
Good Relationships

The Spring Data Neo4j Guide Book

3.0.0.M1

MichaelHunger

Copyright ©

Copies of this document may be made for your own use and for distribution to others, provided
that you do not charge any fee for such copies and further provided that each copy contains this

Copyright Notice, whether distributed in print or electronically. Copyright 2010-2011 Neo Technology

please define productname in your docbook file!

3.0.0.M1 Good Relationships ii

Table of Contents

Foreword by Rod Johnson ... vi
Foreword by Emil Eifrem ... vii
About this guide book .. viii

1. The Spring Data Neo4j Project ... viii
2. Feedback ... viii
3. Format of the Book .. viii
4. Acknowledgements ... viii

I. Tutorial ... 1
1. Introducing our project .. 2
2. The Spring stack .. 3

2.1. Required setup .. 3
3. The domain model ... 5
4. Learning Neo4j .. 7
5. Spring Data Neo4j ... 8
6. Annotating the domain ... 9
7. Indexing ... 10
8. Repositories ... 11
9. Relationships .. 12

9.1. Creating relationships .. 12
9.2. Accessing related entities ... 13
9.3. Accessing the relationship entities .. 14

10. Get it running ... 15
10.1. Populating the database ... 15
10.2. Inspecting the datastore ... 15

Neoclipse visualization .. 15
The Neo4j Shell ... 16

11. Web views ... 18
11.1. Searching .. 19
11.2. Listing results .. 19

12. Adding social ... 22
12.1. Users .. 22
12.2. Ratings for movies ... 23

13. Adding Security .. 24
14. More UI ... 28
15. Importing Data ... 31
16. Recommendations .. 34
17. Neo4j Server .. 35

17.1. Getting Neo4j-Server ... 35
17.2. Other approaches .. 36

18. Conclusion ... 37
II. Reference Documentation ... 38

Reference Documentation ... xxxix
1. Spring Data and Spring Data Neo4j ... xxxix
2. Reference Documentation Overview .. xxxix

19. Introduction to Neo4j .. 42
19.1. What is a graph database? .. 42
19.2. About Neo4j .. 42

please define productname in your docbook file!

3.0.0.M1 Good Relationships iii

19.3. GraphDatabaseService .. 42
19.4. Creating nodes and relationships .. 43
19.5. Graph traversal .. 43
19.6. Indexing .. 43
19.7. Querying the Graph with Cypher .. 44

20. Programming model ... 46
20.1. Object Graph Mapping ... 46
20.2. Advanced Mapping with AspectJ .. 46

AspectJ IDE support ... 47
20.3. Simple Object Graph Mapping .. 47
20.4. Defining node entities .. 49

@NodeEntity: The basic building block .. 49
@GraphId: Neo4j -id field ... 49

Entity Equality .. 49
@GraphProperty: Optional annotation for property fields 51
@Indexed: Making entities searchable by field value .. 52
@Query: fields as query result views .. 52
@GraphTraversal: fields as traversal result views .. 52

20.5. Relating node entities .. 53
@RelatedTo: Connecting node entities .. 53
@RelationshipEntity: Rich relationships ... 55
@RelatedToVia: Accessing relationship entities ... 55
Relationship Type Precedence .. 56
Discriminating Relationships Based On End Node Type 57

20.6. Indexing .. 58
Exact and numeric index .. 58
Fulltext indexes .. 59
Unique indexes .. 59
Manual index access .. 60
Index queries in Neo4jTemplate .. 61
Neo4j Auto Indexes .. 61
Spatial Indexes .. 61

20.7. Neo4jTemplate .. 61
Basic operations ... 61
Core-Operations ... 62
Entity-Persistence ... 62
Result .. 62
Indexing ... 62
Graph traversal .. 63
Cypher Queries .. 63
Transactions .. 63
Neo4j REST Server .. 63
Lifecycle Events ... 63

20.8. CRUD with repositories .. 64
CRUDRepository .. 65
IndexRepository and NamedIndexRepository ... 65
TraversalRepository .. 66
Query and Finder Methods ... 66

Annotated queries .. 66
Named queries ... 66

please define productname in your docbook file!

3.0.0.M1 Good Relationships iv

Query results ... 66
Cypher examples ... 66
Queries derived from finder-method names .. 68
Derived Finder Methods .. 68

Cypher-DSL repository ... 69
Cypher-DSL and QueryDSL .. 70
Creating repositories ... 71
Composing repositories .. 72

20.9. Conversion .. 74
Mapping Query Results .. 74

20.10. Projecting entities ... 75
20.11. Geospatial Queries .. 76
20.12. Active Record Methods for Advanced Mapping Mode 77
20.13. Transactions .. 78
20.14. Detached node entities in advanced mapping mode ... 80

Relating detached entities ... 80
20.15. Entity type representation ... 82
20.16. Bean validation (JSR-303) .. 83

21. Environment setup .. 84
21.1. Dependencies for Spring Data Neo4j Simple Mapping .. 84
21.2. Gradle configuration for Advanced Mapping (AspectJ) .. 84
21.3. Ant/Ivy configuration for Advanced Mapping (AspectJ) 85
21.4. Maven configuration for Advanced Mapping .. 85

Repositories ... 85
Dependencies .. 85
Maven AspectJ build configuration .. 86

21.5. Spring configuration ... 87
XML namespace .. 87
Repository Configuration ... 89
Java-based bean configuration .. 89

22. Cross-store persistence .. 91
22.1. Partial entities .. 91
22.2. Cross-store annotations ... 91

@NodeEntity(partial = "true") .. 91
@GraphProperty .. 91
Example ... 91

22.3. Configuring cross-store persistence .. 92
23. Sample code .. 94

23.1. Introduction ... 94
23.2. Hello Worlds sample application ... 94
23.3. IMDB sample application .. 94
23.4. MyRestaurants sample application .. 95
23.5. MyRestaurant-Social sample application .. 95
23.6. Cineasts social movie database .. 96

24. Heroku: Seeding the Cloud ... 98
24.1. Create a Self-Hosted Web Application .. 98
24.2. Deploy to Heroku ... 101

25. Performance considerations .. 102
25.1. When to use Spring Data Neo4j ... 102

26. AspectJ details ... 103

please define productname in your docbook file!

3.0.0.M1 Good Relationships v

27. Neo4j Server .. 104
27.1. Server Extension ... 104
27.2. Using Spring Data Neo4j as a REST client .. 105

please define productname in your docbook file!

3.0.0.M1 Good Relationships vi

Foreword by Rod Johnson
I’m excited about Spring Data Neo4j for several reasons.

First, this project is in a very important space. We are in an era of transition. A very few years
ago, a relational database was a given for storing nearly all the data in nearly all applications. While
relational databases remain important, new application requirements and massive data proliferation
have prompted a richer choice of data stores. Graph databases have some very interesting strengths,
and Neo4j is proving itself valuable in many applications. It's a choice you should add to your toolbox.

Second, Spring Data Neo4j is an innovative project, which makes it easy to work with one of the most
interesting new data stores. Unfortunately, the proliferation of new data stores has not been matched by
innovation in programming models to work with them. Ironically, just after modern ORM mapping made
working with relational data in Java relatively easy, the data store disruption occurred, and developers
were back to square one: struggling once more with clumsy, low level APIs. Working with most non-
relational technologies is overly complex and imposes too much work on developers. Spring Data
Neo4j makes working with Neo4j amazingly easy, and therefore has the potential to make you more
successful as a developer. Its use of AspectJ to eliminate persistence code from your domain model is
truly innovative, and on the cutting edge of today’s Java technologies.

Third, I'm excited about Spring Data Neo4j for personal reasons. I no longer get to write code as often
as I would like. My initial convictions that Spring and AspectJ could both make building applications with
Neo4j dramatically easier and cross-store object navigation possible gave me an excuse for a much-
needed coding binge early in 2010. This led to a prototype of what became Spring Data Neo4j — at
times written paired with Emil. I’m sure the vast majority of my code has long since been replaced
(probably for the better) by coders who aren't rusty — thanks Michael and Thomas! — but I retain my
pleasant memories.

Finally, Spring Data Neo4j is part of the broader Spring Data project: one of the key areas in which
Spring is innovating to help meet new application requirements. I encourage you to explore Spring Data,
and — better still — become involved in the community and contribute.

Enjoy the Spring Data Neo4j book, and happy coding!

Rod Johnson, Founder, Spring and SVP, Application Platform, VMware

please define productname in your docbook file!

3.0.0.M1 Good Relationships vii

Foreword by Emil Eifrem
"Spring is the most popular middleware on the planet," I thought to myself as I walked up to Rod
Johnson in late 2009 at the JAOO conference in Aarhus, Denmark. Rod had just given an introductory
presentation about Spring Roo and when he was done I told him "Great talk. You're clearly building a
stack for the future. What about support for non-relational databases?"

We started talking and quickly agreed that NOSQL will play an important role in emerging stacks. Now,
a year and half later, Spring Data Neo4j is available in its first stable release and I'm blown away by the
result. Never before in any environment, in any programming framework, in any stack, has it been so
easy and intuitive to tap into the power of a graph database like Neo4j. It's a testament to the efforts by
an awesome team of four hackers from Neo Technology and VMware: Michael Hunger, David Montag,
Thomas Risberg and Mark Pollack.

The Spring framework revolutionized how we all wrote enterprise Java applications and today it's used
by millions of enterprise developers. Graph databases also stand out in the NOSQL crowd when it comes
to enterprise adoption. You can find graph databases used in areas as diverse as network management,
fraud detection, cloud management, anything with social data, geo and location services, master data
management, bioinformatics, configuration databases, and much more.

Spring developers deserve access to the best tools available to solve their problem. Sometimes that's a
relational database accessed through JPA. But more often than not, a graph database like Neo4j is the
perfect fit for your project. I hope that Spring Data Neo4j will give you access to the power and flexibility
of graph databases while retaining the familiar productivity and convenience of the Spring framework.

Enjoy the Spring Data Neo4j guide book and welcome to the wonderful world of graph databases!

Emil Eifrem, CEO of Neo Technology

please define productname in your docbook file!

3.0.0.M1 Good Relationships viii

About this guide book

1 The Spring Data Neo4j Project

Welcome to the Spring Data Neo4j Guide Book. Thank you for taking the time to get an in-depth look
into Spring Data Neo4j. This project is part of the Spring Data project, which brings the convenient
programming model of the Spring Framework to modern NOSQL databases. Spring Data Neo4j, as the
name alludes to, aims to provide support for the graph database Neo4j.

2 Feedback

It was written by developers for developers. Hopefully we've created a guide that is well received by
our peers.

If you have any feedback on Spring Data Neo4j or this book, please provide it via the SpringSource
JIRA, the SpringSource NOSQL Forum, github comments or issues, or the Neo4j mailing list.

3 Format of the Book

This book is presented as a duplex book, a term coined by Martin Fowler. A duplex book consists of
at least two parts. The first part is an easily accessible tutorial or narrative that gives the reader an
overview of the topics contained in the book. It contains lots of examples and discussion topics. This
part of the book is highly suited for cover-to-cover reading.

We chose a tutorial describing the creation of a web application that allows movie enthusiasts to find
their favorite movies, rate them, connect with fellow movie geeks, and enjoy social features such as
recommendations. The application is running on Neo4j using Spring Data Neo4j and the well-known
Spring Web Stack.

The second part of the book is the classic reference documentation, containing detailed information
about the library. It discusses the programming model, the underlying assumptions, and internals, as
well as the APIs for the object-graph mapping. The reference documentation is typically used to look up
concrete bits of information, or to drill down into certain topics. For hackers wanting to really delve into
Spring Data Neo4j, it can of course also be read cover-to-cover.

4 Acknowledgements

We would like to thank everyone who contributed to this book, especially Mark Pollack and Thomas
Risberg, the leads of the Spring Data Project, who helped a lot during the development of the library
as well as sharing great feedback about the book. Also Oliver Gierke, our local German VMWare/
SpringSource engineer, who invested a lot of time discussing various aspects of the library as well
as providing the superb foundations for the Spring Data Repositories. We tortured Andy Clement, the
AspectJ project lead, with many questions and issues around our advanced AspectJ usage which
caused some headaches. He always quickly solved our issues and gave us excellent answers.

Many thanks to our colleagues David Montag, Andreas Kollegger and Rickard Öberg who not only
contributed to Spring Data Neo4j but also provided content and feedback for this book.

We also appreciate very much the foresight of Rod Johnson and Emil Eifrem to initiate the project, and
now also providing great forewords. Their leadership inspired collaboration between the engineering

http://spring.neo4j.org
http://springsource.org/spring-data
http://neo4j.org
http://spring.neo4j.org/issues
http://spring.neo4j.org/issues
http://spring.neo4j.org/discussion
http://github.com/SpringSource/spring-data-neo4j/issues
http://neo4j.org/forums/
http://martinfowler.com/bliki/DuplexBook.html

please define productname in your docbook file!

3.0.0.M1 Good Relationships ix

teams at SpringSource and Neo Technology, a tremendous help during the making of Spring Data
Neo4j.

Last but not least we thank our vibrant community, both in the Spring Forums as well as on the
Neo4j Mailing list and on many other places on the internet for giving us feedback, reporting issues
and suggesting improvements. Without that important feedback we wouldn't be where we are today.
Especially Jean-Pierre Bergamin and Alfredas Chmieliauskas provided exceptional feedback and
contributions.

Enjoy the book!

Part I. Tutorial

The first part of the book provides a tutorial that walks through the creation of a complete web application
called cineasts.net, built with Spring Data Neo4j. Cineasts are people who love movies, and the site is
a gathering place for moviegoers. For cineasts.net we decided to add a social aspect to the rating of
movies, allowing friends to share their scores and get recommendations for new friends and movies.

The tutorial takes the reader through the steps necessary to create the application. It provides the
configuration and code examples that are needed to understand what's happening in Spring Data Neo4j.
The complete source code for the app is available on Github.

http://spring.neo4j.org/cineasts

please define productname in your docbook file!

3.0.0.M1 Good Relationships 2

1. Introducing our project

Allow me to introduce Cineasts.net

Once upon a time we wanted to build a social movie database. At first there was only the name: Cineasts,
the movie enthusiasts who have a burning passion for movies. So we went ahead and bought the domain
cineasts.net, and so we were off to a good start.

We had some ideas about the domain model too. There would obviously be actors playing roles in
movies. We also needed someone to rate the movies - enter the cineast. And cineasts, being the
social people they are, they wanted to make friends with other fellow cineasts. Imagine instantly finding
someone to watch a movie with, or share movie preferences with. Even better, finding new friends and
movies based on what you and your friends like.

When we looked for possible sources of data, IMDB was our first stop. But they're a bit expensive for
our taste, charging $15k USD for data access. Fortunately, we found themoviedb.org which provides
user-generated data for free. They also have liberal terms and conditions, and a nice API for retrieving
the data.

We had many more ideas, but we wanted to get something out there quickly. Here is how we envisioned
the final website:

http://cineasts.net
http://themoviedb.org

please define productname in your docbook file!

3.0.0.M1 Good Relationships 3

2. The Spring stack

Being Spring developers, we naturally choose components from the Spring stack to do all the heavy
lifting. After all, we have the concept etched out, so we're already halfway there.

What database would fit both the complex network of cineasts, movies, actors, roles, ratings, and friends,
while also being able to support the recommendation algorithms that we had in mind? We had no idea.

But hold your horses, there is this new Spring Data project, started in 2010, which brings the convenience
of the Spring programming model to NOSQL databases. That should be in line with what we already
know, providing us with a quick start. We had a look at the list of projects supporting the different NOSQL
databases out there. Only one of them mentioned the kind of social network we were thinking of - Spring
Data Neo4j for the Neo4j graph database. Neo4j's slogan of "value in relationships" plus "Enterprise
NOSQL" and the accompanying docs looked like what we needed. We decided to give it a try.

2.1 Required setup

To set up the project we created a public Github account and began setting up the infrastructure
for a Spring web project using Maven as the build system. So we added the dependencies
for the Spring Framework libraries, added the web.xml for the DispatcherServlet, and the
applicationContext.xml in the webapp directory.

<properties>

 <spring.version>3.0.7.RELEASE</spring.version>

</properties>

<dependencies>

<dependency>

 <groupId>org.springframework</groupId>

 <!-- abbreviated for all the dependencies -->

 <artifactId>spring-(core,context,aop,aspects,tx,webmvc)</artifactId>

 <version>${spring.version}</version>

</dependency>

<dependency>

 <groupId>org.springframework</groupId>

 <artifactId>spring-test</artifactId>

 <version>${spring.version}</version>

 <scope>test</scope>

</dependency>

</dependencies>

Example 2.1 Project pom.xml

please define productname in your docbook file!

3.0.0.M1 Good Relationships 4

<listener>

 <listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>

</listener>

<servlet>

 <servlet-name>dispatcherServlet</servlet-name>

 <servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>

 <load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

 <servlet-name>dispatcherServlet</servlet-name>

 <url-pattern>/</url-pattern>

</servlet-mapping>

Example 2.2 Project web.xml

With this setup in place we were ready for the first spike: creating a simple MovieController showing a
static view. See the Spring Framework documentation for information on doing this.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:context="http://www.springframework.org/schema/context"

 xmlns:tx="http://www.springframework.org/schema/tx"

 xsi:schemaLocation="

 http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd

 http://www.springframework.org/schema/tx

 http://www.springframework.org/schema/tx/spring-tx-3.0.xsd

 http://www.springframework.org/schema/context

 http://www.springframework.org/schema/context/spring-context-3.0.xsd">

 <context:annotation-config/>

 <context:spring-configured/>

 <context:component-scan base-package="org.neo4j.cineasts">

 <context:exclude-filter type="annotation"

 expression="org.springframework.stereotype.Controller"/>

 </context:component-scan>

 <tx:annotation-driven mode="proxy"/>

</beans>

Example 2.3 applicationContext.xml

<mvc:annotation-driven/>

<mvc:resources mapping="/images/**" location="/images/"/>

<mvc:resources mapping="/resources/**" location="/resources/"/>

<context:component-scan base-package="org.neo4j.cineasts.controller"/>

<bean id="viewResolver"

 class="org.springframework.web.servlet.view.InternalResourceViewResolver"

 p:prefix="/WEB-INF/views/" p:suffix=".jsp"/>

Example 2.4 dispatcherServlet-servlet.xml

We spun up Tomcat in STS with the App and it worked fine. For completeness we also added Jetty to
the maven-config and tested it by invoking mvn jetty:run to see if there were any obvious issues
with the config. It all seemed to work just fine.

please define productname in your docbook file!

3.0.0.M1 Good Relationships 5

3. The domain model

Setting the stage

We wanted to outline the domain model before diving into library details. We also looked at the data
model of the themoviedb.org data to confirm that it matched our expectations.

In Java code this looks pretty straightforward:

please define productname in your docbook file!

3.0.0.M1 Good Relationships 6

class Movie {

 String id;

 String title;

 int year;

 Set<Role> cast;

}

class Actor {

 String id;

 String name;

 Set<Movie> filmography;

 Role playedIn(Movie movie, String role) { ... }

}

class Role {

 Movie movie;

 Actor actor;

 String role;

}

class User {

 String login;

 String name;

 String password;

 Set<Rating> ratings;

 Set<User> friends;

 Rating rate(Movie movie, int stars, String comment) { ... }

 void befriend(User user) { ... }

}

class Rating {

 User user;

 Movie movie;

 int stars;

 String comment;

}

Example 3.1 Domain model

Then we wrote some simple tests to show that the basic design of the domain is good enough so far.
Just creating a movie, populating it with actors, and allowing users to rate it.

please define productname in your docbook file!

3.0.0.M1 Good Relationships 7

4. Learning Neo4j

Graphs ahead

Now we needed to figure out how to store our chosen domain model in the chosen database. First we
read up about graph databases, in particular our chosen one, Neo4j. The Neo4j data model consists
of nodes and relationships, both of which can have key/value-style properties. What does that mean,
exactly? Nodes are the graph database name for records, with property keys instead of column names.
That's normal enough. Relationships are the special part. In Neo4j, relationships are first-class citizens,
meaning they are more than a simple foreign-key reference to another record, relationships carry
information. So we can link together nodes into semantically rich networks. This really appealed to us.
Then we found that we were also able to index nodes and relationships by {key, value} pairs. We also
found that we could traverse relationships both imperatively using the core API, and declaratively using
a query-like Traversal Description. Besides those programmatic traversals there was the powerful graph
query language called Cypher. So lots of ways of working with the graph.

We also learned that Neo4j is fully transactional and therefore upholds ACID guarantees for our data.
Durability is actually a good thing and we didn't have to scale to trillions of users and movies yet.
This is unusual for NOSQL databases, but easier for us to get our head around than non-transactional
eventual consistency. It also made us feel safe, though it also meant that we had to manage transactions.
Something to keep in mind later.

We started out by doing some prototyping with the Neo4j core API to get a feeling for how it works. And
also, to see what the domain might look like when it's saved in the graph database. After adding the
Maven dependency for Neo4j, we were ready to go.

<dependency>

 <groupId>org.neo4j</groupId>

 <artifactId>neo4j</artifactId>

 <version>1.8.1</version>

</dependency>

Example 4.1 Neo4j Maven dependency

enum RelationshipTypes implements RelationshipType { ACTS_IN };

GraphDatabaseService gds = new EmbeddedGraphDatabase("/path/to/store");

Node forrest=gds.createNode();

forrest.setProperty("title","Forrest Gump");

forrest.setProperty("year",1994);

gds.index().forNodes("movies").add(forrest,"id",1);

Node tom=gds.createNode();

tom.setProperty("name","Tom Hanks");

Relationship role=tom.createRelationshipTo(forrest,ACTS_IN);

role.setProperty("role","Forrest");

Node movie=gds.index().forNodes("movies").get("id",1).getSingle();

assertEquals("Forrest Gump", movie.getProperty("title"));

for (Relationship role : movie.getRelationships(ACTS_IN,INCOMING)) {

 Node actor=role.getOtherNode(movie);

 assertEquals("Tom Hanks", actor.getProperty("name"));

 assertEquals("Forrest", role.getProperty("role"));

}

Example 4.2 Neo4j core API (transaction code omitted)

http://neo4j.org
http://docs.neo4j.org/chunked/milestone/indexing.html
http://docs.neo4j.org/chunked/milestone/tutorials-java-embedded-traversal.html
http://docs.neo4j.org/chunked/milestone/cypher-query-lang.html
http://en.wikipedia.org/wiki/ACID

please define productname in your docbook file!

3.0.0.M1 Good Relationships 8

5. Spring Data Neo4j

Conjuring magic

So far it had all been pure Spring Framework and Neo4j. However, using the Neo4j code in our domain
classes polluted them with graph database details. For this application, we wanted to keep the domain
classes clean. Spring Data Neo4j promised to do the heavy lifting for us, so we continued investigating it.

Spring Data Neo4j comes with two mapping modes. The more powerful one depends heavily on
AspectJ, see Chapter 26, AspectJ details, so we ignored it for the time being. The simple direct POJO-
mapping copies the data out of the graph and into our entities. Good enough for a web-application like
ours.

The first step was to configure Maven:

<dependency>

 <groupId>org.springframework.data</groupId>

 <artifactId>spring-data-neo4j</artifactId>

 <version>2.1.0.RELEASE</version>

</dependency>

Example 5.1 Spring Data Neo4j Maven configuration

The Spring context configuration was even easier, thanks to a provided namespace:

<beans xmlns="http://www.springframework.org/schema/beans" ...

 xmlns:neo4j="http://www.springframework.org/schema/data/neo4j"

 xsi:schemaLocation="... http://www.springframework.org/schema/data/neo4j

 http://www.springframework.org/schema/data/neo4j/spring-neo4j.xsd">

 ...

 <neo4j:config storeDirectory="data/graph.db"/>

 ...

</beans>

Example 5.2 Spring Data Neo4j context configuration

please define productname in your docbook file!

3.0.0.M1 Good Relationships 9

6. Annotating the domain

Decorations

Looking at the Spring Data Neo4j documentation, we found a simple Hello World example and tried to
understand it. We also spotted a compact reference card which helped us a lot. The entity classes were
annotated with @NodeEntity. That was simple, so we added the annotation to our domain classes
too. Entity classes representing relationships were instead annotated with @RelationshipEntity.
Property fields were taken care of automatically. The only additional field we had to provide for all entities
was an id-field to store the node- and relationship-ids.

