forrest Gunp").persist();
t onHanks. pl ayedl n(f orest Gunp, "Forrest");

User ne = new User("m cha", "M cha", "password").persist();
Rati ng awesone = ne.rate(forestGnp, 5, "Awesone");

User ollie = new User("ollie", "Aiver", "password").persist();
ollie.rate(forestGunp, 2, "ok");

nme. addFri end(ol lie);

return asLi st (forestGunp);

12.2. Ratings for movies

We also put aratings field into the Movie class to be able to get a movie's ratings, and also a method
to average its star rating.

Example 12.3. Getting therating of a movie

cl ass Movie {

@Rel at edToVi a(t ype="RATED"', direction = Direction.|NCOM NG
I terabl e<Rating> ratings;

public int getStars() {
int stars = 0, count = O;
for (Rating rating : ratings) {
stars += rating.getStars(); count++;

}

return count == 0 ? 0 : stars / count;

Fortunately our tests highlighted the division by zero error when calculating the stars for a movie
without ratings. The next steps were to add this information to the movie presentation in the Ul, and
creating a user profile page. But for that to happen, users must first be ableto log in.

Spring Data Graph (2.0.0.RC1) 24

Chapter 13. Adding Security
Protecting assets

To have a user in the webapp we had to put it in the session and add login and registration pages. Of
course the pages that were only meant for logged-in users had to be secured as well.

Being Spring users, we naturally used Spring Security for this. We wrote a simple
User Det ai | sSer vi ce that used a repository for looking up the users and validating their credentials.
The config is located in a separate appl i cat i onCont ext - security. xni . But first, as always, Maven
and web. xm setup.

Example 13.1. Spring Security pom.xml

<dependency>
<gr oupl d>or g. spri ngf ramewor k. securi ty</ groupl d>
<artifactl|d>spring-security-web</artifactld>
<versi on>${spri ng. ver si on} </ versi on>

</ dependency>

<dependency>
<groupl d>or g. spri ngf ramewor k. securi ty</ groupl d>
<artifactld>spring-security-config</artifactld>
<versi on>${spring. versi on} </ versi on>

</ dependency>

Example 13.2. Spring Security web.xml

<cont ext - par an>
<par am nane>cont ext Conf i gLocat i on</ par am nane>
<par am val ue>
/ VEEB- | NF/ appl i cati onCont ext - security. xm
/ VEEB- | NF/ appl i cati onCont ext . xmi
</ par am val ue>
</ cont ext - par an>

<listener>
<l i stener-class>org. springframewor k. web. cont ext. Cont ext Loader Li st ener</|i stener-cl ass>
</listener>

<filter>
<filter-nane>springSecurityFilterChain</filter-nane>
<filter-class>org.springframework.web.filter.Del egatingFilterProxy</filter-class>
</filter>

<filter-mppi ng>
<filter-nanme>springSecurityFilterChain</filter-nanme>
<url-pattern>/*</url-pattern>

</filter-nmappi ng>

Spring Data Graph (2.0.0.RC1) 25

Adding Security

Example 13.3. Spring Security applicationContext-security.xml

<security: gl obal - net hod-security secured-annot ati ons="enabl ed">
</security: gl obal - met hod-security>

<security:http
<security:
<security:
<security:
<security:
<security:
<security:
<security:

<security:
</security:htt

aut o-config="true" access-deni ed-page="/aut h/deni ed">

nt er cept - url
nt er cept - ur |
nt er cept - ur |
nt er cept - url
nt er cept - ur |
nt er cept - ur |

pattern="/adm n/*" access="ROLE_ADM N'/ >
pattern="/inport/*" access="ROLE_ADM N'/ >
pattern="/user/*" access="ROLE USER'/ >

pattern="/auth/l ogin" access="1S_ AUTHENTI CATED ANONYMOUSLY"/ >
pattern="/auth/register" access="|S_AUTHENTI CATED_ ANONYMOUSL Y"

pattern="/**" access="|S_AUTHENTI CATED ANONYMOUSLY"/ >

form | ogin | ogin-page="/auth/l ogin"
aut hentication-failure-url="/auth/login?l ogi n_error=true"
defaul t-target-url="/user"/>

| ogout | ogout-url="/auth/l ogout"

p>

<security:authentication-manager >
<security:authentication-provider user-service-ref="userDetail sService">
<security: password- encoder hash="nd5">
<security:salt-source systemw de="cewi gwzi e"/>
</ security: password- encoder >
</ security:authentication-provider>
</security:authentication-nmanager>

<bean i d="userDetail sServi ce" class="org. neo4j.novies. service. Ci neast sUserDet ai | sServi ce"/>

| ogout - success-url ="/" invalidate-session="

Spring Data Graph (2.0.0.RC1)

26

rue"/>

Adding Security

Example 13.4. User DetailsService and User Details implementation

@vervi ce
public class CineastsUserDetail sService inplenents UserDetail sService, InitializingBean {

@\ut owi red private User Repository userRepository;

@verride
public UserDetails |oadUserByUsernane(String | ogin)
t hrows User naneNot FoundExcepti on, Dat aAccessException {
final User user = findUser(login);
if (user==null) throw new User naneNot FoundExcepti on(" Usernane not found", | ogin);
return new G neastsUserDetail s(user);

public User findUser(String |ogin) {
return userRepository.findByLogin(l ogin);

public User getUserFronSession() {
SecurityCont ext context = SecurityContextHol der. get Context();
Aut henti cati on authentication = context.getAuthentication();
oj ect principal = authentication. getPrincipal();
if (principal instanceof G neastsUserDetails) {
CineastsUserDetails userDetails = (Ci neastsUserDetails) principal;
return userDetails.getUser();

}

return null;

}

public class CineastsUserDetails inplenents UserDetails {
private final User user;

public Ci neastsUserDetail s(User user) {
this.user = user;

}

@verride

public Collection<G antedAuthority> getAuthorities() {
User. Rol es[] roles = user.getRoles();
if (roles ==null) return Collections.enptyList();
return Arrays. <G ant edAut hority>asLi st(roles);

}

@verride
public String getPassword() {
return user.getPassword();

}

@verride
public String getUsernane() {
return user.getlLogin();

public User getUser() {
return user;

}

Any logged-in user was now available in the session, and could be used for al the social interactions.
The remaining work for this was mainly adding controller methods and JSPs for the views. We used
the helper method get User Fr onSessi on() in the controllers to access the logged-in user and put it in
the model for rendering. Here's what the Ul had evolved to:

Spring Data Graph (2.0.0.RC1) 27

Adding Security

-
-
-

EMIL EIFREM

Mcha. Logout

Forrest Gump (1994) - "Inspiring”

The Matrix (1999) - "Best of the series”

The Simpsons Movie (2007) - "See our family. And feel better about yours.

The Matrix Reloaded (2003) - "Free your mind."

amework and 5 ata Graph powered by the Nex ph dal n da by themoviedb.org.

XN R G eod..

Spring Data Graph (2.0.0.RC1)

28

Chapter 14. More Ul
Oh the glamour

To create anice user experience, we wanted to have a nice looking app. Not something that looked like
atoddler made it. So we got some user experience people involved and the results were impressive.
This sections presents some of the remaining screen shots of Cineasts.net.

Some noteworthy things. Since Spring Data Neo4j reads through down to the database for property
and relationship access, we tried to minimize that by using <c: var / > several times. The app contains
very little javascript / ajax code right now, that will change when it moves ahead.

-

\ X}

! CINEASTS

H L]
A spring = : springdatagraph T

Spring Data Graph (2.0.0.RC1) 29

More Ul

-—
-
-

| L4

3 CINEASTS

ik

\s

) h b b3)
TR eEAes
The Matrix @ @ 9 @ 4

53

! Rt TN
]!‘J'l-“xl.ﬁ':l!
1

The Matrix Reloaded

» 4y
-
&

MATRIRE
REATILLTTR

The Matrix Revolutions

Miche. Logout

Spring Data Graph (2.0.0.RC1)

30

More Ul

TheMovieDb.org
IMDb

Amazon
CineButler

Google Movies

Homepage

-
-
-

-

3 CINEASTS

Login Regster

-
-
-
-

Anthony Ray Paul Goddard as Joe Pantoliano asMatt Doran as Julian Arahanga

Parker as Dozer Agent Brown Cypher Mouse

F
K L
L O %
N

- -
]

Belinda McClory Marcus Chong asGloria Foster as Carrie-Anne

as Apoc

Keanu Reeves as

as Switch Tank Oracle Moss as Trinity Neo

Hugo Weaving asLaur;ence David Aston as Marc Aden as
Agent Smith Fishburne as Rhineheart Chol
Morpheus

Micha

Find maovie

The Matrix as Neo in 1999
The Matrix Revolutions as Neo in 2003
The Matrix Reloaded as Neo in 2003

Spring Data Graph (2.0.0.RC1)

31

Chapter 15. Importing Data
The dusty archives

It was now time to pull the data from themoviedb.org. Registering there and getting an APl key was
simple, aswas using the APl onthe command-linewith cur I . Looking at the JSON returned for movies
and people, we decided to enhance our domain model and add some more fields to enrich the Ul.

Example 15.1. JSON movieresponse

[{"popularity":3,

"translated":true, "adult":false, "language":"en",

“original _name":"[Rec]", "nanme":"[Rec]", "alternative_nane":"[REC]",

"nmovi e_type": "novie",

"id":8329, "indb_id":"tt1038988", "url":"http://ww.thenovi edb. org/ novi e/ 8329",

"votes":11, "rating":7.2,

"status":"Rel eased",

"tagline":"One Wtness. One Canera",

"certification":"R",

"overview':"\"REC\" turns on a young TV reporter and her caneranman who cover the night shi
at the local fire station...

"keywords":["terror", "lebende |eichen", "obsession", "cancorder", "firemen", "reality tv |,
"bite", "cinematographer",

"attenpt to escape", "virus", "lodger", "live-reportage", "schwerverletzt"],

"rel eased":"2007-08- 29",

"runtine":78,

"budget ": 0,

"revenue":0,

"honmepage": "http://ww. 3l -filmverleih. de/rec",

"trailer":"http://ww.yout ube. conf wat ch?v=YQUkX_Xowgl ",

"genres":[{"type":"genre",

—

“url":"http://thenovi edb. org/ genre/ horror",
"nanme":"Horror",
"id":27}],

"studios":[{"url":"http://ww.thenovi edb. or g/ conpany/ 2270", "nane":"Fil max G oup", "id":22[0}],
"l anguages_spoken": [{"code":"es", "nanme":"Spanish", "native_nane":"Espa\u00f 1ol "}],
“countries":[{"code":"ES", "nane":"Spain", "url":"http://ww.thenovi edb. org/country/es"}],
"posters":[{"image":{"type": "poster",

"size":"original", "height":1000, "w dth": 706,

“url":"http://cfl.ingobject.conl posters/3al/4cc8df 415e73d650240003a0/ rec-origi nal.jpg",
"id":"4cc8df 415e73d650240003a0"}},

"cast":[{"name": " Manuel a Vel asco",

"job":"Actor", "departnent":"Actors",

"character":"Angela Vidal",

"id":34793, "order":0, "cast_id":1,

“url":"http://ww.thenovi edb. or g/ person/ 34793",
"profile":"http://cfl.ingobject.com profiles/390/.../manuel a-vel asco-thunb.jpg"},

{"nanme":"d \uO0f 2ria Viguer",

"job":" Costunme Design", "departnent":"Costune \u0026 Make-Up",
“character":"",

"id":54531, "order":0, "cast_id":21,

“url":"http://ww.thenovi edb. or g/ per son/ 54531",
"profile":""}],

"version":150, "last_nodified_at":"2011-02-20 23:16:57"}]

Spring Data Graph (2.0.0.RC1) 32

http://themoviedb.org

Importing Data

Example 15.2. JSON actor response

[{"popularity":3,

"nane":"d enn Strange", "known_as":[{"nanme":"George G enn Strange"}, {"name":"d en Strangel
{"nanme":"d en ' Peewee' Strange"}, {"nane":"Peewee Strange"}, {"nane":"'Peewee' Strange"}],
"id":30112,

"bi ography":"",

"known_novi es": 4,

"birthday":"1899-08-16", "birthplace":"Wed, New Mexico, USA",
“url":"http://ww.thenovi edb. or g/ person/ 30112",
“filnography":[{"nanme":"Bud Abbott Lou Costell o Meet Frankenstein",
"id":3073,

"job":"Actor", "departnent":"Actors",

"character":"The Frankenstein Mnster",

"cast _id":23,

“url":"http://ww.thenovi edb. or g/ novi e/ 3073",
"poster":"http://cfl.ingobject.conf posters/4cal.../bud-abbott-I|ou-costello-neet-frankenste
"adult":fal se, "rel ease":"1948-06- 15"},

R

"profile":[],

"version":19, "last_nodified_at":"2011-03-07 13: 02: 35"}]

n- cover. j pc

For the import process we created a separate importer using Jackson (a JSON library) to fetch and
parse the data, and then some transactional methods in the Movi eDbl npor t Ser vi ce to actually import
it as movies, roles, and actors. The importer used a simple caching mechanism to keep downloaded
actor and movie data on the filesystem, so that we didn't have to overload the remote API. In the code
below you can see that we've changed the actor to a person so that we can also accommodate the other

folks that participate in movie production.

Spring Data Graph (2.0.0.RC1) 33

Importing Data

Example 15.3. Importing the data

@ransacti onal
public Movie inportMvie(String novield) {
Movi e novie = repository. get Mvi e(novi el d);
if (nmovie == null) { // Not found: Create fresh
novi e = new Mvi e(novi el d);

}

Map data = | oadMovi eDat a(novi el d) ;
i f (data.contai nsKey("not_found"))
throw new | nport Exception("Data for Myvie "+npvield+" not found.");
novi eDbJsonMapper . mapToMovi e(data, novie);
novi e. persist();
r el at ePer sonsToMovi e(novi e, data);
return novie;

}

private void rel at ePer sonsToMovi e(Movi e novi e, Map data) {
Col | ecti on<Map> cast = (Col | ecti on<Map>) data.get("cast");
for (Map entry : cast) {
String id = entry.get("id");
Rol es job = entry.get("job");
Person person = inportPerson(id);
switch (job) {
case DI RECTED:
person. di rect ed(novi e) ;
br eak;
case ACTS IN:
person. pl ayedl n(novi e, (String) entry.get("character"));
br eak;

}

public void mapToMovi e(Map data, Myvie novie) {
novi e.setTitle((String) data.get("nanme"));
novi e. set Language((String) data.get("language"));
novi e. set Tagl i ne((String) data.get("tagline"));
novi e. set Rel easeDat e(t oDat e(data, "rel eased", "yyyy-Mvidd"));

novi e. set | mageUr | (sel ect | mageUr | ((Li st <Map>) dat a. get ("posters"), "poster", "md"));

The last part involved adding a protected URI to the MovieController to allow importing ranges of
movies. During testing, it became obvious that the calls to TheMoviedb.org were alimiting factor. As
soon as the data was stored locally, the Neo4j import was a sub-second deal.

Spring Data Graph (2.0.0.RC1) 34

Chapter 16. Recommendations

Movies! Friends! Bargains!

In the last part of this exercise we wanted to add recommendations to the app. One obvious
recommendation was movies that our fiends liked.

And there was this query language called Cypher that |ooked a bit like SQL but expressed graph query
conditions. So we gave it atry, using the neo4;j - shel I , to incrementally expand the query, just by
declaring what relationships we wanted to be taken into account and which properties of nodes and
relationships to filter and sort on.

