Good Relationships
The Spring Data Neo4j Guide Book

Michael Hunger, Oliver Gierke, Vince Bickers, Adam George, Luanne Misquitta,
Michal Bachman

Version 4.1.0.M1, 2016-02-12

Table of Contents

=3 (P 1
1. About this guide boOK. 2
1.1. The Spring Data Neo4j Projectuuuii i e 2
1.2, Feedback e 2
1.3. Format of the BOOKt e 2
1.4. ACKNOWIEdZEMENTSottt e 2

2. Introduction tO NEO4AJ . . .o v e e 3
2.1. Whatisa graph database?. 3
2.2, ADOUE NEOA . . o oot 3
2.3. Querying the Graph with Cypher. o e 4
24 TNAEXING . oottt 5
Spring Data Neo4j 4.1 Reference Documentationc..ueeiiiiiiiiiiiiiiieeeeeenn... 5
3. About the Spring Data Projectttt e it 6
3.1. About Spring Data Ne04j 4.o ottt 6

A OVEIVIBW . oottt ittt ettt ettt e ettt ettt et ettt e e e 7
4.1. Getting Startedot 7
4.2. Adding Neo4j Graph QUETIESttt ettt 7
4.3. Managing Relationships.t 7
4.4, REPOSIIOTIES . . oottt ettt ettt et 7
4.5. Neo4 Templateot 7
4.6. Mapping Strategiest 8
4.7. Transactional SUPPOTT e 8
4.8. ConfigUurationo e 8
4.9. PErfOrmanCeo ottt e 8

5. Getting Startedottt e 9
5.1. Dependencies for Spring Data Neo4jttt 9
5.2. SPring CONfIGUIatioN\ttt ettt 9
5.2.1.Java-based bean configuration..............c.ooiiiiiiiiiiiii i 9

0% TU D) 773 10
5.3. 1. Properties fileot e 10
5.3.2.Java Configuration. e 10
5.3 3. TSt oottt e 13
5.3.4. SesSIONFaCtOry BEAMttt 14
5.3.5.S€SSION BeAN . ..ottt e 15

6. Programming model. 16
6.1. Under the hood ... i 16
6.1.1. Metadata COLleCtion e 16

6.1.2. The Session ODJeCtt e e 16

6.1.3. EXPLICIE SAVE ..ttt ettt e e e 16

6.1.4. Fine-grained control via depth specificationo, 16
6.2. Simplified Object-Graph MappPingccouit ittt e 17
6.3. Defining node entitiesttt i e 18

6.3.1. @NodeEntity: The basic building block o i 18

6.3.2. @Graphld: Neo4j ID Fieldttt it e 20

6.3.3. @Property: Optional annotation for property fields................... ... it 21
6.4. Relating Node ENtitiesttt i ettt i 21

6.4.1. @Relationship: Connecting node entities.oiiinniiiiine i eennn. 21

6.4.2. @RelationshipEntity: Rich Relationships.......... ..., 23

6.4.3. Discriminating Relationships Based on End Node Type............covviiinneonn.. 24

6.4.4. Ambiguity in relationshipsoo i e 25
70 T 4 o 1= o ¥ PP 25

6.5.1. Index Management in Spring Data Ne04j 4. ...ttt iiinneennn. 26

6.5.2. Index queries in Neo4jTemplateiiiiiinniiie it 26

6.5.3. Ne04j AULO INACKES . . oottt ettt ettt ettt i e 26

6.5.4. FULL-TeXt INAEXES . . . oo vttt e e 26

6.5.5. Spatial INAEXESottt 27
6.6. NeOd Templateottt e e e 27

6.6.1. BASIC OPeratiOnS. . ..ottt et ettt ettt e e e e e e e e 27

6.6.2. ENUILY PerSIStEIICE. . . vttt e ettt et ettt e ettt e 27

6.6.3. CYPher QUETIES . . .\ttt ettt et et e e e 28

6.6.4. TTANSACTIONS . . .ottt ittt ettt ettt 28

6.6.5. Data Manipulation Events (formerly Lifecycle Events) 28
6.7. CRUD With TEPOSItOTIES . ..\ttt ettt e e e it ettt e 29

6.7.1. GrapPhREPOSITOTY . ..ttt ettt e ettt et e 30

6.7.2. Query and Finder Methodsouiiiiinit i e e 30

6.7.3. Creating FePOSItOTIES. . oottt ettt et ettt ettt ettt 33
SR T 00 4 L 4=3 3 [0) o 34

6.8.1. Built-In Type CONVEISIONS . . .ttt ettt ettt ee et iae e iie e iiaeeeennn 34

6.8.2. CUStOM TYPE CONVEISION . . . vttt ettt ettt ettt e e ee e iee e iiae e eenns 35

6.8.3. SPring’s CONVEISIONSEIVICE . . vttt ettt ettt et e et e ae e iiie e iiaeeeennn 36

6.8.4. Mapping QUery ReSULLScoiuiit i e e e 36
6.9. TrANSACTIONS . . o ot ettt ettt ettt ettt e e e e e e e e e 37
6.10. Entity Attachmentt e it e 37

6.10.1. Persisting ENtitiesttt e e e 37

6.10.2. SaVe DePtN. ..ot 38
6.11. Sorting and Pagingttt e 40
6.12. Entity Type Representation.ttt it iiee e eiianeann 41

7. Performance CONSIAerationsuuuuuuniittt ettt 43

7.1. FOCUS ON PErfOTrMANCE . . .\ v ittt ittt ettt e ettt e ie e e e e e iiee e iinneas 43

7.1.1. Variable-depth persistenceooiiiiniiiii i e e 43

7.1.2. SMart ODJeCt-TNAPPING. . .« vttt ettt et e e e 43

7.1.3. User-definable Session lifetime ... 44

1LY ez L (o) B € 0 o (= PP 44
8. Migrating from previous versions of Spring Data Neo4j........c.cooviiiiiiniiiiinneennnn.. 45
8.1, PaCKAZE CamgeS . .o vttt e ettt e e e e e 45

8.2. ANNOtAtiON ChaMEeS . .ottt ettt ettt et ettt e et e e 45

8.3. CUStOM TYPE COMVEISION . . vttt t ettt ettt e et e e e et e e e iee et iiee e iianeens 45
8.4.Date FOormat Changesottt ettt ettt e e 45

8.5. Obsolete ANNOLATIONSttt ettt ettt e e 46

8.6. Features NO Longer SUPPOTTEdcouunittiie ettt iiie e iiie e eiiaaean 46
8.6.1. OVerriding @PropPerty TYPES ... vu ittt ettt et i et e 46

8.6.2. @Relationship enforceTargetTyPettt e, 46

8.6.3. Cross-StOre PerSISteIICEottt 47

8.6.4. TypeRepresentationStrategyvvt ettt et e 47

8.6.5. ASPECT] SUPPOIt . ..ottt 47

8.7. Changes to Neo4jTemplatettt ettt 47
8.7 0. AP CNaN S . o o vt ettt ettt ettt e e e e e 47

SRS TR 0 0 (= 0 - PP 48
8.8.1. Built-In QUery DSL SUPPOTIt. . .o ettt ettt et 48

8.8.2. Graph Traversal and Node/Relationship Manipulation 48
Configuration in an HA ENVIFONIMENT.ottt ittt ie e iiie e iiiae e 49
9. Configuring Spring Data Neo4j 4 in an HA Environmentcooiviiiiinneennn... 50
9.1. Transaction Binding in HAMOAEttt et a 50

9.2. Read-only TranSaCtiONsttt ettt ettt e et ee e e iee e iiee e iianeans 50

9.3. Static Binding to a Designated MasSteruurettitineetiiine e iiaeeeennneann 50
9.3.1. EXample ClUSTeT:. . .ottt et e e e 50

9.4. Dynamic Binding viaa Load Balancerooiiiiinniiiiie ittt 51
9.4.1. Example cluster fronted by HAPIOXYo oottt e 51

2N 0 13 4 Lo 1 - 53
B 0 o1 (o PP 54

Spring Data Neo4j Version 4.1 (February 2016)

© 2010-2016 Graph Aware Ltd - Neo Technology, Inc. - Pivotal Software, Inc.

Copies of this document may be made for your own use and for
distribution to others, provided that you do not charge any fee for
such copies and further provided that each copy contains this
Copyright Notice, whether distributed in print or electronically.

NOTE

Preface

Chapter 1. About this guide book

1.1. The Spring Data Neo4j Project

Welcome to the Spring Data Neo4j Guide Book. Thank you for taking the time to get an in-depth
look into Spring Data Neo4j. This project is part of the Spring Data project, which brings the
convenient programming model of the Spring Framework to modern NOSQL databases. Spring
Data Neo4j, as the name alludes to, aims to provide support for the graph database Neo4j.

1.2. Feedback

It was written by developers for developers. Hopefully we’ve created a guide that is well-received
by our peers.

If you have any feedback on Spring Data Neo4j or this book, please provide it via the SpringSource
JIRA, StackOverflow or the Neo4j Google Group.

1.3. Format of the Book

This book is a classic reference document, containing detailed information about the library. It
discusses the programming model, the underlying assumptions, and internals, as well as the APIs
for the object-graph mapping. The reference documentation is typically used to look up particular
pieces of information or to drill down into certain topics.

1.4. Acknowledgements

We would like to thank everyone who contributed to this book, especially Oliver Gierke, the lead of
the Spring Data Project.

Many thanks to our colleagues at Neo Technology and Graph Aware who not only contributed to
Spring Data Neo4j but also provided content and feedback for this book.

We also appreciate very much the foresight of Rod Johnson and Emil Eifrem to initiate the original
project. Their leadership inspired collaboration between the engineering teams at SpringSource
and Neo Technology, a tremendous help during the making of Spring Data Neo4j.

Last but not least we thank our vibrant community for giving us feedback, reporting issues and
suggesting improvements. Without that important feedback we wouldn’t be where we are today.

Enjoy the book!

http://projects.spring.io/spring-data-neo4j/
http://projects.spring.io/spring-data
http://neo4j.com
https://jira.spring.io/browse/DATAGRAPH
https://jira.spring.io/browse/DATAGRAPH
http://stackoverflow.com/questions/tagged/spring-data-neo4j
http://groups.google.com/group/neo4j

Chapter 2. Introduction to Neo4j

2.1. What is a graph database?

A graph database is a storage engine that is specialised in storing and retrieving vast networks of
information. It efficiently stores data as nodes and relationships and allows high performance
retrieval and querying of those structures. Properties can be added to both nodes and relationships.
Nodes can be labelled by zero or more labels, relationships are always directed and named.

Graph databases are well suited for storing most kinds of domain models. In almost all domains,
there are certain things connected to other things. In most other modelling approaches, the
relationships between things are reduced to a single link without identity and attributes. Graph
databases support keeping the rich relationships that originate from the domain equally well-
represented in the database without resorting to also modelling the relationships as "things". There
is very little "impedance mismatch” when putting real-life domains into a graph database.

