Spring Social Reference Manual

Craig Walls
Keith Donald

Spring Social Reference Manual
by Craig Walls and Keith Donald

1.0.0.RC1

© SpringSource Inc., 2011

Spring Social

Table of Contents

1. SPriNG SOCIAl OVEIVIBIW ...ttt ettt e e et e e e e et e e e ettt e e e enbb e e e e enbn e e e e annneeas 1
I I 1 oo (U Tox 1[0 o PSPPSR 1
1.2. SoCIalizZiNg APPIICALIONSccoiiiiiiiiie e e e st e e s e e e e e e e e e et e e e e e e e s s st b e e e e e eaeeesaananreees 1
G T o 1T o I T 2

CHENE MOAUIES ...ttt e e ettt e e e e e e e e ettt e e e e e e e s s annneneeeeaaeeeaannes 3
1.4, DEPENAENCIESeeeeeeiieeeee ettt e ettt ettt e e et e e ekttt e e et et e e e ab et e e e e st e e e ambee e e e anbe e e e e annre e e e e nnes 5
N T TP PP PPPPPPPPTPTIN 5
2 Y TS V= N o SRS 5
SPriNG FIramMEWOTK ... e e e e e e e e s s et e e e e e e e s saaabrreeeeaeeeeaannes 5
SPHNG SECUMTY CrYPLO ..vvvviiieeie e ittt e e e e e s e e e e e e e s et e e e e e e e s s et nrreeeeeeeessansntbreaeeeaeseaanns 5
ApPache HItPCOMPONENTSuuuvuiuiuiiiuruiuinruraererrnrereerrrrrrerararrrrrerrrrrrrrrrrrerrrrrarnrerrrrrnrrrrennnrrnnes 6
JACKSON JSON PrOCESSONeeeieieiiie e e i ittt e e e e e e sttt et e e e e e e et r e e e e e s s s sannttaeeaeaeeesannsnreeeneens 6
1.5, SAMPIE COUR ...ttt e e et e e e ettt e e e e et e e e e e e e n e e e e an 6

2. Service Provider 'ConneCt’ FrameWOrKcocuuiiiiiiie et e e ae s 7
2.0, €O APl ettt e e b E e 1t E ittt 1t ff 1 e £ e £t £t £t 1 s £t £ £ E s £ s R £ R e R f R s e £ e e b e R e e s R e e e nnnnnnnne 7
2.2. Establishing CONNECLIONSuuiiiiieiiiiciiiiee e e e e e e e et e e e e e e s e s saabrreeeeaaeas 9

OAULNZ SENVICE PIOVITENS .uuvvvirieieieiereeereuerereuererenerererrrerererereererrerrrerrrrrererrrerrrnnnn 9
OAULNL SEIVICE PrOVIAENSeeeiiiiiieeiiiee ettt e e e s e e e s e e e e e 11
Registering ConnectionFactory INSIANCESccoiiuiiiiiiiiiiee e 13
2.3. PErSIStiNg COMNECTIONSccciiiiiieiiiieie ettt ettt e ettt et e et e e e st e e anbb e e e snbe e e e e anbneeeeans 14
JDBC-DASEd PEISISIENCEeveiiiiiiie e e e s ettt e e e e s e e e e e e e e e e e e e e e s e e ba e e e e e e e e e nnrraees 15

3. Adding Support for a New Service PrOVIGErceiiiiiiiiiiieec e 17
Nt I 0 0rs S 0V V= T SO 17
3.2. Creating a source project for the provider Client COEcuuvviiiiiiiieiiiee e 17

Code SIrUCUrE QUITEIINESeeeieiiiieee ettt e e e nnne s 17
3.3. Developing a Java binding to the provider's API ... 19
Designing anew Java APl Dindingovveiiiiie i 19
Implementing a new Java APl Binding ..., 20
Testing anew Java APl binding ... 21
Integrating an existing Java APl DINAINGcevviiiiiie e 22
3.4. Creating a ServiCeProvider MOGE!ooiiiiiiiiiiiii e 23
L@ N ¥ 1 12 PSP PRSPPI 23
(@ N ¥ 11 PP OPPPPPOPPPRP 24
3.5. Creating an APIAGEPLENuiiiiiiiee e a e e s aas 25
3.6. Creating @ CoNNECLIONFACIONYccovviiiiiiiiiiiic ettt 26
L@ N 11 12O 26
L 7 11 o 1 RS 27

4. CONNECLING O SEIVICE PrOVITEISooiiiiiiiii ettt e et e e e e e e nnees 28
g T 1 (0o [0 1 o PRSP 28
4.2, Configuring ConNECLCONLIOIENuuiiiiie i e e e e s e e e e e e e e aenes 28

Configuring connection SUPPOIt iN XIMLoovvviiiiiiiiiiiiceieeeeeeeee e 31
4.3. Creating connections with Connect Cont rol | er ... 32
Displaying @ CONNECLION PAOEeveiiiieeeeiiiie e ettt ettt e e e e e e e nnn e e e enees 34

1.0.0.RC1 Spring Socia Reference Manual i

Spring Social

Initiating the CONNECLION FIOWcciiii i 34

PANU 1100z (o TS of0] o= TR 36
Responding to the authorization callbackccoeviiiiiiiiiiiiiieeeeeee e 37

11 oo] 1ok £ o S 38

4.4, CONNECLION INEEICEPLOISeveieeeiiteeee ettt e e ettt e e s ekt e e e asse et e e e sbe e e e e sbbe e e e s aabae e e e aasneeeeennnneeeenan 38
5. Signing in With Service Provider ACCOUNLSociiiuiiieiiiiiiee ettt e e e 40
o300 I g 11 0o (11 o I PP RPUPPRPPTPRI 40
5.2. ENabling Provider SIgN N ..o e e 40
ProviderSigninController's dependENCIESuuuuirieuuiiiiiiiiiiiiiriirrnenrrrr—————.. 41
Adding a provider SIgN iN DULLON ... 43

5.3. Signing up after afailed SIgN N ... 44
Signing up With @ Sign UP FOM c...eeeiii e 44

T o ot =T o U o SRR 46

1.0.0.RC1 Spring Socia Reference Manual v

Spring Social

1. Spring Social Overview

1.1 Introduction

The Spring Socia project enablesyour applicationsto establish Connectionswith Software-as-a-Service (SaaS)
Providers such as Facebook and Twitter to invoke APIs on behalf of Users.

1.2 Socializing applications

The phrase "socia networking” often refersto efforts aimed at bringing people together. In the software world,
those efforts take the form of online social networks such as Facebook, Twitter, and Linkedin. Roughly half a
billion of thisworld'sinternet users have flocked to these servicesto keep frequent contact with family, friends,
and colleagues.

Under the surface, however, these services are just software applications that gather, store, and process
information. Just like so many applications written before, these socia networks have users who sign in and
perform some activity offered by the service.

What makes these applications a little different than traditional applications is that the data that they collect
represent some facet of their users lives. What's more, these applications are more than willing to share that
datawith other applications, aslong asthe user gives permission to do so. This meansthat although these social
networks are great at bringing people together, as software services they also excel at bringing applications
together.

Toillustrate, imagine that Paul is amember of an online movie club. A function of the movie club application
is to recommend movies for its members to watch and to let its members maintain alist of movies that they
have seen and those that they plan to see. When Paul sees a movie, he signs into the movie club site, checks
the movie off of hisviewing list, and indicates if he liked the movie or not. Based on his responses, the movie
club application can tailor future recommendations for Paul to see.