Example 16.1. Cypher based movie recommendation on Repository

interface Mvie extends G aphRepository<Myvie> {
@uery("
start user=node({0})
mat ch user-[: FRIEND] -friend-[r: RATED] - >novi e
return novie
order by avg(r.stars) desc, count(*) desc
limt 10
")

| t er abe<Mbvi e> reconmendMbvi es(User ne);

But we didn't have enough friends, so it was time to get some suggested. That would be likeminded
cineasts that rated movies similiarly to us. Again cypher for the rescue, this time only a bit more
complex. Something that became obvious with both queriesis that graph queries are always local, so
they start anode or set of nodes or relationships and expand outwards.

Example 16.2. Cypher - Friend Recommendation on Repository

interface UserRepository extends G aphRepository<User> {
@uery("
start user=node({0})
mat ch user-[r: RATED) - >novi e<-[r2: RATED] - | i kem nded,
user-[: FRIEND] -friend
where r.stars > 3 and r2.stars => r.stars
return |ikem nded
order by count(*) desc
limt 10
")

|t erabe<User> findFriends(User ne);

The controllers simply called these methods, added their results to the model, and the view rendered
the recommendations alongside the user's own ratings.

Spring Data Graph (2.0.0.RC1) 35

Chapter 17. Neo4j Server

Remotely related

Right now our application was running with the embedded mode of Neo4j which was fine and high
performant. In certain environments you don't have the luxury of file-system access for your webapps
and have to talk to a remote database service instead. Neodj can also run as a server. It exposes its
operationsviaaHTTP based REST API.

We decided to have alook, to be at least knowledgeable about this deployment scenario. We were
aware of the difference of local, in-memory cals and higher latency network hops. That would be
something we would also look out for.

17.1. Getting Neo4j-Server

Getting the Neo4j-Server was easy, we just went to neodj.org and downloaded the latest version.
Starting it on the command-line (or installing it as a service) was a no-brainer as well.

We copied our store-directory into the dat a/ gr aph. db directory of the server and started it up again.
The admin console of Neo4j-Server, called 'web-admin' is pretty. Using javascript, it rendersthe graph
visually in a highly configurable way. It aso gave us the possibility to issue queries over a console,
another handy feature.

So, how would we get our app connect to this server? It turned out the changes in configuration
and setup where minimal. Spring Data Neodj already came with a module that takes care of the
remote protocol. We added that maven dependency and changed the graph database used in the Spring
Configuration.

Example 17.1. Maven Dependency

<dependency>
<groupl d>or g. spri ngf ranewor k. dat a</ gr oupl d>
<artifactl|d>spring-data-neodj-rest</artifactld>
<ver si on>2. 0. 0. RC1</ ver si on>

</ dependency>

Example 17.2. Spring Config

<neodj : confi g graphDat abaseServi ce="graphDat abaseServi ce"/ >

<bean i d="graphDat abaseServi ce"

cl ass="org. spri ngfranmewor k. dat a. neo4j . rest. Spri ngRest G aphDat abase" >
<constructor-arg index="0" value="http://|ocal host: 7474/ db/ data" />

</ bean>

After those two changes we restarted the app, and ... it worked. The transparent handling of the remote
APl wasimpressive. Welearned that it usesalibrary calledj ava- r est - gr aphdb under the hood which
is also usable without the Spring Framework.

Of course we naticed performance implications. Especially after moving the server to remote machine.
It turned out that the server supported remote execution of alot of things, allowing usto run the graph

Spring Data Graph (2.0.0.RC1) 36

http://neo4j.org/

Neo4j Server

traversal and querying inside the server. That means looking at our graph interactions and changing
them in a way that switched from the transparent, direct graph access via the entities to a different
interaction pattern.

We looked into the different modes of remote execution and found traversals, Cypher and Gremlin
queries and index lookups. Most of them already matched our needs but the Cypher and Gremlin
approaches were best suited, because they also handled index operations and allowed to return partial
attribute sets and subgraphs.

So welooked at our use-case (aka page) -based interactions with the graph entities and converted them
to Cypher queries on repositories where appropriate, measuring the performance improvements as we
went.

There was a so a nice mechanism of mapping Cypher Query resultsto Domain Concepts. Y ou just had
to declare and annotate an interface that represents the query results as domain entities and the nodes
and relationships returned by Cypher were converted into the appropriate entities.

Example 17.3.

public interface MyvieRepository extends G aphRepository<Myvie> {

@uery(" START novi e=node: Movi e(i d={0})
MATCH novi e-[rating?:rating]->(),
novi e<-[: ACTS_| N] - act or
RETURN novi e, COLLECT(actor), AV@rating.stars)")
Movi eDat a get Movi eData(String novi el d);

@mpResul t

public interface MyvieData {
@Resul t Col um(" novi e")
Movi e get Movie();

@Resul t Col um("AVG@(rating.stars)")
Doubl e get Rating();

@Resul t Col um(" COLLECT(actor)")
I t erabl e<Act or> get Cast () ;

This alowed us to get all the data needed for rendering a page in a single call to the server, greatly
diminishing the chatter between the client and the server.

17.2. Other approaches

Another approach using the Neo4j-Server would be to write a custom server extension using the
Spri ngPl ugi nl ni tializer providedby spri ng- dat a- neo4j - r est . Thisextension would usethewell
known entities and approaches as it runs inside the server atop a embedded graph database. From the
extension we would expose custom, domain and use-case oriented REST endpoints that could then be
consumable by any kind of webapp, even a pure Javascript based browser app.

Spring Data Graph (2.0.0.RC1) 37

Chapter 18. Conclusion

To new frontiers

Pretty neat. We were satisfied with what we got here with little effort and high performance. Lots of
opportunities to expand the social movie database showed up during development. Like adding more
social featuresliketagging, communication streams, location based features (cinemas) and much more.

But we leave you with that as an execise to enjoy and explore. Thanks for following the tutorial and
make sureto get back to uswith suggestions for improvements or reports about unexpected behaviours
at the discussion forums or the issue tracker.

Spring Data Graph (2.0.0.RC1) 38

http://spring.neo4j.org/discussions
http://spring.neo4j.org/issues

Part Il. Reference Documentation

.y

Q‘- springdatagraph

This part of the Spring Data Neo4j Guide book provides the reference documentation. It details many aspects of
the tutorial and also explains concepts that were only just mentioned there.

Its content covers information about the programming model, APIs, concepts, annotations and technical details
of Spring Data Neo4j.

Whenever you look for the meansto empl oy thefull power of the Spring DataNeo4j library you find your answers
in the reference section. If you don't, please inform us about missing or incorrect content so that we can fix that.

Spring Data Graph (2.0.0.RC1) 39

Reference Documentation

1. Spring Data and Spring Data Neo4|

Spring Data is a SpringSource project that aims to provide Spring's convenient programming model
and well known conventions for NOSQL databases. Currently there is support for graph (Neo4j),
key-vaue (Redis, Riak), document (MongoDB) and relational (Oracle) databases. Mark Pollack, the
author of Spring.NET, isthe project lead for the Spring Data project.

The Spring Data Neo4j project, as part of the Spring Data initiative, aims to simplify development
with the Neo4j graph database. Like JPA, it uses annotations on simple POJO domain objects. The
annotations activate one of the supported mapping approaches, either the copying, repository based
one or the direct, attached, read- and write-through AspectJ based one. Both use the annotation
and reflection metadata for mapping the POJO entities and their fields to nodes, relationships, and
propertiesin the graph database.

Spring Data Neo4j alows, at anytime, to drop down to the Neodj-API, see Chapter 19, Introduction
to Neodj leve to execute functionality with the highest performance possible.

For Integration of Neo4j and GrailSyGORM please refer to the Neodj grails plugin. For other language
bindings or frameworks visit the Neo4j Wiki.

2. Reference Documentation Overview

The explanation of Spring Data Neodjs programming model starts with some underlying details. The
basic internal workings of the Spring Data Neo4j mapping modes are explained in the initial chapter.
Section 20.1, “ Object Graph Mapping” covers the basic mapping and Section 20.2, “ AspectJ support”
contains details about the AspectJ version. It also explains some of the common issues around AspectJ
tooling with the current I DEs.

To get started with a simple application, you need only your domain model and the annotations (see
Section 20.4, “ Defining node entities”) provided by the library. Y ou use annotations to mark domain
objects to be reflected by nodes and relationships of the graph database. For individua fields the
annotations allow you to declare how they should be processed and mapped to the graph. For property
fields and references to other entities thisis straightforward.

To use advanced functionality like traversals, Cypher and Gremlin, a basic understanding of the graph
datamodel isrequired. The graph datamodel is explained in the chapter about Neo4j, see Chapter 19,
Introduction to Neo4j.

Relationships between entities arefirst class citizensin agraph database and therefore worth a separate
chapter (Section 20.5, “Relating node entities”) describing their usage in Spring Data Neo4j.

Indexing operations are useful for finding individual nodes and relationships in a graph. They can be
used to start graph operations or to be processed in your application. Indexing in the plain Neo4j APl is
abit more involved. Spring Data Neo4j maintains automatic indexes per entity class, with @Indexed
annotations on relevant fields. (Section 20.6, “Indexing”)

Being aSpring Datalibrary, Spring Data Neo4j offersacomprehensive Neodj-Template (Section 20.7,
“NeodjTemplate”) for interacting with the mapped entities and the Neodj graph database. The

Spring Data Graph (2.0.0.RC1) Xl

http://springsource.org/spring-data
http://www.grails.org/plugin/neo4j
http://wiki.neo4j.org/content/Main_Page#Language_and_framework_bindings

Reference Documentation

operations provided by repositories per mapped entity class are based on the API offered by the
Neodj-Template. It also provides the operations of the Neodj Core API in a more convenient way.
Especialy the querying (Indexes, Cypher, Gremlin and Traversals) and result conversion facilities
allow writing very concise code.

Spring Data Commons provides a very powerful repository infrastructure that is also leveraged
in Spring Data Neo4j. Those repositories just consist of a composition of interfaces that declare
the available functionality in the each repository. The implementation-details of commonly
used persistence methods are handled by the library. At least for typica CRUD, Index- and
Query-operatoins that is very convenient. The repositories are extensible by annotated, named or
derived finder methods. For custom implementations of repository methods you are free to add your
own code. (Section 20.8, “CRUD with repositories’).

To be able to leverage the schema-free nature of Neo4j it is possible to project any entity to another
entity type. That is useful as long as they share some properties (or relationships). The entities
don't have to share any super-types or hierarchies. How that works is explained here: Section 20.9,
“Projecting entities’.

Spring Data Neodj also allows you to integrate with the powerful geospatial graph library
Neodj-Spatial that offers full support for working with any kind of geo-data. Spring Data Neo4j
repositories expose a small bit of that via bounding-box and near-location searches. Section 20.10,
“Geospatia Queries’.

To usefields that are dynamically backed by graph operationsis abit more involved. First you should
know about traversals, Cypher queries and Gremlin expressions. Those are explained in Chapter 19,
Introduction to Neo4jNeodj-API. Then you can start using virtual, computed fields to your entities.

If you like the Active-Record approach that uses persistence methods mixed into the domain classes,
you would want to look at the description of the additional entity methods (see Section 20.11,
“Introduced methods") that are added to your domain objects by Spring Data Neo4j Aspects . Those
allow you to manage the entity lifecycles as well as to connect entities. Those methods also provide
the means to execute the mentioned graph operations with your entity as a starting point.

Neodj isan ACID database, it uses Java transactions (and internally even a 2 phase commit protocol)
to guarantee the safety of your data. The implications of that are described in the chapter around
transactions. (Section 20.12, “ Transactions’)

The need of an active transaction for mutating the state of nodes or relationships implies that direct
changes to the graph are only possible in a transactional context. Unfortunately many higher level
application layers don't want to care about transactions and the open-session-in-view pattern is not
widely used. Therefore Spring DataNeo4j introduced an entity lifecyle and added support for detached
entities which can be used for temporary domain objects that are not intended to be stored in the graph
or which will be attached to the graph only later. (Section 20.13, “ Detached node entities”)

Unlike Neo4j which is a schema free database, Spring Data Neo4j works on Java domain objects. So
it needs to store the type information of the entities in the graph to be able to reconstruct them when
just nodes are retrieved. To achieve that it employs type-representation-strategies which are described
in a separate chapter. (Section 20.14, “Entity type representation”)

Spring Data Neo4j offers basic support for bean property validation (JSR-303). Annotations from that
JSR are recognized and evaluated whenever a property is set, or when a previously detached entity is
persisted to the graph. (see Section 20.15, “Bean validation (JSR-303)”)

Spring Data Graph (2.0.0.RC1) xli

Reference Documentation

Unfortunately the setup of Spring Data Neo4j ismoreinvolved than we'd like. That is partly due to the
maven setup and dependencies, which can be aleviated by using different build systemslike gradle or
ant/ivy. The Spring configuration itself boils down to two lines of <spri ng- neo4j > namespace setup.
(see Chapter 21, Environment setup)

Spring Data Neo4j can aso be used in a JPA environment to add graph features to your JPA entities.
In the Chapter 22, Cross-store persistence the dightly different behavior and setup of a Graph-JPA
interaction are described.

The provided samples, which are also publicly hosted on github are explained in Chapter 23, Sample
code.

The performance implications of using Spring Data Neo4j are detailed in Chapter 24, Performance
considerations. This chapter al so discusses which usecases should be handled with Spring Data Neo4j
and when it should not be used.

As Aspect] might not be well known to everyone, some of the core concepts of this Aspect oriented
programming implementation for Java are explained in Chapter 25, Aspect] details.

How to consume the REST-API of a Neodj-Server is the topic of Chapter 26, Neodj Server. But
Spring Data Neo4j can also be used to create custom Extensions for the Neo4j Server which would
serve domain model abstractions to a suitable front-end. So instead of talking low level primitives to
a database, the front-end or web-app would communicate via a domain level protocol with endpoints
implemented in Jersey and Spring Data Neo4;j.

Note

. | | |
As certain modes of Spring Data Neo4j are based on Aspect] and use some advanced
features of that toolset, please be aware of that. Please see the section on AspectJ
(Section 20.2, “ AspectJ support”) for detailsif you run into any problems.

Spring Data Graph (2.0.0.RC1) xlii

http://spring.neo4j.org/examples

Chapter 19. Introduction to Neo4j

19.1. What is a graph database?

A graph database is a storage engine that is specialized in storing and retrieving vast networks of data.
It efficiently stores nodes and relationships and allows high performance traversal of those structures.
Properties can be added to nodes and rel ationships.

Graph databases are well suited for storing most kinds of domain models. In ailmost all domain models,
there are certain things connected to other things. In most other modeling approaches, the relationships
between things are reduced to asingle link without identity and attributes. Graph databases allow one
to keep the rich relationships that originate from the domain, equally well-represented in the database
without resorting to also modeling the relationships as "things'. There is very little "impedance
mismatch" when putting real-life domains into a graph database.

19.2. About Neo4j

Neodj is a graph database. It is a fully transactional database (ACID) that stores data structured as
graphs. A graph consists of nodes, connected by relationships. Inspired by the structure of the human
brain, it allows for high query performance on complex data, while remaining intuitive and simple
for the developer.

Neodj has been in commercia development for 10 years and in production for over 7 years. Most
importantly it has a helpful and contributing community surrounding it, but it also:

« hasanintuitive graph-oriented model for data representation. Instead of tables, rows, and columns,
you work with a graph consisting of nodes, relationships, and properties.

» has a disk-based, native storage manager optimized for storing graph structures with maximum
performance and scalability.

* isscalable. Neodj can handle graphswith many billions of nodes/rel ationships/propertiesonasingle
machine, but can also be scaled out across multiple machines for high availability.

» has apowerful traversal framework for traversing in the node space.

« can be deployed as a standalone server or an embedded database with a very small distribution
footprint (~700Kk jar).

* hasaJavaAPl.

