Spring Gemfire Integration Reference Guide

1.0.0.M1

Costin Leau (SpringSource, a division of VMware)

Copyright © 2010

Copies of this document may be made for your own use and for distribution to others, provided that you do not
charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether
distributed in print or electronically.

(T Lo [FTox i o o PRSPPI 1
[1. RefErence DOCUMENTALIONuuiiiiieeeiiiiiiieiee e e e e s ettt e e e e e e e s e sttt e e e e aeeessasnteaeeeaeeesssansnnneneeaeeeanans 2
1. Bootstrapping GemFire through the Spring CONtaINErcoiviiiiiiiiiiiiiiee e 3

1.1. Configuring the GEMFITE CACNEviiiiiiiiie et 3

1.2. Configuring @ GEMFITE REGi 0N ...uuuuuuuuuiuuiiiiiuiannnnnnnananananananasanannnnnnnnnnnnsnnnnnnnnnsnnnsnnns 4

1.2.1. Configuring @ ClIENt REgi 0N ...eeiiiiiiiiieiiiiiie et 5

1.2.2. Advanced configuration through aRegi on'sattributescccccoiiiiiiiiiiiiinnnns 5

2. Working With the GEMFITE APLSvveeiiie e e a e e eneeees 6

2.1, EXCEPLION traNSIBHONeeeieeiiieee ettt 6

A €Y ot A I =N K= 1 1o = LS 6

2.3. TransaCtion MaNAGEIMENLcuuriiiiiiiiee ettt e e e s e e st e e s anre e e e e nees 6

2.4. Wiring Decl ar abl @ COMPONENEScceeeeiiiii i 7

2.4.1. Configuration using template definitionscccoviiieee i 8

2.4.2. Configuration using auto-wiring and annotationsccccceeeveiciiieeeeeeeeseeeneee 9

3. Working with GEMFIre SErialiZationcooiiiiiiiiiiiiie e e 10

3.1 Wiring deserialized INSIANCESooeiiiiiiieiiiee et 10

3.2. Auto-generating CUSIOM | NST ANt i AL OF'S tiveeeviiiiuvrereeeeeeesisiiirereeeeessssstrrrrereeeeeseennnnnens 10

4. SAMPIE APPHICALIONSeeiieiiiiiie ettt et e e et b et e e s nb e e e e ebne e e e e nnnneeeean 12

T T oI Lo 5 o S 12

4.1.1. Starting and stopping the SAMPIeoooiiiiiii e 12

4.1.2. USING T SAMPIE ... e e e e e e e 12

4.1.3. Hello World Sample EXPlaiNedcoooeiiiiiiiiiieiee e 13

[T1. ORI RESOUICESeeeiiieeeiiiiittieeeee e e e e eaete ettt e e e e et s s aae ettt eeeaeesaansstaeeeeaaeesaaassseseeeeaaeesaannsssnnneaaaeesaans 14
5. USEFUI LINKS ...ttt ettt e e ettt e e e ettt e e e ettt e e e e snnaeaeeennnneeeeans 15

Spring GemFire(1.0.0.M1)

Preface

Spring GemFire Integration focuses on integrating Spring Framework's powerful, non-invasive programming
model and concepts with Gemstone's GemFire Enterprise Fabric, providing easier configuration, use and
high-level abstractions. This document assumes the reader is already has a basic familiarity with the Spring
Framework and GemFire concepts and APIs.

While every effort has been made to ensure that this documentation is comprehensive and there are no errors,
nevertheless some topics might require more explanation and some typos might have crept in. If you do spot
any mistakes or even more serious errors and you can spare afew cycles during lunch, please do bring the error
to the attention of the Spring GemFire Integration team by raising an issue. Thank you.

Spring GemFire(1.0.0.M1) ii

http://jira.springframework.org

Part |. Introduction

This document is the reference guide for Spring GemFire project (SGF). It explains the relationship between
Spring framework and GemFire Enterprise Fabric (GEF) 6.0.x, defines the basic concepts and semantics of the
integration and how these can be used effectively.

