
Spring Gemfire Integration Reference Guide

1.0.0.M1

Costin Leau (SpringSource, a division of VMware)

Copyright © 2010

Copies of this document may be made for your own use and for distribution to others, provided that you do not
charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether

distributed in print or electronically.

Preface .. iii
I. Introduction .. 1
II. Reference Documentation ... 2

1. Bootstrapping GemFire through the Spring container .. 3
1.1. Configuring the GemFire Cache .. 3
1.2. Configuring a GemFire Region ... 4

1.2.1. Configuring a client Region ... 5
1.2.2. Advanced configuration through a Region's attributes 5

2. Working with the GemFire APIs .. 6
2.1. Exception translation .. 6
2.2. GemfireTemplate ... 6
2.3. Transaction Management .. 6
2.4. Wiring Declarable components .. 7

2.4.1. Configuration using template definitions ... 8
2.4.2. Configuration using auto-wiring and annotations ... 9

3. Working with GemFire Serialization .. 10
3.1. Wiring deserialized instances .. 10
3.2. Auto-generating custom Instantiators .. 10

4. Sample Applications ... 12
4.1. Hello World ... 12

4.1.1. Starting and stopping the sample .. 12
4.1.2. Using the sample ... 12
4.1.3. Hello World Sample Explained .. 13

III. Other Resources .. 14
5. Useful Links ... 15

Spring GemFire(1.0.0.M1) ii

Preface
Spring GemFire Integration focuses on integrating Spring Framework's powerful, non-invasive programming
model and concepts with Gemstone's GemFire Enterprise Fabric, providing easier configuration, use and
high-level abstractions. This document assumes the reader is already has a basic familiarity with the Spring
Framework and GemFire concepts and APIs.

While every effort has been made to ensure that this documentation is comprehensive and there are no errors,
nevertheless some topics might require more explanation and some typos might have crept in. If you do spot
any mistakes or even more serious errors and you can spare a few cycles during lunch, please do bring the error
to the attention of the Spring GemFire Integration team by raising an issue. Thank you.

Spring GemFire(1.0.0.M1) iii

http://jira.springframework.org

Part I. Introduction

This document is the reference guide for Spring GemFire project (SGF). It explains the relationship between
Spring framework and GemFire Enterprise Fabric (GEF) 6.0.x, defines the basic concepts and semantics of the
integration and how these can be used effectively.

Spring GemFire(1.0.0.M1) 1

Part II. Reference Documentation

Document structure
This part of the reference documentation explains the core functionality offered by Spring GemFire integration.

Chapter 1, Bootstrapping GemFire through the Spring container describes the configuration support provided
for bootstrapping, initializing and accessing a GemFire cache or region.

Chapter 3, Working with GemFire Serialization describes the enhancements for GemFire (de)serialization
process and management of associated objects.

Chapter 2, Working with the GemFire APIs explains the integration between GemFire API and the various
"data" features available in Spring, such as transaction management and exception translation.

Chapter 4, Sample Applications describes the samples provided with the distribution for showcasing the various
features available in Spring GemFire.

Spring GemFire(1.0.0.M1) 2

Chapter 1. Bootstrapping GemFire through the
Spring container
One of the first tasks when using GemFire and Spring is to configure the data grid through the IoC container.
While this is possible out of the box, the configuration tends to be verbose and only address basic cases. To
address this problem, the Spring GemFire project provides several classes that enable the configuration of
distributed caches or regions to support a variety of scenarios with minimal effort.

1.1. Configuring the GemFire Cache

In order to use the GemFire Fabric, one needs to either create a new Cache or connect to an existing one. As in
the current version of GemFire, there can be only one opened cache per VM (or classloader to be technically
correct). In most cases the cache is created once and then all other consumers connect to it.

In its simplest form, a cache can be defined in one line:

<bean id="default-cache" class="org.springframework.data.gemfire.CacheFactoryBean"/>

Here, the default-cache will try to connect to an existing cache and, in case one does not exist, create it. Since
no additional properties were specified the created cache uses the default cache configuration.

