Spring Data REST Reference Documentation

2.0.0.M1

Jon Brisbin , Oliver Gierke

Copyright © 2012-2013

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Data REST

Table of Contents

R 1o o (1 T3 1T o 1
1.1. HTTP Verb to CRUD Method Mappingcooeiuiiiiiciie e e e e 1
1.2. Resource DiSCOVEIaDIlitYoou. it e e e e e 1

COMPACE VS. VEIDOSE ...ttt et e et e et e e eab e eeees 2

. Installing Spring Data RESTiiiiiiiiiiiei e e e e e e e e e e e et e e et e e eaaaaees 3
2% I |11 o o [F od 1T o RSP USTPPP 3
2.2. Adding Spring Data REST to @ Gradle Projectc.uviiiiiuiiieiiiiinieciin e 3
2.3. Adding Spring Data REST t0 @ MaVeN PrOJECTcuuiiiiieiii e e e e e 3
2.4. Configuring Spring Data REST ... 3
AddING CUSIOM CONVEITETS ...iiiiiiiiiii ettt e et e e et e eeeaaans 4

2.5. Adding Spring Data REST t0 Spring MVCcoouiiiiiii e 4

. Domain ODbject REPreSENTIAtIONSuiiui it e e e e e e e e et e e e een e 6
3.1. Links as First-Class ODJECLSuiiiiiiiiiiiii e e eeees 6
Entity RelatioONSNIPS ...cioinii e 6

TN © o] [=Tox A1V, =T o] o1 o Vo PP 7
Adding custom (de)serializers to Jackson's ObjeCtMappPercoeveveviiieiiiiiiieiiii e 7

Abstract Class registrationcoieiiiiiiii i 7

Adding custom serializers for domain typesocouviiiiiiiiiiiiii e 8

c PAgINg AN SOMING ..vniieei e e 9
O = - To [T [PP 9
Previous and NEeXt LINKS ... e e e eenns 9

S Yo 1] o ORI 10

Y =11 To F=1 (o] o TP PSP PPPPTTTR 11
5.1. Assigning Validators Mmanually ... e 11

c BV BN S e e 12
6.1. Writing an Applicati ONLIi St ENEI .o 12
6.2. Writing an annotated handIer 12
USING the rest-Shell o 14
7.1. Installing the rest-Shell ... 14
7.2. DISCOVEINNG FESOUICES ..tuieuuiitn ettt e eet e e et e et e e et e e et e e et e e et e eaa e ean e e et e e et e aeta e eanaeennns 14
7.3. Creating NEW FESOUICESueiiettueeeettaeeeett e e ettt e e eett e e ettt aeeeetta e e ettt e eeeettaeeeantaaaees 15
A - Yy Lo e (U= VA o =T = L 1= (=] 16
7.5. Outputing results t0 @ filecoun i 16
7.6. Sending COMPIEX JSON ...t e et e et eaebe s 17
7.7. Shelling oUt t0 DASHcoue 17
7.8. Setting contexXt Variables ... e 17
7.9. Per-user shell iNitializationcooiiiiiiii e 18
7.10. SSL Certificate Validationooeuriiiiiiiieeiiiiiii e 19
7.11. HTTP BasiC aUthentiCatioNcccuuiiiiiiiii e eaa e 19

4% 7 @ 1 4 = o 19

Spring Data REST

2.0.0.M1 Reference Documentation ii

Spring Data REST

1. Introduction

Spring Data REST makes exporting domain objects to RESTful clients using HATEOAS principles very
easy. It exposes the CRUD methods of the Spring Data Cr udReposi t ory_interface to HTTP. Spring
Data REST also reads the body of HTTP requests and interprets them as domain objects. It recognizes
relationships between entities and represents that relationship in the form of aLi nk.

1.1 HTTP Verb to CRUD Method Mapping

Spring Data REST translates HTTP calls to method calls by mapping the HTTP verbs to CRUD methods.
The following table illustrates the way in which an HTTP verb is mapped to a Cr udReposi t or y method.

Table 1.1. HTTP verb to CRUD method mapping

Verb Method

CGET CrudRepository<I D, T>. fi ndOne(I D id)
POST CrudRepository<I D, T>. save(T entity)
PUT CrudRepository<I D, T>. save(T entity)
DELETE CrudRepository<I D, T>. delete(I D id)

By default, all of these methods are exported to clients. By placing an annotation on your
Cr udReposi t ory subinterface, however, you can turn access to a method off. This is discussed in
more detail in the section on configuration.

1.2 Resource Discoverability

A core principle of HATEOAS is that resources should be discoverable through the publication of links
that point to the available resources. There are a number of ways to accomplish this but no real standard
way. Spring Data REST uses a link method that is consistent across Spring Data REST: it provides
links in a property called | i nks. That property is an array of objects that take the form of something
resembling an atom:link element in the Atom XML namespace.