In addition, Neo4j has ACID transactions, durable persistence, concurrency control, transaction
recovery, high availability, and more. Neo4j is released under adual free software/commercial license
model.

19.3. GraphDatabaseService

The interface or g. neo4j . gr aphdb. G- aphDat abaseSer vi ce provides access to the storage engine.
Its features include creating and retrieving nodes and relationships, managing indexes (via the
IndexManager), database life cycle callbacks, transaction management, and more.

Spring Data Graph (2.0.0.RC1) 43

http://neo4j.org/
http://wiki.neo4j.org/content/Getting_Started
http://api.neo4j.org/

Introduction to Neo4j

The EnbeddedG aphDat abase is an implementation of GraphDatabaseService that is used to embed
Neodj in a Java application. This implementation is used so as to provide the highest and tightest
integration with the database. Besides the embedded mode, the Neodj server provides access to the
graph database viaan HTTP-based REST API.

19.4. Creating nodes and relationships

Using the API of GraphDatabaseService, it is easy to create nodes and relate them to each other.
Relationships are typed. Both nodes and relationships can have properties. Property values can be
primitive Javatypesand Strings, or arraysof Javaprimitivesor Strings. Node creation and modification
has to happen within a transaction, while reading from the graph store can be done with or without
atransaction.

Example 19.1. Neo4j usage

GraphDat abaseSer vi ce graphDb = new EnbeddedG aphDat abase("hel | oworl d");
Transaction tx = graphDb. begi nTx();
try {

Node firstNode = graphDb. creat eNode();

Node secondNode = graphDb. creat eNode();

firstNode. set Property("nessage", "Hello, ");

secondNode. set Property("nessage", "world!");

Rel ationship rel ationship = firstNode. createRel ati onshi pTo(secondNode,
Dynani cRel ati onshi pType. of ("KNOAS"));
rel ationshi p. set Property("nmessage", "brave Neo4j ");
t x. success();
} finally {
tx.finish();
}

19.5. Graph traversal

Getting a single node or relationship and examining it is not the main use case of a graph
database. Fast graph traversal and application of graph agorithms are. Neo4j provides a DSL for
defining Traver sal Descri pti onS that can then be applied to a start node and will produce a lazy
java.l ang. | t erabl e result of nodes and/or relationships.

Example 19.2. Traversal usage

Traversal Description traversal Description = Traversal . description()
.dept hFirst()
. rel ati onshi ps(KNOAS)
.rel ationshi ps(LI KES, Direction.|NCOM NG
.eval uat or (Eval uat ors. t oDept h(5));
for (Path position : traversal Description.traverse(nyStartNode)) ({
Systemout.println("Path fromstart node to current position is " + position);

}

19.6. Indexing

The best way for retrieving start nodesfor traversalsis by using Neo4j'sintegrated index facilities. The
GraphDatabaseService provides access to the IndexManager which in turn provides named indexes
for nodes and relationships. Both can be indexed with property names and values. Retrieval is done
with query methods on indexes, returning an IndexHits iterator.

Spring Data Graph (2.0.0.RC1) 44

http://wiki.neo4j.org/content/Getting_Started_With_Neo4j_Server

Introduction to Neo4j

Spring Data Neo4j provides automatic indexing via the @Indexed annotation, eliminating the need
for manual index management.

Note
"

Modifying Neo4j indexes also requires transactions.

Example 19.3. Index usage

| ndexManager i ndexManager = graphDb.index();
I ndex<Node> nodel ndex = i ndexManager . f or Nodes("a- node-i ndex");
Node node = ...;
Transaction tx = graphDb. begi nTx();
try {
nodel ndex. add(node, "property", "val ue");
t x. success();
} finally {
tx. finish();
}
for (Node foundNode : nodel ndex. get ("property", "value")) {
/1 found node

}

19.7. Querying with Cypher

With version 1.4.M04 Neo4j introduced atextual query language called "Cypher" which draws from
many sources. From graph matching likein SPARQL, some keywordsand query structurethat reminds
of SQL and some iconic representation. A screencast presenting cypher queries on the cineasts.net
dataset isavailable at video.neodj.org. Cypher waswrittenin Scalato leverage the high expressiveness
for lazy sequence operations of the language and the great parser combinator library.

Cypher queries always begin with ast art set of nodes. Those can be either expressed by their id's or
by aindex lookup expression. Those start-nodes are then related to other nodes in the mat ch clause
to other nodes. Start and match clause can introduce new identifiers for nodes and relationships. In
thewner e clause additional filtering of the result set is applied by evaluating boolean expressions. The
r et ur n clause defines which part of the query result will be available. Aggregation also happensin the
return clause by using aggregation functions on some of the values. Sorting can happen in the or der

by clause and theski p and |'i ni t parts restrict the result set to a certain window.

Cypher can be executed on an embedded graph db using Execut i onEngi ne and Cypher Par ser. This
is encapsulated in Spring Data Neo4j with cypher Quer yEngi ne. The Neodj-REST-Server comes with
a Cypher-Plugin that is accessible remotely and is available in the Spring Data Neo4j REST-Binding.

Spring Data Graph (2.0.0.RC1) 45

http://docs.neo4j.org/chunked/milestone/cypher-query-lang.html
http://video.neo4j.org/U2Y/introduction-to-cypher

Introduction to Neo4j

Example 19.4. Cypher Examples on the Cineasts.net Dataset

/'l Actors of Forrest Gunp:
start novie=(Mvie,id,'13") match (novie)<-[: ACTS_I N - (actor)
return actor.nanme, actor.birthplace?

/'l User-Ratings:
start user=(User,login,'mcha') match (user)-[r,:RATED - >(novie) where r.stars > 3
return novie.title, r.stars, r.coment

// Mutual Friend recomendations:
start user=(User,login,'mcha') match (user)-[:FRIEND]-(friend)-[r,:RATED] ->(novie) where f.stars > 3
return friend.name, novie.title, r.stars, r.coment?

/1 Movi e suggestions based on a novie:
start novie=(Mvie,id,'13") match (nmovie)<-[: ACTS_IN]-()-[:ACTS_I N - >(suggesti on)
return suggestion.title, count(*) order by count(*) desc limt 5

/'l Co-Actors, sorted by count and name of Lucy Liu
start lucy=(1000) match (lucy)-[:ACTS IN ->(novie)<-[:ACTS_IN -(co_actor)
return count(*), co_actor.nanme order by count(*) desc,co_actor.name limt 20

/'l recomrendati ons including counts, grouping and sorting
start user=(User,login,'mcha') match (user)-[:FRI END]-(friend)-[r,:RATED)] - >(novi e)
return novie.title, AVEr.stars), count(*) order by AVEr.stars) desc, count(*) desc

19.8. Gremlin a Graph Traversal DSL

Gremlinis an expressive Groovy DSL developed by Marko Rodriguez as part of the tinkerpop stack.
It builds on top of a pipe implementation (Blueprints Pipes) that uses connected operationsto traverse
agraph. Gremlin has a concise syntax but is turing compl ete.

Gremlin can be executed by including the tinkerpop and blueprints dependencies and then requesting
a Scri pt Engi ne of type "gremlin" from the j avax. scri pt * facilities. In Spring Data Neo4j this is
encapsulated in Gr em i nQuer yEngi ne. The Neo4j-REST -Server also comeswith aGremlin-Plugin that
is accessible remotely and is available in the Spring Data Neo4j REST-Binding.

Example 19.5. Sample Gremlin Queries

/1l Vertex withid 1
v = g.v(1)

/1 determi ne the nane of the vertices that vertex 1 knows and that are ol der than 30 years|of age
v.outE{it.|abel =="knows'}.inVit.age > 30}.nane

/1 cal cul ate basic collaborative filtering for vertex 1
m=[:]
g-v(1l).out('likes").in('likes').out('likes").groupCount(m
msort{a,b -> a.value <=> b. val ue}

Spring Data Graph (2.0.0.RC1) 46

http://markorodriguez.com
http://tinkerpop.com

Chapter 20. Programming model

This chapter covers the fundamentals of the programming model behind Spring Data Neo4j. It
discussesthe AspectJ features used and the annotations provided by Spring Data Neo4j and how to use
them. Examples for this section are taken from the "IMDB" project of Spring Data Neo4j examples.

20.1. Object Graph Mapping

Until recently Spring Data Neo4j supported the only more advanced and flexible AspectJ based
mapping approach, see Section 20.2, “Aspect support”. Feedback about complications with the
AspectJ tooling and other implications supported us in adding a simpler mapping (see Section 20.3,
“Simple Object Graph Mapping”) to Spring DataNeo4j. Both versionswork with the same annotations
and provide similar API's but different behaviour.

Reflection and Annotation-based metadata is collected about persistent entities in the
Neo4j Mappi ngCont ext which provides it to any part of the library. The information is stored in
Neo4j Per si st ent Ent i y instances which hold all the Neo4j Per si st ent Propert y's of the type. Each
entity can be queried if it represents a Node or a Relationship. Properties declare detailed data about
their indexing and relationship information as well as type information that also covers nested generic
types. With all that information available it is simple to select the appropriate strategy for mapping
each entity and field to elements, relationships and properties of the graph.

The main difference lies in the way of accessing the graph. In the conversion based mapping the
required information is copied into the entity on load and only saved back when an explicit save
operation occurs. |n the AspectJ approach a node or relationship is stored in an additional field of the
entity and all read- and write (inside of tx) access happens through that.

Otherwise the two approaches are sharing lots of the infrastructure. E.g. for creating new entity
instances from type information store in the graph (Section 20.14, “Entity type representation”), the
infrastructure for mappingindividual fieldsto graph propertiesand rel ationships and everything rel ated
to indexing and querying. A certain part of that is also exposed via the Neodj Template for direct use.

20.2. Aspectd support

Behind the scenes, Spring Data Neo4j leverages AspectJ aspects to modify the behavior of annotated
POJO entities (see Chapter 25, Aspect] details). Each node entity is backed by a graph node that holds
its properties and relationships to other entities. AspectJ is used for intercepting field access, so that
Spring Data Neodj can retrieve the information from the entity's backing node or relationship in the
database.

The aspect introduces some internal fields and some public methods (see Section 20.11, “Introduced
methods”’) to the entities, such as entity. get PersistentState() and entity.rel ateTo. It aso
introduces repository methods likef i nd(O ass<? extends NodeEntity>, Traversal Description).
Introduced methods for equal s() and hashCode() use the underlying node or relationship.

Spring Data Neo4j internally uses an abstraction called EntityState that the field access and
instantiation advices of the aspect delegate to. This way, the aspect code is kept to a minimum,
focusing mainly on the pointcuts and delegation code. The EntityState then uses a number of
Fi el dAccessor Fact ori es to createaFi el dAccessor instance per field that doesthe specific handling

Spring Data Graph (2.0.0.RC1) 47

http://spring.neo4j.org/examples
http://www.eclipse.org/aspectj/

Programming model

needed for the concrete field type. There are various layers of caching involved aswell, so it handles
repeated instantiation efficiently.

20.2.1. Aspectd IDE support

As Spring Data Neo4j uses some advanced features of AspectJ, users may experienceissueswith their
IDE reporting errors where in fact there are none. Features that might be reported wrongfully include:
introduction of methods to interfaces, declaration of additional interfaces for annotated classes, and
generified introduced methods.

IDE's not providing the full AJ support might mark parts of your code as errors. You should rely on
your build-system and test to verify the correctness of the code. Y ou might also have your Entities
(or their interfaces) implement the NodeBacked and Rel at i onshi pBacked interfaces directly to benefit
from completion support and error checking.

Eclipse and STS support Aspect] viathe AJDT plugin which can be installed from the update-site:
http://downl oad.eclipse.org/tool s/gjdt/37/update/ (it might be necessary to use the latest development
snapshot of the plugin http://download.eclipse.org/tool s/ajdt/36/dev/update). The current version that
doesnot show incorrect errorsis AspectJ 1.6.12 (included in STS 2.8.0), previous versions are reported
to mislead the user.

Note
a

There might be some issues with the eclipse maven plugin not adding AspectJ files
correctly to the build path. If you encounter issues, please try the following: Try editing
the build path to i ncl ude **/*. aj for the spring-data-neo4j project. Y ou can do this by
selecting "Build Path -> Configure Build Path ..." from the Package Explorer. Then for
thespri ng- dat a- neo4j / src/ mai n/j ava add**/ *. aj totheIncluded path. For importing
an Spring Data Graph project into Eclipse with m2e. Please make sure that the Aspect]
Configurator isinstalled and

The AspectJ support in IntelliJ IDEA lacks some of the features. JetBrains is working on improving
the situation in their upcoming 11 release of their popular IDE. Their latest work is available under
their early access program (EAP). Building the project with the Aspectd compiler aj ¢ worksin IDEA
(Options -> Compiler -> Java Compiler should show gjc). Make sure to give the compiler at least 512
MB of RAM.

20.3. Simple Object Graph Mapping

The simple object graph mapping comes into action whenever an entity is constructed from a node
or relationship. That could be explicitely like during the findOne or createNodeAs operations but
also implicitely while executing any graph operation that returns nodes or relationships and expecting
mapped entities to be returned.

It uses the available meta information about the persistent entity to iterate over its properties and
relationships, fetching them from the graph while doing so. It a so executes computed fields and stores
the resulting values in the properties.

Wetry to avoid loading the whole graph into memory by not following too many relationships eagerly.
A dedicated @ et ch annotation controlsinstead if related entities areloaded or not. Whenever an entity

Spring Data Graph (2.0.0.RC1) 48

http://download.eclipse.org/tools/ajdt/36/update/
http://download.eclipse.org/tools/ajdt/36/dev/update
http://dist.springsource.org/release/AJDT/configurator
http://dist.springsource.org/release/AJDT/configurator

Programming model

is not fully loaded, then only itsid is stored. Those entities or collections of entities can then later be
loaded explictely.

Example 20.1. Examplesfor loading entities from the graph

@\ut owi red Neo4j Operations tenpl ate;

@NodeEntity class Person {
String nane;
@etch Person boss;
Person spouse;

@Rel atedTo(type = "FRIEND', direction = BOTH)
@etch Set<Person> friends;
}
Person person = tenpl ate.findOne(personld);
assert Not Nul | (person. get Boss() . get Nane());

assert Not Nul | (person. get Spouse().getld());
assert Nul | (person. get Spouse() . get Name());

t enpl at e. | oad(per son. get Spouse());
assert Not Nul | (person. get Spouse(). get Nane());

assert Equal s(10, person. get Friends().size());
assertNot Nul | (firstFriend. get Nanme());

20.4. Defining node entities

Node entities are declared using the @bodeEntity annotation. Relationship entities use the
@rel ati onshi pEnti ty annotation.

20.4.1. @NodeEntity: The basic building block

The @lodeEnt ity annotation is used to turn a POJO class into an entity backed by a node in the
graph database. Fields on the entity are by default mapped to properties of the node. Fields referencing
other node entities (or collectionsthereof) arelinked with relationships. If theusesShor t Nanes attribute
overridden to false, the property and relationship names will have the class name of the entity
prepended.

@lodeEnt i t y annotations are inherited from super-types and interfaces. It is not necessary to annotate
your domain objects at every inheritance level.

If the partial attribute is set to true, this entity takes part in a cross-store setting, where the entity
lives in both the graph database and a JPA data source. See Chapter 22, Cross-store persistence for
more information.

Entity fields can be annotated with @ aphProperty, @rel atedTo, @Rel atedToVia, @ ndexed,
@ aphl d and @ aphTraver sal .