On its own, the movie club provides great value to Paul, as it helps him choose movies to watch. But Paul is
also a Facebook user. And many of Paul's Facebook friends also enjoy a good movie now and then. If Paul
were able to connect his movie club account with his Facebook profile, the movie club application could offer
him aricher experience. Perhaps when he sees a movie, the application could post a message on his Facebook
wall indicating so. Or when offering suggestions, the movie club could factor in the movies that his Facebook
friends liked.

Social integration is athree-way conversation between a service provider, a service consumer, and a user who
holds an account on both the provider and consumer. All interactions between the consumer and the service
provider are scoped to the context of the user's profile on the service provider.

Inthe narrative above, Facebook isthe service provider, the movie club application isthe service consumer, and
Paul is the user of both. The movie club application may interact with Facebook on behalf of Paul, accessing
whatever Facebook data and functionality that Paul permits, including retrieving Paul's friends and posting
messages to hiswall.

1.0.0.RC1 Spring Socia Reference Manual 1

Spring Social

From the user's perspective, both applications provide some val uable functionality. But by connecting the user's
account on the consumer application with his account on the provider application, the user brings together two
applications that can now offer the user more value than they could individually.

With Spring Social, your application can play the part of the service consumer, interacting with a service
provider on behalf of its users. The key features of Spring Socia are:

» A "Connect Framework" that handles the core authorization and connection flow with service providers.

* A "Connect Controller" that handles the OAuth exchange between a service provider, consumer, and user
in aweb application environment.

« A"Signin Controller" that allows usersto authenticate with your application by signing in with their Provider
accounts, such astheir Twitter or Facebook accounts.

In addition, there are a handful of provider-specific modules that extend Spring Social to enable integration
with popular SaaS providers, including Facebook and Twitter.

1.3 How to get

The core Spring Social project consists of the modules described in Table 1.1, “ Spring Social Modules’.
Table 1.1. Spring Social Modules

Name Description
spring-social-core Spring Socia's Connect Framework and OAuth client support.
spring-social-web Spring Socia's Connect Control | er which uses the Connect

Framework to manage connections in a web application environment.

spring-social-test Support for testing Connect implementations and API bindings.

Which of these modules your application needs will largely depend on what facets of Spring Social you intend
to use. At very minimum, you'll need the core module in your application's classpath:

<dependency>
<gr oupl d>or g. spri ngf ramewor k. soci al </ groupl d>
<artifact!ld>spring-social-core</artifactld>
<versi on>${spri ng-soci al . ver si on} </ ver si on>
</ dependency>

To let Spring Social handle the back-and-forth authorization handshake between your web application and a
service provider, you'll need the web module:

<dependency>
<gr oupl d>or g. spri ngf ramewor k. soci al </ groupl d>
<artifact!ld>spring-social-web</artifactld>
<versi on>${spri ng-soci al . ver si on} </ ver si on>
</ dependency>

1.0.0.RC1 Spring Socia Reference Manual 2

Spring Social

If you're devel oping your own client module (Chapter 3, Adding Support for a New Service Provider) and AP
binding, you'll need the test module to test it:

<dependency>
<gr oupl d>or g. spri ngf ramewor k. soci al </ groupl d>
<artifactld>spring-social-test</artifactld>
<versi on>${spri ng-soci al . ver si on} </ ver si on>
</ dependency>

If you are devel oping against a milestone or release candidate version, such as 1.0.0.RC1, you will need to add
the following repository in order to resolve the artifact:

<repository>
<i d>or g. spri ngf ranewor k. maven. m | est one</i d>
<nanme>Spri ng Maven M | est one Repository</nane>
<url>http:// maven. spri ngframewor k. org/ m | est one</ url| >
</repository>

If you are testing out the latest nightly build version (e.g. 1.0.0.BUILD-SNAPSHQOT), you will need to add
the following repository:

<reposi tory>
<i d>or g. spri ngf ramewor k. maven. snapshot </ i d>
<nanme>Spri ng Maven Snapshot Repository</ name>
<url >http:// maven. spri ngf ramewor k. or g/ snapshot </ url >
</repository>

Client modules

In addition to modul esthat make up the core Spring Socia project, thereare anumber of provider-specific client
modules that are released separately that provide connectivity and APl bindings to popular SaaS providers.
These client modules arelisted in Table 1.2, “ Spring Social Client Modules’.

Table 1.2. Spring Social Client Modules

Name Maven group ID Maven artifact 1D

Spring Social org.springframework.social spring-social-facebook
Facebook [http://
static.springsource.org/
spring-social-
facebook/
docs/1.0.x/
reference/html/]

Spring Social org.springframework.social spring-social-twitter
Twitter [http://
static.springsource.org/

1.0.0.RC1 Spring Socia Reference Manual 3

http://static.springsource.org/spring-social-facebook/docs/1.0.x/reference/html/
http://static.springsource.org/spring-social-facebook/docs/1.0.x/reference/html/
http://static.springsource.org/spring-social-facebook/docs/1.0.x/reference/html/
http://static.springsource.org/spring-social-facebook/docs/1.0.x/reference/html/
http://static.springsource.org/spring-social-facebook/docs/1.0.x/reference/html/
http://static.springsource.org/spring-social-facebook/docs/1.0.x/reference/html/
http://static.springsource.org/spring-social-facebook/docs/1.0.x/reference/html/
http://static.springsource.org/spring-social-facebook/docs/1.0.x/reference/html/
http://static.springsource.org/spring-social-twitter/docs/1.0.x/reference/html/
http://static.springsource.org/spring-social-twitter/docs/1.0.x/reference/html/
http://static.springsource.org/spring-social-twitter/docs/1.0.x/reference/html/
http://static.springsource.org/spring-social-twitter/docs/1.0.x/reference/html/

Spring Social

Name Maven group ID Maven artifact 1D
spring-social-
twitter/docs/1.0.x/
reference/html/]
Spring Socid org.springframework.social spring-socia-linkedin

LinkedIn [http:/
static.springsource.org/
spring-social-
linkedin/docs/1.0.x/
reference/html/]

Spring Social org.springframework.social spring-social-tripit
Triplt [http://
static.springsource.org/
spring-social-

tripit/docs/1.0.x/
reference/html/]

Spring Social org.springframework.social spring-social-github
GitHub [http://
static.springsource.org/
spring-social-
github/docs/1.0.x/
reference/html/]

Spring Social org.springframework.social spring-social-gowalla
Gowalla[http://
static.springsource.org/
spring-social-
gowalla/docs/1.0.x/
reference/html/]

All of these modules are optional, depending on the connectivity needs of your application. For instance, if
your application will connect with Facebook, you'll want to add the Facebook module to your project:

<dependency>
<gr oupl d>or g. spri ngf ramewor k. soci al </ gr oupl d>
<artifactld>spring-social -facebook</artifactld>
<ver si on>${spri ng- soci al - f acebook. ver si on} </ ver si on>
</ dependency>

Note that each of the client modules will progress and release on a different schedule than Spring Social.
Conseguently, the version numbers for any given client module may not align with Spring Social or any other
client module.

Refer to each client modul€'s reference documentation for details on connectivity and the API binding.

