Good Relationships

The Spring Data Neo4j Guide Book
3.0.0.M1

MichaelHunger

Copyright ©

Copies of this document may be made for your own use and for distribution to others, provided
that you do not charge any fee for such copies and further provided that each copy contains this
Copyright Notice, whether distributed in print or electronically. Copyright 2010-2011 Neo Technology

please define productname in your docbook file!

Tabl

e of Contents

Foreword by RO JONNSON ... ettt e e e eaaeees Vi
Foreword By Emil EiffEIMu e vii
ADOUL thiS QUIAE DOOK ... e e e e e viii
1. The Spring Data NEO4j PrOJECEccuu ittt viii

A T | = Lo G viii

3. FOrmMat Of the BOOKccouuiiiiiiiii ettt e et e e viii

A, ACKNOWIEAGEMENTSoeiiiii ettt e et e et e et e e et e e e e eeanns viii

R T o 4> PP 1
I g o T[0T oo o 10 1 o] o] [T o AP 2

2. The SPIHNG STACK ...uie i et ettt e e e e e e e ees 3

P o =T [=To BT (0 o PP PPT R TPPPPTRRPIN 3

3. The domain MOUEIcoieiiii et et e e 5

A, LeAINING NEBOAJ ..ottt et e e e e e et e e e e e e et e eaa e ee 7

5. SPriNG DAt NEOAJ ...covuiiiiii it ettt 8

6. Annotating the dOMaINcouiiiii e 9

A 100 1= oo IR TSP 10

8. REPOSIIONES ...ttt ettt et ettt eeaaas 11

LS IR L] =0 1] 1 o1 12

9.1. Creating relatioNShiPS .. .c... i e 12

9.2. Accessing related ENtItIESooveueiiiiii e 13

9.3. Accessing the relationship entitiescoevuiiiiiii i 14

O Ty | (U1 o] o1 o PP PR PPRRPIN 15
10.1. Populating the databaseccouuiiiiiiiii e 15

10.2. Inspecting the datastOrec..cveviiiiiiii e 15

NeOClPSE VISUALIZALIONcuuiiiiiiii e 15

The NEOA] Shell ..o e 16

=T B 1= PP 18
L1.0. SEAICNING ..ttt et 19

11.2. LISING FESUILS ...ieiiiieeeii ettt ettt e et e e et e eeeeans 19

2 2o [1T o =T Tox -1 22
N R U £ PP PP UPTUPTUPTRN 22

12.2. RAtNGS TOF MOVIES ...ooviiiiiiii e 23

RS 2 [[T o ST =T ol U] Y/ 24

Y (o] £ U PRSPPI 28

15, IMPOILING DALA ...ceeviniiiiii ettt ettt e et e et e e b 31

T = (=TT 4]0 =T o F= o PSPPSR 34

L7, NEOLJ SEIVET .ot e et et e e et e et e e et e e e aa e e e e eanns 35
17.1. GettiNg NEOZJ-SEIVELcieieii ettt e e 35

17.2. Other apPrOAChESiiiiiiii e e 36

S R @70 o Tod (1] (o] o PP 37

[I. Reference DOCUMENTALIONiiueeiit et e e e e e e e et e et e e e s e e et e e eaeeeenns 38
Reference DOCUMENTALIONiiiiiiiiiii et e e e et e e e e XXXIX

1. Spring Data and Spring Data NEO4A|cc.uiiiiiiiiiiii e XXXIX

2. Reference Documentation OVEIVIEWiivuuiiiiieiiiiieiie e ee e e e e e e XXXiX

19. INtrodUCHION 10 NEOA] ...eveiii e e e e e e e e e e e e e e s 42
19.1. What is a graph database? ..o 42

19.2. ABOUL INEBOZJ ..ottt 42

3.0.0.M1 Good Relationships ii

please define productname in your docbook file!

19.3. GraphDatabaSESEIVICEiiiiiiiieeeii e 42
19.4. Creating nodes and relationShipsovoiiiiiiiei e 43
19.5. Graph traVverSalcouuiiiiiiii e 43
L9.6. INAEXING ...eeeeitiee ettt e e et e e ettt e e ettt et et e n e e e e aen 43
19.7. Querying the Graph with CYPheroooiiiiiii e 44
20. Programming MOAEIcoouniiiiiiiiiii e e e e e e e 46
20.1. Object Graph MaPPINGcoeeeeueeiiii et e e e e eraas 46
20.2. Advanced Mapping With ASPECTcoeuuuiiiiiii et 46
ASPECEI IDE SUPPOIT ettt 47
20.3. Simple Object Graph MapPINgcoeuruiiiiiiiee e 47
20.4. Defining NOAE ENEILIES ...oevuniiiiiie et e e e eees 49
@NodeEntity: The basic building blockcccccoiiiiiii . 49
@Graphld: Neo4j -id fieldcooeuiiii e 49
ENtity EQUAIILY ..oevvnieiei et 49
@GraphProperty: Optional annotation for property fieldsccooeiiiiiiininne, 51
@Indexed: Making entities searchable by field valuecccoooiiiiiiiinn. 52
@Query: fields as query reSuUlt VIEBWSc.uiiiiiiiinieii e 52
@GraphTraversal: fields as traversal result VIEWScccccoiveiiiiiiiicciinccieeeenn, 52
20.5. Relating NOde NEILIESuuiiiiie et e e e e e e 53
@RelatedTo: Connecting NOde ENtItIESocvuviiiiiiiie e 53
@RelationshipEntity: Rich relationshipsccoooeiiiiiii e, 55
@RelatedToVia: Accessing relationship entitiescccoevvviiiiiiiiiiiincc e, 55
Relationship TYPe PreCeENCEcovuuiiiiiiiii e 56
Discriminating Relationships Based On End Node TYPecovvveviiiiiiinieiiiieeiieeennnn, 57
20.6. INAEXING .. iiiti ettt ettt ettt et et eaaas 58
EXact and NUMENIC INUEX ..uuiveniiiieiii e e e e e e e e e e e eanaeees 58
FUIREXE INAEXES ..ot et e e e e e e e e 59
UNIQUE INAEXES ...ttt e e et e ettt e e et e e e era e eeees 59
VAT E= LT g o 1o = o o 60
Index queries in NeOA|TEMPIALEcovuniiiii e 61
NEOA] AULO INAEXES ..ottt et et 61
Spatial INAEXESo 61

4O B N [=To V2 =T 0] o] = 61
BASIC OPEIALIONS ...ceveiieiiiii ettt eee 61

(70 (R @] o T=] =i o] PRSP 62
ENtity-PerSISIENCE .. oot 62
1]] | PP 62
10 =5] o o PRSPPI 62
Graph traVEISAlcovuiii i 63
CYPNEI QUETIES ...ttt e et e e e e e e aa s 63

I = 1 F5T= U 1o 0 63

N [T o I] S IS Y = - 63
LIfECYCIE EVENTS ...eeiiiiiii et 63
20.8. CRUD With rePOSITOTIES ...eevuiiiiiiiii ettt e s 64
(012U B == 0 To 11 (0] 52PN 65
IndexRepository and NamedINdeXRepOSItOrYccocvvuuiieiiiiinieiiiineeeei e 65
TraverSalREPOSITONYccouuu ittt e e et e e e et e e e et e eeees 66
Query and Finder Methodscoovuiiiiiiciii e e 66
ANNOTALET QUETIEStuieiiiii ettt ettt ettt e e ettt e eeena e e 66

NAMEA QUEIIES ...ttt et et e et e e et e e e eata e eees 66

3.0.0.M1

Good Relationships iii

please define productname in your docbook file!

QUENY TESUILS ..eeeiei et 66

Cypher eXampPIEs ... e 66

Queries derived from finder-method namesc.ccooveiiiiiii i 68

Derived Finder MethOASoooiiiiiiiiii e 68

CYPEr-DSL rEPOSITOIY ...iiitiiieeiii et 69
Cypher-DSL and QUEIYDSLuuiiiiii e e s 70

Creating rEPOSITONIESciieii ettt ettt e et e et e e e e 71
COMPOSING FEPOSILOMIESieeiiit ettt e e et e e et e e e et e e e eaba e eeenes 72

20.9. CONVEISION ettt e ee ettt e ettt e e et et et e e e e et e e e b e b r e e e e e e e e e snbaa e neeees 74
Mapping QUETY RESUILSccoouiiiiiiiii e e 74

20.10. Projecting NLItIESuuiiiiiiiiieeiii et 75
20.11. Geospatial QUETIESueeiii ettt e e e e e e e e aaaas 76
20.12. Active Record Methods for Advanced Mapping Modeccoiviiiiiiinieeinnnnnn. 77
20.13. TrANSACHONS .. ieeiti ittt ettt e et et e et e e e et e e e e et e e e e aae e e e eaann e eennan 78
20.14. Detached node entities in advanced mapping Modeccoovevvieeiiiieiiineeiineeenn, 80
Relating detached entitiesoiiiiiiiiiii e 80

20.15. Entity type repreSENtationoooeeeeeioiiii e 82
20.16. Bean validation (JSR-303)ccuuiiiiiiiiiiieiiiie e ee e e e e 83

21, ENVIFONMENT SETUD .vuiiiiitieeeiii ettt ettt ettt ettt ettt e e e e e e et et et e e e et e e eenan s 84
21.1. Dependencies for Spring Data Neo4j Simple Mappingccooeeveviieeiiiinneeeinnnnnn. 84
21.2. Gradle configuration for Advanced Mapping (ASPEctd)ccocvvviveiiiieiiiieiiiieeeieeenn, 84
21.3. Ant/lvy configuration for Advanced Mapping (ASPectd)cccuvivrviiriiiniieiineeennnn, 85
21.4. Maven configuration for Advanced Mappingc.cooveieiinieiiiiinie e 85

=T 0T 11 (0] £ T 85
DEPENUEINCIES ...ttt et e et ettt e e et e e et eeee 85

Maven Aspectd build configurationcooiiiiiiiiii 86

21.5. SPring CONfIQUIALIONciiiiiiiii i e e e e e e e e e aaaas 87
XML NBMESPACE .. .ieviiiiiiietie ettt e r et e r e e e 87
Repository ConfiQUuIationoveiiiiiiiiii e e e e 89
Java-based bean configurationcooooiiiiiii i 89

22. CrOSS-StOIE PEISISIENCEuiiiiiiti ettt e ettt ettt et e e et e e e e e aba e e ennans 91
22.1. Partial €NtIES ...coeeeeieeiiii e 91
22.2. Cross-StOre anNOALIONSoiieeeriiiiiiiiiies e e e ettt e e e et e e e e e e e ere b e e 91
@NodeEntity(partial = "IUE™)coiiii i 91

(@] =T o] a1 =d (] o 1= 1 1 PSPPSR 91

EXAMPIE e 91

22.3. Configuring CroSs-StOre PErSISIENCEuuiiiieiiiieiiiiie ettt 92

23, SAMPIE COUE ...ttt et 94
23,1, INTFOAUCTION ...ttt e e e e e e e e e e e e e rbe s 94
23.2. Hello Worlds sample appliCationveieeiiiiiiiiiieieii e 94
23.3. IMDB sample appliCatiOncooouuiiiiiiiii e 94
23.4. MyRestaurants sample appliCationccocvuiiiiiiiiiii i 95
23.5. MyRestaurant-Social sample appliCationcccuiiieiiiiiiieiiiieee e 95
23.6. Cineasts social movie databaseccovvieiiiiiiiiiii 96

24, Heroku: Seeding the CloUdooouuiiiiiiii e e e e e aeas 98
24.1. Create a Self-Hosted Web AppliCationcooeuiiiiiiiiiiie e 98
24.2. DEPIOY 10 HEFOKU ...ttt e eaees 101

25. Performance CONSIAEIALIONScciiiiiiiiiiiii ettt e e e e e e e e eeenes 102
25.1. When to use Spring Data NEO4uiiiiiiiiiiiiii e 102

26. ASPECET AELAIIS .. .eeiieieiiii e e e 103

3.0.0.M1 Good Relationships iv

please define productname in your docbook file!

27. NEOA] SEIVEI ...ttt

27.1. Server EXtENSIONcooeevveiiiiiiiiiiieeiins
27.2. Using Spring Data Neo4j as a REST client

3.0.0.mM1 Good Relationships

please define productname in your docbook file!

Foreword by Rod Johnson

I’'m excited about Spring Data Neo4j for several reasons.

First, this project is in a very important space. We are in an era of transition. A very few years
ago, a relational database was a given for storing nearly all the data in nearly all applications. While
relational databases remain important, new application requirements and massive data proliferation
have prompted a richer choice of data stores. Graph databases have some very interesting strengths,
and Neodj is proving itself valuable in many applications. It's a choice you should add to your toolbox.

Second, Spring Data Neo4j is an innovative project, which makes it easy to work with one of the most
interesting new data stores. Unfortunately, the proliferation of new data stores has not been matched by
innovation in programming models to work with them. Ironically, just after modern ORM mapping made
working with relational data in Java relatively easy, the data store disruption occurred, and developers
were back to square one: struggling once more with clumsy, low level APIs. Working with most non-
relational technologies is overly complex and imposes too much work on developers. Spring Data
Neo4j makes working with Neo4j amazingly easy, and therefore has the potential to make you more
successful as a developer. Its use of AspectJ to eliminate persistence code from your domain model is
truly innovative, and on the cutting edge of today’s Java technologies.

Third, I'm excited about Spring Data Neo4j for personal reasons. | no longer get to write code as often
as | would like. My initial convictions that Spring and AspectJ could both make building applications with
Neod4j dramatically easier and cross-store object navigation possible gave me an excuse for a much-
needed coding binge early in 2010. This led to a prototype of what became Spring Data Neo4j — at
times written paired with Emil. I'm sure the vast majority of my code has long since been replaced
(probably for the better) by coders who aren't rusty — thanks Michael and Thomas! — but | retain my
pleasant memories.

Finally, Spring Data Neo4j is part of the broader Spring Data project: one of the key areas in which
Spring is innovating to help meet new application requirements. | encourage you to explore Spring Data,
and — better still — become involved in the community and contribute.

Enjoy the Spring Data Neo4j book, and happy coding!

Rod Johnson, Founder, Spring and SVP, Application Platform, VMware

3.0.0.M1 Good Relationships Vi

please define productname in your docbook file!

Foreword by Emil Eifrem

"Spring is the most popular middleware on the planet,” | thought to myself as | walked up to Rod
Johnson in late 2009 at the JAOO conference in Aarhus, Denmark. Rod had just given an introductory
presentation about Spring Roo and when he was done | told him "Great talk. You're clearly building a
stack for the future. What about support for non-relational databases?"

We started talking and quickly agreed that NOSQL will play an important role in emerging stacks. Now,
a year and half later, Spring Data Neo4j is available in its first stable release and I'm blown away by the
result. Never before in any environment, in any programming framework, in any stack, has it been so
easy and intuitive to tap into the power of a graph database like Neo4j. It's a testament to the efforts by
an awesome team of four hackers from Neo Technology and VMware: Michael Hunger, David Montag,
Thomas Risberg and Mark Pollack.

The Spring framework revolutionized how we all wrote enterprise Java applications and today it's used
by millions of enterprise developers. Graph databases also stand out in the NOSQL crowd when it comes
to enterprise adoption. You can find graph databases used in areas as diverse as network management,
fraud detection, cloud management, anything with social data, geo and location services, master data
management, bioinformatics, configuration databases, and much more.

Spring developers deserve access to the best tools available to solve their problem. Sometimes that's a
relational database accessed through JPA. But more often than not, a graph database like Neo4j is the
perfect fit for your project. | hope that Spring Data Neo4j will give you access to the power and flexibility
of graph databases while retaining the familiar productivity and convenience of the Spring framework.

Enjoy the Spring Data Neo4j guide book and welcome to the wonderful world of graph databases!

Emil Eifrem, CEO of Neo Technology

3.0.0.M1 Good Relationships vii

please define productname in your docbook file!

About this guide book

1 The Spring Data Neo4j Project

Welcome to the Spring Data Neo4j Guide Book. Thank you for taking the time to get an in-depth look
into Spring Data Neo4j. This project is part of the Spring Data project, which brings the convenient
programming model of the Spring Framework to modern NOSQL databases. Spring Data Neo4j, as the
name alludes to, aims to provide support for the graph database Neo4j.

2 Feedback

It was written by developers for developers. Hopefully we've created a guide that is well received by
our peers.

If you have any feedback on Spring Data Neo4j or this book, please provide it via the SpringSource
JIRA, the SpringSource NOSQL Forum, github comments or issues, or the Neo4j mailing list.

3 Format of the Book

This book is presented as a duplex book, a term coined by Martin Fowler. A duplex book consists of
at least two parts. The first part is an easily accessible tutorial or narrative that gives the reader an
overview of the topics contained in the book. It contains lots of examples and discussion topics. This
part of the book is highly suited for cover-to-cover reading.

We chose a tutorial describing the creation of a web application that allows movie enthusiasts to find
their favorite movies, rate them, connect with fellow movie geeks, and enjoy social features such as
recommendations. The application is running on Neo4j using Spring Data Neo4j and the well-known
Spring Web Stack.

The second part of the book is the classic reference documentation, containing detailed information
about the library. It discusses the programming model, the underlying assumptions, and internals, as
well as the APIs for the object-graph mapping. The reference documentation is typically used to look up
concrete bits of information, or to drill down into certain topics. For hackers wanting to really delve into
Spring Data Neo4j, it can of course also be read cover-to-cover.

4 Acknowledgements

We would like to thank everyone who contributed to this book, especially Mark Pollack and Thomas
Risberg, the leads of the Spring Data Project, who helped a lot during the development of the library
as well as sharing great feedback about the book. Also Oliver Gierke, our local German VMWare/
SpringSource engineer, who invested a lot of time discussing various aspects of the library as well
as providing the superb foundations for the Spring Data Repositories. We tortured Andy Clement, the
AspectJ project lead, with many questions and issues around our advanced AspectJ usage which
caused some headaches. He always quickly solved our issues and gave us excellent answers.

Many thanks to our colleagues David Montag, Andreas Kollegger and Rickard Oberg who not only
contributed to Spring Data Neo4j but also provided content and feedback for this book.

We also appreciate very much the foresight of Rod Johnson and Emil Eifrem to initiate the project, and
now also providing great forewords. Their leadership inspired collaboration between the engineering

3.0.0.M1 Good Relationships viii

http://spring.neo4j.org
http://springsource.org/spring-data
http://neo4j.org
http://spring.neo4j.org/issues
http://spring.neo4j.org/issues
http://spring.neo4j.org/discussion
http://github.com/SpringSource/spring-data-neo4j/issues
http://neo4j.org/forums/
http://martinfowler.com/bliki/DuplexBook.html

please define productname in your docbook file!

teams at SpringSource and Neo Technology, a tremendous help during the making of Spring Data
Neod4;.

Last but not least we thank our vibrant community, both in the Spring Forums as well as on the
Neo4j Mailing list and on many other places on the internet for giving us feedback, reporting issues
and suggesting improvements. Without that important feedback we wouldn't be where we are today.
Especially Jean-Pierre Bergamin and Alfredas Chmieliauskas provided exceptional feedback and
contributions.

Enjoy the book!

3.0.0.M1 Good Relationships iX

Part I. Tutorial

CINEASTS

The first part of the book provides a tutorial that walks through the creation of a complete web application
called cineasts.net, built with Spring Data Neo4j. Cineasts are people who love movies, and the site is
a gathering place for moviegoers. For cineasts.net we decided to add a social aspect to the rating of
movies, allowing friends to share their scores and get recommendations for new friends and movies.

The tutorial takes the reader through the steps necessary to create the application. It provides the
configuration and code examples that are needed to understand what's happening in Spring Data Neo4;.
The complete source code for the app is available on Github.

http://spring.neo4j.org/cineasts

please define productname in your docbook file!

1. Introducing our project

Allow me to introduce Cineasts.net

Once upon a time we wanted to build a social movie database. At first there was only the name: Cineasts,
the movie enthusiasts who have a burning passion for movies. So we went ahead and bought the domain
cineasts.net, and so we were off to a good start.

We had some ideas about the domain model too. There would obviously be actors playing roles in
movies. We also needed someone to rate the movies - enter the cineast. And cineasts, being the
social people they are, they wanted to make friends with other fellow cineasts. Imagine instantly finding
someone to watch a movie with, or share movie preferences with. Even better, finding new friends and
movies based on what you and your friends like.

When we looked for possible sources of data, IMDB was our first stop. But they're a bit expensive for
our taste, charging $15k USD for data access. Fortunately, we found themoviedb.org which provides
user-generated data for free. They also have liberal terms and conditions, and a nice API for retrieving
the data.

We had many more ideas, but we wanted to get something out there quickly. Here is how we envisioned
the final website:

-
=

\ 2}

§ CINEASTS

S

3.0.0.M1 Good Relationships 2

http://cineasts.net
http://themoviedb.org

please define productname in your docbook file!

2. The Spring stack

Being Spring developers, we naturally choose components from the Spring stack to do all the heavy
lifting. After all, we have the concept etched out, so we're already halfway there.

What database would fit both the complex network of cineasts, movies, actors, roles, ratings, and friends,
while also being able to support the recommendation algorithms that we had in mind? We had no idea.

But hold your horses, there is this new Spring Data project, started in 2010, which brings the convenience
of the Spring programming model to NOSQL databases. That should be in line with what we already
know, providing us with a quick start. We had a look at the list of projects supporting the different NOSQL
databases out there. Only one of them mentioned the kind of social network we were thinking of - Spring
Data Neo4j for the Neo4j graph database. Neo4j's slogan of "value in relationships" plus "Enterprise
NOSQL" and the accompanying docs looked like what we needed. We decided to give it a try.

2.1 Required setup

To set up the project we created a public Github account and began setting up the infrastructure
for a Spring web project using Maven as the build system. So we added the dependencies
for the Spring Framework libraries, added the web. xm for the Di spat cher Servl et, and the
appl i cati onCont ext. xnl in the webapp directory.

<properties>
<spring. versi on>3. 0. 7. RELEASE</ spri ng. ver si on>
</ properties>

<dependenci es>

<dependency>
<gr oupl d>or g. spri ngf ramewor k</ gr oupl d>
<!-- abbreviated for all the dependencies -->

<artifactld>spring-(core, context,aop, aspects,tx, webnvc)</artifactld>
<versi on>${spri ng. versi on} </ versi on>

</ dependency>

<dependency>
<gr oupl d>or g. spri ngf ramewor k</ gr oupl d>
<artifactld>spring-test</artifactld>
<versi on>${spri ng. versi on} </ versi on>
<scope>t est </ scope>

</ dependency>

</ dependenci es>

Example 2.1 Project pom.xml

3.0.0.mM1 Good Relationships 3

please define productname in your docbook file!

<listener>
<l i stener-cl ass>org. spri ngfranmewor k. web. cont ext. Cont ext Loader Li stener</|istener-class>
</listener>

<servl et>
<ser vl et - nane>di spat cher Ser vl et </ ser vl et - nane>
<servl et-cl ass>org. spri ngfranmewor k. web. servl et. Di spat cher Servl et </ servl et-class>
<l oad-on-start up>1</1| oad-on-startup>

</ servl et>

<servl et - mappi ng>
<ser vl et - nane>di spat cher Ser vl et </ ser vl et - nane>
<url-pattern>/</url-pattern>

</ servl et - mappi ng>

Example 2.2 Project web.xml

With this setup in place we were ready for the first spike: creating a simple MovieController showing a
static view. See the Spring Framework documentation for information on doing this.

<?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: context="http://ww. springframework. or g/ schema/ cont ext "
xm ns: tx="http://ww. springfranmewor k. org/ schema/ t x"
xsi : schemalLocat i on="
http://ww. springframewor k. or g/ schema/ beans
http://ww. spri ngfranewor k. or g/ schena/ beans/ spri ng- beans- 3. 0. xsd
http://ww. springfranmework. org/ schema/ t x
http://ww. springframework. org/ schema/t x/ spring-tx-3.0.xsd
http://wwv spri ngfranmewor k. or g/ schema/ cont ext
http://ww. springfranework. or g/ schema/ cont ext/spri ng-cont ext-3. 0. xsd" >

<cont ext : annot at i on- confi g/ >
<cont ext: spri ng-confi gured/ >
<cont ext : conponent - scan base- package="or g. neo4j . ci neasts" >
<cont ext : excl ude-filter type="annotation"
expressi on="org. spri ngf ramewor k. st er eot ype. Control ler"/>
</ cont ext : conponent - scan>

<t x: annot ati on-dri ven node="proxy"/>
</ beans>

Example 2.3 applicationContext.xml

<mvc: annot ati on-driven/>

<mvc:resources nmappi ng="/i mages/**" | ocation="/i mages/"/>
<mvc:resources mappi ng="/resources/**" |ocation="/resources/"/>

<cont ext : conponent - scan base- package="org. neo4j . ci neasts.controller"/>

<bean i d="vi ewResol ver"
cl ass="org. spri ngfranmewor k. web. servl et. vi ew. | nt er nal Resour ceVi enResol ver"
p: prefix="/WEB-| NF/views/" p:suffix=".jsp"/>

Example 2.4 dispatcherServlet-servlet.xml

We spun up Tomcat in STS with the App and it worked fine. For completeness we also added Jetty to
the maven-config and tested it by invoking mvn j etty: run to see if there were any obvious issues
with the config. It all seemed to work just fine.

3.0.0.mM1 Good Relationships 4

please define productname in your docbook file!

3. The domain model
Setting the stage

We wanted to outline the domain model before diving into library details. We also looked at the data
model of the themoviedb.org data to confirm that it matched our expectations.

FRIEMD

[~ User \
|0-:!|[lﬂ
name
passcord
rate()
[b efriend()

r_ Actor
name

L Flﬂﬂ&&llﬂ()

In Java code this looks pretty straightforward:

3.0.0.mM1 Good Relationships 5

please define productname in your docbook file!

class Myvie {
String id;
String title;
int year;
Set <Rol e> cast ;

}

class Actor {

String id;

String nane;

Set <Movi e> fi | nogr aphy;

Rol e pl ayedl n(Movie novie, String role) { ... }
}

class Role {
Movi e novi g;
Actor actor;
String role;

}

class User {
String |ogin;
String nane;
String password;
Set <Rati ng> ratings;
Set <User > fri ends;
Rating rate(Movie novie, int stars, String comrent) { ... }
voi d befriend(User user) { ... }
}

class Rating {
User user;
Movi e novi e;
int stars;
String coment;

}
Example 3.1 Domain model

Then we wrote some simple tests to show that the basic design of the domain is good enough so far.
Just creating a movie, populating it with actors, and allowing users to rate it.

3.0.0.mM1 Good Relationships 6

please define productname in your docbook file!

4. Learning Neo4j
Graphs ahead

Now we needed to figure out how to store our chosen domain model in the chosen database. First we
read up about graph databases, in particular our chosen one, Neo4j. The Neo4j data model consists
of nodes and relationships, both of which can have key/value-style properties. What does that mean,
exactly? Nodes are the graph database name for records, with property keys instead of column names.
That's normal enough. Relationships are the special part. In Neo4j, relationships are first-class citizens,
meaning they are more than a simple foreign-key reference to another record, relationships carry
information. So we can link together nodes into semantically rich networks. This really appealed to us.
Then we found that we were also able to index nodes and relationships by {key, value} pairs. We also
found that we could traverse relationships both imperatively using the core API, and declaratively using
a query-like Traversal Description. Besides those programmatic traversals there was the powerful graph
query language called Cypher. So lots of ways of working with the graph.

