

 PREFACE

The Spring Data Neo4J project applies core Spring concepts to the development of solutions using the Neo4j graph data store. We provide "repositories" as a high-level abstraction for storing and querying documents. You will notice similarities to the JPA/Hibernate support in the Spring Framework.

This document is the reference guide for Spring Data - Graph Support. It explains Graph module concepts and semantics and the syntax for various store namespaces.

This section provides some basic introduction to Spring and Graph databases.

The Spring Data Commons section then describes the common foundation of all Spring Data projects : the repositories.
This part is taken from from SD commons project and may include examples from other persistence type such as JPA.

The rest of the document describes the Spring Data Neo4j features and specifics.
It includes the Spring Data Neo4j reference, and the reference for OGM, on which SDN is based on.
It assumes the user is familiar with the Neo4j graph database as well as Spring concepts.

Spring and Spring Data

Spring Data uses Spring framework’s core functionality,
such as the IoC container,
type conversion system,
expression language,
JMX integration,
and portable DAO exception hierarchy.
While it is not important to know the Spring APIs, understanding the concepts behind them is.
At a minimum, the idea behind IoC should be familiar for whatever IoC container you choose to use.

The core functionality of the Neo4J support can be used directly, with no need to invoke the IoC services of the Spring Container. This is much like Hibernate Session or JPA EntityManager which can be used 'standalone' without any other services of the Spring container. To leverage all the features of Spring Data Neo4j, such as the repository support, you will need to configure some parts of the library using Spring.

To learn more about Spring, you can refer to the comprehensive (and sometimes disarming) documentation that explains in detail the Spring Framework. There are a lot of articles, blog entries and books on the matter - take a look at the Spring framework home page for more information.

NoSQL and Graph databases

A graph database is a storage engine that is specialised in storing and retrieving vast networks of information.
It efficiently stores data as nodes and relationships and allows high performance retrieval and querying of those structures.
Properties can be added to both nodes and relationships.
Nodes can be labelled by zero or more labels, relationships are always directed and named.

Graph databases are well suited for storing most kinds of domain models.
In almost all domains, there are certain things connected to other things.
In most other modelling approaches, the relationships between things are reduced to a single link without identity and attributes.
Graph databases allow to keep the rich relationships that originate from the domain equally well-represented in the database without resorting to also modelling the relationships as "things".
There is very little "impedance mismatch" when putting real-life domains into a graph database.

Introducing Neo4j

Neo4j is an open source NOSQL graph database.
It is a fully transactional database (ACID) that stores data structured as graphs consisting of nodes, connected by relationships.
Inspired by the structure of the real world, it allows for high query performance on complex data, while remaining intuitive and simple for the developer.

Neo4j is very well-established.
It has been in commercial development for 15 years and in production for over 12 years.
Most importantly, it has an active and contributing community surrounding it, but it also:

	
has an intuitive, rich graph-oriented model for data representation. Instead of tables, rows, and columns, you work with a graph consisting of nodes, relationships, and properties.

	
has a disk-based, native storage manager optimised for storing graph structures with maximum performance and scalability.

	
is scalable. Neo4j can handle graphs with many billions of nodes/relationships/properties on a single machine, but can also be scaled out across multiple machines for high availability.

	
has a powerful graph query language called Cypher, which allows users to efficiently read/write data by expressing graph patterns.

	
has a powerful traversal framework and query languages for traversing the graph.

	
can be deployed as a standalone server, which is the recommended way of using Neo4j

	
can be deployed as an embedded (in-process) database, giving developers access to its core Java API

In addition, Neo4j provides ACID transactions, durable persistence, concurrency control, transaction recovery, high availability, and more.
Neo4j is released under a dual free software/commercial licence model.

The jumping off ground for learning about Neo4J is neo4j.com. Here is a list of other useful resources:

	
The Neo4j documentation introduces Neo4j and contains links to getting started guides, reference documentation and tutorials.

	
The online sandbox provides a convenient way to interact with a Neo4j instance in combination with the online tutorial.

	
Neo4J Java Bolt Driver

	
Neo4J Java Object Graph Mapper (OGM) Library

	
Several books available for purchase and videos to watch.

Requirements

Spring Data Neo4j 5.0.x at minimum, requires:

	
JDK Version 8 and above.

	
Neo4j Graph Database 3.1 and above.

	
Spring Framework 5.0.3.RELEASE and above.

If you plan on altering the version of the OGM make sure it is only in the 3.0.0+ release family.

Additional Resources

Project metadata

	
Version control - http://github.com/spring-projects/spring-data-neo4j

	
Bugtracker - https://jira.spring.io/browse/DATAGRAPH

	
Release repository - https://repo.spring.io/libs-release

	
Milestone repository - https://repo.spring.io/libs-milestone

	
Snapshot repository - https://repo.spring.io/libs-snapshot

Getting Help & give feedback

If you encounter issues or you are just looking for advice, feel free to use one of the links below:

	
The sample project: SDN University. More example projects for Spring Data Neo4j are available in the Neo4j-Examples repository

	
The main SpringSource project site contains links to basic project information such as source code, JavaDocs, Issue tracking, etc.

	
Talk and share with the community on the SDN/OGM Slack channel

	
For more detailed questions, use Spring Data Neo4j on StackOverflow

	
Use the templates for reporting issues (they can also be used to bootstrap your projects).

	
For professional support feel free to contact Neo4j or GraphAware.

If you are new to Spring as well as to Spring Data, look for information about Spring projects.

 NEW & NOTEWORTHY

What’s new in Spring Data Neo4j 5.0.0

	
SDN 5.x is designed to work with Java 8, Neo4j 3.1+, Spring 5 and Spring Boot 2.x.

	
Bolt is now the default database protocol.

	
For simplicity, annotations are now only supported on entity attributes, no more on accessors.

	
New id management ; database ids are not mandatory anymore.

	
Smarter deep querying based on domain model structure.

	
Dynamic properties allow mapping in Map structures.

	
Projections support.

	
Improved causal cluster support and bookmark management.

	
More flexible configuration.

	
Better Java 8 support : all type queries can now return stream results and Optional. Better date / time management.

	
Internal metadata handling has been refactored for better reliability.

	
Auditing support (since 5.0.1)

When migrating from 4.x, please see the migration guide.

 DEPENDENCIES

Due to different inception dates of individual Spring Data modules, most of them carry different major and minor version numbers. The easiest way to find compatible ones is by relying on the Spring Data Release Train BOM we ship with the compatible versions defined. In a Maven project you’d declare this dependency in the <dependencyManagement /> section of your POM:

Using the Spring Data release train BOM

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.springframework.data</groupId>
 <artifactId>spring-data-releasetrain</artifactId>
 <version>${release-train}</version>
 <scope>import</scope>
 <type>pom</type>
 </dependency>
 </dependencies>
</dependencyManagement>

The current release train version is Lovelace-M1. The train names are ascending alphabetically and currently available ones are listed here. The version name follows the following pattern: ${name}-${release} where release can be one of the following:

	
BUILD-SNAPSHOT - current snapshots

	
M1, M2 etc. - milestones

	
RC1, RC2 etc. - release candidates

	
RELEASE - GA release

	
SR1, SR2 etc. - service releases

A working example of using the BOMs can be found in our Spring Data examples repository. If that’s in place declare the Spring Data modules you’d like to use without a version in the <dependencies /> block.

Declaring a dependency to a Spring Data module

<dependencies>
 <dependency>
 <groupId>org.springframework.data</groupId>
 <artifactId>spring-data-jpa</artifactId>
 </dependency>
<dependencies>

Dependency management with Spring Boot

Spring Boot already selects a very recent version of Spring Data modules for you. In case you want to upgrade to a newer version nonetheless, simply configure the property spring-data-releasetrain.version to the train name and iteration you’d like to use.

Spring Framework

The current version of Spring Data modules require Spring Framework in version 5.0.3.RELEASE or better. The modules might also work with an older bugfix version of that minor version. However, using the most recent version within that generation is highly recommended.

 WORKING WITH SPRING DATA REPOSITORIES

The goal of Spring Data repository abstraction is to significantly reduce the amount of boilerplate code required to implement data access layers for various persistence stores.

Spring Data repository documentation and your module

This chapter explains the core concepts and interfaces of Spring Data repositories. The information in this chapter is pulled from the Spring Data Commons module. It uses the configuration and code samples for the Java Persistence API (JPA) module. Adapt the XML namespace declaration and the types to be extended to the equivalents of the particular module that you are using. [repositories.namespace-reference] covers XML configuration which is supported across all Spring Data modules supporting the repository API, [repository-query-keywords] covers the query method keywords supported by the repository abstraction in general. For detailed information on the specific features of your module, consult the chapter on that module of this document.

Core concepts

The central interface in Spring Data repository abstraction is Repository (probably not that much of a surprise). It takes the domain class to manage as well as the id type of the domain class as type arguments. This interface acts primarily as a marker interface to capture the types to work with and to help you to discover interfaces that extend this one. The CrudRepository provides sophisticated CRUD functionality for the entity class that is being managed.

CrudRepository interface

public interface CrudRepository<T, ID extends Serializable>
 extends Repository<T, ID> {

 <S extends T> S save(S entity); ①

 Optional<T> findById(ID primaryKey); ②

 Iterable<T> findAll(); ③

 long count(); ④

 void delete(T entity); ⑤

 boolean existsById(ID primaryKey); ⑥

 // … more functionality omitted.
}

	① Saves the given entity.

	② Returns the entity identified by the given id.

	③ Returns all entities.

	④ Returns the number of entities.

	⑤ Deletes the given entity.

	⑥ Indicates whether an entity with the given id exists.

We also provide persistence technology-specific abstractions like e.g. JpaRepository or MongoRepository. Those interfaces extend CrudRepository and expose the capabilities of the underlying persistence technology in addition to the rather generic persistence technology-agnostic interfaces like e.g. CrudRepository.

On top of the CrudRepository there is a PagingAndSortingRepository abstraction that adds additional methods to ease paginated access to entities:

PagingAndSortingRepository

public interface PagingAndSortingRepository<T, ID extends Serializable>
 extends CrudRepository<T, ID> {

 Iterable<T> findAll(Sort sort);

 Page<T> findAll(Pageable pageable);
}

Accessing the second page of User by a page size of 20 you could simply do something like this:

PagingAndSortingRepository<User, Long> repository = // … get access to a bean
Page<User> users = repository.findAll(new PageRequest(1, 20));

In addition to query methods, query derivation for both count and delete queries, is available.

Derived Count Query

interface UserRepository extends CrudRepository<User, Long> {

 long countByLastname(String lastname);
}

Derived Delete Query

interface UserRepository extends CrudRepository<User, Long> {

 long deleteByLastname(String lastname);

 List<User> removeByLastname(String lastname);
}

Query methods

Standard CRUD functionality repositories usually have queries on the underlying datastore. With Spring Data, declaring those queries becomes a four-step process:

	
Declare an interface extending Repository or one of its subinterfaces and type it to the domain class and ID type that it will handle.

interface PersonRepository extends Repository<Person, Long> { … }

	
Declare query methods on the interface.

interface PersonRepository extends Repository<Person, Long> {
 List<Person> findByLastname(String lastname);
}

	
Set up Spring to create proxy instances for those interfaces. Either via JavaConfig:

import org.springframework.data.jpa.repository.config.EnableJpaRepositories;

@EnableJpaRepositories
class Config {}

or via XML configuration:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jpa="http://www.springframework.org/schema/data/jpa"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/data/jpa
 http://www.springframework.org/schema/data/jpa/spring-jpa.xsd">

 <jpa:repositories base-package="com.acme.repositories"/>

</beans>

The JPA namespace is used in this example. If you are using the repository abstraction for any other store, you need to change this to the appropriate namespace declaration of your store module which should be exchanging jpa in favor of, for example, mongodb.

Also, note that the JavaConfig variant doesn’t configure a package explictly as the package of the annotated class is used by default. To customize the package to scan use one of the basePackage… attribute of the data-store specific repository @Enable…-annotation.

	
Get the repository instance injected and use it.

class SomeClient {

 private final PersonRepository repository;

 SomeClient(PersonRepository repository) {
 this.repository = repository;
 }

 void doSomething() {
 List<Person> persons = repository.findByLastname("Matthews");
 }
}

The sections that follow explain each step in detail.

Defining repository interfaces

As a first step you define a domain class-specific repository interface. The interface must extend Repository and be typed to the domain class and an ID type. If you want to expose CRUD methods for that domain type, extend CrudRepository instead of Repository.

Fine-tuning repository definition

Typically, your repository interface will extend Repository, CrudRepository or PagingAndSortingRepository. Alternatively, if you do not want to extend Spring Data interfaces, you can also annotate your repository interface with @RepositoryDefinition. Extending CrudRepository exposes a complete set of methods to manipulate your entities. If you prefer to be selective about the methods being exposed, simply copy the ones you want to expose from CrudRepository into your domain repository.

This allows you to define your own abstractions on top of the provided Spring Data Repositories functionality.

Selectively exposing CRUD methods

@NoRepositoryBean
interface MyBaseRepository<T, ID extends Serializable> extends Repository<T, ID> {

 Optional<T> findById(ID id);

 <S extends T> S save(S entity);
}

interface UserRepository extends MyBaseRepository<User, Long> {
 User findByEmailAddress(EmailAddress emailAddress);
}

In this first step you defined a common base interface for all your domain repositories and exposed findById(…) as well as save(…).These methods will be routed into the base repository implementation of the store of your choice provided by Spring Data ,e.g. in the case if JPA SimpleJpaRepository, because they are matching the method signatures in CrudRepository. So the UserRepository will now be able to save users, and find single ones by id, as well as triggering a query to find Users by their email address.

Note, that the intermediate repository interface is annotated with @NoRepositoryBean. Make sure you add that annotation to all repository interfaces that Spring Data should not create instances for at runtime.

Null handling of repository methods

As of Spring Data 2.0, repository CRUD methods that return an individual aggregate instance use Java 8’s Optional to indicate the potential absence of a value.
Besides that, Spring Data supports to return other wrapper types on query methods:

	
com.google.common.base.Optional

	
scala.Option

	
io.vavr.control.Option

	
javaslang.control.Option (deprecated as Javaslang is deprecated)

Alternatively query methods can choose not to use a wrapper type at all.
The absence of a query result will then be indicated by returning null.
Repository methods returning collections, collection alternatives, wrappers, and streams are guaranteed never to return null but rather the corresponding empty representation.
See [repository-query-return-types] for details.

Nullability annotations

You can express nullability constraints for repository methods using Spring Framework’s nullability annotations.
They provide a tooling-friendly approach and opt-in null checks during runtime:

	
@NonNullApi – to be used on the package level to declare that the default behavior for parameters and return values is to not accept or produce null values.

	
@NonNull – to be used on a parameter or return value that must not be null
(not needed on parameter and return value where @NonNullApi applies).

	
@Nullable – to be used on a parameter or return value that can be null.