@NodeEntity

class Movie {

 @GraphId Long nodeId;

 String id;

 String title;

 int year;

 Set<Role> cast;

}

Example 6.1 Movie class with annotation

It was time to put our entities to the test. How could we now be assured that an attribute really was
persisted to the graph store? We wanted to load the entity and check the attribute. Either we could
have a Neo4jTemplate injected and use its findOne(id,type) method to load the entity. Or use
a more versatile Repository. The same goes for persisting entities, both Neo4jTemplate or the
Repository could be used. We decided to keep things simple for now.

So here's what our test ended up looking like:

@Autowired Neo4jTemplate template;

@Test @Transactional public void persistedMovieShouldBeRetrievableFromGraphDb() {

 Movie forrestGump = template.save(new Movie("Forrest Gump", 1994));

 Movie retrievedMovie = template.findOne(forrestGump.getNodeId(), Movie.class);

 assertEquals("retrieved movie matches persisted one", forrestGump, retrievedMovie);

 assertEquals("retrieved movie title matches", "Forrest Gump",

 retrievedMovie.getTitle());

}

Example 6.2 First test case

As Neo4j is transactional, we have to provide the transactional boundaries for mutating operations.

http://spring.neo4j.org/helloworld
http://spring.neo4j.org/notes

please define productname in your docbook file!

3.0.0.M1 Good Relationships 10

7. Indexing

Do I know you?

There is an @Indexed annotation for fields. We wanted to try this out, and use it to guide the next test.
We added @Indexed to the id field of the Movie class. This field is intended to represent the external
ID that will be used in URIs and will be stable across database imports and updates. That's why we also
declare it as unique. This time we went with a simple GraphRepository to retrieve the indexed movie.

@NodeEntity class Movie {

 @Indexed(unique=true) String id;

 String title;

 int year;

}

@Autowired Neo4jTemplate template;

@Test @Transactional

 public void persistedMovieShouldBeRetrievableFromGraphDb() {

 int id = 1;

 Movie forrestGump = template.save(new Movie(id, "Forrest Gump", 1994));

 GraphRepository<Movie> movieRepository =

 template.repositoryFor(Movie.class);

 Movie retrievedMovie = movieRepository.findByPropertyValue("id", id);

 assertEqual("retrieved movie matches persisted one", forrestGump, retrievedMovie);

 assertEqual("retrieved movie title matches", "Forrest Gump",

 retrievedMovie.getTitle());

 }

Example 7.1 Exact Indexing for Movie id

please define productname in your docbook file!

3.0.0.M1 Good Relationships 11

8. Repositories

Serving a good cause

We wanted to add repositories with domain-specific operations. Interestingly there was support for a
very advanced repository infrastructure. You just declare an entity specific repository interface and get
all commonly used methods for free without implementing any of boilerplate code.

So we started by creating a movie-related repository, simply by creating an empty interface.

package org.neo4j.cineasts.repository;

public interface MovieRepository extends GraphRepository<Movie> {}

Example 8.1 Movie repository

Then we enabled repository support in the Spring context configuration by simply adding:

<neo4j:repositories base-package="org.neo4j.cineasts.repository"/>

Example 8.2 Repository context configuration

Besides the existing repository operations (like CRUD, and many standard queries) it was possible
to declare custom methods, which we explored later. Those methods' names could be more domain
centric and expressive than the generic operations. For simple use-cases like finding by id's this is good
enough. So we first let Spring autowire our MovieController with the MovieRepository. That way
we could perform simple persistence operations.

@Autowired MovieRepository repo;

...

 Movie movie = repo.findByPropertyValue("id",movieId);

Example 8.3 Usage of a repository

We went on exploring the repository infrastructure. A very cool feature was something that we so far
only heard about from Grails developers. Deriving queries from method names. Impressive! So we had
a more explicit method for the id lookup.

public interface MovieRepository extends GraphRepository<Movie> {

 Movie getMovieById(String id);

}

Example 8.4 Derived movie-repository query method

In our wildest dreams we imagined the method names we would come up with, and what kinds of queries
those could generate. But some, more complex queries would be cumbersome to read and write. So in
those cases it is better to just annotate the finder method. We did this much later, and just wanted to give
you a peek into the future. There is much more, you can do with repositories, it is worthwhile to explore.

public interface MovieRepository extends GraphRepository<Movie> {

 @Query("start user=node:User({0}) match user-[r:RATED]->movie return movie order by

 r.stars desc limit 10")

 Iterable<Movie> getTopRatedMovies(User uer);

}

Example 8.5 Annotated movie-repository query method

please define productname in your docbook file!

3.0.0.M1 Good Relationships 12

9. Relationships

A convincing act

Our application was not very much fun yet, just storing movies and actors. After all, the power is in the
relationships between them. Fortunately, Neo4j treats relationships as first class citizens, allowing them
to be addressed individually and have properties assigned to them. That allows for representing them
as entities if needed.

9.1 Creating relationships

Relationships without properties ("anonymous" relationships) don't require any
@RelationshipEntity classes. "Unfortunately" we had none of those, because our relationships
were richer. Therefore we went with the Role relationship between Movie and Actor. It had to be
annotated with @RelationshipEntity and the @StartNode and @EndNode had to be marked. So
our Role looked like this:

@RelationshipEntity

class Role {

 @StartNode Actor actor;

 @EndNode Movie movie;

 String role;

}

Example 9.1 Role class

When writing a test for the Role we tried to create the relationship entity just by instantiating it with new
and saving it with the template, but we got an exception saying that it misses the relationship-type.

We had to add it to the @RelationshipEntity as an attribute (or as a @RelationshipType annotated
field in the RelationshipEntity). Another way to create instances of relationship-entities is to use the
methods provided by the template, like createRelationshipBetween.

please define productname in your docbook file!

3.0.0.M1 Good Relationships 13

@RelationshipEntity(type="ACTS_IN")

class Role {

 @StartNode Actor actor;

 @EndNode Movie movie;

 String role;

}

class Actor {

...

 public Role playedIn(Movie movie, String roleName) {

 Role role = new Role(this, movie, roleName);

 this.roles.add(role);

 return role;

 }

}

 Role role = tomHanks.playedIn(forrestGump, "Forrest Gump");

 // either save the actor

 template.save(tomHanks);

 // or the role

 template.save(role);

 // alternative approach

 Role role = template.createRelationshipBetween(actor,movie,

 Role.class, "ACTS_IN");

Example 9.2 Relating actors to movies

Saving just the actor would take care of relationships with the same type between two entities and
remove the duplicates. Whereas just saving the role happily creates another relationship with the same
type.

9.2 Accessing related entities

Now we wanted to find connected entities. We already had fields for the relationships in both classes.
It was time to annotate them correctly. The Neo4j relationship type and direction were easy to figure
out. The direction even defaulted to outgoing, so we only had to specify it for the movie. If we want to
use the same relationship between the two entities we have to make sure to provide a dedicated type,
otherwise the field-names would be used resulting in different relationships.

please define productname in your docbook file!

3.0.0.M1 Good Relationships 14

@NodeEntity

class Movie {

 @Indexed(unique=true) String id;

 String title;

 int year;

 @RelatedTo(type = "ACTS_IN", direction = Direction.INCOMING)

 Set<Actor> cast;

}

@NodeEntity

class Actor {

 @Indexed(unique=true) int id;

 String name;

 @RelatedTo(type = "ACTS_IN")

 Set<Movie> movies;

 public Role playedIn(Movie movie, String roleName) {

 return new Role(this,movie, roleName);

 }

}

Example 9.3 @RelatedTo usage

Changes to the collections of related entities are reflected into the graph on saving of the entity.

We made sure to add some tests for using the relationshhips, so we were assured that the collections
worked as advertised.

9.3 Accessing the relationship entities

But we still couldn't access the Role relationship entities themselves. It turned out that there was
a separate annotation @RelatedToVia for accessing the actual relationship entities. And we could
declare the field as an Iterable<Role>, with read-only semantics or on a Collection or
Set<Role> field with modifying semantics. So off we went, creating our first real relationship (just
kidding).

To have the collections of relationships being read eagerly during the loading of the Movie we have
to annotate it with the @Fetch annotation. Otherwise Spring Data Neo4j refrains from following
relationships automatically. The risk of loading the whole graph into memory would be too high.

@NodeEntity

class Movie {

 @Indexed(unique=true) String id;

 String title;

 int year;

 @Fetch @RelatedToVia(type = "ACTS_IN", direction = Direction.INCOMING)

 Iterable<Roles> roles;

}

Example 9.4 @RelatedToVia usage

After watching the tests pass, we were confident that the changes to the relationship fields were really
stored to the underlying relationships in the graph. We were pretty satisfied with persisting our domain.

please define productname in your docbook file!

3.0.0.M1 Good Relationships 15

10. Get it running

Curtains up!

Now we had a pretty complete application. It was time to put it to the test.

10.1 Populating the database

Before we opened the gates we needed to add some movie data. So we wrote a small class for
populating the database which could be called from our controller. A simple /populate endpoint for
the controller that called it would be enough for now.

@Service

public class DatabasePopulator {

 @Transactional

 public List<Movie> populateDatabase() {

 Actor tomHanks = new Actor("1", "Tom Hanks");

 Movie forrestGump = new Movie("1", "Forrest Gump");

 tomHanks.playedIn(forrestGump,"Forrest");

 template.save(forrestGump);

 return asList(forrestGump);

 }

}

@Controller

public class MovieController {

 @Autowired private DatabasePopulator populator;

 @RequestMapping(value = "/populate", method = RequestMethod.POST)

 public String populateDatabase(Model model) {

 Collection<Movie> movies = populator.populateDatabase();

 model.addAttribute("movies",movies);

 return "/movies/list";

 }

}

Example 10.1 Populating the database - Controller

Accessing the URI we could see the list of movies we had added.

10.2 Inspecting the datastore

Being the geeks we are, we also wanted to inspect the raw data in the database. Reading the Neo4j
docs, there were a couple of different ways of going about this.

Neoclipse visualization

First we tried Neoclipse, an Eclipse RCP application that opens an existing graph store and visualizes its
content. After getting an exception about concurrent access, we learned that we have to use Neoclipse
in read-only mode when our webapp was still running. Good to know.

http://docs.neo4j.org/
http://docs.neo4j.org/

please define productname in your docbook file!

3.0.0.M1 Good Relationships 16

The Neo4j Shell

For console junkies there was also a shell that was able to connect to a running Neo4j instance (if it was
started with the enable_remote_shell=true parameter), or reads an existing graph store directly.

bash# neo4j-shell -readonly -path data/graph.db

bash# neo4j-shell -readonly -port 1337

Example 10.2 Starting the Neo4j Shell

The shell was very similar to a standard Bash shell. We were able to cd to between the nodes, and
ls the relationships and properties. There were also more advanced commands for indexing, queries
and traversals.

please define productname in your docbook file!

3.0.0.M1 Good Relationships 17

neo4j-sh[readonly] (0)$ help

Available commands: index dbinfo ls rm alias set eval mv gsh env rmrel mkrel

 trav help pwd paths ... man cd

Use man <command> for info about each command.

neo4j-sh[readonly] (0)$ index --cd -g User login micha

neo4j-sh[readonly] (Micha,1)$ ls

*__type__ =[org.neo4j.cineasts.domain.User]

*login =[micha]

*name =[Micha]

*roles =[ROLE_ADMIN,ROLE_USER]

(me) --[FRIEND]-> (Olliver,2)

(me) --[RATED]-> (The Matrix,3)

neo4j-sh[readonly] (Micha,1)$ ls 2

*__type__ =[org.neo4j.cineasts.domain.User]

*login =[ollie]

*name =[Olliver]

*roles =[ROLE_USER]

(Olliver,2) <-[FRIEND]-- (me)

neo4j-sh[readonly] (Micha,1)$ cd 3

neo4j-sh[readonly] (The Matrix,3)$ ls

*__type__ =[org.neo4j.cineasts.domain.Movie]

*description =[Neo is a young software engineer and part-time hacker who is singled ...]

*genre =[Action]

*homepage =[http://whatisthematrix.warnerbros.com/]

...

*studio =[Warner Bros. Pictures]

*tagline =[Welcome to the Real World.]

*title =[The Matrix]

*trailer =[http://www.youtube.com/watch?v=UM5yepZ21pI]

*version =[324]

(me) <-[ACTS_IN]-- (Marc Aden,19)

(me) <-[ACTS_IN]-- (David Aston,18)

...

(me) <-[ACTS_IN]-- (Keanu Reeves,6)

(me) <-[DIRECTED]-- (Andy Wachowski,5)

(me) <-[DIRECTED]-- (Lana Wachowski,4)

(me) <-[RATED]-- (Micha,1)

Example 10.3 Neo4j Shell usage

please define productname in your docbook file!

3.0.0.M1 Good Relationships 18

11. Web views

Showing off

After having put some data in the graph database, we also wanted to show it to the user. Adding the
controller method to show a single movie with its attributes and cast in a JSP was straightforward.
It basically just involved using the repository to look the movie up and add it to the model, and then
forwarding to the /movies/show view and voilá.

@RequestMapping(value = "/movies/{movieId}",

method = RequestMethod.GET, headers = "Accept=text/html")

public String singleMovieView(final Model model, @PathVariable String movieId) {

 Movie movie = repository.findById(movieId);

 model.addAttribute("id", movieId);

 if (movie != null) {

 model.addAttribute("movie", movie);

 model.addAttribute("stars", movie.getStars());

 }

 return "/movies/show";

}

Example 11.1 Controller for showing movies

<%@ page session="false" %>

 <%@ taglib uri="http://www.springframework.org/tags" prefix="s" %>

 <%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

 <c:choose>

 <c:when test="${not empty movie}">

 <h2>${movie.title} (${stars} Stars)</h2>

 <c:if test="${not empty movie.roles}">

 <c:forEach items="${movie.roles}" var="role">

 <c:out value="${role.actor.name}" /> as

 <c:out value="${role.name}" />

 </c:forEach>

 </c:if>

 </c:when>

 <c:otherwise>

 No Movie with id ${id} found!

 </c:otherwise>

 </c:choose>

Example 11.2 Populating the database - JSP /movies/show

The UI had now evolved to this:

please define productname in your docbook file!

3.0.0.M1 Good Relationships 19

11.1 Searching

The next thing was to allow users to search for movies, so we needed some fulltext search capabilities.
As the default index provider implementation of Neo4j is based on Apache Lucene, we were delighted
to see that fulltext indexes were supported out of the box.

We happily annotated the title field of the Movie class with @Indexed(type = FULLTEXT). Next thing
we got an exception telling us that we had to specify a separate index name. So we simply changed it
to @Indexed(type = FULLTEXT, indexName = "search").

With derived finder methods, finding things became easy. By simply declaring a finder-method name
that expressed the required properties, it worked without annotations. Cool stuff and you could even tell
it that it should return pages of movies, its size and offset specified by a Pageable which also contains
sort information. Using the like operator indicates that fulltext search should be used, instead of an
exact search.

public interface MovieRepository ... {

 Movie findById(String id);

 Page<Movie> findByTitleLike(String title, Pageable page);

}

Example 11.3 Searching for movies

11.2 Listing results

We then used this result in the controller to render a page of movies, driven by a search box. The movie
properties and the cast were accessible through the getters in the domain classes.

http://lucene.apache.org/java/docs/index.html

please define productname in your docbook file!

3.0.0.M1 Good Relationships 20

@RequestMapping(value = "/movies",

method = RequestMethod.GET, headers = "Accept=text/html")

public String findMovies(Model model, @RequestParam("q") String query) {

 Page<Movie> movies = repository.findByTitleLike(query, new PageRequest(0,20));

 model.addAttribute("movies", movies);

 model.addAttribute("query", query);

 return "/movies/list";

}

Example 11.4 Search controller

<h2>Movies</h2>

<c:choose>

 <c:when test="${not empty movies}">

 <dl class="listings">

 <c:forEach items="${movies}" var="movie">

 <dt>

 <c:out value="${movie.title}" />

 </dt>

 <dd>

 <c:out value="${movie.description}" escapeXml="true" />

 </dd>

 </c:forEach>

 </dl>

 </c:when>

 <c:otherwise>

 No movies found for query "${query}".

 </c:otherwise>

</c:choose>

Example 11.5 Search Results JSP

The UI now looked like this:

please define productname in your docbook file!

3.0.0.M1 Good Relationships 21

please define productname in your docbook file!

3.0.0.M1 Good Relationships 22

12. Adding social

Movies 2.0

So far, the website had only been a plain old movie database. We now wanted to add a touch of social
to it.

12.1 Users

So we started out by taking the User class that we'd already coded and made it a full-fledged Spring
Data Neo4j entity. We added the ability to create friends and to rate movies. With that we also added
a simple UserRepository that was able to look up users by ID.

The relationships of the user are his friends and the movie-ratings which is implemented with a
Rating Relationship-Entity. This time we used a different approach (for educational and curiosity
purposes) to create the Rating relationships. The createRelationshipBetween operation of the
Neo4jTemplate was our matchmaker of choice.

@NodeEntity

class User {

 @Indexed(unique=true) String login;

 String name;

 String password;

 @RelatedToVia(type = RATED)

 @Fetch Set<Rating> ratings;

 @RelatedTo(type = "FRIEND", direction=Direction.BOTH)

 @Fetch Set<User> friends;

 public Rating rate(Neo4jOperations template, Movie movie, int stars, String comment) {

 final Rating rating = template.createRelationshipBetween(this, movie,

 Rating.class, RATED, false);

 rating.rate(stars, comment);

 return template.save(rating);

 }

 public void addFriend(User user) {

 this.friends.add(user);

 }

}

@RelationshipEntity

class Rating {

 @StartNode User user;

 @EndNode Movie movie;

 int stars;

 String comment;

 public Rating rate(int stars, String comment) {

 this.stars = stars; this.comment = comment;

 return this;

 }

}

Example 12.1 Social entities

We extended the DatabasePopulator to add some users and ratings to the initial setup.

please define productname in your docbook file!

3.0.0.M1 Good Relationships 23

@Transactional

public List<Movie> populateDatabase() {

 Actor tomHanks = new Actor("1", "Tom Hanks");

 Movie forestGump = new Movie("1", "Forrest Gump");

 tomHanks.playedIn(forestGump, "Forrest");

 template.save(tomHanks);

 User me = template.save(new User("micha", "Micha", "password"));

 Rating awesome = me.rate(template, forestGump, 5, "Awesome");

 User ollie = template.save(new User("ollie", "Oliver", "password"));

 ollie.rate(template,forestGump, 2, "ok");

 me.addFriend(ollie);

 template.save(me);

 return asList(forestGump);

}

Example 12.2 Populate users and ratings

12.2 Ratings for movies

We also put a ratings field into the Movie class to be able to get a movie's ratings, and also a method
to average its star rating.

class Movie {

 ...

 @RelatedToVia(type="RATED", direction = Direction.INCOMING)

 @Fetch Iterable<Rating> ratings;

 public int getStars() {

 int stars = 0, count = 0;

 for (Rating rating : ratings) {

 stars += rating.getStars(); count++;

 }

 return count == 0 ? 0 : stars / count;

 }

}

Example 12.3 Getting the rating of a movie

Fortunately our tests highlighted the division by zero error when calculating the stars for a movie without
ratings. The next steps were to add this information to the movie presentation in the UI, and creating a
user profile page. But for that to happen, users must first be able to log in.

please define productname in your docbook file!

3.0.0.M1 Good Relationships 24

13. Adding Security

Protecting assets

To handle an active user in the webapp we had to put it in the session and add login and registration
pages. Of course the pages that were only meant for logged-in users had to be secured as well.

Being Spring users, we naturally used Spring Security for this. We wrote a simple
UserDetailsService by extending a repository with a custom implementation that takes care
of looking up the users and validating their credentials. The config is located in a separate
applicationContext-security.xml. But first, as always, Maven and web.xml setup.

<dependency>

 <groupId>org.springframework.security</groupId>

 <artifactId>spring-security-web</artifactId>

 <version>${spring.version}</version>

</dependency>

<dependency>

 <groupId>org.springframework.security</groupId>

 <artifactId>spring-security-config</artifactId>

 <version>${spring.version}</version>

</dependency>

Example 13.1 Spring Security pom.xml

<context-param>

 <param-name>contextConfigLocation</param-name>

 <param-value>

 /WEB-INF/applicationContext-security.xml

 /WEB-INF/applicationContext.xml

 </param-value>

</context-param>

<listener>

 <listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>

</listener>

<filter>

 <filter-name>springSecurityFilterChain</filter-name>

 <filter-class>org.springframework.web.filter.DelegatingFilterProxy</filter-class>

</filter>

<filter-mapping>

 <filter-name>springSecurityFilterChain</filter-name>

 <url-pattern>/*</url-pattern>

</filter-mapping>

Example 13.2 Spring Security web.xml

please define productname in your docbook file!

3.0.0.M1 Good Relationships 25

<security:global-method-security secured-annotations="enabled">

</security:global-method-security>

<security:http auto-config="true" access-denied-page="/auth/denied">

 <security:intercept-url pattern="/admin/*" access="ROLE_ADMIN"/>

 <security:intercept-url pattern="/import/*" access="ROLE_ADMIN"/>

 <security:intercept-url pattern="/user/*" access="ROLE_USER"/>

 <security:intercept-url pattern="/auth/login" access="IS_AUTHENTICATED_ANONYMOUSLY"/>

 <security:intercept-url pattern="/auth/

register" access="IS_AUTHENTICATED_ANONYMOUSLY"/>

 <security:intercept-url pattern="/**" access="IS_AUTHENTICATED_ANONYMOUSLY"/>

 <security:form-login login-page="/auth/login"

 authentication-failure-url="/auth/login?login_error=true"

 default-target-url="/user"/>

 <security:logout logout-url="/auth/logout" logout-success-url="/" invalidate-

session="true"/>

</security:http>

<security:authentication-manager>

 <security:authentication-provider user-service-ref="userRepository">

 <security:password-encoder hash="md5">

 <security:salt-source system-wide="cewuiqwzie"/>

 </security:password-encoder>

 </security:authentication-provider>

</security:authentication-manager>

Example 13.3 Spring Security applicationContext-security.xml

please define productname in your docbook file!

3.0.0.M1 Good Relationships 26

public interface CineastsUserDetailsService extends UserDetailsService {

 @Override

 CineastsUserDetails loadUserByUsername(String login)

 throws UsernameNotFoundException, DataAccessException;

 User getUserFromSession();

 @Transactional

 Rating rate(Movie movie, User user, int stars, String comment);

 @Transactional

 User register(String login, String name, String password);

 @Transactional

 void addFriend(String login, final User userFromSession);

}

public interface UserRepository extends GraphRepository<User>,

 RelationshipOperationsRepository<User>,

 CineastsUserDetailsService {

 User findByLogin(String login);

}

public class UserRepositoryImpl implements CineastsUserDetailsService {

 @Autowired private Neo4jOperations template;

 @Override

 public CineastsUserDetails loadUserByUsername(String login)

 throws UsernameNotFoundException, DataAccessException {

 final User user = findByLogin(login);

 if (user==null) throw

 new UsernameNotFoundException("Username not found: "+login);

 return new CineastsUserDetails(user);

 }

 private User findByLogin(String login) {

 return template.lookup(User.class,"login",login)

 .to(User.class).single();

 }

 @Override

 public User getUserFromSession() {

 SecurityContext context = SecurityContextHolder.getContext();

 Authentication authentication = context.getAuthentication();

 Object principal = authentication.getPrincipal();

 if (principal instanceof CineastsUserDetails) {

 CineastsUserDetails userDetails = (CineastsUserDetails) principal;

 return userDetails.getUser();

 }

 return null;

 }

}

public class CineastsUserDetails implements UserDetails {

 private final User user;

 public CineastsUserDetails(User user) {

 this.user = user;

 }

 @Override

 public Collection<GrantedAuthority> getAuthorities() {

 User.Roles[] roles = user.getRoles();

 if (roles ==null) return Collections.emptyList();

 return Arrays.<GrantedAuthority>asList(roles);

 }

 @Override

 public String getPassword() {

 return user.getPassword();

 }

 @Override

 public String getUsername() {

 return user.getLogin();

 }

 ...

 public User getUser() {

 return user;

 }

}

Example 13.4 CinceastUserDetailsService interface and UserRepository custom implementation

please define productname in your docbook file!