We also learned that Neo4;j is fully transactional and therefore upholds ACID guarantees for our data.
Durability is actually a good thing and we didn't have to scale to trillions of users and movies yet.
This is unusual for NOSQL databases, but easier for us to get our head around than non-transactional
eventual consistency. It also made us feel safe, though it also meant that we had to manage transactions.
Something to keep in mind later.

We started out by doing some prototyping with the Neo4j core API to get a feeling for how it works. And
also, to see what the domain might look like when it's saved in the graph database. After adding the
Maven dependency for Neo4j, we were ready to go.

<dependency>
<gr oupl d>or g. neo4j </ gr oupl d>
<artifactld>neodj</artifactld>
<version>1. 8. 1</ ver si on>

</ dependency>

Example 4.1 Neo4j Maven dependency

enum Rel ati onshi pTypes inpl ements Rel ati onshi pType { ACTS_IN };

GraphDat abaseServi ce gds = new EnbeddedG aphDat abase("/ path/to/store");
Node forrest=gds. creat eNode();

forrest.setProperty("title","Forrest Gunp");
forrest.setProperty("year", 1994);

gds. i ndex().forNodes("novies").add(forrest,"id", 1);

Node t onmegds. cr eat eNode();
tom set Property("nane", " Tom Hanks");

Rel ati onshi p rol e=tom creat eRel ati onshi pTo(forrest, ACTS I N);
rol e.setProperty("role","Forrest");

Node novi e=gds. i ndex().for Nodes("novi es").get("id",1).getSingle();
assert Equal s("Forrest Gunmp", novie.getProperty("title"));
for (Relationship role : novie.getRelationshi ps(ACTS_IN, | NCOM NG) {
Node act or =rol e. get G her Node(novi e) ;
assert Equal s(" Tom Hanks", actor.getProperty("nane"));
assert Equal s("Forrest”, role.getProperty("role"));

}
Example 4.2 Neo4j core API (transaction code omitted)

3.0.0.mM1 Good Relationships 7

http://neo4j.org
http://docs.neo4j.org/chunked/milestone/indexing.html
http://docs.neo4j.org/chunked/milestone/tutorials-java-embedded-traversal.html
http://docs.neo4j.org/chunked/milestone/cypher-query-lang.html
http://en.wikipedia.org/wiki/ACID

please define productname in your docbook file!

5. Spring Data Neo4;
Conjuring magic

So far it had all been pure Spring Framework and Neo4j. However, using the Neo4j code in our domain
classes polluted them with graph database details. For this application, we wanted to keep the domain
classes clean. Spring Data Neo4j promised to do the heavy lifting for us, so we continued investigating it.

Spring Data Neo4j comes with two mapping modes. The more powerful one depends heavily on
AspectJ, see Chapter 26, AspectJ details, so we ignored it for the time being. The simple direct POJO-
mapping copies the data out of the graph and into our entities. Good enough for a web-application like
ours.

The first step was to configure Maven:

<dependency>
<groupl d>org. spri ngf ramewor k. dat a</ gr oupl d>
<artifactld>spring-data-neodj</artifactld>
<version>2. 1. 0. RELEASE</ ver si on>

</ dependency>

Example 5.1 Spring Data Neo4j Maven configuration

The Spring context configuration was even easier, thanks to a provided namespace:

<beans xm ns="http://ww. springfranmework. org/ schema/ beans" ...
xm ns: neodj ="http://ww. springframewor k. or g/ schena/ dat a/ neo4j "
xsi:schemaLocation="... http://ww. springfranmework. org/ schenma/ dat a/ neo4;
http://ww. springfranmework. or g/ schema/ dat a/ neo4j / spri ng- neo4j . xsd" >

<neo4j:config storeDirectory="datal/ graph.db"/>

</ beans>

Example 5.2 Spring Data Neo4j context configuration

3.0.0.mM1 Good Relationships 8

please define productname in your docbook file!

6. Annotating the domain

Decorations

Looking at the Spring Data Neo4j documentation, we found a simple Hello World example and tried to
understand it. We also spotted a compact reference card which helped us a lot. The entity classes were
annotated with @NodeEnt i t y. That was simple, so we added the annotation to our domain classes
too. Entity classes representing relationships were instead annotated with @Rel ati onshi pEntity.
Property fields were taken care of automatically. The only additional field we had to provide for all entities
was an id-field to store the node- and relationship-ids.

@NodeEnt ity
class Myvie {
@z aphl d Long nodel d;
String id;
String title;
int year;
Set <Rol e> cast ;
}

Example 6.1 Movie class with annotation

It was time to put our entities to the test. How could we now be assured that an attribute really was
persisted to the graph store? We wanted to load the entity and check the attribute. Either we could
have a Neo4j Tenpl at e injected and use its f i ndOne(i d, t ype) method to load the entity. Or use
a more versatile Reposi t ory. The same goes for persisting entities, both Neo4j Tenpl at e or the
Reposi t ory could be used. We decided to keep things simple for now.

So here's what our test ended up looking like:

@\t owi red Neo4dj Tenpl ate tenpl ate;

@rest @ransactional public void persistedMvi eShoul dBeRetri evabl eFromG aphDb() {
Movi e forrestGQunp = tenpl ate. save(new Myvi e("Forrest Gunp", 1994));
Movi e retrievedMovi e = tenpl ate. fi ndOne(forrest Gunp. get Nodel d(), Mvi e. cl ass);
assertEqual s("retri eved novi e mat ches persisted one", forrestGunp, retrievedMvie);
assertEqual s("retrieved novie title matches", "Forrest Gunmp",
retrievedMbvie.getTitle());

}
Example 6.2 First test case

As Neo4j is transactional, we have to provide the transactional boundaries for mutating operations.

3.0.0.mM1 Good Relationships 9

http://spring.neo4j.org/helloworld
http://spring.neo4j.org/notes

please define productname in your docbook file!

7. Indexing

Do | know you?

There is an @Indexed annotation for fields. We wanted to try this out, and use it to guide the next test.
We added @Indexed to the i d field of the Movie class. This field is intended to represent the external
ID that will be used in URIs and will be stable across database imports and updates. That's why we also
declare it as unique. This time we went with a simple GraphRepository to retrieve the indexed movie.

@lodeEntity class Mvie {
@ ndexed(uni que=true) String id;
String title;
int year;

}

@\ut owi red Neo4dj Tenpl ate tenpl ate;

@est @ransacti onal
public voi d persistedMvi eShoul dBeRetri evabl eFromGr aphDb() {
int id=1;
Movi e forrestGunp = tenpl ate. save(new Myvi e(id, "Forrest Gunp", 1994));
GraphReposi t ory<Mbvi e> npvi eRepository =
tenpl at e. reposi t or yFor (Movi e. cl ass) ;
Movi e retri evedMbvi e = novi eReposi tory. fi ndByPropertyVal ue("id", id);

assertEqual ("retrieved novie title natches", "Forrest Gunp",
retrievedMbvie.getTitle());
}

assertEqual ("retrieved novi e natches persisted one", forrestGunp, retrievedMvvie);

Example 7.1 Exact Indexing for Movie id

3.0.0.mM1 Good Relationships

10

please define productname in your docbook file!

8. Repositories

Serving a good cause

We wanted to add repositories with domain-specific operations. Interestingly there was support for a
very advanced repository infrastructure. You just declare an entity specific repository interface and get
all commonly used methods for free without implementing any of boilerplate code.

So we started by creating a movie-related repository, simply by creating an empty interface.

package org.neo4j.cineasts.repository;
public interface Movi eRepository extends G aphRepository<Movie> {}

Example 8.1 Movie repository

Then we enabled repository support in the Spring context configuration by simply adding:

<neo4j : repositori es base-package="org. neodj.ci neasts.repository"/>

Example 8.2 Repository context configuration

Besides the existing repository operations (like CRUD, and many standard queries) it was possible
to declare custom methods, which we explored later. Those methods' names could be more domain
centric and expressive than the generic operations. For simple use-cases like finding by id's this is good
enough. So we first let Spring autowire our Movi eCont r ol | er with the Movi eReposi t ory. That way
we could perform simple persistence operations.

@\ut owi red Movi eRepository repo;

Movi e novi e = repo. fi ndByPropertyVal ue("id", novi el d);

Example 8.3 Usage of a repository

We went on exploring the repository infrastructure. A very cool feature was something that we so far
only heard about from Grails developers. Deriving queries from method names. Impressive! So we had
a more explicit method for the id lookup.

public interface MyvieRepository extends G aphRepository<Myvie> {
Movi e get Movi eByl d(String id);
}

Example 8.4 Derived movie-repository query method

In our wildest dreams we imagined the method names we would come up with, and what kinds of queries
those could generate. But some, more complex queries would be cumbersome to read and write. So in
those cases it is better to just annotate the finder method. We did this much later, and just wanted to give
you a peek into the future. There is much more, you can do with repositories, it is worthwhile to explore.

public interface MyvieRepository extends G aphRepository<Myvie> {
@uery("start user=node: User ({0}) match user-[r: RATED] - >novi e return novi e order by
r.stars desc linmt 10")
It erabl e<Movi e> get TopRat edMbvi es(User uer);

}
Example 8.5 Annotated movie-repository query method

3.0.0.M1 Good Relationships 11

please define productname in your docbook file!

9. Relationships
A convincing act

Our application was not very much fun yet, just storing movies and actors. After all, the power is in the
relationships between them. Fortunately, Neo4j treats relationships as first class citizens, allowing them
to be addressed individually and have properties assigned to them. That allows for representing them
as entities if needed.

9.1 Creating relationships

Relationships without properties (“anonymous” relationships) don't require any
@Rrel ati onshi pEntity classes. "Unfortunately" we had none of those, because our relationships
were richer. Therefore we went with the Rol e relationship between Movi e and Act or . It had to be
annotated with @Rel ati onshi pEntity and the @t art Node and @ndNode had to be marked. So
our Role looked like this:

Actor Role | e

name P ALTS N i

movies ttle A
) cast

@Rel ati onshi pEntity

class Role {
@st art Node Actor actor;
@ndNode Movi e novi e;
String role;

}
Example 9.1 Role class

When writing a test for the Rol e we tried to create the relationship entity just by instantiating it with new
and saving it with the template, but we got an exception saying that it misses the relationship-type.

We had to add it to the @Rel at i onshi pEnti ty as an attribute (or as a @RelationshipType annotated
field in the RelationshipEntity). Another way to create instances of relationship-entities is to use the
methods provided by the template, like cr eat eRel at i onshi pBet ween.

3.0.0.M1 Good Relationships 12

please define productname in your docbook file!

@Rel ati onshi pEntity(type="ACTS |IN")
class Role {
@t art Node Actor actor;
@ndNode Mbvi e novi e;
String role;

}

class Actor {

public Rol e playedln(Mvie novie, String rol eNanme) {
Rol e role = new Rol e(this, novie, roleNane);
this.rol es.add(rol e);
return role;

/| either save the actor
t enpl at e. save(t onHanks) ;
/1 or the role

tenpl at e. save(rol e);

/] alternative approach

Rol e. cl ass, "ACTS_IN');

Rol e rol e = tonHanks. pl ayedl n(forrest Gunp, "Forrest Gunp");

Rol e role = tenpl at e. creat eRel ati onshi pBet ween(act or, novi e,

Example 9.2 Relating actors to movies

Saving just the actor would take care of relationships with the same type between two entities and
remove the duplicates. Whereas just saving the role happily creates another relationship with the same

type.

9.2 Accessing related entities

Now we wanted to find connected entities. We already had fields for the relationships in both classes.
It was time to annotate them correctly. The Neo4j relationship type and direction were easy to figure
out. The direction even defaulted to outgoing, so we only had to specify it for the movie. If we want to
use the same relationship between the two entities we have to make sure to provide a dedicated type,

otherwise the field-names would be used resulting in different relationships.

3.0.0.mM1 Good Relationships

13

please define productname in your docbook file!

@NodeEntity
class Myvie {
@ ndexed(uni que=true) String id;
String title;
int year;
@Rel at edTo(type = "ACTS IN', direction = Direction.| NCOM NG
Set <Act or > cast;

}

@NodeEntity

class Actor {
@ ndexed(uni que=true) int id;
String nane;
@Rel at edTo(type = "ACTS | N')
Set <Movi e> novi es;

public Rol e playedl n(Mvie novie, String rol eNane) {
return new Rol e(this, nmovie, roleNane);

}

}
Example 9.3 @RelatedTo usage

Changes to the collections of related entities are reflected into the graph on saving of the entity.

We made sure to add some tests for using the relationshhips, so we were assured that the collections
worked as advertised.

9.3 Accessing the relationship entities

But we still couldn't access the Role relationship entities themselves. It turned out that there was
a separate annotation @Rel at edToVi a for accessing the actual relationship entities. And we could
declare the field as an |t erabl e<Rol e>, with read-only semantics or on a Col |l ection or
Set <Rol e> field with modifying semantics. So off we went, creating our first real relationship (just
kidding).

To have the collections of relationships being read eagerly during the loading of the Movie we have
to annotate it with the @Fetch annotation. Otherwise Spring Data Neo4j refrains from following
relationships automatically. The risk of loading the whole graph into memory would be too high.

@NodeEntity

class Mvie {
@ ndexed(uni que=true) String id;
String title;
int year;

@etch @Rel atedToVi a(type = "ACTS_IN', direction = Direction.| NCOM NG
It erabl e<Rol es> rol es;

}
Example 9.4 @RelatedToVia usage

After watching the tests pass, we were confident that the changes to the relationship fields were really
stored to the underlying relationships in the graph. We were pretty satisfied with persisting our domain.

3.0.0.M1 Good Relationships 14

please define productname in your docbook file!

10. Get it running
Curtains up!

Now we had a pretty complete application. It was time to put it to the test.

10.1 Populating the database

Before we opened the gates we needed to add some movie data. So we wrote a small class for
populating the database which could be called from our controller. A simple / popul at e endpoint for
the controller that called it would be enough for now.

@ervi ce
public class DatabasePopul ator {

@r ansacti onal
publ i c List<Mvie> popul at eDat abase() {
Act or tonHanks = new Actor("1", "Tom Hanks");
Movi e forrestGunmp = new Mvie("1", "Forrest Gump");
t omHanks. pl ayedl n(f orrest Gunp, "Forrest");
tenpl at e. save(forrest Gunp);
return asLi st (forrestGunp);

}

@ontrol ler
public class MyvieController {

@\ut owi red private DatabasePopul ator popul at or;

@request Mappi ng(val ue = "/ popul ate", nmethod = Request Met hod. POST)
public String popul at eDat abase(Mbdel nodel) {

Col | ecti on<Movi e> novi es = popul at or . popul at eDat abase() ;

nmodel . addAttri but e(" novi es", novi es) ;

return "/novies/list";

}
Example 10.1 Populating the database - Controller

Accessing the URI we could see the list of movies we had added.

10.2 Inspecting the datastore

Being the geeks we are, we also wanted to inspect the raw data in the database. Reading the Neo4j
docs, there were a couple of different ways of going about this.

Neoclipse visualization
First we tried Neoclipse, an Eclipse RCP application that opens an existing graph store and visualizes its

content. After getting an exception about concurrent access, we learned that we have to use Neoclipse
in read-only mode when our webapp was still running. Good to know.

3.0.0.mM1 Good Relationships 15

http://docs.neo4j.org/
http://docs.neo4j.org/

please define productname in your docbook file!

800

Neoclipse

—

e |E¥y B

| Database graph

o $ld=|Q-|+am8~ "0

0 Marcus Chong

@ Matt Doran

0 olliver il

0 Micha 72 Belinda McClory
_ERIENDT
RATED
@ Carrie-Anne Moss
) Laurence Fishburne
@ The Matrix
\‘-‘. -
@ Anthony Ray Parker

7 pavid Aston

?L_Q Julian Arahanga
@ Hugo Weaving

DIREET]

DIRE?

AN

0 Mare Aden

D\Q Joe Pantoliano

@) Keanu Reeves

7 paul Goddard

£
T~ - 0 Gloria Foster

%2 Andy Wachowski

7 Lana Wachowski

] Properties &3

HES - =g

Property Value
v Propertes x
__type__ @ org.neodj.cineasts.domain.Movie m
description @ Neo is a young software engineer and part-time har
genre @ Action
homepage @ http:/ fwhatisthematrix.warnerbros.com/
id () 603 4
- imagelr| @ http:ffcFl.|mgnmect.comfpnstersfsﬂsf:bcgugdﬂ\ b |
€ D Jel»

%P Relationship types 52

Relationship type

DIRECTED
FRIEND
RATED

ls¥s 86 o |

% Dut

¥ s~ -0

]

K KRR e
KEEX

Traversal depth: 3 Nodes: 19 Relationships: 18

The Neo4j Shell

For console junkies there was also a shell that was able to connect to a running Neo4j instance (if it was
started with the enabl e_r enpt e_shel | =t r ue parameter), or reads an existing graph store directly.

bash# neo4j -shel |
bash# neo4j - shel |

-readonly -path data/graph. db
-readonly -port 1337

Example 10.2 Starting the Neo4j Shell

The shell was very similar to a standard Bash shell. We were able to cd to between the nodes, and
| s the relationships and properties. There were also more advanced commands for indexing, queries

and traversals.

3.0.0.M1

Good Relationships

16

please define productname in your docbook file!

neodj -sh[readonly] (0)$ help

Avai | abl e commands: index dbinfo Is rmalias set eval nv gsh env rnrel nkrel
trav help pwd paths ... man cd

Use man <conmand> for info about each conmand.

neodj - sh[readonly] (0)$ index --cd -g User login micha

neo4j -sh[readonly] (Mcha,1)$ Is

* _type__ =[org.neodj.cineasts. donuain. User]
*| ogin =[m cha]

*nane =[M cha]

*rol es =[ROLE_ADM N, ROLE_USER]

(nme) --[FRIEND]-> (dliver, 2)
(me) --[RATED]-> (The Matrix, 3)

neodj -sh[readonly] (Mcha,1)$ Is 2

* _type__ =[org.neodj.cineasts.domin. User]
*[ogin =[ollie]

*nane =[Aliver]

*rol es =[ROLE_USER]

(Aliver,2) <-[FRIEND]-- (nme)
neo4j - sh[readonly] (Mcha,1)$ cd 3

neodj -sh[readonly] (The Matrix,3)$ Is

* type_ =[org. neo4j . ci neast s. donai n. Movi €]

*description =[Neo is a young software engi neer and part-tine hacker who is singled
*genre =[Acti on]

*honmepage =[http://whatisthematrix.warnerbros. con]
*studio =[Warner Bros. Pictures]

*tagline =[Wel come to the Real World.]

*title =[The Matri x]

*trailer =[http: // ww. yout ube. com wat ch?v=UVbyepZ21pl]
*versi on =[324]

(me) <-[ACTS_IN-- (Marc Aden, 19)
(nme) <-[ACTS_IN]-- (David Aston, 18)

(nme) <-[ACTS_IN-- (Keanu Reeves, 6)
(me) <-[DI RECTED]-- (Andy Wachowski, 5)
(rme) <-[DI RECTED]-- (Lana \Wachowski, 4)
(nme) <-[RATED]-- (M cha, 1)

-]

Example 10.3 Neo4j Shell usage

3.0.0.mM1 Good Relationships

17

please define productname in your docbook file!

11. Web views
Showing off

After having put some data in the graph database, we also wanted to show it to the user. Adding the
controller method to show a single movie with its attributes and cast in a JSP was straightforward.
It basically just involved using the repository to look the movie up and add it to the model, and then
forwarding to the / novi es/ showview and voila.

@Request Mappi ng(val ue = "/ novi es/ {nmovi el d}",
met hod = Request Met hod. GET, headers = "Accept=text/htm ")
public String singleMvieViewfinal Mdel nodel, @athVariable String novield) {
Movi e novie = repository. findByld(novield);
nodel . addAttri bute("id", novield);
if (movie !'=null) {
nmodel . addAttri bute(" novi e", mnovie);
nodel . addAttri bute("stars", novie.getStars());

}

return "/ novi es/ show';

}
Example 11.1 Controller for showing movies

<% page session="fal se" %
<U@taglib uri="http://ww.springfranework.org/tags" prefix="s" %
<U@taglib prefix="c" uri="http://java.sun.comjsp/jstl/core" %

<c: choose>
<c:when test="${not enpty novie}">
<h2>${novie.title} (${stars} Stars)</h2>
<c:if test="%${not enpty novie.roles}">

<c: forEach itens="${novie.rol es}" var="rol e">

<c:out value="${rol e.actor.nane}" /> as
<c:out value="${rol e.name}" />

</[li>
</ c: for Each>
</ ul >
</c:if>
</ c: when>
<c: ot herw se>
No Movie with id ${id} found!
</ c: ot herw se>
</ c: choose>

Example 11.2 Populating the database - JSP /movies/show

The Ul had now evolved to this:

3.0.0.mM1 Good Relationships 18

please define productname in your docbook file!

3y CINEASTS

TheMovieDb.org
IMDb

Amazon
CineButler

Google Movies

—

- - f A -
R = B R

| K4 A T 4

- -
- -

Anthony Ray Paul Goddard as Joe Pantoliano asMatt Doran as
Parker as Dozer Agent Brown Cypher Mouse
F
- -
- : - -
| X - q
= ™ =
Belinda McClory Marcus Chong asGloria Foster as Carrie-Anne
as Switch Tank Oracle

-

-
-
-
A X 4
-
=
Julian Arahanga
as Apoc

¥

1

Keanu Reeves as

Moss as Trinity Neo

\ . Y -
Homepage E Y 2))
- A L 4

= -

e — =

Hugo Weaving asLaurence David Aston as Marc Aden as

Agent Smith Fishburne as Rhineheart Choi
Morpheus

Micha

11.1 Searching

The next thing was to allow users to search for movies, so we needed some fulltext search capabilities.
As the default index provider implementation of Neo4j is based on Apache Lucene, we were delighted
to see that fulltext indexes were supported out of the box.

We happily annotated the title field of the Movie class with @ ndexed(t ype = FULLTEXT) . Next thing
we got an exception telling us that we had to specify a separate index name. So we simply changed it
to @ ndexed(type = FULLTEXT, indexNanme = "search").

With derived finder methods, finding things became easy. By simply declaring a finder-method name
that expressed the required properties, it worked without annotations. Cool stuff and you could even tell
it that it should return pages of movies, its size and offset specified by a Pageabl e which also contains
sort information. Using the | i ke operator indicates that fulltext search should be used, instead of an
exact search.

public interface MvieRepository ... {

Movi e findByld(String id);

Page<Movi e> findByTitleLike(String title, Pageabl e page);
}

Example 11.3 Searching for movies

11.2 Listing results

We then used this result in the controller to render a page of movies, driven by a search box. The movie
properties and the cast were accessible through the getters in the domain classes.

3.0.0.mM1 Good Relationships 19

http://lucene.apache.org/java/docs/index.html

please define productname in your docbook file!

@request Mappi ng(val ue = "/ novi es"

met hod = Request Met hod. GET, headers = "Accept=text/htm")

public String findvovi es(Mddel nodel, @RequestParan{"qg") String query) {
Page<Mbvi e> novies = repository.findByTitleli ke(query, new PageRequest (0, 20));
nmodel . addAttri but e(" novi es", novies);
nmodel . addAttri bute("query", query);
return "/novies/list";

}

Example 11.4 Search controller

<h2>Movi es</ h2>

<c: choose>
<c:when test="${not enpty novies}">

<dl class="listings">
<c: forEach itens="${novies}" var="novie">
<dt >
<c: out value="${novie.title}" />

</ dt>
<dd>
<c:out value="${novi e. description}" escapeXm ="true" />
</ dd>
</ c: forEach>
</ dl >
</ c: when>

<c: ot herwi se>
No novi es found for query " ${query}"
</c: ot herw se>
</ c: choose>

Example 11.5 Search Results JSP

The Ul now looked like this:

3.0.0.mM1 Good Relationships

20

please define productname in your docbook file!

-
-
-

-

3 CINEASTS

X X]
The Matrix =V 7 9

53

| e i
RE {.nh.ﬂ-:u
i

The Matrix Reloaded

s
REVDIOT

The Matrix Revolutions

b3
"
}

hY
"
]

Micha Logout

3.0.0.M1

Good Relationships

21

please define productname in your docbook file!

12. Adding social
Movies 2.0

So far, the website had only been a plain old movie database. We now wanted to add a touch of social
to it.

12.1 Users

So we started out by taking the User class that we'd already coded and made it a full-fledged Spring
Data Neo4j entity. We added the ability to create friends and to rate movies. With that we also added
a simple UserRepository that was able to look up users by ID.

The relationships of the user are his friends and the movie-ratings which is implemented with a
Rat i ng Relationship-Entity. This time we used a different approach (for educational and curiosity
purposes) to create the Rat i ng relationships. The cr eat eRel at i onshi pBet ween operation of the
Neo4jTemplate was our matchmaker of choice.

@NodeEntity

class User {
@ ndexed(uni que=true) String | ogin;
String nane;
String password;

@Rel at edToVi a(type = RATED)
@etch Set<Rating> ratings;

@Rel at edTo(type = "FRIEND', direction=Direction. BOTH)
@-etch Set<User> friends;

public Rating rate(Neo4dj Operations tenplate, Mvie novie, int stars, String coment) {
final Rating rating = tenpl ate. createRel ati onshi pBet ween(this, novie,
Rati ng. cl ass, RATED, false);
rating.rate(stars, coment);
return tenpl ate. save(rating);

}

public void addFriend(User user) {
this.friends.add(user);
}
}

@Rel ati onshi pEntity
class Rating {
@t art Node User user;
@ndNode Mbvi e novi e;
int stars;
String comment;
public Rating rate(int stars, String coment) {
this.stars = stars; this.coment = coment;
return this;

}
Example 12.1 Social entities

We extended the DatabasePopulator to add some users and ratings to the initial setup.

3.0.0.M1 Good Relationships 22

please define productname in your docbook file!

@r ansacti onal
public List<Mvie> popul at eDat abase() {
Act or tonHanks = new Actor("1", "Tom Hanks");
Movi e forestGunp = new Mvie("1", "Forrest Gunp");
t onHanks. pl ayedl n(f orest Gunp, "Forrest");
tenpl at e. save(t onrHanks) ;

User ne = tenpl ate.save(new User("m cha", "Mcha", "password"));
Rati ng awesone = ne.rate(tenplate, forestCGunp, 5, "Awesone");

User ollie = tenpl ate. save(new User("ollie", "Aiver", "password"));
ollie.rate(tenpl ate, forest Gunp, 2, "ok");

ne. addFri end(ol lie);

tenpl at e. save(ne) ;

return asLi st (forestGunp);

}
Example 12.2 Populate users and ratings

12.2 Ratings for movies

We also put a ratings field into the Movie class to be able to get a movie's ratings, and also a method
to average its star rating.

class Myvie {

@rel at edToVi a(type="RATED', direction = Direction. | NCOM NG
@-etch Iterabl e<Rating> ratings;

public int getStars() {
int stars = 0, count = O;
for (Rating rating : ratings) {
stars += rating.getStars(); count++;

}

return count == 0 ? 0 : stars / count;

}
Example 12.3 Getting the rating of a movie

Fortunately our tests highlighted the division by zero error when calculating the stars for a movie without
ratings. The next steps were to add this information to the movie presentation in the Ul, and creating a
user profile page. But for that to happen, users must first be able to log in.

3.0.0.mM1 Good Relationships 23

please define productname in your docbook file!