2.2. About Neo4j

Neo4j is an open source NOSQL graph database. It is a fully transactional database (ACID) that
stores data structured as graphs consisting of nodes connected by relationships. Inspired by the
structure of the real world, it allows for high query performance on complex data while remaining
intuitive and simple for the developer.

Neo4j is very well-established. It has been in commercial development for 15 years and in
production for over 12 years. Most importantly, it has an active and contributing community
surrounding it, but it also:

* has an intuitive, rich, graph-oriented model for data representation. Instead of tables, rows, and
columns, you work with a graph consisting of nodes, relationships, and properties.

* has a disk-based, native storage manager optimised for storing graph structures with maximum
performance and scalability.

¢ is scalable. Neo4j can handle graphs with many billions of nodes/relationships/properties on a
single machine, but can also be scaled out across multiple machines for high availability.

* has a powerful graph query language called Cypher, which allows users to efficiently read/write
data by expressing graph patterns.

* has a powerful traversal framework and query languages for traversing the graph.
* can be deployed as a standalone server, which is the recommended way of using Neo4;j
* can be deployed as an embedded (in-process) database, giving developers access to its core Java

API

In addition, Neo4j provides ACID transactions, durable persistence, concurrency control,
transaction recovery, high availability, and more. Neo4j is released under a dual free
software/commercial licence model.

http://neo4j.com/
http://neo4j.com/docs/stable/what-is-a-graphdb.html
http://api.neo4j.org/

2.3. Querying the Graph with Cypher

Neo4j provides a graph query language called Cypher which draws from many sources. It
resembles SQL clauses but is centred around matching iconic representation of patterns in the
graph.

Cypher queries typically begin with a MATCH clause, which can be used to provide a way to pattern
match against the graph. Match clauses can introduce new identifiers for nodes and relationships.
In the WHERE clause additional filtering of the result set is applied by evaluating expressions. The
RETURN clause defines which part of the query result will be available to the caller. Aggregation also
happens in the return clause by using aggregation functions on some of the returned values.
Sorting can happen in the ORDER BY clause and the SKIP and LIMIT parts restrict the result set to a
certain window.

Cypher statements are executed against Neo4j Server using an HTTP-based protocol, which is
utilised by Spring Data Neo4;.

Cypher Examples on the Movies Dataset

// Actors who acted in a Matrix movie:
MATCH (movie:Movie)<-[:ACTS_IN]-(actor)
WHERE movie.title =~ 'Matrix.*'

RETURN actor.name, actor.birthplace

// User-Ratings:

MATCH (user:User {login:'micha'})-[r:RATED]->(movie)
WHERE r.stars > 3

RETURN movie.title, r.stars, r.comment

// Mutual Friend recommendations:

MATCH (user:User {login:'micha'})-[:FRIEND]-(friend)-[r:RATED]->(movie)
WHERE r.stars > 3

RETURN friend.name, movie.title, r.stars, r.comment

Cypher Examples on the Movies Dataset

// Movie suggestions based on an actor:

MATCH (movie:Movie)<-[:ACTS_IN]-()-[:ACTS_IN]->(suggestion:Movie)
WHERE id(movie)=13

RETURN suggestion.title, count(*) ORDER BY count(*) DESC LIMIT 5

// Co-Actors, sorted by count and name of Lucy Liu

MATCH (Tucy)-[:ACTS_IN]->(movie)<-[:ACTS_IN]-(co_actor)

WHERE lucy.name='Lucy Liu'

RETURN count(*), co_actor.name ORDER BY count(*) DESC, co_actor.name LIMIT 20

// Recommendations including counts, grouping and sorting
MATCH (:User {login:'micha'})-[:FRIEND]-()-[r:RATED]->(movie)
RETURN movie.title, avg(r.stars), count(*) ORDER BY avg(r.stars) DESC, count(*) DESC

http://neo4j.com/docs/stable/cypher-query-lang.html

2.4. Indexing

Neo4j’s schema indexes are used automatically by Cypher when set up in your database. Spring
Data Neo4j (version 4) does not provide facilities for handling that setup out of the box. This is a
seeding, migration or maintenance effort handled by the group responsible for the database
maintenance.

Spring Data Neo4j 4.1 Reference
Documentation

H ‘ springdataNeo4j
-

This part of the Spring Data Neo4j (SDN) Guide book provides the reference documentation for SDN
4.

Its content covers information about the programming model, APIs, concepts, annotations and
technical details of Spring Data Neo4j, version 4.

Whenever you look for the means to employ the full power of the Spring Data Neo4j library, you
should be able to find your answers in this reference section. If you don’t, please inform us about
missing or incorrect content.

Chapter 3. About the Spring Data Project

Spring Data is a SpringSource project that aims to provide Spring’s convenient programming model
and well known conventions for NOSQL databases. Currently there is support for graph (Neo4j),
key-value (Redis), document (MongoDB) and relational (JPA) databases.

The Spring Data Neo4j project, as part of the Spring Data initiative, aims to simplify development
with the Neo4j graph database. Like JPA, it uses annotations on simple POJO domain objects.
Together with metadata, the annotations drive mapping the POJO entities and their fields to nodes,
relationships, and properties in the graph database.

3.1. About Spring Data Neo4j 4

For version 4.0, Spring Data Neo4j was rewritten from scratch to natively support Neo4j
deployments in standalone server mode. It uses Cypher, the Neo4j query language, and the HTTP
protocol to communicate with the database. It’s therefore worth noting that there will be
backward compatibility issues when migrating to version 4, so be sure to check the Migration
Guide to avoid any unwanted surprises.

Version 4.1 introduces support for connecting to an embedded instance of Neo4;j.

For integration of Neo4j and other languages, please see Language Guides.

http://projects.spring.io/spring-data/
http://neo4j.com/developer/language-guides/

Chapter 4. Overview

The explanation of Spring Data Neo4j’s programming model starts with some underlying details.
The basic concepts of the Object-Graph Mapping (OGM) library used by Spring Data Neo4j
internally, is explained in the initial chapter.

4.1. Getting Started

To get started with a simple application, you need only your domain model and (optionally) the
annotations (see Defining node entities) provided by the library. You use annotations to mark
domain objects to be reflected by nodes and relationships of the graph database. For individual
fields the annotations allow you to declare how they should be processed and mapped to the graph.
For property fields and references to other entities this is straightforward.

4.2. Adding Neo4j Graph Queries

To use advanced functionality like Cypher queries, a basic understanding of the graph data model is
required. The graph data model is explained in the chapter about Neo4j, see Introduction to Neo4j.

4.3. Managing Relationships

Relationships between entities are first class citizens in a graph database and therefore worth a
separate chapter (Relating Node Entities) describing their usage in Spring Data Neo4;j.

4.4. Repositories

Spring Data Commons provides a very powerful repository infrastructure that is also leveraged in
Spring Data Neo4j. Those repositories consist of a composition of interfaces that declare the
available functionality in each repository. The implementation details of commonly-used
persistence methods are handled by the library, which makes them very convenient for typical
CRUD and query operations. The repositories are extensible by annotated, named or derived finder
methods (like in (G)Rails). For custom implementations of repository methods you are free to add
your own code. (CRUD with repositories).

4.5. Neo4jTemplate

Being a Spring Data library, Spring Data Neo4j offers a Neo4jTemplate for interacting with the
mapped entities and the Neo4j graph database if you don’t want to use repositories. As of version 4,
Neo4jTemplate is based on the org.neo4j.ogm.session.Session object and adds mostly exception
translation around the functionality. Support for Spring Data Neo4j Repositories is also based on
Neo4jSession, so the underlying functionality is identical.

In keeping with the Spring Data ethos, an operations interface is used to define the API exposed by
the Neo4jTemplate. This interface is called Neo4jOperations, the default implementation of which is
Neo4jTemplate. Users of the framework from version 4 are encouraged to code against
Neo4jOperations instead of the Neo4jTemplate directly.

http://neo4j.com/docs/ogm/java/stable/

4.6. Mapping Strategies

Because Neo4j is a schema-free database, Spring Data Neo4j uses a simple mechanism to map Java
types to Neo4j nodes using labels. How that works is explained here: Simplified Object Graph
Mapping.

4.7. Transactional Support

Neo4j uses transactions to guarantee the integrity of your data and Spring Data Neo4j supports this
fully. The implications of this are described in the chapter around Transactions.

4.8. Configuration

Currently, only Java bean-based configuration is supported. See Getting started for more details.

4.9. Performance

Spring Data Neo4j 4 has been rebuilt from the ground up with performance in mind. More
information can be found in Performance Considerations.

Chapter 5. Getting started

Spring Data Neo4j dramatically simplifies development, but some setup is naturally required. For
building the application, your build automation tool needs to be configured to include the Spring
Data Neo4j dependencies and after the build setup is complete, the Spring application needs to be
configured to make use of Spring Data Neo4j. Examples for these different setups can be found in
the Spring Data Neo4j examples.

Spring Data Neo4j projects can be built using Maven, Gradle or Ant/Ivy.

5.1. Dependencies for Spring Data Neo4j

Maven dependencies for Spring Data Neo4j

<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-neo4j</artifactId>
<version>{version}</version>

</dependency>

Gradle dependencies for Neo4j OGM

dependencies {
compile 'org.springframework.data:spring-data-neo4j:{version}’

}

Ivy dependencies for Neo4j OGM

<dependency org="org.springframework.data" name="spring-data-neo4j" rev="{version}"/>

5.2. Spring configuration

Users of Spring Data Neo4j 4 can currently only configure their applications using Java-based bean
configuration. Support for XML namespace configuration is expected to be available in later
versions.

5.2.1. Java-based bean configuration

In order to configure Spring Data Neo4j with Java-based bean config, your Spring context must
extend the core Neo4jConfiguration class that comes with Spring Data Neo4j. The example below
shows how this can be done.

You will need to override getSessionFactory() and getSession() bean definitions to
NOTE provide the required context for your own application. This is explained in more
detail below.

http://github.com/neo4j-examples

Pure Java Configuration

(basePackages = "org.neo4j.example.repository")

public class MyConfiguration extends Neo4jConfiguration {

public SessionFactory getSessionFactory() {
// with domain entity base package(s)
return new SessionFactory("org.neo4j.example.domain");

}

// needed for session in view in web-applications

(value = "session", proxyMode = ScopedProxyMode.TARGET_CLASS)
public Session getSession() throws Exception {
return super.getSession();

}

5.3. Drivers

As of 4.1, Spring Data Neo4j provides suppport for connecting to Neo4j using different drivers. As a
result, the RemoteServer and InProcessServer classes should not be used, and are no longer directly
supported in the configuration. The following drivers are available.

* Http driver
e Embedded driver

You must configure your application by specifying which driver you want to use to connect to
Neo4j. There are two basic ways to do this: using a single properties file, or programmatically.