Especially in environments with opened caches, this basic configuration can go a long way. For scenarios
where the cache needs to be configured, the user can pass in a reference the GemFire configuration file:

<bean id="cache-with-xml" class="org.springframework.data.gemfire.CacheFactoryBean">
<property name="cacheXml" value="classpath:cache.xml"/>

</bean>

In this example, if the cache needs to be created, it will use the file named cache.xml located in the classpath
root. Only if the cache is created will the configuration file be used.

Note

Note that the configuration makes use of Spring's Resource abstraction to locate the file. This
allows various search patterns to be used, depending on the running environment or the prefix
specified (if any) by the value.

In addition to referencing an external configuration file one can specify GemFire settings directly through Java
Properties. This can be quite handy when just a few settings need to be changed:

<bean id="cache-with-props" class="org.springframework.data.gemfire.CacheFactoryBean">
<property name="properties">

<props>
<prop key="bind-address">127.0.0.1</prop>

</props>
</property>

</bean>

So far our examples relied on the primary Spring namespace (beans). However one is free to add other
namespaces to simplify or enhance the configuration. Let's do the same thing to the configuration above by
using the util namespace and externalize the properties from the configuration which is a best practice.

<?xml version="1.0" encoding="UTF-8"?>

Spring GemFire(1.0.0.M1) 3

http://community.gemstone.com/display/gemfire/Integrating+GemFire+with+the+Spring+IoC+Container
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/resources.html

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:util="http://www.springframework.org/schema/util"
xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/util http://www.springframework.org/schema/util/spring-util.xsd">

<bean id="cache-with-props" class="org.springframework.data.gemfire.CacheFactoryBean">
<property name="properties">
<util:properties location="classpath:/deployment/env.properties"/>

</property>
</bean>

</beans>

It is worth pointing out again, that the cache settings apply only if the cache needs to be created, there is no
opened cache in existence otherwise the existing cache will be used and the configuration will simply be
discarded.

1.2. Configuring a GemFire Region

Once the Cache is configured, one needs to configure one or more Regions to interact with the data fabric. In a
similar manner to the CacheFactoryBean, the RegionFactoryBean allows existing Regions to retrieved or, in
case they don't exist, created using various settings. One can specify the Region name, whether it will be
destroyed on shutdown (thereby acting as a temporary cache), the associated CacheLoaders, CacheListeners
and CacheWriters and if needed, the RegionAttributes for full customization.

Let us start with a simple region declaration, named basic using a nested cache declaration:

<bean id="basic" class="org.springframework.data.gemfire.RegionFactoryBean">
<property name="cache">

<bean class="org.springframework.data.gemfire.CacheFactoryBean"/>
</property>
<property name="name" value="basic"/>

</bean>

Since the region bean definition name is usually the same with that of the cache, the name property can be
omitted (the bean name will be used automatically). Additionally by using the name the p namespace, the
configuration can be simplified even more:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:p="http://www.springframework.org/schema/p"
xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd">

<!-- shared cache across regions -->
<bean id="cache" class="org.springframework.data.gemfire.CacheFactoryBean"/>

<!-- region named 'basic' -->
<bean id="basic" class="org.springframework.data.gemfire.RegionFactoryBean" p:cache-ref="cache"/>

<!-- region with a name different then the bean definition -->
<bean id="root-region" class="org.springframework.data.gemfire.RegionFactoryBean" p:cache-ref="cache" p:name="default-region"/>

</beans>

It is worth pointing out, that for the vast majority of cases configuring the cache loader, listener and writer
through the Spring container is preferred since the same instances can be reused across multiple regions and
additionally, the instances themselves can benefit from the container's rich feature set:

<bean id="cacheLogger" class="org.some.pkg.CacheLogger"/>
<bean id="customized-region" class="org.springframework.data.gemfire.RegionFactoryBean" p:cache-ref="cache">
<property name="cacheListeners">
<array>
<ref name="cacheLogger"/>