1.0.0.RC1 Spring Socia Reference Manual 4

http://static.springsource.org/spring-social-twitter/docs/1.0.x/reference/html/
http://static.springsource.org/spring-social-twitter/docs/1.0.x/reference/html/
http://static.springsource.org/spring-social-twitter/docs/1.0.x/reference/html/
http://static.springsource.org/spring-social-linkedin/docs/1.0.x/reference/html/
http://static.springsource.org/spring-social-linkedin/docs/1.0.x/reference/html/
http://static.springsource.org/spring-social-linkedin/docs/1.0.x/reference/html/
http://static.springsource.org/spring-social-linkedin/docs/1.0.x/reference/html/
http://static.springsource.org/spring-social-linkedin/docs/1.0.x/reference/html/
http://static.springsource.org/spring-social-linkedin/docs/1.0.x/reference/html/
http://static.springsource.org/spring-social-linkedin/docs/1.0.x/reference/html/
http://static.springsource.org/spring-social-tripit/docs/1.0.x/reference/html/
http://static.springsource.org/spring-social-tripit/docs/1.0.x/reference/html/
http://static.springsource.org/spring-social-tripit/docs/1.0.x/reference/html/
http://static.springsource.org/spring-social-tripit/docs/1.0.x/reference/html/
http://static.springsource.org/spring-social-tripit/docs/1.0.x/reference/html/
http://static.springsource.org/spring-social-tripit/docs/1.0.x/reference/html/
http://static.springsource.org/spring-social-tripit/docs/1.0.x/reference/html/
http://static.springsource.org/spring-social-github/docs/1.0.x/reference/html/
http://static.springsource.org/spring-social-github/docs/1.0.x/reference/html/
http://static.springsource.org/spring-social-github/docs/1.0.x/reference/html/
http://static.springsource.org/spring-social-github/docs/1.0.x/reference/html/
http://static.springsource.org/spring-social-github/docs/1.0.x/reference/html/
http://static.springsource.org/spring-social-github/docs/1.0.x/reference/html/
http://static.springsource.org/spring-social-github/docs/1.0.x/reference/html/
http://static.springsource.org/spring-social-gowalla/docs/1.0.x/reference/html/
http://static.springsource.org/spring-social-gowalla/docs/1.0.x/reference/html/
http://static.springsource.org/spring-social-gowalla/docs/1.0.x/reference/html/
http://static.springsource.org/spring-social-gowalla/docs/1.0.x/reference/html/
http://static.springsource.org/spring-social-gowalla/docs/1.0.x/reference/html/
http://static.springsource.org/spring-social-gowalla/docs/1.0.x/reference/html/
http://static.springsource.org/spring-social-gowalla/docs/1.0.x/reference/html/

Spring Social

1.4 Dependencies

Spring Socia depends on afew things to run. Most dependencies are optional and an effort has been made to
keep the required dependencies to a minimum. The project dependencies are described in this section.

Java

Spring Socia requires Java 1.5 or greater.

Java Servlet API

The Spring Social web support requires Java Servlet 2.5 or greater (Tomcat 6+).

Spring Framework

Spring Social dependson RestTemplate provided by the core Spring Framework [http://www.springsource.org/
documentation] in the spring-web module. It requires Spring Framework version 3.0.5 or above. Spring
Framework 3.1 is recommended to take advantage of several RestTemplate improvements.

If you are using Spring Social with Spring Framework 3.0.5, make sure you explicitly add the spring-web
dependency to your build:

<dependency>
<gr oupl d>or g. spri ngf ramewor k</ gr oupl d>
<artifactld>spring-web</artifactld>
<versi on>3. 0. 5. RELEASE</ ver si on>

</ dependency>

Maven's dependency management favors "nearest” dependencies, so your project's definition of the spring-
web dependency will override Spring Socia's transitive dependency on the recommended 3.1 version.

Gradle, on the other hand, favors the newest dependency. If you're using Gradle to build your project, you'll
need to also set the dependency's f or ce property to t r ue to force Gradle to resolve your chosen version

of Spring:

dependenci es {
conpi l e ("org.springfranework. soci al : spring-social -core: 1. 0. 0. RC1")
conpi l e ("org.springframework: spring-web: 3.0. 5. RELEASE") { force=true }

Spring Security Crypto

If you're not already using Spring Security to secure your application, you'll need to add the standal one crypto
module. Thisis required for OAuthl request signing and encrypting credentials when persisting Connection
data. If you're aready using Spring Security, there is nothing for you to do because the crypto library comes
included.

1.0.0.RC1 Spring Socia Reference Manual 5

http://www.springsource.org/documentation
http://www.springsource.org/documentation
http://www.springsource.org/documentation

Spring Social

<dependency>
<gr oupl d>or g. spri ngf ramewor k. securi ty</ groupl d>
<artifactld>spring-security-crypto</artifactld>
<version>3. 1. 0. RC2. crypt o</ ver si on>

</ dependency>

Apache HttpComponents

Spring Socia has an optional dependency on Apache HttpComponents [http://hc.apache.org/httpcomponents-
client-ga]. If the HttpComponents HttpClient library is present, it will use it as the HTTP client (which is
generaly recommended). Otherwise, it will fall back on standard J2SE facilities.

<dependency>
<gr oupl d>or g. apache. htt pconponent s</ gr oupl d>
<artifactld>httpclient</artifactld>
<version>4. 1. 1</ versi on>

</ dependency>

Although shown here to depend on version 4.1.1 of the HttpClient library, Spring Social can also with with

4.0.X versions of HttpClient.

Jackson JSON Processor

Spring Social's provider API bindings rely on the Jackson JSON Processor [http://jackson.codehaus.org/] to
map JSON responses to Java objects. Each binding, such as Facebook or Twitter, transitively depends on
Jackson 1.8.2, so there's nothing special to do to add Jackson to your project's Maven or Gradle build.

1.5 Sample Code

We have created afew sample applicationsto illustrate the capabilities of Spring Social. To obtain the https://
github.com/SpringSource/spring-social-samples code, use the following git command:

git clone git://github.conl SpringSource/spring-social-sanples.git

The Spring Social Samples project includes the following samples:
* gpring-social-quickstart - Designed to get you up and running quickly.
* gpring-social-showcase - Illustrates most of Spring Social's features.

* spring-social-extending-new-api - Shows how to extend Spring Social to implement anew ServiceProvider
and API binding.

* gpring-social-extending-existing-api - Shows how to extend Spring Social and re-use an existing API
binding.

1.0.0.RC1 Spring Socia Reference Manual 6

http://hc.apache.org/httpcomponents-client-ga
http://hc.apache.org/httpcomponents-client-ga
http://hc.apache.org/httpcomponents-client-ga
http://jackson.codehaus.org/
http://jackson.codehaus.org/

Spring Social

2. Service Provider 'Connect' Framework

The spri ng-soci al - cor e module includes a Service Provider 'Connect’ Framework for managing
connections to Software-as-a-Service (SaaS) providers such as Facebook and Twitter. This framework allows
your application to establish connections between local user accounts and accounts those users have with
external service providers. Once a connection is established, it can be be used to obtain a strongly-typed Java
binding to the ServiceProvider's API, giving your application the ability to invoke the API on behalf of auser.

To illustrate, consider Facebook as an example ServiceProvider. Suppose your application, AcmeApp, alows
usersto share content with their Facebook friends. To support this, aconnection needsto be established between
auser's AcmeApp account and her Facebook account. Once established, a Facebook instance can be obtained
and used to post content to the user's wall. Spring Socia's ‘Connect' framework provides a clean API for
managing service provider connections such as this.

2.1 Core API

The Connect i on<A> interface models a connection to an external service provider such as Facebook:

public interface Connection<A> {
Connecti onKey getKey();
String getDi spl ayNanme() ;
String getProfileUrl();
String getlnmageUrl ();
voi d sync();
bool ean test();
bool ean hasExpired();
void refresh();
UserProfile fetchUserProfile();
voi d updat eStatus(String nessage);
A get Api () ;

Connecti onData createData();

Each connection is uniquely identified by a composite key consisting of a providerld (e.g. 'facebook’) and
connected providerUserld (e.g. '1255689239', for Keith Donald's Facebook ID). This key tells you what
provider user the connection is connected to.