Example 20.2. Simple node entity

@\odeEntity

public class Myvie {
String title;

}

Spring Data Graph (2.0.0.RC1) 49

Programming model

20.4.2. @GraphProperty: Optional annotation for property fields

Itisnot necessary to annotate datafields, asthey are persisted by default; all fieldsthat contain primitive
values are persisted directly to the graph. All fields convertible to String using the Spring conversion
serviceswill be stored as a string. Spring Data Neo4j includes a custom conversion factory that comes
with converters for Enuns and Dat eS. Transient fields are not persisted.

Currently there is no support for handling arbitrary collections of primitive or convertable values.
Support for thiswill be added by the 1.1. release.

This annotation is typically used with cross-store persistence. When a node entity is configured
as partia, then al fields that should be persisted to the graph must be explicitly annotated with
@ aphProperty.

20.4.3. @Indexed: Making entities searchable by field value

The @Indexed annotation can be declared on fields that are intended to be indexed by the Neo4j
indexing facilities. The resulting index can be used to later retrieve nodes or relationships that contain
acertain property value, e.g. aname. Often an index is used to establish the start node for atraversal.
Indexes are accessed by arepository for aparticular node or relationship entity type. See Section 20.6,
“Indexing” and Section 20.8, “CRUD with repositories’ for more information.

20.4.4. @Query: fields as query result views

The @wer y annotation leverages the del egation infrastructure used by the Spring Data Neo4j aspects.
It provides dynamic fields which, when accessed, return the values selected by the provided query
language expression. The provided query must contain a placeholder named { sel f} for theid of the
current entity. For instancestart n=({self}) match n-[: FRIEND]->friend return friend. Graph
queriescan return variable number of entities. That'swhy annotation can be put onto fieldswith asingle
value, an Iterable of aconcrete type or an Iterable of Map<Stri ng, Obj ect >. Additional parameters are
taken from the params attribute of the @uery annotation. The tuples form key-value pairs that are
provided to the query at execution time.

Example 20.3. @Graph on a node entity field

@NodeEntity
public class Goup {
@uery(value = "start n=({self}) match (n)-[: % el Type]->(friend) return friend",
parans = {"rel Type", "FRIEND'})
private |terabl e<Person> friends;

Note

.

e

Please note that this annotation can also be used on repository methods.

20.4.5. @GraphTraversal: fields as traversal result views

The @ aphTraversal annotation leverages the delegation infrastructure used by the Spring Data
Neo4j aspects. It provides dynamic fields which, when accessed, return an Iterable of node entities that
aretheresult of atraversal starting at the entity containing thefield. The Tr aver sal Descri pti on used
for thisiscreated by theFi el dTr aver sal Descri pti onBui | der classdefined by thet r aver sal Bui | der
attribute. The class of the resulting node entities must be provided with the el enent O ass attribute.

Spring Data Graph (2.0.0.RC1) 50

Programming model

Example 20.4. @GraphTraversal from a node entity

@NodeEntity
public class Goup {
@ aphTraversal (traversal Bui | der = Peopl eTraver sal Bui | der. cl ass,
el enent Cl ass = Person.cl ass, params = "persons")
private |terabl e<Person> peopl e;

private static class Peopl eTraversal Buil der inplenents FieldTraversal Descri ptionBuil de
@verride
public Traversal Description buil d(NodeBacked start, Field field, String... parans)|{
return new Traversal Descri ptionl npl ()
.rel ationshi ps(Dynam cRel ati onshi pType. wi t hName(par ans[0]))
.filter(Traversal.returnAll ButStartNode());

20.5. Relating node entities

Since relationships are first-class citizens in Neodj, associations between node entities are represented
by relationships. In general, relationships are categorized by atype, and start and end nodes (which
imply the direction of the relationship). Relationships can have an arbitrary number of properties.
Spring Data Neo4j has special support to represent Neo4j relationships as entities too, but it is often
not needed.

Note

.

2
As of Neodj 1.4.M03, circular references are allowed. Spring Data Neo4j reflects this

accordingly.
20.5.1. @RelatedTo: Connecting node entities

Every field of anode entity that references one or more other node entities is backed by relationships
in the graph. These relationships are managed by Spring Data Neo4j automatically.

The simplest kind of relationship isasingle field pointing to another node entity (1:1). In this case, the
field does not have to be annotated at all, although the annotation may be used to control the direction
and type of the relationship. When setting the field, arelationship is created. If thefieldisset tonul I,
the relationship is removed.

Example 20.5. Single relationship field

@NodeEntity
public class Myvie {
private Actor npstPai dActor;

}

It is also possible to have fields that reference a set of node entities (1:N). These fields come in two
forms, modifiable or read-only. Modifiable fields are of the typej ava. util. Set <T>, and read-only
fieldsarej ava. | ang. I t er abl e<T>, where T is a @NodeEntity-annotated class.

Spring Data Graph (2.0.0.RC1) 51

Programming model

Example 20.6. Node entity with relationships

@NodeEntity

public class Actor {
@Rel at edTo(type = "nost Pai dActor", direction = Direction.| NCOM NG
private Set<Mvi e> nost Pai dl n;

@Rel at edTo(type = "ACTS_ I N')
private Set<Mvie> novi es;

}

Fieldsreferencing other entities should not be manually initialized, asthey are managed by Spring Data
Neo4j under the hood. 1:N fields can be accessed immediately, and Spring Data Neodj will provide a
java.util.Set representing the relationships. If the returned set is modified, the changes are reflected in
the graph. Spring Data Neo4j also ensures that there is only one relationship of a given type between
any two given entities.

Note

Before an entity has been attached with persi st () for the first time, it will not have its
state managed by Spring Data Neo4j. For example, given the Actor class defined above,
if act or. movi es was accessed in a hon-persisted entity, it would return nul |, whereas if
it was accessed in a persisted entity, it would return an empty managed set.

When you use an Interface as target type for the Sset and/or as el enent d ass please make sure that
it implements NodeBacked either by extending that Super-Interface manually or by annotating the
Interface with @odeEnt i t y too.

By setting direction to BOTH, relationships are created in the outgoing direction, but when the 1:N field
isread, it will include relationships in both directions. A cardinality of M:N is not necessary because
relationships can be navigated in both directions.

The relationships can aso be accessed by using the aspect-introduced methods
entity. getRel ationshi pTo(target, type) and entity.relateTo(target, type) available on
each NodeEntity. These methods find and create Neo4j relationships. It is also possible to manually
removerelationshipsby usingenti ty. removeRel ati onshi pTo(target, type).Usingthese methods
is significantly faster than adding/removing from the collection of relationships as it doesn't have to
re-synchronize awhole set of relationships with the graph.

Note

Other collection types than set are not supported so far, also currently NO
Map<Rel at i onshi pType, Set <NodeBacked>>.

20.5.2. @RelationshipEntity: Rich relationships

To access the full data model of graph relationships, POJOs can also be annotated with
@rel ati onshi pEnti ty, making them relationship entities. Just as node entities represent nodes in
the graph, relationship entities represent relationships. As described above, fields annotated with
@rel at edTo provide a way to link node entities together via relationships, but it provides no way of
accessing the relationships themselves.

Relationship entities cannot be instantiated directly but are rather created via node entities, either
by @RelatedToVia-annotated fields (see Section 20.5.3, “@RelatedToVia: Accessing relationship

Spring Data Graph (2.0.0.RC1) 52

Programming model

entities’), or by the introduced entity.relateTo(target, relationshipdass, type) and

entity.getRel ationshi pTo(target, relationshipdass, type) methods (see Section 20.11,
“Introduced methods”).

Fieldsin relationship entities are, similarly to node entities, persisted as properties on the relationship.
For accessing the two endpoints of the relationship, two special annotations are available: @t ar t Node
and @ndNode. A field annotated with one of these annotations will provide read-only access to the
corresponding endpoint, depending on the chosen annotation.

Example 20.7. Relationship entity

@NodeEntity
public class Actor {
public Role playedl n(Mvie novie, String title) {
return rel atedTo(novie, Role.class, "ACTS IN');
}
}

@Rel ati onshi pEntity
public class Role {
String title;

@3t art Node private Actor actor;
@ndNode private Movie novie;

20.5.3. @RelatedToVia: Accessing relationship entities

To provide easy programmatic access to the richer relationship entities of the data model, the
annotation @el at edToVi a can be added on fields of type j ava. | ang. Iterabl e<T>, where T is a
@rel ati onshi pEnt i t y-annotated class. These fields provide read-only access to relationship entities.

Example 20.8. Accessing relationship entitiesusing @RelatedToVia

@NodeEntity

public class Actor {
@Rel at edToVi a(type = "ACTS_I N')
private |terabl e<Rol e> rol es;

public Role playedln(Mvie novie, String title) {
Rol e role = rel ateTo(novi e, Role.class, "ACTS_IN');
role.setTitle(title);
return role;

20.6. Indexing

The Neo4j graph database can use different so-called index providers for exact lookups and fulltext
searches. Luceneisthe default index provider implementation. Each named index is configured to be

fulltext or exact.

20.6.1. Exact and numeric index

When using the standard Neodj API, nodes and relationships have to be manually indexed with
key-value pairs, typically being the property name and value. When using Spring Data Neo4j, this

Spring Data Graph (2.0.0.RC1) 53

Programming model

task issimplified to just adding an @ ndexed annotation on entity fields by which the entity should be
searchable. Thiswill result in automatic updates of the index every time an indexed field changes.

Numerical fields are indexed numerically so that they are available for range queries. All other fields
are indexed with their string representation.

The @Indexed annotation also provides the option of using a custom index. The default index nameis
the simple class name of the entity, so that each class typically getsits own index. It is recommended
to not have two entity classes with the same class name, regardless of package.

The indexes can be queied by wusng a repository (see Section 20.8,
“CRUD with repositories’). Typicaly, the repository is an instance of
org. spri ngf ramewor k. dat a. neo4j . reposi tory. Di rect G aphReposi t oryFactory. The methods
fi ndByPropertyVal ue() and findAl | ByPropertyVal ue() work on the exact indexes and return the
first or all matches. To do range queries, usef i ndAl | ByRange() (please notethat currently both values
areinclusive).

Example 20.9. Indexing entities

@NodeEntity

cl ass Person {
@ ndexed(i ndexName = "people") String nane;
@ ndexed i nt age;

}
G aphReposi t ory<Person> graphRepository = tenpl ate. repositoryFor (Person. cl ass);

/] Exact match, in named index
Person mark = graphRepository.findByPropertyVal ue("people", "nane", "nmark");

// Numeric range query, index nanme inferred automatically
for (Person m ddl eAgedDevel oper : graphRepository.findAl |l ByRange("age", 20, 40)) {
Devel oper devel oper =ni ddl eAgedDevel oper . proj ect To(Devel oper. cl ass);

}

20.6.2. Fulltext indexes

Spring Data Neo4j also supports fulltext indexes. By default, indexed fields are stored in an exact
lookup index. To have them analyzed and prepared for fulltext search, the @ ndexed annotation has
the boolean f ul I t ext attribute. Please note that fulltext indexes require a separate index name as the
fulltext configuration is stored in the index itself.

Accessto the fulltext index is provided by thef i ndAl | ByQuer y() repository method. Wildcardslike *
are allowed. Generally though, the fulltext querying rules of the underlying index provider apply. See
the Lucene documentation for more information on this.

Example 20.10. Fulltext indexing

@NodeEntity
cl ass Person {

@ ndexed(i ndexNane = "peopl e-search", type=FULLTEXT) String nane;
}

G aphReposi t ory<Per son> graphRepository =
tenpl at e. reposi t oryFor (Per son. cl ass) ;

Person mark = graphRepository.findAl | ByQuery("peopl e-search", "nane", "ma*");

Spring Data Graph (2.0.0.RC1) 54

http://lucene.apache.org/java/3_0_1/

Programming model

Note

Please notethat indexesare currently created on demand, so whenever anindex that doesn't
exist is requested from a query or get operation it is created. This is subject to change
but has currently the implication that those indexes won't be configured as fulltext which
causes subsequent fulltext updates to those indexes to fail.

20.6.3. Manual index access

The index for a domain class is also available from G aphDat abaseCont ext Via the get I ndex()
method. The second parameter is optional and takes the index name if it should not be inferred from
the class name. It returns the index implementation that is provided by Neo4j.

Example 20.11. Manual index usage

@\ut owi red G aphDat abaseCont ext gdc;

/1 Default index

| ndex<Node> per sonl ndex = gdc. get | ndex(Person. cl ass);

per sonl ndex. quer y(new Quer yCont ext (Nurrer i cRangeQuery. newi nt Range("age", 20, 40, true, true))
.sort(new Sort(new SortField("age", SortField.INT, false))));

/1 Named i ndex

I ndex<Node> namedPer sonl ndex = gdc. get| ndex(Person. cl ass, "people");
nanedPer sonl ndex. get (" nane", "“Mark");

/] Fulltext index

| ndex<Node> personFul | t ext | ndex = gdc. get| ndex(Person. cl ass, "peopl e-search", true);
personFul | t ext | ndex. query("nane", "*cha*");

personFul | t ext | ndex. query("{nane: *cha*}");

20.6.4. Indexing in Neo4jTemplate

Neodj Template also offersindex support, providing auto-indexing for fields at creation time. Thereis
an aut ol ndex method that can also add indexes for a set of fields in one go.

For querying theindex, thetemplate offers query methodsthat take either the exact match parametersor

aquery object/expression, and push the resultswrapped uniformly as Pathsto the supplied Pat hvapper
to be converted or collected.

20.7. Neo4djTemplate

The Neo4j Tenpl at e offers the convenient API of Spring templates for the Neo4j graph database.

20.7.1. Basic operations

For direct retrieval of nodes and relationships, the get Ref erenceNode(), getNode() and
get Rel at i onshi p() methods can be used.

There are methods (cr eat eNode() and cr eat eRel at i onshi p()) for creating nodes and relationships
that automatically set provided properties.

Spring Data Graph (2.0.0.RC1) 55

Programming model

Example 20.12. Neo4j template

// TODO aut o- post-construct !!
Neo4j Oper ati ons neo = new Neodj Tenpl at e(gr aphDat abase) . post Construct () ;

Node mark = neo. creat eNode(map("“nane", "Mark"));
Node t homas = neo. creat eNode(map("nane", "Thomas"));

neo. cr eat eRel ati onshi pBet ween(mark, thomas, "WORKS W TH', map("project", "spring-data"));

neo. i ndex("devs", thomas, "nane", "Thonas");

/'l Cypher TODO

assert Equal s("Mark", neo.query("start p=node({person}) match p<-[: WORKS W TH] - ot her return ot
map(" person”, asList(thonas.getld()))).to(String.class).single());

/1 Gemin
assert Equal s(t homas, neo. execute("g.v(person).out (' WORKS WTH)",
map(" person”, mark.getld())).to(Node.class).single());

/1 1ndex | ookup
assert Equal s(t homas, neo. | ookup("devs", "nane", "Thomas").to(Node.class).single())

/1 1ndex | ookup with Result Converter
assert Equal s(" Thomas", neo. | ookup("devs", "nanme", "Thonas").to(String.class, new ResultConvert
public String convert(PropertyContainer elenent, Cass<String> type) {
return (String) elenent.getProperty("nane");
}
}).single());

20.7.2. Result

All querying methods of the template return a uniform result type: Resul t <T> which is also
an Iterabl e<T>. The query result offers methods of converting each element to a target type
resul t.to(Type. cl ass) optionally supplying a Resul t Convert er <FROM TG> Which takes care of
custom conversions. By default most query methods can already handle conversions from and
to: Paths, Nodes, Relationship and GraphEntities as well as conversions backed by registered
ConversionServices. A converted Resul t <FROM> iSan | t er abl e<TO>. Resultscan belimitedtoasingle
value using theresul t. si ngl e() method. It also offers support for a pure callback function using a
Handl er <T>.

20.7.3. Indexing

Adding nodes and relationships to an index is done with thei ndex() method.