Bootstrapping GemFire through the Spring container

Spring GemFire(1.0.0.M1) 4

http://static.springsource.org/spring/docs/2.5.x/reference/beans.html#beans-p-namespace

<bean class="org.some.other.pkg.SysoutLogger"/>
</array>

</property>
<property name="cacheLoader"><bean class="org.some.pkg.CacheLoad"/></property>
<property name="cacheWriter"><bean class="org.some.pkg.CacheWrite"/></property>

</bean>

<bean id="local-region" class="org.springframework.data.gemfire.RegionFactoryBean" p:cache-ref="cache">
<property name="cacheListeners" ref="cacheLogger"/>

</bean>

1.2.1. Configuring a client Region

For scenarios where a CacheServer is used and clients need to be configured, SGI offers a dedicated
configuration class named: ClientRegionFactoryBean. This allows client interests to be registered in both key
and regex form through Interest and RegexInterest classes in the org.springframework.data.gemfire

package:

<bean id="interested-client" class="org.springframework.data.gemfire.ClientRegionFactoryBean" p:cache-ref="cache" p:name="client-region">
<property name="interests">
<array>
<!-- key-based interest -->
<bean class="org.springframework.data.gemfire.Interest" p:key="Vlaicu" p:policy="NONE"/>
<!-- regex-based interest -->
<bean class="org.springframework.data.gemfire.RegexInterest" p:key=".*" p:policy="KEYS" p:durable="true"/>

</array>
</property>

</bean>

1.2.2. Advanced configuration through a Region's attributes

Users that need fine control over a region, can configure it in Spring by using the attributes property. To ease
declarative configuration in Spring, SGI provides two FactoryBeans for creating RegionAttributes and
PartitionAttributes, namely RegionAttributesFactory and PartitionAttributesFactory. See below an
example of configuring a partitioned region through Spring XML:

<bean id="partitioned-region" class="org.springframework.data.gemfire.RegionFactoryBean" p:cache-ref="cache">
<property name="attributes">
<bean class="org.springframework.data.gemfire.RegionAttributesFactory" p:initial-capacity="1024">
<property name="partitionAttributes">

<bean class="org.springframework.data.gemfire.PartitionAttributesFactory" p:redundant-copies="2" p:local-max-memory="512"/>
</property>

</bean>
</property>

</bean>

By using the attribute factories above, one can reduce the size of the cache.xml or even eliminate it all
together.

Bootstrapping GemFire through the Spring container

Spring GemFire(1.0.0.M1) 5

Chapter 2. Working with the GemFire APIs
Once the GemFire cache and regions have been configured they can injected and used inside application
objects. This chapter describes the integration with Spring's transaction management functionality and
DaoException hierarchy. It also covers support for dependency injection of GemFire managed objects.

2.1. Exception translation

Using a new data access technology requires not just accommodating to a new API but also handling
exceptions specific to that technology. To accommodate this case, Spring Framework provides a technology
agnostic, consistent exception hierarchy that abstracts one from proprietary (and usually checked) exceptions to
a set of focused runtime exceptions. As mentioned in the Spring Framework documentation, exception
translation can be applied transparently to your data access objects through the use of the @Repository

annotation and AOP by defining a PersistenceExceptionTranslationPostProcessor bean. The same exception
translation functionality is enabled when using Gemfire as long as at least a CacheFactoryBean is declared. The
Cache factory acts as an exception translator which is automatically detected by the Spring infrastructure and
used accordingly.

2.2. GemfireTemplate

As with many other high-level abstractions provided by the Spring Framework and related projects, Spring
GemFire provides a template that plays a central role when working with the GemFire API. The class provides
several one-liner methods, for popular operations but also the ability to execute code against the native
GemFire API without having to deal with exceptions for example through the GemfireCallback.