Resource discovery starts at the top level of the application. By issuing a request to the root URL under
which the Spring Data REST application is deployed, the client can extract a set of links from the returned
JSON object that represent the next level of resources that are available to the client.

For example, to discover what resources are available at the root of the application, issue an HTTP
GET to the root URL:

Spring Data REST
2.0.0.M1 Reference Documentation 1

http://en.wikipedia.org/wiki/HATEOAS
http://static.springsource.org/spring-data/commons/docs/current/api/org/springframework/data/repository/CrudRepository.html
http://tools.ietf.org/html/rfc4287#section-4.2.7
http://tools.ietf.org/html/rfc4287

Spring Data REST

curl -v http://Iocal host: 8080/
< HTTP/1.1 200 OK
< Content-Type: application/json
<
{
"links" : [{
“rel" : "customer",
"href" : "http://local host: 8080/ cust oner"
oA
“rel" : "profile",
“href" : "http://]ocal host: 8080/ profile"
oA
“rel" : "order",
"href" : "http://]ocal host: 8080/ order"
oA
“rel" : "people",
“href" : "http://|ocal host: 8080/ peopl e"
oA
“rel" : "product",
“href" : "http://]ocal host: 8080/ product"
} 1L
“content" : []
}

The links property of the result document contains an array of objects that have rel and href properties

on them.

Compact vs. Verbose

When issuing a request to a resource, the default behavior is to provide as much information as possible
in the body of the response. In the case of accessing a Reposi t or y resource, Spring Data REST will
inline entities into the body of the response. This could lead to poor network performance in the case of
a very large number of entities. To reduce the amount of data sent back in the response, a user agent
can request the special content type appl i cati on/ x- spri ng- dat a- conpact +j son by placing this
in the request Accept header. Rather than inlining the entities, this content-type provides a link to each

entity in the links property.

< HTTP/1.1 200 OK
< Content-Type: application/Xx-spring-data-conpact+j son
<

{
"links" : [{
"rel" : "custoner.search",
“href" : "http://Iocal host: 8080/ cust oner/ search"”
1.
"content" : []
}

curl -v -H "Accept: application/x-spring-data-conpact+json" http://I|ocal host: 8080/ cust oner

Spring Data REST
2.0.0.M1 Reference Documentation

Spring Data REST

2. Installing Spring Data REST

2.1 Introduction

Spring Data REST is itself a Spring MVC application and is designed in such a way that it should
integrate with your existing Spring MVC applications with very little effort. An existing (or future) layer of
services can run alongside Spring Data REST with only minor considerations.

To install Spring Data REST alongside your application, simply add the required dependencies, include
the stock @onfi gur at i on class (or subclass it and perform any required manual configuration), and
map some URLs to be managed by Spring Data REST.

2.2 Adding Spring Data REST to a Gradle project

To add Spring Data REST to a Gradle-based project, add the spri ng- dat a- r est - webnvc artifact
to your compile-time dependencies:

dependenci es {
. other project dependencies
conpi |l e "org. springfranewor k. dat a: spri ng- dat a-rest - webnvc: 1. 1. 0. ML"

}

2.3 Adding Spring Data REST to a Maven project

To add Spring Data REST to a Maven-based project, add the spri ng- dat a- r est - webnvc artifact
to your compile-time dependencies:

<dependency>
<groupl d>or g. spri ngf r anewor k. dat a</ gr oupl d>
<artifactld>spring-data-rest-webnmc</artifactld>
<version>1.1. 0. Mi</ versi on>

</ dependency>

2.4 Configuring Spring Data REST

To install Spring Data REST alongside your existing Spring MVC application, you need to
include the appropriate MVC configuration. Spring Data REST configuration is defined in a class
called RepositoryRest MicConfi guration. You can either import this class into your existing
configuration using an @ nport annotation or you can subclass it and override any of the
conf i gur eXXX methods to add your own configuration to that of Spring Data REST.

In the following example, we'll subclass the standard Reposi t or yRest MrcConfi gur ati on and add
some Resour ceMappi ng configurations for the Per son domain object to alter how the JSON will look
and how the links to related entities will be handled.

Spring Data REST
2.0.0.M1 Reference Documentation 3

Spring Data REST

@confi guration
public class MyWebConfi gurati on extends RepositoryRest MicConfiguration {

@verride protected void
confi gur eReposi t or yRest Confi gur ati on(Reposi t oryRest Confi guration config) {

confi g. addResour ceMappi ngFor Domai nType(Per son. cl ass)
. addResour ceMappi ngFor ("I ast Nane")
.setPat h("surnane"); // Change 'lastNane' to 'surnane' in the JSON

confi g. addResour ceMappi ngFor Domai nType(Per son. cl ass)
. addResour ceMappi ngFor (" si bl i ngs")
.setRel ("siblings")
.setPath("siblings"); // Pointless in this exanple,

/1 but shows how to change 'rel' and 'path' val ues.