Spring annotations are meta-annotated with JSR 305 annotations (a dormant but widely spread JSR). JSR 305 meta-annotations allow tooling vendors like IDEA, Eclipse, or Kotlin to provide null-safety support in a generic way, without having to hard-code support for Spring annotations.
To enable runtime checking of nullability constraints for query methods, you need to activate non-nullability on package level using Spring’s @NonNullApi in package-info.java:

Declaring non-nullability in package-info.java

@org.springframework.lang.NonNullApi
package com.acme;

Once non-null defaulting is in place, repository query method invocations will get validated at runtime for nullability constraints.
Exceptions will be thrown in case a query execution result violates the defined constraint, i.e. the method would return null for some reason but is declared as non-nullable (the default with the annotation defined on the package the repository resides in).
If you want to opt-in to nullable results again, selectively use @Nullable that a method.
Using the aforementioned result wrapper types will continue to work as expected, i.e. an empty result will be translated into the value representing absence.

Using different nullability constraints

package com.acme; ①

import org.springframework.lang.Nullable;

interface UserRepository extends Repository<User, Long> {

 User getByEmailAddress(EmailAddress emailAddress); ②

 @Nullable
 User findByEmailAddress(@Nullable EmailAddress emailAdress); ③

 Optional<User> findOptionalByEmailAddress(EmailAddress emailAddress); ④
}

	① The repository resides in a package (or sub-package) for which we’ve defined non-null behavior (see above).

	② Will throw an EmptyResultDataAccessException in case the query executed does not produce a result. Will throw an IllegalArgumentException in case the emailAddress handed to the method is null.

	③ Will return null in case the query executed does not produce a result. Also accepts null as value for emailAddress.

	④ Will return Optional.empty() in case the query executed does not produce a result. Will throw an IllegalArgumentException in case the emailAddress handed to the method is null.

Nullability in Kotlin-based repositories

Kotlin has the definition of nullability constraints
 baked into the language.
Kotlin code compiles to bytecode which does not express nullability constraints using method signatures but rather compiled-in metadata. Make sure to include the kotlin-reflect JAR in your project to enable introspection of Kotlin’s nullability constraints.
Spring Data repositories use the language mechanism to define those constraints to apply the same runtime checks:

Using nullability constraints on Kotlin repositories

interface UserRepository : Repository<User, String> {

 fun findByUsername(username: String): User ①

 fun findByFirstname(firstname: String?): User? ②
}

	① The method defines both, the parameter as non-nullable (the Kotlin default) as well as the result. The Kotlin compiler will already reject method invocations trying to hand null into the method. In case the query execution yields an empty result, an EmptyResultDataAccessException will be thrown.

	② This method accepts null as parameter for firstname and returns null in case the query execution does not produce a result.

Using Repositories with multiple Spring Data modules

Using a unique Spring Data module in your application makes things simple hence, all repository interfaces in the defined scope are bound to the Spring Data module. Sometimes applications require using more than one Spring Data module. In such case, it’s required for a repository definition to distinguish between persistence technologies. Spring Data enters strict repository configuration mode because it detects multiple repository factories on the class path. Strict configuration requires details on the repository or the domain class to decide about Spring Data module binding for a repository definition:

	
If the repository definition extends the module-specific repository, then it’s a valid candidate for the particular Spring Data module.

	
If the domain class is annotated with the module-specific type annotation, then it’s a valid candidate for the particular Spring Data module. Spring Data modules accept either 3rd party annotations (such as JPA’s @Entity) or provide own annotations such as @Document for Spring Data MongoDB/Spring Data Elasticsearch.

Repository definitions using Module-specific Interfaces

interface MyRepository extends JpaRepository<User, Long> { }

@NoRepositoryBean
interface MyBaseRepository<T, ID extends Serializable> extends JpaRepository<T, ID> {
 …
}

interface UserRepository extends MyBaseRepository<User, Long> {
 …
}

MyRepository and UserRepository extend JpaRepository in their type hierarchy. They are valid candidates for the Spring Data JPA module.

Repository definitions using generic Interfaces

interface AmbiguousRepository extends Repository<User, Long> {
 …
}

@NoRepositoryBean
interface MyBaseRepository<T, ID extends Serializable> extends CrudRepository<T, ID> {
 …
}

interface AmbiguousUserRepository extends MyBaseRepository<User, Long> {
 …
}

AmbiguousRepository and AmbiguousUserRepository extend only Repository and CrudRepository in their type hierarchy. While this is perfectly fine using a unique Spring Data module, multiple modules cannot distinguish to which particular Spring Data these repositories should be bound.

Repository definitions using Domain Classes with Annotations

interface PersonRepository extends Repository<Person, Long> {
 …
}

@Entity
class Person {
 …
}

interface UserRepository extends Repository<User, Long> {
 …
}

@Document
class User {
 …
}

PersonRepository references Person which is annotated with the JPA annotation @Entity so this repository clearly belongs to Spring Data JPA. UserRepository uses User annotated with Spring Data MongoDB’s @Document annotation.

Repository definitions using Domain Classes with mixed Annotations

interface JpaPersonRepository extends Repository<Person, Long> {
 …
}

interface MongoDBPersonRepository extends Repository<Person, Long> {
 …
}

@Entity
@Document
class Person {
 …
}

This example shows a domain class using both JPA and Spring Data MongoDB annotations. It defines two repositories, JpaPersonRepository and MongoDBPersonRepository. One is intended for JPA and the other for MongoDB usage. Spring Data is no longer able to tell the repositories apart which leads to undefined behavior.

Repository type details and identifying domain class annotations are used for strict repository configuration identify repository candidates for a particular Spring Data module. Using multiple persistence technology-specific annotations on the same domain type is possible to reuse domain types across multiple persistence technologies, but then Spring Data is no longer able to determine a unique module to bind the repository.

The last way to distinguish repositories is scoping repository base packages. Base packages define the starting points for scanning for repository interface definitions which implies to have repository definitions located in the appropriate packages. By default, annotation-driven configuration uses the package of the configuration class. The base package in XML-based configuration is mandatory.

Annotation-driven configuration of base packages

@EnableJpaRepositories(basePackages = "com.acme.repositories.jpa")
@EnableMongoRepositories(basePackages = "com.acme.repositories.mongo")
interface Configuration { }

Defining query methods

The repository proxy has two ways to derive a store-specific query from the method name. It can derive the query from the method name directly, or by using a manually defined query. Available options depend on the actual store. However, there’s got to be a strategy that decides what actual query is created. Let’s have a look at the available options.

Query lookup strategies

The following strategies are available for the repository infrastructure to resolve the query. You can configure the strategy at the namespace through the query-lookup-strategy attribute in case of XML configuration or via the queryLookupStrategy attribute of the Enable${store}Repositories annotation in case of Java config. Some strategies may not be supported for particular datastores.

	
CREATE attempts to construct a store-specific query from the query method name. The general approach is to remove a given set of well-known prefixes from the method name and parse the rest of the method. Read more about query construction in Query creation.

	
USE_DECLARED_QUERY tries to find a declared query and will throw an exception in case it can’t find one. The query can be defined by an annotation somewhere or declared by other means. Consult the documentation of the specific store to find available options for that store. If the repository infrastructure does not find a declared query for the method at bootstrap time, it fails.

	
CREATE_IF_NOT_FOUND (default) combines CREATE and USE_DECLARED_QUERY. It looks up a declared query first, and if no declared query is found, it creates a custom method name-based query. This is the default lookup strategy and thus will be used if you do not configure anything explicitly. It allows quick query definition by method names but also custom-tuning of these queries by introducing declared queries as needed.

Query creation

The query builder mechanism built into Spring Data repository infrastructure is useful for building constraining queries over entities of the repository. The mechanism strips the prefixes find…By, read…By, query…By, count…By, and get…By from the method and starts parsing the rest of it. The introducing clause can contain further expressions such as a Distinct to set a distinct flag on the query to be created. However, the first By acts as delimiter to indicate the start of the actual criteria. At a very basic level you can define conditions on entity properties and concatenate them with And and Or.

Query creation from method names

interface PersonRepository extends Repository<User, Long> {

 List<Person> findByEmailAddressAndLastname(EmailAddress emailAddress, String lastname);

 // Enables the distinct flag for the query
 List<Person> findDistinctPeopleByLastnameOrFirstname(String lastname, String firstname);
 List<Person> findPeopleDistinctByLastnameOrFirstname(String lastname, String firstname);

 // Enabling ignoring case for an individual property
 List<Person> findByLastnameIgnoreCase(String lastname);
 // Enabling ignoring case for all suitable properties
 List<Person> findByLastnameAndFirstnameAllIgnoreCase(String lastname, String firstname);

 // Enabling static ORDER BY for a query
 List<Person> findByLastnameOrderByFirstnameAsc(String lastname);
 List<Person> findByLastnameOrderByFirstnameDesc(String lastname);
}

The actual result of parsing the method depends on the persistence store for which you create the query. However, there are some general things to notice.

	
The expressions are usually property traversals combined with operators that can be concatenated. You can combine property expressions with AND and OR. You also get support for operators such as Between, LessThan, GreaterThan, Like for the property expressions. The supported operators can vary by datastore, so consult the appropriate part of your reference documentation.

	
The method parser supports setting an IgnoreCase flag for individual properties (for example, findByLastnameIgnoreCase(…)) or for all properties of a type that support ignoring case (usually String instances, for example, findByLastnameAndFirstnameAllIgnoreCase(…)). Whether ignoring cases is supported may vary by store, so consult the relevant sections in the reference documentation for the store-specific query method.

	
You can apply static ordering by appending an OrderBy clause to the query method that references a property and by providing a sorting direction (Asc or Desc). To create a query method that supports dynamic sorting, see Special parameter handling.

Property expressions

Property expressions can refer only to a direct property of the managed entity, as shown in the preceding example. At query creation time you already make sure that the parsed property is a property of the managed domain class. However, you can also define constraints by traversing nested properties. Assume a Person has an Address with a ZipCode. In that case a method name of

List<Person> findByAddressZipCode(ZipCode zipCode);

creates the property traversal x.address.zipCode. The resolution algorithm starts with interpreting the entire part (AddressZipCode) as the property and checks the domain class for a property with that name (uncapitalized). If the algorithm succeeds it uses that property. If not, the algorithm splits up the source at the camel case parts from the right side into a head and a tail and tries to find the corresponding property, in our example, AddressZip and Code. If the algorithm finds a property with that head it takes the tail and continue building the tree down from there, splitting the tail up in the way just described. If the first split does not match, the algorithm move the split point to the left (Address, ZipCode) and continues.

Although this should work for most cases, it is possible for the algorithm to select the wrong property. Suppose the Person class has an addressZip property as well. The algorithm would match in the first split round already and essentially choose the wrong property and finally fail (as the type of addressZip probably has no code property).

To resolve this ambiguity you can use _ inside your method name to manually define traversal points. So our method name would end up like so:

List<Person> findByAddress_ZipCode(ZipCode zipCode);

As we treat underscore as a reserved character we strongly advise to follow standard Java naming conventions (i.e. not using underscores in property names but camel case instead).

Special parameter handling

To handle parameters in your query you simply define method parameters as already seen in the examples above. Besides that the infrastructure will recognize certain specific types like Pageable and Sort to apply pagination and sorting to your queries dynamically.

Using Pageable, Slice and Sort in query methods

Page<User> findByLastname(String lastname, Pageable pageable);

Slice<User> findByLastname(String lastname, Pageable pageable);

List<User> findByLastname(String lastname, Sort sort);

List<User> findByLastname(String lastname, Pageable pageable);

The first method allows you to pass an org.springframework.data.domain.Pageable instance to the query method to dynamically add paging to your statically defined query. A Page knows about the total number of elements and pages available. It does so by the infrastructure triggering a count query to calculate the overall number. As this might be expensive depending on the store used, Slice can be used as return instead. A Slice only knows about whether there’s a next Slice available which might be just sufficient when walking through a larger result set.

Sorting options are handled through the Pageable instance too. If you only need sorting, simply add an org.springframework.data.domain.Sort parameter to your method. As you also can see, simply returning a List is possible as well. In this case the additional metadata required to build the actual Page instance will not be created (which in turn means that the additional count query that would have been necessary not being issued) but rather simply restricts the query to look up only the given range of entities.

To find out how many pages you get for a query entirely you have to trigger an additional count query. By default this query will be derived from the query you actually trigger.

Limiting query results

The results of query methods can be limited via the keywords first or top, which can be used interchangeably. An optional numeric value can be appended to top/first to specify the maximum result size to be returned.
If the number is left out, a result size of 1 is assumed.

Limiting the result size of a query with Top and First

User findFirstByOrderByLastnameAsc();

User findTopByOrderByAgeDesc();

Page<User> queryFirst10ByLastname(String lastname, Pageable pageable);

Slice<User> findTop3ByLastname(String lastname, Pageable pageable);

List<User> findFirst10ByLastname(String lastname, Sort sort);

List<User> findTop10ByLastname(String lastname, Pageable pageable);

The limiting expressions also support the Distinct keyword. Also, for the queries limiting the result set to one instance, wrapping the result into an Optional is supported.

If pagination or slicing is applied to a limiting query pagination (and the calculation of the number of pages available) then it is applied within the limited result.

Note that limiting the results in combination with dynamic sorting via a Sort parameter allows to express query methods for the 'K' smallest as well as for the 'K' biggest elements.

Streaming query results

The results of query methods can be processed incrementally by using a Java 8 Stream<T> as return type. Instead of simply wrapping the query results in a Stream data store specific methods are used to perform the streaming.

Stream the result of a query with Java 8 Stream<T>

@Query("select u from User u")
Stream<User> findAllByCustomQueryAndStream();

Stream<User> readAllByFirstnameNotNull();

@Query("select u from User u")
Stream<User> streamAllPaged(Pageable pageable);

A Stream potentially wraps underlying data store specific resources and must therefore be closed after usage. You can either manually close the Stream using the close() method or by using a Java 7 try-with-resources block.

Working with a Stream<T> result in a try-with-resources block

try (Stream<User> stream = repository.findAllByCustomQueryAndStream()) {
 stream.forEach(…);
}

Not all Spring Data modules currently support Stream<T> as a return type.

Async query results

Repository queries can be executed asynchronously using Spring’s asynchronous method execution capability. This means the method will return immediately upon invocation and the actual query execution will occur in a task that has been submitted to a Spring TaskExecutor.

@Async
Future<User> findByFirstname(String firstname); ①

@Async
CompletableFuture<User> findOneByFirstname(String firstname); ②

@Async
ListenableFuture<User> findOneByLastname(String lastname); ③

	① Use java.util.concurrent.Future as return type.

	② Use a Java 8 java.util.concurrent.CompletableFuture as return type.

	③ Use a org.springframework.util.concurrent.ListenableFuture as return type.

Creating repository instances

In this section you create instances and bean definitions for the repository interfaces defined. One way to do so is using the Spring namespace that is shipped with each Spring Data module that supports the repository mechanism although we generally recommend to use the Java-Config style configuration.

XML configuration

Each Spring Data module includes a repositories element that allows you to simply define a base package that Spring scans for you.

Enabling Spring Data repositories via XML

<?xml version="1.0" encoding="UTF-8"?>
<beans:beans xmlns:beans="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://www.springframework.org/schema/data/jpa"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/data/jpa
 http://www.springframework.org/schema/data/jpa/spring-jpa.xsd">

 <repositories base-package="com.acme.repositories" />

</beans:beans>

In the preceding example, Spring is instructed to scan com.acme.repositories and all its sub-packages for interfaces extending Repository or one of its sub-interfaces. For each interface found, the infrastructure registers the persistence technology-specific FactoryBean to create the appropriate proxies that handle invocations of the query methods. Each bean is registered under a bean name that is derived from the interface name, so an interface of UserRepository would be registered under userRepository. The base-package attribute allows wildcards, so that you can define a pattern of scanned packages.