Spring GemFire(1.0.0.M1) 1

Part |Il. Reference Documentation

Document structure

This part of the reference documentation explains the core functionality offered by Spring GemFire integration.

Chapter 1, Bootstrapping GemFire through the Soring container describes the configuration support provided
for bootstrapping, initializing and accessing a GemFire cache or region.

Chapter 3, Working with GemFire Serialization describes the enhancements for GemFire (de)serialization
process and management of associated objects.

Chapter 2, Working with the GemFire APIs explains the integration between GemFire APl and the various
"data’ features available in Spring, such as transaction management and exception translation.

Chapter 4, Sample Applications describes the samples provided with the distribution for showcasing the various
features available in Spring GemFire.

Spring GemFire(1.0.0.M1) 2

Chapter 1. Bootstrapping GemFire through the
Spring container

One of the first tasks when using GemFire and Spring is to configure the data grid through the 10C container.
While this is possible out of the box, the configuration tends to be verbose and only address basic cases. To
address this problem, the Spring GemFire project provides severa classes that enable the configuration of
distributed caches or regions to support a variety of scenarios with minimal effort.

1.1. Configuring the GemFire Cache

In order to use the GemFire Fabric, one needs to either create a new Cache or connect to an existing one. Asin
the current version of GemFire, there can be only one opened cache per VM (or classloader to be technically
correct). In most cases the cache is created once and then all other consumers connect to it.

Initssimplest form, a cache can be defined in oneline:

<bean i d="defaul t-cache" class="org. springfranmework. data. genfire. CacheFact oryBean"/>

Here, the default-cache will try to connect to an existing cache and, in case one does not exit, create it. Since
no additional properties were specified the created cache uses the default cache configuration.

Especialy in environments with opened caches, this basic configuration can go a long way. For scenarios
where the cache needs to be configured, the user can passin areference the GemFire configuration file:

<bean id="cache-with-xm" class="org.springfranmework. data. genfire. CacheFact or yBean">
<property name="cacheXm " val ue="cl asspat h: cache. xm "/ >
</ bean>

In this example, if the cache needs to be created, it will use the file named cache. xm located in the classpath
root. Only if the cache is created will the configuration file be used.

Note

e
Note that the configuration makes use of Spring's Resour ce abstraction to locate the file. This
allows various search patterns to be used, depending on the running environment or the prefix
specified (if any) by the value.

In addition to referencing an external configuration file one can specify GemFire settings directly through Java
Properti es. Thiscan be quite handy when just a few settings need to be changed:

<bean i d="cache-with-props" class="org.springfranmework. data. genfire.CacheFact or yBean">
<property name="properties">
<pr ops>
<prop key="bi nd-address">127.0.0. 1</ prop>
</ props>
</ property>
</ bean>

So far our examples relied on the primary Spring namespace (beans). However one is free to add other
namespaces to simplify or enhance the configuration. Let's do the same thing to the configuration above by
using theut i I namespace and externalize the properties from the configuration which is a best practice.

<?xm version="1.0" encodi ng="UTF- 8" ?>

Spring GemFire(1.0.0.M1) 3

http://community.gemstone.com/display/gemfire/Integrating+GemFire+with+the+Spring+IoC+Container
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/resources.html

Bootstrapping GemFire through the Spring container

<beans xm ns="http://ww. springfranmework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns:util="http://ww.springframework. org/schema/util"
xsi : schemaLocati on="htt p://ww. spri ngfranewor k. or g/ schema/ beans http://ww. springframewor k. or g/ schena/ beans/ sy
http://ww. springframework. org/ schema/util http://ww.springfranmework. org/schema/util/spring-util.xsd">

<bean id="cache-w th-props" class="org. springfranmework. data. genfire. CacheFact or yBean">
<property name="properties">
<util:properties |location="classpath:/depl oynent/env. properties"/>
</ property>
</ bean>
</ beans>

It is worth pointing out again, that the cache settings apply only if the cache needs to be created, there is no
opened cache in existence otherwise the existing cache will be used and the configuration will simply be
discarded.