There are numerous methods on the RepositoryRest Confi gurati on object to allow you to
configure various aspects of Spring Data REST. Please read the javadoc for that class to get detailed
descriptions of the various settings you can control.

Adding custom converters

It may be necessary to add a custom converter to Spring Data REST. You might need to turn
a query parameter into a complex object, for instance. In that case, you'll want to override the
confi gureConver si onSer vi ce method and add your own converters. To convert a query parameter
to a complex object, for instance, you would want to register a converter for Stri ng[] to MyPoj o.

@Bean public MyPoj oConverter myPojoConverter() {
return new MyPoj oConverter();

}

@werride protected void configureConversionServi ce(Confi gurabl eConversi onServi ce
conver si onServi ce) {
conversi onServi ce. addConverter(String[].class, myPojoConverter());

}

2.5 Adding Spring Data REST to Spring MVC

Since Spring Data REST is simply a Spring MVC application, you only need to include the
REST configuration into the configuration for the Di spatcher Servl et. If using a Servlet 3.0
WebApplicationlnitializer (the preferred configuration for Spring Data REST applications),
you would add your subclassed configuration from above into the configuration for the
Di spat cher Servl et. The following configuration class is from the example project and includes
datasource configuration for three different datastores and domain models, which will all be exported
by Spring Data REST.

Spring Data REST
2.0.0.M1 Reference Documentation 4

Spring Data REST

public class Rest ExporterWblnitializer inplenents WebApplicationlnitializer {

@werride public void onStartup(ServletContext servletContext) throws ServletException {
Annot at i onConf i g\WebAppl i cati onCont ext rootCtx = new
Annot at i onConf i gWebAppl i cati onCont ext ();

root &t x. regi ster(
JpaReposi toryConfig.class, // Include JPA entities, Repositories
MongoDbReposi t oryConfi g. cl ass, // |nclude MongoDB docunent entities, Repositories
Genfi reRepositoryConfig.class // Inlucde Genfire entities, Repositories

DE

servl et Cont ext . addLi st ener (new Cont ext Loader Li st ener (root Ctx));

Annot at i onConf i g\WebAppl i cati onCont ext webCtx = new
Annot at i onConf i g\WebAppl i cati onCont ext ();
webCt x. regi st er (MyWebConfi gurati on. cl ass);

Di spat cher Servl et di spatcherServl et = new Di spatcher Servl et (webCt x);

Servl et Regi stration. Dynanmic reg = servl et Context.addServl et ("rest-exporter",
di spat cher Servl et) ;

reg. set LoadOnStartup(1);

reg. addMappi ng("/*");

The equivalent of the above in a standard web.xml will also work identically to this configuration if you
are still in a servlet 2.5 environment.

When you deploy this application to your servlet container, you should be able to see what repositories
are exported by accessing the root of the application. You can use curl or, more easily, ther est - shel | :

$ rest-shell

I\ 1 I I LA v
[v/ | < >
[N T I
1.2. 1. RELEASE

Wl come to the REST shell. For assistance hit TAB or type "hel p".
http://1ocal host: 8080: > |i st

rel hr ef

peopl e http://1 ocal host: 8080/ peopl e
profile http://1ocal host: 8080/ profile
cust oner http://1ocal host: 8080/ cust oner
or der http://1 ocal host: 8080/ or der

pr oduct http://1 ocal host: 8080/ pr oduct

Spring Data REST
2.0.0.M1 Reference Documentation 5

Spring Data REST

3. Domain Object Representations

3.1 Links as First-Class Objects

Links are an essential part of RESTful resources and allow for easy discoverability of related resources.
In Spring Data REST, a link is represented in JSON as an object with a rel and hr ef property.
These objects will appear in an array under an object's | i nks property. These objects are meant to
provide a user agent with the URLS necessary to retrieve resources related to the current resource
being accessed.

When accessing the root of a Spring Data REST application, for example, links are provided to each
repository that is exported. The user agent can then pick the link it is interested in and follow thathr ef .
Issue a get intherest-shel |l tosee an example of links.

http://1 ocal host: 8080: > get
> CGET http://1ocal host: 8080/
< 200 X
< Content-Type: application/json
<
{
"links" : [{
"rel" : "people",
"href" : "http://|ocal host: 8080/ peopl e"
boA
“rel" : "profile",
“href" : "http://1ocal host: 8080/ profile"
boA
"rel" : "customer",
"href" : "http://I|ocal host: 8080/ cust onmer"
boA
"rel" : "order",
"href" : "http://1ocal host: 8080/ order"
boA
“rel" : "product",
“href" : "http://]ocal host: 8080/ product"
}IL
“content" : []
}

Entity Relationships

If two entities are related to one another through a database-defined relationship, then that relationship
will appear in the JSON as a link. In JPA, one would place a @/anyToOne, @neToOne, or other
relationship annotation. If using Spring Data MongoDB, one would place a @BRef annotation on a
property to denote its special status as a reference to other entities. In the example project, the Per son
class has a related set of Per son entities in the si bl i ngs property. If you get the resource of a
Per son you will see, in the si bl i ngs property, the link to follow to get the related Per sons.