13. Adding Security
Protecting assets

To handle an active user in the webapp we had to put it in the session and add login and registration
pages. Of course the pages that were only meant for logged-in users had to be secured as well.

Being Spring users, we naturally used Spring Security for this. We wrote a simple
User Det ai | sServi ce by extending a repository with a custom implementation that takes care
of looking up the users and validating their credentials. The config is located in a separate
appl i cati onCont ext - security. xm . But first, as always, Maven and web. xnml setup.

<dependency>
<groupl d>org. spri ngf ramewor k. security</groupl d>
<artifactld>spring-security-web</artifactld>
<versi on>${spring. versi on} </ versi on>

</ dependency>

<dependency>
<groupl d>org. spri ngf ranmewor k. security</groupl d>
<artifact!|d>spring-security-config</artifactld>
<versi on>${spri ng. versi on} </ versi on>

</ dependency>

Example 13.1 Spring Security pom.xml

<cont ext - par anp
<par am nane>cont ext Conf i gLocat i on</ par am nane>
<par am val ue>
/ V\EB- | NF/ appl i cati onCont ext - security. xm
/ WWEB- | NF/ appl i cati onCont ext . xmi
</ par am val ue>
</ cont ext - par an>

<li stener>
<l i stener-class>org. springframewor k. web. cont ext . Cont ext Loader Li stener</|i stener-cl ass>
</listener>

<filter>
<filter-nane>springSecurityFilterChain</filter-nane>
<filter-class>org.springframework.web.filter.DelegatingFilterProxy</filter-class>
</[filter>

<filter-mpping>
<filter-name>springSecurityFilterChain</filter-nane>
<url-pattern>/*</url-pattern>

</filter-mappi ng>

Example 13.2 Spring Security web.xml

3.0.0.M1 Good Relationships 24

please define productname in your docbook file!

<security: gl obal - met hod- security secured-annot ati ons="enabl ed" >
</security: gl obal - met hod-security>

<security:http auto-config="true" access-deni ed- page="/aut h/ deni ed" >
<security:intercept-url pattern="/adm n/*" access="ROLE_ADM N'/>
<security:intercept-url pattern="/inport/*" access="ROLE _ADM N'/ >
<security:intercept-url pattern="/user/*" access="ROLE USER'/>
<security:intercept-url pattern="/auth/login" access="|S_AUTHENTI CATED_ANONYMOUSLY"/ >
<security:intercept-url pattern="/auth/

regi ster" access="1S_AUTHENTI CATED ANONYMOUSLY"/ >
<security:intercept-url pattern="/**" access="|S_AUTHENTI CATED_ANONYMOUSLY"/ >
<security:formlogin | ogi n-page="/auth/| ogi n"
aut hentication-failure-url="/auth/login?l ogin_error=true"
defaul t-target-url="/user"/>
<security:logout |ogout-url="/auth/logout" |ogout-success-url="/" invalidate-

session="true"/>

</security: http>

<security: aut henti cati on- manager >
<security:authentication-provi der user-service-ref="userRepository">
<security: password- encoder hash="nd5">
<security:sal t-source systemw de="cewi qwzi e"/ >
</ security: password- encoder >
</security:authentication-provider>
</ security:authenticati on- manager >

Example 13.3 Spring Security applicationContext-security.xml

3.0.0.mM1 Good Relationships

please define productname in your docbook file!

[JoNl

public interface G neastsUserDetail sService extends UserDetail sService {
@verride
CineastsUserDetails | oadUser ByUser nane(String | ogin)
t hrows User naneNot FoundExcepti on, Dat aAccessExcepti on;

User get User FronfSessi on();

@r ansact i onal
Rating rate(Mvie novie, User user, int stars, String conment);

@r ansact i onal
User register(String login, String nanme, String password);

@r ansact i onal
voi d addFriend(String login, final User userFronfession);

public interface UserRepository extends G aphRepository<User>,
Rel at i onshi pOper at i onsReposi t or y<User >,
Ci neast sUser Det ai | sServi ce {

User findByLogin(String |ogin);

public class UserRepositorylnpl inplenents G neastsUserDetail sService {
@\wutow red private Neo4j Operations tenplate;

@verride
public CineastsUserDetails |oadUserByUsername(String |ogin)
t hrows User naneNot FoundExcepti on, DataAccessException {
final User user = findByLogin(l ogin);
if (user==null) throw
new User naneNot FoundExcepti on("Usernane not found: "+l ogin);
return new G neast sUserDetail s(user);

private User findByLogin(String |ogin) {
return tenpl ate. | ookup(User.class,"login",|ogin)
.to(User.class).single();

@verride
public User getUserFronmtSession() {
SecurityContext context = SecurityContextHol der. get Context();
Aut henti cation authentication = context.getAuthentication();
Obj ect principal = authentication.getPrincipal();
if (principal instanceof G neastsUserDetails) {
CineastsUserDetails userDetails = (C neastsUserDetails) principal;
return userDetails. getUser();

}

return null;

public class CineastsUserDetails inplenments UserDetails {
private final User user;

publ i c Ci neastsUserDetail s(User user) {
this.user = user;

@verride

public Collection<G antedAuthority> getAuthorities() {
User. Rol es[] roles = user.getRoles();
if (roles ==null) return Collections.enptyList();
return Arrays. <Grant edAut hority>asLi st (rol es);

[o20]

please define productname in your docbook file!

Any logged-in user was now available in the session, and could be used for all the social interactions.
The remaining work for this was mainly adding controller methods and JSPs for the views. We used the
helper method get User Fr onSessi on() in the controllers to access the logged-in user and put it in
the model for rendering. Here's what the Ul had evolved to:

Micha Logout

Forrest Gump (1994) - "Inspiring"

The Matrix (1999) - "Best of the series”

EMIL EIFREM

The Simpsons Movie (2007) - "See our family. And feel better about yours.” 3

The Matrix Reloaded (2003) - "Free your mind."

ided by themoviedb.org.

?® Neoyj
@ the graph database

3.0.0.M1 Good Relationships 27

please define productname in your docbook file!

14. More Ul

Oh the glamour
To create a nice user experience, we wanted to have a nice looking app. Not something that looked like

a toddler made it. So we got some user experience people involved and the results were impressive.
This sections presents some of the remaining screen shots of Cineasts.net.

-
-

\ X}

CINEASTS

. spring —— " i :‘ springdatagraph

3.0.0.mM1 Good Relationships 28

please define productname in your docbook file!

Mcha Lagout

-
-
-

L L.

3 CINEASTS

¥ X X X]
The Matrix @2 9 @ 9 A

53

i TR
F.F{-“rl!l':l!
i

The Matrix Reloaded

M
REAVTILT

The Matrix Revolutions

3.0.0.mM1 Good Relationships

please define productname in your docbook file!

TheMovieDb.org
IMDb

Amazon
CineButler

Google Movies

Homepage

- -
- -
- -

A L 4 A X 4

p—

- -
- -
g g

A X 4 \ K §

~ ~ - - -
- - - -

Anthony Ray Paul Goddard as Joe Pantoliano asMatt Doran as Julian Arahanga

Parker as Dozer AgentBrown Cypher Mouse

= =

\ &} 3 \ T}
-

= | %]

-

as Apoc

q 1

Belinda McClory Marcus Chong as Gloria Foster as Carrie-Anne Keanu Reeves as
as Switch Tank Oracle Moss as Trinity Neo

-
-
-

Y

-
A X 4

-
-

Hugo Weaving asLaurence David Aston as Marc Aden as

Agent Smith Fishburneas Rhineheart Choi
Morpheus

Micha

Find movie

The Matrix as Neo in 1999
The Matrix Revolutions as Neo in 2003
The Matrix Reloaded as Neo in 2003

3.0.0.M1

Good Relationships

30

please define productname in your docbook file!

15. Importing Data

The dusty archives

It was now time to pull the data from themoviedb.org. Registering there and getting an API key was
simple, as was using the API on the command-line with cur | . Looking at the JSON returned for movies
and people, we decided to enhance our domain model and add some more fields to enrich the UI.

[{"popul arity":3,

"translated":true, "adult":false, "language":"en",

“original _name":"[Rec]", "name":"[Rec]", "alternative_name":"[REC]",

"movi e_type": "nmovie",

"id":8329, "indb_id":"tt1038988", "url":"http://ww.thenovi edb. or g/ novi e/ 8329",

"votes":11, "rating":7.2,

"status":"Rel eased",

"tagline":"One Wtness. One Canera",

"certification":"R",

"overview':"\"RECQ\" turns on a young TV reporter and her cameraman who cover the night
shi ft
at the local fire station...

"keywords":["terror", "lebende |eichen", "obsession", "canctorder", "firemen", "reality tv
"bite", "cinematographer",
"attenpt to escape", "virus", "lodger", "live-reportage", "schwerverletzt"],

"rel eased":"2007-08- 29",

"runtinme":78,

"budget ": 0,

"revenue":0,

"homepage": "http://ww. 3l -filmnmverleih.de/rec",
“trailer":"http://ww.youtube. com wat ch?v=YQUkX_Xowgl ",
"genres":[{"type":"genre",

“url":"http://thenovi edb. org/ genre/ horror",
"nanme":"Horror",
"id":27}],
"studios":[{"url":"http://ww.thenovi edb. or g/ conpany/ 2270", "name":"Fi | max
Group", "id":2270}],
"l anguages_spoken":[{"code":"es", "nane":"Spanish", "native_nane":"Espa\u00f1lol"}],
"countries":[{"code":"ES", "nane":"Spain", "url":"http://ww.thenoviedb. org/country/es"}],
"posters":[{"imge":{"type": "poster",
"size":"original", "height":1000, "w dth": 706,

“url":"http://cfl.ingobject.conl posters/3a0/4cc8df415e73d650240003a0/ rec-original.jpg",
"id":"4cc8df 415e73d650240003a0"}},

"cast":[{"nanme": " Manuel a Vel asco",

"job":"Actor", "departnent":"Actors",

"character":"Angel a Vidal ",

"id":34793, "order":0, "cast_id":1,

“url":"http://ww.thenovi edb. or g/ person/ 34793",
"profile":"http://cfl.ingobject.com profiles/390/.../manuel a-vel asco-thunb.jpg"},

{"name":"d \uOOf 2ri a Viguer",

"job":"Costunme Design", "departnent":"Costunme \u0026 Make-Up",
"character":"",

"id":54531, "order":0, "cast_id":21,

“url":"http://ww.thenovi edb. or g/ per son/ 54531",
"profile":""}],

"version":150, "last_nodified_at":"2011-02-20 23:16:57"}]

Example 15.1 JSON movie response

3.0.0.mM1 Good Relationships 31

http://themoviedb.org

please define productname in your docbook file!

[{"popularity":3,

"name":"d enn Strange", "known_as":[{"name":"George G enn Strange"}, {"name":"d en
Strange"},

{"nane":"d en ' Peewee' Strange"}, {"nane":"Peewee Strange"}, {"nane":"'Peewee' Strange"}],

"id":30112

"bi ography":"",

"known_novi es": 4,

"birthday":"1899-08-16", "birthplace":"Wed, New Mexico, USA",
“url":"http://ww.thenovi edb. or g/ person/ 30112",
"filmography":[{"nanme":"Bud Abbott Lou Costell o Meet Frankenstein",
"id":3073,

"job":"Actor", "departnent":"Actors",

"character":"The Frankenstein Mnster",

"cast _id":23,

“url":"http://ww.thenmovi edb. or g/ movi e/ 3073",

"poster":"http://cfl. ingobject.conl posters/4cal.../bud-abbott-]|ou-costello-neet-
frankenst ei n-cover. j pg",

"adult":fal se, "release":"1948-06- 15"},

N

"profile":[],

"version":19, "last_nodified_at":"2011-03-07 13:02: 35"}]

Example 15.2 JSON actor response

For the import process we created a separate importer using Jackson (a JSON library) to fetch and parse
the data, and then some transactional methods in the Movi eDbl nport Ser vi ce to actually import it as
movies, roles, and actors. The importer used a simple caching mechanism to keep downloaded actor
and movie data on the filesystem, so that we didn't have to overload the remote API. In the code below
you can see that we've changed the actor to a person so that we can also accommodate the other folks
that participate in movie production.

3.0.0.mM1 Good Relationships 32

please define productname in your docbook file!

@r ansacti onal
public Movie inportMyvie(String nmovield) {
Movi e novi e = novi eReposi tory. findByl d(nmovi el d) ;
if (mvie == null) { // Not found: Create fresh
movi e = new Mvi e(novi eld, null);

}

Map data = | oadMovi eDat a(novi el d) ;
i f (data.containsKey("not_found")) throw
new Runti neException("Data for Myvie "+novield+" not found.");
nmovi eDbJsonMapper . mapToMovi e(data, mnovi e);
nmovi eReposi tory. save(novi e) ;
rel at ePer sonsToMovi e(novi e, data);
return novi e;

}

private void rel at ePer sonsToMovi e(Mvi e novie, Map data) {
Col | ecti on<Map> cast = (Col | ecti on<Map>) data.get("cast");
for (Map entry : cast) {
String id ="" + entry.get("id");
String jobName = (String) entry.get("job");
Rol es job = novi eDbJsonMapper. mapToRol e(j obNane) ;
if (job==null) {
conti nue;
}
switch (job) {
case DI RECTED:
final Director director = dol nportPerson(id, new Director(id));
director.directed(novie);
di rect or Reposi tory. save(director);
br eak;
case ACTS_I N
final Actor actor = dol nportPerson(id, new Actor(id));
actor.playedln(novie, (String) entry.get("character"));
act or Reposi tory. save(actor);
br eak;
}
}
}

public void nmapToMvi e(Map data, Mvie novie) {
nmovi e.setTitle((String) data.get("nane"));
novi e. set Language((String) data.get ("l anguage"));
nmovi e. set Tagl i ne((String) data.get("tagline"));
nmovi e. set Rel easeDat e(t oDat e(data, "rel eased", "yyyy-Mvdd"));

novi e. set | mageUr | (sel ect | mageUr | ((Li st <Map>) data. get ("posters"), "poster", "mid"));

Example 15.3 Importing the data

The last part involved adding a protected URI to the MovieController to allow importing ranges of movies.
During testing, it became obvious that the calls to themoviedb.org were a limiting factor. As soon as the
data was stored locally, the Neo4j import was a sub-second deal.

3.0.0.mM1 Good Relationships 33

please define productname in your docbook file!

16. Recommendations

Movies! Friends! Bargains!

In the last part of this exercise we wanted to add recommendations to the app. One obvious
recommendation was movies that our fiends liked.

There was this query language called Cypher that looked a bit like SQL but expressed graph matching
gueries. So we gave it a try, using the neo4j - shel |, to incrementally expand the query, just by
declaring what relationships we wanted to be taken into account and which properties of nodes and
relationships to filter and sort on.

interface Myvi eRepository extends G aphRepository<Mvie> {
@uery("
start user=node({0})
mat ch user-[: FRIEND] -friend-[r: RATED] - >novi e
return novie
order by avg(r.stars) desc, count(*) desc
limt 10
")
It erabl e<Movi e> reconmendMovi es(User ne);

}
Example 16.1 Cypher based movie recommendation on Repository

But we didn't have enough friends, so it was time to get some suggested. That would be like-minded
cineasts that rated movies similarly to us. Again Cypher to the rescue, this time only a bit more complex.
Something that became obvious with both queries is that graph queries are always local, so they start
from a node, or set of nodes or relationships, and then expand outwards from there.

interface UserRepository extends G aphRepository<User> {

@uery("
start user=node({0})
mat ch user-[r: RATED)] - >novi e<-[r 2: RATED) - | i kem nded,

user-[: FRIEND] -friend
where r.stars > 3 and r2.stars >= 3
return |ikem nded
order by count(*) desc
limt 10
")
It erabl e<User> suggest Fri ends(User ne);

}
Example 16.2 Cypher - Friend Recommendation on Repository

The controllers simply called these methods, added their results to the model, and the view rendered
the recommendations alongside the user's own ratings.

3.0.0.mM1 Good Relationships 34

please define productname in your docbook file!

17. Neo4j Server

Remotely related

Right now our application was running with the embedded mode of Neo4j which was fine and highly
performant. In certain environments you don't have the luxury of file-system access for your webapps
and have to talk to a remote database service instead. Neo4j can also run as a server. It exposes its
operations via a HTTP based REST API.

We decided to have a look, to be at least knowledgeable about this deployment scenario. We were aware
of the difference of local, in-memory calls and higher latency network hops. That would be something
we would also take into careful consideration.

17.1 Getting Neo4j-Server

Getting the Neo4j-Server was easy, we just went to neo4j.org and downloaded the latest version.
Starting it on the command-line (or installing it as a service) was a no-brainer as well.

We copied our store-directory into the dat a/ gr aph. db directory of the server and started it up again.
The admin console of Neo4j-Server, called ‘web-admin' is pretty. Using JavaScript, it renders the graph
visually in a highly configurable way. It also gave us the possibility to issue queries over a console,
another handy feature.

So, how would we get our app connected to this server? It turned out the changes in configuration
and setup where minimal. Spring Data Neo4j already came with a module that took care of the remote
protocol. We added that maven dependency and changed the graph database used in the Spring
Configuration.

<dependency>
<groupl d>or g. spri ngf ramewor k. dat a</ gr oupl d>
<artifact!|d>spring-data-neodj-rest</artifactld>
<versi on>2. 1. 0. RELEASE</ ver si on>

</ dependency>

Example 17.1 Maven Dependency

<neo4j : confi g graphDat abaseServi ce="graphDat abaseServi ce"/ >

<bean i d="graphDat abaseServi ce"

cl ass="org. spri ngframewor k. dat a. neo4j . rest. Spri ngRest G aphDat abase" >
<constructor-arg i ndex="0" val ue="http://|ocal host: 7474/ db/ data" />

</ bean>

Example 17.2 Spring Config

After those two changes we restarted the app, and ... it worked. The transparent handling of the remote
API was impressive. We learned that it uses a library called java-rest-binding under the hood which is
also usable without the Spring Framework.

Of course we noticed performance implications. Especially after moving the server to a remote machine.
It turned out that the server supported remote execution of many operations, allowing us to run the graph
traversal and querying inside the server. That means looking at our graph interactions and changing

3.0.0.mM1 Good Relationships 35

http://neo4j.org/
https://github.com/neo4j/java-rest-binding

please define productname in your docbook file!

them in a way that switched from the transparent, direct graph access via the entities to a different
interaction pattern.

We looked into the different modes of remotely executed operations and found traversals, Cypher
gueries and index lookups. Most of them already matched our needs but the Cypher approaches were
best suited, because they also handled index operations and allowed to return partial attribute sets and
subgraphs.

So we looked at our use-case (aka page)-based interactions with the graph entities and converted them
to Cypher queries on repositories where appropriate, measuring the performance improvements as we
went.

There was also a nice mechanism of mapping Cypher query results to Domain Concepts. You just had
to declare and annotate an interface that represents the query results as domain entities and the nodes
and relationships returned by Cypher were converted into the appropriate entities.

public interface MyvieRepository extends G aphRepository<Mvie> {

@uery(" START novi e=node: Movi e(i d={0})
MATCH novi e-[rating?:rating]->(),
nmovi e<-[: ACTS I N] - act or
RETURN novi e, COLLECT(actor), AVGErating.stars)")
Movi eDat a get Movi eDat a(String novi el d);

@bpResul t

public interface MvieData {
@Resul t Col utm(" movi e")
Movi e get Movi e();

@Resul t Col um(" AVErating. stars)")
Doubl e get Rating();

@Resul t Col uim(" COLLECT(actor)")
It erabl e<Actor> getCast();

}
Example 17.3 Example of query result mapping

This allowed us to get all the data needed for rendering a page in a single call to the server, greatly
diminishing the chatter between the client and the server.

17.2 Other approaches

Another approach to using the Neo4j-Server would be to write a custom server extension using the
SpringPluginlnitializer provided by spri ng-dat a- neo4j - rest. This extension would use
the well known entities and approaches as it runs inside the server atop an embedded graph database.
From the extension we would expose custom, domain and use-case oriented REST endpoints that could
then be consumed by any kind of webapp, even a pure Javascript based browser app.

3.0.0.mM1 Good Relationships 36

please define productname in your docbook file!

18. Conclusion

To new frontiers

Pretty neat. We were satisfied with what we got here, with little effort and high performance. Lots of
opportunities to expand the social movie database showed up during development. Like adding more
social features like tagging, communication streams, location based features (cinemas) and much more.

But we leave you with that as an exercise to enjoy and explore. Thanks for following the tutorial and
make sure to get back to us with suggestions for improvements or reports about unexpected behaviours
at the discussion forums, or the issue tracker.

3.0.0.mM1 Good Relationships 37

http://spring.neo4j.org/discussions
http://spring.neo4j.org/issues

Part Il. Reference Documentation

7o
H » springdataNeo4j
-

This part of the Spring Data Neo4j Guide book provides the reference documentation. It details many
aspects of the tutorial and also explains concepts that were only just mentioned there.

Its content covers information about the programming model, APIs, concepts, annotations and technical
details of Spring Data Neo4,.

Whenever you look for the means to employ the full power of the Spring Data Neo4j library you find
your answers in the reference section. If you don't, please inform us about missing or incorrect content
so that we can fix that.

please define productname in your docbook file!

Reference Documentation

1 Spring Data and Spring Data Neo4j

Spring Data is a SpringSource project that aims to provide Spring's convenient programming model
and well known conventions for NOSQL databases. Currently there is support for graph (Neo4)), key-
value (Redis, Riak), document (MongoDB) and relational (Oracle) databases. Mark Pollack, the author
of Spring.NET, is the project lead for the Spring Data project.

The Spring Data Neo4j project, as part of the Spring Data initiative, aims to simplify development with the
Neod4j graph database. Like JPA, it uses annotations on simple POJO domain objects. The annotations
activate one of the supported mapping approaches, either the simple mapping or the advanced AspectJ
mapping. Both use the annotation and reflection metadata for mapping the POJO entities and their fields
to nodes, relationships, and properties in the graph database.

Spring Data Neo4j allows, at any time, to drop down to the Neo4j-API level, see Chapter 19, Introduction
to Neo4j to execute functionality with the highest performance possible.

For integration of Neo4j and Grails/GORM please refer to the Neo4j grails plugin. There are also Python
bindings as well as community-provided bindings to use Neo4j in embedded or REST mode.

2 Reference Documentation Overview

The explanation of Spring Data Neo4j's programming model starts with some underlying details. The
basic internal workings of the two mapping modes are explained in the initial chapter. Section 20.1,
“Object Graph Mapping” covers the simple mapping and Section 20.2, “Advanced Mapping with
AspectJ” contains details about the advanced mapping. It also explains some of the common issues
around AspectJ tooling with the current IDEs.

To get started with a simple application, you need only your domain model and the annotations (see
Section 20.4, “Defining node entities”) provided by the library. You use annotations to mark domain
objects to be reflected by nodes and relationships of the graph database. For individual fields the
annotations allow you to declare how they should be processed and mapped to the graph. For property
fields and references to other entities this is straightforward.

To use advanced functionality like traversals and Cypher, a basic understanding of the graph data model
is required. The graph data model is explained in the chapter about Neo4j, see Chapter 19, Introduction
to Neo4j.

Relationships between entities are first class citizens in a graph database and therefore worth a separate
chapter (??7?) describing their usage in Spring Data Neo4,.

Indexing operations are useful for finding individual nodes and relationships in a graph. They can be
used to start graph operations or to be processed in your application. Indexing in the plain Neo4j API
is a bit more involved. Spring Data Neo4j maintains automatic indexes per entity class, with @ ndexed
annotations on relevant fields. (Section 20.6, “Indexing”)

Being a Spring Data library, Spring Data Neo4j offers a comprehensive Neo4j-Template (Section 20.7,
“NeodjTemplate”) for interacting with the mapped entities and the Neo4j graph database. The operations
provided by Spring Data Neo4j - Repositories per mapped entity class are based on the API offered by

3.0.0.M1 Good Relationships XXXiX

http://springsource.org/spring-data
http://www.grails.org/plugin/neo4j
http://docs.neo4j.org/chunked/milestone/python-embedded.html
http://docs.neo4j.org/chunked/milestone/python-embedded.html
http://docs.neo4j.org/chunked/milestone/languages.html
http://docs.neo4j.org/chunked/milestone/tutorials-rest.html

please define productname in your docbook file!

the Neodj-Template. It also provides the operations of the Neo4j Core API in a more convenient way.
Especially the querying (Indexes, Cypher and Traversals) and result conversion facilities allow writing
very concise code.

Spring Data Commons provides a very powerful repository infrastructure that is also leveraged in
Spring Data Neo4j. Those repositories consist only of a composition of interfaces that declare the
available functionality in each repository. The implementation details of commonly used persistence
methods are handled by the library. At least for typical CRUD, index- and query-operations that is very
convenient. The repositories are extensible by annotated, named or derived finder methods. For custom
implementations of repository methods you are free to add your own code. (Section 20.8, “CRUD with
repositories”).

To be able to leverage the schema-free nature of Neo4j it is possible to project any entity to any other
entity type. Thatis useful as long as they share some properties (or relationships). The entities don't have
to share any super-types or hierarchies. How that works is explained here: Section 20.10, “Projecting
entities”.

Spring Data Neo4j also allows you to integrate with the powerful geospatial graph library Neo4j-Spatial
that offers full support for working with any kind of geo-data. Spring Data Neo4j repositories expose a
couple of those operations via bounding-box and near-location searches. Section 20.11, “Geospatial
Queries”.

Using computed fields that are dynamically backed by graph operations is a bit more involved. First
you should know about traversals and Cypher queries. Those are explained in Chapter 19, Introduction
to Neodj. Then you can start using virtual, computed fields in your entities Section 20.10, “Projecting
entities” .

If you like the ActiveRecord approach that uses persistence methods mixed into the domain classes, you
will want to look at the description of the additional entity methods (see Section 20.12, “Active Record
Methods for Advanced Mapping Mode”) that are added to your domain objects by Spring Data Neo4j
Aspects. Those allow you to manage the entity lifecycle as well as to connect entities. Those methods
also provide the means to execute the mentioned graph operations with your entity as a starting point.

Neodj is a fully ACID, enterprise grade database. It uses Java transactions, and internally a 2-phase
commit protocol, to guarantee the safety of your data. The implications of that are described in the
chapter around transactions. (Section 20.13, “Transactions”)

The need of an active transaction for mutating the state of nodes or relationships implies that direct
changes to the graph are only possible in a transactional context. Unfortunately many higher level
application layers don't want to care about transactions and the open-session-in-view pattern is not
widely used. Therefore Spring Data Neo4j's advanced mappings introduced an entity lifecyle and added
support for detached entities which can be used for temporary domain objects that are not intended to
be stored in the graph or which will be attached to the graph only later. (Section 20.14, “Detached node
entities in advanced mapping mode”)

For the simple mapping this is not neccessary as domain objects are detached by default and have to
be explicitly reattached to the graph to store the changes.

Unlike Neo4j which is a schema free database, Spring Data Neo4j works on Java domain objects. So it
needs to store the type information in the graph to be able to reconstruct the entities when just nodes are
retrieved. To achieve that it employs type-representation-strategies which are described in a separate
chapter. (see Section 20.15, “Entity type representation”)

3.0.0.M1 Good Relationships x|

please define productname in your docbook file!