1.2. Configuring a GemFire Regi on

Once the cache is configured, one needs to configure one or more Regi ons to interact with the data fabric. In a
similar manner to the CacheFact or yBean, the Regi onFact or yBean allows existing Regi ons to retrieved or, in
case they don't exist, created using various settings. One can specify the Regi on hame, whether it will be
destroyed on shutdown (thereby acting as a temporary cache), the associated CachelLoader S, CachelLi st ener S
and Cachew i t er sand if needed, the Regi onAt t ri but es for full customization.

Let us start with a simple region declaration, named basic using a nested cache declaration:

<bean id="basic" class="org. springfranmework. data. genfire. Regi onFact or yBean" >
<property name="cache">
<bean cl ass="org. springfranmewor k. dat a. genfire. CacheFact oryBean"/ >
</ property>
<property name="nanme" val ue="basic"/>
</ bean>

Since the region bean definition name is usualy the same with that of the cache, the nane property can be
omitted (the bean name will be used automatically). Additionally by using the name the p namespace, the
configuration can be simplified even more:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springfranmework. or g/ schema/ beans"
xm ns: xsi ="http://wwmw. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: p="http://ww. springframework. org/ schema/ p"
xsi : schemaLocati on="http://ww. spri ngfranewor k. or g/ schema/ beans http://ww. springframewor k. or g/ schena/ beans/ sy

<l-- shared cache across regions -->
<bean id="cache" class="org. springfranmework. data. genfire. CacheFact oryBean"/ >

<l-- region naned 'basic' -->
<bean i d="basic" class="org.springfranework. dat a. genfire. Regi onFact oryBean" p:cache-ref="cache"/>

<l-- region with a nanme different then the bean definition -->
<bean id="root-regi on" class="org.springfranmework. data. genfire. Regi onFact oryBean" p: cache-ref="cache" p: nant
</ beans>

It is worth pointing out, that for the vast mgjority of cases configuring the cache loader, listener and writer
through the Spring container is preferred since the same instances can be reused across multiple regions and
additionally, the instances themselves can benefit from the container's rich feature set:

<bean i d="cachelLogger" cl ass="org. sone. pkg. CacheLogger"/>
<bean id="custom zed-regi on" class="org. springfranmework. dat a. genfire. Regi onFact oryBean" p: cache-ref="cache">
<property name="cacheli st eners">
<array>
<ref nanme="cachelLogger"/>

Spring GemFire(1.0.0.M1) 4

http://static.springsource.org/spring/docs/2.5.x/reference/beans.html#beans-p-namespace

Bootstrapping GemFire through the Spring container

<bean cl ass="org. sone. ot her. pkg. Sysout Logger"/ >

</ array>
</ property>
<property name="cachelLoader"><bean cl ass="org. sone. pkg. CacheLoad"/ ></ property>
<property name="cacheWiter"><bean cl ass="org. sone. pkg. CacheWite"/></property>

</ bean>

<bean i d="Ilocal -regi on" class="org. springfranmework. dat a. genfire. Regi onFact oryBean" p:cache-ref="cache">
<property name="cacheli steners" ref="cachelLogger"/>
</ bean>

1.2.1. Configuring a client Regi on

For scenarios where a CacheServer is used and clients need to be configured, SGI offers a dedicated
configuration class named: d i ent Regi onFact or yBean. This allows client interests to be registered in both key
and regex form through I nterest and RegexInterest classes in the org. springfranework. data. genfire

package:

<bean id="interested-client" class="org.springfranmework. data.genfire.d ientRegi onFactoryBean" p:cache-ref="cache
<property name="interests">

<array>
<l-- key-based interest -->
<bean cl ass="org. springfranmework. data. genfire.Interest" p:key="Vlaicu" p:policy="NONE"/>
<l-- regex-based interest -->
<bean cl ass="org. springfranmework. data. genfire. Regexl nterest" p:key=".*" p:policy="KEYS"' p:durabl e="true"/:

</ array>

</ property>
</ bean>

1.2.2. Advanced configuration through a Regi on's attributes

Users that need fine control over aregion, can configure it in Spring by using the at t ri but es property. To ease
declarative configuration in Spring, SGI provides two Fact oryBeans for creating Regi onAttributes and
PartitionAttributes, namely Regi onAttributesFactory and PartitionAttributesFactory. See below an

example of configuring a partitioned region through Spring XML.:

<bean id="partitioned-region" class="org.springfranmework. data. genfire. Regi onFact oryBean" p: cache-ref="cache">

<property name="attributes">
<bean cl ass="org. spri ngfranmewor k. dat a. genfire. Regi onAttributesFactory" p:initial-capacity="1024">
<property name="partitionAttributes">
<bean cl ass="org. springframework. data.genfire.PartitionAttributesFactory" p:redundant-copies="2" p:|oca
</ property>
</ bean>
</ property>
</ bean>

By using the attribute factories above, one can reduce the size of the cache. xm or even eliminate it all
together.

Spring GemFire(1.0.0.M1) 5

Chapter 2. Working with the GemFire APIs

Once the GemFire cache and regions have been configured they can injected and used inside application
objects. This chapter describes the integration with Spring's transaction management functionality and
DaoExcept i on hierarchy. It also covers support for dependency injection of GemFire managed objects.

2.1. Exception translation

Using a new data access technology requires not just accommodating to a new API but also handling
exceptions specific to that technology. To accommodate this case, Spring Framework provides a technology
agnostic, consistent exception hierarchy that abstracts one from proprietary (and usually checked) exceptions to
a set of focused runtime exceptions. As mentioned in the Spring Framework documentation, exception
trandation can be applied transparently to your data access objects through the use of the @repository
annotation and AOP by defining a PersistenceExceptionTrang ationPostProcessor bean. The same exception
trandlation functionality is enabled when using Gemfire as long as at least a CacheFact or yBean isdeclared. The
Cache factory acts as an exception trandator which is automatically detected by the Spring infrastructure and
used accordingly.

2.2. GenfireTenpl ate

As with many other high-level abstractions provided by the Spring Framework and related projects, Spring
GempFire provides a template that plays a central role when working with the GemFire API. The class provides
several one-liner methods, for popular operations but also the ability to execute code against the native
GemFire API without having to deal with exceptions for example through the Genf i r eCal | back.

The template class requires a GemFire Regi on instance and once configured is thread-safe and should be reused
across multiple classes:

<bean id="genfireTenpl ate" class="org.springframework. data. genfire.GenfireTenpl ate" p:region-ref="soneRegi on"/>

Once the template is configured, one can use it alongside Genfi recCal | back to work directly with the GemFire
Regi on, without having to deal with checked exceptions, threading or resource management concerns:

tenpl at e. execut e(new GenfireCal | back<|terabl e<String>>() {
public Iterabl e<String> dolnGenfire(Region reg) throws GenFireCheckedException, GenFireException {
/1 working against a Region of String
Regi on<String, String> region = reg

regi on.put("1", "one");
region. put ("3", "three");

/'l should return 1
return region.query("length < 5).size();

1)

2.3. Transaction Management

One of the most popular features of Spring Framework is transaction management. If you are not familiar with
it, we strongly recommend looking into it as it offers a consistent programming model that works transparently
across multiple APIs that can be configured either programmatically or declaratively (the most popular choice).