Spring Data REST
2.0.0.M1 Reference Documentation 6

Spring Data REST

http://1 ocal host: 8080: > get people/l
> GET http://1ocal host: 8080/ peopl e/ 1
< 200 XK
< Content-Type: application/json
<
{
"firstName" : "Billy Bob",
"surname" : "Thornton",
“links" : [{
"rel" : "self",
“href" : "http://I|ocal host: 8080/ peopl e/ 1"
oA
"rel" : "people.person.father",
"href" : "http://Iocal host: 8080/ peopl e/ 1/ f at her "
oA
"rel" : "people.person.siblings",
"href" : "http://I|ocal host: 8080/ peopl e/ 1/ si bl i ngs"
P
}

3.2 Object Mapping

Spring Data REST returns a representation of a domain object that corresponds to the requested
Accept type specified in the HTTP request. !

Sometimes the behavior of the Spring Data REST's ObjectMapper, which has been specially configured
to use intelligent serializers that can turn domain objects into links and back again, may not handle your
domain model correctly. There are so many ways one can structure your data that you may find your
own domain model isn't being translated to JSON correctly. It's also sometimes not practical in these
cases to try and support a complex domain model in a generic way. Sometimes, depending on the
complexity, it's not even possible to offer a generic solution.

Adding custom (de)serializers to Jackson's ObjectMapper

To accommodate the largest percentage of use cases, Spring Data REST tries very hard to render your
object graph correctly. It will try and serialize unmanaged beans as normal POJOs and it will try and
create links to managed beans where that's necessary. But if your domain model doesn't easily lend
itself to reading or writing plain JSON, you may want to configure Jackson's ObjectMapper with your
own custom type mappings and (de)serializers.

Abstract class registration

One key configuration point you might need to hook into is when you're using an abstract class (or an
interface) in your domain model. Jackson won't know by default what implementation to create for an
interface. Take the following example:

@ntity
public class MyEntity {
@neToMany
private List<Mylnterface> interfaces;

}

1Currently, only JSON representations are supported. Other representation types can be supported in the future by adding an
appropriate converter and updating the controller methods with the appropriate content-type.

Spring Data REST
2.0.0.M1 Reference Documentation 7

Spring Data REST

In a default configuration, Jackson has no idea what class to instantiate when POSTing new data to the
exporter. This is something you'll need to tell Jackson either through an annotation, or, more cleanly,
by registering a type mapping using a Mbdul e.

To add your own Jackson configuration to the Cbj ect Mapper used by Spring Data REST, override
the confi gureJacksonObj ect Mapper method. That method will be passed an Cbj ect Mapper
instance that has a special module to handle serializing and deserializing Per si st ent Entitys. You
can register your own modules as well, like in the following example.

@werride protected void configureJacksonObj ect Mapper (Obj ect Mapper obj ect Mapper) {
obj ect Mapper . regi st er Modul e(new Si npl eModul e(" MyCust onVbdul e") {
@werride public void setupMdul e(Set upCont ext context) {
cont ext . addAbst r act TypeResol ver (
new Si npl eAbst ract TypeResol ver (). addMappi ng(M/l nt er f ace. cl ass,
M/l nterfacel npl.cl ass)

1)

Once you have access to the Set upCont ext object in your Modul e, you can do all sorts of cool things
to configure Jacskon's JSON mapping. You can read more about how Modul es work on Jackson's wiki:
http://wiki.fasterxml.com/JacksonFeatureModules

Adding custom serializers for domain types

If you want to (de)serialize a domain type in a special way, you can register your own implementations
with Jackson's Obj ect Mapper and the Spring Data REST exporter will transparently handle those
domain objects correctly. To add serializers, from your set upModul e method implementation, do
something like the following:

@werride public void setupMdul e(Set upCont ext context) {
Sinpl eSerializers serializers = new SinpleSerializers();
Si npl eDeseri alizers deserializers = new Sinpl eDeserializers();

serializers.addSerializer(MEntity.class, new MEntitySerializer());
deserializers. addDeserializer(MEnNtity.class, new M/EntityDeserializer());

cont ext.addSeri al i zers(serializers);
cont ext . addDeseri al i zers(deseri al i zers);

Spring Data REST
2.0.0.M1 Reference Documentation 8

http://wiki.fasterxml.com/JacksonFeatureModules

Spring Data REST

4. Paging and Sorting

4.1 Paging

Rather than return everything from a large result set, Spring Data REST recognizes some URL
parameters that will influence the page size and starting page number. To add paging support to your
Repositories, you need to extend the Pagi ngAndSor t i ngReposi t or y<T, | D> interface rather than
the basic Cr udReposi t or y<T, | D> interface. This adds methods that accept a Pageabl e to control
the number and page of results returned.