Spring Data Neo4j offers basic support for bean property validation (JSR-303). Annotations from that
JSR are recognized and evaluated whenever a property is set, or when a previously detached entity is
persisted to the graph. (see Section 20.16, “Bean validation (JSR-303)")

Unfortunately the setup of Spring Data Neo4j advanced mapping mode is more involved than we'd like.
That is partly due to the Maven setup and dependencies for AspectJ, which can be alleviated by using
different build systems like Gradle or Ant/lvy. The Spring configuration itself boils down to two lines of
<spri ng- neodj > namespace setup. (see Chapter 21, Environment setup)

In a polyglot persistence context Spring Data Neo4j can also be used in a JPA environment to add graph
features to your JPA entities. In the Chapter 22, Cross-store persistence the slightly different behavior
and setup of a Graph-JPA interaction are described.

The provided samples, which are also publicly hosted on Github, are explained in Chapter 23, Sample
code.

The performance implications of using Spring Data Neo4j are detailed in Chapter 25, Performance
considerations. This chapter also discusses which use cases should not be handled with Spring Data
Neod4;.

As AspectJ might not be well known to everyone, some of the core concepts of the aspect oriented,
advanced mapping mode for Java are explained in Chapter 26, AspectJ detalils.

How to consume the REST-API of a Neo4j-Server is the topic of Chapter 27, Neo4j Server. But
Spring Data Neo4j can also be used to create custom Extensions for the Neo4j Server which would
serve domain model abstractions to a suitable front-end. So instead of talking low level primitives to
a database, the front-end or web-app would communicate via a domain level protocol with endpoints
implemented in Jersey and Spring Data Neo4;.

© Note

Please be aware that the advanced mapping mode of Spring Data Neo4j is based on AspectJ
and uses some advanced features of that toolset. See the section on AspectJ (Section 20.2,
“Advanced Mapping with AspectJ”) for details if you run into any problems.

3.0.0.M1 Good Relationships xli

http://spring.neo4j.org/examples

please define productname in your docbook file!

19. Introduction to Neo4j

19.1 What is a graph database?

A graph database is a storage engine that is specialized in storing and retrieving vast networks of data.
It efficiently stores nodes and relationships and allows high performance traversal of those structures.
Properties can be added to nodes and relationships.

Graph databases are well suited for storing most kinds of domain models. In almost all domains, there
are certain things connected to other things. In most other modeling approaches, the relationships
between things are reduced to a single link without identity and attributes. Graph databases allow to keep
the rich relationships that originate from the domain, equally well-represented in the database without
resorting to also modeling the relationships as "things". There is very little "impedance mismatch" when
putting real-life domains into a graph database.

19.2 About Neo4j

Neo4jis a NOSQL graph database. It is a fully transactional database (ACID) that stores data structured
as graphs. A graph consists of nodes, connected by relationships. Inspired by the structure of the human
mind, it allows for high query performance on complex data, while remaining intuitive and simple for
the developer.

Neodj has been in commercial development for 10 years and in production for over 7 years. Most
importantly it has a helpful and contributing community surrounding it, but it also:

« has an intuitive, rich graph-oriented model for data representation. Instead of tables, rows, and
columns, you work with a graph consisting of nodes, relationships, and properties.

» has a disk-based, native storage manager optimized for storing graph structures with maximum
performance and scalability.

* is scalable. Neo4j can handle graphs with many billions of nodes/relationships/properties on a single
machine, but can also be scaled out across multiple machines for high availability.

* has a powerful traversal framework and query languages for traversing the graph.

» can be deployed as a standalone server or an embedded database with a very small distribution
footprint.

» has a core Java API.

In addition, Neo4j has ACID transactions, durable persistence, concurrency control, transaction
recovery, high availability, and more. Neo4j is released under a dual free software/commercial license
model.

19.3 GraphDatabaseService

The APl of or g. neo4j . gr aphdb. G aphDat abaseSer vi ce provides access to the storage engine.
Its features include creating and retrieving nodes and relationships, managing indexes (via the
IndexManager), database life cycle callbacks, transaction management, and more.

The EnbeddedG aphDat abase is an implementation of GraphDatabaseService that is used to embed
Neodj in a Java application. This implementation is used so as to provide the highest and tightest

3.0.0.M1 Good Relationships 42

http://neo4j.org/
http://docs.neo4j.org/chunked/milestone/what-is-a-graphdb.html
http://api.neo4j.org/

please define productname in your docbook file!

integration with the database. Besides the embedded mode, the Neo4j server provides access to the
graph database via an HTTP-based REST API.

19.4 Creating nodes and relationships

Using the API of GraphDatabaseService, it is easy to create nodes and relate them to each other.
Relationships are typed. Both nodes and relationships can have properties. Property values can be
primitive Java types and Strings, or arrays of both. Node creation and modification has to happen within
a transaction, while reading from the graph store can be done with or without a transaction.

GraphDat abaseServi ce graphDb = new EnbeddedGr aphDat abase("hel | owor| d");
Transaction tx = graphDb. begi nTx();
try {

Node firstNode = graphDb. creat eNode();

firstNode. setProperty("message", "Hello, ");

Node secondNode = graphDb. creat eNode();

secondNode. set Property("nessage", "world!'");

Rel ationship relationship = firstNode. createRel ati onshi pTo(secondNode,
Dynami cRel ati onshi pType. of ("KNOAS"));
rel ati onshi p. set Property("nmessage", "brave Neo4j");
tX. success();
} finally {
tx. finish();

}
Example 19.1 Neo4j usage

19.5 Graph traversal

Getting a single node or relationship and examining it is not the main use case of a graph database.
Fast graph traversal of complex, interconnected data and application of graph algorithms are. Neo4j
provides a DSL for defining Tr aver sal Descri pti ons that can then be applied to a start node and
will produce a lazy j ava. | ang. | t er abl e result of nodes and/or relationships.

Traversal Description traversal Description = Traversal . description()
.depthFirst()
. rel ati onshi ps(KNOAS)
.rel ationshi ps(LI KES, Direction.| NCOM NG
. eval uat or (Eval uat ors. t oDept h(5));
for (Path position : traversal Description.traverse(myStartNode)) {
Systemout.println("Path fromstart node to current position is " + position);

}
Example 19.2 Traversal usage

19.6 Indexing

The best way for retrieving start nodes for traversals and queries is by using Neo4j's integrated index
facilities. The Gr aphDat abaseSer vi ce provides access to the | ndexManager which in turn provides
named indexes for nodes and relationships. Both can be indexed with property names and values.
Retrieval is done with query methods on indexes, returning an | ndexHi t s iterator.

Spring Data Neod4j provides automatic indexing via the @ ndexed annotation, eliminating the need for
manual index management.

3.0.0.mM1 Good Relationships 43

http://wiki.neo4j.org/content/Getting_Started_With_Neo4j_Server

please define productname in your docbook file!

© Note
Modifying Neo4j indexes also requires transactions.

| ndexManager i ndexManager = graphDb. i ndex();

I ndex<Node> nodel ndex = i ndexManager . f or Nodes(" a- node-i ndex");
Node node = ...

Transaction tx = graphDb. begi nTx();

try {

nodel ndex. add(node, "property", "val ue");
t x. success();
} finally {
tx. finish();
}
for (Node foundNode : nodel ndex. get("property", "value")) {
/1 found node

}
Example 19.3 Index usage

19.7 Querying the Graph with Cypher

Neo4j provides a graph query language called "Cypher" which draws from many sources. It resembles
SQL but with an iconic representation of patterns in the graph (concepts drawn from SPARQL). The
Cypher execution engine was written in Scala to leverage the high expressiveness for lazy sequence
operations of the language and the parser combinator library. A screencast explaining the possibilities
in detail can be found on the Neo4j video site.

Cypher queries always begin with a st art set of nodes. Those can be either expressed by their IDs or
by an index lookup expression. Those start-nodes are then related to other nodes in the nat ch clause.
Start and match clauses can introduce new identifiers for nodes and relationships. In the wher e clause
additional filtering of the result set is applied by evaluating expressions. The r et ur n clause defines
which part of the query result will be available. Aggregation also happens in the return clause by using
aggregation functions on some of the values. Sorting can happen in the or der by clause and the ski p
and | i m t parts restrict the result set to a certain window.

Cypher can be executed on an embedded graph database using an Executi onEngi ne and
Cypher Par ser . This is encapsulated in Spring Data Neo4j with Cypher Quer yEngi ne. The Neo4j-
REST-Server comes with a Cypher-Plugin that is accessible remotely and is available in the Spring
Data Neo4j REST-Binding.

3.0.0.M1 Good Relationships 44

http://docs.neo4j.org/chunked/milestone/cypher-query-lang.html
http://video.neo4j.org/ybMbf/screencast-introduction-to-cypher/

please define productname in your docbook file!

/1 Actors who played a Matrix novi e:
start novi e=node: Movi e("title: Matrix*") match novie<-[: ACTS_I N -actor
return actor.nane, actor.birthplace?

/'l User-Ratings:
start user=node: User (| ogi n="m cha') match user-[r: RATED] - >novi e where r.stars > 3
return novie.title, r.stars, r.coment

/1 Mutual Friend reconmendati ons:
start user=node: M cha(l ogi n="mi cha') match user-[: FRIEND]-friend-[r: RATED] - >novi e where
r.stars > 3

return friend.name, novie.title, r.stars, r.conmment?

/1 Movi e suggestions based on a novie:
start novi e=node: Movi e(id="13") match (novie)<-[: ACTS_ IN-()-[: ACTS_I N] - >(suggesti on)
return suggestion.title, count(*) order by count(*) desc limt 5

/'l Co-Actors, sorted by count and nane of Lucy Liu
start |ucy=node(1000) nmatch lucy-[: ACTS_IN] ->novi e<-[:ACTS I N]-co_act or
return count(*), co_actor.name order by count(*) desc,co_actor.name linmt 20

/] Recommendations including counts, grouping and sorting
start user=node: User (|l ogi n="nmicha') match user-[:FRI END] - ()-[r: RATED)] - >novi e

return novie.title, AVGr.stars), count(*) order by AV@r.stars) desc, count(*) desc

Example 19.4 Cypher Examples on the Cineasts.net Dataset

3.0.0.mM1 Good Relationships

45

please define productname in your docbook file!

20. Programming model

This chapter covers the fundamentals of the programming model behind Spring Data Neo4j. It discusses
the simple and advanced mapping modes, the annotations provided by Spring Data Neo4j and how to
use them. Examples for this section are taken from the "IMDB" project of Spring Data Neo4j examples.

20.1 Object Graph Mapping

Up until recently Spring Data Neo4j supported only the more advanced and flexible AspectJ based
mapping approach, see Section 20.2, “Advanced Mapping with AspectJ”. Feedback about issues with
the AspectJ tooling and other implications persuaded us to add a simpler mapping (see Section 20.3,
“Simple Object Graph Mapping”) to Spring Data Neo4j. Both versions work with the same annotations
and provide similar API's, but differ in behaviour.

Reflection and Annotation-based metadata is collected about persistent entities in the
Neo4j Mappi ngCont ext which provides it to any part of the library. The information is stored in
Neo4j Per si st ent Enti t y instances which hold all the Neo4j Per si st ent Pr oper ty's of the type.
Each entity can be checked to determine whether it represents a Node or a Relationship. Properties
declare detailed data about their indexing and relationship information as well as type information that
also covers nested generic types. With all that information available it is simple to select the appropriate
strategy for mapping each entity and field to elements, relationships and properties of the graph.

The main difference is in the way of accessing the graph. In the simple mapping the required information
is copied into the entity on load and only stored back when an explicit save operation occurs. In the
advanced mapping (AspectJ-enhanced) approach a node or relationship is attached via an additional
field to the entity and all read- and write-operations (inside of Transactions) happen through that.

For the simple mapping mode, declaration of fetch strategies for related entities is necessary
to avoid loading the whole graph eagerly into memory. The initial approach uses just a simple
@-et ch annotations on relationship properties. The resulting Mappi ngPol i cy is provided to the
infrastructure methods to ensure the correct loading behaviour. Both, Neo4j Per si st ent Enti y and
Neo4j Per si st ent Pr operty can be queried for the Mappi ngPol i cy.

Otherwise the two approaches share much of the infrastructure. E.g. for creating new entity instances
from type information store in the graph (Section 20.15, “Entity type representation”), the infrastructure
for mapping individual fields to graph properties and relationships and everything related to indexing
and querying. A certain part of that is also exposed via the Neo4jTemplate for direct use.

20.2 Advanced Mapping with AspectJ

Behind the scenes, Spring Data Neo4j leverages AspectJ aspects to modify the behavior of annotated
POJO entities (see Chapter 26, AspectJ details). Each node entity is backed by a graph node that holds
its properties and relationships to other entities. AspectJ is used for intercepting field access, so that
Spring Data Neo4j can retrieve the appropriate information from the entity's backing node or relationship.

The aspect introduces an internal field (entityState) and some public methods (see
Section 20.12, “Active Record Methods for Advanced Mapping Mode”) to the entities, for instance
entity.getPersistentState() and entity. rel ateTo. It also introduces some methods for
graph operations that start at the current entity. Introduced methods for equal s() and hashCode()
use the underlying node or relationship. Please take the introduced field into account when serializing
your entities and exclude it from the serialization process.

3.0.0.mM1 Good Relationships 46

http://spring.neo4j.org/examples
http://www.eclipse.org/aspectj/

please define productname in your docbook file!

Spring Data Neo4j internally uses an abstraction called EntitySt at e that the field access and
instantiation advices of the aspect delegate to. This way, the aspect code is kept to a minimum,
focusing mainly on the pointcuts and delegation. The EntityState then uses a number of
Fi el dAccessor Fact ori es to create a Fi el dAccessor instance per field that does the specific
handling needed for the concrete field type. There is some caching involved as well, so it handles
repeated instantiation efficiently.

To use the advanced, Aspect] based mapping, please add spri ng- dat a- neo4j - aspects as a
dependency and set up the AspectJ integration in Maven or other build tools as explained in Chapter 21,
Environment setup. Some hints for your IDE setup are described below.

Aspectd IDE support

As Spring Data Neo4j uses some advanced features of AspectJ, users may experience issues with their
IDE reporting errors where in fact there are none. Features that might be reported wrongfully include:
introduction of methods to interfaces, declaration of additional interfaces for annotated classes, and
generified introduced methods.

IDEs not providing full AspectJ support might mark parts of your code as having errors. You should rely
on your build-system and tests to verify the correctness of the code. You might also have your Entities (or
their interfaces) implement the NodeBacked and Rel at i onshi pBacked interfaces directly to benefit
from completion support and error checking.

Eclipse and STS support AspectJ via the AIJDT plugin which can be installed from the update-site listed
at http://www.eclipse.org/ajdt/downloads/ (it might be necessary to use the latest development snapshot
of the plugin). The current version that does not show incorrect errors is AspectJ 1.6.12 (included in
STS 2.8.0), previous versions are reported to mislead the user. Note that AJDT (as of September 2012)
requires projects to be rebuild after Eclipse is started to fully support all advanced features.

© Note

There might be some issues with the eclipse maven plugin not adding AspectJ files correctly
to the build path. If you encounter issues, please try the following: Try editing the build path
toinclude **/*.aj for the spring-data-neo4j-aspects project. You can do this by selecting
"Build Path -> Configure Build Path ..." from the Package Explorer. Then for the spri ng-
dat a- neo4j - aspect s/ src/ main/javaadd**/*. aj tothe Included path. When importing
a Spring Data Neo4j project into Eclipse with m2e, please make sure the AspectJ Configurator
is installed from the following update-site: http://dist.springsource.org/release/AJDT/configurator

The AspectJ support in IntelliJ IDEA lacks some of the features. JetBrains is working on improving the
situation in their upcoming 11 release of their popular IDE. Their latest work is available under their early
access program (EAP). Building the project with the AspectJ compiler aj ¢ works in IDEA (Options ->
Compiler -> Java Compiler should show ajc). Make sure to give the compiler at least 512 MB of RAM.

20.3 Simple Object Graph Mapping

In addition to the advanced object graph mapping using Aspect], Spring Data Neo4j also supports
a simpler mode that converts graph data into domain objects and vice versa. It does not require
any additional set up and should work out of the box. The simple mapping approach uses the same
annotations (??7?) as the advanced mapping to declare mapping meta-information.

The simple object graph mapping comes into play whenever an entity is constructed from a node or
relationship. This could be done explicitly like during the lookup- or create-operations of the repositories

3.0.0.M1 Good Relationships 47

http://www.eclipse.org/ajdt/downloads/
http://dist.springsource.org/release/AJDT/configurator

please define productname in your docbook file!

and the Neo4j Tenpl at e but also implicitly while executing any graph operation that returns nodes or
relationships and expecting mapped entities to be returned.

It uses the available meta-information about the persistent entity to iterate over its properties and
relationships, fetching their data from the graph while doing so. It also executes computed fields and
stores the resulting values in the properties.

We try to avoid loading the whole graph into memory by not following relationships eagerly. A dedicated
@ret ch annotation controls instead if related entities are loaded or not. Whenever an entity is not fully
loaded, then only its id is stored. Those entities or collections of entities can then later be loaded explicitly
using thet enpl at e. f et ch() operation.

The additional fetch information is stored in a Mappi ngPolicy which can be retrieved
via the Neo4dj Tenplate for classes. Both Neo4j PersistentEntitity as well as
Neo4j Per si st ent Pr operty provide access to that information on their scope.

© Note

Please note that if you have two collections in an entity pointing to the same relationship and
one of them has data and the other is empty due to the nature of persisting it, one will override
the other in the graph so that you might end up with no data. If you want a relationship-collection
to be ignored on save set it to null.

@\ut owi red Neo4j Operations tenplate;

@lodeEntity class Person {
String nane;
@etch Person boss;
Person spouse;

@Rel at edTo(type = "FRIEND', direction = BOTH)
@etch Set<Person> friends;
}
Person person = tenpl ate.findOne(personld);
assert Not Nul | (person. get Boss() . get Nane());

assert Not Nul | (person. get Spouse().getld());
assert Nul | (person. get Spouse() . get Nane());

tenpl ate. f et ch(person. get Spouse());
assert Not Nul | (person. get Spouse(). get Nanme());

assert Equal s(10, person. get Fri ends().si ze());
assertNot Nul | (firstFriend. getNane());

Example 20.1 Examples for loading entities from the graph

© Note

Both the simple mapping approach as well as the fetch strategies (Mappi ngPol i cy) debuted
in Spring Data Neo4j 2.0. So there might be rough edges and there are certainly many areas for
improvement and extension. We look forward to your feedback on this topic.

As we tried to encapsulate each aspect of the mapping process into a separate class the resulting fabric
of responsibilities is quite intricate. All of them are set up in the Mappi ngl nf r ast r uct ur e that is part
of the Neo4j Tenpl at e setup.

3.0.0.mM1 Good Relationships 48

please define productname in your docbook file!

20.4 Defining node entities

Node entities are declared using the @NodeEntity annotation. Relationship entities use the
@=el ati onshi pEnt ity annotation.

@NodeEntity: The basic building block

The @lodeEnt i t y annotation is used to turn a POJO class into an entity backed by a node in the graph
database. Fields on the entity are by default mapped to properties of the node. Fields referencing other
node entities (or collections thereof) are linked with relationships. If the useShor t Nanes attribute is set
to false, the property and relationship names will have the class name of the entity prepended.

@lodeEnt i t y annotations are inherited from super-types and interfaces. It is not necessary to annotate
your domain objects at every inheritance level.

If the parti al attribute is set to true, this entity takes part in a cross-store setting, where the entity
lives in both the graph database and a JPA data source. See Chapter 22, Cross-store persistence for
more information.

Entity fields can be annotated with @x aphPr operty, @Rel at edTo, @Rel at edToVi a, @ ndexed,
@x aphl d, @uery and @x aphTraver sal .

@NodeEntity

public class Myvie {
String title;

}

Example 20.2 Simplest node entity

@Graphld: Neo4j -id field

For the simple mapping this is a required field which must be of type Long. It is used by Spring Data
Neo4j to store the node or relationship-id to re-connect the entity to the graph.

© Note

It must not be a primitive type because then the "non-attached" case can not be represented as
the default value 0 would point to the reference node. Please make also sure that an equal s()
and hashCode() method have to be provided which take the i d field into account (and also
handle the "non-attached", null case).

For the advanced mapping such a field is optional. Only if the underlying id has to be accessed, it is
needed.

Entity Equality

Entity equality can be a grey area, and it is debatable whether natural keys or database ids best describe
equality, there is the issue of versioning over time, etc. For Spring Data Neo4j we have adopted the
convention that database-issued ids are the basis for equality, and that has some consequences:

1. Before you attach an entity to the database, i.e. before the entity has had its id-field populated, we
suggest you rely on object identity for comparisons

2. Once an entity is attached, we suggest you rely solely on the id-field for equality

3.0.0.mM1 Good Relationships 49

please define productname in your docbook file!

3. When you attach an entity, its hashcode changes - because you keep equals and hashcode
consistent and rely on the database ID, and because Spring Data Neo4j populates the database 1D
on save

That causes problems if you had inserted the newly created entity into a hash-based collection before
saving. While that can be worked around, we strongly advise you adopt a convention of not working
with un-attached entities, to keep your code simple. This is best illustrated in code.

@NodeEnt ity

public class Studio {
@ aphl d
Long id

String nane;

publ i c bool ean equal s(Obj ect other) {
if (this == other) return true;

if (id == null) return fal se;
if (! (other instanceof Studio)) return false;

return id.equal s(((Studio) other).id);
}

public int hashCode() {
return id == null ? SystemidentityHashCode(this) : id.hashCode();

}

Set <St udi 0> studi os = new HashSet <St udi 0>() ;

Studi o studi o = studi oRepository. save(new Studio("Ghibli"));
st udi os. add(studi o) ;

Studi o sanmeStudi o = studi oRepository.findOne(studio.id);
assert That (studi o, is(equal To(sanmeStudio));

assert That (studi os. cont ai ns(sanmeStudi 0), is(true);

assert That (st udi os. renpve(saneSt udi o), is(true);

Example 20.3 Entity using id-field for equality and attaching new entity immediately

A work-around for the problem of un-attached entities having their hashcode change when they get
saved is to cache the hashcode. The hashcode will change next time you load the entity, but at least if
you have the entity sitting in a collection, you will still be able to find it:

3.0.0.mM1 Good Relationships 50

please define productname in your docbook file!

@NodeEntity

public class Studio {
@ aphl d
Long id

String nane;
transient private |Integer hash;

publ i c bool ean equal s(Obj ect other) ({
if (this == other) return true;

if (id == null) return fal se;
if (! (other instanceof Studio)) return false;

return id.equal s(((Studio) other).id);
}

public int hashCode() {
if (hash == null) hash = id == null ? SystemidentityHashCode(this) :
i d. hashCode();

return hash. hashCode() ;

Set <St udi 0> studi os = new HashSet <St udi 0>() ;

Studi o studio = new Studio("Chibli")

st udi os. add(studi o) ;

st udi oReposi tory. save(studi 0);

assert That (st udi 0os. contai ns(studi o), is(true);

assert That (studi os. renmove(studi o), is(true);

Studi o sameStudi o = studi oRepository.findOne(studio.id);

assert That (studi o, is(equal To(sanmeStudio));

assert That (st udi 0. hashCode(), is(not(equal To(sanmeStudi o. hashCode())));

Example 20.4 Caching hashcode

@ Note

Remember, transient fields are not saved.

@GraphProperty: Optional annotation for property fields

It is not necessary to annotate property fields, as they are persisted by default; all fields that contain
primitive values are persisted directly to the graph. All fields convertible to a St ri ng using the Spring
conversion services will be stored as a string. Spring Data Neo4j includes a custom conversion factory
that comes with converters for Enuns and Dat es. Transient fields are not persisted.

Collections of collections of primitive or convertable values are stored as well. They are converted to
arrays of their type or strings respectively.

This annotation is typically used with cross-store persistence. When a node entity is configured
as partial, then all fields that should be persisted to the graph must be explicitly annotated with
@ aphProperty.

3.0.0.mM1 Good Relationships 51

please define productname in your docbook file!

@x aphPr oper t y can specify default values for properties that are not in the graph. Default values are
specified as String representations and will be converted to the correct target type using the existing
conversion facilities. For example @x aphPr opert y(def aul t Val ue="20") | nteger age.

It is also possible to declare the type that should be used for the storage inside of Neo4j. For instance if
a Dat e property should be stored as an Long value instead of the default String, the annotation would
look like @ aphProperty(propertyType = Long. cl ass) For the actual mapping of the Field-
Type to the Neo4j-Property type there has to be a Converter registered in the Spring-Config.

@Indexed: Making entities searchable by field value

The @Indexed annotation can be declared on fields that are intended to be indexed by the Neo4j
indexing facilities. The resulting index can be used to later retrieve nodes or relationships that contain
a certain property value, e.g. a name. Often an index is used to establish the start node for a traversal.
Indexes are accessed by a repository for a particular node or relationship entity type. See Section 20.6,
“Indexing” and Section 20.8, “CRUD with repositories” for more information.

@Query: fields as query result views

The @uery annotation leverages the delegation infrastructure supported by Spring Data Neo4j. It
provides dynamic fields which, when accessed, return the values selected by the provided query
language expression. The provided query must contain a placeholder named {sel f} for the the
current entity. For instance the query start n=node({self}) match n-[:FR END]->friend
return friend. Graph queries can return variable number of entities. That's why annotation can
be put onto fields with a single value, a subclass of Iterable of a concrete type or an Iterable of
Map<St ri ng, bj ect >. Additional parameters are taken from the params attribute of the @uery
annotation. These parameter tuples form key-value pairs that are provided to the query at execution
time.

@NodeEntity
public class Goup {
@uery(value = "start n=node({self}) match (n)-[r]->(friend) where r.type = {rel Type}
return friend",
params = {"rel Type", "FRIEND'})
private |terabl e<Person> friends;

}
Example 20.5 @Graph on a node entity field

© Note

Please note that this annotation can also be used on repository methods. (Section 20.8, “CRUD
with repositories”)

@GraphTraversal: fields as traversal result views

The @ aphTr aver sal annotation also leverages the delegation infrastructure supported by Spring
Data aspects. It provides dynamic fields which, when accessed, return an It er abl e of node or
relationship entities that are the result of a traversal starting at the entity containing the field. The
Traver sal Descri pti on used for this is created by the Fi el dTr aver sal Descri pti onBui | der
class defined by the traver sal attribute. The class of the resulting node entities must be provided
with the el ement Cl ass attribute.

3.0.0.mM1 Good Relationships 52

please define productname in your docbook file!

@NodeEntity
public class Goup {
@& aphTraversal (traversal = Peopl eTraversal Bui | der. cl ass,
el ement Cl ass = Person. cl ass, parans = "persons")

private |terabl e<Person> peopl e;

private static class Peopl eTraversal Bui |l der i npl enents
Fi el dTr aver sal Descri pti onBui | der {
@verride
public Traversal Description build(NodeBacked start, Field field, String... parans)

return new Traversal Descri ptionl npl ()
.rel ati onshi ps(Dynam cRel ati onshi pType. wi t hNane(par ans[0]))
.filter(Traversal.returnAll ButStartNode());

}
Example 20.6 @GraphTraversal from a node entity

20.5 Relating node entities

Since relationships are first-class citizens in Neo4j, associations between node entities are represented
by relationships. In general, relationships are categorized by a type, and start and end nodes (which
imply the direction of the relationship). Relationships can have an arbitrary number of properties. Spring
Data Neod4j has special support to represent Neo4;j relationships as entities too, but it is often not needed.

© Note

As of Neo4j 1.4.M03, circular references are allowed. Spring Data Neo4;j reflects this accordingly.