Using filters

By default the infrastructure picks up every interface extending the persistence technology-specific Repository sub-interface located under the configured base package and creates a bean instance for it. However, you might want more fine-grained control over which interfaces bean instances get created for. To do this you use <include-filter /> and <exclude-filter /> elements inside <repositories />. The semantics are exactly equivalent to the elements in Spring’s context namespace. For details, see Spring reference documentation on these elements.

For example, to exclude certain interfaces from instantiation as repository, you could use the following configuration:

Using exclude-filter element

<repositories base-package="com.acme.repositories">
 <context:exclude-filter type="regex" expression=".*SomeRepository" />
</repositories>

This example excludes all interfaces ending in SomeRepository from being instantiated.

JavaConfig

The repository infrastructure can also be triggered using a store-specific @Enable${store}Repositories annotation on a JavaConfig class. For an introduction into Java-based configuration of the Spring container, see the reference documentation.[1]

A sample configuration to enable Spring Data repositories looks something like this.

Sample annotation based repository configuration

@Configuration
@EnableJpaRepositories("com.acme.repositories")
class ApplicationConfiguration {

 @Bean
 EntityManagerFactory entityManagerFactory() {
 // …
 }
}

The sample uses the JPA-specific annotation, which you would change according to the store module you actually use. The same applies to the definition of the EntityManagerFactory bean. Consult the sections covering the store-specific configuration.

Standalone usage

You can also use the repository infrastructure outside of a Spring container, e.g. in CDI environments. You still need some Spring libraries in your classpath, but generally you can set up repositories programmatically as well. The Spring Data modules that provide repository support ship a persistence technology-specific RepositoryFactory that you can use as follows.

Standalone usage of repository factory

RepositoryFactorySupport factory = … // Instantiate factory here
UserRepository repository = factory.getRepository(UserRepository.class);

Custom implementations for Spring Data repositories

In this section you will learn about repository customization and how fragments form a composite repository.

When query method require a different behavior or can’t be implemented by query derivation than it’s necessary to provide a custom implementation. Spring Data repositories easily allow you to provide custom repository code and integrate it with generic CRUD abstraction and query method functionality.

Customizing individual repositories

To enrich a repository with custom functionality, you first define a fragment interface and an implementation for the custom functionality. Then let your repository interface additionally extend from the fragment interface.

Interface for custom repository functionality

interface CustomizedUserRepository {
 void someCustomMethod(User user);
}

Implementation of custom repository functionality

class CustomizedUserRepositoryImpl implements CustomizedUserRepository {

 public void someCustomMethod(User user) {
 // Your custom implementation
 }
}

The most important bit for the class to be found is the Impl postfix of the name on it compared to the fragment interface.

The implementation itself does not depend on Spring Data and can be a regular Spring bean. So you can use standard dependency injection behavior to inject references to other beans like a JdbcTemplate, take part in aspects, and so on.

Changes to your repository interface

interface UserRepository extends CrudRepository<User, Long>, CustomizedUserRepository {

 // Declare query methods here
}

Let your repository interface extend the fragment one. Doing so combines the CRUD and custom functionality and makes it available to clients.

Spring Data repositories are implemented by using fragments that form a repository composition. Fragments are the base repository, functional aspects such as QueryDsl and custom interfaces along with their implementation. Each time you add an interface to your repository interface, you enhance the composition by adding a fragment. The base repository and repository aspect implementations are provided by each Spring Data module.

Fragments with their implementations

interface HumanRepository {
 void someHumanMethod(User user);
}

class HumanRepositoryImpl implements HumanRepository {

 public void someHumanMethod(User user) {
 // Your custom implementation
 }
}

interface EmployeeRepository {

 void someEmployeeMethod(User user);

 User anotherEmployeeMethod(User user);
}

class ContactRepositoryImpl implements ContactRepository {

 public void someContactMethod(User user) {
 // Your custom implementation
 }

 public User anotherContactMethod(User user) {
 // Your custom implementation
 }
}

Changes to your repository interface

interface UserRepository extends CrudRepository<User, Long>, HumanRepository, ContactRepository {

 // Declare query methods here
}

Repositories may be composed of multiple custom implementations that are imported in the order of their declaration. Custom implementations have a higher priority than the base implementation and repository aspects. This ordering allows you to override base repository and aspect methods and resolves ambiguity if two fragments contribute the same method signature. Repository fragments are not limited to be used in a single repository interface. Multiple repositories may use a fragment interface to reuse customizations across different repositories.

Fragments overriding save(…)

interface CustomizedSave<T> {
 <S extends T> S save(S entity);
}

class CustomizedSaveImpl<T> implements CustomizedSave<T> {

 public <S extends T> S save(S entity) {
 // Your custom implementation
 }
}

Customized repository interfaces

interface UserRepository extends CrudRepository<User, Long>, CustomizedSave<User> {
}

interface PersonRepository extends CrudRepository<Person, Long>, CustomizedSave<Person> {
}

Configuration

If you use namespace configuration, the repository infrastructure tries to autodetect custom implementation fragments by scanning for classes below the package we found a repository in. These classes need to follow the naming convention of appending the namespace element’s attribute repository-impl-postfix to the found fragment interface name. This postfix defaults to Impl.

Configuration example

<repositories base-package="com.acme.repository" />

<repositories base-package="com.acme.repository" repository-impl-postfix="FooBar" />

The first configuration example will try to look up a class com.acme.repository.CustomizedUserRepositoryImpl to act as custom repository implementation, whereas the second example will try to lookup com.acme.repository.CustomizedUserRepositoryFooBar.

Resolution of ambiguity

If multiple implementations with matching class names get found in different packages, Spring Data uses the bean names to identify the correct one to use.

Given the following two custom implementations for the CustomizedUserRepository introduced above the first implementation will get picked.
Its bean name is customizedUserRepositoryImpl matches that of the fragment interface (CustomizedUserRepository) plus the postfix Impl.

Resolution of amibiguous implementations

package com.acme.impl.one;

class CustomizedUserRepositoryImpl implements CustomizedUserRepository {

 // Your custom implementation
}

package com.acme.impl.two;

@Component("specialCustomImpl")
class CustomizedUserRepositoryImpl implements CustomizedUserRepository {

 // Your custom implementation
}

If you annotate the UserRepository interface with @Component("specialCustom") the bean name plus Impl matches the one defined for the repository implementation in com.acme.impl.two and it will be picked instead of the first one.

Manual wiring

The approach just shown works well if your custom implementation uses annotation-based configuration and autowiring only, as it will be treated as any other Spring bean. If your implementation fragment bean needs special wiring, you simply declare the bean and name it after the conventions just described. The infrastructure will then refer to the manually defined bean definition by name instead of creating one itself.

Manual wiring of custom implementations

<repositories base-package="com.acme.repository" />

<beans:bean id="userRepositoryImpl" class="…">
 <!-- further configuration -->
</beans:bean>

Customize the base repository

The preceding approach requires customization of all repository interfaces when you want to customize the base repository behavior, so all repositories are affected. To change behavior for all repositories, you need to create an implementation that extends the persistence technology-specific repository base class. This class will then act as a custom base class for the repository proxies.

Custom repository base class

class MyRepositoryImpl<T, ID extends Serializable>
 extends SimpleJpaRepository<T, ID> {

 private final EntityManager entityManager;

 MyRepositoryImpl(JpaEntityInformation entityInformation,
 EntityManager entityManager) {
 super(entityInformation, entityManager);

 // Keep the EntityManager around to used from the newly introduced methods.
 this.entityManager = entityManager;
 }

 @Transactional
 public <S extends T> S save(S entity) {
 // implementation goes here
 }
}

The class needs to have a constructor of the super class which the store-specific repository factory implementation is using. In case the repository base class has multiple constructors, override the one taking an EntityInformation plus a store specific infrastructure object (e.g. an EntityManager or a template class).

The final step is to make the Spring Data infrastructure aware of the customized repository base class. In JavaConfig this is achieved by using the repositoryBaseClass attribute of the @Enable…Repositories annotation:

Configuring a custom repository base class using JavaConfig

@Configuration
@EnableJpaRepositories(repositoryBaseClass = MyRepositoryImpl.class)
class ApplicationConfiguration { … }

A corresponding attribute is available in the XML namespace.

Configuring a custom repository base class using XML

<repositories base-package="com.acme.repository"
 base-class="….MyRepositoryImpl" />

Publishing events from aggregate roots

Entities managed by repositories are aggregate roots.
In a Domain-Driven Design application, these aggregate roots usually publish domain events.
Spring Data provides an annotation @DomainEvents you can use on a method of your aggregate root to make that publication as easy as possible.

Exposing domain events from an aggregate root

class AnAggregateRoot {

 @DomainEvents ①
 Collection<Object> domainEvents() {
 // … return events you want to get published here
 }

 @AfterDomainEventPublication ②
 void callbackMethod() {
 // … potentially clean up domain events list
 }
}

	① The method using @DomainEvents can either return a single event instance or a collection of events. It must not take any arguments.

	② After all events have been published, a method annotated with @AfterDomainEventPublication. It e.g. can be used to potentially clean the list of events to be published.

The methods will be called every time one of a Spring Data repository’s save(…) methods is called.

Spring Data extensions

This section documents a set of Spring Data extensions that enable Spring Data usage in a variety of contexts. Currently most of the integration is targeted towards Spring MVC.

Querydsl Extension

Querydsl is a framework which enables the construction of statically typed SQL-like queries via its fluent API.

Several Spring Data modules offer integration with Querydsl via QueryDslPredicateExecutor.

QueryDslPredicateExecutor interface

public interface QueryDslPredicateExecutor<T> {

 Optional<T> findById(Predicate predicate); ①

 Iterable<T> findAll(Predicate predicate); ②

 long count(Predicate predicate); ③

 boolean exists(Predicate predicate); ④

 // … more functionality omitted.
}

	① Finds and returns a single entity matching the Predicate.

	② Finds and returns all entities matching the Predicate.

	③ Returns the number of entities matching the Predicate.

	④ Returns if an entity that matches the Predicate exists.

To make use of Querydsl support simply extend QueryDslPredicateExecutor on your repository interface.

Querydsl integration on repositories

interface UserRepository extends CrudRepository<User, Long>, QueryDslPredicateExecutor<User> {

}

The above enables to write typesafe queries using Querydsl Predicate s.

Predicate predicate = user.firstname.equalsIgnoreCase("dave")
 .and(user.lastname.startsWithIgnoreCase("mathews"));

userRepository.findAll(predicate);

Web support

This section contains the documentation for the Spring Data web support as it is implemented as of Spring Data Commons in the 1.6 range. As it the newly introduced support changes quite a lot of things we kept the documentation of the former behavior in Legacy web support.

Spring Data modules ships with a variety of web support if the module supports the repository programming model. The web related stuff requires Spring MVC JARs on the classpath, some of them even provide integration with Spring HATEOAS [2]. In general, the integration support is enabled by using the @EnableSpringDataWebSupport annotation in your JavaConfig configuration class.

Enabling Spring Data web support

@Configuration
@EnableWebMvc
@EnableSpringDataWebSupport
class WebConfiguration {}

The @EnableSpringDataWebSupport annotation registers a few components we will discuss in a bit. It will also detect Spring HATEOAS on the classpath and register integration components for it as well if present.

Alternatively, if you are using XML configuration, register either SpringDataWebSupport or HateoasAwareSpringDataWebSupport as Spring beans:

Enabling Spring Data web support in XML

<bean class="org.springframework.data.web.config.SpringDataWebConfiguration" />

<!-- If you're using Spring HATEOAS as well register this one *instead* of the former -->
<bean class="org.springframework.data.web.config.HateoasAwareSpringDataWebConfiguration" />

Basic web support

The configuration setup shown above will register a few basic components:

	
A DomainClassConverter to enable Spring MVC to resolve instances of repository managed domain classes from request parameters or path variables.

	
HandlerMethodArgumentResolver implementations to let Spring MVC resolve Pageable and Sort instances from request parameters.

DomainClassConverter

The DomainClassConverter allows you to use domain types in your Spring MVC controller method signatures directly, so that you don’t have to manually lookup the instances via the repository:

A Spring MVC controller using domain types in method signatures

@Controller
@RequestMapping("/users")
class UserController {

 @RequestMapping("/{id}")
 String showUserForm(@PathVariable("id") User user, Model model) {

 model.addAttribute("user", user);
 return "userForm";
 }
}

As you can see the method receives a User instance directly and no further lookup is necessary. The instance can be resolved by letting Spring MVC convert the path variable into the id type of the domain class first and eventually access the instance through calling findById(…) on the repository instance registered for the domain type.

Currently the repository has to implement CrudRepository to be eligible to be discovered for conversion.

HandlerMethodArgumentResolvers for Pageable and Sort

The configuration snippet above also registers a PageableHandlerMethodArgumentResolver as well as an instance of SortHandlerMethodArgumentResolver. The registration enables Pageable and Sort being valid controller method arguments

Using Pageable as controller method argument

@Controller
@RequestMapping("/users")
class UserController {

 private final UserRepository repository;

 UserController(UserRepository repository) {
 this.repository = repository;
 }

 @RequestMapping
 String showUsers(Model model, Pageable pageable) {

 model.addAttribute("users", repository.findAll(pageable));
 return "users";
 }
}

This method signature will cause Spring MVC try to derive a Pageable instance from the request parameters using the following default configuration:

Table 1. Request parameters evaluated for Pageable instances

	page

	Page you want to retrieve, 0 indexed and defaults to 0.

	size

	Size of the page you want to retrieve, defaults to 20.

	sort

	Properties that should be sorted by in the format property,property(,ASC|DESC). Default sort direction is ascending. Use multiple sort parameters if you want to switch directions, e.g. ?sort=firstname&sort=lastname,asc.

To customize this behavior register a bean implementing the interface PageableHandlerMethodArgumentResolverCustomizer or SortHandlerMethodArgumentResolverCustomizer respectively. It’s customize() method will get called allowing you to change settings. Like in the following example.

@Bean SortHandlerMethodArgumentResolverCustomizer sortCustomizer() {
 return s -> s.setPropertyDelimiter("<-->");
}

If setting the properties of an existing MethodArgumentResolver isn’t sufficient for your purpose extend either SpringDataWebConfiguration or the HATEOAS-enabled equivalent and override the pageableResolver() or sortResolver() methods and import your customized configuration file instead of using the @Enable-annotation.

In case you need multiple Pageable or Sort instances to be resolved from the request (for multiple tables, for example) you can use Spring’s @Qualifier annotation to distinguish one from another. The request parameters then have to be prefixed with ${qualifier}_. So for a method signature like this:

String showUsers(Model model,
 @Qualifier("foo") Pageable first,
 @Qualifier("bar") Pageable second) { … }

you have to populate foo_page and bar_page etc.

The default Pageable handed into the method is equivalent to a new PageRequest(0, 20) but can be customized using the @PageableDefault annotation on the Pageable parameter.

Hypermedia support for Pageables

Spring HATEOAS ships with a representation model class PagedResources that allows enriching the content of a Page instance with the necessary Page metadata as well as links to let the clients easily navigate the pages. The conversion of a Page to a PagedResources is done by an implementation of the Spring HATEOAS ResourceAssembler interface, the PagedResourcesAssembler.