Spring GemFire(1.0.0.M1) 6

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/dao.html#dao-exceptions
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/orm.html#orm-exception-translation
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/orm.html#orm-exception-translation
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/transaction.html
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/transaction.html#transaction-motivation

Working with the GemFire APIs

For Gemfire, SGI provides a dedicated, per-cache, transaction manager that once declared, allows actions on
the Regi ons to be grouped and executed atomically through Spring:

<bean id="transacti on-manager" cl ass="org. springfranmework. data. genfire. GenfireTransacti onManager" p: cache-ref="c

Note that currently GemFire supports optimistic transactions with read committed isolation. Furthermore, to
guarantee this isolation, developers should avoid making in-place changes, that is manually modifying the
values present in the cache. To prevent this from happening, the transaction manager configured the cache to
use copy on read semantics, meaning a clone of the actual value is created, each time aread is performed. This
behaviour can be disabled if needed through the copynRead property. For more information on the semantics
of the underlying GemFire transaction manager, see the GemFire documentation.

2.4. Wiring Decl ar abl e cOmponents

GemFire XML configuration (usually named cache. xmi allows user objects to be declared as part of the fabric
configuration. Usually these objects are CacheLoader s or other pluggable components into GemFire. Out of the
box in GemFire, each such type declared through XML must implement the Decl ar abl e interface which allows
arbitrary parametersto be passed to the declared class through a Pr oper ti es instance.

In this section we describe how you can configure the pluggable components defined in cache. xmi using
Spring while keeping your Cache/Region configuration defined in cache. xni This allows your pluggable
components to focus on the application logic and not the location or creation of DataSources or other
collaboration object.

However, if you are starting on a green-field project, it is recommended that you configure Cache, Region, and
other pluggable components directly in Spring. This avoids inheriting from the Decl ar abl e interface or the
base class presented in this section. See the following sidebar for more information on this approach.

Eliminate Decl ar abl e components

One can configure custom types entirely inside through Spring as mentioned in Section 1.2, “Configuring
a GemFire Regi on”. That way, one does not have to implement the Decl ar abl e interface and gets access
to all the features of the Spring 10C container (including not just dependency injection but also life-cycle
and instance management).

As an example of configuring a Decl ar abl e component using Spring, consider the following declaration (taken
from the Decl ar abl e javadoc):

<cache-| oader >
<cl ass- nane>com conpany. app. DBLoader </ cl ass- nane>
<par anet er nanme="URL">
<string>jdbc://12.34.56. 78/ nydb</string>
</ par anet er >
</ cache- | oader >

To simplify the task of parsing, converting the parameters and initializing the object, SGI offers a base class
(W ri ngDecl ar abl eSupport) that allows GemFire user objects to be wired through a template bean definition
or, in case that is missing perform autowiring through the Spring container. To take advantage of this feature,
the user objects need to extend WringDecl arabl eSupport which automatically locates the declaring
BeanFact ory and performs wiring as part of the initialization process.

Spring GemFire(1.0.0.M1) 7

http://www.gemstone.com/docs/6.0.1/product/docs/japi/com/gemstone/gemfire/cache/CacheTransactionManager.html

Working with the GemFire APIs

Why is a base class needed?

In the current GemFire release there is no concept of an object factory and the types declared are
instantiated and used as is - that is there are no other ways in which third parties can take care of the
object creation outside GemFire. Support for this feature is planned for the up-coming GemFire release
(6.5)

2.4.1. Configuration using template definitions

When used W ri ngDecl ar abl eSupport tries to first locate an existing bean definition and use that as wiring
template. Unless specified, the component class name will be used as an implicit bean definition name. Let's
see how our DBLoader declaration would look in that case:

public class DBLoader extends WringDecl arabl eSupport inplenents CachelLoader {
private DataSource dataSource;

public void set Dat aSour ce(Dat aSource ds) {
t hi s. dat aSource = ds;

}

public Object |oad(LoaderHel per helper) { ... }
}

<cache-| oader >
<cl ass- nane>com conpany. app. DBLoader </ cl ass- nane>
<l-- no paraneter is passed (use the bean inplicit nanme
that is the class nane) -->

</ cache- | oader >

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. springfranmewor k. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: p="http://wwm. springfranmewor k. or g/ schema/ p"
xsi : schemaLocati on="http://ww. spri ngfranewor k. or g/ schenma/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans. xsd" >