3.0.0.M1 Good Relationships 27

Any logged-in user was now available in the session, and could be used for all the social interactions.
The remaining work for this was mainly adding controller methods and JSPs for the views. We used the
helper method getUserFromSession() in the controllers to access the logged-in user and put it in
the model for rendering. Here's what the UI had evolved to:

please define productname in your docbook file!

3.0.0.M1 Good Relationships 28

14. More UI

Oh the glamour

To create a nice user experience, we wanted to have a nice looking app. Not something that looked like
a toddler made it. So we got some user experience people involved and the results were impressive.
This sections presents some of the remaining screen shots of Cineasts.net.

please define productname in your docbook file!

3.0.0.M1 Good Relationships 29

please define productname in your docbook file!

3.0.0.M1 Good Relationships 30

please define productname in your docbook file!

3.0.0.M1 Good Relationships 31

15. Importing Data

The dusty archives

It was now time to pull the data from themoviedb.org. Registering there and getting an API key was
simple, as was using the API on the command-line with curl. Looking at the JSON returned for movies
and people, we decided to enhance our domain model and add some more fields to enrich the UI.

[{"popularity":3,

"translated":true, "adult":false, "language":"en",

"original_name":"[Rec]", "name":"[Rec]", "alternative_name":"[REC]",

"movie_type":"movie",

"id":8329, "imdb_id":"tt1038988", "url":"http://www.themoviedb.org/movie/8329",

"votes":11, "rating":7.2,

"status":"Released",

"tagline":"One Witness. One Camera",

"certification":"R",

"overview":"\"REC\" turns on a young TV reporter and her cameraman who cover the night

 shift

 at the local fire station...

"keywords":["terror", "lebende leichen", "obsession", "camcorder", "firemen", "reality tv

 ",

 "bite", "cinematographer",

"attempt to escape", "virus", "lodger", "live-reportage", "schwerverletzt"],

"released":"2007-08-29",

"runtime":78,

"budget":0,

"revenue":0,

"homepage":"http://www.3l-filmverleih.de/rec",

"trailer":"http://www.youtube.com/watch?v=YQUkX_XowqI",

"genres":[{"type":"genre",

"url":"http://themoviedb.org/genre/horror",

"name":"Horror",

"id":27}],

"studios":[{"url":"http://www.themoviedb.org/company/2270", "name":"Filmax

 Group", "id":2270}],

"languages_spoken":[{"code":"es", "name":"Spanish", "native_name":"Espa\u00f1ol"}],

"countries":[{"code":"ES", "name":"Spain", "url":"http://www.themoviedb.org/country/es"}],

"posters":[{"image":{"type":"poster",

"size":"original", "height":1000, "width":706,

"url":"http://cf1.imgobject.com/posters/3a0/4cc8df415e73d650240003a0/rec-original.jpg",

"id":"4cc8df415e73d650240003a0"}},

....

"cast":[{"name":"Manuela Velasco",

"job":"Actor", "department":"Actors",

"character":"Angela Vidal",

"id":34793, "order":0, "cast_id":1,

"url":"http://www.themoviedb.org/person/34793",

"profile":"http://cf1.imgobject.com/profiles/390/.../manuela-velasco-thumb.jpg"},

...

{"name":"Gl\u00f2ria Viguer",

"job":"Costume Design", "department":"Costume \u0026 Make-Up",

"character":"",

"id":54531, "order":0, "cast_id":21,

"url":"http://www.themoviedb.org/person/54531",

"profile":""}],

"version":150, "last_modified_at":"2011-02-20 23:16:57"}]

Example 15.1 JSON movie response

http://themoviedb.org

please define productname in your docbook file!

3.0.0.M1 Good Relationships 32

[{"popularity":3,

"name":"Glenn Strange", "known_as":[{"name":"George Glenn Strange"}, {"name":"Glen

 Strange"},

{"name":"Glen 'Peewee' Strange"}, {"name":"Peewee Strange"}, {"name":"'Peewee' Strange"}],

"id":30112,

"biography":"",

"known_movies":4,

"birthday":"1899-08-16", "birthplace":"Weed, New Mexico, USA",

"url":"http://www.themoviedb.org/person/30112",

"filmography":[{"name":"Bud Abbott Lou Costello Meet Frankenstein",

"id":3073,

"job":"Actor", "department":"Actors",

"character":"The Frankenstein Monster",

"cast_id":23,

"url":"http://www.themoviedb.org/movie/3073",

"poster":"http://cf1.imgobject.com/posters/4ca/.../bud-abbott-lou-costello-meet-

frankenstein-cover.jpg",

"adult":false, "release":"1948-06-15"},

...],

"profile":[],

"version":19, "last_modified_at":"2011-03-07 13:02:35"}]

Example 15.2 JSON actor response

For the import process we created a separate importer using Jackson (a JSON library) to fetch and parse
the data, and then some transactional methods in the MovieDbImportService to actually import it as
movies, roles, and actors. The importer used a simple caching mechanism to keep downloaded actor
and movie data on the filesystem, so that we didn't have to overload the remote API. In the code below
you can see that we've changed the actor to a person so that we can also accommodate the other folks
that participate in movie production.

please define productname in your docbook file!

3.0.0.M1 Good Relationships 33

@Transactional

public Movie importMovie(String movieId) {

 Movie movie = movieRepository.findById(movieId);

 if (movie == null) { // Not found: Create fresh

 movie = new Movie(movieId,null);

 }

 Map data = loadMovieData(movieId);

 if (data.containsKey("not_found")) throw

 new RuntimeException("Data for Movie "+movieId+" not found.");

 movieDbJsonMapper.mapToMovie(data, movie);

 movieRepository.save(movie);

 relatePersonsToMovie(movie, data);

 return movie;

}

private void relatePersonsToMovie(Movie movie, Map data) {

 Collection<Map> cast = (Collection<Map>) data.get("cast");

 for (Map entry : cast) {

 String id = "" + entry.get("id");

 String jobName = (String) entry.get("job");

 Roles job = movieDbJsonMapper.mapToRole(jobName);

 if (job==null) {

 continue;

 }

 switch (job) {

 case DIRECTED:

 final Director director = doImportPerson(id, new Director(id));

 director.directed(movie);

 directorRepository.save(director);

 break;

 case ACTS_IN:

 final Actor actor = doImportPerson(id, new Actor(id));

 actor.playedIn(movie, (String) entry.get("character"));

 actorRepository.save(actor);

 break;

 }

 }

}

public void mapToMovie(Map data, Movie movie) {

 movie.setTitle((String) data.get("name"));

 movie.setLanguage((String) data.get("language"));

 movie.setTagline((String) data.get("tagline"));

 movie.setReleaseDate(toDate(data, "released", "yyyy-MM-dd"));

...

 movie.setImageUrl(selectImageUrl((List<Map>) data.get("posters"), "poster", "mid"));

}

Example 15.3 Importing the data

The last part involved adding a protected URI to the MovieController to allow importing ranges of movies.
During testing, it became obvious that the calls to themoviedb.org were a limiting factor. As soon as the
data was stored locally, the Neo4j import was a sub-second deal.

please define productname in your docbook file!

3.0.0.M1 Good Relationships 34

16. Recommendations

Movies! Friends! Bargains!

In the last part of this exercise we wanted to add recommendations to the app. One obvious
recommendation was movies that our fiends liked.

There was this query language called Cypher that looked a bit like SQL but expressed graph matching
queries. So we gave it a try, using the neo4j-shell, to incrementally expand the query, just by
declaring what relationships we wanted to be taken into account and which properties of nodes and
relationships to filter and sort on.

interface MovieRepository extends GraphRepository<Movie> {

 @Query("

 start user=node({0})

 match user-[:FRIEND]-friend-[r:RATED]->movie

 return movie

 order by avg(r.stars) desc, count(*) desc

 limit 10

 ")

 Iterable<Movie> recommendMovies(User me);

}

Example 16.1 Cypher based movie recommendation on Repository

But we didn't have enough friends, so it was time to get some suggested. That would be like-minded
cineasts that rated movies similarly to us. Again Cypher to the rescue, this time only a bit more complex.
Something that became obvious with both queries is that graph queries are always local, so they start
from a node, or set of nodes or relationships, and then expand outwards from there.

interface UserRepository extends GraphRepository<User> {

 @Query("

 start user=node({0})

 match user-[r:RATED]->movie<-[r2:RATED]-likeminded,

 user-[:FRIEND]-friend

 where r.stars > 3 and r2.stars >= 3

 return likeminded

 order by count(*) desc

 limit 10

 ")

 Iterable<User> suggestFriends(User me);

}

Example 16.2 Cypher - Friend Recommendation on Repository

The controllers simply called these methods, added their results to the model, and the view rendered
the recommendations alongside the user's own ratings.

please define productname in your docbook file!

3.0.0.M1 Good Relationships 35

17. Neo4j Server

Remotely related

Right now our application was running with the embedded mode of Neo4j which was fine and highly
performant. In certain environments you don't have the luxury of file-system access for your webapps
and have to talk to a remote database service instead. Neo4j can also run as a server. It exposes its
operations via a HTTP based REST API.

We decided to have a look, to be at least knowledgeable about this deployment scenario. We were aware
of the difference of local, in-memory calls and higher latency network hops. That would be something
we would also take into careful consideration.

17.1 Getting Neo4j-Server

Getting the Neo4j-Server was easy, we just went to neo4j.org and downloaded the latest version.
Starting it on the command-line (or installing it as a service) was a no-brainer as well.

We copied our store-directory into the data/graph.db directory of the server and started it up again.
The admin console of Neo4j-Server, called 'web-admin' is pretty. Using JavaScript, it renders the graph
visually in a highly configurable way. It also gave us the possibility to issue queries over a console,
another handy feature.

So, how would we get our app connected to this server? It turned out the changes in configuration
and setup where minimal. Spring Data Neo4j already came with a module that took care of the remote
protocol. We added that maven dependency and changed the graph database used in the Spring
Configuration.

<dependency>

 <groupId>org.springframework.data</groupId>

 <artifactId>spring-data-neo4j-rest</artifactId>

 <version>2.1.0.RELEASE</version>

</dependency>

Example 17.1 Maven Dependency

<neo4j:config graphDatabaseService="graphDatabaseService"/>

<bean id="graphDatabaseService"

 class="org.springframework.data.neo4j.rest.SpringRestGraphDatabase">

 <constructor-arg index="0" value="http://localhost:7474/db/data" />

</bean>

Example 17.2 Spring Config

After those two changes we restarted the app, and ... it worked. The transparent handling of the remote
API was impressive. We learned that it uses a library called java-rest-binding under the hood which is
also usable without the Spring Framework.

Of course we noticed performance implications. Especially after moving the server to a remote machine.
It turned out that the server supported remote execution of many operations, allowing us to run the graph
traversal and querying inside the server. That means looking at our graph interactions and changing

http://neo4j.org/
https://github.com/neo4j/java-rest-binding

please define productname in your docbook file!

3.0.0.M1 Good Relationships 36

them in a way that switched from the transparent, direct graph access via the entities to a different
interaction pattern.

We looked into the different modes of remotely executed operations and found traversals, Cypher
queries and index lookups. Most of them already matched our needs but the Cypher approaches were
best suited, because they also handled index operations and allowed to return partial attribute sets and
subgraphs.

So we looked at our use-case (aka page)-based interactions with the graph entities and converted them
to Cypher queries on repositories where appropriate, measuring the performance improvements as we
went.

There was also a nice mechanism of mapping Cypher query results to Domain Concepts. You just had
to declare and annotate an interface that represents the query results as domain entities and the nodes
and relationships returned by Cypher were converted into the appropriate entities.

public interface MovieRepository extends GraphRepository<Movie> {

 @Query("START movie=node:Movie(id={0})

 MATCH movie-[rating?:rating]->(),

 movie<-[:ACTS_IN]-actor

 RETURN movie, COLLECT(actor), AVG(rating.stars)")

 MovieData getMovieData(String movieId);

 @MapResult

 public interface MovieData {

 @ResultColumn("movie")

 Movie getMovie();

 @ResultColumn("AVG(rating.stars)")

 Double getRating();

 @ResultColumn("COLLECT(actor)")

 Iterable<Actor> getCast();

 }

}

Example 17.3 Example of query result mapping

This allowed us to get all the data needed for rendering a page in a single call to the server, greatly
diminishing the chatter between the client and the server.

17.2 Other approaches

Another approach to using the Neo4j-Server would be to write a custom server extension using the
SpringPluginInitializer provided by spring-data-neo4j-rest. This extension would use
the well known entities and approaches as it runs inside the server atop an embedded graph database.
From the extension we would expose custom, domain and use-case oriented REST endpoints that could
then be consumed by any kind of webapp, even a pure Javascript based browser app.

please define productname in your docbook file!

3.0.0.M1 Good Relationships 37

18. Conclusion

To new frontiers

Pretty neat. We were satisfied with what we got here, with little effort and high performance. Lots of
opportunities to expand the social movie database showed up during development. Like adding more
social features like tagging, communication streams, location based features (cinemas) and much more.

But we leave you with that as an exercise to enjoy and explore. Thanks for following the tutorial and
make sure to get back to us with suggestions for improvements or reports about unexpected behaviours
at the discussion forums, or the issue tracker.

http://spring.neo4j.org/discussions
http://spring.neo4j.org/issues

Part II. Reference Documentation

This part of the Spring Data Neo4j Guide book provides the reference documentation. It details many
aspects of the tutorial and also explains concepts that were only just mentioned there.

Its content covers information about the programming model, APIs, concepts, annotations and technical
details of Spring Data Neo4j.

Whenever you look for the means to employ the full power of the Spring Data Neo4j library you find
your answers in the reference section. If you don't, please inform us about missing or incorrect content
so that we can fix that.

please define productname in your docbook file!

3.0.0.M1 Good Relationships xxxix

Reference Documentation

1 Spring Data and Spring Data Neo4j

Spring Data is a SpringSource project that aims to provide Spring's convenient programming model
and well known conventions for NOSQL databases. Currently there is support for graph (Neo4j), key-
value (Redis, Riak), document (MongoDB) and relational (Oracle) databases. Mark Pollack, the author
of Spring.NET, is the project lead for the Spring Data project.

The Spring Data Neo4j project, as part of the Spring Data initiative, aims to simplify development with the
Neo4j graph database. Like JPA, it uses annotations on simple POJO domain objects. The annotations
activate one of the supported mapping approaches, either the simple mapping or the advanced AspectJ
mapping. Both use the annotation and reflection metadata for mapping the POJO entities and their fields
to nodes, relationships, and properties in the graph database.

Spring Data Neo4j allows, at any time, to drop down to the Neo4j-API level, see Chapter 19, Introduction
to Neo4j to execute functionality with the highest performance possible.

For integration of Neo4j and Grails/GORM please refer to the Neo4j grails plugin. There are also Python
bindings as well as community-provided bindings to use Neo4j in embedded or REST mode.

2 Reference Documentation Overview

The explanation of Spring Data Neo4j's programming model starts with some underlying details. The
basic internal workings of the two mapping modes are explained in the initial chapter. Section 20.1,
“Object Graph Mapping” covers the simple mapping and Section 20.2, “Advanced Mapping with
AspectJ” contains details about the advanced mapping. It also explains some of the common issues
around AspectJ tooling with the current IDEs.

To get started with a simple application, you need only your domain model and the annotations (see
Section 20.4, “Defining node entities”) provided by the library. You use annotations to mark domain
objects to be reflected by nodes and relationships of the graph database. For individual fields the
annotations allow you to declare how they should be processed and mapped to the graph. For property
fields and references to other entities this is straightforward.

To use advanced functionality like traversals and Cypher, a basic understanding of the graph data model
is required. The graph data model is explained in the chapter about Neo4j, see Chapter 19, Introduction
to Neo4j.

Relationships between entities are first class citizens in a graph database and therefore worth a separate
chapter (???) describing their usage in Spring Data Neo4j.

Indexing operations are useful for finding individual nodes and relationships in a graph. They can be
used to start graph operations or to be processed in your application. Indexing in the plain Neo4j API
is a bit more involved. Spring Data Neo4j maintains automatic indexes per entity class, with @Indexed
annotations on relevant fields. (Section 20.6, “Indexing”)

Being a Spring Data library, Spring Data Neo4j offers a comprehensive Neo4j-Template (Section 20.7,
“Neo4jTemplate”) for interacting with the mapped entities and the Neo4j graph database. The operations
provided by Spring Data Neo4j - Repositories per mapped entity class are based on the API offered by

http://springsource.org/spring-data
http://www.grails.org/plugin/neo4j
http://docs.neo4j.org/chunked/milestone/python-embedded.html
http://docs.neo4j.org/chunked/milestone/python-embedded.html
http://docs.neo4j.org/chunked/milestone/languages.html
http://docs.neo4j.org/chunked/milestone/tutorials-rest.html

please define productname in your docbook file!

3.0.0.M1 Good Relationships xl

the Neo4j-Template. It also provides the operations of the Neo4j Core API in a more convenient way.
Especially the querying (Indexes, Cypher and Traversals) and result conversion facilities allow writing
very concise code.

Spring Data Commons provides a very powerful repository infrastructure that is also leveraged in
Spring Data Neo4j. Those repositories consist only of a composition of interfaces that declare the
available functionality in each repository. The implementation details of commonly used persistence
methods are handled by the library. At least for typical CRUD, index- and query-operations that is very
convenient. The repositories are extensible by annotated, named or derived finder methods. For custom
implementations of repository methods you are free to add your own code. (Section 20.8, “CRUD with
repositories”).

To be able to leverage the schema-free nature of Neo4j it is possible to project any entity to any other
entity type. That is useful as long as they share some properties (or relationships). The entities don't have
to share any super-types or hierarchies. How that works is explained here: Section 20.10, “Projecting
entities”.

Spring Data Neo4j also allows you to integrate with the powerful geospatial graph library Neo4j-Spatial
that offers full support for working with any kind of geo-data. Spring Data Neo4j repositories expose a
couple of those operations via bounding-box and near-location searches. Section 20.11, “Geospatial
Queries”.

Using computed fields that are dynamically backed by graph operations is a bit more involved. First
you should know about traversals and Cypher queries. Those are explained in Chapter 19, Introduction
to Neo4j. Then you can start using virtual, computed fields in your entities Section 20.10, “Projecting
entities” .

If you like the ActiveRecord approach that uses persistence methods mixed into the domain classes, you
will want to look at the description of the additional entity methods (see Section 20.12, “Active Record
Methods for Advanced Mapping Mode”) that are added to your domain objects by Spring Data Neo4j
Aspects. Those allow you to manage the entity lifecycle as well as to connect entities. Those methods
also provide the means to execute the mentioned graph operations with your entity as a starting point.

Neo4j is a fully ACID, enterprise grade database. It uses Java transactions, and internally a 2-phase
commit protocol, to guarantee the safety of your data. The implications of that are described in the
chapter around transactions. (Section 20.13, “Transactions”)

The need of an active transaction for mutating the state of nodes or relationships implies that direct
changes to the graph are only possible in a transactional context. Unfortunately many higher level
application layers don't want to care about transactions and the open-session-in-view pattern is not
widely used. Therefore Spring Data Neo4j's advanced mappings introduced an entity lifecyle and added
support for detached entities which can be used for temporary domain objects that are not intended to
be stored in the graph or which will be attached to the graph only later. (Section 20.14, “Detached node
entities in advanced mapping mode”)

For the simple mapping this is not neccessary as domain objects are detached by default and have to
be explicitly reattached to the graph to store the changes.

Unlike Neo4j which is a schema free database, Spring Data Neo4j works on Java domain objects. So it
needs to store the type information in the graph to be able to reconstruct the entities when just nodes are
retrieved. To achieve that it employs type-representation-strategies which are described in a separate
chapter. (see Section 20.15, “Entity type representation”)

please define productname in your docbook file!

3.0.0.M1 Good Relationships xli

Spring Data Neo4j offers basic support for bean property validation (JSR-303). Annotations from that
JSR are recognized and evaluated whenever a property is set, or when a previously detached entity is
persisted to the graph. (see Section 20.16, “Bean validation (JSR-303)”)

Unfortunately the setup of Spring Data Neo4j advanced mapping mode is more involved than we'd like.
That is partly due to the Maven setup and dependencies for AspectJ, which can be alleviated by using
different build systems like Gradle or Ant/Ivy. The Spring configuration itself boils down to two lines of
<spring-neo4j> namespace setup. (see Chapter 21, Environment setup)

In a polyglot persistence context Spring Data Neo4j can also be used in a JPA environment to add graph
features to your JPA entities. In the Chapter 22, Cross-store persistence the slightly different behavior
and setup of a Graph-JPA interaction are described.

The provided samples, which are also publicly hosted on Github, are explained in Chapter 23, Sample
code.

The performance implications of using Spring Data Neo4j are detailed in Chapter 25, Performance
considerations. This chapter also discusses which use cases should not be handled with Spring Data
Neo4j.

As AspectJ might not be well known to everyone, some of the core concepts of the aspect oriented,
advanced mapping mode for Java are explained in Chapter 26, AspectJ details.

How to consume the REST-API of a Neo4j-Server is the topic of Chapter 27, Neo4j Server. But
Spring Data Neo4j can also be used to create custom Extensions for the Neo4j Server which would
serve domain model abstractions to a suitable front-end. So instead of talking low level primitives to
a database, the front-end or web-app would communicate via a domain level protocol with endpoints
implemented in Jersey and Spring Data Neo4j.

Note

Please be aware that the advanced mapping mode of Spring Data Neo4j is based on AspectJ
and uses some advanced features of that toolset. See the section on AspectJ (Section 20.2,
“Advanced Mapping with AspectJ”) for details if you run into any problems.

http://spring.neo4j.org/examples

please define productname in your docbook file!

3.0.0.M1 Good Relationships 42

19. Introduction to Neo4j

19.1 What is a graph database?

A graph database is a storage engine that is specialized in storing and retrieving vast networks of data.
It efficiently stores nodes and relationships and allows high performance traversal of those structures.
Properties can be added to nodes and relationships.

Graph databases are well suited for storing most kinds of domain models. In almost all domains, there
are certain things connected to other things. In most other modeling approaches, the relationships
between things are reduced to a single link without identity and attributes. Graph databases allow to keep
the rich relationships that originate from the domain, equally well-represented in the database without
resorting to also modeling the relationships as "things". There is very little "impedance mismatch" when
putting real-life domains into a graph database.

19.2 About Neo4j

Neo4j is a NOSQL graph database. It is a fully transactional database (ACID) that stores data structured
as graphs. A graph consists of nodes, connected by relationships. Inspired by the structure of the human
mind, it allows for high query performance on complex data, while remaining intuitive and simple for
the developer.

Neo4j has been in commercial development for 10 years and in production for over 7 years. Most
importantly it has a helpful and contributing community surrounding it, but it also:

• has an intuitive, rich graph-oriented model for data representation. Instead of tables, rows, and
columns, you work with a graph consisting of nodes, relationships, and properties.

• has a disk-based, native storage manager optimized for storing graph structures with maximum
performance and scalability.

• is scalable. Neo4j can handle graphs with many billions of nodes/relationships/properties on a single
machine, but can also be scaled out across multiple machines for high availability.

• has a powerful traversal framework and query languages for traversing the graph.

• can be deployed as a standalone server or an embedded database with a very small distribution
footprint.

• has a core Java API.

In addition, Neo4j has ACID transactions, durable persistence, concurrency control, transaction
recovery, high availability, and more. Neo4j is released under a dual free software/commercial license
model.

19.3 GraphDatabaseService

The API of org.neo4j.graphdb.GraphDatabaseService provides access to the storage engine.
Its features include creating and retrieving nodes and relationships, managing indexes (via the
IndexManager), database life cycle callbacks, transaction management, and more.