Using a PagedResourcesAssembler as controller method argument

@Controller
class PersonController {

 @Autowired PersonRepository repository;

 @RequestMapping(value = "/persons", method = RequestMethod.GET)
 HttpEntity<PagedResources<Person>> persons(Pageable pageable,
 PagedResourcesAssembler assembler) {

 Page<Person> persons = repository.findAll(pageable);
 return new ResponseEntity<>(assembler.toResources(persons), HttpStatus.OK);
 }
}

Enabling the configuration as shown above allows the PagedResourcesAssembler to be used as controller method argument. Calling toResources(…) on it will cause the following:

	
The content of the Page will become the content of the PagedResources instance.

	
The PagedResources will get a PageMetadata instance attached populated with information form the Page and the underlying PageRequest.

	
The PagedResources gets prev and next links attached depending on the page’s state. The links will point to the URI the method invoked is mapped to. The pagination parameters added to the method will match the setup of the PageableHandlerMethodArgumentResolver to make sure the links can be resolved later on.

Assume we have 30 Person instances in the database. You can now trigger a request GET http://localhost:8080/persons and you’ll see something similar to this:

{ "links" : [{ "rel" : "next",
 "href" : "http://localhost:8080/persons?page=1&size=20 }
],
 "content" : [
 … // 20 Person instances rendered here
],
 "pageMetadata" : {
 "size" : 20,
 "totalElements" : 30,
 "totalPages" : 2,
 "number" : 0
 }
}

You see that the assembler produced the correct URI and also picks up the default configuration present to resolve the parameters into a Pageable for an upcoming request. This means, if you change that configuration, the links will automatically adhere to the change. By default the assembler points to the controller method it was invoked in but that can be customized by handing in a custom Link to be used as base to build the pagination links to overloads of the PagedResourcesAssembler.toResource(…) method.

Web databinding support

Spring Data projections – generally described in [projections] – can be used to bind incoming request payloads by either using JSONPath expressions (requires Jayway JasonPath or XPath expressions (requires XmlBeam).

HTTP payload binding using JSONPath or XPath expressions

@ProjectedPayload
public interface UserPayload {

 @XBRead("//firstname")
 @JsonPath("$..firstname")
 String getFirstname();

 @XBRead("/lastname")
 @JsonPath({ "$.lastname", "$.user.lastname" })
 String getLastname();
}

The type above can be used as Spring MVC handler method argument or via ParameterizedTypeReference on one of RestTemplate's methods.
The method declarations above would try to find firstname anywhere in the given document.
The lastname XML looup is performed on the top-level of the incoming document.
The JSON variant of that tries a top-level lastname first but also tries lastname nested in a user sub-document in case the former doesn’t return a value.
That way changes if the structure of the source document can be mitigated easily without having to touch clients calling the exposed methods (usually a drawback of class-based payload binding).

Nested projections are supported as described in [projections].
If the method returns a complex, non-interface type, a Jackson ObjectMapper is used to map the final value.

For Spring MVC, the necessary converters are registered automatically, as soon as @EnableSpringDataWebSupport is active and the required dependencies are available on the classpath.
For usage with RestTemplate register a ProjectingJackson2HttpMessageConverter (JSON) or XmlBeamHttpMessageConverter manually.

For more information, see the web projection example in the canonical Spring Data Examples repository.

Querydsl web support

For those stores having QueryDSL integration it is possible to derive queries from the attributes contained in a Request query string.

This means that given the User object from previous samples a query string

?firstname=Dave&lastname=Matthews

can be resolved to

QUser.user.firstname.eq("Dave").and(QUser.user.lastname.eq("Matthews"))

using the QuerydslPredicateArgumentResolver.

The feature will be automatically enabled along @EnableSpringDataWebSupport when Querydsl is found on the classpath.

Adding a @QuerydslPredicate to the method signature will provide a ready to use Predicate which can be executed via the QueryDslPredicateExecutor.

Type information is typically resolved from the methods return type. Since those information does not necessarily match the domain type it might be a good idea to use the root attribute of QuerydslPredicate.

@Controller
class UserController {

 @Autowired UserRepository repository;

 @RequestMapping(value = "/", method = RequestMethod.GET)
 String index(Model model, @QuerydslPredicate(root = User.class) Predicate predicate, ①
 Pageable pageable, @RequestParam MultiValueMap<String, String> parameters) {

 model.addAttribute("users", repository.findAll(predicate, pageable));

 return "index";
 }
}

	① Resolve query string arguments to matching Predicate for User.

The default binding is as follows:

	
Object on simple properties as eq.

	
Object on collection like properties as contains.

	
Collection on simple properties as in.

Those bindings can be customized via the bindings attribute of @QuerydslPredicate or by making use of Java 8 default methods adding the QuerydslBinderCustomizer to the repository interface.

interface UserRepository extends CrudRepository<User, String>,
 QueryDslPredicateExecutor<User>, ①
 QuerydslBinderCustomizer<QUser> { ②

 @Override
 default void customize(QuerydslBindings bindings, QUser user) {

 bindings.bind(user.username).first((path, value) -> path.contains(value)) ③
 bindings.bind(String.class)
 .first((StringPath path, String value) -> path.containsIgnoreCase(value)); ④
 bindings.excluding(user.password); ⑤
 }
}

	① QueryDslPredicateExecutor provides access to specific finder methods for Predicate.

	② QuerydslBinderCustomizer defined on the repository interface will be automatically picked up and shortcuts @QuerydslPredicate(bindings=…​).

	③ Define the binding for the username property to be a simple contains binding.

	④ Define the default binding for String properties to be a case insensitive contains match.

	⑤ Exclude the password property from Predicate resolution.

Repository populators

If you work with the Spring JDBC module, you probably are familiar with the support to populate a DataSource using SQL scripts. A similar abstraction is available on the repositories level, although it does not use SQL as the data definition language because it must be store-independent. Thus the populators support XML (through Spring’s OXM abstraction) and JSON (through Jackson) to define data with which to populate the repositories.

Assume you have a file data.json with the following content:

Data defined in JSON

[{ "_class" : "com.acme.Person",
 "firstname" : "Dave",
 "lastname" : "Matthews" },
 { "_class" : "com.acme.Person",
 "firstname" : "Carter",
 "lastname" : "Beauford" }]

You can easily populate your repositories by using the populator elements of the repository namespace provided in Spring Data Commons. To populate the preceding data to your PersonRepository , do the following:

Declaring a Jackson repository populator

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:repository="http://www.springframework.org/schema/data/repository"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/data/repository
 http://www.springframework.org/schema/data/repository/spring-repository.xsd">

 <repository:jackson2-populator locations="classpath:data.json" />

</beans>

This declaration causes the data.json file to
be read and deserialized via a Jackson ObjectMapper.

The type to which the JSON object will be unmarshalled to will be determined by inspecting the _class attribute of the JSON document. The infrastructure will eventually select the appropriate repository to handle the object just deserialized.

To rather use XML to define the data the repositories shall be populated with, you can use the unmarshaller-populator element. You configure it to use one of the XML marshaller options Spring OXM provides you with. See the Spring reference documentation for details.

Declaring an unmarshalling repository populator (using JAXB)

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:repository="http://www.springframework.org/schema/data/repository"
 xmlns:oxm="http://www.springframework.org/schema/oxm"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/data/repository
 http://www.springframework.org/schema/data/repository/spring-repository.xsd
 http://www.springframework.org/schema/oxm
 http://www.springframework.org/schema/oxm/spring-oxm.xsd">

 <repository:unmarshaller-populator locations="classpath:data.json"
 unmarshaller-ref="unmarshaller" />

 <oxm:jaxb2-marshaller contextPath="com.acme" />

</beans>

Legacy web support

Domain class web binding for Spring MVC

Given you are developing a Spring MVC web application you typically have to resolve domain class ids from URLs. By default your task is to transform that request parameter or URL part into the domain class to hand it to layers below then or execute business logic on the entities directly. This would look something like this:

@Controller
@RequestMapping("/users")
class UserController {

 private final UserRepository userRepository;

 UserController(UserRepository userRepository) {
 Assert.notNull(repository, "Repository must not be null!");
 this.userRepository = userRepository;
 }

 @RequestMapping("/{id}")
 String showUserForm(@PathVariable("id") Long id, Model model) {

 // Do null check for id
 User user = userRepository.findById(id);
 // Do null check for user

 model.addAttribute("user", user);
 return "user";
 }
}

First you declare a repository dependency for each controller to look up the entity managed by the controller or repository respectively. Looking up the entity is boilerplate as well, as it’s always a findById(…) call. Fortunately Spring provides means to register custom components that allow conversion between a String value to an arbitrary type.

PropertyEditors

For Spring versions before 3.0 simple Java PropertyEditors had to be used. To integrate with that, Spring Data offers a DomainClassPropertyEditorRegistrar, which looks up all Spring Data repositories registered in the ApplicationContext and registers a custom PropertyEditor for the managed domain class.

<bean class="….web.servlet.mvc.annotation.AnnotationMethodHandlerAdapter">
 <property name="webBindingInitializer">
 <bean class="….web.bind.support.ConfigurableWebBindingInitializer">
 <property name="propertyEditorRegistrars">
 <bean class="org.springframework.data.repository.support.DomainClassPropertyEditorRegistrar" />
 </property>
 </bean>
 </property>
</bean>

If you have configured Spring MVC as in the preceding example, you can configure your controller as follows, which reduces a lot of the clutter and boilerplate.

@Controller
@RequestMapping("/users")
class UserController {

 @RequestMapping("/{id}")
 String showUserForm(@PathVariable("id") User user, Model model) {

 model.addAttribute("user", user);
 return "userForm";
 }
}

1 JavaConfig in the Spring reference documentation

2 Spring HATEOAS - https://github.com/SpringSource/spring-hateoas

 AUDITING

Basics

Spring Data provides sophisticated support to transparently keep track of who created or changed an entity and the point in time this happened. To benefit from that functionality you have to equip your entity classes with auditing metadata that can be defined either using annotations or by implementing an interface.

Annotation based auditing metadata

We provide @CreatedBy, @LastModifiedBy to capture the user who created or modified the entity as well as @CreatedDate and @LastModifiedDate to capture the point in time this happened.

An audited entity

class Customer {

 @CreatedBy
 private User user;

 @CreatedDate
 private DateTime createdDate;

 // … further properties omitted
}

As you can see, the annotations can be applied selectively, depending on which information you’d like to capture. For the annotations capturing the points in time can be used on properties of type JodaTimes DateTime, legacy Java Date and Calendar, JDK8 date/time types as well as long/Long.

Interface-based auditing metadata

In case you don’t want to use annotations to define auditing metadata you can let your domain class implement the Auditable interface. It exposes setter methods for all of the auditing properties.

There’s also a convenience base class AbstractAuditable which you can extend to avoid the need to manually implement the interface methods. Be aware that this increases the coupling of your domain classes to Spring Data which might be something you want to avoid. Usually the annotation based way of defining auditing metadata is preferred as it is less invasive and more flexible.

AuditorAware

In case you use either @CreatedBy or @LastModifiedBy, the auditing infrastructure somehow needs to become aware of the current principal. To do so, we provide an AuditorAware<T> SPI interface that you have to implement to tell the infrastructure who the current user or system interacting with the application is. The generic type T defines of what type the properties annotated with @CreatedBy or @LastModifiedBy have to be.

Here’s an example implementation of the interface using Spring Security’s Authentication object:

Implementation of AuditorAware based on Spring Security

class SpringSecurityAuditorAware implements AuditorAware<User> {

 public User getCurrentAuditor() {

 Authentication authentication = SecurityContextHolder.getContext().getAuthentication();

 if (authentication == null || !authentication.isAuthenticated()) {
 return null;
 }

 return ((MyUserDetails) authentication.getPrincipal()).getUser();
 }
}

The implementation is accessing the Authentication object provided by Spring Security and looks up the custom UserDetails instance from it that you have created in your UserDetailsService implementation. We’re assuming here that you are exposing the domain user through that UserDetails implementation but you could also look it up from anywhere based on the Authentication found.

 INTRODUCTION

In order to understand what Spring Data Neo4j can do it’s important to understand
how an SDN application is structured and could have implications in how you design your application.

SDN Architecture

A high level look of the architecture looks like:

[image: Spring Data Neo4j Architecture]

	
Drivers are used to connect to the database. At the moment these come in 3 variants: Embedded, HTTP and the binary protocol Bolt.

	
The Object Graph Mapper (OGM): This is similar to an ORM in that it maps database nodes to java objects. This library is agnostic of any framework (including Spring).

	
Spring Data Neo4j 4: Provides syntactic sugar and code on top of the OGM to help quickly build Spring Based Neo4j/OGM apps.

Those coming from other Spring Data projects or are familiar with ORM products like JPA or Hibernate may quickly recognise this architecture.
A bulk of the heavy lifting has been moved into the OGM.

It’s therefore worth noting that there will be backward compatibility issues when migrating to version 4.x, so be sure to check the Migration Guide to avoid any unwanted surprises.

How to use this reference

Spring Data Neo4j is largely broken up into two main components:

	
OGM Support: Provides close integration between Spring Data and the OGM; the main underlying technology used in SDN.

	
Spring Data Repository Support: Provides Spring Repository support.

It is recommended SDN developers also familiarise themselves with the OGM. The OGM reference documentation has been reproduced after this
section for convenience.

 GETTING STARTED

Depending on what type of project you are doing there are several options when it comes to creating a new SDN project:

	
Use http://start.spring.io (for Spring Boot projects);

	
Use the Spring Tool Suite (based on eclipse);

	
Adding the required libraries using your dependency management tool.

If you plan on using Neo4j in server mode, you will also need a running instance. Refer to the Getting Started section of the Neo4j Developer manual on
how to get that up and running.

Using Boot

To create a Spring Boot project simply go to http://start.spring.io and specify a group and artifact like: org.spring.neo4j.example and demo.
In the Dependencies box type: "Neo4J". You can also add any other Spring support like "Web" etc. Once you are satisfied with your dependencies
hit the generate button, download the zip and unzip into your workspace.

Using STS

To create a Spring project in STS go to File → New → Spring Template Project → Simple Spring Utility Project → press Yes when prompted. Then enter a project and a package name such as org.spring.neo4j.example.

Then add the following to pom.xml dependencies section.

<dependencies>

 <!-- other dependency elements omitted -->

 <dependency>
 <groupId>org.springframework.data</groupId>
 <artifactId>spring-data-neo4j</artifactId>
 <version>{version}</version>
 </dependency>

</dependencies>

Also change the version of Spring in the pom.xml to be

<spring.framework.version>{springVersion}</spring.framework.version>

Using Dependency Management

Spring Data Neo4j projects can be built using Maven, Gradle or any other tool that supports Maven’s repository system.

For more in depth configuration details please consult the Configuration section of the OGM Reference Manual.

Maven

By default, SDN will use the BOLT driver to connect to Neo4j and you don’t need to declare it as a separate dependency in your pom.
If you want to use the embedded or HTTP drivers in your production application, you must add the following dependencies as well.
(This dependency on the embedded driver is not required if you only want to use the embedded driver for testing.
See the section on Testing below for more information).