1.0.0.RC1 Spring Socia Reference Manual 7

Spring Social

A connection hasanumber of meta-propertiesthat can be used torender it on ascreen, including adisplayName,
profileUrl, and imageUrl. As an example, the following HTML template snippet could be used to generate a
link to the connected user's profile on the provider's site:

<ing src="${connection.imageUrl}" /> %{connection.displ ayNane}

The value of these properties may depend on the state of the provider user's profile. In this case, sync() can be
called to synchronize these values if the user's profile is updated.

A connection can betested to determineif its authorization credentials are valid. If invalid, the connection may
have expired or been revoked by the provider. If the connection has expired, a connection may be refreshed
to renew its authorization credentials.

A connection provides several operationsthat allow the client application to invoke the ServiceProvider's AP
in auniform way. This includes the ability to fetch a model of the user's profile and update the user's status
in the provider's system.

A connection's parameterized type <A> represents the Java binding to the ServiceProvider's native API. An
instance of this API binding can be obtained by calling get Api () . As an example, a Facebook connection
instance would be parameterized as Connection<Facebook>. get Api () would return a Facebook instance
that provides a Java binding to Facebook's graph API for a specific Facebook user.

Finally, the internal state of a connection can be captured for transfer between layers of your application by
calling cr eat eDat a() . This could be used to persist the connection in a database, or serialize it over the
network.

To put this model into action, suppose we have a reference to a Connection<Twitter> instance. Suppose the
connected user isthe Twitter user with screen name 'kdonald'.

1. Connection#getKey() would return (‘twitter', '14718006") where '14718006' is @kdonald's Twitter-assigned
user id that never changes.

2. Connection#getDisplayName() would return ‘@kdonald'.
3. Connection#getProfileUrl () would return 'http://twitter.com/kdonald'.

4. Connection#getl mageUrl() would return ‘http://a0.twimg.com/profile_images/105951287/
IMG_5863 2 normal.jpg'.

5. Connection#sync() would synchronize the state of the connection with @kdonald's profile.

6. Connection#test() would return true indicating the authorization credentials associated with the Twitter
connection arevalid. Thisassumes Twitter has not revoked the AcmeA pp client application, and @kdonald
has not reset his authorization credentials (Twitter connections do not expire).

7. Connection#hasExpired() would return false.
8. Connection#refresh() would not do anything since connections to Twitter do not expire.

9. Connection#fetchUserProfile() would make aremote API call to Twitter to get @kdonald's profile data and
normalize it into a UserProfile model.

1.0.0.RC1 Spring Socia Reference Manual 8

Spring Social

10.Connection#updateStatus(String) would post a status update to @kdonald's timeline.

11.Connection#getApi() would return a Twitter giving the client application access to the full capabilities of
Twitter's native API.

12.Connectiont#createData() would return ConnectionData that could be serialized and used to restore the
connection at alater time.

2.2 Establishing connections

So far we have discussed how existing connections are modeled, but we have not yet discussed how new
connections are established. The manner in which connections between local users and provider users are
established varies based on the authorization protocol used by the ServiceProvider. Some service providers
use OAuth, others use Basic Auth, others may use something else. Spring Socia currently provides native
support for OAuth-based service providers, including support for OAuth 1 and OAuth 2. Thiscoverstheleading
social networks, such as Facebook and Twitter, all of which use OAuth to securetheir APIs. Support for other
authorization protocols can be added by extending the framework.

Each authorization protocol istreated as an implementation detail where protocol-specifics are kept out of the
core Connection API. A ConnectionFactory abstraction encapsul ates the construction of connectionsthat use a
specific authorization protocol. In the following sections, we will discuss the major ConnectionFactory classes
provided by the framework. Each section will also describe the protocol-specific flow required to establish a
new connection.

OAuth2 service providers

OAuth 2 is rapidly becoming a preferred authorization protocol, and is used by major service providers such
as Facebook, Github, Foursquare, Gowalla, and 37signals. In Spring Social, a OAuth2ConnectionFactory is
used to establish connections with a OA uth2-based service provider:

publ i c cl ass QAut h2Connecti onFact or y<A> ext ends Connecti onFact or y<A> {
publ i ¢ QAut h2Oper ati ons get QAut hOperati ons();
publ i ¢ Connecti on<A> creat eConnecti on(AccessG ant accessG ant);

publ i ¢ Connecti on<A> creat eConnecti on(Connecti onData data);

get QAut hQper at i ons() returnsan API to useto conduct the authorization flow, or "OAuth Dance", with
aservice provider. Theresult of thisflow isan AccessG ant that can be used to establish a connection with
alocal user account by calling cr eat eConnect i on. The OAuth20perations interface is shown below:

public interface QAuth2Qperations {
String buil dAuthori zeUrl (G ant Type grant Type, OQAut h2Par aneters paraneters);

String buil dAut henticateUrl (G ant Type grant Type, OAut h2Paraneters paraneters);

1.0.0.RC1 Spring Socia Reference Manual 9

Spring Social

AccessG ant exchangeFor Access(String authorizati onCode, String redirectUri,
Mul ti Val ueMap<String, String> additional Paraneters);

AccessGrant refreshAccess(String refreshToken, String scope,
Mul ti Val ueMap<String, String> additional Paraneters);

Callers are first expected to call buildAuthorizeUrl(GrantType, OAuth2Parameters) to construct the URL to
redirect the user to for connection authorization. Upon user authorization, the authorizationCode returned by the
provider should be exchanged for an AccessGrant. The AccessGrant should then used to create a connection.
Thisflow isillustrated below:

Consumer Service Provider
1 Client ID
. Redirect URI P
Hﬁ;ﬁ%:ﬁﬁ) rrto Scope (optional User grants
authorization authorization

v

Redirect user back
to application

3

4
Exchange for access * Authorization Grant
grant
Redirect URI 5
l Authorization Grant
Grant access token
6
. Access Grant
Create connection |-

Asyou can see, thereis a back-and-forth conversation that takes place between the application and the service
provider to grant the application access to the provider account. This exchange, commonly known as the
"OAuth Dance", follows these steps:

1. Theflow startsby the application redirecting the user to the provider's authorization URL. Here the provider
displays a web page asking the user if he or she wishes to grant the application access to read and update
their data.

2. The user agrees to grant the application access.

3. Theserviceprovider redirectsthe user back to the application (viatheredirect URI), passing an authorization
code as a parameter.

4. The application exchanges the authorization code for an access grant.

5. The service provider issues the access grant to the application. The grant includes an access token and a
refresh token. One receipt of these tokens, the "OAuth dance" is complete.

1.0.0.RC1 Spring Socia Reference Manual 10

Spring Social

6. The application uses the AccessGrant to establish a connection between the local user account and the
external provider account. With the connection established, the application can now obtain a reference to
the Service API and invoke the provider on behalf of the user.

The example code below shows use of a FacebookConnectionFactory to create a connection to Facebook
using the OAuth2 server-side flow illustrated above. Here, FacebookConnectionFactory is a subclass of
OAuth2ConnectionFactory:

FacebookConnect i onFact ory connectionFactory =
new FacebookConnecti onFactory("clientld", "clientSecret");
QAut h2Qper at i ons oaut hOper ati ons = connecti onFact ory. get QAut hOper ati ons();
String authorizeUrl = oauthQperations. buil dAuthorizeUrl (G ant Type. AUTHORI ZATI ON_CODE,
new QAut h2Par anmet ers("cal | backUrl"));
response. sendRedi r ect (aut hori zeUrl);
/1 when the provider callback is received with the authorizationCode paraneter:
AccessG ant accessG ant = oaut hOper ati ons. exchangeFor Access(aut hori zati onCode, "cal |l backUrl");
Connect i on<Facebook> connecti on = connecti onFactory. creat eConnecti on(accessG ant);

The following example illustrates the client-side "implicit" authorization flow also supported by OAuth2. The
difference between this flow and the server-side "authorization code" flow above is the provider callback
directly contains the access grant (no additional exchange is necessary). This flow is appropriate for clients
incapable of keeping the access grant credentials confidential, such as a mobile device or JavaScript-based
user agent.