5.3.1. Properties file

Unless you supply an explicit Configuration object to the SessionFactory (see Java Configuration,
below), Spring Data Neo4j will attempt to auto-configure itself using a file called ogm.properties,
which it expects to find on the classpath.

If you want to configure your application using a different properties file, you must either set a
System property or Environment variable called 'ogm.properties' pointing to the alternative
configuration file you want to use.

5.3.2. Java Configuration

In many cases you won’t want to, or will not be able to provide configuration information via a
properties file. In these cases you can configure your application programmatically instead.

10

The following sections describe how to configure Spring Data Neo4j using either a properties file or
via Java Configuration.

Configuring the Http Driver

The Http Driver connects to and communicates with a Neo4j server over Http. An Http Driver must
be used if your application is running in client-server mode. Please note the Http Driver can’t be
used for spinning up an in-process server.

Properties file

driver=org.neo4j.ogm.drivers.http.driver.HttpDriver
URI=http://user:password@localhost:7474

Java Configuration

The simplest way to configure the Driver is to create a Configuration bean and pass it as the first
argument to the SessionFactory constructor in your Spring configuration:

import org.neo4j.ogm.config.Configuration;

public Configuration getConfiguration() {

Configuration config = new Configuration();

config
.driverConfiguration()
.setDriverClassName
("org.neodj.ogm.drivers.http.driver.HttpDriver")
.setURI("http://user:password@localhost:7474");

return config;

public SessionFactory getSessionFactory() {
return new SessionFactory(getConfiguration(), <packages>);

}

Note: Please see the section below describing the different ways you can pass credentials to the Http
Driver

Configuring the Embedded Driver

The Embedded Driver connects directly to the Neo4j database engine. There is no server involved,
therefore no network overhead between your application code and the database. You should use
the Embedded driver if you don’t want to use a client-server model, or if your application is
running as a Neo4j Unmanaged Extension. You can specify a permanent data store location to
provide durability of your data after your application shuts down, or you can use an impermanent
data store, which will only exist while your application is running.

11

Properties file (permanent data store)

driver=org.neo4j.ogm.drivers.embedded.driver.EmbeddedDriver
URI=file:///var/tmp/graph.db

Properties file (impermanent data store)

driver=org.neo4j.ogm.drivers.embedded.driver.EmbeddedDriver

Java Configuration (permanent data store)

The same technique is used for configuring the Embedded driver as for the Http Driver. Set up a
Configuration bean and pass it as the first argument to the SessionFactory constructor:

import org.neo4j.ogm.config.Confiquration;

public Configuration getConfiguration() {

Configuration config = new Configuration();

config
.driverConfiguration()
.setDriverClassName
("org.neodj.ogm.drivers.embedded.driver.EmbeddedDriver")
.setURI("file:///var/tmp/graph.db");

return config;

}

public SessionFactory getSessionFactory() {
return new SessionFactory(getConfiguration(), <packages>);

}

If you want to use an impermanent data store (e.g. for testing) simply omit the URI attribute from
the Configuration:

public Configuration getConfiguration() {
Configuration config = new Configuration();
config
.driverConfiguration()
.setDriverClassName
("org.neo4j.ogm.drivers.embedded.driver.EmbeddedDriver");
return config;

}

12

Authentication

If you are using the Http Driver you have a number of different ways to supply credentials to the
Driver Configuration.

Properties file options:

embedded in the URI
URI=http://user:password@localhost:7474

as separate attributes
username="user"
password="password"

Java Configuration options

// embedded

Components.configuration()
.driverConfiguration()
.setURI("bolt://user:password@localhost");

// separately as plain text

Components.configuration()
.driverConfiguration()
.setCredentials("user", "password);

// using a Credentials object
Credentials credentials = new UsernameAndPasswordCredentials("user", "password");
Components.configuration()

.driverConfiguration()

.setCredentials(credentials);

Currently only Basic Authentication is supported by Neo4j, so the only Credentials

NOTE
implementation available is UsernameAndPasswordCredentials

5.3.3. Testing

13

Maven dependencies for Spring Data Neo4j Test classes

<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-neodj</artifactId>
<version>${sdn.version}</version>
<type>test-jar</type>

</dependency>

<dependency>
<groupId>org.neo4j</groupld>
<artifactId>neo4j-kernel</artifactId>
<version>${neo4j.version}</version>
<type>test-jar</type>
</dependency>

<dependency>
<groupId>org.neo4j.app</groupld>
<artifactId>neo4j-server</artifactId>
<version>${neo4j.version}</version>
<type>test-jar</type>

</dependency>

<dependency>
<groupld>org.neo4j</groupld>
<artifactId>neo4j-ogm</artifactId>
<version>${neo4j-ogm.version}</version>
<type>test-jar</type>
<scope>test</scope>
</dependency>

<dependency>
<groupld>org.neo4j.test</groupId>
<artifactId>neo4j-harness</artifactId>
<version>${neo4j.version}</version>
<scope>test</scope>

</dependency>

In SDN 4.1, the InProcessServer has been deprecated. This class was used to set up
an in-memory Http server so that you could run your tests. This is no longer
appropriate given the new Driver mechanism, and we recommend you configure an
Embedded Driver (impermanent data store) for your integration tests.

NOTE

5.3.4. SessionFactory Bean

The SessionFactory is needed by SDN to create instances of org.neo4j.ogm.session.Session as
required. When constructed, it sets up the object-graph mapping metadata, which is then used
across all Session objects that it creates. As seen in the above example, the packages to scan for
domain object metadata should be provided to the SessionFactory constructor.

14

Note that the session factory should typically be application-scoped. While you can use a narrower
scope for this if you like, although there is typically no advantage in doing so.

5.3.5. Session Bean

A Session is used to drive the object-graph mapping framework on which Spring Data Neo4j is
based. All repository implementations and Neo4jTemplate are driven by the Session, and you can
also auto-wire it into your Spring beans and code against it directly if you wish.

The life cycle of a Session is important to consider because it keeps track of the changes that have
been made to entities and their relationships. The reason it does this is so that only entities and
relationships that have changed get persisted on save, which is particularly efficient when working
with large graphs. Note, however, that the Session does not ever return cached objects so there’s
no risk of getting stale data on load; it always hits the database.

If your application relies on long-running sessions and does not reload entities then you may not
see changes made from other users and find yourself working with outdated objects. On the other
hand, if your sessions have too narrow a scope then your save operations can be unnecessarily
expensive, as updates will be made to all objects if the session isn’t aware of the those that were
originally loaded.

There’s therefore a trade off between the two approaches. In general, the scope of a Session should
correspond to a "unit of work" in your application. What this means depends on the usage scenario,
but in a typical web-based Spring application we recommend using a request-scoped or HTTP-
session-scoped Session. Either way, if you make sure you load fresh data at the beginning of each
unit of work then data integrity shouldn’t be a problem.

Additional beans can be configured to be included in the Neo4j-Configuration just by defining them
in the Spring context in the normal way.

15

Chapter 6. Programming model

This chapter covers the fundamentals of the programming model behind Spring Data Neo4j,
version 4. It discusses the mapping mode, the annotations provided by Spring Data Neo4j and how
to use them.

6.1. Under the hood

6.1.1. Metadata collection

Metadata is collected about persistent entities in org.neo4j.ogm.metadata.Metadata which provides it
to any part of the library. This information is gathered by reading the class files directly rather than
loading via reflection, resulting in much faster startup times.

The metadata holds all the required object-graph mapping information for each type. This
metadata is discovered at start-up by specifying a list of packages in which all classes are scanned,
including those in sub-packages. In order to omit a class from being metadata-mapped you should
annotate it with @org.neo4j.ogm.annotation.Transient.

6.1.2. The Session object

The Spring repositories and Neo4jTemplate are both backed by org.neo4j.ogm.session.Session, which
is a key component of the framework. The Session provides methods to load, save or delete object
graphs from the database and also provides transaction support. The new Neo4jTemplate is
essentially a wrapper around this Session, which exposes all of its useful methods but handles
transactions and provides the traditional Spring Data operations and exception translation.

6.1.3. Explicit save

Unlike the previous Aspect]-driven mapping, Spring Data Neo4j 4 doesn’t automatically commit
when a transaction closes, so an explicit call to save(:) is required in order to persist changes to
the database.

6.1.4. Fine-grained control via depth specification

The new object mapping framework in Spring Data Neo4j introduces the concept of persistence
horizon (depth). On any individual request, the persistence horizon indicates how many
relationships should be traversed in the graph when loading or saving data. A horizon of zero
means that only the root object’s properties will be loaded or saved, a horizon of 1 will include the
root object and all its immediate neighbours, and so on. This attribute is enabled via a depth
argument available on all repository and template methods, but SDN 4 chooses sensible defaults so
that you don’t have to specify the depth attribute unless you want change the default values.

Default depth for loading

By default, loading an instance will map that object’s simple properties and its immediately-related
objects (i.e. depth = 1). This helps to avoid accidentally loading the entire graph into memory, but
allows a single request to fetch not only the object of immediate interest, but also its closest

16

neighbours, which are likely also to be of interest. This strategy attempts to strike a balance
between loading too much of the graph into memory and having to make repeated requests for
data.

If parts of your graph structure are deep and not broad (for example a linked list), you can increase
the load horizon for those nodes accordingly. Finally, if your graph will fit into memory, and you’d
like to load it all in one go, you can set the depth to -1.

On the other hand, when fetching structures which are potentially very "bushy" (e.g. lists of things
that themselves have many relationships), you may want to set the load horizon to 0 (depth = 0) to
avoid loading thousands of objects, most of which you won’t actually inspect.

Default depth for persisting

When persisting changes to the model, the default depth is -1. This means that all affected objects
in the entity model that are reachable from the root object being persisted will be modified in the
graph. This is the recommended approach because it means you can persist all your changes in one
request. The OGM is able to detect which objects and relationships require changing, so you won’t
flood Neo4j with a bunch of objects that don’t require modification. You can change the persistence
depth to any value, but you should not make it less than the value used to load the corresponding
data or you run the risk of not having changes you expect to be made actually being persisted in the
graph.

6.2. Simplified Object-Graph Mapping

As of version 4, Spring Data Neo4j supports mapping annotated and non-annotated object models.
It’s possible to save any POJO without annotations to the graph, as the framework applies
conventions to decide what to do. This is useful in cases when you don’t have control over the
classes that you want to persist. The recommended approach, however, is to use annotations
wherever possible, since this gives greater control and means that code can be refactored safely
without risking breaking changes to the labels and relationships in your graph.

Annotated and non-annoted objects can be used within the same project without issue. There is an
EntityAccessStrategy used to control how objects are read from or written to. The default
implementation of this uses the following convention:

1. Annotated method (getter/setter)

2. Annotated field

3. Plain method (getter/setter)

4. Plain field
The object graph mapping comes into play whenever an entity is constructed from a node or
relationship. This could be done explicitly during the lookup or create operations of the repositories

and the Neo4jTemplate but also implicitly while executing any graph operation that returns nodes or
relationships and expecting mapped entities to be returned.