The EmbeddedGraphDatabase is an implementation of GraphDatabaseService that is used to embed
Neo4j in a Java application. This implementation is used so as to provide the highest and tightest

http://neo4j.org/
http://docs.neo4j.org/chunked/milestone/what-is-a-graphdb.html
http://api.neo4j.org/

please define productname in your docbook file!

3.0.0.M1 Good Relationships 43

integration with the database. Besides the embedded mode, the Neo4j server provides access to the
graph database via an HTTP-based REST API.

19.4 Creating nodes and relationships

Using the API of GraphDatabaseService, it is easy to create nodes and relate them to each other.
Relationships are typed. Both nodes and relationships can have properties. Property values can be
primitive Java types and Strings, or arrays of both. Node creation and modification has to happen within
a transaction, while reading from the graph store can be done with or without a transaction.

GraphDatabaseService graphDb = new EmbeddedGraphDatabase("helloworld");

Transaction tx = graphDb.beginTx();

try {

 Node firstNode = graphDb.createNode();

 firstNode.setProperty("message", "Hello, ");

 Node secondNode = graphDb.createNode();

 secondNode.setProperty("message", "world!");

 Relationship relationship = firstNode.createRelationshipTo(secondNode,

 DynamicRelationshipType.of("KNOWS"));

 relationship.setProperty("message", "brave Neo4j");

 tx.success();

} finally {

 tx.finish();

}

Example 19.1 Neo4j usage

19.5 Graph traversal

Getting a single node or relationship and examining it is not the main use case of a graph database.
Fast graph traversal of complex, interconnected data and application of graph algorithms are. Neo4j
provides a DSL for defining TraversalDescriptions that can then be applied to a start node and
will produce a lazy java.lang.Iterable result of nodes and/or relationships.

TraversalDescription traversalDescription = Traversal.description()

 .depthFirst()

 .relationships(KNOWS)

 .relationships(LIKES, Direction.INCOMING)

 .evaluator(Evaluators.toDepth(5));

for (Path position : traversalDescription.traverse(myStartNode)) {

 System.out.println("Path from start node to current position is " + position);

}

Example 19.2 Traversal usage

19.6 Indexing

The best way for retrieving start nodes for traversals and queries is by using Neo4j's integrated index
facilities. The GraphDatabaseService provides access to the IndexManager which in turn provides
named indexes for nodes and relationships. Both can be indexed with property names and values.
Retrieval is done with query methods on indexes, returning an IndexHits iterator.

Spring Data Neo4j provides automatic indexing via the @Indexed annotation, eliminating the need for
manual index management.

http://wiki.neo4j.org/content/Getting_Started_With_Neo4j_Server

please define productname in your docbook file!

3.0.0.M1 Good Relationships 44

Note

Modifying Neo4j indexes also requires transactions.

IndexManager indexManager = graphDb.index();

Index<Node> nodeIndex = indexManager.forNodes("a-node-index");

Node node = ...;

Transaction tx = graphDb.beginTx();

try {

 nodeIndex.add(node, "property","value");

 tx.success();

} finally {

 tx.finish();

}

for (Node foundNode : nodeIndex.get("property","value")) {

 // found node

}

Example 19.3 Index usage

19.7 Querying the Graph with Cypher

Neo4j provides a graph query language called "Cypher" which draws from many sources. It resembles
SQL but with an iconic representation of patterns in the graph (concepts drawn from SPARQL). The
Cypher execution engine was written in Scala to leverage the high expressiveness for lazy sequence
operations of the language and the parser combinator library. A screencast explaining the possibilities
in detail can be found on the Neo4j video site.

Cypher queries always begin with a start set of nodes. Those can be either expressed by their IDs or
by an index lookup expression. Those start-nodes are then related to other nodes in the match clause.
Start and match clauses can introduce new identifiers for nodes and relationships. In the where clause
additional filtering of the result set is applied by evaluating expressions. The return clause defines
which part of the query result will be available. Aggregation also happens in the return clause by using
aggregation functions on some of the values. Sorting can happen in the order by clause and the skip
and limit parts restrict the result set to a certain window.

Cypher can be executed on an embedded graph database using an ExecutionEngine and
CypherParser. This is encapsulated in Spring Data Neo4j with CypherQueryEngine. The Neo4j-
REST-Server comes with a Cypher-Plugin that is accessible remotely and is available in the Spring
Data Neo4j REST-Binding.

http://docs.neo4j.org/chunked/milestone/cypher-query-lang.html
http://video.neo4j.org/ybMbf/screencast-introduction-to-cypher/

please define productname in your docbook file!

3.0.0.M1 Good Relationships 45

// Actors who played a Matrix movie:

start movie=node:Movie("title:Matrix*") match movie<-[:ACTS_IN]-actor

 return actor.name, actor.birthplace?

// User-Ratings:

start user=node:User(login='micha') match user-[r:RATED]->movie where r.stars > 3

 return movie.title, r.stars, r.comment

// Mutual Friend recommendations:

start user=node:Micha(login='micha') match user-[:FRIEND]-friend-[r:RATED]->movie where

 r.stars > 3

 return friend.name, movie.title, r.stars, r.comment?

// Movie suggestions based on a movie:

start movie=node:Movie(id='13') match (movie)<-[:ACTS_IN]-()-[:ACTS_IN]->(suggestion)

 return suggestion.title, count(*) order by count(*) desc limit 5

// Co-Actors, sorted by count and name of Lucy Liu

start lucy=node(1000) match lucy-[:ACTS_IN]->movie<-[:ACTS_IN]-co_actor

 return count(*), co_actor.name order by count(*) desc,co_actor.name limit 20

// Recommendations including counts, grouping and sorting

start user=node:User(login='micha') match user-[:FRIEND]-()-[r:RATED]->movie

 return movie.title, AVG(r.stars), count(*) order by AVG(r.stars) desc, count(*) desc

Example 19.4 Cypher Examples on the Cineasts.net Dataset

please define productname in your docbook file!

3.0.0.M1 Good Relationships 46

20. Programming model

This chapter covers the fundamentals of the programming model behind Spring Data Neo4j. It discusses
the simple and advanced mapping modes, the annotations provided by Spring Data Neo4j and how to
use them. Examples for this section are taken from the "IMDB" project of Spring Data Neo4j examples.

20.1 Object Graph Mapping

Up until recently Spring Data Neo4j supported only the more advanced and flexible AspectJ based
mapping approach, see Section 20.2, “Advanced Mapping with AspectJ”. Feedback about issues with
the AspectJ tooling and other implications persuaded us to add a simpler mapping (see Section 20.3,
“Simple Object Graph Mapping”) to Spring Data Neo4j. Both versions work with the same annotations
and provide similar API's, but differ in behaviour.

Reflection and Annotation-based metadata is collected about persistent entities in the
Neo4jMappingContext which provides it to any part of the library. The information is stored in
Neo4jPersistentEntity instances which hold all the Neo4jPersistentProperty's of the type.
Each entity can be checked to determine whether it represents a Node or a Relationship. Properties
declare detailed data about their indexing and relationship information as well as type information that
also covers nested generic types. With all that information available it is simple to select the appropriate
strategy for mapping each entity and field to elements, relationships and properties of the graph.

The main difference is in the way of accessing the graph. In the simple mapping the required information
is copied into the entity on load and only stored back when an explicit save operation occurs. In the
advanced mapping (AspectJ-enhanced) approach a node or relationship is attached via an additional
field to the entity and all read- and write-operations (inside of Transactions) happen through that.

For the simple mapping mode, declaration of fetch strategies for related entities is necessary
to avoid loading the whole graph eagerly into memory. The initial approach uses just a simple
@Fetch annotations on relationship properties. The resulting MappingPolicy is provided to the
infrastructure methods to ensure the correct loading behaviour. Both, Neo4jPersistentEntiy and
Neo4jPersistentProperty can be queried for the MappingPolicy.

Otherwise the two approaches share much of the infrastructure. E.g. for creating new entity instances
from type information store in the graph (Section 20.15, “Entity type representation”), the infrastructure
for mapping individual fields to graph properties and relationships and everything related to indexing
and querying. A certain part of that is also exposed via the Neo4jTemplate for direct use.

20.2 Advanced Mapping with AspectJ

Behind the scenes, Spring Data Neo4j leverages AspectJ aspects to modify the behavior of annotated
POJO entities (see Chapter 26, AspectJ details). Each node entity is backed by a graph node that holds
its properties and relationships to other entities. AspectJ is used for intercepting field access, so that
Spring Data Neo4j can retrieve the appropriate information from the entity's backing node or relationship.

The aspect introduces an internal field (entityState) and some public methods (see
Section 20.12, “Active Record Methods for Advanced Mapping Mode”) to the entities, for instance
entity.getPersistentState() and entity.relateTo. It also introduces some methods for
graph operations that start at the current entity. Introduced methods for equals() and hashCode()
use the underlying node or relationship. Please take the introduced field into account when serializing
your entities and exclude it from the serialization process.

http://spring.neo4j.org/examples
http://www.eclipse.org/aspectj/

please define productname in your docbook file!

3.0.0.M1 Good Relationships 47

Spring Data Neo4j internally uses an abstraction called EntityState that the field access and
instantiation advices of the aspect delegate to. This way, the aspect code is kept to a minimum,
focusing mainly on the pointcuts and delegation. The EntityState then uses a number of
FieldAccessorFactories to create a FieldAccessor instance per field that does the specific
handling needed for the concrete field type. There is some caching involved as well, so it handles
repeated instantiation efficiently.

To use the advanced, AspectJ based mapping, please add spring-data-neo4j-aspects as a
dependency and set up the AspectJ integration in Maven or other build tools as explained in Chapter 21,
Environment setup. Some hints for your IDE setup are described below.

AspectJ IDE support

As Spring Data Neo4j uses some advanced features of AspectJ, users may experience issues with their
IDE reporting errors where in fact there are none. Features that might be reported wrongfully include:
introduction of methods to interfaces, declaration of additional interfaces for annotated classes, and
generified introduced methods.

IDEs not providing full AspectJ support might mark parts of your code as having errors. You should rely
on your build-system and tests to verify the correctness of the code. You might also have your Entities (or
their interfaces) implement the NodeBacked and RelationshipBacked interfaces directly to benefit
from completion support and error checking.

Eclipse and STS support AspectJ via the AJDT plugin which can be installed from the update-site listed
at http://www.eclipse.org/ajdt/downloads/ (it might be necessary to use the latest development snapshot
of the plugin). The current version that does not show incorrect errors is AspectJ 1.6.12 (included in
STS 2.8.0), previous versions are reported to mislead the user. Note that AJDT (as of September 2012)
requires projects to be rebuild after Eclipse is started to fully support all advanced features.

Note

There might be some issues with the eclipse maven plugin not adding AspectJ files correctly
to the build path. If you encounter issues, please try the following: Try editing the build path
to include **/*.aj for the spring-data-neo4j-aspects project. You can do this by selecting
"Build Path -> Configure Build Path ..." from the Package Explorer. Then for the spring-
data-neo4j-aspects/src/main/java add **/*.aj to the Included path. When importing
a Spring Data Neo4j project into Eclipse with m2e, please make sure the AspectJ Configurator
is installed from the following update-site: http://dist.springsource.org/release/AJDT/configurator

The AspectJ support in IntelliJ IDEA lacks some of the features. JetBrains is working on improving the
situation in their upcoming 11 release of their popular IDE. Their latest work is available under their early
access program (EAP). Building the project with the AspectJ compiler ajc works in IDEA (Options ->
Compiler -> Java Compiler should show ajc). Make sure to give the compiler at least 512 MB of RAM.

20.3 Simple Object Graph Mapping

In addition to the advanced object graph mapping using AspectJ, Spring Data Neo4j also supports
a simpler mode that converts graph data into domain objects and vice versa. It does not require
any additional set up and should work out of the box. The simple mapping approach uses the same
annotations (???) as the advanced mapping to declare mapping meta-information.

The simple object graph mapping comes into play whenever an entity is constructed from a node or
relationship. This could be done explicitly like during the lookup- or create-operations of the repositories

http://www.eclipse.org/ajdt/downloads/
http://dist.springsource.org/release/AJDT/configurator

please define productname in your docbook file!

3.0.0.M1 Good Relationships 48

and the Neo4jTemplate but also implicitly while executing any graph operation that returns nodes or
relationships and expecting mapped entities to be returned.

It uses the available meta-information about the persistent entity to iterate over its properties and
relationships, fetching their data from the graph while doing so. It also executes computed fields and
stores the resulting values in the properties.

We try to avoid loading the whole graph into memory by not following relationships eagerly. A dedicated
@Fetch annotation controls instead if related entities are loaded or not. Whenever an entity is not fully
loaded, then only its id is stored. Those entities or collections of entities can then later be loaded explicitly
using the template.fetch() operation.

The additional fetch information is stored in a MappingPolicy which can be retrieved
via the Neo4jTemplate for classes. Both Neo4jPersistentEntitity as well as
Neo4jPersistentProperty provide access to that information on their scope.

Note

Please note that if you have two collections in an entity pointing to the same relationship and
one of them has data and the other is empty due to the nature of persisting it, one will override
the other in the graph so that you might end up with no data. If you want a relationship-collection
to be ignored on save set it to null.

 @Autowired Neo4jOperations template;

 @NodeEntity class Person {

 String name;

 @Fetch Person boss;

 Person spouse;

 @RelatedTo(type = "FRIEND", direction = BOTH)

 @Fetch Set<Person> friends;

 }

 Person person = template.findOne(personId);

 assertNotNull(person.getBoss().getName());

 assertNotNull(person.getSpouse().getId());

 assertNull(person.getSpouse().getName());

 template.fetch(person.getSpouse());

 assertNotNull(person.getSpouse().getName());

 assertEquals(10,person.getFriends().size());

 assertNotNull(firstFriend.getName());

Example 20.1 Examples for loading entities from the graph

Note
Both the simple mapping approach as well as the fetch strategies (MappingPolicy) debuted
in Spring Data Neo4j 2.0. So there might be rough edges and there are certainly many areas for
improvement and extension. We look forward to your feedback on this topic.

As we tried to encapsulate each aspect of the mapping process into a separate class the resulting fabric
of responsibilities is quite intricate. All of them are set up in the MappingInfrastructure that is part
of the Neo4jTemplate setup.

please define productname in your docbook file!

3.0.0.M1 Good Relationships 49

20.4 Defining node entities

Node entities are declared using the @NodeEntity annotation. Relationship entities use the
@RelationshipEntity annotation.

@NodeEntity: The basic building block

The @NodeEntity annotation is used to turn a POJO class into an entity backed by a node in the graph
database. Fields on the entity are by default mapped to properties of the node. Fields referencing other
node entities (or collections thereof) are linked with relationships. If the useShortNames attribute is set
to false, the property and relationship names will have the class name of the entity prepended.

@NodeEntity annotations are inherited from super-types and interfaces. It is not necessary to annotate
your domain objects at every inheritance level.

If the partial attribute is set to true, this entity takes part in a cross-store setting, where the entity
lives in both the graph database and a JPA data source. See Chapter 22, Cross-store persistence for
more information.

Entity fields can be annotated with @GraphProperty, @RelatedTo, @RelatedToVia, @Indexed,
@GraphId, @Query and @GraphTraversal.

@NodeEntity

public class Movie {

 String title;

}

Example 20.2 Simplest node entity

@GraphId: Neo4j -id field

For the simple mapping this is a required field which must be of type Long. It is used by Spring Data
Neo4j to store the node or relationship-id to re-connect the entity to the graph.

Note

It must not be a primitive type because then the "non-attached" case can not be represented as
the default value 0 would point to the reference node. Please make also sure that an equals()
and hashCode() method have to be provided which take the id field into account (and also
handle the "non-attached", null case).

For the advanced mapping such a field is optional. Only if the underlying id has to be accessed, it is
needed.

Entity Equality

Entity equality can be a grey area, and it is debatable whether natural keys or database ids best describe
equality, there is the issue of versioning over time, etc. For Spring Data Neo4j we have adopted the
convention that database-issued ids are the basis for equality, and that has some consequences:

1. Before you attach an entity to the database, i.e. before the entity has had its id-field populated, we
suggest you rely on object identity for comparisons

2. Once an entity is attached, we suggest you rely solely on the id-field for equality

please define productname in your docbook file!

3.0.0.M1 Good Relationships 50

3. When you attach an entity, its hashcode changes - because you keep equals and hashcode
consistent and rely on the database ID, and because Spring Data Neo4j populates the database ID
on save

That causes problems if you had inserted the newly created entity into a hash-based collection before
saving. While that can be worked around, we strongly advise you adopt a convention of not working
with un-attached entities, to keep your code simple. This is best illustrated in code.

@NodeEntity

public class Studio {

 @GraphId

 Long id

 String name;

 public boolean equals(Object other) {

 if (this == other) return true;

 if (id == null) return false;

 if (! (other instanceof Studio)) return false;

 return id.equals(((Studio) other).id);

 }

 public int hashCode() {

 return id == null ? System.identityHashCode(this) : id.hashCode();

 }

}

...

Set<Studio> studios = new HashSet<Studio>();

Studio studio = studioRepository.save(new Studio("Ghibli"));

studios.add(studio);

Studio sameStudio = studioRepository.findOne(studio.id);

assertThat(studio, is(equalTo(sameStudio));

assertThat(studios.contains(sameStudio), is(true);

assertThat(studios.remove(sameStudio), is(true);

Example 20.3 Entity using id-field for equality and attaching new entity immediately

A work-around for the problem of un-attached entities having their hashcode change when they get
saved is to cache the hashcode. The hashcode will change next time you load the entity, but at least if
you have the entity sitting in a collection, you will still be able to find it:

please define productname in your docbook file!

3.0.0.M1 Good Relationships 51

@NodeEntity

public class Studio {

 @GraphId

 Long id

 String name;

 transient private Integer hash;

 public boolean equals(Object other) {

 if (this == other) return true;

 if (id == null) return false;

 if (! (other instanceof Studio)) return false;

 return id.equals(((Studio) other).id);

 }

 public int hashCode() {

 if (hash == null) hash = id == null ? System.identityHashCode(this) :

 id.hashCode();

 return hash.hashCode();

 }

}

...

Set<Studio> studios = new HashSet<Studio>();

Studio studio = new Studio("Ghibli")

studios.add(studio);

studioRepository.save(studio);

assertThat(studios.contains(studio), is(true);

assertThat(studios.remove(studio), is(true);

Studio sameStudio = studioRepository.findOne(studio.id);

assertThat(studio, is(equalTo(sameStudio));

assertThat(studio.hashCode(), is(not(equalTo(sameStudio.hashCode())));

Example 20.4 Caching hashcode

Note

Remember, transient fields are not saved.

@GraphProperty: Optional annotation for property fields

It is not necessary to annotate property fields, as they are persisted by default; all fields that contain
primitive values are persisted directly to the graph. All fields convertible to a String using the Spring
conversion services will be stored as a string. Spring Data Neo4j includes a custom conversion factory
that comes with converters for Enums and Dates. Transient fields are not persisted.

Collections of collections of primitive or convertable values are stored as well. They are converted to
arrays of their type or strings respectively.

This annotation is typically used with cross-store persistence. When a node entity is configured
as partial, then all fields that should be persisted to the graph must be explicitly annotated with
@GraphProperty.

please define productname in your docbook file!

3.0.0.M1 Good Relationships 52

@GraphProperty can specify default values for properties that are not in the graph. Default values are
specified as String representations and will be converted to the correct target type using the existing
conversion facilities. For example @GraphProperty(defaultValue="20") Integer age.

It is also possible to declare the type that should be used for the storage inside of Neo4j. For instance if
a Date property should be stored as an Long value instead of the default String, the annotation would
look like @GraphProperty(propertyType = Long.class) For the actual mapping of the Field-
Type to the Neo4j-Property type there has to be a Converter registered in the Spring-Config.

@Indexed: Making entities searchable by field value

The @Indexed annotation can be declared on fields that are intended to be indexed by the Neo4j
indexing facilities. The resulting index can be used to later retrieve nodes or relationships that contain
a certain property value, e.g. a name. Often an index is used to establish the start node for a traversal.
Indexes are accessed by a repository for a particular node or relationship entity type. See Section 20.6,
“Indexing” and Section 20.8, “CRUD with repositories” for more information.

@Query: fields as query result views

The @Query annotation leverages the delegation infrastructure supported by Spring Data Neo4j. It
provides dynamic fields which, when accessed, return the values selected by the provided query
language expression. The provided query must contain a placeholder named {self} for the the
current entity. For instance the query start n=node({self}) match n-[:FRIEND]->friend
return friend. Graph queries can return variable number of entities. That's why annotation can
be put onto fields with a single value, a subclass of Iterable of a concrete type or an Iterable of
Map<String,Object>. Additional parameters are taken from the params attribute of the @Query
annotation. These parameter tuples form key-value pairs that are provided to the query at execution
time.

@NodeEntity

public class Group {

 @Query(value = "start n=node({self}) match (n)-[r]->(friend) where r.type = {relType}

 return friend",

 params = {"relType", "FRIEND"})

 private Iterable<Person> friends;

}

Example 20.5 @Graph on a node entity field

Note

Please note that this annotation can also be used on repository methods. (Section 20.8, “CRUD
with repositories”)

@GraphTraversal: fields as traversal result views

The @GraphTraversal annotation also leverages the delegation infrastructure supported by Spring
Data aspects. It provides dynamic fields which, when accessed, return an Iterable of node or
relationship entities that are the result of a traversal starting at the entity containing the field. The
TraversalDescription used for this is created by the FieldTraversalDescriptionBuilder
class defined by the traversal attribute. The class of the resulting node entities must be provided
with the elementClass attribute.

please define productname in your docbook file!

3.0.0.M1 Good Relationships 53

@NodeEntity

public class Group {

 @GraphTraversal(traversal = PeopleTraversalBuilder.class,

 elementClass = Person.class, params = "persons")

 private Iterable<Person> people;

 private static class PeopleTraversalBuilder implements

 FieldTraversalDescriptionBuilder {

 @Override

 public TraversalDescription build(NodeBacked start, Field field, String... params)

 {

 return new TraversalDescriptionImpl()

 .relationships(DynamicRelationshipType.withName(params[0]))

 .filter(Traversal.returnAllButStartNode());

 }

 }

}

Example 20.6 @GraphTraversal from a node entity

20.5 Relating node entities

Since relationships are first-class citizens in Neo4j, associations between node entities are represented
by relationships. In general, relationships are categorized by a type, and start and end nodes (which
imply the direction of the relationship). Relationships can have an arbitrary number of properties. Spring
Data Neo4j has special support to represent Neo4j relationships as entities too, but it is often not needed.

Note

As of Neo4j 1.4.M03, circular references are allowed. Spring Data Neo4j reflects this accordingly.

@RelatedTo: Connecting node entities

Every field of a node entity that references one or more other node entities is backed by relationships
in the graph. These relationships are managed by Spring Data Neo4j automatically.

The simplest kind of relationship is a single field pointing to another node entity (1:1). In this case, the
field does not have to be annotated at all, although the annotation may be used to control the direction
and type of the relationship. When setting the field, a relationship is created when the entity is persisted.
If the field is set to null, the relationship is removed.

@NodeEntity

public class Movie {

 private Actor topActor;

}

Example 20.7 Single relationship field

It is also possible to have fields that reference a set of node entities (1:N). These fields come in
two forms, modifiable or read-only. Modifiable fields are of the type Set<T>, and read-only fields are
Iterable<T>, where T is a @NodeEntity-annotated class.

please define productname in your docbook file!

3.0.0.M1 Good Relationships 54

@NodeEntity

public class Actor {

 @RelatedTo(type = "topActor", direction = Direction.INCOMING)

 private Set<Movie> topActorIn;

 @RelatedTo(type = "ACTS_IN")

 private Set<Movie> movies;

}

Example 20.8 Node entity with relationships

For the simple mapping, the automatic transitive loading of related entities depends on declaration of
@Fetch at the property. Otherwise the related node or relationship entities will just be initialized with
their id for later loading.

When using the advanced mapping, Fields referencing other entities should not be manually initialized,
as they are managed by Spring Data Neo4j Aspects under the hood. 1:N fields can be accessed
immediately, and Spring Data Neo4j will provide a Set representing the relationships.