Thel ookup() methods either take a field/value combination to look for exact matches in the index,
or a Lucene query abject or string to handle more complex queries. All | ookup() methods return a
Resul t <Pr oper t yCont ai ner > to be used or transformed.

20.7.4. Graph traversal

The traversal methods are at the core of graph operations. The traverse() method covers
the full traversal operation that takes a Traversal Description (typically built with the
Traversal . description() DSL) and runs it from the given start node. traverse returns a
Resul t <Pat h> to be used or transformed.

Spring Data Graph (2.0.0.RC1) 56

Programming model

20.7.5.

20.7.6.

20.7.7.

20.7.8.

Cypher Queries

The Neo4j Tenpl ate also allows execution of arbitrary Cypher queries. Via the query methods
the statement and parameter-Map are provided. Cypher Queries return tabular results, so the
Resul t <Map<Stri ng, Cbj ect >> contains the rows which can be either used as they are or converted
as needed.

Gremlin Scripts

Gremlin Scripts can run with the execut e method, which also takes the parameters that will be
available as variables inside the script. The result of the executions is a generic Resul t <bj ect > fit
for conversion or usage.

Transactions

TheNeo4j Tenpl at e providesconfigurableimplicit transactionsfor al itsmethods. By default it creates
atransaction for each call (which is ano-op if there is already a transaction running). If you call the
constructor with the useExpl i ci t Transact i ons parameter set to true, it won't create any transactions
S0 you have to provide them using @r ansact i onal or the Transacti onTenpl at e.

Neo4j REST Server

If thetemplateis configured to use aRest Gr aphDat abase the expensive operations like traversals and
querying are executed efficiently on the server side by using the REST API to forward those calls. All
the other template methods require single network operations.

20.8. CRUD with repositories

20.8.1.

The repositories provided by Spring Data Neo4j build on the composable repository infrastructure
in Spring Data Commons. They allow for interface based composition of repositories consisting of
provided default implementations for certain interfaces and additional custom implementations for
other methods.

Spring Data Neodj repositories support annotated and named queries for the Neodj Cypher
query-language.

Spring Data Neo4j comes with typed repository implementations that provide methods for locating
node and relationship entities. There are 3 types of basic repository interfaces and implementations.
CRUDReposi t or y providesbasic operations, | ndexReposi t or y and Named! ndexReposi t or y delegateto
Neodj'sinternal indexing subsystem for queries, and Tr aver sal Reposi t or y handles Neo4j traversals.

GraphRepository IS a convenience repository interface, extending CRUDRepository,
I ndexReposi t ory, and Tr aver sal Reposi t ory. Generally, it has all the desired repository methods. I
named index operations are required, then Named! ndexReposi t ory may also be included.

CRUDRepository

CRUDReposi tory delegates to the configured TypeRepresentationStrategy (see Section 20.14,
“Entity type representation”) for type based queries.

Load an instance viaaNeo4j nodeid
T findOne(id)

Spring Data Graph (2.0.0.RC1) 57

http://static.springsource.org/spring-data/data-jpa/docs/current/reference/html/#repositories.custom-implementations
http://docs.neo4j.org/chunked/milestone/query-lang.html

Programming model

Check for existence of a Neo4j node id

bool ean exists(id)

Iterate over al nodes of a node entity type
I'terabl e<T> findAl | () (supportedinfutureversions: |t er abl e<T> findAl | (Sort) andPage<T>
findAl | (Pageabl e))

Count the instances of a node entity type

Long count ()

Save agraph entity
T save(T) andIterabl e<T> save(lterabl e<T>)

Delete a graph entity
voi d del ete(T),void; delete(lterable<T>),anddeleteAl l()

Important to note hereisthat thesave, del et e, and del et eAl | methodsare only thereto conformtothe
org. spri ngfranewor k. dat a. reposi t ory. Reposi t ory interface. The recommended way of saving
and deleting entitiesisby usingentity. persist() andentity. renmove().

20.8.2. IndexRepository and NamedIndexRepository

I ndexReposi t ory workswith theindexing subsystem and provides methodsto find entities by indexed
properties, ranged queries, and combinations thereof. The index key isthe name of the indexed entity
field, unless overridden in the @ ndexed annotation.

Iterate over al indexed entity instances with a certain field value
Iterabl e<T> findAl | ByPropertyVal ue(key, val ue)

Get asingle entity instance with a certain field value
T findByPropertyVal ue(key, val ue)

Iterate over al indexed entity instances with field values in a certain numerical range (inclusive)
I'terabl e<T> findAl | ByRange(key, from to)

Iterate over all indexed entity instances with field values matching the given fulltext string or
QueryContext query
I'terabl e<T> findAl | ByQuery(key, queryOr QueryContext)

There is dso a Naned! ndexReposi t ory with the same methods, but with an additional index name
parameter, making it possible to query any index.

20.8.3. TraversalRepository

Traver sal Reposi t ory delegates to the Neodj traversal framework.

|terate over atraversal result

Iterabl e<T> findAl I ByTraversal (startEntity, traversal Description)

20.8.4. Cypher-Queries
20.8.4.1. Annotated Queries

Queriesfor the cypher graph-query language can be supplied with the @uer y annotation. That means
every method annotated with @uery("start n=(%ode) mtch (n)-->(m return nt) will use
the query string. The named parameter imode will be replaced by the actual method parameters. Node

Spring Data Graph (2.0.0.RC1) 58

Programming model

and Relationship-Entities are resolved to their respective id's and al other parameters are replaced
directly (i.e. Strings, Longs, etc). Thereis specia support for the Sort and Pageabl e parameters from
Spring Data Commons, which are supported to add programmatic paging and sorting (alternatively
static paging and sorting can be supplied in the query string itself). For using the named parametersyou
have to either annotate the parameters of the method with the @ar an(" node") annotation or enable
debug symbols.

20.8.4.2. Named Queries

Spring Data Neodj aso supports the notion of named queries which are externalized
in property-config-files (META-1 NF/ neo4j - naned- queri es. properties). Those files have the
format: Entity.finderName=query (€.g. Person.findBoss=start p=({p_person}) mat ch
(p)<-[:B0SS] - (boss) return boss). Otherwise named queries support the same parameters as
annotated queries. For using the named parameters you have to either annotate the parameters of the
method with the @ar an(" p_per son") annotation or enable debug symbols.

20.8.4.3. Query results

Typical results for queries are Iterabl e<Type>, |terabl e<Map<String, Cbject>>, Type and
Page<Type>. Nodes and Relationships are converted to their respective Entities (if they exist). Other
values are converted using the registered Spring conversion services (e.g. enums).

20.8.4.4. Cypher Examples

Thereisascreencast avail able showing many features of the query language. The following examples
are taken from the cineasts dataset of the tutorial section.

start n=(0) return n
returns the node with id O

start nmovie=(Movie,title,'Matrix') return novie
returns the nodes which are indexed as 'Matrix'

start movi e=(Movie,title, " Matrix') mat ch (rmovie)<-[: ACTS_IN] - (actor) return
actor. nanme
returns the names of the actorsthat have a ACTS IN relationship to the movie node for matrix

start nmovie=(Mwvie,title,"Matrix') match (nmovie)<-[r,:RATED]-(user) where r.stars >
3 return user.nane, r.stars, r.comment
returns users names and their ratings (>3) of the movie matrix

start wuser=(User,login,'mcha) match (user)-[:FRIEND - (friend)-[r,:RATED] ->(novie)

return nmovie.title, AVEr.stars), count(*) order by AVEr.stars) desc, count(*) desc
returns the movies rate by the friends of the user 'micha, aggregated by movie.title, with averaged
ratings and rating-counts sorted by both

20.8.4.5. Derived Finder Methods

Use the meta information of your domain model classes to declare repository finders that navigate
along relationships and compare properties. The path defined with the method name is used to create
a Cypher query that is executed on the graph.

Spring Data Graph (2.0.0.RC1) 59

http://neo4j.vidcaster.com/U2Y/introduction-to-cypher

Programming model

Example 20.13. Repository and usage of derived finder methods

@NodeEntity

public static class Person {
@ aphl d Long id;
private String nane;
private G oup group;

private Person(){}
public Person(String name) {
thi s. name = naneg;
}
}
@NodeEntity
public static class Goup {
@ aphl d Long id;
private String title;
/1 incoming relationship for the person -> group
@Rel at edTo(type = "group", direction = Direction.| NCOM NG
private Set<Person> menber s=new HashSet <Per son>();

private Goup(){}
public Goup(String title, Person...people) {
this.title =title;
menber s. addAl | (asLi st (peopl e));
}
}
public interface PersonRepository extends G aphRepository<Person> {
It erabl e<Person> findByG oupTitle(String nane);
}

@\ut owi red PersonRepository personRepository;
Per son ol i ver =per sonReposi tory. save(new Person("Qiver"));

final Goup springbData = new G oup("spring-data",oliver);
gr oupReposi tory. save(spri ngDat a) ;

final Iterabl e<Person> menbers = personRepository.findByG oupTitle("spring-data");

assert That (nmenbers.iterator().next().nanme, is(oliver.nange));

20.8.5. Creating repositories

The Reposi t ory instances are either created manually viaabi r ect GraphReposi t or yFact or y, bound
to a concrete node or relationship entity class. The Di r ect GraphReposi t or yFact ory isconfigured in

the Spring context and can be injected.

Spring Data Graph (2.0.0.RC1)

60

Programming model

Example 20.14. Using GraphRepositories

G aphReposi t or y<Per son> graphRepository = tenpl ate
. repositoryFor (Person. cl ass);

Person m chael = graphRepository.save(new Person("M chael", 36));

Person dave = graphRepository.findOne(123);

Long nunber Of Peopl e = graphRepository. count();

Person mark = graphRepository.findByPropertyVal ue("nanme", "mark");

I t erabl e<Person> devs = graphRepository.findAl | ByProperyVal ue("occupation", "devel oper");
It er abl e<Per son> mi ddl eAgedPeopl e = graphRepository. findAl | ByRange("age", 20, 40);

It erabl e<Per son> aTeam = graphReposi tory. fi ndAl | ByQuery("nanme", "A*");

I t er abl e<Person> davesFri ends = graphRepository.findAllByTraversal (dave,

Traversal . description(). pruneAfterDepth(1)
.relationshi ps(KNOAS) . filter(returnAll ButStartNode()));

20.8.6. Composing repositories

The recommended way of providing repositories is to define a repository interface per domain class.
The mechanisms provided by the repository infrastructure will automatically detect them, along with
additional implementation classes, and create an injectable repository implementation to be used in
services or other spring beans.

Spring Data Graph (2.0.0.RC1) 61

Programming model

Example 20.15. Composing repositories

public interface PersonRepository extends G aphRepository<Person>, PersonRepositoryExtension {}

/1 alternatively select sone of the required repositories individually
public interface PersonRepository extends CRUDG aphRepository<Node, Per son>,
I ndexQuer yExecut or <Node, Per son>, Traver sal Quer yExecut or <Node, Per son>,
Per sonReposi t or yExt ensi on {}

/] provide a custom extension if needed
public interface PersonRepositoryExtension {
It erabl e<Person> findFri ends(Person person);

}

public class PersonRepositorylnpl inplenents PersonRepositoryExtension {
/] optionally inject default repository, or use DirectG aphRepositoryFactory
@\ut owi red PersonRepository baseRepository;
public Iterabl e<Person> findFriends(Person person) {
return baseRepository.findAllByTraversal (person, friendsTraversal);
}
}

/1 configure the repositories, preferably via the datagraph:repositories nanespace
/1 (tenplate reference is optional)
<neo4j :repositories base-package="org.springframework. dat a. neo4j"
gr aph- dat abase- context-ref ="tenpl ate"/ >
/] have it injected
@\ut owi r ed
Per sonReposi tory personRepository;
Person m chael = personRepository.save(new Person("M chael ", 36));
Per son dave=per sonReposi tory. fi ndOne(123);
I t erabl e<Person> devs = personRepository. findAl |l ByProperyVal ue("occupation", "devel oper");

I t er abl e<Person> aTeam = graphReposi tory. fi ndAl | ByQuery("name","A*");

It erabl e<Person> friends = personRepository.findFriends(dave);

20.9. Projecting entities

As the underlying data model of a graph database doesn't imply and enforce strict type constraints
like arelational model does, it offers much more flexibility on how to model your domain classes and
which of those to use in different contexts.

For instance an order can be used in these contexts: customer, procurement, logistics, billing,
fulfillment and many more. Each of those contexts requiresits distinct set of attributes and operations.
As Java doesn't support mixins one would put the sum of all of those into the entity class and thereby
making it very big, brittle and hard to understand. Being able to take a basic order and project it to a
different (not related in the inheritance hierarchy or even an interface) order type that is valid in the
current context and only offers the attributes and methods needed here would be very benefitial.

Spring Data Neo4j offersinitial support for projecting node and relationship entities to different target
types. All instances of this projected entity share the same backing node or relationship, so datachanges
are reflected immediately.

Spring Data Graph (2.0.0.RC1) 62

Programming model

This could for instance also be used to handle nodes of atraversal with a unified (simpler) type (e.g.

for reporting or auditing) and only project them to a concrete, more functional target type when the
business logic requiresit.

Example 20.16. Projection of entities

@NodeEntity
class Trainee {
String nane;
@rel at edTo
Set <Tr ai ni ng> trainings;

}

for (Person person : graphRepository.findAl | ByProperyVal ue("occupation”, "devel oper")) {
Devel oper devel oper = person. proj ect To(Devel oper. cl ass);
i f (devel oper.isJavaDevel oper()) {
trai nl nSpri ngDat a(devel oper. proj ect To(Tr ai nee. cl ass));

}

20.10. Geospatial Queries

Spati al Reposi tory is a dedicated Repository for spatial queries. Spring Data Neo4j provides an
optional dependency to neo4j - spati al which is an advanced library for gis operations. So if you
include the maven dependency in your pom xmi , Neodj-Spatial and the required SPATI AL index
provider isavailable.

Example 20.17. Neo4j-Spatial Dependencies

<dependency>
<gr oupl d>or g. neo4j </ gr oupl d>
<artifactld>neo4j-spatial </artifactld>
<ver si on>0. 7- SNAPSHOT</ ver si on>

</ dependency>

For having your entities available for spatial index queries, please include a String property containing
a"well known text", location string. WKT is the Well Known Text Spatial Format eg. PO NT(LON
LAT) or POLYGON ((LONL LAT1 LON2 LAT2 LON3 LAT3 LONL LAT1))

Example 20.18. Fields of

@NodeEntity
cl ass Venue {
String nane;
@ ndexed(type = PO NT, indexName = "...") String wkt;
public void setLocation(float lon, float lat) {
this.wkt = String.format ("PONT(% 2f %2f)",lon,|at)
}
}

venue. set Locat i on(56, 15) ;

After adding the Spati al Reposi t ory t0 your repository you can use the fi ndW t hi nBoundi ngBox,
findWthinDi stance, findWthinWll KnownText.

Spring Data Graph (2.0.0.RC1) 63

http://en.wikipedia.org/wiki/Well-known_text

Programming model

Example 20.19. Spatial Queries

It er abl e<Per son> t eamVenbers = personRepository. fi ndWthi nBoundi ngBox("personLayer", 55, 15, 57, 1
I t er abl e<Per son> t eam\Venbers = personRepository. findWthinWl |l KnownText (" personLayer"”, "POLYGON ((15 &
I t er abl e<Per son> teamVenbers = personRepository.findWthinDi stance("personLayer", 16, 56, 70);

Example 20.20. M ethods of the Spatial Repository

public interface Spatial Repository<T> {
Cl osabl el t er abl e<T> fi ndW t hi nBoundi ngBox(Stri ng i ndexNane, doubl e | owerlLeftlLat,
doubl e | ower Left Lon,
doubl e upper Ri ght Lat,
doubl e upper Ri ght Lon);

Cl osabl el terabl e<T> fi ndWthi nDi stance(final String indexName, final double |at, double |on, doutk

Cl osabl el t erabl e<T> fi ndWt hi nWel | KnownText (final String indexName, String well KnownText);

20.11. Introduced methods

The node and relationship aspectsintroduce (via AspectJ ITD - inter type declaration) several methods
to the entities.