<bean id="dataSource" ... />

<l-- tenplate bean definition -->
<bean id="com conpany. app. DBLoader" abstract="true" p: dataSource-ref="dataSource"/>
</ beans>

In the scenario above, as no parameter was specified, a bean with id/name com conpany. app. DBLoader Was
searched for. The found bean definition is used as a template for wiring the instance created by GemFire. For
cases where the bean name uses a different convention, one can pass in the bean- nane parameter in the
GempFire configuration:

<cache- | oader >
<cl ass- nane>com conpany. app. DBLoader </ cl ass- nane>
<l-- pass the bean definition tenplate nane
as paraneter -->
<par anet er nane="bean- nane" >
<string>tenpl at e- bean</string>
</ par anet er >
</ cache- | oader >

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: p="http://wwm. springframework. or g/ schema/ p"
xsi : schemaLocati on="http://ww. spri ngfranmewor k. or g/ schena/ beans

Spring GemFire(1.0.0.M1) 8

Working with the GemFire APIs

http://ww. spri ngfranewor k. or g/ schena/ beans/ spri ng- beans. xsd" >
<bean id="dataSource" ... />

<l-- tenplate bean definition -->
<bean i d="tenpl at e-bean" abstract="true" p:dataSource-ref="dataSource"/>

</ beans>

Note

-

e
The template bean definitions do not have to be declared in XML - any format is alowed (Groovy,

annotations, etc..).

2.4.2. Configuration using auto-wiring and annotations

If no bean definition is found, by default, w ri ngDecl ar abl eSupport will autowire the declaring instance. This
means that unless any dependency injection metadata is offered by the instance, the container will find the
object setters and try to automatically satisfy these dependencies. However, one can also use JDK 5 annotations
to provide additional information to the auto-wiring process. We strongly recommend reading the dedicated
chapter in the Spring documentation for more information on the supported annotations and enabling factors.

For example, the hypothetical DBLoader declaration above can be injected with a Spring-configured DataSource
in the following way:

public class DBLoader extends WringDecl arabl eSupport inplenents CachelLoader {
/1 use annotations to 'mark' the needed dependenci es
@ avax. i nject.|nject
private DataSource dataSource;

public Object |oad(LoaderHel per helper) { ... }

<cache-| oader >
<cl ass- nane>com conpany. app. DBLoader </ cl ass- nane>
<l-- no need to declare any paraneters anynore
since the class is auto-wired -->
</ cache- | oader >

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. springframework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns: cont ext ="http://ww. springfranework. or g/ schema/ cont ext "
xsi : schemaLocati on="http://ww. spri ngfranmewor k. or g/ schena/ beans
http://ww. springfranmework. or g/ schema/ beans/ spri ng- beans. xsd
ht t p: // ww. spri ngf ranewor k. or g/ schena/ cont ext
http://ww. spri ngfranework. or g/ schena/ cont ext/ spri ng- cont ext . xsd" >

<!-- enabl e annotation processing -->
<cont ext : annot ati on- confi g/ >

</ beans>

By using the JSR-330 annotations, the cache loader code has been simplified since the location and creation of
the DataSource has been externalized and the user code is concerned only with the loading process. The
Dat aSour ce might be transactional, created lazily, shared between multiple objects or retrieved from JNDI -

these aspects can be easily configured and changed through the Spring container without touching the DBLoader
code.

Spring GemFire(1.0.0.M1) 9

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-factory-autowire
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-annotation-config

Chapter 3. Working with GemFire Serialization

To improve overall performance of the data fabric, GemFire supports a dedicated serialization protocol that is
both faster and offers more compact results over the standard Java serialization and works transparently across
various language platforms (such as Java, .NET and C++). This chapter discusses the various ways in which
SGI simplifies and improves GemFire custom seriaization in Java.