Entities handled by Spring Data Neo4j must have an empty constructor to allow the library to
construct the objects.

17

Unless annotations are used to specify otherwise, the framework will attempt to map any of an
object’s "simple" fields to node properties and any rich composite objects to related nodes. A
"simple"” field is any primitive, boxed primitive or String or arrays thereof, essentially anything that
naturally fits into a Neo4j node property. For related entities the type of a relationship is inferred by
the bean property name, as outlined in the examples below.

6.3. Defining node entities

Node entities are declared using the @org.neo4j.ogm.annotation.NodeEntity annotation. Relationship
entities use the @org.neo4j.ogm.annotation.RelationshipEntity annotation.

6.3.1. @NodeEntity: The basic building block

The @NodeEntity annotation is used to declare that a POJO class is an entity backed by a node in the
graph database. Entities handled by Spring Data Neo4j must have a zero-argument constructor to
allow the library to construct the objects, although it doesn’t need to be declared public.

Fields on the entity are by default mapped to properties of the node. Fields referencing other node
entities (or collections thereof) are linked with relationships.

@NodeEntity annotations are inherited from super-types and interfaces. It is not necessary to
annotate your domain objects at every inheritance level.

If the label attribute is set then this will replace the default label applied to the node in the
database. This replaces the previous @TypeAlias annotation. The default label is just the simple class
name of the annotated entity. All parent classes are also added as labels so that retrieving a
collection of nodes via a parent type is supported.

Entity fields can be annotated with @Property, @GraphId, @Transient or @Relationship. All annotations
live in the org.neo4j.ogm.annotation package. Marking a field with the transient modifier has the
same effect as annotating it with @Transient; it won’t be persisted to the graph database.

18

Persisting an annotated entity

public class Actor extends DomainObject {

private Long id;

(name="name")
private String fullName;

(type="ACTED_IN", direction=Relationship.0UTGOING)
private List<Movie> filmography;

(label="Film")
public class Movie {

Long id;

(name="title")
private String name;

Saving a simple object graph containing one actor and one film using the above annotated objects
would result in the following being persisted in Neo4;.

(:Actor:DomainObject {name:'Tom Cruise'})-[:ACTED_IN]->(:Film {title:'Mission
Impossible'})

When annotating your objects, you can apply the annotations to either the fields or their accessor
methods, but bear in mind the aforementioned EntityAccessStrategy ordering when annotating
your domain model.

19

Persisting a non-annotated entity
public class Actor extends DomainObject {

private Long id;
private String fullName;
private List<Movie> filmography;

}

public class Movie {

private Long 1id;
private String name;

In this case, a graph similar to the following would be persisted.

(:Actor:DomainObject {fullName:'Tom Cruise'})-[:FILMOGRAPHY]->(:Movie {name:'Mission
Impossible'})

While this will map successfully to the database, it’s important to understand that the names of the
properties and relationship types are tightly coupled to the class’s member names. Renaming any of
these fields will cause parts of the graph to map incorrectly, hence the recommendation to use
annotations.

6.3.2. @Graphld: Neo4j ID Field

This is a required field which must be of type java.lang.Long. It is used by Spring Data Neo4j to
store the node or relationship-id to re-connect the entity to the graph. As such, user code should
never assign a value to it.

It must not be a primitive type because then an object in a transient state cannot be

NOTE . o
represented, as the default value 0 would point to a node with id 0.

If the field is simply named 'id' then it is not necessary to annotate it with @GraphId as the OGM will

use it automatically.

Entity Equality

Entity equality can be a grey area, and it is debatable whether natural keys or database IDs best
describe equality, as there is the issue of versioning over time, etc. In previous versions of Spring
Data Neo4j, it was recommended to honour the convention that database-issued IDs are the basis
for equality, despite the consequences.

In version 4, the dependency of the framework upon a particular style of equals() or hashCode()
implementation has been removed. The graph-id field is directly checked to see if two entities

20

represent the same node and a 64-bit hash code is used for dirty checking, so you’re not forced to
write your code in a certain way!

However, we do think it’s important to mention that if you use the @GraphId field in your hashCode()
method then this comes with a caveat. When you first persist an entity, its hashcode changes
because Spring Data Neo4j populates the database ID on save.

This causes problems if you had inserted the newly created entity into a hash-based collection
before saving. While that can be worked around, we strongly advise you adopt a convention of not
relying upon the graph ID for object equality.

6.3.3. @Property: Optional annotation for property fields

As we touched on earlier, it is not necessary to annotate property fields as they are persisted by
default. Fields that are annotated as @Transient or declared with the transient modifier are
exempted from persistence. All fields that contain primitive values are persisted directly to the
graph. All fields convertible to a String using the Spring conversion services will be stored as a
string. Spring Data Neo4j includes default type converters that deal with the following types:

* java.util.Date to a String in the ISO 8601 format: "yyyy-MM-dd’T’HH:mm:ss.SSSXXX"

* java.math.BigInteger to a String property

* java.math.BigDecimal to a String property

* binary data (as byte[] or Byte[]) to base-64 String

* java.lang.Enum types using the enum’s name() method and Enum.valueOf()
Collections of primitive or convertible values are stored as well. They are converted to arrays of

their type or strings respectively. Custom converters are also specified by using @Convert - this is
discussed in detail later on.

Node property names can be explicitly assigned by setting the name attribute. For example
@Property(name="1last_name") String lastName. The node property name defaults to the field name
when not specified.

6.4. Relating Node Entities

Since relationships are first-class citizens in Neo4j, associations between node entities are
represented by relationships. In general, relationships are categorised by a type, and start and end
nodes (which imply the direction of the relationship). Relationships can have an arbitrary number
of properties. Spring Data Neo4j has special support to represent Neo4j relationships as entities too,
but it is often not needed.

6.4.1. @Relationship: Connecting node entities

Every field of an entity that references one or more other node entities is backed by relationships in
the graph. These relationships are managed by Spring Data Neo4j automatically.

The simplest kind of relationship is a single object reference pointing to another entity (1:1). In this

21

case, the reference does not have to be annotated at all, although the annotation may be used to
control the direction and type of the relationship. When setting the reference, a relationship is
created when the entity is persisted. If the field is set to null, the relationship is removed.

Single relationship field

public class Movie {

private Actor topActor;

It is also possible to have fields that reference a set of entities (1:N). These fields come in two forms,
modifiable or read-only. Modifiable fields are of the type Collection<T>, and read-only fields are
Iterable<T>, where T is a type annotated with @NodeEntity.

Node entity with relationships

public class Actor {

(type = "TOP_ACTOR", direction = Relationship.INCOMING)
private Set<Movie> topActorIn;

(type = "ACTS_IN")
private Set<Movie> movies;

For graph to object mapping, the automatic transitive loading of related entities depends on the
depth of the horizon specified on the call to Session.load(). By default, the related node or
relationship entities will just be loaded to minimum depth 0, which means their properties will be
set but no further related entities will be populated.

If this Set of related entities is modified, the changes are reflected in the graph once the root object
(Actor, in this case) is saved. Relationships are added, removed or updated according to the
differences between the root object that was loaded and the corresponding one that was saved..

Spring Data Neo4j ensures by default that there is only one relationship of a given type between
any two given entities. The exception to this rule is when a relationship is specified as either
OUTGOING or INCOMING between two entities of the same type. In this case, it is possible to have two
relationships of the given type between the two entities, one relationship in either direction.

If you don’t care about the direction then you can specify direction=Relationship.UNDIRECTED which
will guarantee that the path between two node entities is navigable from either side.

For example, consider the PARTNER_OF relationship between two companies, where (A)-
[:PARTNER_OF]—(B) implies (B)-[:PARTNER_OF]—(A). The direction of the relationship does not
matter; only the fact that a PARTNER_OF relationship exists between these two companies is of
importance. Hence an UNDIRECTED relationship is the correct choice, ensuring that there is only one

22

relationship of this type between two partners and navigating between them from either entity is
possible.

The direction attribute on a @Relationship defaults to OUTGOING. Any fields or
NOTE methods backed by an INCOMING relationship must be explicitly annotated with an
INCOMING direction.

6.4.2. @RelationshipEntity: Rich Relationships

To access the full data model of graph relationships, POJOs can also be annotated with
@RelationshipEntity, making them relationship entities. Just as node entities represent nodes in the
graph, relationship entities represent relationships. Such POJOs allow you access and manage
properties on the underlying relationships in the graph.

Fields in relationship entities are similar to node entities, in that they’re persisted as properties on
the relationship. For accessing the two endpoints of the relationship, two special annotations are
available: @StartNode and @EndNode. A field annotated with one of these annotations will provide
access to the corresponding endpoint, depending on the chosen annotation.

For controlling the relationship-type a String attribute called type is available on the
@RelationshipEntity annotation. Currently, the type must always be specified on the
@RelationshipEntity annotation.

You must include @RelationshipEntity plus exactly one @StartNode field and one
@EndNode field on your relationship entity classes or the OGM will throw a
MappingException when reading or writing. It is not possible to use relationship
entities in a non-annotated domain model.

NOTE

23

A simple Relationship entity

public class Actor {
Long id;
(type="PLAYED_IN")
private Role playedIn;

(type="PLAYED_IN")
public class Role {
private Long relationshipld;
private String title;
private Actor actor;
private Movie movie;

public class Movie {
private Long 1id;
private String title;

Note that the Actor also contains a reference to a Role. This is important for persistence, even when
saving the Role directly, because paths in the graph are written starting with nodes first and then
relationships are created between them. Therefore, you need to structure your domain models so
that relationship entities are reachable from node entities for this to work correctly.

Additionally, SDN4 will not persist a relationship entity that doesn’t have any properties defined. If
you don’t want to include properties in your relationship entity then you should use a plain
@Relationship instead. Multiple relationship entities which have the same property values and
relate the same nodes are indistinguishable from each other and are represented as a single
relationship by SDN 4.

In previous versions of Spring Data Neo4j, a dynamic relationship type field was supported.
However, this has been dropped completely for version 4, since it was not possible to manage it
effectively for both reading from and writing to the graph.

The @RelationshipEntity annotation must appear on all leaf subclasses if they are
NOTE part of a class hierarchy representing relationship entities. This annotation is
optional on superclasses.

6.4.3. Discriminating Relationships Based on End Node Type

In some cases, you want to model two different aspects of a conceptual relationship using the same
relationship type. Here is a canonical example:

24

Clashing Relationship Type

class Person {
private Long id;
(type="0WNS")
private Car car;

(type="0OWNS")
private Pet pet;

In previous versions of Spring Data Neo4j, you would have to add an enforceTargetType attribute
into every clashing @Relationship annotation for this to map correctly. Thanks to changes in the
underlying object-graph mapping mechanism, this is no longer necessary and the above will work
just fine.