Persisting the node entity after creation and after changes outside of a transaction. Participatesin an
open transaction, or creates its own implicit transaction otherwise.
nodeEntity. persist()

Accessing node and relationship IDs
nodeEntity. get Nodel d() andrel ati onshi pEntity. getRel ati onshi pl d()

Accessing the node or relationship backing the entity
entity. getPersistentState()

equals() and hashCode() are delegated to the underlying state
entity.equal s() andentity. hashCode()

Creating relationships to atarget node entity, and returning the relationship entity instance
nodeEntity.relateTo(targetEntity, relationshipC ass, relationshipType)

Retrieving a single relationship entity
nodeEntity. get Rel ati onshi pTo(targetEntity, relationshi pl ass, relationshipType)

Creating relationships to atarget node entity and returning the relationship
nodeEntity.relateTo(targetEntity, relationshipType)

Retrieving a single relationship
nodeEntity. get Rel ati onshi pTo(targetEnttiy, relationshipType)

Removing a single relationship
nodeEntity. renpveRel ati onshi pTo(targetEntity, relationshipType)

Remove the node entity, its relationships, and all index entries for it

nodeEntity. remove() andrel ati onshi pEntity.renmove()

Spring Data Graph (2.0.0.RC1) 64

Programming model

Project entity to adifferent target type, using the same backing state
entity.projectTo(targetC ass)

Traverse, starting from the current node. Returnsend nodes of traversal converted to the provided type.
nodeEntity.findAl I ByTraversal (target Type, traversal Description)

Traverse, starting from the current node. Returns Ent i t yPat hs of the traversal result bound to the
provided start and end-node-entity types
Iterabl e<EntityPat h> findAl | Pat hsByTraversal (traversal Descri pti on)

Executes the given query, providing the {sel f} variable with the node-id and returning the results
converted to the target type.
<T> Iterabl e<T> NodeBacked.findAl |l ByQuery(final String query, final d ass<T>
target Type)

Executesthe given query, providing { sel f} variable with the node-id and returning the original resuilt,
but with nodes and relationships replaced by their appropriate entities.
It erabl e<Map<String, Obj ect >> NodeBacked. fi ndAl | ByQuery(final String query)

Executes the given query, providing {sel f} variable with the node-id and returns a single result

converted to the target type.
<T> T NodeBacked. fi ndByQuery(final String query, final C ass<T> targetType)

20.12. Transactions

Neo4j is a transactional database, only allowing modifications to be performed within transaction
boundaries. Reading data does however not require transactions.

Spring Data Neodj integrates with transaction managers configured using Spring. The simplest
scenario of just running the graph database uses a SpringTransactionManager provided by the Neo4j
kernel to be used with Spring's JtaTransactionManager. That is, configuring Spring to use Neo4j's
transaction manager.

Note

.

‘8

The explicit XML configuration given below is encoded in the Neo4j Confi gurati on
configuration bean that uses Spring's @onf i gur at i on feature. This greatly simplifiesthe
configuration of Spring Data Neo4j.

Example 20.21. Simple transaction manager configuration

<bean i d="transacti onManager" class="org.springframework.transaction.jta.JtaTransacti onManager">
<property name="transacti onManager" >
<bean cl ass="org. neo4j . kernel .inpl.transaction. Spri ngTransacti onManager" >
<constructor-arg ref="graphDat abaseServi ce"/>
</ bean>
</ property>
<property nanme="user Transacti on">
<bean cl ass="org. neo4j.kernel .inpl.transaction. User Transacti onl npl ">
<constructor-arg ref="graphDat abaseServi ce"/>
</ bean>
</ property>
</ bean>

<t x:annot ati on-driven node="aspectj" transacti on-nmanager="transacti onManager"/>

Spring Data Graph (2.0.0.RC1) 65

Programming model

For scenarios with multiple transactional resources there are two options. The first option is to have
Neodj participate in the externally configured transaction manager by using the Spring support in
Neo4j by enabling the configuration parameter for your graph database. Neo4j will then use Spring's
transaction manager instead of its own.

Example 20.22. Neo4j Spring integration

<! [CDATA[<cont ext : annot ati on-config />
<cont ext: spri ng- confi gured/ >

<bean i d="transacti onManager" class="org.springframework.transaction.jta.JtaTransacti onManager">
<property name="transacti onManager" >
<bean id="jotn' class="org.springfranmework. data. neo4j.transaction. Jot nFact oryBean"/ >
</ property>

</ bean>

<bean cl ass="org. neo4j . ker nel . EnbeddedG aphDat abase" destroy- net hod="shut down" >
<constructor-arg value="target/test-db"/>
<const ruct or - ar g>

<r‘rap>
<entry key="tx_manager_inpl" val ue="spring-jta"/>
</ map>
</ constructor-arg>

</ bean>

<t x:annotation-driven node="aspectj" transaction-nmanager="transacti onManager"/>

One can also configure a stock XA transaction manager (e.g. Atomikos, JOTM, App-Server-TM) to
be used with Neo4j and the other resources. For a bit less secure but fast 1 phase commit best effort,
USe Chai nedTr ansact i onManager , which comes bundled with Spring Data Neo4j. It takes a list of
transaction managers as constructor params and will handle them in order for transaction start and
commit (or rollback) in the reverse order.

Example 20.23. ChainedTransactionM anager example

<! [CDATA[<bean i d="j paTransacti onManager"
cl ass="org. spri ngfranmewor k. orm j pa. JpaTransact i onManager " >
<property name="entityManager Factory" ref="entityManagerFactory"/>
</ bean>
<bean id="jtaTransacti onManager"
cl ass="org. springframework. transaction.jta.JtaTransacti onManager" >
<property nanme="transacti onManager" >
<bean cl ass="org. neo4j . kernel .inpl.transaction. Spri ngTransacti onManager" >
<constructor-arg ref="graphDat abaseServi ce" />
</ bean>
</ property>
<property name="user Transaction">
<bean class="org.neodj.kernel.inpl.transaction. UserTransactionl npl">
<constructor-arg ref="graphDat abaseServi ce" />
</ bean>
</ property>
</ bean>
<bean i d="transacti onManager"
cl ass="org. spri ngfranmewor k. dat a. neo4j . transacti on. Chai nedTr ansact i onManager " >
<const ruct or - ar g>
<list>
<ref bean="jpaTransacti onManager"/ >
<ref bean="jtaTransacti onManager"/>
</list>
</ constructor-arg>
</ bean>

<t x:annotati on-driven node="aspectj" transacti on-nmanager="transacti onManager"/ >

Spring Data Graph (2.0.0.RC1) 66

Programming model

20.13. Detached node entities

Node entities can be in two different persistence state: attached or detached. By default, newly created
node entities are in the detached state. When persi st () is caled on the entity, it becomes attached
to the graph, and its properties and relationships are stores in the database. If persi st () isnhot called

within atransaction, it automatically creates an implicit transaction for the operation.

Changing an attached entity inside a transaction will immediately write through the changes to the
datastore. Whenever an entity is changed outside of atransaction it becomes detached. The changes

are stored in the entity itself until the next call to persi st ().

All entities returned by library functions areinitially in an attached state. Just as with any other entity,
changing them outside of a transaction detaches them, and they must be reattached with per si st ()

for the data to be saved.

Example 20.24. Persisting entities

@NodeEntity
cl ass Person {
String nane;
Person(String nanme) { this.name = nane; }

}

/1 Store Mchael in the database.
Person p = new Person("M chael ") . persist();

20.13.1. Relating detached entities

As mentioned above, an entity simply created with the new keyword starts out detached. It al'so has
no state assigned to it. If you create a new entity with new and then throw it away, the database won't

be touched at all.
Now consider this scenario:
Example 20.25. Relationships outside of transactions

@NodeEntity
class Myvie {
private Actor topActor;
public void set TopActor(Actor actor) {
topActor = actor;
}
}

@\odeEntity
class Actor {

}

Movi e novi e
Act or actor

new Movi e();
new Actor();

novi e. set TopAct or (actor);

Neither the actor nor the movie has been assigned a node in the graph. If we were to call
novi e. per si st (), then Spring Data Neo4j would first create a node for the movie. It would then note
that thereis arelationship to an actor, so it would call actor.persist() in a cascading fashion. Once the
actor has been persisted, it will create the relationship from the movie to the actor. All of thiswill be

done atomically in one transaction.

Spring Data Graph (2.0.0.RC1)

Programming model

20.14.

Important to note hereisthat if act or . persi st () iscalledinstead, then only the actor will be persisted.
The reason for thisis that the actor entity knows nothing about the movie entity. It isthe movie entity
that has the reference to the actor. Also note that this behavior is not dependent on any configured
relationship direction on the annotations. It is amatter of Javareferences and is not related to the data
model in the database.

The persist operation (merge) storesall properties of the entity to the graph database and puts the entity
in attached mode. Thereis no need to update the reference to the Java POJO as the underlying backing
node handles the read-through transparently. If multiple object instances that point to the same node
are persisted, the ordering is not important as long as they contain distinct changes. For concurrent
changes a concurrent modification exception is thrown (subject to be parametrizable in the future).

If the relationships form a cycle, then the entities will first all be assigned a node in the database, and
then the relationshipswill be created. The cascading of per si st () ishowever only cascaded to related
entity fields that have been modified.

Inthefollowing example, the actor and the movie are both attached entites, having both been previously
persisted to the graph:

Example 20.26. Cascade for modified fields

actor.setName("Billy Bob");
novi e. persi st();

In this case, even though the movie has a reference to the actor, the name change on the actor will not
be persisted by the call to novi e. persi st () . Thereasonfor thisis, as mentioned above, that cascading
will only be done for fields that have been modified. Since the novi e. t opAct or field has not been
modified, it will not cascade the persist operation to the actor.

Entity type representation

There are several ways to represent the Java type hierarchy of the data modd in the graph. In
general, for all node and relationship entities, type information is needed to perform certain repository
operations. Some of this type information is saved in the graph database.

Implementations of TypeRepr esent ati onStrat egy take care of persisting this information on entity
instance creation. They also provide the repository methods that use this type information to perform
their operations, like findAll and count.

There are three available implementations for node entities to choose from.
* | ndexi ngNodeTypeRepr esent ati onStr at egy

Stores entity types in the integrated index. Each entity node gets indexed with its type and any
supertypesthat are also@odeEnt i t y-annotated. The special index used for thisiscalled__types_ .
Additionally, in order to get the type of an entity node, each node has a property __type__ with
the type of that entity.

* SubRef erenceNodeTypeRepr esent ati onStr at egy

Stores entity types in a tree in the graph representing the type hierarchy. Each entity has a
INSTANCE_OF relationship to a type node representing that entity's type. The type may or may
not have a SUBCLASS OF relationship to another type node.

Spring Data Graph (2.0.0.RC1) 68

Programming model

20.15.

* NoopNodeTypeRepresent ati onStrat egy

Does not store any type information, and does hence not support finding by type, counting by type,
or retrieving the type of any entity.

There are two implementations for relationship entities available, same behavior as the corresponding
ones above:

* | ndexi ngRel ati onshi pTypeRepresentati onStrat egy
* NoopRel ati onshi pTypeRepresent ati onStr at egy

Spring Data Neo4j will by default autodetect which are the most suitable strategies for node and
relationship entities. For new data stores, it will always opt for the indexing strategies. |f a data store
was created with the oldersubRef er enceNodeTypeRepr esent at i onSt r at egy, then it will continue to
use that strategy for node entities. It will however in that case use the no-op strategy for relationship
entities, which means that the old data stores have no support for searching for relationship entities.
The indexing strategies are recommended for all new users.

Bean validation (JSR-303)

Spring Data Neo4j supports property-based validation support. When a property is changed, it is
checked against the annotated constraints, e.g. @ n, @ax, @i ze, etc. Validation errors throw a
Val i dati onExcept i on. The validation support that comes with Spring is used for evaluating the
constraints. To use this feature, avalidator has to be registered with the G- aphDat abaseCont ext .

Example 20.27. Bean validation

@NodeEntity

cl ass Person {
@i ze(mn = 3, max = 20)
String nane;

@4 n(0) @vkx(100)
int age;

Spring Data Graph (2.0.0.RC1) 69

Chapter 21. Environment setup

Spring Data Neo4j dramatically simplifies development, but some setup is naturally required. For
building the application, Maven needsto be configured to include the Spring Data Neo4j dependencies,
and configure the AspectJ weaving. After the build setup is complete, the Spring application needs to
be configured to make use of Spring Data Neo4j.

Spring Data Neo4j projects can be built using maven, we also added means to build them with gradle
and ant/ivy.

21.1. Gradle configuration

The necessary build plugin to build Spring Data Neo4j projects with gradle is available as part of the
SDG distribution or on github which makes the usage as easy as:

Example 21.1. Gradle Build Configuration

sourceConpatibility
target Conpatibility

1.6
1.6

springVersion = "3.0.6. RELEASE"
spri ngDat aNeo4j Versi on = "2.0.0. RC1"
aspectj Version = "1.6.12"

apply from'https://github. conl SpringSource/spring-data-neo4j/raw master/buil d/
gradl e/ spri ngdat aneo4j . gradl e

configurations {
runtine
t est Conpi |l e
}
repositories {
mavenCentral ()
mavenLocal ()
mavenRepo urls: "http://nmaven. springfranmework. org/rel ease”

}

The actual springdataneodj.gradleis very simple just decorating the javac tasks with theigjc ant task.

21.2. Ant/lvy configuration

The supplied sample ant build configuration is mainly about resolving the dependencies for Spring
Data Neodj and AspectJ using vy and integrating the igjc ant task in the build.

Spring Data Graph (2.0.0.RC1) 70

https://github.com/SpringSource/spring-data-neo4j/raw/master/build/ivy

Environment setup

Example 21.2. Ant/lvy Build Configuration

<t askdef resource="org/aspectj/tools/ant/taskdefs/aspectjTaskdefs.properties" classpath="${lib.dir}/e

<target nane="conpile" description="Conpile production classes" depends="lib.retrieve">
<nkdir dir="${main.target}" />

<iajc sourceroots="${main.src}" destDir="${nmin.target}" classpathref="path.libs" source='1.6">
<aspect pat h>
<pat hel enent | ocation="${lib.dir}/spring-aspects.jar"/>
</ aspect pat h>
<aspect pat h>
<pat hel enent | ocation="${lib.dir}/spring-data-neo4j.jar"/>
</ aspect pat h>
</iajc>
</target>

21.3. Maven configuration

Spring Data Neodj projects are easiest to build with Apache Maven. The main dependencies are:

Spring Data Neo4j itself, Spring Data Commons, parts of the Spring Framework, and the Neo4j graph
database.

21.3.1. Repositories

The milestone releases of Spring Data Neo4j are available from the dedicated milestone repository.
Neo4j releases and milestones are available from Maven Central.

Example 21.3. Spring milestonerepository

<reposi tory>
<i d>spring- maven-m | est one</i d>
<nane>Spri ngframewor k Maven Repository</ nanme>

<ur| >http:// maven. spri ngf ramewor k. or g/ m | est one</ ur| >
</ repository>

21.3.2. Dependencies

The dependency on spri ng-dat a- neo4j Wwill transitively pull in the necessary parts of Spring
Framework (core, context, aop, aspects, tx), Aspectj, Neo4j, and Spring DataCommons. If you already
usethese (or different versions of these) in your project, then include those dependencies on your own.