FacebookConnecti onFactory connecti onFactory =
new FacebookConnecti onFactory("clientld", "clientSecret");

QAut h2Qper ati ons oaut hOperati ons = connecti onFact ory. get QAut hOperati ons();

String authorizeUrl = oauthQOperations. buil dAuthorizeUrl (G ant Type. | MPLI Cl T_GRANT,
new QAut h2Par anet er s("cal | backUrl"));

response. sendRedi r ect (aut hori zeUrl) ;

/'l when the provider callback is received with the access_token paraneter:

AccessGrant accessG ant = new AccessG ant (accessToken);

Connect i on<Facebook> connecti on = connecti onFactory. creat eConnecti on(accessG ant);

OAuth1l service providers

OAuth 1 isthe previous version of the OAuth protocal. It is more complex OAuth 2, and sufficiently different
that it is supported separately. Twitter, Linked In, and Triplt are some of the well-known ServiceProvidersthat
use OAuth 1. In Spring Social, the OAuth1ConnectionFactory allows you to create connections to a OAuthl-
based Service Provider:

public class QAut hlConnecti onFact or y<A> ext ends Connecti onFact or y<A> {
publ i ¢ QAut h1Operati ons get QAut hOperati ons();
publ i ¢ Connecti on<A> creat eConnecti on(QAut hToken accessToken);

publ i ¢ Connecti on<A> creat eConnecti on(Connecti onData data);

1.0.0.RC1 Spring Socia Reference Manual 11

Spring Social

LikeaOAuth2-based provider, get QAut hOper at i ons() returnsan APl to useto conduct the authorization
flow, or "OAuth Dance'. The result of the OAuth 1 flow is an QAut hToken that can be used to establish
a connection with a local user account by calling cr eat eConnect i on. The OAuthlOperations interface
is shown below:

public interface QAuthlOperations {

QAut hToken fet chRequest Token(String cal | backUrl ,
Mul ti Val ueMap<String, String> additional Paraneters);

String buil dAuthorizeUrl (String request Token, QAut hlParaneters paraneters);
String buil dAuthenticateUrl (String request Token, QAuthlParaneters paraneters);

QAut hToken exchangeFor AccessToken(Aut hori zedRequest Token request Token,
Mul ti Val ueMap<String, String> additional Paraneters);

Cdlers are first expected to call fetchNewRequestToken(String) to obtain a temporary token from the
ServiceProvider to use during the authorization session. Next, callers should call buildAuthorizeUrl(String,
OAuthlParameters) to construct the URL to redirect the user to for connection authorization. Upon user
authorization, the authorized request token returned by the provider should be exchanged for an access token.
The access token should then used to create a connection. Thisflow isillustrated below:

Consumer Service Provider
Consumer Key
1 Consumer Secret 2
Fetch Callback URL (1.0a) Issue
Reqguest Token Reguest Token
3
Redirect user to Request Token
Provider for
authorization

edlrect user back
to application

Hequest Token
I Callback URL (1.0} User grants
Authorization

5]
Exchange for e 1.02)
access token
Request Token 7
I Verifier (1.0a)
Grant access token
8
Access Token
Create connection [-#

1.0.0.RC1 Spring Socia Reference Manual 12

Spring Social

1. Theflow starts with the application asking for arequest token. The purpose of the request token isto obtain
user approval and it can only be used to obtain an access token. In OAuth 1.0a, the consumer callback URL
is passed to the provider when asking for arequest token.

2. The service provider issues arequest token to the consumer.

3. The application redirects the user to the provider's authorization page, passing the request token as a
parameter. In OAuth 1.0, the callback URL is aso passed as a parameter in this step.

4. The service provider prompts the user to authorize the consumer application and the user agrees.

5. The service provider redirects the user's browser back to the application (viathe callback URL). In OAuth
1.0a, thisredirect includes a verifier code as a parameter. At this point, the request token is authorized.

6. The application exchanges the authorized request token (including the verifier in OAuth 1.0a) for an access
token.

7. The service provider issues an access token to the consumer. The "dance" is now complete.

8. The application uses the access token to establish a connection between the local user account and the
external provider account. With the connection established, the application can now obtain a reference to
the Service API and invoke the provider on behalf of the user.

The example code below shows use of a TwitterConnectionFactory to create a connection to Facebook
using the OAuthl server-side flow illustrated above. Here, TwitterConnectionFactory is a subclass of
OA uth1ConnectionFactory:

Twi tt er Connecti onFactory connecti onFactory =

new Twi tt er Connecti onFact ory("consumer Key", "consuner Secret");
QAut h1Qper ati ons oaut hOperati ons = connecti onFact ory. get QAut hOperati ons();
String request Token = oaut hOperati ons. f et chRequest Token("cal | backUrl");
String authorizeUrl = oauthOperations. buil dAuthorizeUrl (request Token, OAut hlParaneters. NONE);
response. sendRedi r ect (aut hori zeUrl) ;
/1l when the provider callback is received with the oauth_token and oauth_verifier paraneters:
QAut hToken accessToken = oaut hOperati ons. exchangeFor AccessToken(

new Aut hori zedRequest Token(oaut hToken, oauthVerifier));

Connecti on<Twi tter> connecti on = connecti onFactory. creat eConnecti on(accessToken);

Registering ConnectionFactory instances

As you will see in subsequent sections of this reference guide, Spring Socia provides infrastructure for
establishing connections to one or more providers in a dynamic, self-service manner. For example, one client
application may allow usersto connect to Facebook, Twitter, and Linkedln. Another might integrate Github and
Pivotal Tracker. To make the set of connectable providers easy to manage and locate, Spring Social provides
aregistry for centralizing connection factory instances:

Connecti onFact oryRegi stry regi stry = new Connecti onFact oryRegi stry();

regi stry. addConnecti onFact ory(new FacebookConnecti onFactory("clientld", "clientSecret"));
regi stry. addConnect i onFact ory(new Twi tt er Connecti onFact ory("consuner Key", "consunerSecret"));
regi stry. addConnecti onFact ory(new Li nkedl nConnecti onFact ory("consuner Key", "consunerSecret"));

1.0.0.RC1 Spring Socia Reference Manual 13

Spring Social

This registry implements a locator interface that other objects can use to lookup connection factories
dynamically:

public interface ConnectionFactorylLocator {
Connect i onFact or y<?> get Connecti onFactory(String providerld);
<A> Connecti onFact or y<A> get Connecti onFact ory(C ass<A> api Type);

Set <String> registeredProviderlds();

Example usage of a ConnectionFactoryL ocator is shown below:

/1 generic | ookup by providerld
Connect i onFact ory<?> connecti onFactory = | ocator. get Connecti onFactory("facebook");

/1 typed | ookup by service api type
Connect i onFact or y<Facebook> connecti onFactory = | ocator. get Connecti onFact ory(Facebook. cl ass);