3.1. Wiring deserialized instances

It isfairly common for serialized objectsto have transient data. Transient data is often dependent on the node or
environment where it lives at a certain point in time, for example a DataSource. Serializing such information is
useless (and potentially even dangerous) since it islocal to a certain VM/machine. For such cases, SGI offersa
special | nst anti at or that performs wiring for each new instance created by GemFire during deserialization.

Through such a mechanism, one can rely on the Spring container to inject (and manage) certain dependencies
making it easy to split transient from persistent data and have rich domain objects in a transparent manner
(Spring users might find this approach similar to that of @onf i gurabl e). The Wri ngl nst anti at or works just
like W ri ngDecl ar abl eSupport, trying to first locate a bean definition as a wiring template and following to
autowiring otherwise. Please refer to the previous section (Section 2.4, “Wiring Decl ar abl e components”) for
more details on wiring functionality.

Tousethisinstanti at or, SSmply declareit as a usual bean:

<bean id="instantiator" class="org.springframework.data.genfire.serialization. Wringlnstantiator">
<I-- DataSerializable type -->
<constructor-arg>org. pkg. SonmeDat aSeri al i zabl eCl ass</ construct or - ar g>
<l-- type id -->
<construct or - ar g>95</ const ruct or - ar g>
</ bean>

During the container startup, once it is being initialized, the i nst anti at or will, by default, register itself with
the GemFire system and perform wiring on all instances of SoneDat aSeri al i zabl ed ass created by GemFire
during deserialization.

3.2. Auto-generating custom I nstantiators

For data intensive applications, alarge number of instances might be created on each machine as data flows in.
Out of the box, GemFire uses reflection to create new types but for some scenarios, this might prove to be
expensive. As aways, it is good to perform profiling to quantify whether thisis the case or not. For such cases,
SGI alows the automatic generation of I nstati ator classes which instantiate a new type (using the default
constructor) without the use of reflection:

<bean id="instantiator-factory" class="org.springfranework. data.genfire.serialization.|nstantiatorFactoryBean">
<property name="custonilypes">
<map>
<entry key="org. pkg. Cust onilypeA" val ue="1025"/>
<entry key="org. pkg. Cust onilypeB" val ue="1026"/>
</ map>
</ property>
</ bean>

The definition above, automatically generated two I nstanti at or S for two classes, namely Cust onifypeA and
Cust onypeB and registers them with GemFire, under user id 1025 and 1026. The two instantiators avoid the

Spring GemFire(1.0.0.M1) 10

http://community.gemstone.com/display/gemfire/Interoperability
http://community.gemstone.com/display/gemfire/Serialization+in+Java
http://community.gemstone.com/display/gemfire/Serialization+in+.NET
http://www.gemstone.com/docs/6.0.1/product/docs/japi/com/gemstone/gemfire/Instantiator.html
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/aop.html#aop-atconfigurable

Working with GemFire Serialization

use of reflection and create the instances directly through Java code.

Spring GemFire(1.0.0.M1)

11

Chapter 4. Sample Applications

The Spring GemFire project includes one sample application. Named "Hello World", the sample demonstrates
how to configure and use GemFire inside a Spring application. At runtime, the sample offers a shell to the user
allowing him to run various commands against the grid. It provides an excellent starting point for users
unfamiliar with the essential components or the Spring and GemFire concepts.

The sample is bundled with the distribution and is Maven-based. One can easily import them into any
Maven-aware IDE (such as SpringSource Tool Suite) or run them from the command-line.

4.1. Hello World

The Hello World sample demonstrates the core functionality of the Spring GemFire project. It bootstraps
GemFire, configures it, executes arbitrary commands against it and shuts it down when the application exits.
Multiple instances can be started at the same time as they will work with each other sharing data without any
user intervention.

4.1.1. Starting and stopping the sample

Hello World is designed as a stand-alone java application. It features a mai n class which can be started either
from your IDE of choice (in Eclipse/STS through Run As/Java Application) or from the command line
through Maven using nvn exec: j ava. One can also usej ava directly on the resulting artifact if the classpath is
properly set.