If this Set of related entities is modified, the changes are reflected in the graph, relationships are added,
removed or updated accordingly.

Note

Spring Data Neo4j ensures by default that there is only one relationship of a
given type between any two given entities. This can be circumvented by using the
createRelationshipBetween() method with the allowDuplicates parameter on
repositories or entities.

Note

Before an entity has been persisted for the first time, it will not have its state managed by Spring
Data Neo4j. For example, given the Actor class defined above, if actor.movies was accessed
in a non-persisted entity, it would return null, whereas if it was accessed in a persisted entity,
it would return an empty managed set.

When an Interface is used as target type for the Set and/or as elementClass it should be marked
as @NodeEntity too.

By setting direction to BOTH, relationships are created in the outgoing direction, but when the 1:N field
is read, it will include relationships in both directions. A cardinality of M:N is not necessary because
relationships can be navigated in both directions.

In the advanced mapping mode, the relationships can also be accessed by using the methods
entity.getRelationshipBetween(target, type) and entity.relateTo(target, type)
available on each NodeEntity. These methods find and create Neo4j relationships. It is also possible to
manually remove relationships by using entity.removeRelationshipTo(target, type). Using
these methods is significantly faster than adding/removing from the collection of relationships as it
doesn't have to re-synchronize a whole set of relationships with the graph.

Methods of the same semantics exist in the repositories to be used in the simple mapping mode.

please define productname in your docbook file!

3.0.0.M1 Good Relationships 55

Note

Other collection types than Set are not supported so far, also currently NO
Map<RelationshipType,Set<NodeBacked>>.

@RelationshipEntity: Rich relationships

To access the full data model of graph relationships, POJOs can also be annotated with
@RelationshipEntity, making them relationship entities. Just as node entities represent nodes
in the graph, relationship entities represent relationships. As described above, fields annotated with
@RelatedTo provide a way to only link node entities via relationships, but it provides no way of
accessing the relationships themselves.

Relationship entities can be accessed via by @RelatedToVia-annotated
(???) fields or methods like entity.getRelationshipTo() or template|

repository.getRelationship(s)Between().

Relationship entities either be instantiated directly and set or added to @RelatedToVia-
annotated fields or created by the introduced entity.relateTo(), template|

repository.createRelationshipBetween() methods (see alos Section 20.12, “Active Record
Methods for Advanced Mapping Mode”)

Fields in relationship entities are, similarly to node entities, persisted as properties on the relationship.
For accessing the two endpoints of the relationship, two special annotations are available: @StartNode
and @EndNode. A field annotated with one of these annotations will provide read-only access to the
corresponding endpoint, depending on the chosen annotation.

For the relationship-type a String or RelationshipType field annotated with @RelationshipType
is available. When Relationship-Entities are instantiated directly, the relationship type has to be provided
either in this annotated field or as part of the @RelationshipEntity annotation.

@NodeEntity

public class Actor {

 public Role playedIn(Movie movie, String title) {

 return relateTo(movie, Role.class, "ACTS_IN");

 }

}

@RelationshipEntity

public class Role {

 String title;

 @StartNode private Actor actor;

 @EndNode private Movie movie;

}

Example 20.9 Relationship entity (in advanced mapping)

@RelatedToVia: Accessing relationship entities

To provide easy programmatic access to the richer relationship entities of the data model, the annotation
@RelatedToVia can be added on fields of type Iterable<T> or Set<T> or T, where T is a
@RelationshipEntity-annotated class. These fields provide access to relationship entities.

please define productname in your docbook file!

3.0.0.M1 Good Relationships 56

@NodeEntity

public class Actor {

 @RelatedToVia

 @Set<Role> roles=new HashSet<Role>();

 public Role playedIn(Movie movie, String title) {

 Role role=new Role(this,movie,title);

 roles.add(role);

 return role;

 }

 @RelatedToVia(type="FRIEND_OF", direction=Direction.INCOMING)

 Friendship bestFriend;

}

@RelationshipEntity(type = "ACTS_IN")

public class Role {

 String title;

 @StartNode private Actor actor;

 @EndNode private Movie movie;

}

@RelationshipEntity

public class Friendship {

 Date since;

 @StartNode private Actor actor;

 @EndNode private Person buddy;

}

Example 20.10 Relationship entity (in simple mapping)

Relationship Type Precedence

In the example above we show how to specify a default relationship type, and how to provide the
relationship type using an annotation property. Here is an example of using the @RelationshipType
annotation on a member variable on the relationship entity; we call this dynamic relationship type.

@RelationshipEntity(type = "colleague")

public class Acquaintance {

 @StartNode private Actor actor;

 @EndNode private Person acquaintance;

 @RelationshipType private String connection;

 public Acquaintance(Actor actor, Person acquaintance, String connection) {

 ...

Actor frankSinatra = ...

Person carloGambino = ...

new Acquaintance(frankSinatra, carloGambino, "its_complicated")

Example 20.11 Dynamic Relationship Type (simple mapping)

Note
Because dynamic type information is, well, dynamic, it is generally not possible to read the
mapping backwards using SDN. The relationship still exists, but SDN cannot help you access it
because it does not know what type you gave it. Also, for this reason, we require you to specify
a default relationship type, so that we can at least attempt the reverse mapping.

please define productname in your docbook file!

3.0.0.M1 Good Relationships 57

Should you happen to provide conflicting relationship types, we have established the following
precedence, in priority order:

1. Dynamic

2. Annotation-provided

3. Default

Discriminating Relationships Based On End Node Type

In some cases, you want to model two different aspects of a conceptual relationship using the same
relationship type. Here is a canonical example:

 @NodeEntity

 class Person {

 @RelatedTo(type="OWNS")

 Car car;

 @RelatedTo(type="OWNS")

 Pet pet;

 ...

Example 20.12 Clashing Relationship Types

It is clear how we can map these relationships: by looking at the type of the end node. To enable this, we
have introduced an boolean annotation parameter enforceTargetType, which is disabled by default.
Our example now reads:

 @NodeEntity

 class Person {

 @RelatedTo(type="OWNS", enforceTargetType=true)

 Car car;

 @RelatedTo(type="OWNS", enforceTargetType=true)

 Pet pet;

 ...

Example 20.13 Discriminating Relationship Types Using End Node Type

The example easily generalises to collections too of course, but there are a few note-worthy rules and
corner cases:

• You need to annotate all clashing relationships.

• You can't have two fields, two collections, or a field and a collection, with the same relationship type
and identical end node types. SDN does not store metadata about the origin of a relationship. So when
saving the entity, the first field or collection would be overwritten by the second, with the processing
order being non-deterministic.

• You can have clashing relation ship types when end nodes share a supertype.

• A variation on the above, you cannot have two fields or two collections with the same relationship
type and substitutable end node types.

please define productname in your docbook file!

3.0.0.M1 Good Relationships 58

• You can however have a field and a collection where end node types inherit from each other.

20.6 Indexing

Indexing is used in Neo4j to quickly find nodes and relationships to start graph operations from. Either
for manually traversing the graph, using the traversal framework, cypher queries or for "global" graph
operations. Indexes are also employed to ensure uniqueness of elements with certain properties.

The Neo4j graph database employs different index providers for exact lookups and fulltext searches.
Lucene is the default index provider implementation. Each named index is configured to be fulltext or
exact. There is also a spatial index provider for geo-searches.

Exact and numeric index

When using the standard Neo4j API, nodes and relationships have to be manually indexed with key-
value pairs, typically being the property name and value. When using Spring Data Neo4j, this task
is simplified to just adding an @Indexed annotation on entity fields by which the entity should be
searchable. This will result in automatic updates of the index every time an indexed field changes.

Numerical fields are indexed numerically so that they are available for range queries. All other fields
are indexed with their string representation. If a numeric field should not be indexed numerically, it is
possible to switch it off with @Indexed(numeric=false).

The @Indexed annotation also provides the option of using a custom index name. The default index
name is the simple class name of the entity, so that each class typically gets its own index. It is
recommended to not have two entity classes with the same class name, regardless of package.

If a field is declared in a superclass but different indexes for subclasses are needed, the level attribute
declares what will be used as index. Level.CLASS uses the class where the field was declared and
Level.INSTANCE uses the class that is provided or of the actual entity instance.

The indexes can be queried by using a repository (see
Section 20.8, “CRUD with repositories”). The repository is an instance
of org.springframework.data.neo4j.repository.IndexRepository. The methods
findByPropertyValue() and findAllByPropertyValue() work on the exact indexes and return
the first or all matches. To do range queries, use findAllByRange() (please note that currently both
values are inclusive).

For providing explicit index names the repository has to extend NamedIndexRepository. This adds
the shown methods with another signature that take the index name as first parameter.

please define productname in your docbook file!

3.0.0.M1 Good Relationships 59

@NodeEntity

class Person {

 @Indexed(indexName = "people") String name;

 @Indexed int age;

}

GraphRepository<Person> graphRepository = template.repositoryFor(Person.class);

// Exact match, in named index

Person mark = graphRepository.findByPropertyValue("people", "name", "mark");

// Numeric range query, index name inferred automatically

for (Person middleAgedDeveloper : graphRepository.findAllByRange("age", 20, 40)) {

 Developer developer=middleAgedDeveloper.projectTo(Developer.class);

}

Example 20.14 Indexing entities

Fulltext indexes

Spring Data Neo4j also supports fulltext indexes. By default, indexed fields are stored in an exact
lookup index. To have them analyzed and prepared for fulltext search, the @Indexed annotation has
the type attribute which can be set to IndexType.FULLTEXT. Please note that fulltext indexes require
a separate index name as the fulltext configuration is stored in the index itself.

Access to the fulltext index is provided by the findAllByQuery() repository method. Wildcards like
* are allowed. Generally though, the fulltext querying rules of the underlying index provider apply. See
the Lucene documentation for more information on this.

@NodeEntity

class Person {

 @Indexed(indexName = "people-search", type=FULLTEXT) String name;

}

GraphRepository<Person> graphRepository =

 template.repositoryFor(Person.class);

Person mark = graphRepository.findAllByQuery("people-search", "name", "ma*");

Example 20.15 Fulltext indexing

Note

Please note that indexes are currently created on demand, so whenever an index that doesn't
exist is requested from a query or get operation it is created. This is subject to change but
has currently the implication that those indexes won't be configured as fulltext which causes
subsequent fulltext updates to those indexes to fail.

Unique indexes

Unique indexing with index.putIfAbsent and UniqueFactory was introduced in Neo4j 1.6.
It is also available via the REST API. In Spring Data Neo4j this is made available via
Neo4jTemplate.getOrCreateNode and Neo4jTemplate.getOrCreateRelationship.

In an entity at most one field can be annotated with @Indexed(unique=true) regardless of the index-
type used. The uniqueness will be taken into account when creating the entity by reusing an existing
entity if that unique key-combination already exists. On saving of the field it will be cross-checked against

http://lucene.apache.org

please define productname in your docbook file!

3.0.0.M1 Good Relationships 60

the index and fail with a DataIntegrityViolationException if the field was changed to an already existing
unique value. Null values are no longer allowed for these properties.

Note
This works for both Node-Entities as well as Relationship-Entities. Relationship-Uniqueness in
Neo4j is global so that an existing unique instance of this relationship may connect two completely
different nodes and might also have a different type.

// creates or finds a node with the unique index-key-value combination

// and initializes it with the properties given

template.getOrCreateNode("users", "login", "mh", map("name","Michael","age",37));

@NodeEntity class Person {

 @Indexed(unique = true) String name;

}

Person mark1 = repository.save(new Person("mark"));

Person mark2 = repository.save(new Person("mark"));

// just one node is created

assertEquals(mark1,mark2);

assertEquals(1, personRepository.count());

Person thomas = repository.save(new Person("thomas"));

thomas.setName("mark");

repository.save(thomas); // fails with a DataIntegrityViolationException

Example 20.16 Unique indexing

Manual index access

The index for a domain class is also available from Neo4jTemplate via the getIndex() method. The
second parameter is optional and takes the index name if it should not be inferred from the class name.
It returns the index implementation that is provided by Neo4j.

@Autowired Neo4jTemplate template;

// Default index

Index<Node> personIndex = template.getIndex(null, Person.class);

personIndex.query(new QueryContext(NumericRangeQuery.newÍntRange("age", 20, 40, true,

 true))

 .sort(new Sort(new SortField("age", SortField.INT, false))));

// Named index

Index<Node> namedPersonIndex = template.getIndex("people",Person.class);

namedPersonIndex.get("name", "Mark");

// Fulltext index

Index<Node> personFulltextIndex = template.getIndex("people-search", Person.class);

personFulltextIndex.query("name", "*cha*");

personFulltextIndex.query("{name:*cha*}");

Example 20.17 Manual index retrieval by type and name

It is also possible to pass in the property name of the entity with an @Indexed annotation whose index
should be returned.

please define productname in your docbook file!

3.0.0.M1 Good Relationships 61

@Autowired Neo4jTemplate template;

Index<Node> personIndex = template.getIndex(Person.class, "age");

personIndex.query(new QueryContext(NumericRangeQuery.newÍntRange("age", 20, 40, true,

 true))

 .sort(new Sort(new SortField("age", SortField.INT, false))));

// Fulltext index

Index<Node> personFulltextIndex = template.getIndex(Person.class,"name");

personFulltextIndex.query("name", "*cha*");

personFulltextIndex.query("{name:*cha*}");

Example 20.18 Manual index retrieval by property configuration

Index queries in Neo4jTemplate

For querying the index, the template offers query methods that take either the exact match parameters
or a query object/expression, return the results as Result objects which can then be converted and
projected further using the result-conversion-dsl (see Section 20.7, “Neo4jTemplate”).

Neo4j Auto Indexes

Neo4j allows to configure auto-indexing for certain properties on nodes and relationships. This
auto-indexing differs from the approach used in Spring Data Neo4j because it only updates the
indexes when the transaction is committed. So the index modifications will only be available after
the successful commit. It is possible to use the specific index names node_auto_index and
relationship_auto_index when querying indexes in Spring Data Neo4j either with the query
methods in template and repositories or via Cypher.

Spatial Indexes

Spring Data Neo4j offers limited support for spatial queries using the neo4j-spatial library. See the
separate chapter Section 20.11, “Geospatial Queries” for details.

20.7 Neo4jTemplate

The Neo4jTemplate offers the convenient API of Spring templates for the Neo4j graph database. The
Spring Data Neo4j Object Graph mapping builds upon the core functionality of the template to persist
objects to the graph and load them in a variety of ways. The template handles the active mapping mode
(Section 20.1, “Object Graph Mapping”) transparently.

Besides methods for creating, storing and deleting entities, nodes and relationships in the graph,
Neo4jTemplate also offers a wide range of query methods. To reduce the proliferation of query
methods a simple result handling DSL was added.

Basic operations

For direct retrieval of nodes and relationships, the getReferenceNode(), getNode() and
getRelationship() methods can be used.

There are methods (createNode() and createRelationship()) for creating nodes and
relationships that automatically set provided properties.

http://docs.neo4j.org/chunked/milestone/auto-indexing.html

please define productname in your docbook file!

3.0.0.M1 Good Relationships 62

Neo4jOperations neo = new Neo4jTemplate(graphDatabase);

 Node mark = neo.createNode(map("name", "Mark"));

 Node thomas = neo.createNode(map("name", "Thomas"));

 neo.createRelationshipBetween(mark, thomas, "WORKS_WITH",

 map("project", "spring-data"));

 neo.index("devs", thomas, "name", "Thomas");

 assertEquals("Mark",

 neo.query("start p=node({person}) match p<-[:WORKS_WITH]-other return other.name",

 map("person", asList(thomas.getId()))).to(String.class).single());

 // Index lookup

 assertEquals(thomas, neo.lookup("devs", "name", "Thomas").to(Node.class).single());

 // Index lookup with Result Converter

 assertEquals("Thomas", neo.lookup("devs", "name", "Thomas")

 .to(String.class, new ResultConverter<PropertyContainer, String>() {

 public String convert(PropertyContainer element, Class<String> type) {

 return (String) element.getProperty("name");

 }

 }).single());

Example 20.19 Neo4j template

Core-Operations

Neo4jTemplate provides access to some of the methods of the Neo4j-Core-API directly. So
accessing nodes and relationships (getReferenceNode, getNode, getRelationship,

getRelationshipBetween), creating nodes and relationships (createNode, createNodeAs,

createRelationshipBetween) and deleting them (delete, deleteRelationshipBetween)
are supported. It also provides access to the underlying GraphDatabase via getGraphDatabase.

Entity-Persistence

Neo4jTemplate allows to save, find(One/All), count, delete and projectTo entities. It
provides the stored type information via getStoredJavaType and can fetch lazy-loaded entities or
load them altogether.

Result

All querying methods of the template return a uniform result type: Result<T> which is also
an Iterable<T>. The query result offers methods of converting each element to a target type
result.to(Type.class) optionally supplying a ResultConverter<FROM,TO> which takes care
of custom conversions. By default most query methods can already handle conversions from and
to: Paths, Nodes, Relationship and GraphEntities as well as conversions backed by registered
ConversionServices. A converted Result<FROM> is an Iterable<TO>. Results can be limited to a
single value using the result.single() or result.singleOrNull() methods. It also offers
support for a pure callback function using a Handler<T>.

Indexing

Adding nodes and relationships to an index is done with the index() method.

please define productname in your docbook file!

3.0.0.M1 Good Relationships 63

The lookup() methods either take a field/value combination to look for exact matches in the index,
or a Lucene query object or string to handle more complex queries. All lookup() methods return a
Result<PropertyContainer> to be used or transformed.

Graph traversal

The traversal methods are at the core of graph operations. The traverse() method covers
the full traversal operation that takes a TraversalDescription (typically built with the
template.getGraphDatabase().traversalDescription() DSL) and runs it from the given
start node. traverse returns a Result<Path> to be used or transformed.

Cypher Queries

The Neo4jTemplate also allows execution of arbitrary Cypher queries. Via the query methods
the statement and parameter-Map are provided. Cypher Queries return tabular results, so the
Result<Map<String,Object>> contains the rows which can be either used as they are or converted
as needed.

Transactions

The Neo4jTemplate provides implicit transactions for some of its methods. For instance save
uses them. For other modifying operations please provide Spring Transaction management using
@Transactional or the TransactionTemplate.

Neo4j REST Server

If the template is configured to use a SpringRestGraphDatabase the operations that would be
expensive over the wire, like traversals and querying are executed efficiently on the server side by
using the REST API to forward those calls. All the other template methods require individual network
operations.

The REST-batch-mode of the SpringRestGraphDatabase is not yet exposed via the template, but
it is available via the graph database.

Lifecycle Events

Neo4j Template offers basic lifecycle events via Spring's event mechanism using ApplicationListener
and ApplicationEvent. The following hooks are available in the form of types of application event:

• BeforeSaveEvent

• AfterSaveEvent

• DeleteEvent - after the event has been deleted

The following example demonstrates how to hook into the application lifecycle and register listeners that
perform behaviour across types of entities during this life cycle:

please define productname in your docbook file!

3.0.0.M1 Good Relationships 64

 @Configuration

 @EnableNeo4jRepositories

 public class ApplicationConfig extends Neo4jConfiguration {

 ...

 @Bean

 ApplicationListener<BeforeSaveEvent> beforeSaveEventApplicationListener() {

 return new ApplicationListener<BeforeSaveEvent>() {

 @Override

 public void onApplicationEvent(BeforeSaveEvent event) {

 AcmeEntity entity = (AcmeEntity) event.getEntity();

 entity.setUniqueId(acmeIdFactory.create());

 }

 };

 }

 @Bean

 ApplicationListener<AfterSaveEvent> afterSaveEventApplicationListener() {

 return new ApplicationListener<AfterSaveEvent>() {

 @Override

 public void onApplicationEvent(AfterSaveEvent event) {

 AcmeEntity entity = (AcmeEntity) event.getEntity();

 auditLog.onEventSaved(entity);

 }

 };

 }

 @Bean

 ApplicationListener<DeleteEvent> deleteEventApplicationListener() {

 return new ApplicationListener<DeleteEvent>() {

 @Override

 public void onApplicationEvent(DeleteEvent event) {

 AcmeEntity entity = (AcmeEntity) event.getEntity();

 auditLog.onEventDeleted(entity);

 }

 };

 }

 ...

Example 20.20 Auditing Entities and Generating Unique Application-level IDs

Changes made to entities in the before-save event handler are reflected in the stored entity - after-save
ones are not.

20.8 CRUD with repositories

The repositories provided by Spring Data Neo4j build on the composable repository infrastructure in
Spring Data Commons. They allow for interface based composition of repositories consisting of provided
default implementations for certain interfaces and additional custom implementations for other methods.

Spring Data Neo4j repositories support annotated and named queries for the Neo4j Cypher query-
language.

Spring Data Neo4j comes with typed repository implementations that provide methods for locating node
and relationship entities. There are several types of basic repository interfaces and implementations.
CRUDRepository provides basic operations, IndexRepository and NamedIndexRepository
delegate to Neo4j's internal indexing subsystem for queries, and TraversalRepository handles
Neo4j traversals.

http://static.springsource.org/spring-data/data-commons/docs/current/reference/html/#repositories
http://docs.neo4j.org/chunked/milestone/query-lang.html

please define productname in your docbook file!

3.0.0.M1 Good Relationships 65

With the RelationshipOperationsRepository it is possible to access, create and delete
relationships between entitites or nodes. The SpatialRepository allows geographic searches
(Section 20.11, “Geospatial Queries”)

GraphRepository is a convenience repository interface, combining CRUDRepository,
IndexRepository, and TraversalRepository. Generally, it has all the desired repository
methods. If other operations are required then the additional repository interfaces should be added to
the individual interface declaration.

CRUDRepository

CRUDRepository delegates to the configured TypeRepresentationStrategy (see Section 20.15,
“Entity type representation”) for type based queries.

Load an entity instance via an id
T findOne(id)

Check for existence of an id in the graph
boolean exists(id)

Iterate over all nodes of a node entity type
EndResult<T> findAll() (supported in future versions: EndResult<T> findAll(Sort)
and Page<T> findAll(Pageable))

Count the instances of the repository entity type
Long count()

Save entities
T save(T) and Iterable<T> save(Iterable<T>)

Delete graph entities
void delete(T), void; delete(Iterable<T>), and deleteAll()

IndexRepository and NamedIndexRepository

IndexRepository works with the indexing subsystem and provides methods to find entities by
indexed properties, ranged queries, and combinations thereof. The index key is the name of the indexed
entity field, unless overridden in the @Indexed annotation.

Iterate over all indexed entity instances with a certain field value
EndResult<T> findAllByPropertyValue(key, value)

Get a single entity instance with a certain field value
T findByPropertyValue(key, value)

Iterate over all indexed entity instances with field values in a certain numerical range (inclusive)
EndResult<T> findAllByRange(key, from, to)

Iterate over all indexed entity instances with field values matching the given fulltext string or
QueryContext query

EndResult<T> findAllByQuery(key, queryOrQueryContext)

There is also a NamedIndexRepository with the same methods, but with an additional index name
parameter, making it possible to query any index.

please define productname in your docbook file!

3.0.0.M1 Good Relationships 66

TraversalRepository

TraversalRepository delegates to the Neo4j traversal framework.

Iterate over a traversal result
Iterable<T> findAllByTraversal(startEntity, traversalDescription)

Query and Finder Methods

Annotated queries

Queries using the Cypher graph query language can be supplied with the @Query annotation. That
means every method annotated with @Query("start n=node:IndexName(key={node or 0})
match (n)-->(m) return m") will use the supplied query string. The named or indexed parameter
{node} will be substituted by the actual method parameter. Node and Relationship-Entities are handled
directly, Iterables thereof as well. All other parameters are replaced directly (i.e. Strings, Longs, etc).
There is special support for the Sort and Pageable parameters from Spring Data Commons, which
are supported to add programmatic paging and sorting (alternatively static paging and sorting can be
supplied in the query string itself). For using the named parameters you have to either annotate the
parameters of the method with the @Param("node") annotation or enable debug symbols. Indexed
parameters are always usable.

If it is required that paged results return the correct total count, the @Query annotation can be supplied
with a count query in the countQuery attribute. This query is executed separately after the result query
and its result is used to populate the totalCount property of the returned Page.