@RelatedTo: Connecting node entities

Every field of a node entity that references one or more other node entities is backed by relationships
in the graph. These relationships are managed by Spring Data Neo4j automatically.

The simplest kind of relationship is a single field pointing to another node entity (1:1). In this case, the
field does not have to be annotated at all, although the annotation may be used to control the direction
and type of the relationship. When setting the field, a relationship is created when the entity is persisted.
If the field is set to nul | , the relationship is removed.

@NodeEntity
public class Myvie {
private Actor topActor;

}
Example 20.7 Single relationship field

It is also possible to have fields that reference a set of node entities (1:N). These fields come in
two forms, modifiable or read-only. Modifiable fields are of the type Set <T>, and read-only fields are
I t er abl e<T>, where T is a @NodeEntity-annotated class.

3.0.0.mM1 Good Relationships 53

please define productname in your docbook file!

@NodeEntity
public class Actor {
@Rel at edTo(type = "topActor", direction = Direction.| NCOM NG

private Set<Myvie> topActorln;

@Rel at edTo(type = "ACTS_IN")
private Set<Myvie> novi es;

}
Example 20.8 Node entity with relationships

For the simple mapping, the automatic transitive loading of related entities depends on declaration of
@-et ch at the property. Otherwise the related node or relationship entities will just be initialized with
their id for later loading.

When using the advanced mapping, Fields referencing other entities should not be manually initialized,
as they are managed by Spring Data Neo4j Aspects under the hood. 1:N fields can be accessed
immediately, and Spring Data Neo4j will provide a Set representing the relationships.

If this Set of related entities is modified, the changes are reflected in the graph, relationships are added,
removed or updated accordingly.

© Note

Spring Data Neo4j ensures by default that there is only one relationship of a
given type between any two given entities. This can be circumvented by using the
creat eRel ati onshi pBet ween() method with the al |l owDupli cates parameter on
repositories or entities.

© Note

Before an entity has been persisted for the first time, it will not have its state managed by Spring
Data Neo4j. For example, given the Actor class defined above, if act or . novi es was accessed
in a non-persisted entity, it would return nul | , whereas if it was accessed in a persisted entity,
it would return an empty managed set.

When an Interface is used as target type for the Set and/or as el enment C ass it should be marked
as @lodeEnti ty too.

By setting direction to BOTH, relationships are created in the outgoing direction, but when the 1:N field
is read, it will include relationships in both directions. A cardinality of M:N is not necessary because
relationships can be navigated in both directions.

In the advanced mapping mode, the relationships can also be accessed by using the methods
entity. getRel ati onshi pBetween(target, type) andentity.rel ateTo(target, type)
available on each NodeEntity. These methods find and create Neo4j relationships. It is also possible to
manually remove relationships by usingenti ty. renoveRel at i onshi pTo(target, type).Using
these methods is significantly faster than adding/removing from the collection of relationships as it
doesn't have to re-synchronize a whole set of relationships with the graph.

Methods of the same semantics exist in the repositories to be used in the simple mapping mode.

3.0.0.mM1 Good Relationships 54

please define productname in your docbook file!

© Note

Other collection types than Set are not supported so far, also currently NO
Map<Rel at i onshi pType, Set <NodeBacked>>.

@RelationshipEntity: Rich relationships

To access the full data model of graph relationships, POJOs can also be annotated with
@=el ati onshi pEntity, making them relationship entities. Just as node entities represent nodes
in the graph, relationship entities represent relationships. As described above, fields annotated with
@Rrel at edTo provide a way to only link node entities via relationships, but it provides no way of
accessing the relationships themselves.

Relationship entities can be accessed via by @RelatedToVia-annotated
(???) fields or methods like entity.getRelationshipTo() or tenpl ate|
repository. get Rel ati onshi p(s) Bet ween().

Relationship entities either be instantiated directly and set or added to @Rrel atedToVi a-
annotated fields or created by the introduced entity.relateTo(), t enpl at e|
repository. createRel ati onshi pBet ween() methods (see alos Section 20.12, “Active Record
Methods for Advanced Mapping Mode”)

Fields in relationship entities are, similarly to node entities, persisted as properties on the relationship.
For accessing the two endpoints of the relationship, two special annotations are available: @t ar t Node
and @ndNode. A field annotated with one of these annotations will provide read-only access to the
corresponding endpoint, depending on the chosen annotation.

For the relationship-type a St ri ng or Rel at i onshi pType field annotated with @Rel at i onshi pType
is available. When Relationship-Entities are instantiated directly, the relationship type has to be provided
either in this annotated field or as part of the @Rel at i onshi pEnti t y annotation.

@NodeEntity
public class Actor {
public Rol e playedln(Mvie novie, String title) {
return rel ateTo(novi e, Role.class, "ACTS_IN');
}
}

@Rel ati onshi pEntity
public class Role {
String title;

@t art Node private Actor actor;
@ndNode private Mvie novie;

Example 20.9 Relationship entity (in advanced mapping)
@RelatedToVia: Accessing relationship entities
To provide easy programmatic access to the richer relationship entities of the data model, the annotation

@Rel at edToVi a can be added on fields of type | terabl e<T> or Set<T> or T, where T is a
@=el at i onshi pEnt i t y-annotated class. These fields provide access to relationship entities.

3.0.0.mM1 Good Relationships 55

please define productname in your docbook file!

@NodeEntity
public class Actor {
@rel at edToVi a
@et <Rol e> rol es=new HashSet <Rol e>();
public Role playedln(Mvie novie, String title) {
Rol e rol e=new Rol e(this, novie,title);
rol es. add(rol e);
return role;
}
@Rel at edToVi a(type="FRI END_OF", direction=Direction.| NCOM NG
Fri endshi p best Friend;

}

@Rel ati onshi pEntity(type = "ACTS_IN")
public class Role {
String title;

@t art Node private Actor actor;
@ndNode private Movie novi e;
}
@Rel ati onshi pEntity
public class Friendship {
Dat e since;

@5t art Node private Actor actor;
@ndNode private Person buddy;

Example 20.10 Relationship entity (in simple mapping)
Relationship Type Precedence

In the example above we show how to specify a default relationship type, and how to provide the
relationship type using an annotation property. Here is an example of using the @RelationshipType
annotation on a member variable on the relationship entity; we call this dynamic relationship type.

@Rel ati onshi pEntity(type = "col | eague")
public class Acquai ntance {
@t art Node private Actor actor;
@ndNode private Person acquai ntance;
@rel ati onshi pType private String connection;

publ i ¢ Acquai ntance(Actor actor, Person acquai ntance, String connection) {
Actor frankSinatra = ...

Person carl oGanbino = ...
new Acquai ntance(frankSi natra, carloGanbino, "its_conplicated")

Example 20.11 Dynamic Relationship Type (simple mapping)

@ Note

Because dynamic type information is, well, dynamic, it is generally not possible to read the
mapping backwards using SDN. The relationship still exists, but SDN cannot help you access it
because it does not know what type you gave it. Also, for this reason, we require you to specify
a default relationship type, so that we can at least attempt the reverse mapping.

3.0.0.mM1 Good Relationships 56

please define productname in your docbook file!

Should you happen to provide conflicting relationship types, we have established the following
precedence, in priority order:

1. Dynamic
2. Annotation-provided

3. Default
Discriminating Relationships Based On End Node Type

In some cases, you want to model two different aspects of a conceptual relationship using the same
relationship type. Here is a canonical example:

@NodeEntity

cl ass Person {
@Rel at edTo(type="OMNS")
Car car;

@Rel at edTo(type="OMNS")
Pet pet;

Example 20.12 Clashing Relationship Types

Itis clear how we can map these relationships: by looking at the type of the end node. To enable this, we
have introduced an boolean annotation parameter enf or ceTar get Type, which is disabled by default.
Our example now reads:

@NodeEntity

cl ass Person {
@Rel at edTo(type="OMS", enforceTarget Type=true)
Car car;

@Rel at edTo(type="OMS", enforceTarget Type=true)
Pet pet;

Example 20.13 Discriminating Relationship Types Using End Node Type

The example easily generalises to collections too of course, but there are a few note-worthy rules and
corner cases:

* You need to annotate all clashing relationships.

* You can't have two fields, two collections, or a field and a collection, with the same relationship type
and identical end node types. SDN does not store metadata about the origin of a relationship. So when
saving the entity, the first field or collection would be overwritten by the second, with the processing
order being non-deterministic.

* You can have clashing relation ship types when end nodes share a supertype.

* A variation on the above, you cannot have two fields or two collections with the same relationship
type and substitutable end node types.

3.0.0.mM1 Good Relationships 57

please define productname in your docbook file!

* You can however have a field and a collection where end node types inherit from each other.

20.6 Indexing

Indexing is used in Neo4j to quickly find nodes and relationships to start graph operations from. Either
for manually traversing the graph, using the traversal framework, cypher queries or for "global" graph
operations. Indexes are also employed to ensure uniqueness of elements with certain properties.

The Neo4j graph database employs different index providers for exact lookups and fulltext searches.
Lucene is the default index provider implementation. Each named index is configured to be fulltext or
exact. There is also a spatial index provider for geo-searches.

Exact and numeric index

When using the standard Neo4j API, nodes and relationships have to be manually indexed with key-
value pairs, typically being the property name and value. When using Spring Data Neo4j, this task
is simplified to just adding an @ ndexed annotation on entity fields by which the entity should be
searchable. This will result in automatic updates of the index every time an indexed field changes.

Numerical fields are indexed numerically so that they are available for range queries. All other fields
are indexed with their string representation. If a numeric field should not be indexed numerically, it is
possible to switch it off with @ ndexed(nuneri c=f al se) .

The @ ndexed annotation also provides the option of using a custom index name. The default index
name is the simple class name of the entity, so that each class typically gets its own index. It is
recommended to not have two entity classes with the same class name, regardless of package.

If a field is declared in a superclass but different indexes for subclasses are needed, the | evel attribute
declares what will be used as index. Level . CLASS uses the class where the field was declared and
Level . | NSTANCE uses the class that is provided or of the actual entity instance.

The indexes can be queried by using a repository (see
Section 20.8, “CRUD with repositories”). The repository is an instance
of org.springframework. data. neo4j.repository. | ndexRepository. The methods
fi ndByPr opertyVal ue() andfi ndAl | ByPropertyVal ue() workonthe exactindexes and return
the first or all matches. To do range queries, use f i ndAl | ByRange() (please note that currently both
values are inclusive).

For providing explicit index names the repository has to extend Nanedl ndexReposi t ory. This adds
the shown methods with another signature that take the index name as first parameter.

3.0.0.mM1 Good Relationships 58

please define productname in your docbook file!

@NodeEntity

cl ass Person {
@ ndexed(i ndexNanme = "people") String name;
@ ndexed int age;

}

GraphReposi t ory<Per son> graphRepository = tenpl ate. repositoryFor(Person.cl ass);

/] Exact match, in named index
Person mark = graphRepository.findByPropertyVal ue("people", "nane", "mark");

/1 Numeric range query, index nane inferred automatically
for (Person m ddl eAgedDevel oper : graphRepository.findAl | ByRange("age", 20, 40)) {
Devel oper devel oper =ni ddl eAgedDevel oper . proj ect To(Devel oper. cl ass);

}
Example 20.14 Indexing entities

Fulltext indexes

Spring Data Neo4j also supports fulltext indexes. By default, indexed fields are stored in an exact
lookup index. To have them analyzed and prepared for fulltext search, the @ ndexed annotation has
the t ype attribute which can be setto | ndexType. FULLTEXT. Please note that fulltext indexes require
a separate index name as the fulltext configuration is stored in the index itself.

Access to the fulltext index is provided by the fi ndAl | ByQuer y() repository method. Wildcards like
* are allowed. Generally though, the fulltext querying rules of the underlying index provider apply. See
the Lucene documentation for more information on this.

@NodeEntity
cl ass Person {
@ ndexed(i ndexNane = "peopl e-search", type=FULLTEXT) String nane;

}

Gr aphReposi t or y<Per son> graphRepository =
tenpl at e. reposi t oryFor (Person. cl ass) ;

Person mark = graphRepository.findAl | ByQuery("peopl e-search", "nane", "nma*");

Example 20.15 Fulltext indexing

© Note

Please note that indexes are currently created on demand, so whenever an index that doesn't
exist is requested from a query or get operation it is created. This is subject to change but
has currently the implication that those indexes won't be configured as fulltext which causes
subsequent fulltext updates to those indexes to fail.

Unique indexes

Unique indexing with i ndex. put | f Absent and Uni queFact ory was introduced in Neo4j 1.6.
It is also available via the REST APl In Spring Data Neo4j this is made available via
Neo4j Tenpl at e. get O Cr eat eNode and Neo4j Tenpl at e. get O Cr eat eRel ati onshi p.

In an entity at most one field can be annotated with @ ndexed(uni que=t r ue) regardless of the index-
type used. The uniqueness will be taken into account when creating the entity by reusing an existing
entity if that unique key-combination already exists. On saving of the field it will be cross-checked against

3.0.0.mM1 Good Relationships 59

http://lucene.apache.org

please define productname in your docbook file!

the index and fail with a DatalntegrityViolationException if the field was changed to an already existing
unique value. Null values are no longer allowed for these properties.

© Note

This works for both Node-Entities as well as Relationship-Entities. Relationship-Uniqueness in
Neod4jis global so that an existing unique instance of this relationship may connect two completely
different nodes and might also have a different type.

/] creates or finds a node with the unique index-key-val ue conbi nation
/'l and initializes it with the properties given
tenpl at e. get O Cr eat eNode("users”, "login", "mh", map("nanme","M chael ", "age", 37));

@lodeEntity class Person {
@ ndexed(uni que = true) String nane;

}

Person markl = repository.save(new Person("nmark"));
Person mark2 = repository.save(new Person("mark"));

/'l just one node is created
assert Equal s(mar k1, mar k2) ;
assert Equal s(1, personRepository.count());

Person thomas = repository. save(new Person("thomas"));
t honmas. set Nane(" nar k") ;
repository.save(thomas); // fails with a DatalntegrityViolati onException

Example 20.16 Unique indexing
Manual index access

The index for a domain class is also available from Neo4j Tenpl at e viathe get | ndex() method. The
second parameter is optional and takes the index name if it should not be inferred from the class name.
It returns the index implementation that is provided by Neo4j.

@\ut owi red Neo4dj Tenpl ate tenpl ate;

/] Default index
I ndex<Node> personl ndex = tenpl ate. getlndex(null, Person.class);
per sonl ndex. quer y(new Quer yCont ext (Nurer i cRangeQuer y. newi nt Range("age", 20, 40, true,
true))
.sort(new Sort(new SortField("age", SortField.INT, false))));

/1 Named i ndex
| ndex<Node> nanedPer sonl ndex = tenpl ate. get| ndex("peopl e", Person. cl ass) ;
namedPer sonl ndex. get (" nane", "Mark");

/] Fulltext index

I ndex<Node> per sonFul | text| ndex = tenpl at e. get | ndex("peopl e-search", Person. cl ass);
per sonFul | t ext | ndex. query("name", "*cha*");

per sonFul | t ext | ndex. query("{nane: *cha*}");

Example 20.17 Manual index retrieval by type and name

It is also possible to pass in the property name of the entity with an @ ndexed annotation whose index
should be returned.

3.0.0.mM1 Good Relationships 60

please define productname in your docbook file!

@\utowi red Neo4dj Tenpl ate tenpl ate

I ndex<Node> per sonl ndex = tenpl at e. get| ndex(Person.cl ass, "age");
per sonl ndex. quer y(new Quer yCont ext (Numer i cRangeQuer y. newi nt Range(" age", 20, 40, true
true))

.sort(new Sort(new SortField("age", SortField.INT, false))));

/] Fulltext index

I ndex<Node> personFul | text| ndex = tenpl at e. get | ndex(Person. cl ass, "nanme");
per sonFul | t ext | ndex. query("nane", "*cha*");

per sonFul | t ext | ndex. query("{nane: *cha*}");

Example 20.18 Manual index retrieval by property configuration
Index queries in Neo4jTemplate

For querying the index, the template offers query methods that take either the exact match parameters
or a query object/expression, return the results as Resul t objects which can then be converted and
projected further using the result-conversion-dsl (see Section 20.7, “Neo4jTemplate”).

Neo4j Auto Indexes

Neo4j allows to configure auto-indexing for certain properties on nodes and relationships. This
auto-indexing differs from the approach used in Spring Data Neo4j because it only updates the
indexes when the transaction is committed. So the index modifications will only be available after
the successful commit. It is possible to use the specific index names node_aut o_i ndex and
rel ati onshi p_aut o_i ndex when querying indexes in Spring Data Neo4j either with the query
methods in template and repositories or via Cypher.

Spatial Indexes

Spring Data Neo4j offers limited support for spatial queries using the neo4j - spati al library. See the
separate chapter Section 20.11, “Geospatial Queries” for details.

20.7 Neo4jTemplate

The Neo4j Tenpl at e offers the convenient API of Spring templates for the Neo4j graph database. The
Spring Data Neo4j Object Graph mapping builds upon the core functionality of the template to persist
objects to the graph and load them in a variety of ways. The template handles the active mapping mode
(Section 20.1, “Object Graph Mapping”) transparently.

Besides methods for creating, storing and deleting entities, nodes and relationships in the graph,
Neo4j Tenpl at e also offers a wide range of query methods. To reduce the proliferation of query
methods a simple result handling DSL was added.

Basic operations

For direct retrieval of nodes and relationships, the get Ref erenceNode(), get Node() and
get Rel ati onshi p() methods can be used.

There are methods (creat eNode() and createRel ationship()) for creating nodes and
relationships that automatically set provided properties.

3.0.0.mM1 Good Relationships 61

http://docs.neo4j.org/chunked/milestone/auto-indexing.html

please define productname in your docbook file!

Neo4j Oper ati ons neo = new Neo4j Tenpl at e(gr aphDat abase) ;

Node mark = neo. creat eNode(map("nanme", "Mark"));
Node thomas = neo. cr eat eNode(map("nane", "Thomas"));

neo. cr eat eRel ati onshi pBet ween(nar k, thomas, "WORKS W TH',
map("project", "spring-data"));

neo. i ndex("devs", thomas, "nane", "Thonas");

assert Equal s(" Mark",
neo. query("start p=node({person}) match p<-[: WORKS_W TH] - ot her return ot her.nane",
map(" person", asList(thomas.getld()))).to(String.class).single());

/1 1 ndex | ookup
assert Equal s(t homas, neo. | ookup("devs", "nanme", "Thomas").to(Node.class).single());

/1 1 ndex | ookup with Result Converter
assert Equal s(" Thomas", neo. | ookup("devs", "nanme", "Thonas")
.to(String.class, new Resul t Converter<PropertyContainer, String>() {
public String convert (PropertyContainer elenent, Cass<String> type) {
return (String) elenment.getProperty("nanme");
}
}).single());

Example 20.19 Neo4j template

Core-Operations

Neo4j Tenpl at e provides access to some of the methods of the Neo4j-Core-API directly. So
accessing nodes and relationships (get Ref er enceNode, get Node, get Rel ati onshi p,
get Rel at i onshi pBet ween), creating nodes and relationships (cr eat eNode, creat eNodeAs,
creat eRel ati onshi pBet ween) and deleting them (del et e, del et eRel ati onshi pBet ween)
are supported. It also provides access to the underlying GraphDatabase via get G- aphDat abase.

Entity-Persistence

Neo4j Tenpl at e allows to save, fi nd(One/ Al'l), count, del ete and proj ect To entities. It
provides the stored type information via get St or edJavaType and can f et ch lazy-loaded entities or
| oad them altogether.

Result

All querying methods of the template return a uniform result type: Resul t <T> which is also
an | terabl e<T>. The query result offers methods of converting each element to a target type
resul t.to(Type. cl ass) optionally supplying a Resul t Convert er <FROM TG> which takes care
of custom conversions. By default most query methods can already handle conversions from and
to: Paths, Nodes, Relationship and GraphEntities as well as conversions backed by registered
ConversionServices. A converted Resul t <FROW> is an | t er abl e<TO>. Results can be limited to a
single value using the resul t. single() or result.singleO Null () methods. It also offers
support for a pure callback function using a Handl er <T>.

Indexing

Adding nodes and relationships to an index is done with the i ndex() method.

3.0.0.mM1 Good Relationships 62

please define productname in your docbook file!

The | ookup() methods either take a field/value combination to look for exact matches in the index,
or a Lucene query object or string to handle more complex queries. All | ookup() methods return a
Resul t <Pr opert yCont ai ner > to be used or transformed.

Graph traversal

The traversal methods are at the core of graph operations. The traverse() method covers
the full traversal operation that takes a Traversal Description (typically built with the
t enpl at e. get GraphDat abase() . traversal Descri ption() DSL) and runs it from the given
start node. t r aver se returns a Resul t <Pat h> to be used or transformed.

Cypher Queries

The Neo4j Tenpl at e also allows execution of arbitrary Cypher queries. Via the query methods
the statement and parameter-Map are provided. Cypher Queries return tabular results, so the
Resul t <Map<St ri ng, Gbj ect >> contains the rows which can be either used as they are or converted
as needed.

Transactions

The Neodj Tenpl at e provides implicit transactions for some of its methods. For instance save
uses them. For other modifying operations please provide Spring Transaction management using
@r ansacti onal orthe Transacti onTenpl at e.

Neo4j REST Server

If the template is configured to use a Spri ngRest Gr aphDat abase the operations that would be
expensive over the wire, like traversals and querying are executed efficiently on the server side by
using the REST API to forward those calls. All the other template methods require individual network
operations.

The REST-batch-mode of the Spri ngRest Gr aphDat abase is not yet exposed via the template, but
it is available via the graph database.

Lifecycle Events

Neodj Template offers basic lifecycle events via Spring's event mechanism using ApplicationListener
and ApplicationEvent. The following hooks are available in the form of types of application event:

» BeforeSaveEvent
» AfterSaveEvent
» DeleteEvent - after the event has been deleted

The following example demonstrates how to hook into the application lifecycle and register listeners that
perform behaviour across types of entities during this life cycle:

3.0.0.mM1 Good Relationships 63

please define productname in your docbook file!

@onfiguration
@nabl eNeo4j Reposi tori es
public class ApplicationConfig extends Neo4jConfiguration {
@ean
Appl i cati onLi st ener <Bef or eSaveEvent > bef or eSaveEvent Appl i cati onLi stener () {
return new Appli cationLi st ener <Bef oreSaveEvent >() {
@verride
public void onApplicationEvent (BeforeSaveEvent event) {
AcneEntity entity = (AcneEntity) event.getEntity();
entity. setUni quel d(acnel dFactory. create());

b
}

@ean
Appl i cati onLi st ener <Aft er SaveEvent > aft er SaveEvent Appl i cati onLi stener () {
return new ApplicationLi st ener <After SaveEvent >() {
@verride
public void onApplicati onEvent (After SaveEvent event) {
AcneEntity entity = (AcneEntity) event.getEntity();
audi t Log. onEvent Saved(entity);

}s
}

@Bean
Appl i cati onLi st ener <Del et eEvent > del et eEvent Appl i cati onLi stener() {
return new Applicati onLi st ener<Del et eEvent >() {
@verride
public void onApplicationEvent (Del et eEvent event) {
AcneEntity entity = (AcnmeEntity) event.getEntity();
audi t Log. onEvent Del eted(entity);

Example 20.20 Auditing Entities and Generating Unique Application-level IDs

Changes made to entities in the before-save event handler are reflected in the stored entity - after-save
ones are not.

20.8 CRUD with repositories

The repositories provided by Spring Data Neo4j build on the composable repository infrastructure in
Spring Data Commons. They allow for interface based composition of repositories consisting of provided
defaultimplementations for certain interfaces and additional custom implementations for other methods.

Spring Data Neo4j repositories support annotated and named queries for the Neo4j Cypher query-
language.

Spring Data Neo4j comes with typed repository implementations that provide methods for locating node
and relationship entities. There are several types of basic repository interfaces and implementations.
CRUDReposi t ory provides basic operations, | ndexReposi tory and Nanmedl ndexRepository
delegate to Neodj's internal indexing subsystem for queries, and Tr aver sal Reposi t ory handles
Neo4j traversals.

3.0.0.mM1 Good Relationships 64

http://static.springsource.org/spring-data/data-commons/docs/current/reference/html/#repositories
http://docs.neo4j.org/chunked/milestone/query-lang.html

please define productname in your docbook file!

With the Rel ati onshi pOperati onsRepository it is possible to access, create and delete
relationships between entitites or nodes. The Spati al Reposi tory allows geographic searches
(Section 20.11, “Geospatial Queries”)

G aphRepository is a convenience repository interface, combining CRUDRepository,
| ndexRepository, and Traversal Reposi tory. Generally, it has all the desired repository
methods. If other operations are required then the additional repository interfaces should be added to
the individual interface declaration.

CRUDRepository

CRUDReposi t or y delegates to the configured TypeRepr esent at i onSt r at egy (see Section 20.15,
“Entity type representation”) for type based queries.

Load an entity instance via an id
T findOne(id)

Check for existence of an id in the graph
bool ean exi sts(id)

Iterate over all nodes of a hode entity type
EndResul t <T> findAll () (supported in future versions: EndResul t <T> fi ndAl I (Sort)
and Page<T> fi ndAl | (Pageabl e))

Count the instances of the repository entity type
Long count ()

Save entities
T save(T) and | terabl e<T> save(lterabl e<T>)

Delete graph entities
void delete(T),void; delete(lterable<T>),anddel eteAl()

IndexRepository and NamedIndexRepository

I ndexReposi t ory works with the indexing subsystem and provides methods to find entities by
indexed properties, ranged queries, and combinations thereof. The index key is the name of the indexed
entity field, unless overridden in the @ ndexed annotation.

Iterate over all indexed entity instances with a certain field value
EndResul t <T> fi ndAl | ByPropertyVal ue(key, val ue)

Get a single entity instance with a certain field value
T findByPropertyVal ue(key, val ue)

Iterate over all indexed entity instances with field values in a certain numerical range (inclusive)
EndResul t <T> fi ndAl | ByRange(key, from to)

Iterate over all indexed entity instances with field values matching the given fulltext string or
QueryContext query
EndResul t <T> fi ndAl | ByQuery(key, queryOr QueryContext)

There is also a Nanedl ndexReposi t or y with the same methods, but with an additional index name
parameter, making it possible to query any index.

3.0.0.mM1 Good Relationships 65

please define productname in your docbook file!

TraversalRepository
Traver sal Reposi t ory delegates to the Neo4j traversal framework.

Iterate over a traversal result
Iterabl e<T> findAl | ByTraversal (startEntity, traversal Description)

Query and Finder Methods

Annotated queries

Queries using the Cypher graph query language can be supplied with the @uery annotation. That
means every method annotated with @uery("start n=node: | ndexNane(key={ node or 0})
match (n)-->(m return m") will use the supplied query string. The named or indexed parameter
{ node} will be substituted by the actual method parameter. Node and Relationship-Entities are handled
directly, Iterables thereof as well. All other parameters are replaced directly (i.e. Strings, Longs, etc).
There is special support for the Sort and Pageabl e parameters from Spring Data Commons, which
are supported to add programmatic paging and sorting (alternatively static paging and sorting can be
supplied in the query string itself). For using the named parameters you have to either annotate the
parameters of the method with the @ar an(" node") annotation or enable debug symbols. Indexed
parameters are always usable.

If it is required that paged results return the correct total count, the @uer y annotation can be supplied
with a count query in the count Quer y attribute. This query is executed separately after the result query
and its result is used to populate the t ot al Count property of the returned Page.