However, please be aware that this will only work because the end node types (Car and Pet) are
different types. If you wanted a person to own two cars, for example, then you’d have to use a
Collection of cars or use differently-named relationship types.

6.4.4. Ambiguity in relationships
In cases where the relationship mappings could be ambiguous, the recommendation is that

* the objects be navigable in both directions and

* the @Relationship annotations are explicit. This means if the entity has setter methods, they
must be annotated

Examples of ambiguous relationship mappings are multiple relationship types that resolve to the
same types of entities, in a given direction, but whose domain objects are not navigable in both
directions.

6.5. Indexing

Indexing is used in Neo4j to quickly find nodes and relationships from which to start graph
operations. Indexes are also employed to ensure uniqueness of elements with certain labels and
properties.

Please note that the lucene-based manual indexes are deprecated with Neo4j 2.0.
The default index is now based on labels and schema indexes and the related old

NOTE APIs have been deprecated as well. The "legacy" index framework should only be
used for fulltext and spatial indexes which are not currently supported via schema-
based indexes.

25

6.5.1. Index Management in Spring Data Neo4;j 4

In Spring Data Neo4j 4, index management concerns were removed from the mapping framework
entirely. Index creation and management is therefore now outside the scope of this document.
Please see the Neo4j documentation on indexes for for information:
http://neo4j.com/docs/stable/query-schema-index.html

6.5.2. Index queries in Neo4jTemplate

Schema indexes are automatically used by Neo4j’s Cypher engine, so using the annotated or
derived repository finders or the query methods in Neo4jTemplate will use them out of the box.

6.5.3. Neo4j Auto Indexes

Neo4j allows to configure (legacy) auto-indexing for certain properties on nodes and relationships.
It is possible to use the specific index names node_auto_index and relationship_auto_index when
querying indexes in Spring Data Neo4j either with the query methods in template and repositories
or via Cypher.

6.5.4. Full-Text Indexes

Previous versions of Spring Data Neo4j offered support for full-text queries using the manual index
facilities. However, as of SDN 4, this is no longer supported.

To create fulltext entries for an entity you can add the updated nodes within AfterSaveEvents to a
remote fulltext-index via Neo4j’s REST APL If you use the DefaultRequest used by the OGM, then
authentication will be taken care of as well.

Indexing Persons upon persistence

final CloseableHttpClient httpClient = HttpClients.createDefault();

ApplicationListener<AfterSaveEvent> afterSaveEventApplicationListener() {
return new ApplicationListener<AfterSaveEvent>() {

public void onApplicationEvent(AfterSaveEvent event) {
Neo4jRequest<String> neo4jRequest = new DefaultRequest(http(Client);
if(event.getEntity() instanceof Person) {
Person person = (Person) event.getEntity();
//Construct the JSON statements
neo4jRequest.execute(endpoint,json);

Fulltext query support is still available via Cypher queries which can be executed via the Session or
Neod4jTemplate, or as a @Query defined in a repository class.

26

http://neo4j.com/docs/stable/query-schema-index.html
http://neo4j.com/docs/stable/auto-indexing.html

6.5.5. Spatial Indexes

Previous versions of Spring Data Neo4j offered support for spatial queries using the neo4j-spatial
library. However, as of SDN 4 at least, this is no longer supported.

A strategy similar to the full-text indexes being updated within AfterSaveEvents can be employed to
support Spatial Indexes. The Neo4j Spatial Plugin exposes a REST API to interact with the library.

6.6. Neo4jTemplate

The Neo4jTemplate offers the convenient API of Spring templates for the Neo4j graph database. As of
version 4, the Spring Data Neo4j Template wraps the underlying object-graph mapping Session, but
still provides the core functionality to persist objects to the graph and load them in a variety of
ways. Indeed, you can just use the Session directly in your code if you need greater control, but the
Neo4jTemplate may well be easier for general use.

6.6.1. Basic Operations

For Spring Data Neo4j 4, the changes to the underlying architecture have led to the pruning of the
Neo4jTemplate feature set. Basic operations are now entirely limited to CRUD operations on entities
and executing arbitrary Cypher queries; more low-level manipulation of the graph database is not
possible.

NOTE There is no longer a way to manipulate relationship- and node-objects directly.

Given that the latest version of the framework is driven by Cypher queries alone, there’s no way to
work directly with Node and Relationship objects any more in remote server mode. Similarly, the
traverse() method has disappeared, again because the underlying query-driven model doesn’t
handle it in an efficient way.

If you find yourself in trouble because of the omission of these features, then your best options are:

1. Write a Cypher query to perform the operations on the nodes/relationships instead

2. Write a Neo4j server extension and call it over REST from your application

Of course, there are pros and cons to both of these approaches, but these are largely outside the
scope of this document. In general, for low-level, very high-performance operations like complex
graph traversals you’ll get the best performance by writing a server-side extension. For most
purposes, though, Cypher will be performant and expressive enough to perform the operations that
you need.

6.6.2. Entity Persistence

Neo4jTemplate allows you to save, load, loadAll and delete entities. However, as of SDN 4, it no
longer provides the stored type information via getStoredJavaType. The eagerness with which
objects are retrieved is controlled by specifying the 'depth' argument to any of the load methods.

All of these basic CRUD methods just call onto the underlying methods of Session, albeit with
transaction handling and exception translation managed for you.

27

http://neo4j-contrib.github.io/spatial/#spatial-server-plugin

6.6.3. Cypher Queries

The Neo4jTemplate also allows execution of arbitrary Cypher queries via its query, queryForObject
and queryForObjects methods. Cypher queries that return tabular results should be passed into the
query method. An org.neo4j.ogm.session.result.Result is returned. This consists of
org.neo4j.ogm.session.result.QueryStatistics representing statistics of modifying cypher
statements if applicable, and an Iterable<Map<String,Object>> containing the raw data, which can
be either used as-is or converted into a richer type if needed. The keys in each Map correspond to the
names listed in the return clause of the executed Cypher query.

Modifications made to the graph via Cypher queries directly will not be reflected in

NOTE . . o .
your domain objects within the session.

6.6.4. Transactions

The Neo4jTemplate provides implicit transactions for some of its methods. For instance save, delete
and query provide auto-commit transactions. For other modifying operations you would need to
provide Spring Transaction management using @Transactional or the TransactionTemplate.

6.6.5. Data Manipulation Events (formerly Lifecycle Events)

Neo4j Template utilises Spring’s event mechanism through ApplicationlListener and
ApplicationEvent to notify interested parties about certain data manipulations performed through
it. The following hooks are available in the form of types of application event:

* BeforeSaveEvent

AfterSaveEvent

BeforeDeleteEvent

o AfterDeleteEvent

The point at which these events get fired by the Neo4jTemplate should be pretty obvious from the
names. The following example demonstrates how to hook into the Spring application events API
and register listeners that perform behaviour across types of entities as actions are performed
using the template.

28

Auditing Entities and Generating Unique Application-level IDs

public class ApplicationConfig extends Neo4jConfiguration {

ApplicationListener<BeforeSaveEvent> beforeSaveEventApplicationListener() {
return new ApplicationListener<BeforeSaveEvent>() {

public void onApplicationEvent(BeforeSaveEvent event) {
AcmeEntity entity = (AcmeEntity) event.getEntity();
entity.setUniqueld(acmeIdFactory.create());

ApplicationListener<AfterSaveEvent> afterSaveEventApplicationListener() {
return new ApplicationListener<AfterSaveEvent>() {

public void onApplicationEvent(AfterSaveEvent event) {
AcmeEntity entity = (AcmeEntity) event.getEntity();
auditlog.onEventSaved(entity);

ApplicationListener<AfterDeleteEvent> deleteEventApplicationListener() {
return new ApplicationListener<AfterDeleteEvent>() {

public void onApplicationEvent(AfterDeleteEvent event) {
AcmeEntity entity = (AcmeEntity) event.getEntity();
auditlLog.onEventDeleted(entity);

Note that changes made to entities in the before-save event application listener are reflected in the
stored entity - after-save ones are not.

6.7. CRUD with repositories

The repositories provided by Spring Data Neo4j build on the composable repository infrastructure
in Spring Data Commons. These allow for interface-based composition of repositories consisting of
provided default implementations for certain interfaces and additional custom implementations
for other methods.

29

http://static.springsource.org/spring-data/data-commons/docs/current/reference/html/#repositories

Spring Data Neo4j comes with a single
org.springframework.data.repository.PagingAndSortingRepository specialisation called
GraphRepository<T> used for all object-graph mapping repositories. This sub-interface also adds
specific finder methods that take a depth argument to control the horizon with which related
entities are fetched and saved. Generally, it provides all the desired repository methods. If other
operations are required then the additional repository interfaces should be added to the individual
interface declaration.

GraphRepository no longer combines IndexRepository and TraversalRepository
NOTE because, for reasons explained earlier, these features are no longer supported in
Spring Data Neo4j as of version 4.

6.7.1. GraphRepository

As of SDN 4, this GraphRepository<T> should be the interface from which your entity repository
interfaces inherit, with T being specified as the domain entity type to persist.

Examples of methods you get for free out of GraphRepository are as follows. For all of these
examples the ID parameter is a Long that matches the graph ID:

Load an entity instance via an id
T findOne(id)

Check for existence of an id in the graph
boolean exists(id)

Iterate over all nodes of a node entity type
Iterable<T> findA11() Iterable<T> findAll(Sort :--) Page<T> findAll(Pageable ‘)

Count the instances of the repository entity type
Long count()

Save entities

T save(T) and Iterable<T> save(Iterable<T>)

Delete graph entities
void delete(T), void delete(Iterable<T>), and void deleteAll()

6.7.2. Query and Finder Methods

Annotated queries

Queries using the Cypher graph query language can be supplied with the @Query annotation.

That means a repository method annotated with
@Query("MATCH (:Actor {name:{name}})-[:ACTED_IN]->(m:Movie) return m")
will use the supplied query query to retrieve data from Neo4;.

The named or indexed parameter {param} will be substituted by the actual method parameter. Node

30

and Relationship-Entities are handled directly and converted into their respective ids, Iterables
thereof as well. All other parameters types are provided directly (i.e. Strings, Longs, etc).

In the current version, custom queries do not support paging, sorting or a custom
depth. @Query does not support mapping a path to domain entities, as such, a path

NOTE
should not be returned from a Cypher query. Instead, return nodes and
relationships to have them mapped to domain entities.
Query results

Typical results for queries are Iterable<Type>, Iterable<Map<String,Object>> or simply Type. Nodes
and relationships are converted to their respective entities (if they exist). Other values are
converted using the registered conversion services (e.g. enums).