‘public Page findAl | (Pageabl e pageabl e);

If you extend Pagi ngAndSorti ngReposi t or y<T, | D> and access the list of all entities, you'll get
links to the first 20 entities. To set the page size to any other number, add a limit parameter:

‘http://localhost:8080/peop|e/?|init:50

To get paging in your query methods, you must change the signature of your query methods to accept
a Pageabl e as a parameter and return a Page<T> rather than a Li st <T>. Otherwise, you won't get
any paging information in the JSON and specifying the query parameters that control paging will have
no effect.

By default, the URL query parameters recognized are page, to specify page number [imt, to
specify how many results to return on a page, and sort to specify the query method parameter on
which to sort. To change the names of the query parameters, simply call the appropriate method on
Reposi t or yRest Confi gur at i on and give it the text you would like to use for the query parameter.
The following, for example, would set the paging parameter to p, the limit parameter to | , and the sort
parameter to q:

@werride protected void configureRepositoryRest Configuration(RepositoryRestConfiguration
config) {
confi g. set PagePar amNanme(" p")
.setLimtParanName("I")
. set Sort ParamNane("q") ;

The URL to use these parameters would then be changed to:

http://1 ocal host: 8080/ peopl e/ ?p=2&l =50

Previous and Next Links

Each paged response will return links to the previous and next pages of results based on the current
page. If you are currently at the first page of results, however, no "previous" link will be rendered. The
same is true for the last page of results: no "next" link will be rendered if you are on the last page of
results. The "rel" value of the link will end with ".next" for next links and ".prev" for previous links.

{
"rel" : "people.next",
“href" : "http://]ocal host: 8080/ peopl e?page=2&! i m t =20"

Spring Data REST
2.0.0.M1 Reference Documentation 9

Spring Data REST

4.2 Sorting

Spring Data REST also recognizes sorting parameters that will use the Repository sorting support.

To have your results sorted on a particular property, add a sort URL parameter with the name of the
property you want to sort the results on. You can control the direction of the sort by specifying a URL
parameter composed of the property name plus . di r and setting that value to either asc ordesc. The
following would use the f i ndByNaneSt art sW t h query method defined on the Per sonReposi tory
for all Per son entities with names starting with the letter "K" and add sort data that orders the results
on the name property in descending order:

curl -v http://1ocal host: 8080/ peopl e/ search/ nameSt art sWt h?
nane=K&sort =nanme&nane. di r =desc

Spring Data REST
2.0.0.M1 Reference Documentation 10

Spring Data REST

5. Validation

There are two ways to register a Val i dat or instance in Spring Data REST: wire it by bean name
or register the validator manually. For the majority of cases, the simple bean name prefix style will be
sufficient.

In order to tell Spring Data REST you want a particular Val i dat or assigned to a particular
event, you simply prefix the bean name with the event you're interested in. For example, to
validate instances of the Per son class before new ones are saved into the repository, you would
declare an instance of a Val i dat or <Per son> in your Appl i cat i onCont ext with the bean name
"beforeCreatePersonValidator". Since the prefix "beforeCreate" matches a known Spring Data REST
event, that validator will be wired to the correct event.

5.1 Assigning Validators manually

If you would rather not use the bean name prefix approach, then you simply need to register an instance
of your validator with the bean who's job it is to invoke validators after the correct event. In your
configuration that subclasses Spring Data REST's Reposi t or yRest MrcConfi gur at i on, override
the confi gureVal i dati ngRepositoryEventLi stener method and call the addVal i dat or
method on the Val i dat i ngReposi t or yEvent Li st ener, passing the event you want this validator
to be triggered on, and an instance of the validator.

@verride protected void
configureVal i dati ngRepositoryEventLi stener(ValidatingRepositoryEventListener v) {
v. addVal i dat or (" bef oreSave", new BeforeSaveValidator());

}

Spring Data REST
2.0.0.M1 Reference Documentation 11

Spring Data REST

6. Events

There are six different events that the REST exporter emits throughout the process of working with an
entity. Those are:

» BeforeCreateEvent

» AfterCreateEvent

+ BeforeSaveEvent

» AfterSaveEvent

» BeforeLinkSaveEvent
» AfterLinkSaveEvent
» BeforeDeleteEvent

» AfterDeleteEvent

6.1 Writing an Appl i cati onLi st ener

There is an abstract class you can subclass which listens for these kinds of events and calls the
appropriate method based on the event type. You just override the methods for the events you're
interested in.

public class BeforeSaveEventLi stener extends Abstract RepositoryEventListener {

@werride public void onBeforeSave((Object entity) {
logic to handl e inspecting the entity before the Repository saves it

}

@werride public void onAfterDel ete(Object entity) {
. send a nessage that this entity has been del et ed

}

One thing to note with this approach, however, is that it makes no distinction based on the type of the
entity. You'll have to inspect that yourself.

6.2 Writing an annotated handler

Another approach is to use an annotated handler, which does filter events based on domain type.