The template class requires a GemFire Region instance and once configured is thread-safe and should be reused
across multiple classes:

<bean id="gemfireTemplate" class="org.springframework.data.gemfire.GemfireTemplate" p:region-ref="someRegion"/>

Once the template is configured, one can use it alongside GemfireCallback to work directly with the GemFire
Region, without having to deal with checked exceptions, threading or resource management concerns:

template.execute(new GemfireCallback<Iterable<String>>() {
public Iterable<String> doInGemfire(Region reg) throws GemFireCheckedException, GemFireException {
// working against a Region of String
Region<String, String> region = reg;

region.put("1", "one");
region.put("3", "three");

// should return 1
return region.query("length < 5).size();

}
});

2.3. Transaction Management

One of the most popular features of Spring Framework is transaction management. If you are not familiar with
it, we strongly recommend looking into it as it offers a consistent programming model that works transparently
across multiple APIs that can be configured either programmatically or declaratively (the most popular choice).

Spring GemFire(1.0.0.M1) 6

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/dao.html#dao-exceptions
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/orm.html#orm-exception-translation
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/orm.html#orm-exception-translation
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/transaction.html
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/transaction.html#transaction-motivation

For Gemfire, SGI provides a dedicated, per-cache, transaction manager that once declared, allows actions on
the Regions to be grouped and executed atomically through Spring:

<bean id="transaction-manager" class="org.springframework.data.gemfire.GemfireTransactionManager" p:cache-ref="cache"/>

Note that currently GemFire supports optimistic transactions with read committed isolation. Furthermore, to
guarantee this isolation, developers should avoid making in-place changes, that is manually modifying the
values present in the cache. To prevent this from happening, the transaction manager configured the cache to
use copy on read semantics, meaning a clone of the actual value is created, each time a read is performed. This
behaviour can be disabled if needed through the copyOnRead property. For more information on the semantics
of the underlying GemFire transaction manager, see the GemFire documentation.

2.4. Wiring Declarable components

GemFire XML configuration (usually named cache.xml allows user objects to be declared as part of the fabric
configuration. Usually these objects are CacheLoaders or other pluggable components into GemFire. Out of the
box in GemFire, each such type declared through XML must implement the Declarable interface which allows
arbitrary parameters to be passed to the declared class through a Properties instance.

In this section we describe how you can configure the pluggable components defined in cache.xml using
Spring while keeping your Cache/Region configuration defined in cache.xml This allows your pluggable
components to focus on the application logic and not the location or creation of DataSources or other
collaboration object.

However, if you are starting on a green-field project, it is recommended that you configure Cache, Region, and
other pluggable components directly in Spring. This avoids inheriting from the Declarable interface or the
base class presented in this section. See the following sidebar for more information on this approach.

Eliminate Declarable components

One can configure custom types entirely inside through Spring as mentioned in Section 1.2, “Configuring
a GemFire Region”. That way, one does not have to implement the Declarable interface and gets access
to all the features of the Spring IoC container (including not just dependency injection but also life-cycle
and instance management).

As an example of configuring a Declarable component using Spring, consider the following declaration (taken
from the Declarable javadoc):

<cache-loader>
<class-name>com.company.app.DBLoader</class-name>
<parameter name="URL">
<string>jdbc://12.34.56.78/mydb</string>

</parameter>
</cache-loader>

To simplify the task of parsing, converting the parameters and initializing the object, SGI offers a base class
(WiringDeclarableSupport) that allows GemFire user objects to be wired through a template bean definition
or, in case that is missing perform autowiring through the Spring container. To take advantage of this feature,
the user objects need to extend WiringDeclarableSupport which automatically locates the declaring
BeanFactory and performs wiring as part of the initialization process.

Working with the GemFire APIs

Spring GemFire(1.0.0.M1) 7

http://www.gemstone.com/docs/6.0.1/product/docs/japi/com/gemstone/gemfire/cache/CacheTransactionManager.html

Why is a base class needed?