Cypher examples

MATCH (n) WHERE id(n)=9 RETURN n
returns the node with id 9

MATCH (movie:Movie {title:'Matrix'}) RETURN movie
returns the nodes which are indexed with title equal to '"Matrix'

MATCH (movie:Movie {title: 'Matrix'})<« [:ACTS_IN]-(actor) RETURN actor.name
returns the names of the actors that have a ACTS_IN relationship to the movie node for 'Matrix'

MATCH (movie:Movie {title: 'Matrix'})<« [r:RATED]-(user) WHERE r.stars > 3 RETURN user.name,
r.stars, r.comment

returns users names and their ratings (>3) of the movie titled 'Matrix'

MATCH (user:User {name='Michael'})-[:FRIEND]-(friend)-[r:RATED]-> (movie) RETURN movie.title,
AVG(r.stars), COUNT(*) ORDER BY AVG(r.stars) DESC, COUNT(*) DESC

returns the movies rated by the friends of the user 'Michael', aggregated by movie.title, with
averaged ratings and rating-counts sorted by both

Examples of Cypher queries placed on repository methods with @Query where values are replaced
with method parameters, as described in the Annotated queries) section.

31

public interface MovieRepository extends GraphRepository<Movie> {

// returns the node with id equal to id0OfMovie parameter
@Query("MATCH (n) WHERE id(n)={@} RETURN n")
Movie getMovieFromId(Integer idOfMovie);

// returns the nodes which have a title according to the movieTitle parameter
@Query("MATCH (movie:Movie {title={@}}) RETURN movie")
Movie getMovieFromTitle(String movieTitle);

// returns the Actors that have a ACTS_IN relationship to the movie node with the
title equal to movieTitle parameter.

// (The parenthesis around 'movie' and 'actor' in the match clause are optional.)

@Query("MATCH (movie:Movie {title={0}})<-[:ACTS_IN]-(actor) RETURN actor")

Page<Actor> getActorsThatActInMovieFromTitle(String movieTitle, PageRequest page);

// returns users who rated a movie (movie parameter) higher than rating (rating
parameter)
@Query("MATCH (movie:Movie)<-[r:RATED]-(user) " +
"WHERE id(movie)={movieId} AND r.stars > {rating} " +
"RETURN user")
Iterable<User> getUsersWhoRatedMovieFromTitle(@Param("movield") Movie movie,
@Param("rating") Integer rating);

// returns users who rated a movie based on movie title (movieTitle parameter)
higher than rating (rating parameter)
@Query("MATCH (movie:Movie {title:{@}})<-[r:RATED]-(user) " +
"WHERE r.stars > {1} " +
"RETURN user")
Iterable<User> getUsersWhoRatedMovieFromTitle(String movieTitle, Integer rating);

Queries derived from finder-method names

Using the metadata infrastructure in the underlying object-graph mapper, a finder method name
can be split into its semantic parts and converted into a cypher query. Navigation along
relationships will be reflected in the generated MATCH clause and properties with operators will end
up as expressions in the WHERE clause. The parameters will be used in the order they appear in the
method signature so they should align with the expressions stated in the method name.

32

Some examples of methods and corresponding Cypher queries of a PersonRepository

public interface PersonRepository extends GraphRepository<Person> {

// MATCH (person:Person {name={0}}) RETURN person
Person findByName(String name);

// MATCH (person:Person)

// WHERE person.age = {0} AND person.married = {1}

// RETURN person

Iterable<Person> findByAgeAndMarried(int age, boolean married)

In the current version, derived finders do not support paging, sorting or a custom

NOTE
depth.

6.7.3. Creating repositories

The Repository instances are only created through Spring and can be auto-wired into your Spring
beans as required.

Using basic GraphRepository CRUD-methods

@Repository
public interface PersonRepository extends GraphRepository<Person> {}

public class MySpringBean {

@Autowired
private PersonRepository repo;

}

// then you can use the repository as you would any other object
Person michael = repo.save(new Person("Michael", 36));

Person dave = repo.load(123);

long numberOfPeople = repo.count();

The recommended way of providing repositories is to define a repository interface per domain
class. The underlying Spring repository infrastructure will automatically detect these repositories,
along with additional implementation classes, and create an injectable repository implementation
to be used in services or other spring beans.

33

Example Spring configuration bean

({"com.example.sdn"})
("com.example.sdn.repo")

public class PersistenceContext {

public SessionFactory getSessionFactory() {
return new SessionFactory("com.example.sdn.domain");

}

// more bean definition methods here

6.8. Conversion

The object-graph mapping framework on which Spring Data Neo4j is built provides support for
default and bespoke type conversions, which allow you to configure how certain data types are
mapped to nodes or relationships in Neo4;j.

6.8.1. Built-In Type Conversions
By default, Spring Data Neo4j will automatically perform the following type conversions:

* java.util.Date to a String in the ISO 8601 format: "yyyy-MM-dd’T’HH:mm:ss.SSSXXX"

* java.math.BigInteger to a String property

* java.math.BigDecimal to a String property

* binary data (as byte[] or Byte[]) to base-64 String as Cypher does not support byte arrays

* java.lang.Enum types using the enum’s name() method and Enum.valueOf()
Two Date converters are provided "out of the box"

1. @DateString
2. @DateLong

By default, SDN will use the @DateString converter as described above. However if you want to use
a different date format, you can annotate your entity attribute accordingly:

Example of user-defined date format

public class MyEntity {

(uyy_MM_ddn)
private Date entityDate;

34

Alternatively, if you want to store Dates as long values, use the @DateLong annotation:

Example of date stored as a long value

public class MyEntity {

private Date entityDate;

Collections of primitive or convertible values are also automatically mapped by converting them to
arrays of their type or strings respectively.

6.8.2. Custom Type Conversion

In order to define bespoke type conversions for particular members, you can annotate a field or
method with @Convert to specify an implementation of
org.neo4j.ogm.typeconversion.AttributeConverter to use.

Example of custom type converter
public class MoneyConverter implements AttributeConverter<DecimalCurrencyAmount,

Integer> {

public Integer toGraphProperty(DecimalCurrencyAmount value) {
return value.getFullUnits() * 100 + value.getSubUnits();
}

public DecimalCurrencyAmount toEntityAttribute(Integer value) {
return new DecimalCurrencyAmount(value / 100, value % 100);

}

You could then apply this to your class as follows:

public class Invoice {

(MoneyConverter.class)
private DecimalCurrencyAmount value;

35

6.8.3. Spring’s ConversionService

It is possible to have Spring Data Neo4j 4 use converters registered with Spring’s
ConversionService. In order to do this, provide
org.springframework.data.neo4j.conversion.MetaDataDrivenConversionService as a Spring bean.

Provide MetaDataDrivenConversionService as a Spring bean

public ConversionService conversionService() {
return new MetaDataDrivenConversionService(getSessionFactory().metaData());

}

Then, instead of defining an implementation of org.neo4j.ogm.typeconversion.AttributeConverter
on the @Convert annotation, use the graphPropertyType attribute to define the type to convert to.

Using graphPropertyType

public class MyEntity {

(graphPropertyType = Integer.class)
private DecimalCurrencyAmount fundValue;

Spring Data Neo4j 4 will look for converters registered with Spring’s ConversionService that can
convert both to and from the type specified by graphPropertyType and use them if they exist.

Default converters and those defined explicitly via an implementation of
NOTE org.neo4j.ogm.typeconversion.AttributeConverter will take precedence over
converters registered with Spring’s ConversionService.

6.8.4. Mapping Query Results

For queries executed via @Query repository methods, it’s possible to specify a conversion of complex
query results to POJOs. These result objects are then populated with the query result data and can
be serialized and sent to a different part of the application, e.g. a frontend-ui. To take advantage of
this feature, use a class annotated with @QueryResult as the method return type.

36

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/validation.html#core-convert
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/validation.html#core-convert

Example of query result mapping
public interface MovieRepository extends GraphRepository<Movie> {

("MATCH (movie:Movie)-[r:RATING]->(), (movie)<-[:ACTS_IN]-(actor:Actor) " +
"WHERE movie.id={0} " +
"RETURN movie as movie, COLLECT(actor) AS 'cast', AVG(r.stars) AS
"averageRating'")
MovieData getMovieData(String movield);

public class MovieData {
Movie movie;
Double averageRating;
Set<Actor> cast;

6.9. Transactions

Neo4j is a transactional database, only allowing operations to be performed within transaction
boundaries. Spring Data Neo4j integrates nicely with both the declarative transaction support with
@Transactional as well as the manual transaction handling with TransactionTemplate. It also
supports the rollback mechanisms of the Spring Testing library.

As of version 4.0, the classes used to perform transaction management have been rewritten. Instead
of wusing SpringTransactionManager provided by the Neo4j Kkernel alongside Spring’s
JtaTransactionManager, the transaction management is performed by Neo4jTransactionManager,
which implements Spring’s PlatformTransactionManager.

This Neo4jTransactionManager is based on an OGM Session, on which the beginTransaction() method
gets called, and this in turn delegates onto the underlying OGM’s TransactionManager
implementation.

The Neo4jConfiguration Spring configuration bean will create an instance of this
Neo4jTransactionManager for use in Spring Data Neo4j. It is made available under the name
"transactionManager" in the Spring application context.

6.10. Entity Attachment

In previous versions of Spring Data Neo4j, entities could be "attached" or "detached" depending on
whether or not they were enhanced by Aspect] and actively managed by the framework. As of SDN
4, this is no longer the case and the Aspect] involvement has completely gone away.

6.10.1. Persisting Entities

From version 4 onwards, the entity persistence is all performed through the save() method on the

37

underlying Session object. This method is normally invoked indirectly via a Spring repository or
Neod4jTemplate.

Under the bonnet, the implementation of Session has access to the MappingContext that keeps track
of the data that has been loaded from Neo4j during the lifetime of the session. Upon invocation of
save() with an entity, it checks the given object graph for changes compared with the data that was
loaded from the database. The differences are used to construct a Cypher query that persists the
deltas to Neo4j before repopulating it’s state based on the response from the database server.

Example 1. Persisting entities

public class Person {
private String name;
public Person(String name) {
this.name = name;
}
}

// Store Michael in the database.
Person p = new Person("Michael");
personRepository.save(p);

// or alternatively
neodjTemplate.save(p);

6.10.2. Save Depth

As mentioned previously, save(entity) is overloaded as save(entity, depth), where depth dictates
the number of related entities to save starting from the given entity. A depth of 0 will persist only
the properties of the specified entity to the database, and a depth of -1 will persist everything in the
object graph rooted at the given entity.

Specifying the save depth is handy when it comes to dealing with complex collections, that could
potentially be very expensive to load.

If you’re using this overloaded method rather than the repositories, it’s strongly
recommended to use depth consistently between load and save invocations. If you
don’t then you may unexpectedly see relationships deleted or updates not persisting
as you expect.