To declare a handler, create a POJO and put the @Reposi t or yEvent Handl er annotation on it. This
tells the BeanPost Pr ocessor that this class needs to be inspected for handler methods.

Once it finds a bean with this annotation, it iterates over the exposed methods and looks for annotations
that correspond to the event you're interested in. For example, to handle BeforeSaveEvents in an
annotated POJO for different kinds of domain types, you'd define your class like this:

Spring Data REST
2.0.0.M1 Reference Documentation 12

Spring Data REST

@Reposi t or yEvent Handl er
public class PersonEvent Handl er {

@Handl eBef or eSave(Person. cl ass) public void handl ePer sonSave(Person p) {
you can now deal with Person in a type-safe way

@Hand| eBef oreSave(Profile.class) public void handl eProfil eSave(Profile p) {
you can now deal with Profile in a type-safe way

}

You can also declare the domain type at the class level:
@Reposi t or yEvent Handl er (Per son. cl ass)
public class PersonEvent Handl er {
@Hand| eBef oreSave public void handl eBef or eSave(Person p) {

}

@Handl eAfter Del ete public void handl eAfterDel et e(Person p) {

Just declare an instance of your annotated bean in your ApplicationContext and the
BeanPost Pr ocessor thatis by default created in Reposi t or yRest MycConf i gur at i on will inspect
the bean for handlers and wire them to the correct events.

@confi guration
public class RepositoryConfiguration {

@ean PersonEvent Handl er per sonEvent Handl er () {
return new PersonEvent Handl er () ;

}

Spring Data REST
2.0.0.M1 Reference Documentation 13

Spring Data REST

7. Using the rest-shell

The rest-shell is a command-line shell that aims to make writing REST-based applications easier. It
is based on spring-shell and integrated with Spring HATEOAS in such a way that REST resources that
output JSON compliant with Spring HATEOAS can be discovered by the shell and interactions with the
REST resources become much easier than by manipulating the URLSs in bash using a tool like curl.

The rest-shell provides a number of useful commands for discovering and interacting with REST
resources. For example discover will discover what resources are available and print out an easily-
readable table of rels and URIs that relate to those resources. Once these resources have been
discovered, the rel of those URIs can be used in place of the URI itself in most operations, thus cutting
down on the amount of typing needed to issue HTTP requests to your REST resources.

7.1 Installing the rest-shell

If you're using Mac OS X and Homebrew, then installation is super easy:

‘brewinstall rest-shell

Other platforms are simple as well: just download the archive from the GitHub page and unzip it to a
location on your local hard drive.

7.2 Discovering resources

The rest-shell is aimed at making it easier to interact with REST resources by managing the session
baseUri much like a directory in a filesystem. Whenever resources are discovered, you can then follow
to a new baseUri, which means you can then use relative URIs. Here's an example of discovering
resources, then following a link by referencing its rel value, and then using a relative URI to access
resources under that new baseUri:

Spring Data REST
2.0.0.M1 Reference Documentation 14

https://github.com/SpringSource/rest-shell

Spring Data REST

http://1ocal host: 8080: > di scover

rel hr ef

addr ess http://1ocal host: 8080/ addr ess
famly http://1 ocal host: 8080/ fani |y

peopl e http://1 ocal host: 8080/ per son

profile http://1ocal host: 8080/ profile

http://1ocal host: 8080: > fol |l ow peopl e
http://1ocal host: 8080/ person: > |i st
rel hr ef

peopl e. Per son http://1ocal host: 8080/ person/ 1
peopl e. Person http://1 ocal host: 8080/ person/ 2
peopl e. search http://1 ocal host: 8080/ per son/ sear ch

http://1 ocal host: 8080/ person: > get 1
> GET http://1ocal host: 8080/ person/1

< 200 X

< ETag: "2"

< Content-Type: application/json
<

{
"links" : [{
"rel" : "self",
"href" : "http://local host: 8080/ person/ 1"
oA
"rel" : "peeps.Person.profiles",
“href" : "http://I|ocal host: 8080/ person/ 1/ profil es"
oA
“rel" : "peeps.Person. addresses",
"href" : "http://]ocal host: 8080/ person/ 1/ addresses"
} 1L
“nanme" : "John Doe"
}

NOTE: If you want tab completion of discovered rels, just use the --rel flag.