Named queries

Spring Data Neo4j also supports the notion of named queries which are externalized in property-
config-files (META- | NF/ neo4j - named- queri es. properties). Those files have the format:
Entity. finder Nane=query (e.g. Person. fi ndBoss=start p=node({0}) match (p)<-
[: BOSS] - (boss) return boss). Otherwise named queries support the same parameters as
annotated queries. For count queries the lookup name is Entity. fi nder Nane. count =count -
qguery. The default query lookup names can be overriden by using an @uery annotation with
quer yNanme="ny- quer y- nane" or count Quer yNanme="ny- query- nanme".

Query results

Typical results for queries are | t er abl e<Type>, |t erabl e<Map<String, Obj ect >>, Type and
Page<Type>. Nodes and Relationships are converted to their respective Entities (if they exist). Other
values are converted using the registered Spring conversion services (e.g. enums).

Cypher examples

There is a screencast available showing many features of the query language. The following examples
are taken from the cineasts dataset of the tutorial section.

start n=node(0) return n
returns the node with id 0

start novi e=node: Movi e(title="Matrix') return novie
returns the nodes which are indexed with title equal to 'Matrix'

3.0.0.mM1 Good Relationships 66

http://video.neo4j.org/ybMbf/screencast-introduction-to-cypher

please define productname in your docbook file!

start novi e=node: Movie(title="Matrix') match (novie)<-[:ACTS_IN-(actor)
return actor.nane
returns the names of the actors that have a ACTS_IN relationship to the movie node for 'Matrix'

start novi e=node: Movie(title="Matrix') match (novie)<-[r:RATED - (user) where
r.stars > 3 return user.nanme, r.stars, r.coment
returns users names and their ratings (>3) of the movie titled 'Matrix'

start user =node: User (| ogi n=" i cha') mat ch (user)-[:FRIEND] - (friend)-
[r: RATED] ->(novie) return novie.title, AVEr.stars), COUNT(*) order by
AVEr.stars) desc, COUNT(*) desc
returns the movies rated by the friends of the user 'micha’, aggregated by movie.title, with averaged
ratings and rating-counts sorted by both

public interface MyvieRepository extends G aphRepository<Myvie> {

/'l returns the node with id equal to idCO Mvie paraneter
@uery("start n=node({0}) return n")
Movi e get Movi eFrom d(| nt eger idOf Movi e);

/'l returns the nodes which will use index named title equal to novieTitle paraneter
/1 movieTitle String nust not contain any spaces, otherwi se you will receive a
Nul | Poi nt er Excepti on.
@uery("start novi e=node: Movi e(title={0}) return novie")
Movi e get Movi eFronTitle(String novieTitle);

/] returns the Actors that have a ACTS IN rel ationship to the novie node with the
title equal to novieTitle paraneter.
/1 (The parenthesis around 'novie' and 'actor' in the match clause are optional.)

@uery("start novi e=node: Movi e(title={0}) match (novie)& t;-[:ACTS_ IN-(actor) return
actor")
Page<Act or > get Act or sThat Act | nMovi eFronTitl e(String novieTitle, PageRequest);

/'l returns users who rated a novie (novie paraneter) higher than rating (rating
par anet er)
@uery("start novi e=node: ({0}) " +
“match (novie)&t;-[r:RATED] - (user) " +
"where r.stars > {1} " +
"return user")
| terabl e<User > get User sWhoRat edMbvi eFronTi t| e(Movi e novie, |nteger rating);

/'l returns users who rated a novie based on novie title (novieTitle paraneter) higher
than rating (rating paraneter)
@uery("start novi e=node: Movi e(title={0}) " +
"match (novie)& t;-[r:RATED] - (user) " +
"where r.stars > {1} " +
"return user")
It erabl e<User> get User sWhoRat edMbvi eFronTitl e(String novieTitle, Integer rating);

Example 20.21 Examples of Cypher queries placed on repository methods with @Query where values
are replaced with method parameters, as described in the the section called “Annotated queries”)
section.

3.0.0.mM1 Good Relationships 67

please define productname in your docbook file!

Queries derived from finder-method names

As known from Rails or Grails it is possible to derive queries for domain entities from finder method
names like | t er abl e<Per son> fi ndByNaneAndAgeG eat er Than(String nane, int age).
Using the infrastructure in Spring Data Commons that allows to collect the meta information about
entities and their properties a finder method name can be split into its semantic parts and converted into
a cypher query. @ ndexed fields will be converted into index-lookups of the st art clause, navigation
along relationships will be reflected in the mat ch clause properties with operators will end up as
expressions in the wher e clause. Order and limiting of the query will by handled by provided Pageabl e
or Sort parameters. The other parameters will be used in the order they appear in the method signature
so they should align with the expressions stated in the method name.

public interface PersonRepository
extends G aphRepository<Person> {

/'l start person=node: Person(id={0}) return person
Person findByld(String id)

/'l start person=node: Person({0}) return person - {0} will be "id:"+nane
It erabl e<Person> fi ndByNaneLi ke(String nane)

/'l start person=node: types__ ("className"="com .. Person")

/'l where person.age = {0} and person.married = {1}

/] return person

| t er abl e<Per son> fi ndByAgeAndMarri ed(int age, bool ean narri ed)

/| start person=node: __types__ ("classNane"="com .. Person")

/1 match person<-[:CHI LD] - par ent

/| where parent.age > {0} and person.married = {1}

/] return person

| t er abl e<Per son> fi ndByPar ent AgeAndMarri ed(i nt age, bool ean narri ed)

}
Example 20.22 Some examples of methods and resulting Cypher queries of a PersonRepository

Derived Finder Methods

Use the meta information of your domain model classes to declare repository finders that navigate
along relationships and compare properties. The path defined with the method name is used to create
a Cypher query that is executed on the graph.

3.0.0.mM1 Good Relationships 68

please define productname in your docbook file!

@NodeEntity

public static class Person {
@ aphl d Long id;
private String nane;
private Group group;

private Person(){}
public Person(String nanme) {
thi s. nane = nane;
}
}

@NodeEntity
public static class Goup {
@ aphl d Long id;
private String title;
/1 incom ng relationship for the person -> group
@Rel at edTo(type = "group", direction = Direction.| NCOM NG
private Set<Person> nenbers=new HashSet <Per son>();

private Goup(){}
public Goup(String title, Person...people) {
this.title = title;
menber s. addAl | (asLi st (peopl e));
}
}

public interface PersonRepository extends G aphRepository<Person> {
| terabl e<Person> findByG oupTitle(String nane);

}

@\ut owi red PersonRepository personRepository;

Per son ol i ver =per sonReposi tory. save(new Person("Qdiver"));
final Goup springbData = new G oup("spring-data", oliver);

gr oupReposi tory. save(spri ngDat a) ;

final Iterabl e<Person> nenbers = personRepository.findByG oupTitle("spring-data");
assert That (menbers.iterator().next().nanme, is(oliver.nang));

Example 20.23 Repository and usage of derived finder methods

Cypher-DSL repository

Spring Data Neo4j supports the new Cypher-DSL to write Cypher queries in a statically typed way.
Just by including Cypher Dsl Reposi t ory to your repository you get the Page<T> quer y(Execut e
query, par ans, Pageabl e page), Page<T> query(Execute query, Execut e
count Query, params, Pageable page) and the EndResul t <T> query(Execute query,
par ans) ; . The result type of the Cypher-DSL builder is called Execut e.

3.0.0.mM1 Good Relationships 69

please define productname in your docbook file!

i nport static org.neo4j.cypherdsl.CypherQery.*;
import static org.neodj.cypherdsl.querydsl.Cypher QueryDSL. *;

public interface PersonRepository extends G aphRepository<Person>
Cypher Dsl Reposi t or y<Per son> {}

@\ut owi red PersonRepository repo
/| START conpany=node: Conpany(name={ name}) MATCH conpany<-[: WORKS_AT] - >per son RETURN
person

Execute query = start(|ookup("company", "Conpany", "nane", param("nane"))).

))-
returns(identifier("person"))
Page<Per son> peopl e = repo. query(query , map("nane","Neo4j"), new PageRequest (1, 10))

QPerson person = QPerson. person
QConpany conmpany = QConpany. conpany;
Execute query = start(|ookup(conpany, "Conpany", conpany.name, paran("name"))).

.where(person. firstNane. like("P*").and(person. age. gt(25))).
returns(identifier(person))
EndResul t <Per son> peopl e = repo. query(query , map("nane", "Neo4j"));

mat ch(path().fron{ "conpany").in("WORKS_AT").to("person"

mat ch(path().fron{ conpany).in("WORKS AT").to(person).

Example 20.24 Examples for Cypher-DSL repository

Cypher-DSL and QueryDSL

To use Cypher-DSL with Query-DSL the Mysema dependencies have to be declared explicitly as they

are optional in the Cypher-DSL project.

<dependency>
<gr oupl d>com nysena. quer ydsl </ groupl d>
<artifact!d>querydsl-core</artifactld>
<versi on>2. 2. 3</ versi on>
<opti onal >true</ opti onal >

</ dependency>

<dependency>
<gr oupl d>com nysena. quer ydsl </ groupl d>
<artifact!d>querydsl-lucene</artifactld>
<versi on>2. 2. 3</ ver si on>
<opti onal >true</ opti onal >
<excl usi ons>

<excl usi on>
<gr oupl d>or g. apache. | ucene</ gr oupl d>
<artifactld>l ucene-core</artifactld>
</ excl usi on>

</ excl usi ons>

</ dependency>

<dependency>
<gr oupl d>com nysena. quer ydsl </ groupl d>
<artifactld>querydsl-apt</artifactld>
<versi on>2. 2. 3</ versi on>
<scope>pr ovi ded</ scope>

</ dependency>

It is possible to use the Cypher-DSL along with the predicates and code generation features of the
QueryDSL project. This will allow you to use Java objects as part of the query, rather than strings, for

3.0.0.mM1 Good Relationships

70

please define productname in your docbook file!

the names of properties and such. In order to get this to work you first have to add a code processor
to your Maven build, which will parse your domain entities marked with @NodeEntity, and from that
generate QPerson-style classes, as shown in the previous section. Here is what you need to include
in your Maven POM file.

<pl ugi n>
<gr oupl d>com nmysena. maven</ gr oupl d>
<artifact!|d>maven-apt-plugin</artifactld>
<versi on>1. 0. 2</ ver si on>
<configuration>

<processor >org. spri ngf ramewor k. dat a. neo4j . quer ydsl . SDNAnnot at i onPr ocessor </ processor >
</ confi guration>
<execut i ons>
<execution>
<i d>t est - sources</i d>
<phase>gener at e- t est - sour ces</ phase>
<goal s>
<goal >t est - pr ocess</ goal >
</ goal s>
<configuration>
<out put Di rect or y>t ar get/ gener at ed- sour ces/ t est </
out put Di rect ory>
</ confi guration>
</ executi on>
</ executi ons>
</ pl ugi n>

This custom QueryDSL AnnotationProcessor will generate the query classes that can be used when
constructing Cypher-DSL queries, as in the previous section.

Creating repositories

The Reposi t ory instances should normally be injected but can also be created manually via the
Neo4j Tenpl at e.

3.0.0.M1 Good Relationships 71

please define productname in your docbook file!

public interface PersonRepository extends G aphRepository<Person> {}
@\ut owi red PersonRepository repo;
/Il OR
G aphReposi t ory<Person> repo = tenpl ate
. reposi t oryFor (Person. cl ass);
Person m chael = repo.save(new Person("M chael", 36));
Person dave = repo.findOne(123);

Long nunber O Peopl e = repo. count ();

EndResul t <Per son> devs =
graphReposi tory. fi ndAl | ByPropertyVal ue("occupati on", "devel oper");

EndResul t <Per son> mi ddl eAgedPeopl e = graphReposi tory. fi ndAl | ByRange("age", 20, 40);
EndResul t <Per son> aTeam = graphReposi tory. fi ndAl | ByQuery("name", "A*");

| t er abl e<Person> aTeam = repo. fi ndAl | ByQuery("nane", "A*");

It erabl e<Person> davesFri ends = repo. findAl | ByTraversal (dave,

Traversal . description(). pruneAfterDepth(1)
.rel ationshi ps(KNOAB) . filter(returnAllButStartNode()));

Example 20.25 Using basic GraphRepository methods
Composing repositories

The recommended way of providing repositories is to define a repository interface per domain class.
The mechanisms provided by the repository infrastructure will automatically detect them, along with
additional implementation classes, and create an injectable repository implementation to be used in
services or other spring beans.

3.0.0.M1 Good Relationships 72

please define productname in your docbook file!

public interface PersonRepository extends G aphRepository<Person>
Per sonReposi t or yExt ensi on {}

/'l configure the repositories, preferably via the neo4j:repositories namespace
/'l (tenplate reference is optional)
<neodj :repositories base-package="org. exanpl e.repository"

gr aph- dat abase- context-ref ="t enpl ate"/ >

/'l have it injected

@\ut owi r ed

Per sonReposi tory personRepository;

/] or created via the tenplate

Per sonReposi tory personRepository = tenpl ate.repositoryFor(Person.class);

Person mi chael = personRepository.save(new Person("M chael", 36));
Per son dave=per sonRepository.findOne(123);

It erabl e<Person> devs = personRepository.findAllByPropertyVal ue("occupation", "devel oper");

| t er abl e<Per son> aTeam = gr aphReposi tory. fi ndAl | ByQuery("nane","A*");

I'terabl e<Person> friends = personRepository.findFriends(dave);

/] alternatively select sone of the required repositories individually
public interface PersonRepository extends CRUDG aphRepository<Node, Person>,
| ndexQuer yExecut or <Node, Per son>, Traver sal Quer yExecut or <Node, Per son>,
Per sonReposi t or yExt ensi on {}

/] provide a custom extension if needed
public interface PersonRepositoryExtension {
| t er abl e<Person> fi ndFri ends(Person person);

public class PersonRepositorylnpl inplenents PersonRepositoryExtension {
/] optionally inject default repository, or use Direct G aphRepositoryFactory
@\ut owi red PersonRepository baseRepository;
public Iterabl e<Person> findFriends(Person person) {
return baseRepository.findAl | ByTraversal (person, friendsTraversal);

/'l configure the repositories, preferably via the datagraph:repositories namespace
/'l (tenplate reference is optional)
<neo4j :repositories base-package="org.springfranmework. dat a. neo4j"
gr aph- dat abase-context-ref ="tenpl ate"/ >
/1 have it injected
@\ut owi r ed
Per sonReposi tory personRepository;
Person m chael = personRepository. save(new Person("M chael ", 36));

Per son dave=per sonRepository.findOne(123);

EndResul t <Per son> devs =
per sonReposi tory. fi ndAl | ByPropertyVal ue("occupati on", "devel oper");

EndResul t <Per son> aTeam = graphRepository.findAl | ByQuery("nane","A*");

It erabl e<Person> friends = personRepository.findFriends(dave);

Example 20.26 Composing repositories

3.0.0.mM1 Good Relationships

please define productname in your docbook file!

© Note

If you use <cont ext : conponent - scan> in your spring config, please make sure to put it
behind <neo4j : r eposi t or i es>, as the RepositoryFactoryBean adds new bean definitions for
all the declared repositories, the context scan doesn't pick them up otherwise.

20.9 Conversion

Neo4j Tenpl at e has a generic convert method which might also use projection underneath. The same
conversion facilities that are used by default in the result handling DSL are offered here for individual use.

Supported conversions are: Nodes to Paths and to Entities, Relationships to Paths and to Entities,
Paths to Node (EndNode), Relationships (LastRelationship) and to EntityPaths. Entities to Nodes or
Relationships.

It is also possible to provide a custom ResultConverter that additionally takes care of conversions.
Mapping Query Results

For both queries executed via the result conversion DSL as well as repository methods, it is possible
to specify a conversion of complex query results to POJO interfaces or objects. Those result objects
are then populated with the query result data and can be serialized and sent to a different part of the
applicaton, e.g. a frontend-ui.

Use an interface annotated with @uer yResul t and getter methods which might be annotated with
@Resul t Col um(" col utmNan®") to match the query-result column names. Or use a plain POJO,
both work.

3.0.0.M1 Good Relationships 74

please define productname in your docbook file!

public interface MyvieRepository extends G aphRepository<Mvie> {

@uery(" START novi e=node: Movi e(i d={0})
MATCH novi e-[rating?:rating]->(),
nmovi e<-[: ACTS I N] - act or
RETURN novi e, COLLECT(actor), AVErating.stars)")
Movi eDat a get Movi eDat a(String novi el d);

@uer yResul t
public class MvieData {
Movi e novi e;

@Resul t Col um("AVGE(rating. stars)")
Doubl e rati ng;

@Resul t Col um(" COLLECT(actor)")
Col | ecti on<Act or > cast;

}

/] alternatively use

@uer yResul t

public interface MvieData {
@Resul t Col utm(" movi e")
Movi e get Movi e();

@Resul t Col um(" AVGE(rating. stars)™)
Doubl e get Rati ng();

@Resul t Col um(" COLLECT(actor)")
| terabl e<Act or> get Cast();
}
}

Example 20.27 Example of query result mapping

20.10 Projecting entities

As the underlying data model of a graph database doesn't imply and enforce strict type constraints like
a relational model does, it offers much more flexibility on how to model your domain classes and which
of those to use in different contexts.

For instance an order can be used in these contexts: customer, procurement, logistics, billing, fulfillment
and many more. Each of those contexts requires its distinct set of attributes and operations. As Java
doesn't support mixins one would put the sum of all of those into the entity class and thereby making it
very big, brittle and hard to understand. Being able to take a basic order and project it to a different (not
related in the inheritance hierarchy or even an interface) order type that is valid in the current context
and only offers the attributes and methods needed here would be very beneficial.

Spring Data Neo4j offers initial support for projecting node and relationship entities to different target
types. All instances of this projected entity share the same backing node or relationship, so changes
are reflected on the same data.

This could for instance also be used to handle nodes of a traversal with a unified (simpler) type (e.g. for
reporting or auditing) and only project them to a concrete, more functional target type when the business
logic requires it.

3.0.0.mM1 Good Relationships 75

please define productname in your docbook file!

@NodeEntity
cl ass Trainee {
String nane
@Rel at edTo
Set <Trai ni ng> trainings

}

for (Person person : graphRepository.findAl | ByPropertyVal ue("occupation”, "devel oper")) {
Devel oper devel oper = person. proj ect To(Devel oper. cl ass);
i f (devel oper.isJavaDevel oper()) {
trai nl nSpri ngDat a(devel oper. proj ect To(Tr ai nee. cl ass));
}
}

Example 20.28 Projection of entities

20.11 Geospatial Queries

Spati al Reposi tory is a dedicated Repository for spatial queries. Spring Data Neo4j provides an
optional dependency to neodj-spatial which is an advanced library for GIS operations. So if you include
the maven dependency in your pom xml , Neo4j-Spatial and the required SPATI AL index provider is
available.

<dependency>
<groupl d>or g. neo4j </ gr oupl d>
<artifactld>neo4j-spatial </artifactld>
<ver si on>0. 7- SNAPSHOT</ ver si on>

</ dependency>

Example 20.29 Neo4j-Spatial Dependencies

To have your entities available for spatial index queries, please include a String property containing a
"well known text", location string. WKT is the Well Known Text Spatial Format eg. PO NT(LON LAT)
or POLYGON ((LON1 LAT1 LON2 LAT2 LON3 LAT3 LONL LAT1))

@NodeEntity
cl ass Venue {
String nane;
@ ndexed(type = PO NT, indexName = "VenuelLocation") String wkt;
public void setLocation(float lon, float lat) {
this.wkt = String.format("PONT(%2f %2f)",lon,lat);
}
}

venue. set Locat i on(56, 15) ;

Example 20.30 Fields of Well Known Text

After adding the Spatial Repository to your repository you can use the
fi ndWt hi nBoundi ngBox, findWthinDi stance, findWthinWell KnownText.

3.0.0.mM1 Good Relationships 76

https://github.com/neo4j/spatial
http://en.wikipedia.org/wiki/Well-known_text

please define productname in your docbook file!

| t er abl e<Per son> t eanMenbers = personRepository. findW thi nBoundi ngBox(" per sonLayer",
55, 15, 57, 17);
| t er abl e<Person> t eamvenbers =
per sonReposi tory. fi ndWt hi n\Wel | KnownText (" personLayer", "POLYGON ((15 55, 15 57, 17 57,
17 55, 15 55))");
It erabl e<Person> teamVenbers = personRepository.findWthinDi stance("personLayer",
16, 56, 70) ;

Example 20.31 Spatial Queries

public interface Spatial Repository<T> {
Cl osabl el t erabl e<T> fi ndW t hi nBoundi ngBox(String i ndexName, doubl e | owerLeftLat,
doubl e | ower Left Lon,
doubl e upper Ri ght Lat,
doubl e upper Ri ght Lon) ;

Cl osabl el terabl e<T> findWthinD stance(final String indexNanme, final double
lat, double Ion, double distanceKn;

Cl osabl el t erabl e<T> findWthi n\Wel | KnomnText (final String indexName, String
wel | KnownText) ;

}
Example 20.32 Methods of the Spatial Repository

20.12 Active Record Methods for Advanced Mapping Mode

This chapter only applies to the advanced mapping. Currently the Aspects introduce the following
methods by default, this will change in the future, there will be separate Mixin-Interfaces that can
selectively be mixed into the domain entities if needed. Otherwise the Aspect] interaction will be
restricted to field access interception and post-constructor handling.

The node and relationship aspects introduce (via Aspectd ITD - inter-type declaration) several methods
to the entities.

Persisting the node entity after creation and after changes outside of a transaction. Participates in an
open transaction, or creates its own implicit transaction otherwise.
nodeEntity. persist()

Accessing node and relationship IDs
nodeEntity. get Nodel d() andrel ati onshi pEntity. getRel ati onshi pl d()

Accessing the node or relationship backing the entity
entity. getPersistentState()

equals() and hashCode() are delegated to the underlying state
entity.equal s() andentity. hashCode()

Creating relationships to a target node entity, and returning the relationship entity instance
nodeEntity.rel ateTo(targetEntity, relationshipd ass, relationshipType)

Retrieving a single relationship entity
nodeEntity. get Rel ati onshi pTo(targetEntity, rel ati onshi pd ass,
rel ati onshi pType)

Creating relationships to a target node entity and returning the relationship
nodeEntity.rel ateTo(targetEntity, relationshipType)

3.0.0.M1 Good Relationships 77

please define productname in your docbook file!

Retrieving a single relationship
nodeEntity. get Rel ati onshi pTo(targetEnttiy, relationshipType)

Removing a single relationship
nodeEntity. renoveRel ati onshi pTo(targetEntity, relationshipType)

Remove the node entity, its relationships, and all index entries for it
nodeEntity. renove() andrel ati onshi pEntity. renove()

Project entity to a different target type, using the same backing state
entity. projectTo(targetd ass)

Traverse, starting from the current node. Returns end nodes of traversal converted to the provided type.
nodeEntity. findAl | ByTraversal (target Type, traversal Description)

Traverse, starting from the current node. Returns Ent i t yPat hs of the traversal result bound to the
provided start and end-node-entity types
I'terabl e<EntityPath> findAl | Pat hsByTraversal (traversal Descri ption)

Executes the given Cypher query, providing the { sel f} variable with the node-id and returning the
results converted to the target type.
<T> |Iterabl e<T> NodeBacked.findAl |IByQuery(final String query, final
Cl ass<T> target Type)

Executes the given query, providing { sel f} variable with the node-id and returning the original result,
but with nodes and relationships replaced by their appropriate entities.
It erabl e<Map<String, Obj ect >> NodeBacked. fi ndAl | ByQuer y(fi nal String

query)

Executes the given query, providing {sel f} variable with the node-id and returns a single result
converted to the target type.
<T> T NodeBacked. fi ndByQuery(fi nal String query, final G ass<T>
t ar get Type)

20.13 Transactions

Neodj is a transactional database, only allowing modifications to be performed within transaction
boundaries. Reading data does however not require transactions. Spring Data Neo4j integrates nicely
with both the declarative transaction support with @r ansact i onal as well as the manual transaction
handling with Tr ansact i onTenpl at e. It also supports the rollback mechanisms of the Spring Testing
library.

Spring Data Neo4j integrates with transaction managers configured using Spring. The simplest scenario
of just running the graph database uses a Spri ngTr ansacti onManager provided by the Neo4j
kernel to be used with Spring's Jt aTr ansact i onManager . That is, configuring Spring to use Neo4j's
transaction manager.

© Note

To avoid name collisons the transaction manager configured by Spring Data Neo4j is
called neo4j Tr ansact i onManager and is aliased to t ransact i onManager . So defining a
separate t r ansact i onManager bean should not interfere with Spring Data Neo4j operations.

3.0.0.mM1 Good Relationships 78

please define productname in your docbook file!

© Note

The explicit XML configuration given below is encoded in the Neo4j Confi guration
configuration bean that uses Spring's @onfi gur ati on feature. This greatly simplifies the
configuration of Spring Data Neo4;.

<bean i d="neo4j Tr ansact i onManager "
cl ass="org. spri ngframewor k. dat a. neo4j . confi g. Jt aTr ansact i onManager Fact or yBean" >
<constructor-arg ref="graphDat abaseService"/>
</ bean>

<t x: annot ati on-driven node="aspectj" transacti on-nmanager="neo4j Transacti onManager"/ >

Example 20.33 Simple transaction manager configuration

For scenarios with multiple transactional resources there are two options. The first option is to have
Neo4j participate in the externally configured transaction manager using the Spring support in Neo4j by
enabling the configuration parameter for your graph database. Neo4j will then use Spring's transaction
manager instead of its own.

<cont ext: annotati on-config />
<cont ext: spri ng-confi gured/ >

<bean id="transacti onManager"
cl ass="org. springframework.transaction.jta.JtaTransacti onManager" >
<property nane="transacti onManager" >

<bean id="jotnl' class="org.springfranmework.data. neodj.transaction. Jot nFact oryBean"/>
</ property>
</ bean>

<bean i d="graphDat abaseServi ce" cl ass="org. neodj . kernel . EnbeddedG aphDat abase"
dest r oy- met hod="shut down" >
<constructor-arg val ue="target/test-db"/>
<const ruct or - ar g>

<rTap>
<entry key="tx_manager _i npl" val ue="spring-jta"/>
</ map>
</ const ructor-ar g>

</ bean>

<t x: annot ati on-driven node="aspectj" transacti on-nmanager="transacti onManager"/>

Example 20.34 Neo4j Spring integration

One can also configure a stock XA transaction manager (e.g. Atomikos, JOTM, App-Server-TM) to be
used with Neo4j and the other resources. For a bit less secure but fast 1-phase-commit-best-effort,
use Chai nedTr ansact i onManager , which comes bundled with Spring Data Neo4;. It takes a list of
transaction managers as constructor params and will handle them in order for transaction start and
commit (or rollback) in the reverse order.

3.0.0.mM1 Good Relationships 79

please define productname in your docbook file!