NOTE

38

Example 2. Relationship save cascading

class Movie {
String title;
Actor topActor;
public void setTopActor(Actor actor) {
topActor = actor;

}

class Actor {
String name;

Movie movie = new Movie("Polar Express");
Actor actor = new Actor("Tom Hanks");

movie.setTopActor(actor);

Neither the actor nor the movie has been assigned a node in the graph. If we were to call
repository.save(movie), then Spring Data Neo4j would first create a node for the movie. It would
then note that there is a relationship to an actor, so it would save the actor in a cascading fashion.
Once the actor has been persisted, it will create the relationship from the movie to the actor. All of
this will be done atomically in one transaction.

The important thing to note here is that if repository.save(actor) is called instead, then only the
actor will be persisted. The reason for this is that the actor entity knows nothing about the movie
entity - it is the movie entity that has the reference to the actor. Also note that this behaviour is not
dependent on any configured relationship direction on the annotations. It is a matter of Java
references and is not related to the data model in the database.

If the relationships form a cycle, then the entities will first of all be assigned a node in the database,
and then the relationships will be created. The cascading is however only propagated to related
entity fields that have been modified.

In the following example, the actor and the movie are both attached entites, having both been
previously persisted to the graph:

Example 3. Cascade for modified fields

actor.setBirthyear(1956);
movieRepository.save(movie);

39

In this case, even though the movie has a reference to the actor, the property change
on the actor will not be persisted by the call to movie.persist(). The reason for this

NOTE is, as mentioned above, that cascading will only be done for fields that have been
modified. Since the movie.topActor field has not been modified, it will not cascade
the persist operation to the actor.

6.11. Sorting and Paging

Spring Data Neo4j supports sorting and paging of results, both when using Spring Data’s Pageable
and Sort interfaces, and also when using the Session object. The syntax for the two is slightly
different, the main difference being that the Session object methods take independent arguments
for sorting and pagination, whereas Spring’s Pageable interface embeds an optional Sort object.
Behind the scenes however, repository-based paging and sorting delegates to the core OGM
equivalents.

Spring Data Neo4j 4 does not yet support sorting and paging on custom queries or

NOTE
derived query methods.

40

Repository-based paging

Pageable pageable = new PageRequest(0, 3);
Page<Wor1ld> page = worldRepository.findAll(pageable, 0);

Repository-based sorting

Sort sort = new Sort(Sort.Direction.ASC, "name");
Iterable<Wor1ld> worlds = worldRepository.findAll(sort, 0)) {

Repository-based sorting with paging

Pageable pageable = new PageRequest(@, 3, Sort.Direction.ASC, "name");
Page<Wor1d> page = worldRepository.findAl1l(pageable, 0);

Core OGM-based paging

Iterable<Wor1ld> worlds

loadAll(World.class, new Pagination(0,3), 0)

Core OGM-based sorting

Iterable<Wor1ld> worlds = loadAll(World.class, new SortOrder().add("name"), 0)

Core OGM-based sorting with paging

Iterable<Wor1ld> worlds = loadAll(World.class, new SortOrder().add("name"), new
Pagination(9,3), 0)

6.12. Entity Type Representation

As of Spring Data Neo4j 4, type representation has been greatly simplified to the point that there is
just one strategy. The TypeRepresentationStrategy has disappeared and a single label-based model is
all that is supported.

For @NodeEntity classes, the simple names of the class and each of its parent classes (excluding
java.lang.0bject) is written as a node label. This node label is used in Cypher queries generated by
the OGM to find objects of a particular type, and by labelling using superclasses as well it becomes
possible to retrieve collections of entities as abstract super types.

41

Example domain model and labels

@NodeEntity

public abstract class DomainObject {
@GraphId
protected Long id;

}

public class Person extends DomainObject {

}

public class Lady extends Person {

}

public class Gentleman extends Person {

}

// creates a node with labels Gentleman:Person:DomainObject
repository.save(new Gentleman());

// retrieve all ladies and gentlemen
Collection<Person> people = repository.loadAll(Person.class);

The label applied to a node in the database can be configured by setting the value of the label
property in the @NodeEntity annotation.

In the current version, it is mandatory to specify the relationship type on a @RelationshipEntity
annotation.

42

Chapter 7. Performance Considerations

As with any other object mapping framework, the domain entities that are created, read, or
persisted potentially represent only a small fraction of the data stored in the database. This is the
set needed for a certain use-case to be displayed, edited or processed in a low throughput fashion.
The main advantages of using an object mapper in this case are the ease of use of real domain
objects in your business logic and also the integration with existing frameworks and libraries that
expect Java POJOs as input or create them as results.

Although adding layers of abstraction is a common pattern in software development, each of these
layers generally add overhead and performance penalties. This chapter discusses the performance
implications of using Spring Data Neo4;.

7.1. Focus on performance

This new version 4 of SDN has been rebuilt from the ground up. It is based on the understanding
that the majority of users want to run application servers that connect to remote database
instances. They will therefore need to communicate "over the wire". Neo4j provides the capability
to do this now with its powerful Cypher language, which is exposed via a remote protocol.

What we have attempted to do is to ensure that, as much as possible, we don’t overload that
communication channel. This is important for two reasons. Firstly, every network interaction
involves an overhead (both bandwidth but more so latency) which impacts the response times of
your application. Secondly, network requests containing redundant operations (such as updaing an
object which hasn’t changed) are unnecessary, and have similar impacts. We have approached this
problem in a number of ways:

7.1.1. Variable-depth persistence

You can now tailor your persistence requests according to the characteristics of the portions of your
graph you want to work with. This means you can choose to make deeper or shallower fetches
based on fine tuning the types and amounts of data you want to transfer based on your individual
constraints.

If you know that you aren’t going to need an object’s related objects, you can choose not to fetch
them by specifying the fetch-depth as 0. Alternatively if you know that you will always want to a
person’s complete set of friends-of-friends, for example, you can set the depth to 2.

7.1.2. Smart object-mapping

SDN 4 introduces smart object-mapping. This means that, all other things being equal, it is possible
to reliably detect which nodes and relationships need to be changed in the database and which
don’t.

Knowing what needs to be changed means we don’t need to flood Neo4j with requests to update
objects that don’t require updating, or create relationships that already exist. We can minimise the
amount of data we send across the wire as a result, which leads to faster network interaction and
fewer CPU cycles consumed on the server.

43

7.1.3. User-definable Session lifetime

Supporting the smart object-mapping capability is the Neo4jSession. This object can be declared
with different lifetimes, depending on the requirements of your application. For web-based
applications, you might choose between HTTP Request-scoped lifetime or HTTP Session-scoped
lifetimes. For a standalone application, you may choose to maintain a single session for the entire
lifetime of the application.

The advantage of longer-running sessions is that you will be able to make more efficient requests to
the database at the expense of the additional memory associated with the session. The advantage of
shorter sessions is they impose almost no overhead on memory, but will result in less efficient
requests to Neo4j when storing and retrieving data.

It is also possible to manage your session lifetimes in code. For example, associated with single
fetch-update-save cycle or unit of work.

Migration Guide

44

Chapter 8. Migrating from previous versions
of Spring Data Neo4j

8.1. Package Changes

Because the Neo4j Object Graph Mapper can be used independently of Spring Data Neo4j, the core
annotations have been moved out of the spring framework packages:

org.springframework.data.neo4j.annotation - org.neo4j.ogm.annotation

The @Query and @QueryResult annotations are only supported in the Spring modules,
NOTE and are not used by the core mapping framework. These annotations have not
changed.

8.2. Annotation Changes

There have been some changes to the annotations that were used in previous versions of Spring
Data Neo4j. Wherever possible we have tried to maintain the previous annotations verbatim, but in
a few cases this has not been possible, usually for technical reasons but sometimes for aesthetic
ones. Our goal has been to minimise the number of annotations you need to use as well as trying to
make them more self-explanatory. The following annotations have been changed.

old New

@RelatedTo @Relationship
@RelatedToVia @Relationship
@GraphProperty @Property

Relationship Direction.BOTH Relationship.UNDIRECTED

8.3. Custom Type Conversion

SDN 4 provides automatic type conversion for the obvious candidates: byte[] and Byte[] arrays,
Dates, BigDecimal and BigInteger types. In order to define bespoke type conversions for particular
entity attribute, you can annotate a field or method with @Convert to specify your own
implementation of org.neo4j.ogm.typeconversion.AttributeConverter.

You can find out more about type conversions here: Custom Converters

8.4. Date Format Changes

The default Date converter is @DateString.

SDN 3.x and earlier represented Dates as a String value consisting of the number of milliseconds
since January 1, 1970, 00:00:00 GMT.

45

If you are upgrading to SDN 4.x from these versions and your application used the default, then you
need to annotate your Date properties with @DatelLong. Moreover, the property values in the graph
need to be converted to numbers.

Upgrade Date properties to numbers

MATCH (n:Foo) //All nodes which contain date properties to be migrated

WHERE NOT HAS(n.migrated)// Take the first 10k nodes that haven't been migrated yet
WITH n LIMIT 10000

SET n.dateProperty = toInt(n.dateProperty),n.migrated=1 //where dateProperty is the
date with a String value to be migrated

RETURN count(n); //Run until the statement returns zero records

//Similar process to remove the migrated flag

However, if your application already represented Dates as @GraphProperty(propertyType =
Long.class) then simply changing this to @Datelong is sufficient.

8.5. Obsolete Annotations

The following annotations are no longer used, either because they are no longer needed, or cannot
be supported via Cypher.

* @GraphTraversal

e @RelatedToVia

e @RelatedTo

* @Index

* @TypeAlias

* @Fetch

8.6. Features No Longer Supported

Some features of the previous annotations have been dropped.

8.6.1. Overriding @Property Types

Support for overriding property types via arguments to @Property has been dropped. If your
attribute requires a non-default conversion to and from a database property, you can use a Custom
Converter instead.

8.6.2. @Relationship enforceTargetType

In previous versions of Spring Data Neo4j, you would have to add an enforceTargetType attribute
into every clashing @Relationship annotation. Thanks to changes in the underlying object-graph
mapping mechanism, this is no longer necessary.

46

Clashing Relationship Types

class Person {
(type="0OWNS")
private Car car;

(type="0OWNS")
private Pet pet;

8.6.3. Cross-store Persistence

Neo4j is dropping XA support and therefore SDN 4 does not provide any capability for cross-store
persistence

8.6.4. TypeRepresentationStrategy

SDN 4 replaces the existing TypeRepresentionStrategy configuration with a straightforwad
convention based on simple class-names or entities using @NodeEntity(label=:+)

Please refer to Entity Type Representation for more details.

8.6.5. Aspect] Support

Support for Aspect]-based persistence has been removed from SDN 4 as the write-and-read-through
approach only works with an integrated, embedded database, not Neo4j server. The performance
improvements in SDN 4 should make their use as a performance optimisation unnecessary anyway.

8.7. Changes to Neo4jTemplate

The Neo4jTemplate has been slimmed-down significantly for SDN 4 with many of the method
signatures changed to reflect the updated behaviour.