7.3 Creating new resources

The rest-shell can do basic parsing of JSON data within the shell (though there are some limitations due
to the nature of the command line parsing being sensitive to whitespace). This makes it easy to create

new resources by including JSON data directly in the shell:

Spring Data REST
2.0.0.M1 Reference Documentation

15

Spring Data REST

http://1ocal host: 8080/ person: > post --data "{nanme: 'John Doe'}"
> POST http://]ocal host: 8080/ per son/

201 CREATED
Location: http://|ocal host: 8080/ person/ 8
Content -Length: 0

AN NN A

http://1ocal host: 8080/ person: > get 8
> GET http://1ocal host: 8080/ person/ 8

< 200 K

< ETag: "O"

< Content-Type: application/json
<

{
“links" : [{
"rel" : "self",
"href" : "http://I|ocal host: 8080/ per son/ 8"
oA
"rel" : "peopl e. Person. addr esses"
"href" : "http://]ocal host: 8080/ per son/ 8/ addr esses"
oA
"rel" : "people.Person.profiles",
"href" : "http://I|ocal host: 8080/ person/ 8/ profil es"
1,
"nane" : "John Doe"
}

If your needs of representing JSON get more complicated than what the spring-shell interface can
handle, you can create a directory somewhere with .json files in it, one file per entitiy, and use the --
from option to the post command. This will walk the directory and make a POST request for each .json
file found.

http://1ocal host: 8080/ person: > post --from work/ peopl e_to_I| oad
128 itenms upl oaded to the server using POST.
http://1 ocal host: 8080/ person: >

You can also reference a specific file rather than an entire directory.

http://1ocal host: 8080/ person: > post --from work/ peopl e_to_I| oad/ soneone. j son
1 itenms uploaded to the server using POST
http://1 ocal host: 8080/ per son: >

7.4 Passing query parameters

If you're calling URLSs that require query parameters, you'll need to pass those as a JSON-like fragment
in the --params parameter to the get and list commands. Here's an example of calling a URL that expects
parameter input:

http://1ocal host: 8080/ person: > get search/ byName --paranms "{nanme: 'John Doe'}"

7.5 Outputing results to a file

It's not always desirable to output the results of an HTTP request to the screen. It's handy for debugging
but sometimes you want to save the results of a request because they're not easily reproducible or any

Spring Data REST
2.0.0.M1 Reference Documentation 16

Spring Data REST

number of other equally valid reasons. All the HTTP commands take an --output parameter that writes
the results of an HTTP operation to the given file. For example, to output the above search to a file:

http://1ocal host: 8080/ person: > get search/byNanme --parans "{nane: 'John Doe'}" --output
by _nane.txt >> by_nane.t xt
http://1 ocal host: 8080/ person: >

7.6 Sending complex JSON

Because the rest-shell uses the spring-shell underneath, there are limitations on the format of the
JSON data you can enter directly into the command line. If your JSON is too complex for the simplistic
limitations of the shell --data parameter, you can simply load the JSON from a file or from all the files
in a directory.

When doing a post or put, you can optionally pass the --from parameter. The value of this parameter
should either be a file or a directory. If the value is a directory, the shell will read each file that ends
with .json and make a POST or PUT with the contents of that file. If the parameter is a file, then the rest-
shell will simpy load that file and POST/PUT that data in that individual file.

7.7 Shelling out to bash

One of the nice things about spring-shell is that you can directly shell out commands to the underlying
terminal shell. This is useful for doing things like load a JSON file in an editor. For instance, assume
| have the Sublime Text 2 command subl in my path. | can then load a JSON file for editing from the
rest-shell like this:

http://1ocal host: 8080/ person:> ! subl test.json
http://1ocal host: 8080/ per son: >

| then edit the file as | wish. When I'm ready to POST that data to the server, | can do so using the --
from parameter:

http://1ocal host: 8080/ person: > post --fromtest.json
1 itens uploaded to the server using POCST.
http://1 ocal host: 8080/ person: >

7.8 Setting context variables

Starting with rest-shell version 1.1, you can also work with context variables during your shell session.
This is useful for saving settings you might reference often. The rest-shell now integrates Spring
Expression Language support, so these context variables are usable in expressions within the shell.

Spring Data REST
2.0.0.M1 Reference Documentation 17

Spring Data REST

http://1ocal host: 8080/ person: > var set --nane special Ui --value http://
| ongdonai nnane. coni api
http://1ocal host: 8080/ person: > var get --nane special Ui
http://1 ongdomai nnane. con api
http://1 ocal host: 8080/ person: > var |i st
{
"responseHeaders" : {
HTTP headers from | ast request
Ba
"responseBody" : {
Body fromthe |ast request
Ba
"special Uri" : "http://Iongdonai nnane. com api ",
"requestUrl" : ... URL fromthe |ast request,
"env" : {
System properties and envi ronnent vari abl es

The variables are accessible from SpEL expressions which are valid in a number of different contexts,
most importantly in the path argument to the HTTP and discover commands, and in the data argument
to the put and post commands.

Since the rest-shell is aware of environment variables and system properties, you can incorporate
external parameters into your interaction with the shell. For example, to externally define a baseUri, you
could set a system property before invoking the shell. The shell will incorporate anything defined in the
JAVA_OPTS environment variable, so you could parameterize your interaction with a REST service.