2.3 Persisting connections

After aconnection has been established, you may wish to persist it for later use. This makes things convenient
for the user since a connection can simply be restored from its persistent form and does not need to be
established again. Spring Socia provides a ConnectionRepository interface for managing the persistence of
auser's connections:

public interface ConnectionRepository {
Mul ti Val ueMap<Stri ng, Connecti on<?>> findAl | Connections();
Li st <Connecti on<?>> fi ndConnecti ons(String providerld);
<A> Li st <Connecti on<A>> findConnections(Cl ass<A> api Type);

Mul ti Val ueMap<Stri ng, Connecti on<?>> findConnecti onsToUser s(
Mul ti Val ueMap<String, String> providerUserlds);

Connect i on<?> get Connecti on(Connecti onKey connecti onKey);

<A> Connecti on<A> get Connecti on(Cl ass<A> api Type, String providerUserld);
<A> Connecti on<A> get Pri maryConnecti on(Cl ass<A> api Type);

<A> Connecti on<A> fi ndPri maryConnecti on(C ass<A> api Type);

voi d addConnecti on(Connecti on<?> connection);

voi d updat eConnect i on(Connect i on<?> connecti on);

1.0.0.RC1 Spring Socia Reference Manual 14

Spring Social

voi d renpveConnections(String providerld);

voi d renpveConnecti on(Connecti onKey connecti onKey);

As you can see, this interface provides a number of operations for adding, updating, removing, and finding
Connections. Consult the JavaDoc API of thisinterface for afull description of these operations. Note that all
operations on this repository are scoped relative to the "current user” that has authenticated with your local
application. For standalone, desktop, or mobile environments that only have one user this distinction isn't
important. In a multi-user web application environment, this implies ConnectionRepository instances will be
reguest-scoped.

For multi-user environments, Spring Social provides a UsersConnectionRepository that provides access to the
global store of connections across all users:

public interface UsersConnecti onRepository {
String findUserl dWthConnecti on(Connecti on connection);
Set <String> findUser| dsConnectedTo(String providerld, Set<String> providerUserlds);

Connect i onReposi tory creat eConnecti onRepository(String userld);

Asyou can see, this repository acts as a factory for ConnectionRepository instances scoped to a single user,
as well as exposes a number of multi-user operations. These operations include the ability to lookup the local
userlds associated with connections to support provider user sign-in and "registered friends" scenarios. Consult
the JavaDoc API of thisinterface for afull description.

JDBC-based persistence

Spring Social provides a JdbcUsersConnectionRepository implementation capable of persisting
connections to a RDBMS. The database schema designed to back this repository is defined in
JdbcUsersConnectionRepository.sql. The implementation also provides support for encrypting authorization
credentials so they are not stored in plain-text.

The example code below demonstrates construction and usage of a JdbcUsersConnectionRepository:

/1 JDBC Dat aSource pointing to the DB where connection data is stored

Dat aSour ce dataSource = ...;

/'l locator for factories needed to construct Connections when restoring from persistent form
Connect i onFact oryLocat or connecti onFactorylLocator = ...;

/1 encryptor of connection authorization credentials

Text Encryptor encryptor = ...;

User sConnect i onReposi tory usersConnecti onRepository =
new JdbcUser sConnect i onReposi t or y(dat aSour ce, connecti onFactorylLocator, encryptor);

1.0.0.RC1 Spring Socia Reference Manual 15

Spring Social

/] create a connection repository for the single-user 'kdonald'
Connecti onRepository repository = usersConnecti onRepository. createConnecti onRepository("kdonald");

/1 find kdonald's primary Facebook connecti on
Connect i on<Facebook> connecti on = repository.findPri maryConnecti on(Facebook. cl ass);

1.0.0.RC1 Spring Socia Reference Manual 16

Spring Social

3. Adding Support for a New Service Provider

Spring Social makesit easy to add support for service providersthat are not already supported by the framework.
If you review the existing client modules, such as spring-socia-twitter and spring-social-facebook, you will
discover they are implemented in a consistent manner and they apply a set of well-defined extension points.
In this chapter, you will learn how to add support for new service providers you wish to integrate into your
applications.

3.1 Process overview

The process of adding support for a new service provider consists of several steps:
1. Create a source project for the client codee.g. spri ng-soci al -twi tter.
2. Develop or integrate a Java binding to the provider's APl e.g. Twi t t er .

3. CreateaServiceProvider model that allows usersto authorize with the remote provider and obtain authorized
API instancese.g. Twi t t er Ser vi cePr ovi der .

4. Create an ApiAdapter that maps the provider's native APl onto the uniform Connection modd e.g.
Twi tt er Adapter.

5. Finally, create a ConnectionFactory that wraps the other artifacts up and provides a simple interface for
establishing connections e.g. Twi t t er Connect i onFact ory.

The following sections of this chapter walk you through each of the steps with examples.

3.2 Creating a source project for the provider client code

A Spring Social client module is a standard Java project that builds a single jar artifact e.g. spring-social-
twitter.jar. We recommend the code structure of a client module follow the guidelines described below.

Code structure guidelines

We recommend the code for a new Spring Social client module reside within the
org. springframework. soci al . {provi derld} base package, where {providerld} is a unique
identifier you assign to the service provider you are adding support for. Consider some of the providers aready
supported by the framework as examples:

Table 3.1. Soring Social Client Modules

Provider 1D Artifact Name Base Package
facebook spring-social-facebook org.springframework.social .facebook
twitter spring-social-twitter org.springframework.social .twitter

Within the base package, we recommend the following subpackage structure:

1.0.0.RC1 Spring Socia Reference Manual 17

Spring Socia

Table 3.2. Module Structure

api
api.impl

connect

Subpackage

The public interface that defines the API binding.

The implementation of the API binding.

The types necessary to establish connections to the service provider.

Description

Y ou can see this recommended structurein action by reviewing one of the other client modules such as spring-

social-twitter:

spring-social-twitter

¥ & src/main/java
¥ 1 org.springframework.social . twitter.api

» [J] DirectMessage.java

[m DirectMessageDperations.java
[m Duplicate TweetException.java
> |I| EnhanceYourCalmException.java
[2 |I| FriendQOperations.java

[m FriendshipFailureException.java
> [J] ImageSize.java

[m InvalidMessageRecipientException.java
[m ListOperations.java

> [J] savedSearch.java

[2 |I| SearchOperations.java

> [J] SearchResults.java

b [J] StatusDetails.java

[m StatusLengthException.java

[m SuggestionCategory.java

[2 |I| TimelineDperations.java

> [J] Trend.java

> [J] Trends.java

» [J] Tweet java

[m TwitterApi.java

> [J] TwitterProfile.java

[2 |I| UserOperations.java

¥ £ org.springframework.social . twitter.api.impl

> [J] TwitterTemplate. java

kJ EE org.springframework.social.twitter.connect

[m TwitterApiAdapter.java
> |I| TwitterConnectionFactory. java
> |I| TwitterServiceProvider.java

1.0.0.RC1

Spring Social Reference Manual

18

Spring Social

Here, the central service API type, Twitter, islocated in the api package along with its supporting operations
types and datatransfer object types. The primary implementation of that interface, TwitterTemplate, islocated
in the api.impl package (along with other package-private impl types have that been excluded from this view).
Finally, the connect package contains the implementations of various connect SPIs that enable connectionsto
Twitter to be established and persisted.

3.3 Developing a Java binding to the provider's API

Spring Social favors the development of strongly-typed Java bindings to external service provider APIs. This
provides a simple, domain-oriented interface for Java applications to use to consume the API. When adding
support for anew service provider, if no suitable Java binding already exists you'll need to develop one. If one
aready exists, such as Twitterdj for example, it is possible to integrate it into the framework.