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.springframework.data</groupId>
 <artifactId>spring-data-releasetrain</artifactId>
 <version>${spring-data-releasetrain.version}</version>
 <scope>import</scope>
 <type>pom</type>
 </dependency>
 </dependencies>
</dependencyManagement>

<dependencies>
 <dependency>
 <groupId>org.springframework.data</groupId>
 <artifactId>spring-data-neo4j</artifactId>
 </dependency>

 <!-- add this dependency if you want to use the embedded driver -->
 <dependency>
 <groupId>org.neo4j</groupId>
 <artifactId>neo4j-ogm-embedded-driver</artifactId>
 </dependency>

 <!-- add this dependency if you want to use the HTTP driver -->
 <dependency>
 <groupId>org.neo4j</groupId>
 <artifactId>neo4j-ogm-http-driver</artifactId>
 </dependency>
</dependency>

Testing

Listing 1. Maven dependencies for testing SDN 5 applications
 <dependency>
 <groupId>org.neo4j.test</groupId>
 <artifactId>neo4j-harness</artifactId>
 <version>3.2.5</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-test</artifactId>
 <version>${spring.version}</version>
 <scope>test</scope>
 </dependency>

Using neo4j-harness brings in a dependency on Jetty container.
If you use Spring Boot dependency management the version may be set to an incompatible version.
This may be avoided by overriding jetty.version property to a version required by neo4j server.

<properties>
 <!-- version compatible with neo4j 3.3.0 -->
 <jetty.version>9.2.22.v20170606</jetty.version>
</properties>

Also having the jetty dependency on classpath might cause your application use jetty as servlet container in your tests
instead of default Tomcat. You can avoid that e.g. by forcing the EmbeddedTomcat autoconfiguration.

@SpringBootApplication
// Import tomcat autoconfig to avoid starting Jetty, which is on classpath because of neo4j dependencies
@Import(EmbeddedServletContainerAutoConfiguration.EmbeddedTomcat.class)

Gradle

Gradle dependencies are basically the same as Maven:

dependencies {
 compile 'org.springframework.data:spring-data-neo4j:{version}'

 # add this dependency if you want to use the embedded driver
 compile 'org.neo4j:neo4j-ogm-embedded-driver:{ogm-version}'

 # add this dependency if you want to use the Http driver
 compile 'org.neo4j:neo4j-ogm-http-driver:{ogm-version}'

}

Examples

There is an github repository with several examples that you can download and play around with to get a feel for how the library works.

Configuration

Right now SDN only supports JavaConfig. There is no XML based support but this may change in future.

For those not familiar with how to configure the Spring container using Java based bean metadata instead of XML based metadata see the high level introduction in the reference docs here as well as the detailed documentation here.

For most applications the following configuration is all that’s needed to get up and running.

Listing 2. Spring Data Neo4j repositories using JavaConfig
@Configuration
@EnableNeo4jRepositories(basePackages = "org.neo4j.example.repository")
@EnableTransactionManagement
public class MyConfiguration {

 @Bean
 public SessionFactory sessionFactory() {
 // with domain entity base package(s)
 return new SessionFactory(configuration(), "org.neo4j.example.domain");
 }

 @Bean
 public org.neo4j.ogm.config.Configuration configuration() {
 ConfigurationSource properties = new ClasspathConfigurationSource("ogm.properties");
 org.neo4j.ogm.config.Configuration configuration = new org.neo4j.ogm.config.Configuration.Builder(properties).build();
 return configuration;
 }

 @Bean
 public Neo4jTransactionManager transactionManager() {
 return new Neo4jTransactionManager(sessionFactory());
 }

}

Here we wire up a SessionFactory configured from defaults. We can change these defaults by providing an ogm.properties file at the root of the
classpath or by passing in a org.neo4j.ogm.config.Configuration object.
The last infrastructure component declared here is the Neo4jTransactionManager. We finally activate Spring Data Neo4j repositories using the @EnableNeo4jRepositories annotation. If no base package is configured it will use the one the configuration class resides in.

Note that you will have to activate @EnableTransactionManagement explicitly to get annotation based
configuration at facades working as well as define an instance of this Neo4jTransactionManager with the bean name transactionManager.
The example above assumes you are using component scanning.

To allow your query methods to be transactional simply use @Transactional at the repository interface you define.

Driver Configuration

SDN provides support for connecting to Neo4j using different drivers.

The following drivers are available.

	
Http driver

	
Embedded driver

	
Bolt driver

Java Configuration. To configure the Driver programmatically, create a Configuration bean and pass it as the first argument to the SessionFactory constructor in your Spring configuration:

@Bean
public org.neo4j.ogm.config.Configuration configuration() {
 org.neo4j.ogm.config.Configuration configuration = new org.neo4j.ogm.config.Configuration.Builder()
 .uri("bolt://localhost")
 .credentials("user", "secret")
 .build();
 return configuration;
}

@Bean
public SessionFactory sessionFactory() {
 return new SessionFactory(configuration(), <packages>); ①
}

	① packages is a list of java packages containing the annotated domain model.

Configuration can also be initialized from an external file like this.

@Bean
public org.neo4j.ogm.config.Configuration configuration() {
 ConfigurationSource properties = new ClasspathConfigurationSource("db.properties");
 return new org.neo4j.ogm.config.Configuration.Builder(properties).build();
}

where db.properties looks like

URI=bolt://localhost
username=user
password=secret
connection.pool.size=... #see java driver doc
encryption.level=... #see java driver doc
trust.strategy=... #see java driver doc
trust.certificate.file=... #see java driver doc
connection.liveness.check.timeout=... #see java driver doc
verify.connection=... #see java driver doc

The driver is automatically inferred from the URI scheme.

To set up authentication, TLS or other advanced options please see the Configuration section of the OGM Reference.

As of 4.2.0 the Neo4j OGM embedded driver no longer ships with the Neo4j kernel. Users are expected to provide this dependency through their dependency management system.

Spring Boot Applications

Spring Boot 2.0 works straight out of the box with Spring Data Neo4j 5.0.0.

Update your Spring Boot Maven POM with the following.
You may need to add <repositories> depending on versioning (when using milestone or snapshot versions).

 ...
 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-neo4j</artifactId>
 </dependency>
 </dependencies>
 ...

Then add to your Spring Boot configuration class these annotations:

@EnableNeo4jRepositories("com.company.project.repository")
@EntityScan(basePackages = "com.company.project.domain")

Configuring Events with Boot

When defining a Spring EventListener. Simply defining a @Bean will automatically register it with the SessionFactory.

Connecting to Neo4j

The SessionFactory is needed by SDN to create instances of org.neo4j.ogm.session.Session as required.
When constructed, it sets up the object-graph mapping metadata, which is then used across all Session objects that it creates.
As seen in the above example, the packages to scan for domain object metadata should be provided to the SessionFactory constructor.

There should typically be only one SessionFactory per application.

 NEO4J OGM SUPPORT

To get started, you need only your domain model and the annotations provided by the OGM library.
You use annotations to mark domain objects to be reflected by nodes and relationships of the graph database.
For individual fields the annotations allow you to declare how they should be processed and mapped to the graph.
For property fields and references to other entities this is straightforward.

Refer to the OGM documentation for more details.

What is an OGM?

An OGM (Object Graph Mapper) maps nodes and relationships in the graph to objects and references in your domain model.
Object instances are mapped to nodes while object references are mapped using relationships, or serialized to properties (e.g. references to a Date).
JVM primitives are mapped to node or relationship properties.
An OGM abstracts the database and provides a convenient way to persist your domain model in the graph and query it without using low level drivers.
It also provides the flexibility to the developer to supply custom queries where the queries generated by the OGM are insufficient.

The OGM can be thought of as analogous to Hibernate or JPA. It is expected users have a working understanding of the OGM when using this guide.

Session now replaces Neo4jTemplate functionality as all functionality can be found on the OGM Session object.

SDN now allows you to wire up the OGM Session directly into your Spring managed beans.

While SDN Repository will cover a majority of user scenarios sometimes it doesn’t offer enough options. The OGM’s Session offers a convenient API to interact more tightly with a Neo4j graph database.

Understanding the Session

A Session is used to drive the object-graph mapping framework. All repository implementations are driven by the Session.
It keeps track of the changes that have been made to entities and their relationships.
The reason it does this is so that only entities and relationships that have changed get persisted on save, which is particularly efficient when working with large graphs.

Sessions are usually bound to a thread by default and rely on the garbage collector to clean it up once it is out of scope of processing.
For most users this means there is nothing to configure.
Request/response type applications SDN will take care of Session management for you (as defined in the Configuration section above).
If you have a batch or long running desktop type application you may want to know how you can control using the session a bit more.

DESIGN CONSIDERATION: SESSION CACHING

Once an entity is tracked by the session, reloading this entity within the scope of the same session will result in the session cache
returning the previously loaded entity. However, the subgraph in the session will expand if the entity or its related
entities retrieve additional relationships from the graph.

If you want to fetch fresh data from the graph, then this can be achieved by using a new session or clearing the current
sessions context using org.neo4j.ogm.session.Session.clear().

The lifetime of the Session can be managed in code. For example, associated with single fetch-update-save cycle or unit of work.

If your application relies on long-running sessions then you may not see changes made from other users and find yourself working with outdated objects.
On the other hand, if your sessions have too narrow a scope then your save operations can be unnecessarily expensive, as updates will be made to all objects if the session isn’t aware of the those that were originally loaded.

There’s therefore a trade off between the two approaches.
In general, the scope of a Session should correspond to a "unit of work" in your application.

Basic Operations

For Spring Data Neo4j, low level operations are handled by the OGM Session.
Basic operations are now entirely limited to CRUD operations on entities and executing arbitrary Cypher queries; more low-level manipulation of the graph database is not possible.

There is no longer a way to manipulate relationship- and node-objects directly.

Given that the latest version of the framework is driven by Cypher queries alone, there’s no way to work directly with Node and Relationship objects any more in remote server mode.
Similarly, the traverse() method has disappeared, again because the underlying query-driven model doesn’t handle it in an efficient way.

If you find yourself in trouble because of the omission of these features, then your best options are:

	
Write a Cypher query to perform the operations on the nodes/relationships instead

	
Write a Neo4j server extension and call it over REST from your application

Of course, there are pros and cons to both of these approaches, but these are largely outside the scope of this document.
In general, for low-level, very high-performance operations like complex graph traversals you’ll get the best performance by writing a server-side extension.
For most purposes, though, Cypher will be performant and expressive enough to perform the operations that you need.

Entity Persistence

Session allows you to save, load, loadAll and delete entities.
The eagerness with which objects are retrieved is controlled by specifying the 'depth' argument to any of the load methods.

All of these basic CRUD methods just call onto the underlying methods of Session, albeit with transaction handling and exception translation managed for you by SDN’s Transaction Manager bean.

Cypher Queries

The Session also allows execution of arbitrary Cypher queries via its query, queryForObject and queryForObjects methods.
Cypher queries that return tabular results should be passed into the query method.
An org.neo4j.ogm.session.result.Result is returned. This consists of org.neo4j.ogm.session.result.QueryStatistics representing statistics of
modifying cypher statements if applicable, and an Iterable<Map<String,Object>> containing the raw data, of which nodes and relationships are mapped to domain entities if possible.
The keys in each Map correspond to the names listed in the return clause of the executed Cypher query.

Modifications made to the graph via Cypher queries directly will not be reflected in your domain objects within the session.

Transactions

If you configured the Neo4jTransactionManager bean, any Session that is managed by Spring will automatically take part in Thread contextual Transactions.
In order to do this you will need to wrap your service code using @Transactional or the TransactionTemplate.

It is important to know that if you enable Transactions ALL code that uses the Session or a Repository must be enclosed in a @Transactional annotation.

For more details see Transactions

 NEO4J REPOSITORIES

Introduction

This chapter will point out the specialties for repository support for Neo4J and the Neo4J OGM. This builds on the core repository support explained in [repositories]. So make sure you’ve got a sound understanding of the basic concepts explained there.

The following table outlines the repositories functionality currently either supported, partially supported or not supported in SDN:

	Feature
	Supported in SDN
	Notes

	CrudRepository support

	

	

	PagingAndSortingRepository support

	

	

	Derived Count Queries

	

	

	JavaConfig annotation based configuration

	

	

	XML based configuration

	

	

	Multi Spring Data module support

	

	

	Configurable Query Lookup Strategy

	

	

	Derived Query support

	

	See Supported keywords for query methods below

	Derived Query Property expressions support

	

	

	Paging and Slice support

	

	

	Derived query paging limit support

	

	

	Java 8 Streaming and Optional support

	

	

	@Async support

	

	

	Custom behaviour on repositories

	

	

	QueryDslPredicateExecutor support

	

	

	Web support (incl Spring Data REST)

	

	Partial: QueryDSL not supported.

	Repository populators

	

	

Usage

The Repository instances are only created through Spring and can be auto-wired into your Spring beans as required.

Listing 1. Using basic Neo4jRepository CRUD-methods
@Repository
public interface PersonRepository extends Neo4jRepository<Person, Long> {}

public class MySpringBean {
 @Autowired
 private PersonRepository repo;
 ...
}

// then you can use the repository as you would any other object
Person michael = repo.save(new Person("Michael", 36));

Optional<Person> dave = repo.findById(123);

long numberOfPeople = repo.count();

The recommended way of providing repositories is to define a repository interface per domain class.
The underlying Spring repository infrastructure will automatically detect these repositories, along with additional implementation classes,
and create an injectable repository implementation to be used in services or other spring beans.

The repositories provided by Spring Data Neo4j build on the composable repository infrastructure in Spring Data Commons.
These allow for interface-based composition of repositories consisting of provided default implementations for certain interfaces and additional custom implementations for other methods.

Spring Data Neo4j comes with a single org.springframework.data.repository.PagingAndSortingRepository specialisation called
Neo4jRepository<T. ID> used for all object-graph mapping repositories.
This sub-interface also adds specific finder methods that take a depth argument to control the horizon with which related entities are fetched and saved.
Generally, it provides all the desired repository methods.
If other operations are required then the additional repository interfaces should be added to the individual interface declaration.

Query Methods

Query and Finder Methods

Most of the data access operations you usually trigger on a repository result a query being executed against the Neo4j database. Defining such a query is just a matter of declaring a method on the repository interface

PersonRepository with query methods

public interface PersonRepository extends PagingAndSortingRepository<Person, String> {

 List<Person> findByLastname(String lastname); ①

 Page<Person> findByFirstname(String firstname, Pageable pageable); ②

 Person findByShippingAddresses(Address address); ③

 Stream<Person> findAllBy(); ④
}

	① The method shows a query for all people with the given lastname. The query will be derived parsing the method name for constraints which can be concatenated with And and Or. Thus the method name will result in a query expression of {"lastname" : lastname}.

	② Applies pagination to a query. Just equip your method signature with a Pageable parameter and let the method return a Page instance and we will automatically page the query accordingly.

	③ Shows that you can query based on properties which are not a primitive type.

	④ Uses a Java 8 Stream which reads and converts individual elements while iterating the stream.