JAVA _OPTS="- DbaseUri =http://nyl ongdomai n. conf api " rest-shel |

http://1ocal host: 8080: > di scover #{env.baselUri}
rel hr ef

resources for this URL
http:// nmyl ongdorai n. com api : >

7.9 Per-user shell initialization

The rest-shell supports a "dotrc" type of initialization by reading in all files found in the $HOME!/.rest-shell/
directory and assuming they have shell commands in them. The rest-shell will execute these commands
on startup. This makes it easy to set variables for commonly-used URIs or possibly set a baseUri.

echo "var set --name svcuri --value http://api.nmyservice.comvl" > ~/.rest-shell/00-vars
echo "di scover #{svcuri}" > ~/.rest-shell/01l-baseUri

> rest-shell

INFO No resources found...
INFO Base URI set to 'http://api.nyservice.comvl'

I\ I I L
v/l | 1 s<| 11 s>
[N A T Il
1.2. 1. RELEASE

Wel come to the REST shell. For assistance hit TAB or type "hel p".
http://api.nyservice.comvl: >

Spring Data REST
2.0.0.M1 Reference Documentation 18

Spring Data REST

7.10 SSL Certificate Validation

If you generate a self-signed certificate for your server, by default the rest-shell will complain and refuse
to connect. This is the default behavior of RestTemplate. To turn off certificate and hostname checking,

use the ssl validate --enabled false command.

7.11 HTTP Basic authentication

There is also a convenience command for setting an HTTP Basic authentication header. Use auth basic
--username user --pasword passwd to set a username and password to base64 encode and place into
the Authorization header that will be part of the current session's headers.

You can clear the authentication by using the auth clear command or by removing the Authorization

header using the headers clear command.

7.12 Commands
The rest-shell provides the following commands:

Table 7.1. rest-shell commands

Command

baseUri {uri }

di scover [[--relrel J|[path]]

follow[[--relrel J|[path]]

list [[-relrel J|[path]][--params JSON]

headers set {--name nane } {--value val ue }

headers cl ear

headers |i st

history I|ist

hi story go[num]
var cl ear

var get [--name nane] [--value expr essi on]

var |ist

Description

Set the base URI used for this point forward in the
session. Relative URIs will be calculated relative
to this setting.

Find out what resources are available at the given
URL. If no URI is given, use the baseUri.

Set the baseUri to the URI assigned to this given
rel or path but do not discover resources.

Find out what resources are available at the given
URI.

Set an HTTP header for use from this point
forward in the session.

Clear all HTTP headers set during this session.

Print out the currently-set HTTP headers for this
session.

List the URIs previously set as baseUris during
this session.

Jump to a URI by pulling one from the history.
Clear this shell's variable context.

Get a variable from this shell's context by name or
evaluate a shell expression.

List variables currently set in this shell's context.

Spring Data REST

2.0.0.M1

Reference Documentation 19

Spring Data REST

Command
var set
up

get [[--relrel]1|[path]][--follow true | false]
[--params JSON] [--output f i | enane]

post

put

del ete

aut h basic

aut h cl ear

ss|l validate

Description
Set a variable in this shell's context.
Traverse one level up in the URL hierarchy.

HTTP GET from the given path. If --
foll ow true is set, then follow any redirects
automatically. If --output fil enane is set,
output the the response into the given file.

HTTP POST to the given path, passing JSON
given in the --data parameter.

HTTP PUT to the given path, passing JSON given
in the --data parameter.

HTTP DELETE to the given path.

Set an HTTP Basic authentication token for use in
this session.

Clear the Authorization header currently in use.

Disable certificate checking to work with self-
signed certificates.

Spring Data REST

2.0.0.M1

Reference Documentation

20

	Spring Data REST Reference Documentation
	Table of Contents
	1. Introduction
	1.1 HTTP Verb to CRUD Method Mapping
	1.2 Resource Discoverability
	Compact vs. Verbose

	2. Installing Spring Data REST
	2.1 Introduction
	2.2 Adding Spring Data REST to a Gradle project
	2.3 Adding Spring Data REST to a Maven project
	2.4 Configuring Spring Data REST
	Adding custom converters

	2.5 Adding Spring Data REST to Spring MVC

	3. Domain Object Representations
	3.1 Links as First-Class Objects
	Entity Relationships

	3.2 Object Mapping
	Adding custom (de)serializers to Jackson's ObjectMapper
	Abstract class registration
	Adding custom serializers for domain types

	4. Paging and Sorting
	4.1 Paging
	Previous and Next Links

	4.2 Sorting

	5. Validation
	5.1 Assigning Validators manually

	6. Events
	6.1 Writing an ApplicationListener
	6.2 Writing an annotated handler

	7. Using the rest-shell
	7.1 Installing the rest-shell
	7.2 Discovering resources
	7.3 Creating new resources
	7.4 Passing query parameters
	7.5 Outputing results to a file
	7.6 Sending complex JSON
	7.7 Shelling out to bash
	7.8 Setting context variables
	7.9 Per-user shell initialization
	7.10 SSL Certificate Validation
	7.11 HTTP Basic authentication
	7.12 Commands