Example 21.4. Maven dependencies

<dependency>
<groupl d>or g. spri ngf ranewor k. dat a</ gr oupl d>
<artifactl|d>spring-data-neodj</artifactld>
<ver si on>2. 0. 0. RC1</ ver si on>

</ dependency>

<dependency>
<groupl d>or g. aspectj </ groupl d>
<artifactld>aspectjrt</artifactld>
<ver si on>1. 6. 12</ ver si on>

</ dependency>

Spring Data Graph (2.0.0.RC1) 71

Environment setup

21.3.3. AspectJ build configuration

Since Spring DataNeo4j uses AspectJ for build-time aspect weaving of entities, it is necessary to hook
in the AspectJ Maven plugin to the build process. The plugin also hasits own dependencies. You also
need to explicitly specify the aspect libraries (spring-aspects and spring-data-neo4;).

Example 21.5. AspectJ configuration

<pl ugi n>
<gr oup! d>or g. codehaus. noj o</ gr oupl! d>
<artifact|d>aspectj-maven-plugin</artifact|d>
<ver si on>1. 2</ ver si on>
<dependenci es>
<l-- NB: You nust

use Maven 2.0.9 or above or these are ignored (see MNG 2972) -->
<dependency>

<gr oupl d>or g. aspectj </ groupl d>
<artifactld>aspectjrt</artifactld>
<versi on>1. 6. 12</ ver si on>

</ dependency>

<dependency>

<groupl d>or g. aspectj </ groupl d>
<artifactld>aspectjtool s</artifactld>
<versi on>1. 6. 12</ ver si on>
</ dependency>
</ dependenci es>
<executi ons>
<executi on>
<goal s>

<goal >conpi | e</ goal >

<goal >t est - conpi | e</ goal >
</ goal s>

</ executi on>
</ executi ons>
<confi guration>
<out xm >t rue</ out xm >
<aspect Li brari es>
<aspect Li brary>

<gr oupl d>or g. spri ngf ramewor k</ gr oup| d>

<artifactld>spring-aspects</artifactld>
</ aspect Li brary>

<aspect Li brary>

<groupl d>or g. spri ngf ranewor k. dat a</ gr oupl d>

<artifactld>spring-datastore-neodj</artifactld>
</ aspect Li brary>

</ aspect Li brari es>
<sour ce>1. 6</ sour ce>
<t ar get >1. 6</ t ar get >
</ confi gurati on>
</ pl ugi n>

21.4. Spring configuration

Users of Spring Data Neodj have two ways of very concisely configuring it. Either they can use a
Spring Data Neodj XML configuration namespace, or they can use a Java-based bean configuration.

21.4.1. XML namespace

The XML namespace can be used to configure Spring Data Neodj. The config eement
provides an XML-based configuration of Spring Data Neo4j in one line. It has three attributes.
gr aphDat abaseSer vi ce pointsout the Neo4j instanceto use. For convenience, st or eDi r ect or y canbe

Spring Data Graph (2.0.0.RC1) 72

Environment setup

setinstead of gr aphDat abaseSer vi ce to point to adirectory whereanew EnbeddedG aphDat abase Will
be created. For cross-store configuration, theent i t yManager Fact or y attribute needsto be configured.

Example 21.6. XML configuration with store directory

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<beans xm ns="http://ww. springframework. or g/ schena/ beans"
xm ns: cont ext ="http://wwm. spri ngframewor k. or g/ schenma/ cont ext "
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: neodj ="htt p://ww. spri ngfranewor k. or g/ schema/ dat a/ neo4j "
xsi : schemalLocat i on="
http://ww. spri ngfranework. or g/ schena/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans- 3. 0. xsd
htt p: // ww. spri ngf ranewor k. or g/ schena/ cont ext
http: // ww. spri ngfranework. or g/ schena/ cont ext / spri ng- cont ext - 3. 0. xsd
http://ww. springframework. or g/ schena/ dat a/ neo4;
htt p: // ww. spri ngf ranewor k. or g/ schena/ dat a/ neo4j / spri ng- neo4j - 2. 0. xsd" >

<cont ext : annot ati on- confi g/ >
<neodj:config storeDirectory="target/config-test"/>

</ beans>

Example 21.7. XML configuration with bean

<cont ext : annot ati on- confi g/ >

<bean i d="gr aphDat abaseServi ce" cl ass="org. neo4j . kernel . EnbeddedG aphDat abase"
dest r oy- met hod="shut down" >
<constructor-arg index="0" value="target/config-test" />
</ bean>

<neo4j : confi g graphDat abaseServi ce="graphDat abaseServi ce"/ >

Example 21.8. XML configuration with cross-store

<cont ext : annot ati on- confi g/ >

<bean cl ass="org. springframework. orm j pa. Local Cont ai ner Enti t yManager Fact or yBean"
i d="entit yManager Fact ory" >
<property name="dat aSour ce" ref="dataSource"/>
<property name="persistenceXn Location" val ue="cl asspat h: META- | NF/ per si st ence. xm "/ >
</ bean>

<neo4j:config storeDirectory="target/config-test"
entityManager Fact ory="ent it yManager Fact ory"/>

21.4.2. Java-based bean configuration

Y ou can also configure Spring Data Neo4j using Java-based bean metadata.

Note
e

For those not familiar with Java-based bean metadata in Spring, we recommend that you
read up on it first. The Spring documentation has a high-level introduction as well as
detailed documentation on it.

In order to configure Spring DataNeo4j with Java-based bean metadata, the classNeo4j Conf i gurati on
isregistered with the context. Thisiseither doneexplicitly inthe context configuration, or viaclasspath
scanning for classes that have the @Configuration annotation. The only thing that must be provided

Spring Data Graph (2.0.0.RC1) 73

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/new-in-3.html#new-java-configuration
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-java-instantiating-container

Environment setup

is the G- aphDat abaseServi ce. The example below shows how to register the @onfi guration
Neo4j Confi gurati on class, as well as Spring's Confi gur ati ond assPost Processor that transforms
the @onfi gur at i on class to bean definitions.

Example 21.9. Java-based bean configuration

<! [CDATA[<beans ...>

<t x:annotation-driven node="aspectj" transaction-nanager="transacti onManager"/>
<bean cl ass="org. springfranmewor k. dat a. neo4j . confi g. Neo4j Confi gurati on"/>

<bean cl ass="org. spri ngfranmewor k. cont ext. annot ati on. Confi gur ati onCl assPost Processor"/ >
<bean i d="gr aphDat abaseServi ce" cl ass="org. neodj . kernel . EnbeddedG aphDat abase"
dest r oy- met hod="shut down" scope="si ngl et on">
<constructor-arg index="0" value="target/config-test"/>

</ bean>

</ beans>

Spring Data Graph (2.0.0.RC1) 74

Chapter 22. Cross-store persistence

The Spring Data Neo4j project support cross-store persistence, which alowsfor parts of the datato be
stored in atraditional JPA data store (RDBMS), and other parts in a graph store. This means that an
entity can be partially stored in e.g. MySQL, and partially stored in Neo4j.

This allows existing JPA-based applications to embrace NOSQL data stores for evolving certain parts
of their data model. Possible use cases include adding social networking or geospatial information to
existing applications.

22.1. Partial entities

Partial graph persistence is achieved by restricting the Spring Data Neo4j aspects to manage only
explicitly annotated parts of the entity. Those fields will be made @ ansi ent by the aspect so that
JPA ignores them.

A backing node in the graph store is only created when the entity has been assigned a JPA ID. Only
then will the association between the two stores be established. Until the entity has been persisted, its
state is just kept inside the POJO (in detached state), and then flushed to the backing graph database
ONnpersist().

The association between the two entities is maintained via a FOREIGN _ID field in the node, that
contains the JPA ID. Currently only single-value I1Ds are supported. The entity class can be resolved
viathe TypeRepr esent at i onSt r at egy that managesthe Javatype hierarchy within the graph database.
Given the ID and class, you can then retrieve the appropriate JPA entity for a given node.

The other direction is handled by indexing the Node with the FOREIGN_ID index which contains a
concatenation of the fully qualified class name of the JPA entity and the ID. The matching node can
then be found using the indexing facilities, and the two entities can be reassociated.

Using these mechanisms and the Spring Data Neo4j aspects, a single POJO can contain some fields
handled by JPA and others handles by Spring Data Neo4j. This aso includes relationship fields
persisted in the graph database.

22.2. Cross-store annotations

Cross-store persistence only requiresthe use of one additional annotation: @ aphPr opert y. Seebelow
for details and an example.

22.2.1. @NodeEntity(partial = "true")

When annotating an entity with partial = true, thismarksit as a cross-store entity. Spring Data
Neo4j will thus only manage fields explicitly annotated with @ aphProperty.

22.2.2. @GraphProperty

Fields of primitive or convertible types do not normally have to be annotated in order to be persisted
by Spring Data Neo4j. In cross-store mode, Spring DataNeo4j only persistsfields explicitly annotated
with @ aphProper t y. JPA will ignore these fields.

Spring Data Graph (2.0.0.RC1) 75

Cross-store persistence

22.2.3. Example

The following exampleis taken from the Spring Data Neo4j examples myrestaurants-social project:

Example 22.1. Cross-store node entity

@ntity

@abl e(nanme = "user _account")

@NodeEntity(partial = true)

public class UserAccount {
private String user Nang;
private String firstNane;
private String | astNane;

@ aphProperty
String ni cknane;

@rel at edTo
Set <User Account > fri ends;

@Rel at edToVi a(type = "recommends")
I t er abl e<Recommendat i on> r econmendat i ons;

@enpor al (Tenpor al Type. TI MESTAVP)
@pat eTi meFormat (style = "S-")
private Date birthDate;

@manyToMany(cascade = CascadeType. ALL)
private Set<Restaurant> favorites;

@d
@zener at edVal ue(strategy = Generati onType. AUTO)
@Col um(nanme = "id")

private Long id;

public void knows(UserAccount friend) {
rel ateTo(friend, "friends");

}

publ i c Recommendati on rate(Restaurant restaurant, int stars, String coment) {

Recommendat i on recommendati on = rel ateTo(rest aurant,
recomendation.rate(stars, conment);
return recommendati on;

}

public Iterabl e<Reconmendati on> get Recommendati ons() {
return recomendations;

}

22.3. Configuring cross-store persistence

Recommendat i on. cl ass,

"recommends");

Configuring cross-store persistence is done similarly to the default Spring Data Neo4j configuration.
All you need to do is to specify an ent i t yManager Fact ory in the XML namespace confi g element,

and Spring Data Neo4j will configure itself for cross-store use.

Spring Data Graph (2.0.0.RC1)

76

http://spring.neo4j.org/examples

Cross-store persistence

Example 22.2. Cross-stor e Spring configuration

<beans xm ns="http://ww. springfranmewor k. or g/ schena/ beans"
xm ns: cont ext ="http://ww. springfranework. or g/ schema/ cont ext "
xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schenma- i nst ance"
xm ns: dat agr aph="ht t p: / / www. spri ngf ramewor k. or g/ schena/ dat a/ neo4j "
xsi : schenaLocat i on="
http://ww. spri ngframework. or g/ schenma/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans- 3. 0. xsd
http://ww. springframework. or g/ schenma/ cont ext
http://ww. springframework. or g/ schema/ cont ext/ spri ng- cont ext - 3. 0. xsd
http: //ww. spri ngfranework. or g/ schena/ dat a/ neo4;j
http://ww. springframework. or g/ scherma/ dat a/ neo4j / spri ng- neo4j - 2. 0. xsd
">

<cont ext : annot ati on- confi g/ >

<neo4j:config storeDirectory="target/config-test"
entityManager Fact ory="entityManager Factory"/>

<bean cl ass="org. spri ngfranmework. orm j pa. Local Cont ai ner Enti t yManager Fact or yBean"
i d="entityManager Fact ory" >
<property nane="dat aSour ce" ref="dataSource"/>

<property nanme="persistenceXnl Location" val ue="cl asspat h: META- | NF/ per si st ence. xm "

</ bean>
</ beans>

Spring Data Graph (2.0.0.RC1)

77

Chapter 23. Sample code

23.1. Introduction

Spring Data Neo4j comes with a number of sample applications. The source code of the samples can
be found on Github. The different sample projects are introduced below.

23.2. Hello Worlds sample application

The Hello Worlds sample application is a simple console application. It creates some worlds (node
entities) and rocket routes (relationships) between worlds, al in a galaxy (the graph), and then prints
them.

The unit tests demonstrate some other features of Spring Data Neo4j as well. The sample comes with
aminimal configuration for Maven and Spring to get up and running quickly.

Executing the application creates the following graph in the graph database:

w class: java.lang.Object

o moons: 1 count: 13
name:Earth M
i SUBCL Fss_-::: -
REACHABLE/ BY_ROCKET w class: org.springframework.data.neo4j.examples.hellograph.world
count: 13
coons2 | INSTANEETOF 4
® name: Mars !
moons: 0 moons: 62
® name: Mercury ® name: Hel
=== E_OF NSTANCE_OF
: moons: 63
® name: Venus INSTONCE T CE_'HPTM CE_OF ® name: Asgard
Y
o moons: 63 o moons: 2

name: Jupiter name: Muspellheim

@ moons: 62

e moons: 0
name: Saturn

name: AlFheimr

moons: 27
name: Uranus 7 Moons: 13
name: Neptune

#p MOONS: 1
name: Midgard

23.3. IMDB sample application

ThelMDB sampleisaweb application that imports datasetsfrom the I nternet Movie Database (IMDB)
into the graph database. It allows the listing of movies with their actors, and of actors and their roles
in different movies. It also uses graph traversal operationsto cal culate the Bacon number of any given
actor. This sample application shows the usage of Spring Data Neo4j in amore complex setting, using
several annotated entities and relationships as well as indexes and graph traversals.

See the readme file for instructions on how to compile and run the application.

An excerpt of the data stored in the graph database after executing the application:

Spring Data Graph (2.0.0.RC1) 78

http://spring.neo4j.org/exampless
http://en.wikipedia.org/wiki/Bacon_number

Sample code

&b Lawrence, Harry (1) | Ball, J I
& d all, Jeremy (1)

awitt Eleanor dJl:lhnsnn Fll:lna ﬂTjen R
d McClory, Bellnda AC
-y d Aden Marc u &b Aston, David (1)
d Butcher, Michael (1} =TS ACIE B N _:__.
& Harbach, Nigel ———_—‘E_—"_i: _‘___—,‘____ ﬂ Dodd, Steve

- g'%’g Matrix, The (1999) <" 0" & pender, Jansys

&a Brown, Tamara /
4 Nicodemou, Ada ﬂ Chong, MBVCUS INSTANCE_OF

& Goddard, Paul (1)

d Gordon, Dennl -
d Arahanga Julian @ org.neodj.examples.imdb.domain.Movie

23.4. MyRestaurants sample application

Simple, JPA-based web application for managing users and restaurants, with the ability to add
restaurants asfavoritesto auser. Itisbasically the foundation for the MyRestaurants-Social application
(seeSection 23.5, “MyRestaurant-Social sample application™), and does therefore not use Spring Data
Neo4.

@ MyRestauvrants

a SpringOne Demo

e T e e
Log out Subway 53073 Plymouth i) &
Boston Mar 20877 Gaithersbu MD i) &
List all Restaurants Subway Sub 88008 Santa Tere NM E] ﬁ
Manage favorite Restaurants Arby's Roa 97603 Klamath Fa OR @ ﬁ
Bellefleur 82008 Carlsbad CA @ @
Huddle Hou 30701 Calhoun GA @ @
John Brown 46235 Indianapol IN i) il
Ling's Exp 53217 Milwaukee Wi @ ﬁ
Chubys's 87044 Odell OR @ ﬁ
Bojangles 29203 Columbia 3C @ ﬁ

Listresults perpage: 510 1520 25 |Page 1015 |

Home | Logout | Language: =j= | Theme: standard | alt Sponsored by SpringSource #

23.5. MyRestaurant-Social sample application

Thisapplication extendsthe MyRestaurants sampl e application, adding social networking functionality
to it with cross-store persistence. The web application alows for users to add friends and rate
restaurants. A graph traversal provides recommendations based on your friends (and their friends)
rating of restaurants.