Named queries

Spring Data Neo4j also supports the notion of named queries which are externalized in property-
config-files (META-INF/neo4j-named-queries.properties). Those files have the format:
Entity.finderName=query (e.g. Person.findBoss=start p=node({0}) match (p)<-

[:BOSS]-(boss) return boss). Otherwise named queries support the same parameters as
annotated queries. For count queries the lookup name is Entity.finderName.count=count-
query. The default query lookup names can be overriden by using an @Query annotation with
queryName="my-query-name" or countQueryName="my-query-name".

Query results

Typical results for queries are Iterable<Type>, Iterable<Map<String,Object>>, Type and
Page<Type>. Nodes and Relationships are converted to their respective Entities (if they exist). Other
values are converted using the registered Spring conversion services (e.g. enums).

Cypher examples

There is a screencast available showing many features of the query language. The following examples
are taken from the cineasts dataset of the tutorial section.

start n=node(0) return n

returns the node with id 0

start movie=node:Movie(title='Matrix') return movie

returns the nodes which are indexed with title equal to 'Matrix'

http://video.neo4j.org/ybMbf/screencast-introduction-to-cypher

please define productname in your docbook file!

3.0.0.M1 Good Relationships 67

start movie=node:Movie(title='Matrix') match (movie)<-[:ACTS_IN]-(actor)

return actor.name

returns the names of the actors that have a ACTS_IN relationship to the movie node for 'Matrix'

start movie=node:Movie(title='Matrix') match (movie)<-[r:RATED]-(user) where

r.stars > 3 return user.name, r.stars, r.comment

returns users names and their ratings (>3) of the movie titled 'Matrix'

start user=node:User(login='micha') match (user)-[:FRIEND]-(friend)-

[r:RATED]->(movie) return movie.title, AVG(r.stars), COUNT(*) order by

AVG(r.stars) desc, COUNT(*) desc

returns the movies rated by the friends of the user 'micha', aggregated by movie.title, with averaged
ratings and rating-counts sorted by both

public interface MovieRepository extends GraphRepository<Movie> {

 // returns the node with id equal to idOfMovie parameter

 @Query("start n=node({0}) return n")

 Movie getMovieFromId(Integer idOfMovie);

 // returns the nodes which will use index named title equal to movieTitle parameter

 // movieTitle String must not contain any spaces, otherwise you will receive a

 NullPointerException.

 @Query("start movie=node:Movie(title={0}) return movie")

 Movie getMovieFromTitle(String movieTitle);

 // returns the Actors that have a ACTS_IN relationship to the movie node with the

 title equal to movieTitle parameter.

 // (The parenthesis around 'movie' and 'actor' in the match clause are optional.)

 @Query("start movie=node:Movie(title={0}) match (movie)<-[:ACTS_IN]-(actor) return

 actor")

 Page<Actor> getActorsThatActInMovieFromTitle(String movieTitle, PageRequest);

 // returns users who rated a movie (movie parameter) higher than rating (rating

 parameter)

 @Query("start movie=node:({0}) " +

 "match (movie)<-[r:RATED]-(user) " +

 "where r.stars > {1} " +

 "return user")

 Iterable<User> getUsersWhoRatedMovieFromTitle(Movie movie, Integer rating);

 // returns users who rated a movie based on movie title (movieTitle parameter) higher

 than rating (rating parameter)

 @Query("start movie=node:Movie(title={0}) " +

 "match (movie)<-[r:RATED]-(user) " +

 "where r.stars > {1} " +

 "return user")

 Iterable<User> getUsersWhoRatedMovieFromTitle(String movieTitle, Integer rating);

 }

Example 20.21 Examples of Cypher queries placed on repository methods with @Query where values
are replaced with method parameters, as described in the the section called “Annotated queries”)
section.

please define productname in your docbook file!

3.0.0.M1 Good Relationships 68

Queries derived from finder-method names

As known from Rails or Grails it is possible to derive queries for domain entities from finder method
names like Iterable<Person> findByNameAndAgeGreaterThan(String name, int age).
Using the infrastructure in Spring Data Commons that allows to collect the meta information about
entities and their properties a finder method name can be split into its semantic parts and converted into
a cypher query. @Indexed fields will be converted into index-lookups of the start clause, navigation
along relationships will be reflected in the match clause properties with operators will end up as
expressions in the where clause. Order and limiting of the query will by handled by provided Pageable
or Sort parameters. The other parameters will be used in the order they appear in the method signature
so they should align with the expressions stated in the method name.

public interface PersonRepository

 extends GraphRepository<Person> {

// start person=node:Person(id={0}) return person

Person findById(String id)

// start person=node:Person({0}) return person - {0} will be "id:"+name

Iterable<Person> findByNameLike(String name)

// start person=node:__types__("className"="com...Person")

// where person.age = {0} and person.married = {1}

// return person

Iterable<Person> findByAgeAndMarried(int age, boolean married)

// start person=node:__types__("className"="com...Person")

// match person<-[:CHILD]-parent

// where parent.age > {0} and person.married = {1}

// return person

Iterable<Person> findByParentAgeAndMarried(int age, boolean married)

}

Example 20.22 Some examples of methods and resulting Cypher queries of a PersonRepository

Derived Finder Methods

Use the meta information of your domain model classes to declare repository finders that navigate
along relationships and compare properties. The path defined with the method name is used to create
a Cypher query that is executed on the graph.

please define productname in your docbook file!

3.0.0.M1 Good Relationships 69

 @NodeEntity

 public static class Person {

 @GraphId Long id;

 private String name;

 private Group group;

 private Person(){}

 public Person(String name) {

 this.name = name;

 }

 }

 @NodeEntity

 public static class Group {

 @GraphId Long id;

 private String title;

 // incoming relationship for the person -> group

 @RelatedTo(type = "group", direction = Direction.INCOMING)

 private Set<Person> members=new HashSet<Person>();

 private Group(){}

 public Group(String title, Person...people) {

 this.title = title;

 members.addAll(asList(people));

 }

 }

 public interface PersonRepository extends GraphRepository<Person> {

 Iterable<Person> findByGroupTitle(String name);

 }

 @Autowired PersonRepository personRepository;

 Person oliver=personRepository.save(new Person("Oliver"));

 final Group springData = new Group("spring-data",oliver);

 groupRepository.save(springData);

 final Iterable<Person> members = personRepository.findByGroupTitle("spring-data");

 assertThat(members.iterator().next().name, is(oliver.name));

Example 20.23 Repository and usage of derived finder methods

Cypher-DSL repository

Spring Data Neo4j supports the new Cypher-DSL to write Cypher queries in a statically typed way.
Just by including CypherDslRepository to your repository you get the Page<T> query(Execute
query, params, Pageable page), Page<T> query(Execute query, Execute

countQuery, params, Pageable page) and the EndResult<T> query(Execute query,
params);. The result type of the Cypher-DSL builder is called Execute.

please define productname in your docbook file!

3.0.0.M1 Good Relationships 70

import static org.neo4j.cypherdsl.CypherQuery.*;

import static org.neo4j.cypherdsl.querydsl.CypherQueryDSL.*;

 public interface PersonRepository extends GraphRepository<Person>,

 CypherDslRepository<Person> {}

 @Autowired PersonRepository repo;

 // START company=node:Company(name={name}) MATCH company<-[:WORKS_AT]->person RETURN

 person

 Execute query = start(lookup("company", "Company", "name", param("name"))).

 match(path().from("company").in("WORKS_AT").to("person"

)).

 returns(identifier("person"))

 Page<Person> people = repo.query(query , map("name","Neo4j"), new PageRequest(1,10));

 QPerson person = QPerson.person;

 QCompany company = QCompany.company;

 Execute query = start(lookup(company, "Company", company.name, param("name"))).

 match(path().from(company).in("WORKS_AT").to(person).

 .where(person.firstName.like("P*").and(person.age.gt(25))).

 returns(identifier(person))

 EndResult<Person> people = repo.query(query , map("name","Neo4j"));

Example 20.24 Examples for Cypher-DSL repository

Cypher-DSL and QueryDSL

To use Cypher-DSL with Query-DSL the Mysema dependencies have to be declared explicitly as they
are optional in the Cypher-DSL project.

<dependency>

 <groupId>com.mysema.querydsl</groupId>

 <artifactId>querydsl-core</artifactId>

 <version>2.2.3</version>

 <optional>true</optional>

</dependency>

<dependency>

 <groupId>com.mysema.querydsl</groupId>

 <artifactId>querydsl-lucene</artifactId>

 <version>2.2.3</version>

 <optional>true</optional>

 <exclusions>

 <exclusion>

 <groupId>org.apache.lucene</groupId>

 <artifactId>lucene-core</artifactId>

 </exclusion>

 </exclusions>

</dependency>

<dependency>

 <groupId>com.mysema.querydsl</groupId>

 <artifactId>querydsl-apt</artifactId>

 <version>2.2.3</version>

 <scope>provided</scope>

</dependency>

It is possible to use the Cypher-DSL along with the predicates and code generation features of the
QueryDSL project. This will allow you to use Java objects as part of the query, rather than strings, for

please define productname in your docbook file!

3.0.0.M1 Good Relationships 71

the names of properties and such. In order to get this to work you first have to add a code processor
to your Maven build, which will parse your domain entities marked with @NodeEntity, and from that
generate QPerson-style classes, as shown in the previous section. Here is what you need to include
in your Maven POM file.

 <plugin>

 <groupId>com.mysema.maven</groupId>

 <artifactId>maven-apt-plugin</artifactId>

 <version>1.0.2</version>

 <configuration>

 <processor>org.springframework.data.neo4j.querydsl.SDNAnnotationProcessor</processor>

 </configuration>

 <executions>

 <execution>

 <id>test-sources</id>

 <phase>generate-test-sources</phase>

 <goals>

 <goal>test-process</goal>

 </goals>

 <configuration>

 <outputDirectory>target/generated-sources/test</

outputDirectory>

 </configuration>

 </execution>

 </executions>

 </plugin>

This custom QueryDSL AnnotationProcessor will generate the query classes that can be used when
constructing Cypher-DSL queries, as in the previous section.

Creating repositories

The Repository instances should normally be injected but can also be created manually via the
Neo4jTemplate.

please define productname in your docbook file!

3.0.0.M1 Good Relationships 72

public interface PersonRepository extends GraphRepository<Person> {}

@Autowired PersonRepository repo;

// OR

GraphRepository<Person> repo = template

 .repositoryFor(Person.class);

Person michael = repo.save(new Person("Michael", 36));

Person dave = repo.findOne(123);

Long numberOfPeople = repo.count();

EndResult<Person> devs =

 graphRepository.findAllByPropertyValue("occupation", "developer");

EndResult<Person> middleAgedPeople = graphRepository.findAllByRange("age", 20, 40);

EndResult<Person> aTeam = graphRepository.findAllByQuery("name", "A*");

Iterable<Person> aTeam = repo.findAllByQuery("name", "A*");

Iterable<Person> davesFriends = repo.findAllByTraversal(dave,

 Traversal.description().pruneAfterDepth(1)

 .relationships(KNOWS).filter(returnAllButStartNode()));

Example 20.25 Using basic GraphRepository methods

Composing repositories

The recommended way of providing repositories is to define a repository interface per domain class.
The mechanisms provided by the repository infrastructure will automatically detect them, along with
additional implementation classes, and create an injectable repository implementation to be used in
services or other spring beans.

please define productname in your docbook file!

3.0.0.M1 Good Relationships 73

public interface PersonRepository extends GraphRepository<Person>,

 PersonRepositoryExtension {}

// configure the repositories, preferably via the neo4j:repositories namespace

// (template reference is optional)

<neo4j:repositories base-package="org.example.repository"

 graph-database-context-ref="template"/>

// have it injected

@Autowired

PersonRepository personRepository;

// or created via the template

PersonRepository personRepository = template.repositoryFor(Person.class);

Person michael = personRepository.save(new Person("Michael",36));

Person dave=personRepository.findOne(123);

Iterable<Person> devs = personRepository.findAllByPropertyValue("occupation","developer");

Iterable<Person> aTeam = graphRepository.findAllByQuery("name","A*");

Iterable<Person> friends = personRepository.findFriends(dave);

// alternatively select some of the required repositories individually

public interface PersonRepository extends CRUDGraphRepository<Node,Person>,

 IndexQueryExecutor<Node,Person>, TraversalQueryExecutor<Node,Person>,

 PersonRepositoryExtension {}

// provide a custom extension if needed

public interface PersonRepositoryExtension {

 Iterable<Person> findFriends(Person person);

}

public class PersonRepositoryImpl implements PersonRepositoryExtension {

 // optionally inject default repository, or use DirectGraphRepositoryFactory

 @Autowired PersonRepository baseRepository;

 public Iterable<Person> findFriends(Person person) {

 return baseRepository.findAllByTraversal(person, friendsTraversal);

 }

}

// configure the repositories, preferably via the datagraph:repositories namespace

// (template reference is optional)

<neo4j:repositories base-package="org.springframework.data.neo4j"

 graph-database-context-ref="template"/>

// have it injected

@Autowired

PersonRepository personRepository;

Person michael = personRepository.save(new Person("Michael",36));

Person dave=personRepository.findOne(123);

EndResult<Person> devs =

 personRepository.findAllByPropertyValue("occupation","developer");

EndResult<Person> aTeam = graphRepository.findAllByQuery("name","A*");

Iterable<Person> friends = personRepository.findFriends(dave);

Example 20.26 Composing repositories

please define productname in your docbook file!

3.0.0.M1 Good Relationships 74

Note

If you use <context:component-scan> in your spring config, please make sure to put it
behind <neo4j:repositories>, as the RepositoryFactoryBean adds new bean definitions for
all the declared repositories, the context scan doesn't pick them up otherwise.

20.9 Conversion

Neo4jTemplate has a generic convert method which might also use projection underneath. The same
conversion facilities that are used by default in the result handling DSL are offered here for individual use.

Supported conversions are: Nodes to Paths and to Entities, Relationships to Paths and to Entities,
Paths to Node (EndNode), Relationships (LastRelationship) and to EntityPaths. Entities to Nodes or
Relationships.

It is also possible to provide a custom ResultConverter that additionally takes care of conversions.

Mapping Query Results

For both queries executed via the result conversion DSL as well as repository methods, it is possible
to specify a conversion of complex query results to POJO interfaces or objects. Those result objects
are then populated with the query result data and can be serialized and sent to a different part of the
applicaton, e.g. a frontend-ui.

Use an interface annotated with @QueryResult and getter methods which might be annotated with
@ResultColumn("columnName") to match the query-result column names. Or use a plain POJO,
both work.

please define productname in your docbook file!

3.0.0.M1 Good Relationships 75

public interface MovieRepository extends GraphRepository<Movie> {

@Query("START movie=node:Movie(id={0})

 MATCH movie-[rating?:rating]->(),

 movie<-[:ACTS_IN]-actor

 RETURN movie, COLLECT(actor), AVG(rating.stars)")

MovieData getMovieData(String movieId);

@QueryResult

public class MovieData {

 Movie movie;

 @ResultColumn("AVG(rating.stars)")

 Double rating;

 @ResultColumn("COLLECT(actor)")

 Collection<Actor> cast;

}

// alternatively use

@QueryResult

public interface MovieData {

 @ResultColumn("movie")

 Movie getMovie();

 @ResultColumn("AVG(rating.stars)")

 Double getRating();

 @ResultColumn("COLLECT(actor)")

 Iterable<Actor> getCast();

}

}

Example 20.27 Example of query result mapping

20.10 Projecting entities

As the underlying data model of a graph database doesn't imply and enforce strict type constraints like
a relational model does, it offers much more flexibility on how to model your domain classes and which
of those to use in different contexts.

For instance an order can be used in these contexts: customer, procurement, logistics, billing, fulfillment
and many more. Each of those contexts requires its distinct set of attributes and operations. As Java
doesn't support mixins one would put the sum of all of those into the entity class and thereby making it
very big, brittle and hard to understand. Being able to take a basic order and project it to a different (not
related in the inheritance hierarchy or even an interface) order type that is valid in the current context
and only offers the attributes and methods needed here would be very beneficial.

Spring Data Neo4j offers initial support for projecting node and relationship entities to different target
types. All instances of this projected entity share the same backing node or relationship, so changes
are reflected on the same data.

This could for instance also be used to handle nodes of a traversal with a unified (simpler) type (e.g. for
reporting or auditing) and only project them to a concrete, more functional target type when the business
logic requires it.

please define productname in your docbook file!

3.0.0.M1 Good Relationships 76

@NodeEntity

class Trainee {

 String name;

 @RelatedTo

 Set<Training> trainings;

}

for (Person person : graphRepository.findAllByPropertyValue("occupation","developer")) {

 Developer developer = person.projectTo(Developer.class);

 if (developer.isJavaDeveloper()) {

 trainInSpringData(developer.projectTo(Trainee.class));

 }

}

Example 20.28 Projection of entities

20.11 Geospatial Queries

SpatialRepository is a dedicated Repository for spatial queries. Spring Data Neo4j provides an
optional dependency to neo4j-spatial which is an advanced library for GIS operations. So if you include
the maven dependency in your pom.xml, Neo4j-Spatial and the required SPATIAL index provider is
available.

<dependency>

 <groupId>org.neo4j</groupId>

 <artifactId>neo4j-spatial</artifactId>

 <version>0.7-SNAPSHOT</version>

</dependency>

Example 20.29 Neo4j-Spatial Dependencies

To have your entities available for spatial index queries, please include a String property containing a
"well known text", location string. WKT is the Well Known Text Spatial Format eg. POINT(LON LAT)
or POLYGON ((LON1 LAT1 LON2 LAT2 LON3 LAT3 LON1 LAT1))

@NodeEntity

class Venue {

 String name;

 @Indexed(type = POINT, indexName = "VenueLocation") String wkt;

 public void setLocation(float lon, float lat) {

 this.wkt = String.format("POINT(%.2f %.2f)",lon,lat);

 }

}

venue.setLocation(56,15);

Example 20.30 Fields of Well Known Text

After adding the SpatialRepository to your repository you can use the
findWithinBoundingBox, findWithinDistance, findWithinWellKnownText.

https://github.com/neo4j/spatial
http://en.wikipedia.org/wiki/Well-known_text

please define productname in your docbook file!

3.0.0.M1 Good Relationships 77

 Iterable<Person> teamMembers = personRepository.findWithinBoundingBox("personLayer",

 55, 15, 57, 17);

Iterable<Person> teamMembers =

 personRepository.findWithinWellKnownText("personLayer", "POLYGON ((15 55, 15 57, 17 57,

 17 55, 15 55))");

Iterable<Person> teamMembers = personRepository.findWithinDistance("personLayer",

 16,56,70);

Example 20.31 Spatial Queries

public interface SpatialRepository<T> {

 ClosableIterable<T> findWithinBoundingBox(String indexName, double lowerLeftLat,

 double lowerLeftLon,

 double upperRightLat,

 double upperRightLon);

 ClosableIterable<T> findWithinDistance(final String indexName, final double

 lat, double lon, double distanceKm);

 ClosableIterable<T> findWithinWellKnownText(final String indexName, String

 wellKnownText);

}

Example 20.32 Methods of the Spatial Repository

20.12 Active Record Methods for Advanced Mapping Mode

This chapter only applies to the advanced mapping. Currently the Aspects introduce the following
methods by default, this will change in the future, there will be separate Mixin-Interfaces that can
selectively be mixed into the domain entities if needed. Otherwise the AspectJ interaction will be
restricted to field access interception and post-constructor handling.

The node and relationship aspects introduce (via AspectJ ITD - inter-type declaration) several methods
to the entities.

Persisting the node entity after creation and after changes outside of a transaction. Participates in an
open transaction, or creates its own implicit transaction otherwise.

nodeEntity.persist()

Accessing node and relationship IDs
nodeEntity.getNodeId() and relationshipEntity.getRelationshipId()

Accessing the node or relationship backing the entity
entity.getPersistentState()

equals() and hashCode() are delegated to the underlying state
entity.equals() and entity.hashCode()

Creating relationships to a target node entity, and returning the relationship entity instance
nodeEntity.relateTo(targetEntity, relationshipClass, relationshipType)

Retrieving a single relationship entity
nodeEntity.getRelationshipTo(targetEntity, relationshipClass,

relationshipType)

Creating relationships to a target node entity and returning the relationship
nodeEntity.relateTo(targetEntity, relationshipType)

please define productname in your docbook file!

3.0.0.M1 Good Relationships 78

Retrieving a single relationship
nodeEntity.getRelationshipTo(targetEnttiy, relationshipType)

Removing a single relationship
nodeEntity.removeRelationshipTo(targetEntity, relationshipType)

Remove the node entity, its relationships, and all index entries for it
nodeEntity.remove() and relationshipEntity.remove()

Project entity to a different target type, using the same backing state
entity.projectTo(targetClass)

Traverse, starting from the current node. Returns end nodes of traversal converted to the provided type.
nodeEntity.findAllByTraversal(targetType, traversalDescription)

Traverse, starting from the current node. Returns EntityPaths of the traversal result bound to the
provided start and end-node-entity types

Iterable<EntityPath> findAllPathsByTraversal(traversalDescription)

Executes the given Cypher query, providing the {self} variable with the node-id and returning the
results converted to the target type.

<T> Iterable<T> NodeBacked.findAllByQuery(final String query, final

Class<T> targetType)

Executes the given query, providing {self} variable with the node-id and returning the original result,
but with nodes and relationships replaced by their appropriate entities.

Iterable<Map<String,Object>> NodeBacked.findAllByQuery(final String

query)

Executes the given query, providing {self} variable with the node-id and returns a single result
converted to the target type.

<T> T NodeBacked.findByQuery(final String query, final Class<T>

targetType)

20.13 Transactions

Neo4j is a transactional database, only allowing modifications to be performed within transaction
boundaries. Reading data does however not require transactions. Spring Data Neo4j integrates nicely
with both the declarative transaction support with @Transactional as well as the manual transaction
handling with TransactionTemplate. It also supports the rollback mechanisms of the Spring Testing
library.

Spring Data Neo4j integrates with transaction managers configured using Spring. The simplest scenario
of just running the graph database uses a SpringTransactionManager provided by the Neo4j
kernel to be used with Spring's JtaTransactionManager. That is, configuring Spring to use Neo4j's
transaction manager.

Note

To avoid name collisons the transaction manager configured by Spring Data Neo4j is
called neo4jTransactionManager and is aliased to transactionManager. So defining a
separate transactionManager bean should not interfere with Spring Data Neo4j operations.

please define productname in your docbook file!

3.0.0.M1 Good Relationships 79

Note

The explicit XML configuration given below is encoded in the Neo4jConfiguration
configuration bean that uses Spring's @Configuration feature. This greatly simplifies the
configuration of Spring Data Neo4j.

<bean id="neo4jTransactionManager"

 class="org.springframework.data.neo4j.config.JtaTransactionManagerFactoryBean">

 <constructor-arg ref="graphDatabaseService"/>

</bean>

<tx:annotation-driven mode="aspectj" transaction-manager="neo4jTransactionManager"/>

Example 20.33 Simple transaction manager configuration

For scenarios with multiple transactional resources there are two options. The first option is to have
Neo4j participate in the externally configured transaction manager using the Spring support in Neo4j by
enabling the configuration parameter for your graph database. Neo4j will then use Spring's transaction
manager instead of its own.

<context:annotation-config />

<context:spring-configured/>

<bean id="transactionManager"

 class="org.springframework.transaction.jta.JtaTransactionManager">

 <property name="transactionManager">

 <bean id="jotm" class="org.springframework.data.neo4j.transaction.JotmFactoryBean"/>

 </property>

</bean>

<bean id="graphDatabaseService" class="org.neo4j.kernel.EmbeddedGraphDatabase"

 destroy-method="shutdown">

 <constructor-arg value="target/test-db"/>

 <constructor-arg>

 <map>

 <entry key="tx_manager_impl" value="spring-jta"/>

 </map>

 </constructor-arg>

</bean>

<tx:annotation-driven mode="aspectj" transaction-manager="transactionManager"/>

Example 20.34 Neo4j Spring integration

One can also configure a stock XA transaction manager (e.g. Atomikos, JOTM, App-Server-TM) to be
used with Neo4j and the other resources. For a bit less secure but fast 1-phase-commit-best-effort,
use ChainedTransactionManager, which comes bundled with Spring Data Neo4j. It takes a list of
transaction managers as constructor params and will handle them in order for transaction start and
commit (or rollback) in the reverse order.

please define productname in your docbook file!