In the current GemFire release there is no concept of an object factory and the types declared are
instantiated and used as is - that is there are no other ways in which third parties can take care of the
object creation outside GemFire. Support for this feature is planned for the up-coming GemFire release
(6.5)

2.4.1. Configuration using template definitions

When used WiringDeclarableSupport tries to first locate an existing bean definition and use that as wiring
template. Unless specified, the component class name will be used as an implicit bean definition name. Let's
see how our DBLoader declaration would look in that case:

public class DBLoader extends WiringDeclarableSupport implements CacheLoader {
private DataSource dataSource;

public void setDataSource(DataSource ds){
this.dataSource = ds;

}

public Object load(LoaderHelper helper) { ... }
}

<cache-loader>
<class-name>com.company.app.DBLoader</class-name>
<!-- no parameter is passed (use the bean implicit name
that is the class name) -->

</cache-loader>

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:p="http://www.springframework.org/schema/p"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd">

<bean id="dataSource" ... />

<!-- template bean definition -->
<bean id="com.company.app.DBLoader" abstract="true" p:dataSource-ref="dataSource"/>

</beans>

In the scenario above, as no parameter was specified, a bean with id/name com.company.app.DBLoader was
searched for. The found bean definition is used as a template for wiring the instance created by GemFire. For
cases where the bean name uses a different convention, one can pass in the bean-name parameter in the
GemFire configuration:

<cache-loader>
<class-name>com.company.app.DBLoader</class-name>
<!-- pass the bean definition template name

as parameter -->
<parameter name="bean-name">
<string>template-bean</string>

</parameter>
</cache-loader>

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:p="http://www.springframework.org/schema/p"
xsi:schemaLocation="http://www.springframework.org/schema/beans

Working with the GemFire APIs

Spring GemFire(1.0.0.M1) 8

http://www.springframework.org/schema/beans/spring-beans.xsd">

<bean id="dataSource" ... />

<!-- template bean definition -->
<bean id="template-bean" abstract="true" p:dataSource-ref="dataSource"/>

</beans>

Note

The template bean definitions do not have to be declared in XML - any format is allowed (Groovy,
annotations, etc..).

2.4.2. Configuration using auto-wiring and annotations

If no bean definition is found, by default, WiringDeclarableSupport will autowire the declaring instance. This
means that unless any dependency injection metadata is offered by the instance, the container will find the
object setters and try to automatically satisfy these dependencies. However, one can also use JDK 5 annotations
to provide additional information to the auto-wiring process. We strongly recommend reading the dedicated
chapter in the Spring documentation for more information on the supported annotations and enabling factors.

For example, the hypothetical DBLoader declaration above can be injected with a Spring-configured DataSource
in the following way:

public class DBLoader extends WiringDeclarableSupport implements CacheLoader {
// use annotations to 'mark' the needed dependencies
@javax.inject.Inject
private DataSource dataSource;

public Object load(LoaderHelper helper) { ... }
}

<cache-loader>
<class-name>com.company.app.DBLoader</class-name>
<!-- no need to declare any parameters anymore

since the class is auto-wired -->
</cache-loader>

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd">

<!-- enable annotation processing -->
<context:annotation-config/>

</beans>

By using the JSR-330 annotations, the cache loader code has been simplified since the location and creation of
the DataSource has been externalized and the user code is concerned only with the loading process. The
DataSource might be transactional, created lazily, shared between multiple objects or retrieved from JNDI -
these aspects can be easily configured and changed through the Spring container without touching the DBLoader

code.

Working with the GemFire APIs

Spring GemFire(1.0.0.M1) 9

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-factory-autowire
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-annotation-config

Chapter 3. Working with GemFire Serialization
To improve overall performance of the data fabric, GemFire supports a dedicated serialization protocol that is
both faster and offers more compact results over the standard Java serialization and works transparently across
various language platforms (such as Java, .NET and C++). This chapter discusses the various ways in which
SGI simplifies and improves GemFire custom serialization in Java.