Designing a new Java API binding

APl developers retain full control over the design and implementation of their Java bindings. That said, we
offer several design guidelinesin an effort to improve overal consistency and quality:

» Favor separating the API binding interface from the implementation. Thisisillustrated in the spring-social-
twitter example in the previous section. There, "Twitter" is the central APl binding type and it is declared
in the org.springframework.social .twitter.api package with other public types. "TwitterTemplate”" is the
primary implementation of this interface and is located in the org.springframework.social .twitter.api.impl
subpackage along with other package-private implementation types.

» Favor organizing the API binding hierarchically by RESTful resource. REST-based APIs typicaly expose
access to a number of resources in an hierarchical manner. For example, Twitter's APl provides access to
"statustimelines', "searches’, "lists", "direct messages', "friends’, "geo location", and "users'. Rather than
add all operations acrossthese resourcesto asingleflat "Twitter" interface, the Twitter interface is organized
hierarchically:

public interface Twitter extends Api Binding {
Di rect MessageOper ati ons di rect MessageOperations();
Fri endOperations friendOperations();
GeoOper ati ons geoQperations();
Li st Operations |istCOperations();
Sear chQper ati ons searchQperations();
Ti mel i neCperations tinelineCperations();

User Oper ati ons user Operations();

}

DirectMessageOperations, for example, contains API bindings to Twitter's "direct_ messages' resource;

1.0.0.RC1 Spring Socia Reference Manual 19

Spring Social

public interface Direct MessageQperations {
Li st <Di rect Message> get Di r ect MessagesRecei ved() ;
Li st <Di rect Message> get Di r ect MessagesSent () ;
voi d sendDirect Message(String toScreenNane, String text);
voi d sendDi rect Message(l ong toUserld, String text);

voi d del eteDirect Message(l ong nessagel d);

Implementing a new Java API binding

APl developers are free to implement their Java API binding with whatever REST/HTTP client they see
fit. That said, Spring Social's existing APl bindings such as spring-social-twitter al use Spring Framework's
RestTemplatein conjunction with the Jackson JSON ObjectM apper and A pache HttpComponentsHT TP client.
RestTemplate is a popular REST client that provides a uniform object mapping interface across a variety of
data exchange formats (JSON, XML, etc). Jackson is the leading Java-based JSON marshalling technology.
Apache HttpComponents has proven to be the most robust HTTP client (if it is not available on the classpath
Spring Social will fallback to standard J2SE facilities, however). To help promote consistency across Spring
Social's supported bindings, we do recommend you consider these implementation technologies (and please
let us know if they do not meet your needs).

Spring Sociad has adopted a convention where each APl implementation class is named
"{Providerld} Template" e.g. TwitterTemplate. We favor this convention unless there is a good reason to
deviate from it. As discussed in the previous section, we recommend keeping implementation types separate
from the public API types. We also recommend keeping internal implementation detail s package-private.

The way in which an APl binding implementation is constructed will vary based on the API's
authorization protocol. For APIs secured with OAuthl, the consumerK ey, consumerSecret, accessToken, and
accessTokenSecret will be required for construction:

public Twitter Tenpl ate(String consunerKey, String consunerSecret, String accessToken,
String accessTokenSecret) { ... }

For OAuth2, only the access token should be required:

publ i ¢ FacebookTenpl ate(String accessToken) { ... }

Each request made to the API server needs to be signed with the authorization credentials provided during
construction of the binding. This signing process consists of adding an "Authorization" header to each client
reguest beforeit is executed. For OAuthl, the processis quite complicated, and is used to support an elaborate
request signature verification algorithm between the client and server. For OAuth2, it isalot simpler, but does
still vary across the various drafts of the OAuth2 specification.

1.0.0.RC1 Spring Socia Reference Manual 20

Spring Social

To encapsulate this complexity, for each authorization protocol Spring Socia provides a Api Template base
class you may extend from to construct a pre-configured RestTemplate instance that performs the request
signing for you. For OAuthl:

public class Tw tterTenpl ate extends Abstract QAut h1Api Bi ndi ng {
public TwitterTenpl ate(String consunerKey, String consunerSecret, String accessToken,
String accessTokenSecret) {
super (consuner Key, consuner Secret, accessToken, accessTokenSecret);

An OAuth2 example:

public class FacebookTenpl ate ext ends Abstract QAut h2Api Bi ndi ng {
publ i ¢ FacebookTenpl ate(String accessToken) {
super (accessToken);

}

Once configured as shown above, you simply implement call getRestTemplate() and implement the various
API operations. The existing Spring Social client modulesall invoketheir RestTemplateinstancesin astandard
manner:

public TwitterProfile getUserProfile() {
return get Rest Tenpl at e() . get For Obj ect (bui | dUri ("account/verify_credential s.json"),
TwitterProfile.class);

A note on RestTemplate usage: we do favor the RestTemplate methods that accept a URI object instead of a
uri String. This ensures we always properly encode client data submitted in URI query parameters, such as
screen_name below:

public TwitterProfile getUserProfile(String screenNanme) {
return get Rest Tenpl at e(). get For Obj ect (bui | dUri ("users/show. json",
Col | ecti ons. si ngl et onMap("screen_nane", screenNane)), TwitterProfile.class);

For complete implementation examples, consult the source of the existing API bindings included in Spring
Social. Thespri ng-soci al -tw tter andspri ng-soci al - f acebook modulesprovide particularly
good references.

Testing a new Java API binding

As part of the spring-social-test module, Spring Socia includes a framework for unit testing APl bindings.
This framework consists of a"MockRestServiceServer" that can be used to mock out API calls to the remote
service provider. This allows for the development of independent, performant, automated unit tests that verify
client API binding and object mapping behavior.

1.0.0.RC1 Spring Socia Reference Manual 21

Spring Social

To use, first create a MockRestServiceServer against the RestTemplate instance used by your API
implementation:

TwitterTenplate twitter = new Twi tter Tenpl at e(" consuner Key", "consuner Secret", "accessToken",
"accessTokenSecret");
MockRest Server nockServer = MbckRest Servi ceServer. createServer(twi tter.get Rest Tenplate());

Then, for each test case, record expectations about how the server should be invoked and answer what it should
respond with:

@rest

public void getUserProfile() {
Ht t pHeader s responseHeaders = new Htt pHeaders();
responseHeader s. set Cont ent Type(Medi aType. APPLI CATI ON_JSON) ;

nockSer ver . expect (request To("https://api.twitter.conl 1/account/verify_credentials.json"))
. andExpect (et hod(GET))
. andRespond(wi t hResponse(j sonResour ce("verify-credential s"), responseHeaders));

TwitterProfile profile = twitter.userOperations().getUserProfile();
assert Equal s(161064614, profile.getld());
assert Equal s("kdonal d", profile.getScreenNanme());

Inthe exampl e abovetheresponse body iswritten from averify-credentials.json filelocated inthe same package
asthetest class:

private Resource jsonResource(String filenane) {
return new O assPat hResource(filename + ".json", getd ass());

}

The content of the file should mirror the content the remote service provider would return, alowing the client
JSON deserialization behavior to be fully tested:

"id":161064614,
"screen_nane": "kdonal d"

For complete test examples, consult the source of the existing APl bindings included in Spring Social.
Thespring-social -twi tter andspri ng-soci al -facebook modules provide particularly good
references.

Integrating an existing Java API binding

If you are adding support for a popular service provider, chances are a Java binding to the provider's APl may
already exist. For example, the Twitter4j library has been around for awhile and provides a complete binding to

1.0.0.RC1 Spring Socia Reference Manual 22

Spring Social

Twitter's API. Instead of developing your own binding, you may simply wish to integrate what already exists.
Spring Social's connect framework has been carefully designed to support this scenario.