3.0.0.M1 Good Relationships 80

<bean id="jpaTransactionManager"

 class="org.springframework.orm.jpa.JpaTransactionManager">

 <property name="entityManagerFactory" ref="entityManagerFactory"/>

</bean>

<bean id="jtaTransactionManager"

 class="org.springframework.data.neo4j.config.JtaTransactionManagerFactoryBean">

 <constructor-arg ref="graphDatabaseService"/>

</bean>

<bean id="transactionManager"

 class="org.springframework.data.neo4j.transaction.ChainedTransactionManager">

 <constructor-arg>

 <list>

 <ref bean="jpaTransactionManager"/>

 <ref bean="jtaTransactionManager"/>

 </list>

 </constructor-arg>

</bean>

<tx:annotation-driven mode="aspectj" transaction-manager="transactionManager"/>

Example 20.35 ChainedTransactionManager example

20.14 Detached node entities in advanced mapping mode

This section only applies to the advanced mapping (AspectJ-backed). The simple mapping always
detaches entities on load as it copies the data out of the graph into the entities and stores it back fully too.

Node entities can be in two different persistence states: attached or detached. By default, newly created
node entities are in the detached state. When persist() or template.save() is called on the
entity, it becomes attached to the graph, and its properties and relationships are stores in the database.
If the save operation is not called within a transaction, it automatically creates an implicit transaction
only for the operation.

Changing an attached entity inside a transaction will immediately write through the changes to the
datastore. Whenever an entity is changed outside of a transaction it becomes detached. The changes
are stored in the entity (its fields) itself until the next call to a save operation.

All entities returned by library functions are initially in an attached state. Just as with any other entity,
changing them outside of a transaction detaches them, and they must be reattached with persist()
for the data to be saved.

@NodeEntity

class Person {

 String name;

 Person(String name) { this.name = name; }

}

// Store Michael in the database.

Person p = new Person("Michael").persist();

Example 20.36 Persisting entities

Relating detached entities

As mentioned above, an entity simply created with the new keyword starts out detached. It also has
no state assigned to it. If you create a new entity with new and then throw it away, the database won't
be touched at all.

please define productname in your docbook file!

3.0.0.M1 Good Relationships 81

Now consider this scenario:

@NodeEntity

class Movie {

 private Actor topActor;

 public void setTopActor(Actor actor) {

 topActor = actor;

 }

}

@NodeEntity

class Actor {

}

Movie movie = new Movie();

Actor actor = new Actor();

movie.setTopActor(actor);

Example 20.37 Relationships outside of transactions

Neither the actor nor the movie has been assigned a node in the graph. If we were to call
movie.persist(), then Spring Data Neo4j would first create a node for the movie. It would then note
that there is a relationship to an actor, so it would call actor.persist() in a cascading fashion. Once the
actor has been persisted, it will create the relationship from the movie to the actor. All of this will be
done atomically in one transaction.

Important to note here is that if actor.persist() is called instead, then only the actor will be persisted.
The reason for this is that the actor entity knows nothing about the movie entity. It is the movie entity
that has the reference to the actor. Also note that this behavior is not dependent on any configured
relationship direction on the annotations. It is a matter of Java references and is not related to the data
model in the database.

The save operation (merge) stores all properties of the entity to the graph database and puts the entity
in attached mode. There is no need to update the reference to the Java POJO as the underlying backing
node handles the read-through transparently. If multiple object instances that point to the same node
are persisted, the ordering is not important as long as they contain distinct changes. For concurrent
changes a concurrent modification exception is thrown (subject to be parameterized in the future).

If the relationships form a cycle, then the entities will first of all be assigned a node in the database,
and then the relationships will be created. The cascading of persist() is however only cascaded to
related entity fields that have been modified.

In the following example, the actor and the movie are both attached entites, having both been previously
persisted to the graph:

actor.setName("Billy Bob");

movie.persist();

Example 20.38 Cascade for modified fields

In this case, even though the movie has a reference to the actor, the name change on the actor will
not be persisted by the call to movie.persist(). The reason for this is, as mentioned above, that
cascading will only be done for fields that have been modified. Since the movie.topActor field has
not been modified, it will not cascade the persist operation to the actor.

please define productname in your docbook file!

3.0.0.M1 Good Relationships 82

20.15 Entity type representation

There are several ways to represent the Java type hierarchy of the data model in the graph. In general,
for all node and relationship entities, type information is needed to perform certain repository operations.
Some of this type information hierarchy is saved in the graph database.

As the type information is also stored in node/relationship-properties and/or indexes it might amount
to a substantial amount of data in the graph. It is possible to use an @TypeAlias("name")
annotation on nodes and relationships to have a short constant name for each type which is (unlike
the default approach) renaming-refactoring-safe. For using the simple class name by default, register a
Neo4jMappingContext bean configured with an instance of EntityAlias. It is also possible to opt
out of storing type information using the NoopTypeRepresentationStrategies.

Implementations of TypeRepresentationStrategy take care of persisting this information during
entity instance creation. They also provide the repository methods that use this type information to
perform their operations, like findAll and count. The derived finderMethods also use the type
information for graph global queries.

There are three available implementations for node entities to choose from.

• IndexingNodeTypeRepresentationStrategy this is the default strategy used.

Stores entity types in the integrated index. Each entity node gets indexed with its type and all
supertypes and interfaces that are also @NodeEntity-annotated. The special index used for this
is named __types__. Additionally, in order to retrieve the type of an entity node, each node has a
property __type__ with the fully qualified type of that entity.

• SubReferenceNodeTypeRepresentationStrategy

Stores entity types in a tree in the graph representing the type and interface hierarchy. Each entity
has a INSTANCE_OF relationship to a type node representing that entity's type. The type may or may
not have a SUBCLASS_OF relationship to another type node.

• NoopNodeTypeRepresentationStrategy

Does not store any type information, and does hence not support finding by type, counting by type,
or retrieving the type of any entity.

There are two implementations for relationship entities available, with the same behavior as the
corresponding ones above:

• IndexingRelationshipTypeRepresentationStrategy

Stores relationship entity types in the integrated index. Each entity relationship gets indexed with its
type and all supertypes and interfaces that are also @RelationshipEntity-annotated. The special
index used for this is named __rel_types__. Additionally, in order to retrieve the type of an entity
relationship, each relationship has a property __type__ with the fully qualified type of that entity.

• NoopRelationshipTypeRepresentationStrategy

Spring Data Neo4j will by default autodetect which are the most suitable strategies for node and
relationship entities. For new data stores, it will always opt for the indexing strategies. If a data store was
created with the olderSubReferenceNodeTypeRepresentationStrategy, then it will continue to
use that strategy for node entities. It will however in that case use the no-op strategy for relationship

please define productname in your docbook file!

3.0.0.M1 Good Relationships 83

entities, which means that the old data stores have no support for searching for relationship entities.
The indexing strategies are recommended for all new users.

20.16 Bean validation (JSR-303)

Spring Data Neo4j supports property-based validation support. When a property is changed and
persisted, it is checked against the annotated constraints, e.g. @Min, @Max, @Size, etc. Validation errors
throw a ValidationException. The validation support that comes with Spring is used for evaluating
the constraints. To use this feature, a validator has to be registered with the Neo4jTemplate, which is
done automatically by the Neo4jConfiguration if one is present in the Spring Config.

@NodeEntity

class Person {

 @Size(min = 3, max = 20)

 String name;

 @Min(0) @Max(100)

 int age;

}

Example 20.39 Bean validation

The validation supports needs the bean validation API and a reference implementation configured. Right
now this is the Hibernate Validator by default (which is not integrated with Hibernate ORM). The maven
dependency is:

<dependency>

 <groupId>org.hibernate</groupId>

 <artifactId>hibernate-validator</artifactId>

 <version>4.2.0.Final</version>

</dependency>

// the application-context should contain a LocalValidatorFactoryBean

<bean id="validator"

 class="org.springframework.validation.beanvalidation.LocalValidatorFactoryBean"/>

Example 20.40 Validation setup

please define productname in your docbook file!

3.0.0.M1 Good Relationships 84

21. Environment setup

Spring Data Neo4j dramatically simplifies development, but some setup is naturally required. For
building the application, Maven needs to be configured to include the Spring Data Neo4j dependencies.
For the advanced mapping mode, it is necessary to configure the AspectJ weaving. After the build setup
is complete, the Spring application needs to be configured to make use of Spring Data Neo4j. Examples
for these different setups can be found in the Spring Data Neo4j examples.

Spring Data Neo4j projects can be built using Maven. There are also means to build them with Gradle
or Ant/Ivy.

21.1 Dependencies for Spring Data Neo4j Simple Mapping

For the simple POJO mapping it is enough to add the org.springframework.data:spring-data-
neo4j:2.1.0.RELEASE dependency to your project.

<dependency>

<groupId>org.springframework.data</groupId>

<artifactId>spring-data-neo4j</artifactId>

<version>2.1.0.RELEASE</version>

</dependency>

Example 21.1 Maven dependencies for Spring Data Neo4j

21.2 Gradle configuration for Advanced Mapping (AspectJ)

The necessary build plugin to build Spring Data Neo4j projects with Gradle is available as part of the
Spring Data Neo4j distribution or on Github which makes the usage as easy as:

sourceCompatibility = 1.6

targetCompatibility = 1.6

springVersion = "3.1.0.RELEASE"

springDataNeo4jVersion = "2.1.0.RELEASE"

aspectjVersion = "1.6.12"

apply from:'https://github.com/SpringSource/spring-data-neo4j/raw/master/build/

gradle/springdataneo4j.gradle'

configurations {

 runtime

 testCompile

}

repositories {

 mavenCentral()

 mavenLocal()

 mavenRepo urls: "http://maven.springframework.org/release"

}

Example 21.2 Gradle Build Configuration

The actual springdataneo4j.gradle is very simple, just decorating the javac tasks with the iajc
ant task.

http://spring.neo4j.org/examples

please define productname in your docbook file!

3.0.0.M1 Good Relationships 85

21.3 Ant/Ivy configuration for Advanced Mapping (AspectJ)

The supplied sample ant build configuration is mainly about resolving the dependencies for Spring Data
Neo4j Aspects and AspectJ using Ivy and integrating the iajc ant task in the build.

 <taskdef resource="org/aspectj/tools/ant/taskdefs/

aspectjTaskdefs.properties" classpath="${lib.dir}/aspectjtools.jar"/>

<target name="compile" description="Compile production classes" depends="lib.retrieve">

 <mkdir dir="${main.target}" />

 <iajc sourceroots="${main.src}" destDir="${main.target}" classpathref="path.libs" source="1.6">

 <aspectpath>

 <pathelement location="${lib.dir}/spring-aspects.jar"/>

 </aspectpath>

 <aspectpath>

 <pathelement location="${lib.dir}/spring-data-neo4j-aspects.jar"/>

 </aspectpath>

 </iajc>

</target>

Example 21.3 Ant/Ivy Build Configuration

21.4 Maven configuration for Advanced Mapping

Spring Data Neo4j projects are easiest to build with Apache Maven. The core dependency is Spring Data
Neo4j Aspects which comes with transitive dependencies to Spring Data Neo4j, Spring Data Commons,
parts of the Spring Framework, AspectJ and the Neo4j graph database.

Repositories

The milestone releases of Spring Data Neo4j are available from the dedicated milestone repository.
Neo4j releases and milestones are available from Maven Central.

<repository>

 <id>spring-maven-milestone</id>

 <name>Springframework Maven Repository</name>

 <url>http://maven.springframework.org/milestone</url>

</repository>

Example 21.4 Spring milestone repository

Dependencies

The dependency on spring-data-neo4j-aspects will transitively pull in the necessary parts of
Spring Framework (core, context, aop, aspects, tx), AspectJ, Neo4j, and Spring Data Commons. If you
already use these (or different versions of these) in your project, then include those dependencies on
your own. In this case, please make sure that the versions match.

https://github.com/SpringSource/spring-data-neo4j/raw/master/build/ivy

please define productname in your docbook file!

3.0.0.M1 Good Relationships 86

<dependency>

 <groupId>org.springframework.data</groupId>

 <artifactId>spring-data-neo4j-aspects</artifactId>

 <version>2.1.0.RELEASE</version>

</dependency>

<dependency>

 <groupId>org.aspectj</groupId>

 <artifactId>aspectjrt</artifactId>

 <version>1.6.12</version>

</dependency>

Example 21.5 Maven dependencies

Maven AspectJ build configuration

Since the advanced mapping uses AspectJ for build-time aspect weaving of entities, it is necessary to
hook the AspectJ Maven plugin into the build process. The plugin also has its own dependencies. You
also need to explicitly specify the aspect libraries (spring-aspects and spring-data-neo4j-aspects).

please define productname in your docbook file!

3.0.0.M1 Good Relationships 87

<plugin>

 <groupId>org.codehaus.mojo</groupId>

 <artifactId>aspectj-maven-plugin</artifactId>

 <version>1.2</version>

 <dependencies>

 <!-- NB: You must use Maven 2.0.9 or above or these are ignored (see MNG-2972) -->

 <dependency>

 <groupId>org.aspectj</groupId>

 <artifactId>aspectjrt</artifactId>

 <version>1.6.12</version>

 </dependency>

 <dependency>

 <groupId>org.aspectj</groupId>

 <artifactId>aspectjtools</artifactId>

 <version>1.6.12</version>

 </dependency>

 </dependencies>

 <executions>

 <execution>

 <goals>

 <goal>compile</goal>

 <goal>test-compile</goal>

 </goals>

 </execution>

 </executions>

 <configuration>

 <outxml>true</outxml>

 <aspectLibraries>

 <aspectLibrary>

 <groupId>org.springframework</groupId>

 <artifactId>spring-aspects</artifactId>

 </aspectLibrary>

 <aspectLibrary>

 <groupId>org.springframework.data</groupId>

 <artifactId>spring-data-neo4j-aspects</artifactId>

 </aspectLibrary>

 </aspectLibraries>

 <source>1.6</source>

 <target>1.6</target>

 </configuration>

</plugin>

Example 21.6 AspectJ configuration

21.5 Spring configuration

Users of Spring Data Neo4j have two ways of very concisely configuring it. Either they can use a Spring
Data Neo4j XML configuration namespace, or they can use a Java-based bean configuration.

XML namespace

The XML namespace can be used to configure Spring Data Neo4j. The config element
provides an XML-based configuration of Spring Data Neo4j in one line. It has three
attributes. graphDatabaseService points out the Neo4j instance to use. For convenience,
storeDirectory can be set instead of graphDatabaseService to point to a directory
where a new EmbeddedGraphDatabase will be created. For cross-store configuration, the
entityManagerFactory attribute needs to be configured.

please define productname in your docbook file!

3.0.0.M1 Good Relationships 88

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:context="http://www.springframework.org/schema/context"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:neo4j="http://www.springframework.org/schema/data/neo4j"

 xsi:schemaLocation="

 http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/context

 http://www.springframework.org/schema/context/spring-context.xsd

 http://www.springframework.org/schema/data/neo4j

 http://www.springframework.org/schema/data/neo4j/spring-neo4j.xsd">

 <context:annotation-config/>

 <neo4j:config storeDirectory="target/config-test"/>

</beans>

Example 21.7 XML configuration with store directory

<context:annotation-config/>

<bean id="graphDatabaseService" class="org.neo4j.kernel.EmbeddedGraphDatabase"

 destroy-method="shutdown">

 <constructor-arg index="0" value="target/config-test"/>

<!-- optionally pass in neo4j-config parameters to the graph database

 <constructor-arg index="1">

 <map>

 <entry key="allow_store_upgrade" value="true"/>

 </map>

 </constructor-arg>

-->

</bean>

<neo4j:config graphDatabaseService="graphDatabaseService"/>

Example 21.8 XML configuration with GraphDatabaseService bean

<context:annotation-config/>

<bean id="graphDatabaseService" class="org.neo4j.kernel.EmbeddedGraphDatabase"

 destroy-method="shutdown">

 <constructor-arg index="0" value="foo/db" />

 <constructor-arg index="1">

 <map><entry key="enable_remote_shell" value="true"/></map>

 </constructor-arg>

</bean>

<bean id="serverWrapper" class="org.neo4j.server.WrappingNeoServerBootstrapper"

 init-method="start" destroy-method="stop">

 <constructor-arg ref="graphDatabaseService"/>

</bean>

// also add the static server-assets dependency to your pom.xml

<dependency>

 <groupId>org.neo4j.app</groupId>

 <artifactId>neo4j-server</artifactId>

 <classifier>static-web</classifier>

 <version>${neo4j-version}</version>

</dependency>

Example 21.9 XML configuration with embedded Neo4j-Server

http://docs.neo4j.org/chunked/milestone/server-embedded.html

please define productname in your docbook file!

3.0.0.M1 Good Relationships 89

<context:annotation-config/>

<bean class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean"

 id="entityManagerFactory">

 <property name="dataSource" ref="dataSource"/>

 <property name="persistenceXmlLocation" value="classpath:META-INF/persistence.xml"/>

</bean>

<neo4j:config storeDirectory="target/config-test"

 entityManagerFactory="entityManagerFactory"/>

Example 21.10 XML configuration with cross-store

Repository Configuration

Spring Data Neo4j repositories are configured using the <neo4j:repositories> element
which defines the base-package (or packages) for the repositories. A reference to an existing
Neo4jTemplate bean reference can be passed in as well.

As Spring Data Neo4j repositories build upon the infrastructure provided by Spring Data Commons, the
configuration options for repositories described there work here as well.

<neo4j:repositories base-package="org.example.repository"/>

<!-- with template bean reference -->

<neo4j:repositories base-package="org.example.repository" graph-database-context-

ref="template"/>

Example 21.11 XML configuration for repositories

Java-based bean configuration

You can also configure Spring Data Neo4j using Java-based bean metadata.

Note

For those not familiar with Java-based bean configuration in Spring, we recommend that you
read up on it first. The Spring documentation has a high-level introduction as well as detailed
documentation on it.

In order to configure Spring Data Neo4j with Java-based bean config, the class Neo4jConfiguration
is registered with the context. This is either done explicitly in the context configuration, or via classpath
scanning for classes that have the @Configuration annotation. The only thing that must be provided
is the GraphDatabaseService. The example below shows how to register the @Configuration
Neo4jConfiguration class, as well as Spring's ConfigurationClassPostProcessor that
transforms the @Configuration class to bean definitions.

http://static.springsource.org/spring-data/data-commons/docs/current/reference/html/#repositories.create-instances
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/new-in-3.0.html#new-java-configuration
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/beans.html#beans-java-instantiating-container
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/beans.html#beans-java-instantiating-container

please define productname in your docbook file!

3.0.0.M1 Good Relationships 90

<![CDATA[<beans ...>

 ...

 <tx:annotation-driven mode="aspectj" transaction-manager="transactionManager"/>

 <bean class="org.springframework.data.neo4j.config.Neo4jConfiguration"/>

 <bean class="org.springframework.context.annotation.ConfigurationClassPostProcessor"/>

 <bean id="graphDatabaseService" class="org.neo4j.kernel.EmbeddedGraphDatabase"

 destroy-method="shutdown" scope="singleton">

 <constructor-arg index="0" value="target/config-test"/>

 </bean>

 ...

</beans>

Example 21.12 Java-based bean configuration

Additional beans can be configured to be included in the Neo4j-Configuration just by defining them
in the Spring context. ConversionService for custom conversions, Validators for bean validation,
TypeRepresentationStrategyFactory for configuring the in graph type representation, IndexProviders
for custom index handling (e.g. for multi-tenancy) or Entity-Instantiators (with their config) to have more
control over the creation of entity instances and much more.

please define productname in your docbook file!

3.0.0.M1 Good Relationships 91

22. Cross-store persistence
The Spring Data Neo4j project support cross-store persistence for the advanced mapping mode, which
allows for parts of the data to be stored in a traditional JPA data store (RDBMS), and other parts in a
graph store. This means that an entity can be partially stored in e.g. MySQL, and partially stored in Neo4j.

This allows existing JPA-based applications to embrace NOSQL data stores for evolving certain parts
of their data model. Possible use cases include adding social networking or geospatial information to
existing applications.

22.1 Partial entities

Partial graph persistence is achieved by restricting the Spring Data Neo4j aspects to manage only
explicitly annotated parts of the entity. Those fields will be made @Transient by the aspect so that
JPA ignores them.

A backing node in the graph store is only created when the entity has been assigned a JPA ID. Only
then will the association between the two stores be established. Until the entity has been persisted, its
state is just kept inside the POJO (in detached state), and then flushed to the backing graph database
on the persist operation.

The association between the two entities is maintained via a FOREIGN_ID field in the node, that contains
the JPA ID. Currently only single-value IDs are supported. The entity class can be resolved via the
TypeRepresentationStrategy that manages the Java type hierarchy within the graph database.
Given the ID and class, you can then retrieve the appropriate JPA entity for a given node.

The other direction is handled by indexing the Node with the FOREIGN_ID index which contains a
concatenation of the fully qualified class name of the JPA entity and the ID. The matching node can
then be found using the indexing facilities, and the two entities can be reassociated.

Using these mechanisms and the Spring Data Neo4j aspects, a single POJO can contain some fields
handled by JPA and others handles by Spring Data Neo4j. This also includes relationship fields persisted
in the graph database.

22.2 Cross-store annotations

Cross-store persistence only requires the use of one additional annotation: @GraphProperty. See
below for details and an example.

@NodeEntity(partial = "true")

When annotating an entity with partial = true, this marks it as a cross-store entity. Spring Data
Neo4j will thus only manage fields explicitly annotated with @GraphProperty.

@GraphProperty

Fields of primitive or convertible types do not normally have to be annotated in order to be persisted by
Spring Data Neo4j. In cross-store mode, Spring Data Neo4j only persists fields explicitly annotated with
@GraphProperty. JPA will ignore these fields.

Example

The following example is taken from the Spring Data Neo4j examples myrestaurants-social project:

http://spring.neo4j.org/examples

please define productname in your docbook file!

3.0.0.M1 Good Relationships 92

@Entity

@Table(name = "user_account")

@NodeEntity(partial = true)

public class UserAccount {

 private String userName;

 private String firstName;

 private String lastName;

 @GraphProperty

 String nickname;

 @RelatedTo

 Set<UserAccount> friends;

 @RelatedToVia(type = "recommends")

 Iterable<Recommendation> recommendations;

 @Temporal(TemporalType.TIMESTAMP)

 @DateTimeFormat(style = "S-")

 private Date birthDate;

 @ManyToMany(cascade = CascadeType.ALL)

 private Set<Restaurant> favorites;

 @Id

 @GeneratedValue(strategy = GenerationType.AUTO)

 @Column(name = "id")

 private Long id;

 public void knows(UserAccount friend) {

 relateTo(friend, "friends");

 }

 public Recommendation rate(Restaurant restaurant, int stars, String comment) {

 Recommendation recommendation = relateTo(restaurant,

 Recommendation.class, "recommends");

 recommendation.rate(stars, comment);

 return recommendation;

 }

 public Iterable<Recommendation> getRecommendations() {

 return recommendations;

 }

}

Example 22.1 Cross-store node entity

22.3 Configuring cross-store persistence

Configuring cross-store persistence is done similarly to the default Spring Data Neo4j configuration. All
you need to do is to specify an entityManagerFactory in the XML namespace config element,
and Spring Data Neo4j will configure itself for cross-store use.

please define productname in your docbook file!

3.0.0.M1 Good Relationships 93

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:context="http://www.springframework.org/schema/context"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:datagraph="http://www.springframework.org/schema/data/neo4j"

 xsi:schemaLocation="

 http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/context

 http://www.springframework.org/schema/context/spring-context.xsd

 http://www.springframework.org/schema/data/neo4j

 http://www.springframework.org/schema/data/neo4j/spring-neo4j.xsd

 ">

 <context:annotation-config/>

 <neo4j:config storeDirectory="target/config-test"

 entityManagerFactory="entityManagerFactory"/>

 <bean class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean"

 id="entityManagerFactory">

 <property name="dataSource" ref="dataSource"/>

 <property name="persistenceXmlLocation" value="classpath:META-INF/

persistence.xml"/>

 </bean>

</beans>

Example 22.2 Cross-store Spring configuration

please define productname in your docbook file!