Table 1. Supported keywords for query methods

	Keyword
	Sample
	Cypher snippet

	After

	findByLaunchDateAfter(Date date)

	n.launchDate > date

	Before

	findByLaunchDateBefore(Date date)

	n.launchDate < date

	Containing (String)

	findByNameContaining(String namePart)

	n.name CONTAINS namePart

	Containing (Collection)

	findByEmailAddressesContains(Collection<String> addresses)
findByEmailAddressesContains(String address)

	ANY(collectionFields IN [addresses] WHERE collectionFields in n.emailAddresses)
ANY(collectionFields IN address WHERE collectionFields in n.emailAddresses)

	In

	findByNameIn(Iterable<String> names)

	n.name IN names

	Between

	findByScoreBetween(double min, double max)

	n.score >= min AND n.score <= max

	StartingWith

	findByNameStartingWith(String nameStart)

	n.name STARTS WITH nameStart

	EndingWith

	findByNameEndingWith(String nameEnd)

	n.name ENDS WITH nameEnd

	Exists

	findByNameExists()

	EXISTS(n.name)

	True

	findByActivatedIsTrue()

	n.activated = true

	False

	findByActivatedIsFalse()

	NOT(n.activated = true)

	Is

	findByNameIs(String name)

	n.name = name

	NotNull

	findByNameNotNull()

	NOT(n.name IS NULL)

	Null

	findByNameNull()

	n.name IS NULL

	GreaterThan

	findByScoreGreaterThan(double score)

	n.score > score

	GreaterThanEqual

	findByScoreGreaterThanEqual(double score)

	n.score >= score

	LessThan

	findByScoreLessThan(double score)

	n.score < score

	LessThanEqual

	findByScoreLessThanEqual(double score)

	n.score <= score

	Like

	findByNameLike(String name)

	n.name =~ name

	NotLike

	findByNameNotLike(String name)

	NOT(n.name =~ name)

	Near

	findByLocationNear(Distance distance, Point point)

	distance(point(n),point({latitude:lat, longitude:lon})) < distance

	Regex

	findByNameRegex(String regex)

	n.name =~ regex

	And

	findByNameAndDescription(String name, String description)

	n.name = name AND n.description = description

	Or

	findByNameOrDescription(String name, String description)

	n.name = name OR n.description = description (Cannot be used to OR nested properties)

Annotated queries

Queries using the Cypher graph query language can be supplied with the @Query annotation.

That means a repository method annotated with

@Query("MATCH (:Actor {name:{name}})-[:ACTED_IN]->(m:Movie) return m")

will use the supplied query query to retrieve data from Neo4j.

The named or indexed parameter {param} will be substituted by the actual method parameter.
Node and Relationship-Entities are handled directly and converted into their respective ids.
All other parameters types are provided directly (i.e. Strings, Longs, etc).

There is special support for the Pageable parameter from Spring Data Commons, which is supported to add programmatic paging and slicing(alternatively static paging and sorting can be supplied in the query string itself).

If it is required that paged results return the correct total count, the @Query annotation can be supplied with a count query in the countQuery attribute.
This query is executed separately after the result query and its result is used to populate the number of elements on the Page.

Custom queries do not support a custom depth.
Additionally, @Query does not support mapping a path to domain entities, as such, a path should not be returned from a Cypher query.
Instead, return nodes and relationships to have them mapped to domain entities.

Named queries

Sometimes it makes sense to extract e.g. a long query.
Spring Data Neo4j will look in the META-INF/neo4j-named-queries.properties file to find named queries.
If you provide a query property like User.findByQuery=MATCH (e) WHERE e.name={name} RETURN e you can refer to this method by providing a finder method in your repository.
The repository has to support the given entity type (in this example User) and the method has to be named as the defined one (findByQuery).
As you can see in the example it is possible to parameterize the query.

Query results

Typical results for queries are Iterable<Type>, Iterable<Map<String,Object>> or simply Type.
Nodes and relationships are converted to their respective entities (if they exist).
Other values are converted using the registered conversion services (e.g. enums).

Cypher examples

	
MATCH (n) WHERE id(n)=9 RETURN n

	
returns the node with id 9

	
MATCH (movie:Movie {title:'Matrix'}) RETURN movie

	
returns the nodes which are indexed with title equal to 'Matrix'

	
MATCH (movie:Movie {title:'Matrix'})←[:ACTS_IN]-(actor) RETURN actor.name

	
returns the names of the actors that have a ACTS_IN relationship to the movie node for 'Matrix'

	
MATCH (movie:Movie {title:'Matrix'})←[r:RATED]-(user) WHERE r.stars > 3 RETURN user.name, r.stars, r.comment

	
returns users names and their ratings (>3) of the movie titled 'Matrix'

	
MATCH (user:User {name='Michael'})-[:FRIEND]-(friend)-[r:RATED]->(movie) RETURN movie.title, AVG(r.stars), COUNT(*) ORDER BY AVG(r.stars) DESC, COUNT(*) DESC

	
returns the movies rated by the friends of the user 'Michael', aggregated by movie.title, with averaged ratings and rating-counts sorted by both

Examples of Cypher queries placed on repository methods with @Query where values are replaced with method parameters,
as described in the Annotated queries) section.

public interface MovieRepository extends Neo4jRepository<Movie, Long> {

 // returns the node with id equal to idOfMovie parameter
 @Query("MATCH (n) WHERE id(n)={0} RETURN n")
 Movie getMovieFromId(Integer idOfMovie);

 // returns the nodes which have a title according to the movieTitle parameter
 @Query("MATCH (movie:Movie {title={0}}) RETURN movie")
 Movie getMovieFromTitle(String movieTitle);

 // same with optional result
 @Query("MATCH (movie:Movie {title={0}}) RETURN movie")
 Optional<Movie> getMovieFromTitle(String movieTitle);

 // returns a Page of Actors that have a ACTS_IN relationship to the movie node with the title equal to movieTitle parameter.
 @Query(value = "MATCH (movie:Movie {title={0}})<-[:ACTS_IN]-(actor) RETURN actor", countQuery= "MATCH (movie:Movie {title={0}})<-[:ACTS_IN]-(actor) RETURN count(actor)")
 Page<Actor> getActorsThatActInMovieFromTitle(String movieTitle, PageRequest page);

 // returns a Page of Actors that have a ACTS_IN relationship to the movie node with the title equal to movieTitle parameter with an accurate total count
 @Query(value = "MATCH (movie:Movie {title={0}})<-[:ACTS_IN]-(actor) RETURN actor", countQuery = "MATCH (movie:Movie {title={0}})<-[:ACTS_IN]-(actor) RETURN count(*)")
 Page<Actor> getActorsThatActInMovieFromTitle(String movieTitle, Pageable page);

 // returns a Slice of Actors that have a ACTS_IN relationship to the movie node with the title equal to movieTitle parameter.
 @Query("MATCH (movie:Movie {title={0}})<-[:ACTS_IN]-(actor) RETURN actor")
 Slice<Actor> getActorsThatActInMovieFromTitle(String movieTitle, Pageable page);

 // returns users who rated a movie (movie parameter) higher than rating (rating parameter)
 @Query("MATCH (movie:Movie)<-[r:RATED]-(user) " +
 "WHERE id(movie)={movieId} AND r.stars > {rating} " +
 "RETURN user")
 Iterable<User> getUsersWhoRatedMovieFromTitle(@Param("movieId") Movie movie, @Param("rating") Integer rating);

 // returns users who rated a movie based on movie title (movieTitle parameter) higher than rating (rating parameter)
 @Query("MATCH (movie:Movie {title:{0}})<-[r:RATED]-(user) " +
 "WHERE r.stars > {1} " +
 "RETURN user")
 Iterable<User> getUsersWhoRatedMovieFromTitle(String movieTitle, Integer rating);

 @Query(value = "MATCH (movie:Movie) RETURN movie;")
 Stream<Movie> getAllMovies();
}

Queries derived from finder-method names

Using the metadata infrastructure in the underlying object-graph mapper, a finder method name can be split into its semantic parts and converted into a cypher query.
Navigation along relationships will be reflected in the generated MATCH clause and properties with operators will end up as expressions in the WHERE clause.
The parameters will be used in the order they appear in the method signature so they should align with the expressions stated in the method name.

Listing 2. Some examples of methods and corresponding Cypher queries of a PersonRepository
public interface PersonRepository extends Neo4jRepository<Person, Long> {

 // MATCH (person:Person {name={0}}) RETURN person
 Person findByName(String name);

 // MATCH (person:Person)
 // WHERE person.age = {0} AND person.married = {1}
 // RETURN person
 Iterable<Person> findByAgeAndMarried(int age, boolean married);

 // MATCH (person:Person)
 // WHERE person.age = {0}
 // RETURN person ORDER BY person.name SKIP {skip} LIMIT {limit}
 Page<Person> findByAge(int age, Pageable pageable);

 // MATCH (person:Person)
 // WHERE person.age = {0}
 // RETURN person ORDER BY person.name
 List<Person> findByAge(int age, Sort sort);

 //Allow a custom depth as a parameter
 Person findByName(String name, @Depth int depth);

 //Fix the depth for the query
 @Depth(value = 0)
 Person findBySurname(String surname);

}

Mapping Query Results

For queries executed via @Query repository methods, it’s possible to specify a conversion of complex query results to POJOs. These result objects are then populated with the query result data and can be serialized and sent to a different part of the application, e.g. a frontend-ui. To take advantage of this feature, use a class annotated with @QueryResult as the method return type.

Listing 3. Example of query result mapping
public interface MovieRepository extends Neo4jRepository<Movie, Long> {

 @Query("MATCH (movie:Movie)-[r:RATING]\->(), (movie)<-[:ACTS_IN]-(actor:Actor) " +
 "WHERE movie.id={0} " +
 "RETURN movie as movie, COLLECT(actor) AS 'cast', AVG(r.stars) AS 'averageRating'")
 MovieData getMovieData(String movieId);

 @QueryResult
 public class MovieData {
 Movie movie;
 Double averageRating;
 Set<Actor> cast;
 }

}

Sorting and Paging

Spring Data Neo4j supports sorting and paging of results when using Spring Data’s Pageable and Sort interfaces.

Listing 4. Repository-based paging
Pageable pageable = PageRequest.of(0, 3);
Page<World> page = worldRepository.findAll(pageable, 0);

Listing 5. Repository-based sorting
Sort sort = new Sort(Sort.Direction.ASC, "name");
Iterable<World> worlds = worldRepository.findAll(sort, 0)) {

Listing 6. Repository-based sorting with paging
Pageable pageable = PageRequest.of(0, 3, Sort.Direction.ASC, "name");
Page<World> page = worldRepository.findAll(pageable, 0);

The total number of pages reported by the PagingAndSortingRepository findAll methods are estimates and should not be relied upon for accuracy

Projections

Spring Data Repositories usually return the domain model when using query methods. However, sometimes, you may need to alter the view of that model for various reasons. In this section, you will learn how to define projections to serve up simplified and reduced views of resources.

Look at the following domain model:

@NodeEntity
public class Cinema {

 private Long id;
 private String name, location;

 @Relationship(type = "VISITED", direction = Relationship.INCOMING)
 private Set<User> visited = new HashSet<>();

 @Relationship(type = "BLOCKBUSTER", direction = Relationship.OUTGOING)
 private Movie blockbusterOfTheWeek;
 …
}

This Cinema has several attributes:

	
id is the graph id

	
name and location are data attributes

	
visited and blockbusterOfTheWeek are links to other domain objects

Now assume we create a corresponding repository as follows:

public interface CinemaRepository extends Neo4jRepository<Cinema, Long> {

 Cinema findByName(String name);
}

Spring Data will return the domain object including all of its attributes, including all the users that visited this cinema. That can be a big amount of data and can lead to performance issues.

There are several ways to avoid that :

	
use a custom depth for loading (see Queries derived from finder-method names)

	
use a custom annotated query (see Annotated queries)

	
use a projection

Simple Projection

public interface CinemaNameAndBlockbuster { ①

 public String getName(); ②
 public Movie getBlockbusterOfTheWeek();
}

This projection has the following details:

	① A plain Java interface making it declarative.

	② Only some attributes of the entity are exported.

The CinemaNameAndBlockbuster projection only has getters for name and blockbusterOfTheWeek meaning that it will not serve up any user information. The query method definition returns in this case CinemaNameAndBlockbuster instead of Cinema.

interface CinemaRepository extends Neo4jRepository<Cinema, Long> {

 CinemaNameAndBlockbuster findByName(String name);
}

Projections declare a contract between the underlying type and the method signatures related to the exposed properties. Hence it is required to name getter methods according to the property name of the underlying type. If the underlying property is named name, then the getter method must be named getName otherwise Spring Data is not able to look up the source property.
This type of projection is also called closed projection.

Closed projections expose a subset of properties that could be used to optimize the query in a way to reduce the selected fields from the data store. However, it is not implemented at the moment. For performance sensitive querying, you can still use custom queries with maps or QueryResult (see Mapping Query Results)

The other type is, as you might imagine, an open projection.

Remodelling data

So far, you have seen how projections can be used to reduce the information that is presented to the user. Projections can be used to adjust the exposed data model. You can add virtual properties to your projection. Look at the following projection interface:

Renaming a property

interface RenamedProperty { ①

 @Value("#{target.name}")
 String getCinemaName(); ②

 @Value("#{target.blockbusterOfTheWeek.name}")
 String getBlockbusterOfTheWeekName(); ③
}

This projection has the following details:

	① A plain Java interface making it declarative.

	② Expose the name attribute as a virtual property called cinemaName.

	③ Export the name sub-property of the linked Movie entity as a virtual property.

The backing domain model does not have these properties so we need to tell Spring Data from where they are obtained.
Virtual properties are the place where @Value comes into play. The cinemaName getter is annotated with @Value to use SpEL expressions pointing to the backing property name. You may have noticed name is prefixed with target which is the variable name pointing to the backing object. Using @Value on methods allows defining where and how the value is obtained.

@Value gives full access to the target object and its nested properties. SpEL expressions are extremely powerful as the definition is always applied to the projection method.

We could imagine this :

interface RenamedProperty {

 @Value("#{target.name} #{(target.location == null) ? '' : target.location}")
 String getNameAndLocation();
}

In this example, the location is appended to the cinema name only if it is available.

Transactions

Neo4j is a transactional database, only allowing operations to be performed within transaction boundaries.
Spring Data Neo4j integrates nicely with both the declarative transaction support with @Transactional as well as the manual transaction handling with TransactionTemplate.

Demarcating @Transactional is required for all methods that interact with SDN.
CRUD methods on Repository instances are transactional by default. If you are simply just looking up an object through a repository for example,
then you do not need to define anything else: SDN will take of everything for you. That said, it is strongly recommended that you always annotate any service boundaries to the database with a @Transactional annotation. This way all your code for that method will always run in one transaction, even if you add a write operation later on.

More standard behaviour with Transactions is using a facade or service implementation that typically covers more than one repository or database call as part of a 'Unit of Work'. Its purpose is to define transactional boundaries for non-CRUD operations:

SDN only supports PROPAGATION_REQUIRED and ISOLATION_DEFAULT type transactions.

Listing 7. Using a facade to define transactions for multiple repository calls
@Service
class UserManagementImpl implements UserManagement {

 private final UserRepository userRepository;
 private final RoleRepository roleRepository;

 @Autowired
 public UserManagementImpl(UserRepository userRepository,
 RoleRepository roleRepository) {
 this.userRepository = userRepository;
 this.roleRepository = roleRepository;
 }

 @Transactional
 public void addRoleToAllUsers(String roleName) {

 Role role = roleRepository.findByName(roleName);

 for (User user : userRepository.findAll()) {
 user.addRole(role);
 userRepository.save(user);
 }
}

This will cause call to addRoleToAllUsers(…) to run inside a transaction (participating in an existing one or create a new one if
none already running). The transaction configuration at the repositories will be neglected then as the outer transaction configuration
determines the actual one used.