3.1. Wiring deserialized instances

It is fairly common for serialized objects to have transient data. Transient data is often dependent on the node or
environment where it lives at a certain point in time, for example a DataSource. Serializing such information is
useless (and potentially even dangerous) since it is local to a certain VM/machine. For such cases, SGI offers a
special Instantiator that performs wiring for each new instance created by GemFire during deserialization.

Through such a mechanism, one can rely on the Spring container to inject (and manage) certain dependencies
making it easy to split transient from persistent data and have rich domain objects in a transparent manner
(Spring users might find this approach similar to that of @Configurable). The WiringInstantiator works just
like WiringDeclarableSupport, trying to first locate a bean definition as a wiring template and following to
autowiring otherwise. Please refer to the previous section (Section 2.4, “Wiring Declarable components”) for
more details on wiring functionality.

To use this Instantiator, simply declare it as a usual bean:

<bean id="instantiator" class="org.springframework.data.gemfire.serialization.WiringInstantiator">
<!-- DataSerializable type -->
<constructor-arg>org.pkg.SomeDataSerializableClass</constructor-arg>
<!-- type id -->
<constructor-arg>95</constructor-arg>

</bean>

During the container startup, once it is being initialized, the instantiator will, by default, register itself with
the GemFire system and perform wiring on all instances of SomeDataSerializableClass created by GemFire
during deserialization.

3.2. Auto-generating custom Instantiators

For data intensive applications, a large number of instances might be created on each machine as data flows in.
Out of the box, GemFire uses reflection to create new types but for some scenarios, this might prove to be
expensive. As always, it is good to perform profiling to quantify whether this is the case or not. For such cases,
SGI allows the automatic generation of Instatiator classes which instantiate a new type (using the default
constructor) without the use of reflection:

<bean id="instantiator-factory" class="org.springframework.data.gemfire.serialization.InstantiatorFactoryBean">
<property name="customTypes">
<map>
<entry key="org.pkg.CustomTypeA" value="1025"/>
<entry key="org.pkg.CustomTypeB" value="1026"/>

</map>
</property>

</bean>

The definition above, automatically generated two Instantiators for two classes, namely CustomTypeA and
CustomTypeB and registers them with GemFire, under user id 1025 and 1026. The two instantiators avoid the

Spring GemFire(1.0.0.M1) 10

http://community.gemstone.com/display/gemfire/Interoperability
http://community.gemstone.com/display/gemfire/Serialization+in+Java
http://community.gemstone.com/display/gemfire/Serialization+in+.NET
http://www.gemstone.com/docs/6.0.1/product/docs/japi/com/gemstone/gemfire/Instantiator.html
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/aop.html#aop-atconfigurable

use of reflection and create the instances directly through Java code.

Working with GemFire Serialization

Spring GemFire(1.0.0.M1) 11

Chapter 4. Sample Applications
The Spring GemFire project includes one sample application. Named "Hello World", the sample demonstrates
how to configure and use GemFire inside a Spring application. At runtime, the sample offers a shell to the user
allowing him to run various commands against the grid. It provides an excellent starting point for users
unfamiliar with the essential components or the Spring and GemFire concepts.

The sample is bundled with the distribution and is Maven-based. One can easily import them into any
Maven-aware IDE (such as SpringSource Tool Suite) or run them from the command-line.

4.1. Hello World

The Hello World sample demonstrates the core functionality of the Spring GemFire project. It bootstraps
GemFire, configures it, executes arbitrary commands against it and shuts it down when the application exits.
Multiple instances can be started at the same time as they will work with each other sharing data without any
user intervention.

4.1.1. Starting and stopping the sample

Hello World is designed as a stand-alone java application. It features a Main class which can be started either
from your IDE of choice (in Eclipse/STS through Run As/Java Application) or from the command line
through Maven using mvn exec:java. One can also use java directly on the resulting artifact if the classpath is
properly set.