Here's an excerpt of the data stored in the graph database after executing the application:

Spring Data Graph (2.0.0.RC1) 79

Sample code

MYRQS‘MUI’&H{S + NOW WITH SOCIAL NETWORKING

Sprﬁlg

a SpringOne Demo

USER ACCOUNT w List all Top Rated Restaurants

Log out
Name " Recommendations _____|Avg.Rating |
RESTAURANT et -
Subway 2 35 i)
List all Restaurants
Manage favorite Restaurants

RECOMMENDATION Home | Logout | Language: EjZ | Theme: standard | alt Sponsared by SpringSource §
List my Recommendations
Create a new Friend
List my Friends
List Top Rated Restaurants
/51 Reference Node — —SuUBREFjavafarmgOtEt > Bavaiang Object

SUBREF_com.springone.myrastaurants.domain.Restaurant s

SUBREF_com SUBCLASS_OF

T .
|ngone.m\.rre‘sta.u@nts_domam.UserAccount

.

INSTANCE_OF

Spring Data Graph (2.0.0.RC1)

80

Chapter 24. Performance considerations

Although adding layers of abstraction is a common pattern in software development, each of these
layers generally adds overhead and performance penalties. This chapter discusses the performance
implications of using Spring Data Neo4j instead of the Neo4j API directly.

24.1. When is Spring Data Neo4j right

The focus of Spring Data Neo4j is to add a convenience layer on top of the Neo4j API. This enables
developers to get up and running with a graph database very quickly, having their domain objects
mapped to the graph with very little work. Building on this foundation, one can later explore other,
more efficient ways to explore and process the graph - if the performance requirements demand it.

Like any other object mapping framework, the domain entities that are created, read, or persisted
represent only a small fraction of the data stored in the database. This is the set needed for a certain
use-case to be displayed, edited or processed in a low throughput fashion. The main advantages of
using an object mapper in this case are the ease of use of real domain objectsin your businesslogic and
also with existing frameworks and libraries that expect Java POJOs as input or create them as results.

Spring Data Neo4j, however, was not designed with a major focus on performance. It does add some
overhead to pure graph operations. Something to keep in mind is that any access of properties and
relationships will in general read through down to the database. To avoid multiple reads, it is sensible
to store the result in alocal variable in suitable scope (e.g. method, class or jsp).

Most of the overhead comes from the use of the Java Reflection API, which is used to provide
information about annotations, fields and constructors. Some of the information is already cached by
the VM and the library, so that only the first access gets a performance penalty.

Spring Data Graph (2.0.0.RC1) 81

Chapter 25. AspectJ details

The object graph mapper of Spring Data Neodj relies heavily on Aspect]. Aspect] is a Java
implementation of the aspect-oriented programming paradigm that allows easy extraction and
controlled application of so-called cross-cutting concerns. Cross-cutting concerns are typically
repetitive tasks in a system (e.g. logging, security, auditing, caching, transaction scoping) that
are difficult to extract using the normal OO paradigms. Many OO concepts, such as subclassing,
polymorphism, overriding and delegation are still cumbersome to use with many of those concerns
applied in the code base. Also, the flexibility becomes limited, potentially adding quite a number of
configuration options or parameters.

The AspectJ pointcut language can be intimidating, but a devel oper using Spring Data Neo4j will not
have to deal with that. Users don't have care about to hooking into aframework mechanism, or having
to extend a framework superclass.

AspectJ uses a declarative approach, defining concrete advice, which isjust pieces of code that contain
the implementation of the concern. AspectJ advice can for instance be applied before, after, or instead
of amethod or constructor call. It can aso be applied on variable and field access. This is declared
using AspectJs expressive pointcut language, able to express any place within a code structure or
flow. AspectJ is also able to introduce new methods, fields, annotations, interfaces, and superclasses
to existing classes.

Spring Data Neodj uses a mix of these mechanisms internaly. First, when encountering the
@bodeEntity Or @Rel ationshi pEntity annotations it introduces a new interface NodeBacked oOf
Rel ati onshi pBacked to the annotated class. Secondly, it introduces fields and methods to the
annotated class. See Section 20.11, “Introduced methods’ for more information on the methods
introduced.

Spring Data Neo4j also leverages AspectJ to intercept accessto fields, del egating the callsto the graph
database instead. Under the hood, properties and relationships will be created.

So how is an aspect applied to a concrete class? At compile time, the Aspectd Java compiler (gc)
takes source files and aspect definitions, and compiles the source files while adding all the necessary
interception code for the aspects to hook in where they're declared to. Thisis known as compile-time
weaving. At runtime only asmall AspectJruntimeis needed, asthe byte code of the classes has already
been rewritten to delegate the appropriate calls via the declared advice in the aspects.

Note

» . _ - |
A caveat of using compile-time weaving isthat all source files that should be part of the
weaving process must be compiled with the Aspectd compiler. Fortunately, thisisall taken
care of seamlessly by the Aspectd Maven plugin.

AspectJ al so supports other types of weaving, e.g. load-time weaving and runtime weaving. These are
currently not supported by Spring Data Neo4;.

Spring Data Graph (2.0.0.RC1) 82

https://secure.wikimedia.org/wikipedia/en/wiki/Aspect-oriented_programming

Chapter 26. Neo4j Server

Neo4j is not only available in embedded mode. It can also be installed and run as a stand-alone
server accessible viaa REST API. Developers can integrate Spring Data Neo4j into the Neo4j server
infrastructure in two ways. in an unmanaged server extension, or viathe REST API.

26.1. Server Extension

When should you write a server extension? The default REST API is essentially a REST'ified
representation of the Neodj core API. It is nice for getting started, and for ssmpler scenarios. For
more involved solutionsthat require high-volume access or more complex operations, writing aserver
extension that is able to process external parameters, do all the computationslocally in the plugin, and
then return just the relevant information to the calling client is preferable.

The Neo4j Server has two built-in extension mechanisms. It is possible to extend existing URI
endpoints like the graph database, nodes, or relationships, adding new URIs or methods to those. This
is achieved by writing a server plugin. This plugin type has some restrictions though.

For complete freedom in the implementation, an unmanaged extension can be used. Unmanaged
extensions are essentially Jersey resource implementations. The resource constructors or methods can
get the G- aphDat abaseSer vi ce injected to execute the necessary operations and return appropriate

Represent ati ons.

Both kinds of extensions have to be packaged as JAR files and added to the Neodj
Server's plugin directory. Server Plugins are picked up by the server at startup if they
providethe necessary META- | NF. ser vi ces/ or g. neo4j . server. pl ugi ns. Server Pl ugi n filefor Java's
ServiceLoader facility. Unmanaged extensions have to be registered with the Neodj Server
configuration.

Example 26.1. Configuring an unmanaged extension

org.neodj .server.thirdparty_jaxrs_cl asses=com exanpl e. nypackage=/ my- cont ext

Running Spring Data Neo4j on the Neo4j Server iseasy. Y ou need to tell the server where to find the
Spring context configuration file, and which beans from it to expose:

Example 26.2. Server plugin initialization

public class Hellowrldlnitializer extends SpringPluginlnitializer {
public Hellowrldlinitializer() {
super (new String[]{"spring/hell oWrl dServer-Context.xm "},
Pai r. of ("wor| dReposi tory", Wbrl dRepository.cl ass),
Pair. of ("tenpl ate", Neo4j Tenpl ate. cl ass));

}

Now, your resources can require the spring-beans they need, annotated with @ont ext like this:
Example 26.3. Jersey resource

@ath("/path")

@OosT

@°r oduces(Medi aType. APPLI CATI ON_JSON)

public void foo(@ontext Wirl dRepository repo) {

}

Spring Data Graph (2.0.0.RC1) 83

http://docs.neo4j.org/chunked/milestone/server-plugins.html
http://docs.neo4j.org/chunked/milestone/server-unmanaged-extensions.html
http://jersey.java.net/

Neo4j Server

The sSpringPlugininitializer merges the GraphDatabaseService with the Spring
configuration and registers the named beans as Jersey Injectables. It is dill
necessary to list the initidlizer's fully quaified class name in a file named
META- | NF/ servi ces/ or g. neo4j . server. pl ugi ns. Pl ugi nLi fecycl e. The Neodj Server can then
pick up and run the initialization classes before the extensions are |oaded.

26.2. Using Spring Data Neo4j as a REST client

Spring Data Neo4j can use a set of Java REST bindings which come as a drop in replacement
for the GraphDatabaseService API. By simply configuring the gr aphDat abaseServi ce t0 be a
Rest Gr aphDat abase pointing to a Neo4j Server instance.

Note

A _ .
The Neodj Server REST API does not alow for transactions to span across requests,
which means that Spring Data Neo4j is not transactional when running with a
Rest Gr aphDat abase.

Please also keep in mind that performing graph operations via the REST-API is about one order of
magnitude slower than location operations. Try to use the Neodj Cypher query language, server-side
traversals (Rest Tr aver sal) or Gremlin expressions whenever possiblefor retrieving large sets of data.
Future versions of Spring Data Neo4j will use the more performant batching as well as a binary
protocol.

To set up your project to use the REST bindings, add this dependency to your pom.xml:

Example 26.4. REST-Client configuration - pom.xml

<dependency>
<gr oupl d>or g. spri ngf ramewor k. dat a</ gr oupl d>
<artifactl|d>spring-data-neod4j-rest</artifactld>
<ver si on>2. 0. 0. RC1</ ver si on>

</ dependency>

Now, you set up the normal Spring Data Neo4j configuration, but point the database to an URL instead
of alocal directory, like so:

Example 26.5. REST client configuration - application context

<neo4j: confi g graphDat abaseServi ce="graphDat abaseServi ce"/ >

<bean i d="graphDat abaseServi ce" cl ass="org. springfranmework. data. neo4j.rest. SpringRest G aphPat abase" >
<constructor-arg value="http://|ocal host: 7474/ db/ data/"/ >
</ bean>

Y our project is now set up to work against aremote Neo4j Server.

The remote REST implementation works for both the NeodjTemplate as well as the GraphEntities.
For traversals and cypher-graph-queries it is sensible to forward those to the remote and execute
them there instead of walking the graph over the wire. RestGraphDatabase aready supports that
by providing methods that forward to the remote instance. (e.g. quer yEngi neFor (), index() and
creat eTraver sal Descri ption()). Please use those methods when interacting with a remote server
for optimal performance.

Spring Data Graph (2.0.0.RC1) 84

Neo4j Server

Spring Data Graph (2.0.0.RC1)

85

	Good Relationships
	Table of Contents
	Foreword by Rod Johnson
	Foreword by Emil Eifrem
	About this guide book
	1. The Spring Data Neo4j Project
	2. Feedback
	3. Format of the Book
	4. Acknowledgements

	Part I. Tutorial
	Chapter 1. Introducing our project
	Chapter 2. The Spring stack
	2.1. Required setup

	Chapter 3. The domain model
	Chapter 4. Learning Neo4j
	Chapter 5. Spring Data Neo4j
	Chapter 6. Annotating the domain
	Chapter 7. Indexing
	Chapter 8. Repositories
	Chapter 9. Relationships
	9.1. Creating relationships
	9.2. Accessing related entities
	9.3. Accessing the relationship entities

	Chapter 10. Get it running
	10.1. Populating the database
	10.2. Inspecting the datastore
	10.2.1. Neoclipse visualization
	10.2.2. The Neo4j Shell

	Chapter 11. Web views
	11.1. Searching
	11.2. Listing results

	Chapter 12. Adding social
	12.1. Users
	12.2. Ratings for movies

	Chapter 13. Adding Security
	Chapter 14. More UI
	Chapter 15. Importing Data
	Chapter 16. Recommendations
	Chapter 17. Neo4j Server
	17.1. Getting Neo4j-Server
	17.2. Other approaches

	Chapter 18. Conclusion

	Part II. Reference Documentation
	Reference Documentation
	1. Spring Data and Spring Data Neo4j
	2. Reference Documentation Overview

	Chapter 19. Introduction to Neo4j
	19.1. What is a graph database?
	19.2. About Neo4j
	19.3. GraphDatabaseService
	19.4. Creating nodes and relationships
	19.5. Graph traversal
	19.6. Indexing
	19.7. Querying with Cypher
	19.8. Gremlin a Graph Traversal DSL

	Chapter 20. Programming model
	20.1. Object Graph Mapping
	20.2. AspectJ support
	20.2.1. AspectJ IDE support

	20.3. Simple Object Graph Mapping
	20.4. Defining node entities
	20.4.1. @NodeEntity: The basic building block
	20.4.2. @GraphProperty: Optional annotation for property fields
	20.4.3. @Indexed: Making entities searchable by field value
	20.4.4. @Query: fields as query result views
	20.4.5. @GraphTraversal: fields as traversal result views

	20.5. Relating node entities
	20.5.1. @RelatedTo: Connecting node entities
	20.5.2. @RelationshipEntity: Rich relationships
	20.5.3. @RelatedToVia: Accessing relationship entities

	20.6. Indexing
	20.6.1. Exact and numeric index
	20.6.2. Fulltext indexes
	20.6.3. Manual index access
	20.6.4. Indexing in Neo4jTemplate

	20.7. Neo4jTemplate
	20.7.1. Basic operations
	20.7.2. Result
	20.7.3. Indexing
	20.7.4. Graph traversal
	20.7.5. Cypher Queries
	20.7.6. Gremlin Scripts
	20.7.7. Transactions
	20.7.8. Neo4j REST Server

	20.8. CRUD with repositories
	20.8.1. CRUDRepository
	20.8.2. IndexRepository and NamedIndexRepository
	20.8.3. TraversalRepository
	20.8.4. Cypher-Queries
	20.8.4.1. Annotated Queries
	20.8.4.2. Named Queries
	20.8.4.3. Query results
	20.8.4.4. Cypher Examples
	20.8.4.5. Derived Finder Methods

	20.8.5. Creating repositories
	20.8.6. Composing repositories

	20.9. Projecting entities
	20.10. Geospatial Queries
	20.11. Introduced methods
	20.12. Transactions
	20.13. Detached node entities
	20.13.1. Relating detached entities

	20.14. Entity type representation
	20.15. Bean validation (JSR-303)

	Chapter 21. Environment setup
	21.1. Gradle configuration
	21.2. Ant/Ivy configuration
	21.3. Maven configuration
	21.3.1. Repositories
	21.3.2. Dependencies
	21.3.3. AspectJ build configuration

	21.4. Spring configuration
	21.4.1. XML namespace
	21.4.2. Java-based bean configuration

	Chapter 22. Cross-store persistence
	22.1. Partial entities
	22.2. Cross-store annotations
	22.2.1. @NodeEntity(partial = "true")
	22.2.2. @GraphProperty
	22.2.3. Example

	22.3. Configuring cross-store persistence

	Chapter 23. Sample code
	23.1. Introduction
	23.2. Hello Worlds sample application
	23.3. IMDB sample application
	23.4. MyRestaurants sample application
	23.5. MyRestaurant-Social sample application

	Chapter 24. Performance considerations
	24.1. When is Spring Data Neo4j right

	Chapter 25. AspectJ details
	Chapter 26. Neo4j Server
	26.1. Server Extension
	26.2. Using Spring Data Neo4j as a REST client