<bean i d="j paTr ansacti onManager "
cl ass="org. springframework. ormj pa.JpaTransacti onManager" >
<property nane="entityManager Factory" ref="entityManagerFactory"/>
</ bean>
<bean id="jtaTransacti onManager"
cl ass="org. spri ngframewor k. dat a. neo4j . confi g. Jt aTr ansact i onManager Fact or yBean" >
<constructor-arg ref="graphDat abaseService"/>
</ bean>
<bean i d="transacti onManager"
cl ass="org. spri ngframewor k. dat a. neo4j . transacti on. Chai nedTr ansacti onManager " >
<const ruct or - ar g>
<list>
<ref bean="j paTransacti onManager"/ >
<ref bean="jtaTransacti onManager"/>
</list>
</ constructor-ar g>
</ bean>

<t x: annot ati on-driven nbode="aspectj" transacti on-nmanager="transacti onManager"/>

Example 20.35 ChainedTransactionManager example

20.14 Detached node entities in advanced mapping mode

This section only applies to the advanced mapping (AspectJ-backed). The simple mapping always
detaches entities on load as it copies the data out of the graph into the entities and stores it back fully too.

Node entities can be in two different persistence states: attached or detached. By default, newly created
node entities are in the detached state. When persi st() or tenplate.save() is called on the
entity, it becomes attached to the graph, and its properties and relationships are stores in the database.
If the save operation is not called within a transaction, it automatically creates an implicit transaction
only for the operation.

Changing an attached entity inside a transaction will immediately write through the changes to the
datastore. Whenever an entity is changed outside of a transaction it becomes detached. The changes
are stored in the entity (its fields) itself until the next call to a save operation.

All entities returned by library functions are initially in an attached state. Just as with any other entity,
changing them outside of a transaction detaches them, and they must be reattached with per si st ()
for the data to be saved.

@NodeEnt ity
cl ass Person {
String nane;
Person(String name) { this.name = nane; }

}

/1l Store Mchael in the database.
Person p = new Person("M chael ") . persist();

Example 20.36 Persisting entities
Relating detached entities

As mentioned above, an entity simply created with the new keyword starts out detached. It also has
no state assigned to it. If you create a new entity with new and then throw it away, the database won't
be touched at all.

3.0.0.mM1 Good Relationships 80

please define productname in your docbook file!

Now consider this scenario:

@NodeEntity
class Myvie {
private Actor topActor;
public void set TopActor (Actor actor) {
topActor = actor;
}
}

@NodeEnt ity
class Actor {

}

Movi e novi e
Act or actor

new Movie();
new Actor();

novi e. set TopAct or (actor);

Example 20.37 Relationships outside of transactions

Neither the actor nor the movie has been assigned a node in the graph. If we were to call
novi e. per si st (), then Spring Data Neo4j would first create a node for the movie. It would then note
that there is a relationship to an actor, so it would call actor.persist() in a cascading fashion. Once the
actor has been persisted, it will create the relationship from the movie to the actor. All of this will be
done atomically in one transaction.

Importantto note hereisthatifact or . per si st () is called instead, then only the actor will be persisted.
The reason for this is that the actor entity knows nothing about the movie entity. It is the movie entity
that has the reference to the actor. Also note that this behavior is not dependent on any configured
relationship direction on the annotations. It is a matter of Java references and is not related to the data
model in the database.

The save operation (merge) stores all properties of the entity to the graph database and puts the entity
in attached mode. There is no need to update the reference to the Java POJO as the underlying backing
node handles the read-through transparently. If multiple object instances that point to the same node
are persisted, the ordering is not important as long as they contain distinct changes. For concurrent
changes a concurrent modification exception is thrown (subject to be parameterized in the future).

If the relationships form a cycle, then the entities will first of all be assigned a node in the database,
and then the relationships will be created. The cascading of per si st () is however only cascaded to
related entity fields that have been modified.

In the following example, the actor and the movie are both attached entites, having both been previously
persisted to the graph:

actor.setName("Billy Bob");
nmovi e. persi st ();

Example 20.38 Cascade for modified fields

In this case, even though the movie has a reference to the actor, the nhame change on the actor will
not be persisted by the call to novi e. persi st (). The reason for this is, as mentioned above, that
cascading will only be done for fields that have been modified. Since the novi e. t opAct or field has
not been modified, it will not cascade the persist operation to the actor.

3.0.0.mM1 Good Relationships 81

please define productname in your docbook file!

20.15 Entity type representation

There are several ways to represent the Java type hierarchy of the data model in the graph. In general,
for all node and relationship entities, type information is needed to perform certain repository operations.
Some of this type information hierarchy is saved in the graph database.

As the type information is also stored in node/relationship-properties and/or indexes it might amount
to a substantial amount of data in the graph. It is possible to use an @ypeAl i as("nane")
annotation on nodes and relationships to have a short constant name for each type which is (unlike
the default approach) renaming-refactoring-safe. For using the simple class name by default, register a
Neo4j Mappi hgCont ext bean configured with an instance of Enti t yAl i as. Itis also possible to opt
out of storing type information using the NoopTypeRepr esent ati onStr at egi es.

Implementations of TypeRepr esent ati onStrat egy take care of persisting this information during
entity instance creation. They also provide the repository methods that use this type information to
perform their operations, like fi ndAl I and count. The derived finderMethods also use the type
information for graph global queries.

There are three available implementations for node entities to choose from.
* | ndexi ngNodeTypeRepr esent ati onSt r at egy this is the default strategy used.

Stores entity types in the integrated index. Each entity node gets indexed with its type and all
supertypes and interfaces that are also @NodeEnt i t y-annotated. The special index used for this
is named __types__. Additionally, in order to retrieve the type of an entity node, each node has a
property __type__ with the fully qualified type of that entity.

» SubRef er enceNodeTypeRepr esent ati onSt r at egy

Stores entity types in a tree in the graph representing the type and interface hierarchy. Each entity
has a INSTANCE_ OF relationship to a type node representing that entity's type. The type may or may
not have a SUBCLASS_OF relationship to another type node.

* NoopNodeTypeRepresent ati onStrat egy

Does not store any type information, and does hence not support finding by type, counting by type,
or retrieving the type of any entity.

There are two implementations for relationship entities available, with the same behavior as the
corresponding ones above:

* I ndexi ngRel ati onshi pTypeRepr esent ati onSt r at egy

Stores relationship entity types in the integrated index. Each entity relationship gets indexed with its
type and all supertypes and interfaces that are also @Rel at i onshi pEnt i t y-annotated. The special
index used for this is named __rel types__ . Additionally, in order to retrieve the type of an entity
relationship, each relationship has a property __t ype__ with the fully qualified type of that entity.

* NoopRel ati onshi pTypeRepresent ati onStr at egy

Spring Data Neo4j will by default autodetect which are the most suitable strategies for node and
relationship entities. For new data stores, it will always opt for the indexing strategies. If a data store was
created with the olderSubRef er enceNodeTypeRepr esent ati onStr at egy, then it will continue to
use that strategy for node entities. It will however in that case use the no-op strategy for relationship

3.0.0.mM1 Good Relationships 82

please define productname in your docbook file!

entities, which means that the old data stores have no support for searching for relationship entities.
The indexing strategies are recommended for all new users.

20.16 Bean validation (JSR-303)

Spring Data Neo4j supports property-based validation support. When a property is changed and
persisted, itis checked against the annotated constraints, e.g. @ n, @vax, @i ze, etc. Validation errors
throw a Val i dat i onExcept i on. The validation support that comes with Spring is used for evaluating
the constraints. To use this feature, a validator has to be registered with the Neo4j Tenpl at e, which is
done automatically by the Neo4j Conf i gur at i on if one is present in the Spring Config.

@NodeEntity

cl ass Person {
@i ze(mn = 3, max = 20)
String nane;

@1 n(0) @bax(100)
int age;

}
Example 20.39 Bean validation

The validation supports needs the bean validation API and a reference implementation configured. Right
now this is the Hibernate Validator by default (which is not integrated with Hibernate ORM). The maven
dependency is:

<dependency>
<gr oupl d>or g. hi ber nat e</ gr oupl d>
<artifactld>hi bernate-validator</artifactld>
<ver si on>4. 2. 0. Fi nal </ ver si on>

</ dependency>

/'l the application-context should contain a Local Val i dat or Fact or yBean

<bean id="val idator"
cl ass="org. springframework. val i dati on. beanval i dati on. Local Val i dat or Fact or yBean"/ >

Example 20.40 Validation setup

3.0.0.mM1 Good Relationships 83

please define productname in your docbook file!

21. Environment setup

Spring Data Neo4j dramatically simplifies development, but some setup is naturally required. For
building the application, Maven needs to be configured to include the Spring Data Neo4j dependencies.
For the advanced mapping mode, it is necessary to configure the AspectJ weaving. After the build setup
is complete, the Spring application needs to be configured to make use of Spring Data Neo4j. Examples
for these different setups can be found in the Spring Data Neo4j examples.

Spring Data Neod4j projects can be built using Maven. There are also means to build them with Gradle
or Ant/lvy.

21.1 Dependencies for Spring Data Neo4j Simple Mapping

For the simple POJO mapping itis enough to add the or g. spri ngf r anewor k. dat a: spri ng- dat a-
neo4j : 2. 1. 0. RELEASE dependency to your project.

<dependency>

<gr oupl d>or g. spri ngf ramewor k. dat a</ gr oupl d>
<artifact|d>spring-data-neod4j</artifactld>
<versi on>2. 1. 0. RELEASE</ ver si on>

</ dependency>

Example 21.1 Maven dependencies for Spring Data Neo4;j

21.2 Gradle configuration for Advanced Mapping (AspectJ)

The necessary build plugin to build Spring Data Neo4j projects with Gradle is available as part of the
Spring Data Neo4j distribution or on Github which makes the usage as easy as:

sour ceConpatibility 1.6
target Conpatibility 1.6

springVersion = "3.1.0. RELEASE"
spri ngDat aNeo4j Version = "2.1. 0. RELEASE"
aspectj Version = "1.6. 12"

apply from'https://github. conl SpringSource/spring-data-neodj/raw master/build/
gradl e/ springdat aneo4j . gradl e

configurations {
runtine
t est Conpi | e
}
repositories {
mavenCentral ()
mavenlLocal ()
mavenRepo urls: "http://mven. springframework. org/rel ease"

}
Example 21.2 Gradle Build Configuration

The actual spri ngdat aneo4j . gr adl e is very simple, just decorating the j avac tasks with the i aj ¢
ant task.

3.0.0.mM1 Good Relationships 84

http://spring.neo4j.org/examples

please define productname in your docbook file!

21.3 Ant/lvy configuration for Advanced Mapping (AspectJ)

The supplied sample ant build configuration is mainly about resolving the dependencies for Spring Data
Neo4j Aspects and AspectJ using lvy and integrating the iajc ant task in the build.

<t askdef resource="org/aspectj/tools/ant/taskdefs/
aspectj Taskdefs. properties" classpath="${lib.dir}/aspectjtools.jar"/>

<target nanme="conpile" description="Conpile production classes" depends="lib.retrieve">
<nkdir dir="${nain.target}" />

<iajc sourceroots="${nmmin.src}" destDir="${main.target}" classpathref="path.libs" source="1.6">
<aspect pat h>
<pat hel enent |ocation="${lib.dir}/spring-aspects.jar"/>
</ aspect pat h>
<aspect pat h>
<pat hel enent |ocation="${lib.dir}/spring-data-neo4j-aspects.jar"/>
</ aspect pat h>
</iajc>
</target>

Example 21.3 Ant/lvy Build Configuration

21.4 Maven configuration for Advanced Mapping

Spring Data Neo4j projects are easiest to build with Apache Maven. The core dependency is Spring Data
Neo4j Aspects which comes with transitive dependencies to Spring Data Neo4j, Spring Data Commons,
parts of the Spring Framework, AspectJ and the Neo4j graph database.

Repositories

The milestone releases of Spring Data Neo4j are available from the dedicated milestone repository.
Neo4j releases and milestones are available from Maven Central.

<reposi tory>
<i d>spri ng- maven- nm | est one</ i d>
<nanme>Spri ngf ramewor k Maven Repository</nane>
<url>http://maven. spri ngf ramewor k. org/ m | est one</ ur| >
</repository>

Example 21.4 Spring milestone repository

Dependencies

The dependency on spri ng- dat a- neo4j - aspect s will transitively pull in the necessary parts of
Spring Framework (core, context, aop, aspects, tx), AspectJ, Neo4j, and Spring Data Commons. If you
already use these (or different versions of these) in your project, then include those dependencies on
your own. In this case, please make sure that the versions match.

3.0.0.mM1 Good Relationships 85

https://github.com/SpringSource/spring-data-neo4j/raw/master/build/ivy

please define productname in your docbook file!

<dependency>
<groupl d>or g. spri ngf ramewor k. dat a</ gr oupl d>
<artifactld>spring-data-neodj-aspects</artifactld>
<version>2. 1. 0. RELEASE</ ver si on>

</ dependency>

<dependency>
<groupl d>or g. aspectj </ groupl d>
<artifactld>aspectjrt</artifactld>
<version>1. 6. 12</ ver si on>

</ dependency>

Example 21.5 Maven dependencies

Maven Aspectd build configuration

Since the advanced mapping uses AspectJ for build-time aspect weaving of entities, it is necessary to
hook the AspectJ Maven plugin into the build process. The plugin also has its own dependencies. You

also need to explicitly specify the aspect libraries (spring-aspects and spring-data-neo4j-aspects).

3.0.0.mM1 Good Relationships

86

please define productname in your docbook file!

<pl ugi n>
<groupl d>or g. codehaus. noj o</ gr oupl d>
<artifactl|d>aspectj-maven-plugin</artifactld>
<versi on>1. 2</ ver si on>
<dependenci es>
<l-- NB: You must use Maven 2.0.9 or above or these are ignored (see M\G 2972) -->
<dependency>
<groupl d>or g. aspectj </ groupl d>
<artifactld>aspectjrt</artifactld>
<version>1. 6. 12</ ver si on>
</ dependency>
<dependency>
<gr oupl d>or g. aspectj </ groupl d>
<artifactld>aspectjtool s</artifactld>
<version>1. 6. 12</ ver si on>
</ dependency>
</ dependenci es>
<execut i ons>
<executi on>
<goal s>
<goal >conpi | e</ goal >
<goal >t est - conpi | e</ goal >
</ goal s>
</ executi on>
</ executi ons>
<configuration>
<out xm >t rue</ out xm >
<aspect Li brari es>
<aspect Li brary>
<gr oupl d>or g. spri ngf ramewor k</ gr oupl d>
<artifact!ld>spring-aspects</artifactld>
</ aspect Li brary>
<aspect Li brary>
<groupl d>or g. spri ngf ramewor k. dat a</ gr oupl d>
<artifact!|d>spring-data-neodj-aspects</artifactld>
</ aspect Li brary>
</ aspect Li brari es>
<sour ce>1. 6</ sour ce>
<t arget >1. 6</t arget >
</ confi guration>
</ pl ugi n>

Example 21.6 AspectJ configuration

21.5 Spring configuration

Users of Spring Data Neo4j have two ways of very concisely configuring it. Either they can use a Spring
Data Neo4j XML configuration namespace, or they can use a Java-based bean configuration.

XML namespace

The XML namespace can be used to configure Spring Data Neodj. The config element
provides an XML-based configuration of Spring Data Neo4j in one line. It has three
attributes. gr aphDat abaseSer vi ce points out the Neo4j instance to use. For convenience,
storeDirectory can be set instead of graphDat abaseService to point to a directory
where a new EnbeddedG aphDat abase will be created. For cross-store configuration, the
ent i t yManager Fact or y attribute needs to be configured.

3.0.0.mM1 Good Relationships 87

please define productname in your docbook file!

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: context ="http://ww. springframework. or g/ schema/ cont ext "
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: neodj ="http:// ww. springframewor k. or g/ schema/ dat a/ neo4j "
xsi : schemalLocat i on="
http://ww. spri ngfranewor k. or g/ schena/ beans
http://ww. springfranework. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springframework. or g/ schema/ cont ext
http://ww. spri ngfranewor k. or g/ schenma/ cont ext/ spri ng-cont ext . xsd
http://ww. springfranework. or g/ schena/ dat a/ neo4;
http://ww. springframework. or g/ schema/ dat a/ neo4j / spri ng- neo4j . xsd" >

<cont ext: annot ati on- confi g/ >
<neo4j:config storeDirectory="target/config-test"/>

</ beans>

Example 21.7 XML configuration with store directory

<cont ext : annot ati on- confi g/ >

<bean i d="graphDat abaseServi ce" cl ass="org. neo4j . kernel . EnbeddedG aphDat abase"
dest r oy- net hod="shut down" >
<constructor-arg i ndex="0" val ue="target/config-test"/>

<l-- optionally pass in neo4dj-config paraneters to the graph database
<constructor-arg index="1">
<map>
<entry key="all ow_store_upgrade" val ue="true"/>
</ map>
</ constructor-arg>
=
</ bean>

<neo4j : confi g graphDat abaseServi ce="graphDat abaseServi ce"/ >

Example 21.8 XML configuration with GraphDatabaseService bean

<cont ext : annot ati on- confi g/ >

<bean i d="graphDat abaseServi ce" cl ass="org. neo4j . kernel . EnbeddedG aphDat abase"
dest r oy- net hod="shut down" >

<constructor-arg index="0" val ue="f oo/ db" />

<constructor-arg i ndex="1">

<map><entry key="enabl e_renote_shel | " val ue="true"/></ map>
</ const ructor-ar g>
</ bean>

<bean i d="server Wapper" cl ass="org. neo4j . server. W appi ngNeoSer ver Boot st r apper "
init-nethod="start" destroy-nmethod="stop">

<constructor-arg ref="graphDat abaseServi ce"/>
</ bean>

/'l also add the static server-assets dependency to your pom xnm
<dependency>
<gr oupl d>or g. neo4j . app</ gr oupl d>
<artifactld>neodj-server</artifactld>
<cl assifier>stati c-web</classifier>
<ver si on>${ neo4j - ver si on} </ ver si on>
</ dependency>

Example 21.9 XML configuration with embedded Neo4j-Server

3.0.0.mM1 Good Relationships

88

http://docs.neo4j.org/chunked/milestone/server-embedded.html

please define productname in your docbook file!

<cont ext : annot at i on- confi g/ >

<bean cl ass="org. spri ngframework. orm j pa. Local Cont ai ner Enti t yManager Fact or yBean"
i d="entityManager Fact ory" >
<property nane="dat aSource" ref="dataSource"/>
<property nane="persistenceXm Locati on" val ue="cl asspat h: META- | NF/ per si st ence. xm "/ >
</ bean>

<neo4j:config storeDirectory="target/config-test"
enti tyManager Fact ory="entit yManager Factory"/ >

Example 21.10 XML configuration with cross-store

Repository Configuration

Spring Data Neod4j repositories are configured using the <neo4j:repositories> element
which defines the base-package (or packages) for the repositories. A reference to an existing
Neo4j Tenpl at e bean reference can be passed in as well.

As Spring Data Neo4j repositories build upon the infrastructure provided by Spring Data Commons, the
configuration options for repositories described there work here as well.

<neo4j : repositori es base-package="org. exanpl e. repository"/>

<l-- with tenplate bean reference -->
<neo4j :repositories base-package="org. exanpl e. repository" graph-database-context-
ref="tenpl ate"/ >

Example 21.11 XML configuration for repositories

Java-based bean configuration

You can also configure Spring Data Neo4j using Java-based bean metadata.

© Note

For those not familiar with Java-based bean configuration in Spring, we recommend that you
read up on it first. The Spring documentation has a high-level introduction as well as detailed
documentation on it.

In order to configure Spring Data Neo4j with Java-based bean config, the class Neo4j Confi gurati on
is registered with the context. This is either done explicitly in the context configuration, or via classpath
scanning for classes that have the @Configuration annotation. The only thing that must be provided
is the Gr aphDat abaseSer vi ce. The example below shows how to register the @onfi gurati on
Neo4j Configuration class, as well as Spring's Confi gurati onCl assPost Processor that
transforms the @onf i gur at i on class to bean definitions.

3.0.0.mM1 Good Relationships 89

http://static.springsource.org/spring-data/data-commons/docs/current/reference/html/#repositories.create-instances
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/new-in-3.0.html#new-java-configuration
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/beans.html#beans-java-instantiating-container
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/beans.html#beans-java-instantiating-container

please define productname in your docbook file!

<! [CDATA[<beans ...>

<t x:annotation-driven node="aspectj" transaction-nanager="transacti onManager"/>
<bean cl ass="org. spri ngfranmewor k. dat a. neo4j . confi g. Neo4j Confi gurati on"/>

<bean cl ass="org. spri ngframewor k. cont ext . annot ati on. Confi gurati onCl assPost Processor"/ >
<bean i d="graphDat abaseServi ce" cl ass="org. neodj . kernel . EnbeddedG aphDat abase"
dest r oy- net hod="shut down" scope="si ngl et on">
<constructor-arg i ndex="0" val ue="target/config-test"/>

</ bean>

</ beans>

Example 21.12 Java-based bean configuration

Additional beans can be configured to be included in the Neo4j-Configuration just by defining them
in the Spring context. ConversionService for custom conversions, Validators for bean validation,
TypeRepresentationStrategyFactory for configuring the in graph type representation, IndexProviders
for custom index handling (e.g. for multi-tenancy) or Entity-Instantiators (with their config) to have more
control over the creation of entity instances and much more.

3.0.0.mM1 Good Relationships 20

please define productname in your docbook file!

22. Cross-store persistence

The Spring Data Neo4j project support cross-store persistence for the advanced mapping mode, which
allows for parts of the data to be stored in a traditional JPA data store (RDBMS), and other parts in a
graph store. This means that an entity can be partially stored in e.g. MySQL, and patrtially stored in Neo4;.

This allows existing JPA-based applications to embrace NOSQL data stores for evolving certain parts
of their data model. Possible use cases include adding social networking or geospatial information to
existing applications.

22.1 Partial entities

Partial graph persistence is achieved by restricting the Spring Data Neo4j aspects to manage only
explicitly annotated parts of the entity. Those fields will be made @ ansi ent by the aspect so that
JPA ignores them.

A backing node in the graph store is only created when the entity has been assigned a JPA ID. Only
then will the association between the two stores be established. Until the entity has been persisted, its
state is just kept inside the POJO (in detached state), and then flushed to the backing graph database
on the persist operation.

The association between the two entities is maintained via a FOREIGN_ID field in the node, that contains
the JPA ID. Currently only single-value IDs are supported. The entity class can be resolved via the
TypeRepr esent at i onSt r at egy that manages the Java type hierarchy within the graph database.
Given the ID and class, you can then retrieve the appropriate JPA entity for a given node.

The other direction is handled by indexing the Node with the FOREIGN_ID index which contains a
concatenation of the fully qualified class name of the JPA entity and the ID. The matching node can
then be found using the indexing facilities, and the two entities can be reassociated.

Using these mechanisms and the Spring Data Neo4j aspects, a single POJO can contain some fields
handled by JPA and others handles by Spring Data Neo4j. This also includes relationship fields persisted
in the graph database.

22.2 Cross-store annotations

Cross-store persistence only requires the use of one additional annotation: @ aphPr operty. See
below for details and an example.

@NodeEntity(partial = "true")

When annotating an entity with parti al = true, this marks it as a cross-store entity. Spring Data
Neo4j will thus only manage fields explicitly annotated with @ aphPr operty.

@GraphProperty

Fields of primitive or convertible types do not normally have to be annotated in order to be persisted by
Spring Data Neod4j. In cross-store mode, Spring Data Neo4j only persists fields explicitly annotated with
@ aphPr operty. JPA will ignore these fields.

Example

The following example is taken from the Spring Data Neo4j examples myrestaurants-social project:

3.0.0.mM1 Good Relationships 91

http://spring.neo4j.org/examples

please define productname in your docbook file!

@ntity

@rabl e(name = "user_account")

@NodeEntity(partial = true)

public class UserAccount {
private String user Nane;
private String firstName;
private String |astNane;

@& aphProperty
String ni cknane;

@rel at edTo
Set <User Account > fri ends;

@Rel at edToVi a(type = "reconmends")
I t er abl e<Recommendat i on> r econmendat i ons;

@enpor al (Tenpor al Type. TI MESTAMVP)
@pat eTi meFormat (style = "S-")
private Date birthDate;

@mnyToMany(cascade = CascadeType. ALL)
private Set<Restaurant> favorites;

@d
@zener at edVal ue(strategy = GenerationType. AUTO)
@Col um(nane = "id")

private Long id;

public void knows(UserAccount friend) {
rel ateTo(friend, "friends");

Recommendat i on recommendati on = rel ateTo(restaurant,
Recommendat i on. cl ass, "reconmmends");

reconmendati on.rate(stars, conment);

return recomendati on;

public |terabl e<Recomendati on> get Recommendati ons() {
return recomendati ons;

}

publ i c Recommendati on rate(Restaurant restaurant, int stars,

String comment) {

Example 22.1 Cross-store node entity

22.3 Configuring cross-store persistence

Configuring cross-store persistence is done similarly to the default Spring Data Neo4j configuration. All
you need to do is to specify an ent i t yManager Fact ory in the XML namespace confi g element,

and Spring Data Neo4j will configure itself for cross-store use.

3.0.0.mM1 Good Relationships

92

please define productname in your docbook file!

<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"

xm ns: cont ext ="http://wwm. springfranmewor k. or g/ schema/ cont ext"

xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schema- i nst ance"

xm ns: dat agr aph="ht t p: / / www. spri ngf ramewor k. or g/ schema/ dat a/ neo4j "

xsi : schemalLocat i on="
http://ww. springframework. or g/ schema/ beans
http://ww. spri ngfranewor k. or g/ schena/ beans/ spri ng- beans. xsd
http://ww. springfranmewor k. or g/ schema/ cont ext
http://ww. springframework. or g/ scherma/ cont ext/ spri ng- cont ext . xsd
http: //ww. spri ngfranewor k. or g/ schena/ dat a/ neo4;j
http://ww. springframework. org/ schema/ dat a/ neo4j / spri ng- neo4j . xsd
">

<cont ext: annot ati on- confi g/ >

<neo4j:config storeDirectory="target/config-test"
entityManager Fact ory="entityManager Factory"/>

<bean cl ass="org. spri ngfranewor k. orm j pa. Local Cont ai ner Ent i t yManager Fact or yBean"
i d="entityManager Factory" >
<property nane="dat aSource" ref="dataSource"/>
<property nane="persistenceXnl Location" val ue="cl asspat h: META- | NF/
persi stence. xm "/ >
</ bean>
</ beans>

Example 22.2 Cross-store Spring configuration

3.0.0.mM1 Good Relationships

please define productname in your docbook file!

23. Sample code

23.1 Introduction

Spring Data Neo4j comes with a number of sample applications. The source code of the samples can
be found on Github. The different sample projects are introduced below.

23.2 Hello Worlds sample application

The Hello Worlds sample application is a simple console application. It creates some worlds (node
entities) and rocket routes (relationships) between worlds, all in a galaxy (the graph), and then prints
them.

The unit tests demonstrate some other features of Spring Data Neo4j as well. The sample comes with
a minimal configuration for Maven and Spring to get up and running quickly.

The Hello Worlds application is available both for the simple mapping (hel | o- wor | ds) and for the
advanced mapping (hel | o- wor | d- aspect s).