It is highly recommended that users understand how Spring Transactions work. Below are some excellent resources:

	
Spring Transaction Management

	
Upgrading to Spring Data Neo4j 4.2

Read only Transactions

You can start a read only transaction by marking a class or method with @Transactional(readOnly=true).

Note that if you open a read only transaction from, for example a service method, and then call a mutating method that is marked as read/write your transaction semantics will always be defined by the outermost transaction. Be wary!

Transaction Bound Events

SDN provides the ability to bind the listener of an event to a phase of the transaction. The typical example is to handle the event
when the transaction has completed successfully: this allows events to be used with more flexibility when the outcome of the current
transaction actually matters to the listener.

Spring Framework is currently structured in such a way that the context is not aware of the transaction support and has an open infrastructure to allow additional components to be registered and influence the way event listeners are created.

The transaction module implements an EventListenerFactory that looks for the new @TransactionalEventListener annotation. When this one is present, an extended event listener that is aware of the transaction is registered instead of the default.

Listing 8. Example: An order creation listener.
@Component
public class MyComponent {

 @TransactionalEventListener(condition = "#creationEvent.awesome")
 public void handleOrderCreatedEvent(CreationEvent<Order> creationEvent) {
 ...
 }

}

@TransactionalEventListener is a regular @EventListener and also exposes a TransactionPhase, the default being AFTER_COMMIT. You can also hook other phases of the transaction (BEFORE_COMMIT, AFTER_ROLLBACK and AFTER_COMPLETION that is just an alias for AFTER_COMMIT and AFTER_ROLLBACK).

By default, if no transaction is running the event isn’t sent at all as we can’t obviously honor the requested phase, but there is a fallbackExecution attribute in @TransactionalEventListener that tells Spring to invoke the listener immediately if there is no transaction.

Only public methods in a managed bean can be annotated with @EventListener to consume events.
@TransactionalEventListener is the annotation that provides transaction-bound event support described here.

To find out more about Spring’s Event listening capabilities see the Spring reference manual and How to build Transaction aware Eventing with Spring 4.2.

Clustering support

Bookmark management

Neo4j causal clusters use bookmarks to manage read your own writes scenarios.
You’ll find background information on the way causal clusters work in the Neo4j operations manual.

In SDN, you can use the bookmark management feature to handle these scenarios easily.
You just need to add :

	
The @EnableBookmarkManagement annotation once on your spring configuration class.

	
The @UseBookmark on each java method involved into your read your own writes scenarios

Every method annotated with @UseBookmark will then collect the bookmarks coming from the database at the end of transactions.
These bookmarks are then stored into a SDN managed context, and reused on later calls to other @UseBookmark annotated methods.

@UseBookmark has to be used on `@Transactional`annotated methods.

Miscellaneous

CDI integration

Instances of the repository interfaces are usually created by a container, which Spring is the most natural choice when working with Spring Data. There’s sophisticated support to easily set up Spring to create bean instances documented in [repositories.create-instances]. Spring Data Neo4j ships with a custom CDI extension that allows using the repository abstraction in CDI environments. The extension is part of the JAR so all you need to do to activate it is dropping the Spring Data Neo4j JAR into your classpath.

You can now set up the infrastructure by implementing a CDI Producer for the SessionFactory and Session:

class sessionFactoryProducer {

 @Produces
 @ApplicationScoped
 public SessionFactory createSessionFactory() {
 return new SessionFactory("package");
 }

 public void close(@Disposes SessionFactory sessionFactory) {
 sessionFactory.close();
 }
}

The necessary setup can vary depending on the JavaEE environment you run in. It might also just be enough to redeclare a session as CDI bean as follows:

class CdiConfig {

 @Produces
 @RequestScoped
 @PersistenceContext
 public session session;
}

In this example, the container has to be capable of creating OGM Sessions itself. All the configuration does is re-exporting the OGM Session as CDI bean.

The Spring Data Neo4J CDI extension will pick up all sessions availables as CDI beans and create a proxy for a Spring Data repository whenever an bean of a repository type is requested by the container. Thus obtaining an instance of a Spring Data repository is a matter of declaring an @Injected property:

class RepositoryClient {

 @Inject
 PersonRepository repository;

 public void businessMethod() {
 List<Person> people = repository.findAll();
 }
}

JSR-303 (Bean Validation) Support

Spring Data Neo4J allows developers to use JSR-303 annotations like @NotNull etc. on their domain models.
While this is provided it’s not a best practice. It is highly recommended to create JSR-303 annotations on actual Java Beans,
similar to things like Data Transfer Objects (DTOs).

Conversion Service

It is possible to have Spring Data Neo4j use converters registered with Spring’s ConversionService.
In order to do this, provide org.springframework.data.neo4j.conversion.MetaDataDrivenConversionService as a Spring bean.

Listing 9. Provide MetaDataDrivenConversionService as a Spring bean
@Bean
public ConversionService conversionService() {
 return new MetaDataDrivenConversionService(getSessionFactory().metaData());
}

Then, instead of defining an implementation of org.neo4j.ogm.typeconversion.AttributeConverter on the @Convert annotation,
use the graphPropertyType attribute to define the type to convert to.

Listing 10. Using graphPropertyType
@NodeEntity
public class MyEntity {

 @Convert(graphPropertyType = Integer.class)
 private DecimalCurrencyAmount fundValue;

}

Spring Data Neo4j will look for converters registered with Spring’s ConversionService that can convert
both to and from the type specified by graphPropertyType and use them if they exist.

Default converters and those defined explicitly via an implementation of org.neo4j.ogm.typeconversion.AttributeConverter
will take precedence over converters registered with Spring’s ConversionService.

As of SDN 4, this Neo4jRepository<T, ID> should be the interface from which your entity repository interfaces inherit, with T being specified as the domain entity type to persist.
ID is defined by the field type annotated with @Id.

Examples of methods you get for free out of Neo4jRepository are as follows.
For all of these examples the ID parameter is a Long that matches the graph ID:

	
Load an entity instance via an id

	
Optional<T> findById(id)

	
Check for existence of an id in the graph

	
boolean existsById(id)

	
Iterate over all nodes of a node entity type

	
Iterable<T> findAll()
Iterable<T> findAll(Sort …​)
Page<T> findAll(Pageable …​)

	
Count the instances of the repository entity type

	
Long count()

	
Save entities

	
T save(T) and Iterable<T> saveAll(Iterable<T>)

	
Delete graph entities

	
void delete(T), void deleteAll(Iterable<T>), and void deleteAll()

For users coming from versions before 4.2.x, Neo4jRepository has replaced GraphRepository but essentially has the same features.

Persistence constructors

From SDN 5.1 (Lovelace release train), persistence constructors are supported.

It means that SDN will try to find the best constructor to instantiate entities.
Constructor discovery works as follow :

	
look for explicit @PersistenceConstructor annotation on constructor

	
if not found, look for the default constructor

	
if not found, look at any specific constructor defined by the entity.

Values for constructor parameters are determined by looking at parameters names (not parameter types).
For values to be filled in correctly, the parameter names have to match the entity attributes names.

This is an example of a valid entity with a constructor :

@NodeEntity
public class Person {

 @Id
 private String email;

 public Person(String email) {
 this.email = email;
 }
}

The current implementation has some limitations :

	
entity attributes cannot be marked final

	
relationships as constructors arguments are not fully supported.
The relationship argument value will be null in the constructor and then set to the real value once the entity has been instantiated.

 PROJECTIONS

Projections

Spring Data Repositories usually return the domain model when using query methods. However, sometimes, you may need to alter the view of that model for various reasons. In this section, you will learn how to define projections to serve up simplified and reduced views of resources.

Look at the following domain model:

@NodeEntity
public class Cinema {

 private Long id;
 private String name, location;

 @Relationship(type = "VISITED", direction = Relationship.INCOMING)
 private Set<User> visited = new HashSet<>();

 @Relationship(type = "BLOCKBUSTER", direction = Relationship.OUTGOING)
 private Movie blockbusterOfTheWeek;
 …
}

This Cinema has several attributes:

	
id is the graph id

	
name and location are data attributes

	
visited and blockbusterOfTheWeek are links to other domain objects

Now assume we create a corresponding repository as follows:

public interface CinemaRepository extends Neo4jRepository<Cinema, Long> {

 Cinema findByName(String name);
}

Spring Data will return the domain object including all of its attributes, including all the users that visited this cinema. That can be a big amount of data and can lead to performance issues.

There are several ways to avoid that :

	
use a custom depth for loading (see [reference_derived-queries])

	
use a custom annotated query (see [reference_programming_model_annotatedQueries])

	
use a projection

Simple Projection

public interface CinemaNameAndBlockbuster { ①

 public String getName(); ②
 public Movie getBlockbusterOfTheWeek();
}

This projection has the following details:

	① A plain Java interface making it declarative.

	② Only some attributes of the entity are exported.

The CinemaNameAndBlockbuster projection only has getters for name and blockbusterOfTheWeek meaning that it will not serve up any user information. The query method definition returns in this case CinemaNameAndBlockbuster instead of Cinema.

interface CinemaRepository extends Neo4jRepository<Cinema, Long> {

 CinemaNameAndBlockbuster findByName(String name);
}

Projections declare a contract between the underlying type and the method signatures related to the exposed properties. Hence it is required to name getter methods according to the property name of the underlying type. If the underlying property is named name, then the getter method must be named getName otherwise Spring Data is not able to look up the source property.
This type of projection is also called closed projection.

Closed projections expose a subset of properties that could be used to optimize the query in a way to reduce the selected fields from the data store. However, it is not implemented at the moment. For performance sensitive querying, you can still use custom queries with maps or QueryResult (see [reference_programming-model_mapresult])

The other type is, as you might imagine, an open projection.

Remodelling data

So far, you have seen how projections can be used to reduce the information that is presented to the user. Projections can be used to adjust the exposed data model. You can add virtual properties to your projection. Look at the following projection interface:

Renaming a property

interface RenamedProperty { ①

 @Value("#{target.name}")
 String getCinemaName(); ②

 @Value("#{target.blockbusterOfTheWeek.name}")
 String getBlockbusterOfTheWeekName(); ③
}

This projection has the following details:

	① A plain Java interface making it declarative.

	② Expose the name attribute as a virtual property called cinemaName.

	③ Export the name sub-property of the linked Movie entity as a virtual property.

The backing domain model does not have these properties so we need to tell Spring Data from where they are obtained.
Virtual properties are the place where @Value comes into play. The cinemaName getter is annotated with @Value to use SpEL expressions pointing to the backing property name. You may have noticed name is prefixed with target which is the variable name pointing to the backing object. Using @Value on methods allows defining where and how the value is obtained.

@Value gives full access to the target object and its nested properties. SpEL expressions are extremely powerful as the definition is always applied to the projection method.

We could imagine this :

interface RenamedProperty {

 @Value("#{target.name} #{(target.location == null) ? '' : target.location}")
 String getNameAndLocation();
}

In this example, the location is appended to the cinema name only if it is available.

 AUDITING

Auditing

Spring Data Neo4j integrates into the Spring Data auditing infrastructure
to keep track of who created or changed an entity and the point in time this happened.

Please refer to the auditing section of the Spring Data reference.

 NAMESPACE REFERENCE

The <repositories /> element

The <repositories /> element triggers the setup of the Spring Data repository infrastructure. The most important attribute is base-package which defines the package to scan for Spring Data repository interfaces.[1]

Table 1. Attributes

	Name
	Description

	base-package

	Defines the package to be used to be scanned for repository interfaces extending *Repository (actual interface is determined by specific Spring Data module) in auto detection mode. All packages below the configured package will be scanned, too. Wildcards are allowed.

	repository-impl-postfix

	Defines the postfix to autodetect custom repository implementations. Classes whose names end with the configured postfix will be considered as candidates. Defaults to Impl.

	query-lookup-strategy

	Determines the strategy to be used to create finder queries. See [repositories.query-methods.query-lookup-strategies] for details. Defaults to create-if-not-found.

	named-queries-location

	Defines the location to look for a Properties file containing externally defined queries.

	consider-nested-repositories

	Controls whether nested repository interface definitions should be considered. Defaults to false.

1 see [repositories.create-instances.spring]

 POPULATORS NAMESPACE REFERENCE

The <populator /> element

The <populator /> element allows to populate the a data store via the Spring Data repository infrastructure.[1]

Table 1. Attributes

	Name
	Description

	locations

	Where to find the files to read the objects from the repository shall be populated with.

1 see [repositories.create-instances.spring]

 REPOSITORY QUERY KEYWORDS

Supported query keywords

The following table lists the keywords generally supported by the Spring Data repository query derivation mechanism. However, consult the store-specific documentation for the exact list of supported keywords, because some listed here might not be supported in a particular store.

Table 1. Query keywords

	Logical keyword
	Keyword expressions

	AND

	And

	OR

	Or

	AFTER

	After, IsAfter

	BEFORE

	Before, IsBefore

	CONTAINING

	Containing, IsContaining, Contains

	BETWEEN

	Between, IsBetween

	ENDING_WITH

	EndingWith, IsEndingWith, EndsWith

	EXISTS

	Exists

	FALSE

	False, IsFalse

	GREATER_THAN

	GreaterThan, IsGreaterThan

	GREATER_THAN_EQUALS

	GreaterThanEqual, IsGreaterThanEqual

	IN

	In, IsIn

	IS

	Is, Equals, (or no keyword)

	IS_EMPTY

	IsEmpty, Empty

	IS_NOT_EMPTY

	IsNotEmpty, NotEmpty

	IS_NOT_NULL

	NotNull, IsNotNull

	IS_NULL

	Null, IsNull

	LESS_THAN

	LessThan, IsLessThan

	LESS_THAN_EQUAL

	LessThanEqual, IsLessThanEqual

	LIKE

	Like, IsLike

	NEAR

	Near, IsNear

	NOT

	Not, IsNot

	NOT_IN

	NotIn, IsNotIn

	NOT_LIKE

	NotLike, IsNotLike

	REGEX

	Regex, MatchesRegex, Matches

	STARTING_WITH

	StartingWith, IsStartingWith, StartsWith

	TRUE

	True, IsTrue

	WITHIN

	Within, IsWithin

 REPOSITORY QUERY RETURN TYPES

Supported query return types

The following table lists the return types generally supported by Spring Data repositories. However, consult the store-specific documentation for the exact list of supported return types, because some listed here might not be supported in a particular store.

Geospatial types like (GeoResult, GeoResults, GeoPage) are only available for data stores that support geospatial queries.

Table 1. Query return types

	Return type
	Description

	void

	Denotes no return value.

	Primitives

	Java primitives.

	Wrapper types

	Java wrapper types.

	T

	An unique entity. Expects the query method to return one result at most. In case no result is found null is returned. More than one result will trigger an IncorrectResultSizeDataAccessException.

	Iterator<T>

	An Iterator.

	Collection<T>

	A Collection.

	List<T>

	A List.

	Optional<T>

	A Java 8 or Guava Optional. Expects the query method to return one result at most. In case no result is found Optional.empty()/Optional.absent() is returned. More than one result will trigger an IncorrectResultSizeDataAccessException.