To stop the sample, simply type exi t at the command line or press ¢t r1 +C to stop the VM and shutdown the
Spring container.

4.1.2. Using the sample

Once started, the sample will create a shared data grid and allow the user to issue commands against it. The
output will likely look as follows:

INFO Created GenFire Cache [Spring GenFire World] v. X VY.Z

I NFO Created new cache region [nyWrl d]

I NFO Member xxxxxx:50694/51611 connecting to region [myWrl d]
Hel l o Worl d!

Want to interact with the world ? ...

Supported commands are

get <key> - retrieves an entry (by key) fromthe grid
put <key> <value> - puts a new entry into the grid
renmove <key> - renpves an entry (by key) fromthe grid

For example to add new itemsto the grid one can use:

-> put 1 unu

I NFO Added [1=unu] to the cache
nul |

-> put 1 one

INFO Updated [1] from [unu] to [one]
unu

-> size

1

-> put 2 two

I NFO Added [2=two] to the cache
nul |

Spring GemFire(1.0.0.M1) 12

http://www.springsource.com/products/sts

Sample Applications

-> size

Multiple instances can be created at the same time. Once started, the new VMs automatically see the existing
region and its information:

I NFO Connected to Distributed System ['Spring GenFire World' =xxxx: 56218/ 49320@yyyy]
Hel l o Worl d!

-> size

2

-> rrap

[2=two] [1=one]

-> query length = 3
[one, two]

Experiment with the example, start (and stop) as many instances as you want, run various commands in one
instance and see how the others react. To preserve data, at least one instance needs to be alive all times - if al
instances are shutdown, the grid datais completely destroyed (in this example - to preserve data between runs,
see the GemFire documentations).

4.1.3. Hello World Sample Explained

Hello World uses both Spring XML and annotations for its configuration. The initial boostrapping
configuration is app- cont ext . xmi which includes the cache configuration, defined under cache- cont ext . xm
file and performs classpath scanning for Spring components. The cache configuration defines the GemFire
cache, region and for illustrative purposes a simple cache listener that acts as alogger.

The main beans are Hel | owor 1 d and ConmandPr ocessor Which rely on the GenfireTenpl at e to interact with
the distributed fabric. Both classes use annotations to define their dependency and life-cycle callbacks.

Spring GemFire(1.0.0.M1) 13

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-classpath-scanning
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-factorybeans-annotations

Part lll. Other Resources

In addition to this reference documentation, there are a number of other resources that may help you learn how
to use GemFire and Spring framework. These additional, third-party resources are enumerated in this section.

Spring GemFire(1.0.0.M1) 14

Chapter 5. Useful Links

» Soring GemFire Integration Home Page - here
» SpringSource blog - here

e GemFire Community - here

Spring GemFire(1.0.0.M1)

15

http://www.springframework.org/spring-gemfire/
http://blog.springsource.com/
http://community.gemstone.com/display/gemfire/GemFire+Enterprise

	Spring Gemfire Integration Reference Guide
	Table of Contents
	Preface
	Part I. Introduction
	Part II. Reference Documentation
	Chapter 1. Bootstrapping GemFire through the Spring container
	1.1. Configuring the GemFire Cache
	1.2. Configuring a GemFire Region
	1.2.1. Configuring a client Region
	1.2.2. Advanced configuration through a Region's attributes

	Chapter 2. Working with the GemFire APIs
	2.1. Exception translation
	2.2. GemfireTemplate
	2.3. Transaction Management
	2.4. Wiring Declarable components
	2.4.1. Configuration using template definitions
	2.4.2. Configuration using auto-wiring and annotations

	Chapter 3. Working with GemFire Serialization
	3.1. Wiring deserialized instances
	3.2. Auto-generating custom Instantiators

	Chapter 4. Sample Applications
	4.1. Hello World
	4.1.1. Starting and stopping the sample
	4.1.2. Using the sample
	4.1.3. Hello World Sample Explained

	Part III. Other Resources
	Chapter 5. Useful Links