Executing the application creates the following graph in the graph database:

o class: java.lang.Object

e moons: 1 counk: 13
nafme: Earth M
i SJEC_FSS_-:I::
REACHABLE/ BY_ROCKET o class: org.springframework.data.neodj.examples.hellograph.world
counkt: 13
moons: 2 M. i
® name: Mars !
o moon.s: 0 o moons: 62
name: Mercury name: Hel
NSTANCE_OF
®m00n5:0 INSTANE INSTANCE OF - ¢, Moons: 63
name: Venus rrﬁij. A CE_Eﬁ? = name: Asgard
AN
o moons: 63 o moons: 2

name: Jupiter name: Muspellheim

o moons: 62
name: Saturn

o moons: 0
name: AlFheimr

7 moons: 27
name: Uranus 7, moons: 13
name: Neptune

MoONS: 1
name: Midgard

23.3 IMDB sample application

The IMDB sample is a web application that imports datasets from the Internet Movie Database (IMDB)
into the graph database. It allows the listing of movies with their actors, and of actors and their roles
in different movies. It also uses graph traversal operations to calculate the Bacon number of any given
actor. This sample application shows the usage of Spring Data Neo4j in a more complex setting,
using several annotated entities and relationships as well as indexes and in-graph indexes and graph
traversals.

See the readme file for instructions on how to compile and run the application.

An excerpt of the data stored in the graph database after executing the application:

3.0.0.mM1 Good Relationships 94

http://spring.neo4j.org/exampless
http://en.wikipedia.org/wiki/Bacon_number

please define productname in your docbook file!

3'—3‘"*"‘% Harry () 2 gall, Jeremy (1
8 & Ball, y (1)

&b Witt, Eleanor &b Johnson, Fiona [&b Tien, Natalie

a McClory, Bellnda ACTS_IN ACTE Ih
a Bukcher, Michael (I) T TTATTS \\ & Aden, Marc —//
ACTSN g ACE

& Harbach, Nigel

a Aston, David (1)

) & Dodd, Steve
@Matnx The (1999) .._w_ﬁ___ ¥ w——m—

o

4k Brown, Tamara |

a Nicodemou, Ada & Chong, Marcus 7, it
. < /

8 Gordon, Denni

&b Goddard, Paul (1)

&b Arahanga, Julian < org.neo4j.examples.imdb.domain.Movie

23.4 MyRestaurants sample application

Simple, JPA-based web application for managing users and restaurants, with the ability to add
restaurants as favorites to a user. It is basically the foundation for the MyRestaurants-Social application
(see???), and does therefore not use Spring Data Neo4j.

@ MyRestaurants

a SpringOne Demo

e R— i ——
Log out Subway 53073 Plymouth i) k7
RESTAURANT Boston Mar 20877 Gaithersbu MD | &
List all Restaurants Subway Sub 88008 Santa Tere MM Q @
Manage favorite Restaurants Arby's Roa 97603 Klamath Fa OR | &
Bellefleur 92008 Carlsbad CA Q @
Huddle Hou 30701 Calhoun GA Q g
John Brown 46235 Indianapol IN i) i
Ling's Exp 53217 Milwaukee wi | &
Chubys's 97044 Odell OR i) &
Bojangles 28203 Columbia 5C Q @

List results per page: 5 10 1520 25 | Page 10f5 |

Home | Logout | Language: Zj2 | Theme: standard | alt Sponsored by SpringSource §

23.5 MyRestaurant-Social sample application

This application extends the MyRestaurants sample application, adding social networking functionality to
it with cross-store persistence. The web application allows for users to add friends and rate restaurants.
A graph traversal provides recommendations based on your friends' (and their friends’) rating of
restaurants.

Here's an excerpt of the data stored in the graph database after executing the application:

3.0.0.mM1 Good Relationships 95

please define productname in your docbook file!

kaesfauran’fs + NOW WITH SOCIAL NETWORKING Sprjhg

a SpringOne Demo

USER ACCOUNT w Listall Top Rated Restaurants

Log out
Namo — Recommendations ___Avg.Rating | |
RESTAURANT
Subway 2 3.5 [TH|
Listall Restaurants
Manage favorite Restaurants
RECOMMENDATION Home | Logout | Language: 52 | Theme: standard | alt Sponsored by SpringSource §
List my Recommendations
Create a new Friend
List my Friends
List Top Rated Restaurants
(47 Reference Node — SHEREF javafamgObject e @j&v&.lang.objen

\
SUBREF_com.springone.m\.rré?taurants.domain_Restaurant 5
SUBREF_com

T com.springone.my s.d in.Restaurant

@ com.springone.myrestaurants.domain.UserAccount

INSTAMCE_OF

23.6 Cineasts social movie database

The cineasts.net application was introduced extensively in the first part of this guide, the tutorial. The
tutorial covers the development of the simple mapping version of cineasts.

To document the differences, versions for the advanced mapping (ci neast s- aspect s) and accessing
the remote server (ci neast s-r est) are also available.

A online version of cineasts can be found on cineasts.net. A sample dataset of the cineasts databse is
available at the neo4j sample-data page.

This is a subset of the visualization of the cineasts graph for the "Matrix" movie.

3.0.0.mM1 Good Relationships 96

http://cineasts.net
http://sample-data.neo4j.org

please define productname in your docbook file!

{i1 Reference Node

| —
SUBREF_Javarang.Object 2 Lana Wachowski

i
7 javalang.Object
¥4 %

SUBREF_org.neod; (|m::|sts tomainLisar

SUB

SUBCLASS_OF

el —
o — _
ﬁ‘w 7 Belinda McClory ™~

ST 1% ma
L - - rc Aden
NGE_OF m&zor, T —

| D org.neodj.cineasts.domain.Movie
INSTANCE_OF

/
/

% olliver | AcARETAN g = :
< | - . 0 Julian Arahanga 2 Joe Pantoliano
FRIEND ."l ~—
~ | — -
~ | ~ —
0 Micha) Laurence Fishburne

- ~ D Anthony Ray Parker

- 70 Marcus Chong

¥ CINEASTS

3.0.0.mM1 Good Relationships

97

please define productname in your docbook file!

24. Heroku: Seeding the Cloud

Deploying your application into the cloud is a great way to scale from from "wouldn't it be cool if.." to
giving interviews to Forbes, Fast Company, and Jimmy Fallon. Heroku makes it super easy to provision
everying you need, including a Neo4j Add-on. With a few simple adjustments, your Spring Data Neo4;j
application is ready to take that first step into the cloud.

To deploy your Spring Data Neo4j web application to Heroku, you'll need:
» account on Heroku
* git command line

* maven-based project

standard Spring MV Servlet application

well, and Spring Data Neo4j REST

For reference, the following sections detail the steps taken to make the Spring Data Neo4j Todos
example ready for deployment to Heroku.

24.1 Create a Self-Hosted Web Application

Usually, a Spring MVC application is bundled into a war and deployed to an application server like
Tomcat. But Heroku can host any kind of java application. It just needs to know what to launch. So,
we'll transform the war into a self-hosted servlet using an embedded Jetty server, then add a startup
script to launch it.

First, we'll add the dependencies for Jetty to the pom xm :

<dependency>
<groupl d>org. ecl i pse. j etty</groupl d>
<artifactld>jetty-webapp</artifactld>
<version>7.4.4.v20110707</ ver si on>

</ dependency>

<dependency>
<groupl d>org. nortbay. j etty</groupl d>
<artifactld>jsp-2.1-glassfish</artifactld>
<version>2.1.v20100127</ ver si on>

</ dependency>

Example 24.1 Jetty dependencies - pom.xml

Then we'll change the scope of the servlet-api artifact from pr ovi ded to conpi | e. This library is
normally provided at runtime by the application container. Since we're self-hosting, it needs to be
included directly. Make sure the servlet-api dependency looks like this:

3.0.0.mM1 Good Relationships 98

http://heroku.com

please define productname in your docbook file!

<dependency>
<gr oupl d>j avax. servl et </ gr oupl d>
<artifactld>servlet-api</artifactld>
<ver si on>2. 5</ ver si on>
<scope>conpi | e</ scope>

</ dependency>

Example 24.2 servlet-api dependencies - pom.xml

We could provide a complicated command-line to Heroku to launch the app. Instead, we'll simplify the
command-line by using the appassenbl er - maven- pl ugi n to create a launch script. Add the plugin

to your pom's bui | d/ pl ugi ns section:

<pl ugi n>
<groupl d>or g. codehaus. noj o</ gr oupl d>
<artifact| d>appassenbl er- maven-pl ugi n</artifact! d>
<version>1. 1. 1</ versi on>
<executions>
<execution>
<phase>package</ phase>
<goal s><goal >assenhl e</ goal ></ goal s>
<configuration>
<assenbl eDi rect or y>t ar get </ assenbl eDi r ect ory>
<ext raJvmAr gunent s>- Xmk512m</ ext r aJvmAr gunent s>
<progr ans>
<pr ogr an>
<mai nCl ass>Mai n</ mai nCl ass>
<name>webapp</ nane>
</ pr ogr an>
</ pr ogr ans>
</ confi guration>
</ executi on>
</ executi ons>
</ pl ugi n>

Example 24.3 appassembler-maven-plugin configuration pom.xml

Finally, switch the packaging from war toj ar . That's it for the pom.

Now that the application is ready to be self-hosted, create a simple Mai n to bootstrap Jetty and host

the servlet.

3.0.0.mM1 Good Relationships

99

please define productname in your docbook file!

inport org.eclipse.jetty.server. Server;

import org.eclipse.jetty.webapp. WebAppCont ext ;

public class Main {

public static void main(String[] args) throws Exception {
String webappDirLocation = "src/ min/webapp/";
String webPort = System getenv("PORT");
i f(webPort == null || webPort.isEmty()) {
webPort = "8080";

}
Server server = new Server(Integer.val ueX (webPort));
WebAppCont ext root = new WebAppCont ext () ;
root . set Cont ext Pat h("/");
root . set Descri pt or (webappDi rLocat i on+"/WEB- | NF/ web. xm ") ;
root . set Resour ceBase(webappDi r Locati on) ;
root . set Parent Loader Priority(true);
server. set Handl er (root) ;
server.start();
server.join();

Example 24.4 src/main/java/Main.java

Notice the use of environment variable "PORT" for discovering which port to use. Heroku and the Neo4j
Add-on use a number of environment variable to configure the application. Next, we'll modify the Spring
application context to use the Neo4j variables for specifying the connection to Neo4j itself.

In the SDN Todos example, src/ mai n/ resour ces/ META-| NF/ spri ng/ appl i cati onCont ext -
graph. xm was modified to look like this:

<neo4j : confi g graphDat abaseServi ce="graphDat abaseServi ce"/ >

<bean i d="gr aphDat abaseSer vi ce"
cl ass="org. spri ngframewor k. dat a. neo4j . rest. Spri ngRest G aphDat abase" >
<constructor-arg i ndex="0" val ue="${NEO4J_REST URL}" />
<constructor-arg i ndex="1" val ue="${NEO4J_LOG N}" />
<constructor-arg i ndex="2" val ue="${ NEO4J_PASSWORD}" />

</ bean>

Example 24.5 Spring Data Neo4j REST configuration - applicationContext-graph.xml

Before provisioning at Heroku, test the application locally. First make sure you've got Neo4j server
running locally, using default configuration. Then set the following environment variables:

export NEO4J_REST_URL=http://| ocal host: 7474/ db/ dat a
export NEO4J_LOG N=""
export NEO4J_PASSWORD=""

Example 24.6 environment variables

Now you can launch the app by running sh t ar get / bi n/ webapp. If running the SDN Todos example,
you can test it by running . / bi n/t odos | i st. That should return an empty JSON array, since no
todos have been created yet.

For details about the t odos script, see the r eadrne included with the example.

3.0.0.mM1 Good Relationships 100

please define productname in your docbook file!

24.2 Deploy to Heroku

With a self-hosted application ready, deploying to Heroku needs a few more steps. First, create a
Procfi |l e at the top-level of the project, which will contain a single line identifying the command line
which launches the application.

The contents of the Pr ocfi | e should contain:

web: sh target/bin/webapp

Example 24.7 Procfile

Initialize a local git repository, adding all the project files
git init
git add
git commt -m"initial commt"

Provision a Heroku stack, add the Neo4j Add-on and depl oy the appication
heroku create --stack cedar

her oku addons: add neo4j
git push heroku master

Example 24.8 deploy to heroku

© Note

Note that the stack must be "cedar” to support running Java. Check that the process is running
by using her oku ps, which should show a "web.1" process in the "up" state. Success!

For the SDN Todos application, you can try out the remote application using the - r switch with the
bi n/ t odo script like this:

./bin/todo -r nk "tweet thanks for the good work @wesirii @kollegger"
.Ibin/ftodo -r |ist

Example 24.9 Session with todo script

To see the Neo4j graph you just created through Heroku, use her oku confi g toreveal the NEG4J URL
environment variable, which will take you to Neo4j's Webadmin.

3.0.0.mM1 Good Relationships 101

please define productname in your docbook file!

25. Performance considerations

Although adding layers of abstraction is a common pattern in software development, each of these
layers generally adds overhead and performance penalties. This chapter discusses the performance
implications of using Spring Data Neo4j instead of the Neo4j API directly.

25.1 When to use Spring Data Neo4j

The focus of Spring Data Neo4j is to add a convenience layer on top of the Neo4j API. This enables
developers to get up and running with a graph database very quickly, having their domain objects
mapped to the graph with very little work. Building on this foundation, one can later explore other, more
efficient ways to explore and process the graph - if the performance requirements demand it.

Like with any other object mapping framework, the domain entities that are created, read, or persisted
represent only a small fraction of the data stored in the database. This is the set needed for a certain
use-case to be displayed, edited or processed in a low throughput fashion. The main advantages of
using an object mapper in this case are the ease of use of real domain objects in your business logic and
also the integration with existing frameworks and libraries that expect Java POJOs as input or create
them as results.

Spring Data Neo4j, however, was not designed with a major focus on performance. It does add some
overhead to pure graph operations.

Most of the overhead comes from the use of the Java Reflection API, which is used to provide information
about annotations, fields and constructors. Some of the information is already cached by the JVM and
the library infrastructure from Spring-Data-Commons, so that only the first access gets a performance
penalty. Other reflection penalties like field or method access will occur all the time.

For the simple mapping it is important to be aware of the size graph of data that is pulled out of the
graph database in a single read and copied to domain entities. That's why Spring Data Neo4j loads
related data not by default. You have to provide an indicator (@et ch) to do so. Alternatively the
Neo4j Tenpl at e. f et ch method offers means of of loading entities and collections of those.

For the advanced mapping mode keep in mind that any access of properties and relationships will in
general read through down to the database. To avoid multiple reads, it is sensible to store the result in
a local variable in suitable scope (e.g. method, class or jsp).

To evaluate if the performance of Spring Data Neo4j impacts a certain use-case it is sensible to define
performance requirements and measure the actual time in realistic test scenarios for the use-case. Only
if Spring Data Neo4j doesn't perform as fast as required it is recommended to drop down to the native
Neod4j API.

3.0.0.mM1 Good Relationships 102

please define productname in your docbook file!

26. AspectJ details

The advanced mapping mode of Spring Data Neo4j relies heavily on Aspect]. Aspect] is a Java
implementation of the aspect-oriented programming paradigm that allows easy extraction and controlled
application of so-called cross-cutting concerns. Cross-cutting concerns are typically repetitive tasks in
a system (e.g. logging, security, auditing, caching, transaction scoping) that are difficult to extract using
the normal OO paradigms. Many OO concepts, such as subclassing, polymorphism, overriding and
delegation are still cumbersome to use with many of those concerns applied in the code base. Also, the
flexibility becomes limited, potentially adding quite a number of configuration options or parameters.

The Aspect] pointcut language can be intimidating, but a developer using Spring Data Neo4j will not
have to deal with that. Users don't have care about hooking into a framework mechanism, or having
to extend a framework superclass.

AspectJ uses a declarative approach, defining concrete "advice", which is just pieces of code that contain
the implementation of the "concern”, as it is called. An AspectJ advice can for instance be applied before,
after, or instead of a method or constructor call. It can also be applied on variable and field access. This
is declared using AspectJ's expressive pointcut language, which is able to express any place within a
code structure or flow. AspectJ is also able to introduce new methods, fields, annotations, interfaces,
and superclasses to existing classes.

Spring Data Neo4j uses a mix of these mechanisms internally. First, when encountering the
@\odeEntity or @Rel ati onshi pEntity annotations it introduces a new interface NodeBacked
or Rel at i onshi pBacked to the annotated class. Secondly, it introduces fields and methods to the
annotated class. See Section 20.12, “Active Record Methods for Advanced Mapping Mode” for more
information on the methods introduced.

Spring Data Neo4j also leverages AspectJ to intercept access to fields, delegating the calls to the graph
database instead. Under the hood, properties and relationships will be created.

So how is an aspect applied to a concrete class? At compile time, the AspectJ Java compiler (ajc)
takes source files and aspect definitions, and compiles the source files while adding all the necessary
interception code for the aspects to hook in where they're declared to. This is known as compile-time
weaving. At runtime only a small AspectJ runtime is needed, as the byte code of the classes has already
been rewritten to delegate the appropriate calls via the declared advice in the aspects.

© Note

A caveat of using compile-time weaving is that all source files that should be part of the weaving
process must be compiled with the Aspect] compiler. Fortunately, this is all taken care of
seamlessly by the AspectJ Maven plugin.

AspectJ also supports other types of weaving, e.g. load-time weaving and runtime weaving. These are
currently not supported by Spring Data Neo4j.

3.0.0.mM1 Good Relationships 103

https://secure.wikimedia.org/wikipedia/en/wiki/Aspect-oriented_programming

please define productname in your docbook file!

27. Neo4j Server

Neo4j is not only available in embedded mode. It can also be installed and run as a stand-alone
server accessible via a REST API. Developers can integrate Spring Data Neo4j into the Neo4j server
infrastructure in two ways: in an unmanaged server extension, or via the REST API.

27.1 Server Extension

When should you write a server extension? The default REST API is essentially a REST'ified
representation of the Neo4j core API. It is nice for getting started, and for simpler scenarios. For
more involved solutions that require high-volume access or more complex operations, writing a server
extension that is able to process external parameters, do all the computations locally in the plugin, and
then return just the relevant information to the calling client is preferable.

The Neo4j Server has two built-in extension mechanisms. It is possible to extend existing URI endpoints
like the graph database, nodes, or relationships, adding new URIs or methods to those. This is achieved
by writing a server plugin. This plugin type has some restrictions however.

For complete freedom in the implementation, an unmanaged extension can be used. Unmanaged
extensions are essentially Jersey resource implementations. The resource constructors or methods can
getthe G aphDat abaseSer vi ce injected to execute the necessary operations and return appropriate
Repr esent ati ons.

Both kinds of extensions have to be packaged as JAR files and added to the Neo4dj Server's
plugin directory. Server Plugins are picked up by the server at startup if they provide the
necessary META-I| NF. servi ces/ org. neodj . server. plugins. Server Pl ugi n file for Java's
ServiceLoader facility. Unmanaged extensions have to be registered with the Neo4j Server
configuration.

org.neodj .server.thirdparty_jaxrs_cl asses=com exanpl e. nypackage=/ my- cont ext

Example 27.1 Configuring an unmanaged extension

Running Spring Data Neo4j on the Neo4j Server is easy. You need to tell the server where to find the
Spring context configuration file, and which beans from it to expose:

public class Hellowrldlinitializer extends SpringPluginlinitializer {
public Hellowrldinitializer() {
super (new String[]{"spring/hell oWrl dServer-Context.xm"},
Pai r. of ("wor| dReposi tory", Worl dRepository.cl ass),
Pair. of ("tenpl ate”, Neo4j Tenpl ate. cl ass));

}
Example 27.2 Server plugin initialization

Now, your resources can require the Spring beans they need, annotated with @ont ext like this:

@ath("/path")

@osT

@°r oduces(Medi aType. APPLI CATI ON_JSON)

public void foo(@ontext Wrl dRepository repo) {

}
Example 27.3 Jersey resource

3.0.0.mM1 Good Relationships 104

http://docs.neo4j.org/chunked/milestone/server-plugins.html
http://docs.neo4j.org/chunked/milestone/server-unmanaged-extensions.html
http://jersey.java.net/

please define productname in your docbook file!

The SpringPluginlnitializer merges the server provided GraphDat abaseServi ce with
the Spring configuration and registers the named beans as Jersey |Injectables. It is still
necessary to list the initializer's fully qualified class name in a file named META- | NF/ servi ces/
org. neo4j . server. pl ugi ns. Pl ugi nLi f ecycl e. The Neo4j Server can then pick up and run the
initialization classes before the extensions are loaded.

27.2 Using Spring Data Neo4j as a REST client

To use REST-API the Neo4j Server exposes, one would either go with REST libraries on the lower level
or choose one of the Neo4j related REST drivers in various languages. For Java Neo4j provides the
Neo4j Java REST bindings which come as a drop in replacement for the G aphDat abaseSer vi ce API.
Spring Data Neo4j REST uses those bindings to provide seamless access to a remote Neo4j Database.

By simply configuring the gr aphDat abaseSer vi ce to be a Spri ngRest Gr aphDat abase pointing
to a Neo4j Server instance and referring to that from <neo4j : conf i g> Spring Data Neo4j will use the
server side database for both the simple mapping as well as the advanced mapping.

@ Note

The Neodj Server REST API does not allow for transactions to span across requests, which
means that Spring Data Neo4j is not transactional across multiple operations when running with
a Spri ngRest Gr aphDat abase.

Please also keep in mind that performing graph operations via the REST-API is about one order of
magnitude slower than local operations. Try to use the Neo4j Cypher query language, or server-side
traversals (Rest Tr aver sal) whenever possible for retrieving large sets of data. Future versions of
Spring Data Neo4j will use the more performant batch API as well as a binary protocol.

To set up your project to use the REST bindings, add this dependency to your pom.xml:

<dependency>
<groupl d>or g. spri ngf ramewor k. dat a</ gr oupl d>
<artifact!|d>spring-data-neodj-rest</artifactld>
<versi on>2. 1. 0. RELEASE</ ver si on>

</ dependency>

Example 27.4 REST-Client configuration - pom.xml

Now, you set up the normal Spring Data Neo4j configuration, but point the database to an URL instead
of a local directory, like so:

<neo4j : confi g graphDat abaseServi ce="graphDat abaseServi ce"/ >

<bean i d="graphDat abaseServi ce" cl ass="org. spri ngfranework. dat a. neo4j . rest. Spri ngRest G aphDat abase" >
<constructor-arg value="http://|ocal host: 7474/ db/ data/" i ndex="0"/>

<l-- for running agai nst a server requiring authentication
<constructor-arg val ue="usernane" index="1"/>
<constructor-arg val ue="password" index="2"/>

-->

</ bean>

Example 27.5 REST client configuration - application context

Your project is now set up to work against a remote Neo4j Server.

For traversals and Cypher graph queries it is sensible to forward those to the remote endpoint and
execute them there instead of walking the graph over the wire. SpringRestGraphDatabase already

3.0.0.mM1 Good Relationships 105

https://github.com/neo4j/java-rest-binding

please define productname in your docbook file!

supports that by providing methods that forward to the remote instance. (e.g. quer yEngi neFor (),
i ndex() and createTraversal Description()). Please use those methods when interacting
with a remote server for optimal performance. Those methods are also used by the Neo4jTemplate and
the mapping infrastructure automatically.

3.0.0.mM1 Good Relationships 106

	Good Relationships
	Table of Contents
	Foreword by Rod Johnson
	Foreword by Emil Eifrem
	About this guide book
	1 The Spring Data Neo4j Project
	2 Feedback
	3 Format of the Book
	4 Acknowledgements

	Part I. Tutorial
	1. Introducing our project
	2. The Spring stack
	2.1 Required setup

	3. The domain model
	4. Learning Neo4j
	5. Spring Data Neo4j
	6. Annotating the domain
	7. Indexing
	8. Repositories
	9. Relationships
	9.1 Creating relationships
	9.2 Accessing related entities
	9.3 Accessing the relationship entities

	10. Get it running
	10.1 Populating the database
	10.2 Inspecting the datastore
	Neoclipse visualization
	The Neo4j Shell

	11. Web views
	11.1 Searching
	11.2 Listing results

	12. Adding social
	12.1 Users
	12.2 Ratings for movies

	13. Adding Security
	14. More UI
	15. Importing Data
	16. Recommendations
	17. Neo4j Server
	17.1 Getting Neo4j-Server
	17.2 Other approaches

	18. Conclusion

	Part II. Reference Documentation
	Reference Documentation
	1 Spring Data and Spring Data Neo4j
	2 Reference Documentation Overview

	19. Introduction to Neo4j
	19.1 What is a graph database?
	19.2 About Neo4j
	19.3 GraphDatabaseService
	19.4 Creating nodes and relationships
	19.5 Graph traversal
	19.6 Indexing
	19.7 Querying the Graph with Cypher

	20. Programming model
	20.1 Object Graph Mapping
	20.2 Advanced Mapping with AspectJ
	AspectJ IDE support

	20.3 Simple Object Graph Mapping
	20.4 Defining node entities
	@NodeEntity: The basic building block
	@GraphId: Neo4j -id field
	Entity Equality

	@GraphProperty: Optional annotation for property fields
	@Indexed: Making entities searchable by field value
	@Query: fields as query result views
	@GraphTraversal: fields as traversal result views

	20.5 Relating node entities
	@RelatedTo: Connecting node entities
	@RelationshipEntity: Rich relationships
	@RelatedToVia: Accessing relationship entities
	Relationship Type Precedence
	Discriminating Relationships Based On End Node Type

	20.6 Indexing
	Exact and numeric index
	Fulltext indexes
	Unique indexes
	Manual index access
	Index queries in Neo4jTemplate
	Neo4j Auto Indexes
	Spatial Indexes

	20.7 Neo4jTemplate
	Basic operations
	Core-Operations
	Entity-Persistence
	Result
	Indexing
	Graph traversal
	Cypher Queries
	Transactions
	Neo4j REST Server
	Lifecycle Events

	20.8 CRUD with repositories
	CRUDRepository
	IndexRepository and NamedIndexRepository
	TraversalRepository
	Query and Finder Methods
	Annotated queries
	Named queries
	Query results
	Cypher examples
	Queries derived from finder-method names
	Derived Finder Methods

	Cypher-DSL repository
	Cypher-DSL and QueryDSL
	Creating repositories
	Composing repositories

	20.9 Conversion
	Mapping Query Results

	20.10 Projecting entities
	20.11 Geospatial Queries
	20.12 Active Record Methods for Advanced Mapping Mode
	20.13 Transactions
	20.14 Detached node entities in advanced mapping mode
	Relating detached entities

	20.15 Entity type representation
	20.16 Bean validation (JSR-303)

	21. Environment setup
	21.1 Dependencies for Spring Data Neo4j Simple Mapping
	21.2 Gradle configuration for Advanced Mapping (AspectJ)
	21.3 Ant/Ivy configuration for Advanced Mapping (AspectJ)
	21.4 Maven configuration for Advanced Mapping
	Repositories
	Dependencies
	Maven AspectJ build configuration

	21.5 Spring configuration
	XML namespace
	Repository Configuration
	Java-based bean configuration

	22. Cross-store persistence
	22.1 Partial entities
	22.2 Cross-store annotations
	@NodeEntity(partial = "true")
	@GraphProperty
	Example

	22.3 Configuring cross-store persistence

	23. Sample code
	23.1 Introduction
	23.2 Hello Worlds sample application
	23.3 IMDB sample application
	23.4 MyRestaurants sample application
	23.5 MyRestaurant-Social sample application
	23.6 Cineasts social movie database

	24. Heroku: Seeding the Cloud
	24.1 Create a Self-Hosted Web Application
	24.2 Deploy to Heroku

	25. Performance considerations
	25.1 When to use Spring Data Neo4j

	26. AspectJ details
	27. Neo4j Server
	27.1 Server Extension
	27.2 Using Spring Data Neo4j as a REST client