	Option<T>

	An either Scala or JavaSlang Option type. Semantically same behavior as Java 8’s Optional described above.

	Stream<T>

	A Java 8 Stream.

	Future<T>

	A Future. Expects method to be annotated with @Async and requires Spring’s asynchronous method execution capability enabled.

	CompletableFuture<T>

	A Java 8 CompletableFuture. Expects method to be annotated with @Async and requires Spring’s asynchronous method execution capability enabled.

	ListenableFuture

	A org.springframework.util.concurrent.ListenableFuture. Expects method to be annotated with @Async and requires Spring’s asynchronous method execution capability enabled.

	Slice

	A sized chunk of data with information whether there is more data available. Requires a Pageable method parameter.

	Page<T>

	A Slice with additional information, e.g. the total number of results. Requires a Pageable method parameter.

	GeoResult<T>

	A result entry with additional information, e.g. distance to a reference location.

	GeoResults<T>

	A list of GeoResult<T> with additional information, e.g. average distance to a reference location.

	GeoPage<T>

	A Page with GeoResult<T>, e.g. average distance to a reference location.

 MIGRATION GUIDE

Migrating from 4.2 → 5.0

	
Base class for repositories GraphRepository has been renamed Neo4jRepository and parameter types change from <T> to <T, ID>.

	
All Repository methods can return Streams.

	
The repository method naming scheme has changed for SD commons 2.0 as part of DATACMNS-944.

	
for example, findOne repository methods are renamed findById and now return Optional<T>.

	
please check the javadoc of org.springframework.data.repository.CrudRepository

	
Paged custom queries no longer accept queries without countQuery attribute.

	
The keywords Between and IsBetween in query methods now include the given limits in the query.
Use a combination of GreaterThan/isGreaterThan and LessThan/isLessThan (e.g. isGreaterThanLowerLimitAndIsLessThanUpperLimit) to keep the exclusive behavior.

	
Id handling : Long native ids are not mandatory anymore. See GraphId field.

	
Primary indexes are now deprecated and replaced by @Id See Entity identifier.

	
Annotations on accessors are no longer valid. See Annotating entities.

	
Loading with depth -1 calls have to be reviewed (please see the OGM migration guide under Migration from 2.1 to 3.0 / Performance and unlimited load depth).

	
The ogm.properties file and environment variable have been removed. You now have to provide explicitly the configuration file or configure programmatically. See the configuration section.

	
The driver class name in the configuration is now inferred from connection URL.

	
Java 8 dates are now better supported ; the use of java.util.Date or converters is not required anymore. You may want to switch to more fine grained date types like Instant. See conversions.

	
The query filters are now immutable. See Filters.

Migrating from 4.0/4.1 → 4.2

Spring Data Neo4j 4.2 significantly reduces complexity of configuration for application developers.
There is no longer a need to extend from Neo4jConfiguration or define a Session bean. Configuration for various types
of applications are described here

	
Remove any subclassing of Neo4jConfiguration

	
Define the sessionFactory bean with an instance of SessionFactory and the transactionManager bean with an instance of Neo4jTransactionManager. Be sure to pass the SessionFactory into the constructor for the transaction manager.

Migrating from pre 4.0 → 4.2

Package Changes

Because the Neo4j Object Graph Mapper can be used independently of Spring Data Neo4j, the core annotations have been
moved out of the spring framework packages:

org.springframework.data.neo4j.annotation → org.neo4j.ogm.annotation

The @Query and @QueryResult annotations are only supported in the Spring modules, and are not used by the core
mapping framework. These annotations have not changed.

Annotation Changes

There have been some changes to the annotations that were used in previous versions of Spring Data Neo4j.
Wherever possible we have tried to maintain the previous annotations verbatim, but in a few cases this has not been
possible, usually for technical reasons but sometimes for aesthetic ones. Our goal has been to minimise the number
of annotations you need to use as well as trying to make them more self-explanatory. The following annotations
have been changed.

	Old

	New

	@RelatedTo

	@Relationship

	@RelatedToVia

	@Relationship

	@GraphProperty

	@Property

	@MapResult

	@QueryResult

	@ResultColumn

	@Property

	Relationship Direction.BOTH

	Relationship.UNDIRECTED

Custom Type Conversion

SDN provides automatic type conversion for the obvious candidates: byte[] and Byte[] arrays, Dates, BigDecimal and
BigInteger types. In order to define bespoke type conversions for particular entity attribute, you can annotate a
field or method with @Convert to specify your own implementation of org.neo4j.ogm.typeconversion.AttributeConverter.

You can find out more about type conversions here: Custom Converters

Date Format Changes

The default Date converter is @DateString.

SDN 3.x and earlier represented Dates as a String value consisting of the number of milliseconds since January 1, 1970, 00:00:00 GMT.

If you are upgrading to SDN 4.x from these versions and your application used the default, then you need to annotate your Date
properties with @DateLong.
Moreover, the property values in the graph need to be converted to numbers.

Listing 1. Upgrade Date properties to numbers
MATCH (n:Foo) //All nodes which contain date properties to be migrated
WHERE NOT HAS(n.migrated)// Take the first 10k nodes that haven't been migrated yet
WITH n LIMIT 10000
SET n.dateProperty = toInt(n.dateProperty),n.migrated=1 //where dateProperty is the date with a String value to be migrated
RETURN count(n); //Run until the statement returns zero records
//Similar process to remove the migrated flag

However, if your application already represented Dates as @GraphProperty(propertyType = Long.class) then simply changing this to
@DateLong is sufficient.

Indexing

The best way to retrieve start nodes for traversals and queries is by using Neo4j’s integrated index facilities.
SDN supports Index and Constraint management but differs in how it does this to previous versions.

Obsolete Annotations

The following annotations are no longer used, either because they are no longer needed, or cannot be supported via Cypher.

	
@GraphTraversal

	
@RelatedToVia

	
@RelatedTo

	
@TypeAlias

	
@Fetch

Features No Longer Supported

Some features of the previous annotations have been dropped.

	
Overriding @Property Types

	
Support for overriding property types via arguments to @Property has been dropped. If your attribute requires
a non-default conversion to and from a database property, you can use a Custom Converter instead.

	
@Relationship enforceTargetType

	
In previous versions of Spring Data Neo4j, you would have to add an enforceTargetType attribute into every clashing
@Relationship annotation. Thanks to changes in the underlying object-graph mapping mechanism, this is no longer
necessary.

Listing 2. Clashing Relationship Types
@NodeEntity
class Person {
 @Relationship(type="OWNS")
 private Car car;

 @Relationship(type="OWNS")
 private Pet pet;
...
}

	
Cross-store Persistence

	
Neo4j is dropping XA support and therefore SDN does not provide any capability for cross-store persistence

	
TypeRepresentationStrategy

	
SDN 4 replaces the existing TypeRepresentionStrategy configuration with a straightforward convention based on simple class-names
or entities using @NodeEntity(label=…​)

	
AspectJ Support

	
Support for AspectJ-based persistence has been removed from SDN 4 as the write-and-read-through approach only works with an integrated, embedded database, not Neo4j server. The performance improvements in SDN 4 should make their use as a performance optimisation unnecessary anyway.

Deprecation of Neo4jTemplate

It is highly recommended for users starting new SDN projects to use the OGM Session directly. Neo4jTemplate has been kept to give upgrading users a better experience.

The Neo4jTemplate has been slimmed-down significantly for SDN 4. It contains the exact same methods as Session. In fact Neo4jTemplate is just a very thin wrapper with an ability to support SDN Exception Translation.
Many of the operations are no longer needed or can be expressed with a straightforward Cypher query.

If you do use Neo4jTemplate, then you should code against its Neo4jOperations interface instead of the template class.

The following table shows the Neo4jTemplate functions that have been retained for version 4 of Spring Data Neo4j. In some cases the method names have changed but the same functionality is offered under the new version.

Table 1. Neo4j Template Method Migration

	Old Method Name
	New Method Name
	Notes

	findOne

	load

	Overloaded to take optional depth parameter

	findAll

	loadAll

	Overloaded to take optional depth parameter, also now returns a Collection rather than a Result

	query

	query

	Return type changed from Result to be Iterable

	save

	save

	

	delete

	delete

	

	count

	count

	No longer defines generic type parameters

	findByIndexedValue

	loadByProperty

	Indexes are not supported natively, but you can index node properties in your database setup and use this method to find by them

To achieve the old template.fetch(entity) equivalent behaviour, you should call one of the load methods specifying the fetch depth as a parameter.

It’s also worth noting that exec(GraphCallback) and the create…​() methods have been made obsolete by Cypher.
Instead, you should now issue a Cypher query to the new execute method to create the nodes or relationships that you need.

Dynamic labels, properties and relationship types are not supported as of this version, server extensions should be considered instead.

Built-In Query DSL Support

Previous versions of SDN allowed you to use a DSL to generate Cypher queries. There are many different DSL
libraries available and you’re free to use which of these - or none - that you want. With Cypher changing on a regular
basis, avoiding a DSL implementation in SDN means less ongoing maintenance and less likelihood of your code
being incompatible with future versions of Neo4j.

Graph Traversal and Node/Relationship Manipulation

These features cannot be supported by Cypher and have therefore been dropped from Neo4jTemplate.

Please provide feedback on the new APIs of SDN 5 and the migration needs to spring-data-neo4j@neotechnology.com or via a JIRA issue

 FREQUENTLY ASKED QUESTIONS

	
What is the difference between Neo4j OGM and Spring Data Neo4j (SDN)?

	
Spring Data Neo4j (SDN) uses the OGM under the covers. It’s like Spring Data JPA, where JPA/Hibernate underly it. Most
of the power of SDN actually comes from the OGM.

	
How do I set up my Spring Configuration with Spring WebMVC projects?

	
If you are using a Spring WebMVC application, the following configuration is all that’s required:

@Configuration
@EnableWebMvc
@ComponentScan({"org.neo4j.example.web"})
@EnableNeo4jRepositories("org.neo4j.example.repository")
@EnableTransactionManagement
public class MyWebAppConfiguration extends WebMvcConfigurerAdapter {

 @Bean
 public OpenSessionInViewInterceptor openSessionInViewInterceptor() {
 OpenSessionInViewInterceptor openSessionInViewInterceptor =
 new OpenSessionInViewInterceptor();
 openSessionInViewInterceptor.setSessionFactory(sessionFactory());
 return openSessionInViewInterceptor;
 }

 @Override
 public void addInterceptors(InterceptorRegistry registry) {
 registry.addWebRequestInterceptor(openSessionInViewInterceptor());
 }

 @Bean
 public SessionFactory sessionFactory() {
 // with domain entity base package(s)
 return new SessionFactory("org.neo4j.example.domain");
 }

 @Bean
 public Neo4jTransactionManager transactionManager() throws Exception {
 return new Neo4jTransactionManager(sessionFactory());
 }
}

	
How do I set up my Spring Configuration with a Java Servlet 3.x+ Container project?

	
If you are using a Java Servlet 3.x+ Container, you can configure a Servlet filter with Spring’s AbstractAnnotationConfigDispatcherServletInitializer. The configuration below will open a new
session for every web request then automatically close it on completion. SDN provides the org.springframework.data.neo4j.web.support.OpenSessionInViewFilter to do this:

public class MyAppInitializer extends AbstractAnnotationConfigDispatcherServletInitializer {

 @Override
 protected void customizeRegistration(ServletRegistration.Dynamic registration) {
 registration.setInitParameter("throwExceptionIfNoHandlerFound", "true");
 }

 @Override
 protected Class<?>[] getRootConfigClasses() {
 return new Class[] {ApplicationConfiguration.class} // if you have broken up your configuration, this points to your non web application config/s.
 }

 @Override
 protected Class<?>[] getServletConfigClasses() {
 throw new Class[] {WebConfiguration.class}; // a configuration that extends the WebMvcConfigurerAdapter as seen above.
 }

 @Override
 protected String[] getServletMappings() {
 return new String[] {"/"};
 }

 protected Filter[] getServletFilters() {
 return return new Filter[] {new OpenSessionInViewFilter()};
 }

}

OEBPS/images/jacket/cover.png
Asciidoctor EPUB3

OEBPS/nav.xhtml

Spring Data Neo4j - Reference Documentation

Table of Contents

		Preface

		Spring and Spring Data

		NoSQL and Graph databases

		Introducing Neo4j

		Requirements

		Additional Resources

		Project metadata

		Getting Help & give feedback

		Untitled

		New & Noteworthy

		What’s new in Spring Data Neo4j 5.0.0

		Untitled

		Dependencies

		Dependency management with Spring Boot

		Spring Framework

		Untitled

		Working with Spring Data Repositories

		Core concepts

		Query methods

		Defining repository interfaces

		Fine-tuning repository definition

		Null handling of repository methods

		Using Repositories with multiple Spring Data modules

		Defining query methods

		Query lookup strategies

		Query creation

		Property expressions

		Special parameter handling

		Limiting query results

		Streaming query results

		Async query results

		Creating repository instances

		XML configuration

		JavaConfig

		Standalone usage

		Custom implementations for Spring Data repositories

		Customizing individual repositories

		Customize the base repository

		Publishing events from aggregate roots

		Spring Data extensions

		Querydsl Extension

		Web support

		Repository populators

		Legacy web support

		Untitled

		Auditing

		Basics

		Annotation based auditing metadata

		Interface-based auditing metadata

		AuditorAware

		Untitled

		Introduction

		SDN Architecture

		How to use this reference

		Untitled

		Getting started

		Using Boot

		Using STS

		Using Dependency Management

		Maven

		Gradle

		Examples

		Configuration

		Driver Configuration

		Spring Boot Applications

		Connecting to Neo4j

		Untitled

		Neo4j OGM Support

		What is an OGM?

		Understanding the Session

		Basic Operations

		Entity Persistence

		Cypher Queries

		Transactions

		Untitled

		Neo4J Repositories

		Introduction

		Usage

		Query Methods

		Query and Finder Methods

		Annotated queries

		Named queries

		Query results

		Cypher examples

		Queries derived from finder-method names

		Mapping Query Results

		Sorting and Paging

		Projections

		Transactions

		Read only Transactions

		Transaction Bound Events

		Clustering support

		Bookmark management

		Miscellaneous

		CDI integration

		JSR-303 (Bean Validation) Support

		Conversion Service

		Persistence constructors

		Untitled

		Projections

		Remodelling data

		Untitled

		Auditing

		Untitled

		Namespace reference

		The <repositories /> element

		Untitled

		Populators namespace reference

		The <populator /> element

		Untitled

		Repository query keywords

		Supported query keywords

		Untitled

		Repository query return types

		Supported query return types

		Untitled

		Migration Guide

		Migrating from 4.2 → 5.0

		Migrating from 4.0/4.1 → 4.2

		Migrating from pre 4.0 → 4.2

		Package Changes

		Annotation Changes

		Custom Type Conversion

		Date Format Changes

		Indexing

		Obsolete Annotations

		Features No Longer Supported

		Deprecation of Neo4jTemplate

		Untitled

		Frequently asked questions

OEBPS/images/SDN-Architecture.png
Application Code

Neo4j Object Graph Mapping (OGM)

Neo4j Bolt Driver

Neo4j HTTP Driver

Neo4j Embedded Driver

bolt

HTTP

Java

Neo4j Graph Database