Many of the operations are no longer needed or can be expressed with a straightforward Cypher
query.

Developers are also encouraged to code against its Neo4jOperations interface instead of the template
class.

8.7.1. API Changes

The following table shows the Neo4jTemplate functions that have been retained for version 4 of
Spring Data Neo4j. In some cases the method names have changed but the same functionality is
offered under the new version.

Table 1. Neo4j Template Method Migration

47

Old Method Name New Method Name Notes

findOne load Overloaded to take optional depth parameter

findAll loadAll Overloaded to take optional depth parameter,
also now returns a Collection rather than a
Result

query query Return type changed from Result to be Iterable

save save

delete delete

count count No longer defines generic type parameters

findByIndexedValue loadByProperty Indexes are not supported natively, but you can

index node properties in your database setup
and use this method to find by them

To achieve the old template.fetch(entity) equivalent behaviour, you should call one of the load
methods specifying the fetch depth as a parameter.

It’s also worth noting that exec(GraphCallback) and the create::*() methods have been made
obsolete by Cypher. Instead, you should now issue a Cypher query to the new execute method to
create the nodes or relationships that you need.

Dynamic labels, properties and relationship types are not supported as of this version, server
extensions should be considered instead.

8.8. Indexing

The best way to retrieve start nodes for traversals and queries is by using Neo4j’s integrated index
facilities. Spring Data Neo4j takes the view that index maintenance should not be part of your
application code. For that reason, it does not provide any explicit index-related functionality.

However, it is very important that indices are in place for efficient node lookups. Make sure those
are applied to your test and especially production databases to guarantee efficient query execution.
Please make sure you read the Neo4j Documentation on indices.

8.8.1. Built-In Query DSL Support

Previous versions of SDN allowed you to use a DSL to generate Cypher queries. There are many
different DSL libraries available and you’re free to use which of these - or none - that you want.
With Cypher changing on a regular basis, avoiding a DSL implementation in SDN means less
ongoing maintenance and less likelihood of your code being incompatible with future versions of
Neo4j.

8.8.2. Graph Traversal and Node/Relationship Manipulation

These features cannot be supported by Cypher and have therefore been dropped from
Neod4jTemplate.

48

http://neo4j.com/docs/stable/query-schema-index.html

Please provide feedback on the new APIs of SDN 4 and the migration needs to spring-data-
neo4j@neotechnology.com or via a JIRA issue

Configuration in an HA
Environment

49

mailto:spring-data-neo4j@neotechnology.com
mailto:spring-data-neo4j@neotechnology.com
https://jira.spring.io/browse/DATAGRAPH

Chapter 9. Configuring Spring Data Neo4j 4
in an HA Environment

9.1. Transaction Binding in HA Mode

A typical Neo4j HA cluster will consist of a master node and a couple of slave nodes for providing
failover capability and optionally for handling reads. (Although it is possible to write to slaves, this
is uncommon because it requires additional effort to synchronise a slave with the master node)

Cluster Cluster
Management Management
Transaction Transaction
Propagation Fropagation
Database Database
Neodj HA Meodj HA
Instance 1 Instance 3

\" Cluster "/
Management
Transaction
Propagation
Database
Meod] HA)
Instance 2 Current

Master

When operating in HA mode, Neo4j does not make open transactions available across all nodes in
the cluster. This means we must bind every request within a specific transaction to the same node
in the cluster, or the commit will fail with 404 Not Found.

9.2. Read-only Transactions

As of version 4, Spring Data Neo4j does not distinguish between WRITE transactions and READ-
ONLY transactions. We cannot therefore bind read-only transactions to slaves and write
transactions to master. A future version will address this deficiency, but in the meantime the only
way to ensure that everything works as expected is to direct every transaction to master. There are
a couple of ways to to achieve this.

9.3. Static Binding to a Designated Master

9.3.1. Example cluster:

1. master: 192.168.0.55
2. slavel: 192.168.0.56
3. slave2: 192.168.0.67

50

SDN4 Binding to master IP address

private String url = "http://192.168.0.55:7474"

private SessionFactory sessionFactory = new SessionFactory(
"com.mycompany.myapp.domain");

private Session session = sessionFactory.openSession(url);

We don’t really recommend this approach, except for testing purposes and non-
critical deployments. Firstly, it will only work if you always bring up the designated
master first, and secondly, if the master goes down all subsequent transactions will
fail until it is restarted. In HA mode, the cluster is able to elect a new master when
this happens, but as of version 4 of Spring Data Neo4j, there is no mechanism for
querying the cluster to identify the current master. The solution in this case is to use
a load balancer such as HAProxy that can do this for us. This is described in the next
section.

NOTE

9.4. Dynamic Binding via a Load Balancer

In the Neo4j HA architecture, a cluster is typically fronted by a load balancer. The following
example shows how to configure your application and set up HAProxy as a load balancer to route
all requests to whichever machine in the cluster is currently identified as the master. Since only
one machine can ever be the elected master, this should work exactly as we would like.
Furthermore, should the elected master fail, a new server will be elected from the cluster as master
and HAProxy will automatically route transactions to this server.

9.4.1. Example cluster fronted by HAProxy

haproxy: 10.0.2.200
neo4j-serverl: 10.0.1.10
neo4j-server2: 10.0.1.11

LN

neo4j-server3: 10.0.1.12

Spring Data Neo4j 4 Binding via HAProxy

private String url = "http://10.0.2.200" // haproxy running on the default port 80

private SessionFactory sessionFactory = new SessionFactory(
"com.mycompany.myapp.domain");

private Session session = sessionFactory.openSession(url);

51

Sample haproxy.cfg

52

global
daemon
maxconn 256

defaults
mode http
timeout connect 5000ms
timeout client 50000ms
timeout server 50000ms

frontend http-in
bind *:80
default_backend neo4j

backend neo4j
option httpchk GET /db/manage/server/ha/master
server s1 10.0.1.10:7474 maxconn 32
server s2 10.0.1.11:7474 maxconn 32
server s3 10.0.1.12:7474 maxconn 32

listen admin
bind *:8080
stats enable

Appendix

53

Chapter 10. Appendix

10.1. Repository Query Keywords

The following table lists the keywords generally supported by the Spring Data Neo4j repository
query derivation mechanism.

Table 2. Query Keywords

Logical keyword Keyword expressions Restrictions

AND and

OR or Cannot be used to OR nested properties
GREATER_THAN GreaterThan

LESS_THAN LessThan

LIKE Like, IsLike

NOT Not

NOT_LIKE NotLike, IsNotLike

REGEX Matches

54

	Good Relationships: The Spring Data Neo4j Guide Book
	Table of Contents
	Preface
	Chapter 1. About this guide book
	1.1. The Spring Data Neo4j Project
	1.2. Feedback
	1.3. Format of the Book
	1.4. Acknowledgements

	Chapter 2. Introduction to Neo4j
	2.1. What is a graph database?
	2.2. About Neo4j
	2.3. Querying the Graph with Cypher
	2.4. Indexing

	Spring Data Neo4j 4.1 Reference Documentation
	Chapter 3. About the Spring Data Project
	3.1. About Spring Data Neo4j 4

	Chapter 4. Overview
	4.1. Getting Started
	4.2. Adding Neo4j Graph Queries
	4.3. Managing Relationships
	4.4. Repositories
	4.5. Neo4jTemplate
	4.6. Mapping Strategies
	4.7. Transactional Support
	4.8. Configuration
	4.9. Performance

	Chapter 5. Getting started
	5.1. Dependencies for Spring Data Neo4j
	5.2. Spring configuration
	5.2.1. Java-based bean configuration

	5.3. Drivers
	5.3.1. Properties file
	5.3.2. Java Configuration
	5.3.3. Testing
	5.3.4. SessionFactory Bean
	5.3.5. Session Bean

	Chapter 6. Programming model
	6.1. Under the hood
	6.1.1. Metadata collection
	6.1.2. The Session object
	6.1.3. Explicit save
	6.1.4. Fine-grained control via depth specification

	6.2. Simplified Object-Graph Mapping
	6.3. Defining node entities
	6.3.1. @NodeEntity: The basic building block
	6.3.2. @GraphId: Neo4j ID Field
	6.3.3. @Property: Optional annotation for property fields

	6.4. Relating Node Entities
	6.4.1. @Relationship: Connecting node entities
	6.4.2. @RelationshipEntity: Rich Relationships
	6.4.3. Discriminating Relationships Based on End Node Type
	6.4.4. Ambiguity in relationships

	6.5. Indexing
	6.5.1. Index Management in Spring Data Neo4j 4
	6.5.2. Index queries in Neo4jTemplate
	6.5.3. Neo4j Auto Indexes
	6.5.4. Full-Text Indexes
	6.5.5. Spatial Indexes

	6.6. Neo4jTemplate
	6.6.1. Basic Operations
	6.6.2. Entity Persistence
	6.6.3. Cypher Queries
	6.6.4. Transactions
	6.6.5. Data Manipulation Events (formerly Lifecycle Events)

	6.7. CRUD with repositories
	6.7.1. GraphRepository
	6.7.2. Query and Finder Methods
	6.7.3. Creating repositories

	6.8. Conversion
	6.8.1. Built-In Type Conversions
	6.8.2. Custom Type Conversion
	6.8.3. Spring’s ConversionService
	6.8.4. Mapping Query Results

	6.9. Transactions
	6.10. Entity Attachment
	6.10.1. Persisting Entities
	6.10.2. Save Depth

	6.11. Sorting and Paging
	6.12. Entity Type Representation

	Chapter 7. Performance Considerations
	7.1. Focus on performance
	7.1.1. Variable-depth persistence
	7.1.2. Smart object-mapping
	7.1.3. User-definable Session lifetime

	Migration Guide
	Chapter 8. Migrating from previous versions of Spring Data Neo4j
	8.1. Package Changes
	8.2. Annotation Changes
	8.3. Custom Type Conversion
	8.4. Date Format Changes
	8.5. Obsolete Annotations
	8.6. Features No Longer Supported
	8.6.1. Overriding @Property Types
	8.6.2. @Relationship enforceTargetType
	8.6.3. Cross-store Persistence
	8.6.4. TypeRepresentationStrategy
	8.6.5. AspectJ Support

	8.7. Changes to Neo4jTemplate
	8.7.1. API Changes

	8.8. Indexing
	8.8.1. Built-In Query DSL Support
	8.8.2. Graph Traversal and Node/Relationship Manipulation

	Configuration in an HA Environment
	Chapter 9. Configuring Spring Data Neo4j 4 in an HA Environment
	9.1. Transaction Binding in HA Mode
	9.2. Read-only Transactions
	9.3. Static Binding to a Designated Master
	9.3.1. Example cluster:

	9.4. Dynamic Binding via a Load Balancer
	9.4.1. Example cluster fronted by HAProxy

	Appendix
	Chapter 10. Appendix
	10.1. Repository Query Keywords