To stop the sample, simply type exit at the command line or press Ctrl+C to stop the VM and shutdown the
Spring container.

4.1.2. Using the sample

Once started, the sample will create a shared data grid and allow the user to issue commands against it. The
output will likely look as follows:

INFO: Created GemFire Cache [Spring GemFire World] v. X.Y.Z
INFO: Created new cache region [myWorld]
INFO: Member xxxxxx:50694/51611 connecting to region [myWorld]
Hello World!
Want to interact with the world ? ...
Supported commands are:

get <key> - retrieves an entry (by key) from the grid
put <key> <value> - puts a new entry into the grid
remove <key> - removes an entry (by key) from the grid
...

For example to add new items to the grid one can use:

-> put 1 unu
INFO: Added [1=unu] to the cache
null
-> put 1 one
INFO: Updated [1] from [unu] to [one]
unu
-> size
1
-> put 2 two
INFO: Added [2=two] to the cache
null

Spring GemFire(1.0.0.M1) 12

http://www.springsource.com/products/sts

-> size
2

Multiple instances can be created at the same time. Once started, the new VMs automatically see the existing
region and its information:

INFO: Connected to Distributed System ['Spring GemFire World'=xxxx:56218/49320@yyyyy]
Hello World!
...

-> size
2
-> map
[2=two] [1=one]
-> query length = 3
[one, two]

Experiment with the example, start (and stop) as many instances as you want, run various commands in one
instance and see how the others react. To preserve data, at least one instance needs to be alive all times - if all
instances are shutdown, the grid data is completely destroyed (in this example - to preserve data between runs,
see the GemFire documentations).

4.1.3. Hello World Sample Explained

Hello World uses both Spring XML and annotations for its configuration. The initial boostrapping
configuration is app-context.xml which includes the cache configuration, defined under cache-context.xml
file and performs classpath scanning for Spring components. The cache configuration defines the GemFire
cache, region and for illustrative purposes a simple cache listener that acts as a logger.

The main beans are HelloWorld and CommandProcessor which rely on the GemfireTemplate to interact with
the distributed fabric. Both classes use annotations to define their dependency and life-cycle callbacks.

Sample Applications

Spring GemFire(1.0.0.M1) 13

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-classpath-scanning
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-factorybeans-annotations

Part III. Other Resources
In addition to this reference documentation, there are a number of other resources that may help you learn how
to use GemFire and Spring framework. These additional, third-party resources are enumerated in this section.

Spring GemFire(1.0.0.M1) 14

Chapter 5. Useful Links

• Spring GemFire Integration Home Page - here

• SpringSource blog - here

• GemFire Community - here

Spring GemFire(1.0.0.M1) 15

http://www.springframework.org/spring-gemfire/
http://blog.springsource.com/
http://community.gemstone.com/display/gemfire/GemFire+Enterprise

	Spring Gemfire Integration Reference Guide
	Table of Contents
	Preface
	Part I. Introduction
	Part II. Reference Documentation
	Chapter 1. Bootstrapping GemFire through the Spring container
	1.1. Configuring the GemFire Cache
	1.2. Configuring a GemFire Region
	1.2.1. Configuring a client Region
	1.2.2. Advanced configuration through a Region's attributes

	Chapter 2. Working with the GemFire APIs
	2.1. Exception translation
	2.2. GemfireTemplate
	2.3. Transaction Management
	2.4. Wiring Declarable components
	2.4.1. Configuration using template definitions
	2.4.2. Configuration using auto-wiring and annotations

	Chapter 3. Working with GemFire Serialization
	3.1. Wiring deserialized instances
	3.2. Auto-generating custom Instantiators

	Chapter 4. Sample Applications
	4.1. Hello World
	4.1.1. Starting and stopping the sample
	4.1.2. Using the sample
	4.1.3. Hello World Sample Explained

	Part III. Other Resources
	Chapter 5. Useful Links