3.0.0.M1 Good Relationships 94

23. Sample code

23.1 Introduction

Spring Data Neo4j comes with a number of sample applications. The source code of the samples can
be found on Github. The different sample projects are introduced below.

23.2 Hello Worlds sample application

The Hello Worlds sample application is a simple console application. It creates some worlds (node
entities) and rocket routes (relationships) between worlds, all in a galaxy (the graph), and then prints
them.

The unit tests demonstrate some other features of Spring Data Neo4j as well. The sample comes with
a minimal configuration for Maven and Spring to get up and running quickly.

The Hello Worlds application is available both for the simple mapping (hello-worlds) and for the
advanced mapping (hello-world-aspects).

Executing the application creates the following graph in the graph database:

23.3 IMDB sample application

The IMDB sample is a web application that imports datasets from the Internet Movie Database (IMDB)
into the graph database. It allows the listing of movies with their actors, and of actors and their roles
in different movies. It also uses graph traversal operations to calculate the Bacon number of any given
actor. This sample application shows the usage of Spring Data Neo4j in a more complex setting,
using several annotated entities and relationships as well as indexes and in-graph indexes and graph
traversals.

See the readme file for instructions on how to compile and run the application.

An excerpt of the data stored in the graph database after executing the application:

http://spring.neo4j.org/exampless
http://en.wikipedia.org/wiki/Bacon_number

please define productname in your docbook file!

3.0.0.M1 Good Relationships 95

23.4 MyRestaurants sample application

Simple, JPA-based web application for managing users and restaurants, with the ability to add
restaurants as favorites to a user. It is basically the foundation for the MyRestaurants-Social application
(see???), and does therefore not use Spring Data Neo4j.

23.5 MyRestaurant-Social sample application

This application extends the MyRestaurants sample application, adding social networking functionality to
it with cross-store persistence. The web application allows for users to add friends and rate restaurants.
A graph traversal provides recommendations based on your friends' (and their friends') rating of
restaurants.

Here's an excerpt of the data stored in the graph database after executing the application:

please define productname in your docbook file!

3.0.0.M1 Good Relationships 96

23.6 Cineasts social movie database

The cineasts.net application was introduced extensively in the first part of this guide, the tutorial. The
tutorial covers the development of the simple mapping version of cineasts.

To document the differences, versions for the advanced mapping (cineasts-aspects) and accessing
the remote server (cineasts-rest) are also available.

A online version of cineasts can be found on cineasts.net. A sample dataset of the cineasts databse is
available at the neo4j sample-data page.

This is a subset of the visualization of the cineasts graph for the "Matrix" movie.

http://cineasts.net
http://sample-data.neo4j.org

please define productname in your docbook file!

3.0.0.M1 Good Relationships 97

please define productname in your docbook file!

3.0.0.M1 Good Relationships 98

24. Heroku: Seeding the Cloud

Deploying your application into the cloud is a great way to scale from from "wouldn't it be cool if.." to
giving interviews to Forbes, Fast Company, and Jimmy Fallon. Heroku makes it super easy to provision
everying you need, including a Neo4j Add-on. With a few simple adjustments, your Spring Data Neo4j
application is ready to take that first step into the cloud.

To deploy your Spring Data Neo4j web application to Heroku, you'll need:

• account on Heroku

• git command line

• maven-based project

• standard Spring MV Servlet application

• well, and Spring Data Neo4j REST

For reference, the following sections detail the steps taken to make the Spring Data Neo4j Todos
example ready for deployment to Heroku.

24.1 Create a Self-Hosted Web Application

Usually, a Spring MVC application is bundled into a war and deployed to an application server like
Tomcat. But Heroku can host any kind of java application. It just needs to know what to launch. So,
we'll transform the war into a self-hosted servlet using an embedded Jetty server, then add a startup
script to launch it.

First, we'll add the dependencies for Jetty to the pom.xml:

<dependency>

 <groupId>org.eclipse.jetty</groupId>

 <artifactId>jetty-webapp</artifactId>

 <version>7.4.4.v20110707</version>

</dependency>

<dependency>

 <groupId>org.mortbay.jetty</groupId>

 <artifactId>jsp-2.1-glassfish</artifactId>

 <version>2.1.v20100127</version>

</dependency>

Example 24.1 Jetty dependencies - pom.xml

Then we'll change the scope of the servlet-api artifact from provided to compile. This library is
normally provided at runtime by the application container. Since we're self-hosting, it needs to be
included directly. Make sure the servlet-api dependency looks like this:

http://heroku.com

please define productname in your docbook file!

3.0.0.M1 Good Relationships 99

<dependency>

 <groupId>javax.servlet</groupId>

 <artifactId>servlet-api</artifactId>

 <version>2.5</version>

 <scope>compile</scope>

</dependency>

Example 24.2 servlet-api dependencies - pom.xml

We could provide a complicated command-line to Heroku to launch the app. Instead, we'll simplify the
command-line by using the appassembler-maven-plugin to create a launch script. Add the plugin
to your pom's build/plugins section:

<plugin>

<groupId>org.codehaus.mojo</groupId>

<artifactId>appassembler-maven-plugin</artifactId>

<version>1.1.1</version>

<executions>

 <execution>

 <phase>package</phase>

 <goals><goal>assemble</goal></goals>

 <configuration>

 <assembleDirectory>target</assembleDirectory>

 <extraJvmArguments>-Xmx512m</extraJvmArguments>

 <programs>

 <program>

 <mainClass>Main</mainClass>

 <name>webapp</name>

 </program>

 </programs>

 </configuration>

 </execution>

</executions>

</plugin>

Example 24.3 appassembler-maven-plugin configuration pom.xml

Finally, switch the packaging from war to jar. That's it for the pom.

Now that the application is ready to be self-hosted, create a simple Main to bootstrap Jetty and host
the servlet.

please define productname in your docbook file!

3.0.0.M1 Good Relationships 100

import org.eclipse.jetty.server.Server;

import org.eclipse.jetty.webapp.WebAppContext;

public class Main {

 public static void main(String[] args) throws Exception {

 String webappDirLocation = "src/main/webapp/";

 String webPort = System.getenv("PORT");

 if(webPort == null || webPort.isEmpty()) {

 webPort = "8080";

 }

 Server server = new Server(Integer.valueOf(webPort));

 WebAppContext root = new WebAppContext();

 root.setContextPath("/");

 root.setDescriptor(webappDirLocation+"/WEB-INF/web.xml");

 root.setResourceBase(webappDirLocation);

 root.setParentLoaderPriority(true);

 server.setHandler(root);

 server.start();

 server.join();

 }

}

Example 24.4 src/main/java/Main.java

Notice the use of environment variable "PORT" for discovering which port to use. Heroku and the Neo4j
Add-on use a number of environment variable to configure the application. Next, we'll modify the Spring
application context to use the Neo4j variables for specifying the connection to Neo4j itself.

In the SDN Todos example, src/main/resources/META-INF/spring/applicationContext-
graph.xml was modified to look like this:

<neo4j:config graphDatabaseService="graphDatabaseService"/>

<bean id="graphDatabaseService"

 class="org.springframework.data.neo4j.rest.SpringRestGraphDatabase">

 <constructor-arg index="0" value="${NEO4J_REST_URL}" />

 <constructor-arg index="1" value="${NEO4J_LOGIN}" />

 <constructor-arg index="2" value="${NEO4J_PASSWORD}" />

</bean>

Example 24.5 Spring Data Neo4j REST configuration - applicationContext-graph.xml

Before provisioning at Heroku, test the application locally. First make sure you've got Neo4j server
running locally, using default configuration. Then set the following environment variables:

export NEO4J_REST_URL=http://localhost:7474/db/data

export NEO4J_LOGIN=""

export NEO4J_PASSWORD=""

Example 24.6 environment variables

Now you can launch the app by running sh target/bin/webapp. If running the SDN Todos example,
you can test it by running ./bin/todos list. That should return an empty JSON array, since no
todos have been created yet.

For details about the todos script, see the readme included with the example.

please define productname in your docbook file!

3.0.0.M1 Good Relationships 101

24.2 Deploy to Heroku

With a self-hosted application ready, deploying to Heroku needs a few more steps. First, create a
Procfile at the top-level of the project, which will contain a single line identifying the command line
which launches the application.

The contents of the Procfile should contain:

web: sh target/bin/webapp

Example 24.7 Procfile

Initialize a local git repository, adding all the project files

 git init

 git add .

 git commit -m "initial commit"

Provision a Heroku stack, add the Neo4j Add-on and deploy the appication

 heroku create --stack cedar

 heroku addons:add neo4j

 git push heroku master

Example 24.8 deploy to heroku

Note

Note that the stack must be "cedar" to support running Java. Check that the process is running
by using heroku ps, which should show a "web.1" process in the "up" state. Success!

For the SDN Todos application, you can try out the remote application using the -r switch with the
bin/todo script like this:

./bin/todo -r mk "tweet thanks for the good work @mesirii @akollegger"

./bin/todo -r list

Example 24.9 Session with todo script

To see the Neo4j graph you just created through Heroku, use heroku config to reveal the NEO4J_URL
environment variable, which will take you to Neo4j's Webadmin.

please define productname in your docbook file!

3.0.0.M1 Good Relationships 102

25. Performance considerations

Although adding layers of abstraction is a common pattern in software development, each of these
layers generally adds overhead and performance penalties. This chapter discusses the performance
implications of using Spring Data Neo4j instead of the Neo4j API directly.

25.1 When to use Spring Data Neo4j

The focus of Spring Data Neo4j is to add a convenience layer on top of the Neo4j API. This enables
developers to get up and running with a graph database very quickly, having their domain objects
mapped to the graph with very little work. Building on this foundation, one can later explore other, more
efficient ways to explore and process the graph - if the performance requirements demand it.

Like with any other object mapping framework, the domain entities that are created, read, or persisted
represent only a small fraction of the data stored in the database. This is the set needed for a certain
use-case to be displayed, edited or processed in a low throughput fashion. The main advantages of
using an object mapper in this case are the ease of use of real domain objects in your business logic and
also the integration with existing frameworks and libraries that expect Java POJOs as input or create
them as results.

Spring Data Neo4j, however, was not designed with a major focus on performance. It does add some
overhead to pure graph operations.

Most of the overhead comes from the use of the Java Reflection API, which is used to provide information
about annotations, fields and constructors. Some of the information is already cached by the JVM and
the library infrastructure from Spring-Data-Commons, so that only the first access gets a performance
penalty. Other reflection penalties like field or method access will occur all the time.

For the simple mapping it is important to be aware of the size graph of data that is pulled out of the
graph database in a single read and copied to domain entities. That's why Spring Data Neo4j loads
related data not by default. You have to provide an indicator (@Fetch) to do so. Alternatively the
Neo4jTemplate.fetch method offers means of of loading entities and collections of those.

For the advanced mapping mode keep in mind that any access of properties and relationships will in
general read through down to the database. To avoid multiple reads, it is sensible to store the result in
a local variable in suitable scope (e.g. method, class or jsp).

To evaluate if the performance of Spring Data Neo4j impacts a certain use-case it is sensible to define
performance requirements and measure the actual time in realistic test scenarios for the use-case. Only
if Spring Data Neo4j doesn't perform as fast as required it is recommended to drop down to the native
Neo4j API.

please define productname in your docbook file!

3.0.0.M1 Good Relationships 103

26. AspectJ details

The advanced mapping mode of Spring Data Neo4j relies heavily on AspectJ. AspectJ is a Java
implementation of the aspect-oriented programming paradigm that allows easy extraction and controlled
application of so-called cross-cutting concerns. Cross-cutting concerns are typically repetitive tasks in
a system (e.g. logging, security, auditing, caching, transaction scoping) that are difficult to extract using
the normal OO paradigms. Many OO concepts, such as subclassing, polymorphism, overriding and
delegation are still cumbersome to use with many of those concerns applied in the code base. Also, the
flexibility becomes limited, potentially adding quite a number of configuration options or parameters.

The AspectJ pointcut language can be intimidating, but a developer using Spring Data Neo4j will not
have to deal with that. Users don't have care about hooking into a framework mechanism, or having
to extend a framework superclass.

AspectJ uses a declarative approach, defining concrete "advice", which is just pieces of code that contain
the implementation of the "concern", as it is called. An AspectJ advice can for instance be applied before,
after, or instead of a method or constructor call. It can also be applied on variable and field access. This
is declared using AspectJ's expressive pointcut language, which is able to express any place within a
code structure or flow. AspectJ is also able to introduce new methods, fields, annotations, interfaces,
and superclasses to existing classes.

Spring Data Neo4j uses a mix of these mechanisms internally. First, when encountering the
@NodeEntity or @RelationshipEntity annotations it introduces a new interface NodeBacked
or RelationshipBacked to the annotated class. Secondly, it introduces fields and methods to the
annotated class. See Section 20.12, “Active Record Methods for Advanced Mapping Mode” for more
information on the methods introduced.

Spring Data Neo4j also leverages AspectJ to intercept access to fields, delegating the calls to the graph
database instead. Under the hood, properties and relationships will be created.

So how is an aspect applied to a concrete class? At compile time, the AspectJ Java compiler (ajc)
takes source files and aspect definitions, and compiles the source files while adding all the necessary
interception code for the aspects to hook in where they're declared to. This is known as compile-time
weaving. At runtime only a small AspectJ runtime is needed, as the byte code of the classes has already
been rewritten to delegate the appropriate calls via the declared advice in the aspects.

Note

A caveat of using compile-time weaving is that all source files that should be part of the weaving
process must be compiled with the AspectJ compiler. Fortunately, this is all taken care of
seamlessly by the AspectJ Maven plugin.

AspectJ also supports other types of weaving, e.g. load-time weaving and runtime weaving. These are
currently not supported by Spring Data Neo4j.

https://secure.wikimedia.org/wikipedia/en/wiki/Aspect-oriented_programming

please define productname in your docbook file!

3.0.0.M1 Good Relationships 104

27. Neo4j Server

Neo4j is not only available in embedded mode. It can also be installed and run as a stand-alone
server accessible via a REST API. Developers can integrate Spring Data Neo4j into the Neo4j server
infrastructure in two ways: in an unmanaged server extension, or via the REST API.

27.1 Server Extension

When should you write a server extension? The default REST API is essentially a REST'ified
representation of the Neo4j core API. It is nice for getting started, and for simpler scenarios. For
more involved solutions that require high-volume access or more complex operations, writing a server
extension that is able to process external parameters, do all the computations locally in the plugin, and
then return just the relevant information to the calling client is preferable.

The Neo4j Server has two built-in extension mechanisms. It is possible to extend existing URI endpoints
like the graph database, nodes, or relationships, adding new URIs or methods to those. This is achieved
by writing a server plugin. This plugin type has some restrictions however.

For complete freedom in the implementation, an unmanaged extension can be used. Unmanaged
extensions are essentially Jersey resource implementations. The resource constructors or methods can
get the GraphDatabaseService injected to execute the necessary operations and return appropriate
Representations.

Both kinds of extensions have to be packaged as JAR files and added to the Neo4j Server's
plugin directory. Server Plugins are picked up by the server at startup if they provide the
necessary META-INF.services/org.neo4j.server.plugins.ServerPlugin file for Java's
ServiceLoader facility. Unmanaged extensions have to be registered with the Neo4j Server
configuration.

org.neo4j.server.thirdparty_jaxrs_classes=com.example.mypackage=/my-context

Example 27.1 Configuring an unmanaged extension

Running Spring Data Neo4j on the Neo4j Server is easy. You need to tell the server where to find the
Spring context configuration file, and which beans from it to expose:

public class HelloWorldInitializer extends SpringPluginInitializer {

 public HelloWorldInitializer() {

 super(new String[]{"spring/helloWorldServer-Context.xml"},

 Pair.of("worldRepository", WorldRepository.class),

 Pair.of("template", Neo4jTemplate.class));

 }

}

Example 27.2 Server plugin initialization

Now, your resources can require the Spring beans they need, annotated with @Context like this:

@Path("/path")

@POST

@Produces(MediaType.APPLICATION_JSON)

public void foo(@Context WorldRepository repo) {

 ...

}

Example 27.3 Jersey resource

http://docs.neo4j.org/chunked/milestone/server-plugins.html
http://docs.neo4j.org/chunked/milestone/server-unmanaged-extensions.html
http://jersey.java.net/

please define productname in your docbook file!

3.0.0.M1 Good Relationships 105

The SpringPluginInitializer merges the server provided GraphDatabaseService with
the Spring configuration and registers the named beans as Jersey Injectables. It is still
necessary to list the initializer's fully qualified class name in a file named META-INF/services/
org.neo4j.server.plugins.PluginLifecycle. The Neo4j Server can then pick up and run the
initialization classes before the extensions are loaded.

27.2 Using Spring Data Neo4j as a REST client

To use REST-API the Neo4j Server exposes, one would either go with REST libraries on the lower level
or choose one of the Neo4j related REST drivers in various languages. For Java Neo4j provides the
Neo4j Java REST bindings which come as a drop in replacement for the GraphDatabaseService API.
Spring Data Neo4j REST uses those bindings to provide seamless access to a remote Neo4j Database.

By simply configuring the graphDatabaseService to be a SpringRestGraphDatabase pointing
to a Neo4j Server instance and referring to that from <neo4j:config> Spring Data Neo4j will use the
server side database for both the simple mapping as well as the advanced mapping.

Note

The Neo4j Server REST API does not allow for transactions to span across requests, which
means that Spring Data Neo4j is not transactional across multiple operations when running with
a SpringRestGraphDatabase.

Please also keep in mind that performing graph operations via the REST-API is about one order of
magnitude slower than local operations. Try to use the Neo4j Cypher query language, or server-side
traversals (RestTraversal) whenever possible for retrieving large sets of data. Future versions of
Spring Data Neo4j will use the more performant batch API as well as a binary protocol.

To set up your project to use the REST bindings, add this dependency to your pom.xml:

<dependency>

 <groupId>org.springframework.data</groupId>

 <artifactId>spring-data-neo4j-rest</artifactId>

 <version>2.1.0.RELEASE</version>

</dependency>

Example 27.4 REST-Client configuration - pom.xml

Now, you set up the normal Spring Data Neo4j configuration, but point the database to an URL instead
of a local directory, like so:

<neo4j:config graphDatabaseService="graphDatabaseService"/>

<bean id="graphDatabaseService" class="org.springframework.data.neo4j.rest.SpringRestGraphDatabase">

 <constructor-arg value="http://localhost:7474/db/data/" index="0"/>

<!-- for running against a server requiring authentication

 <constructor-arg value="username" index="1"/>

 <constructor-arg value="password" index="2"/>

-->

</bean>

Example 27.5 REST client configuration - application context

Your project is now set up to work against a remote Neo4j Server.

For traversals and Cypher graph queries it is sensible to forward those to the remote endpoint and
execute them there instead of walking the graph over the wire. SpringRestGraphDatabase already

https://github.com/neo4j/java-rest-binding

please define productname in your docbook file!

3.0.0.M1 Good Relationships 106

supports that by providing methods that forward to the remote instance. (e.g. queryEngineFor(),
index() and createTraversalDescription()). Please use those methods when interacting
with a remote server for optimal performance. Those methods are also used by the Neo4jTemplate and
the mapping infrastructure automatically.

	Good Relationships
	Table of Contents
	Foreword by Rod Johnson
	Foreword by Emil Eifrem
	About this guide book
	1 The Spring Data Neo4j Project
	2 Feedback
	3 Format of the Book
	4 Acknowledgements

	Part I. Tutorial
	1. Introducing our project
	2. The Spring stack
	2.1 Required setup

	3. The domain model
	4. Learning Neo4j
	5. Spring Data Neo4j
	6. Annotating the domain
	7. Indexing
	8. Repositories
	9. Relationships
	9.1 Creating relationships
	9.2 Accessing related entities
	9.3 Accessing the relationship entities

	10. Get it running
	10.1 Populating the database
	10.2 Inspecting the datastore
	Neoclipse visualization
	The Neo4j Shell

	11. Web views
	11.1 Searching
	11.2 Listing results

	12. Adding social
	12.1 Users
	12.2 Ratings for movies

	13. Adding Security
	14. More UI
	15. Importing Data
	16. Recommendations
	17. Neo4j Server
	17.1 Getting Neo4j-Server
	17.2 Other approaches

	18. Conclusion

	Part II. Reference Documentation
	Reference Documentation
	1 Spring Data and Spring Data Neo4j
	2 Reference Documentation Overview

	19. Introduction to Neo4j
	19.1 What is a graph database?
	19.2 About Neo4j
	19.3 GraphDatabaseService
	19.4 Creating nodes and relationships
	19.5 Graph traversal
	19.6 Indexing
	19.7 Querying the Graph with Cypher

	20. Programming model
	20.1 Object Graph Mapping
	20.2 Advanced Mapping with AspectJ
	AspectJ IDE support

	20.3 Simple Object Graph Mapping
	20.4 Defining node entities
	@NodeEntity: The basic building block
	@GraphId: Neo4j -id field
	Entity Equality

	@GraphProperty: Optional annotation for property fields
	@Indexed: Making entities searchable by field value
	@Query: fields as query result views
	@GraphTraversal: fields as traversal result views

	20.5 Relating node entities
	@RelatedTo: Connecting node entities
	@RelationshipEntity: Rich relationships
	@RelatedToVia: Accessing relationship entities
	Relationship Type Precedence
	Discriminating Relationships Based On End Node Type

	20.6 Indexing
	Exact and numeric index
	Fulltext indexes
	Unique indexes
	Manual index access
	Index queries in Neo4jTemplate
	Neo4j Auto Indexes
	Spatial Indexes

	20.7 Neo4jTemplate
	Basic operations
	Core-Operations
	Entity-Persistence
	Result
	Indexing
	Graph traversal
	Cypher Queries
	Transactions
	Neo4j REST Server
	Lifecycle Events

	20.8 CRUD with repositories
	CRUDRepository
	IndexRepository and NamedIndexRepository
	TraversalRepository
	Query and Finder Methods
	Annotated queries
	Named queries
	Query results
	Cypher examples
	Queries derived from finder-method names
	Derived Finder Methods

	Cypher-DSL repository
	Cypher-DSL and QueryDSL
	Creating repositories
	Composing repositories

	20.9 Conversion
	Mapping Query Results

	20.10 Projecting entities
	20.11 Geospatial Queries
	20.12 Active Record Methods for Advanced Mapping Mode
	20.13 Transactions
	20.14 Detached node entities in advanced mapping mode
	Relating detached entities

	20.15 Entity type representation
	20.16 Bean validation (JSR-303)

	21. Environment setup
	21.1 Dependencies for Spring Data Neo4j Simple Mapping
	21.2 Gradle configuration for Advanced Mapping (AspectJ)
	21.3 Ant/Ivy configuration for Advanced Mapping (AspectJ)
	21.4 Maven configuration for Advanced Mapping
	Repositories
	Dependencies
	Maven AspectJ build configuration

	21.5 Spring configuration
	XML namespace
	Repository Configuration
	Java-based bean configuration

	22. Cross-store persistence
	22.1 Partial entities
	22.2 Cross-store annotations
	@NodeEntity(partial = "true")
	@GraphProperty
	Example

	22.3 Configuring cross-store persistence

	23. Sample code
	23.1 Introduction
	23.2 Hello Worlds sample application
	23.3 IMDB sample application
	23.4 MyRestaurants sample application
	23.5 MyRestaurant-Social sample application
	23.6 Cineasts social movie database

	24. Heroku: Seeding the Cloud
	24.1 Create a Self-Hosted Web Application
	24.2 Deploy to Heroku

	25. Performance considerations
	25.1 When to use Spring Data Neo4j

	26. AspectJ details
	27. Neo4j Server
	27.1 Server Extension
	27.2 Using Spring Data Neo4j as a REST client