To integrate an existing APl binding, smply note the binding's primary API interface and implementation.
For example, in Twitterdj the main API interface is named "Twitter" and instances are constructed by a
TwitterFactory. Y ou can always construct such an API instance directly, and you'll seeinthefollowing sections
how to expose an instance as part of a Connection.

3.4 Creating a ServiceProvider model

As described in the previous section, a client binding to a secure APl such as Facebook or Twitter
requires valid user authorization credentials to work. Such credentials are generally obtained by having your
application conduct an authorization "dance" or handshake with the service provider. Spring Social provides
the ServiceProvider<A> abstraction to handle this "authorization dance". The abstraction also acts as afactory
for native API (A) instances.

Sincethe authorization danceis protocol-specific, aServiceProvider specialization existsfor each authorization
protocol. For example, if you are connecting to a OAuth2-based provider, you would implement
OAuth2ServiceProvider. After you'vedonethis, your implementation can be used to conduct the OAuth2 dance
and obtain an authorized API instance. Thisistypically done in the context of a ConnectionFactory as part of
establishing a new connection to the provider. The following sections describe the implementation steps for
each ServiceProvider type.

OAuth2

To implement an OAuth2-based ServiceProvider, first create a subclass of AbstractOAuth2ServiceProvider
named { Provider|d} ServiceProvider. Parameterize <A> to be the Java binding to the ServiceProvider'ss API.
Defineasingle constructor that acceptsan clientld and clientSecret. Finally, implement getApi (String) to return
anew APl instance.

See org. springframework. soci al . facebook. connect. FacebookSer vi ceProvi der as
an example OAuth2ServiceProvider:

public final class FacebookServiceProvider extends Abstract QAut h2Servi ceProvi der <Facebook> {

publ i ¢ FacebookServi ceProvider(String clientld, String clientSecret) {
super (new QAut h2Tenpl ate(clientld, clientSecret,
"https://graph. facebook. com oaut h/ aut hori ze",
"https://graph. facebook. com oaut h/ access_t oken"));

}

publ i ¢ Facebook get Api (String accessToken) {
return new FacebookTenpl at e(accessToken);

}

In the constructor, you should call super, passing up the configured OAuth2Template that implements
OAuth20perations. The OAuth2Template will handle the "OAuth dance" with the provider, and should be

1.0.0.RC1 Spring Socia Reference Manual 23

Spring Social

configured with the provided clientld and clientSecret, along with the provider-specific authorizeUrl and
accessTokenUrl.

Some providers support provider sign-in (see Chapter 5, Sgning in with Service Provider Accounts) through
an authentication URL that is distinct from the authorization URL. Using the OAuth2Template constructor
as shown above will assume that the authentication URL is the same as the authorization URL. But
you may specify a different authentication URL by using OAuth2Template's other constructor. Facebook
does not have a separate authentication URL, but for the sake of the example, suppose that Facebook's
authentication URL is "https://graph.facebook.com/oauth/authenticate”. The following implementation of the
FacebookServiceProvider constructor configures the OAuth2Template for that case:

publ i ¢ FacebookServi ceProvider(String clientld, String clientSecret) {
super (new QAut h2Tenpl ate(clientld, clientSecret,
"https://graph. facebook. conf oaut h/ aut hori ze",
"https://graph. facebook. com oaut h/ aut henti cate",
"https://graph. facebook. com oaut h/ access_t oken"));

In getApi(String), you should construct your API implementation, passing it the access token needed to make
authorized requests for protected resources.

OAuthl

To implement an OAuthl-based ServiceProvider, first create a subclass of AbstractOAuthlServiceProvider
named { Providerld} ServiceProvider. Parameterize <A> to be the Java binding to the ServiceProvider's API.
Defineasingle constructor that acceptsaconsumerK ey and consumerSecret. Finally, implement getApi(String,
String) to return anew API instance.

See org. springframework. social.twitter.connect. TwitterServiceProvi der as an
example OAuthlServiceProvider:

public final class Tw tterServiceProvider extends Abstract QAut hlServi ceProvi der<Twitter> {

public Tw tterServiceProvider(String consunmerKey, String consunerSecret) {
super (consumner Key, consumer Secret, new QAut h1Tenpl at e(consurer Key, consumer Secr et
"https://tw tter.com oaut h/ request_t oken",
"https://tw tter.com oaut h/ aut horize",
"https://tw tter.conf oaut h/ aut henti cate",
"https://tw tter.conm oaut h/ access_t oken"));

}

public Twitter getApi (String accessToken, String secret) {
return new Twi tter Tenpl at e(get Consuner Key(), get Consuner Secret(), accessToken, secret);

}

In the constructor, you should call super, passing up the the consumerKey, secret, and configured
OAuthlTemplate. The OAuthlTemplate will handle the "OAuth dance' with the provider. It should
be configured with the provided consumerKey and consumerSecret, along with the provider-specific

1.0.0.RC1 Spring Socia Reference Manual 24

Spring Social

requestTokenUrl, authorizeUrl, authenticateUrl, and accessTokenUrl. The authenticateUrl parameter is
optional and may be left out if the provider doesn't have an authentication URL that is different than the
authorization URL.

Asyou can see here, OAuthlTemplateis constructed with Twitter'sauthentication URL (used for provider sign-
in; see Chapter 5, Signing in with Service Provider Accounts), which is distinct from their authorization URL.
Some providers don't have separate URLSs for authentication and authorization. In those cases, you can use
OAuthlTemplate's other constructor which doesn't take the authentication URL as a parameter. For example,
here's how the TwitterServiceProvider constructor would look without configuring the authentication URL:

public Tw tterServiceProvider(String consumerKey, String consunerSecret) {
super (consuner Key, consuner Secret, new QAut hlTenpl at e(consuner Key, consuner Secr et
"https://tw tter.com oaut h/ request _t oken",
"https://tw tter.conm oaut h/ aut hori ze",
"https://tw tter.conm oaut h/ access_t oken"));

In getApi(String, String), you should construct your APl implementation, passing it the four tokens needed to
make authorized requests for protected resources.

Consult the JavaDoc API of the various service provider types for more information and subclassing options.

3.5 Creating an ApiAdapter

As discussed in the previous chapter, one of the roles of a Connection is to provide a common abstraction
for alinked user account that is applied across all service providers. The role of the ApiAdapter isto map a
provider's native API interface onto this uniform Connection model. A connection delegates to its adapter to
perform operations such as testing the validity of its API credentials, setting metadata values, fetching a user
profile, and updating user status:

public interface Api Adapter<A> {
bool ean test (A api);
voi d set Connecti onVal ues(A api, ConnectionVal ues val ues);
UserProfile fetchUserProfile(A api);

voi d updat eStatus(A api, String nessage);

Consideror g. spri ngf ramewor k. soci al .twitter.connect. Twi tter Adapt er asanexample
implementation:

public class TwitterAdapter inplenents Api Adapter<Twitter> {

public boolean test(Twitter twitter) {
try {

1.0.0.RC1 Spring Socia Reference Manual 25

Spring Social

twitter.userQperations().getUserProfile();
return true;
} catch (Api Exception e) {
return fal se;
}
}

public void setConnectionValues(Twitter twitter, ConnectionVal ues val ues) {
TwitterProfile profile = twitter.userOperations().getUserProfile();
val ues. set Provi der User | d(Long. toString(profile.getld()));
val ues. set Di spl ayNane("@ + profile.getScreenNane());
val ues. setProfileUrl (profile.getProfileUrl());
val ues. set |l mageUr| (profile.getProfilelmgeUrl());

}

public UserProfile fetchUserProfile(Twitter twitter) {
TwitterProfile profile = twitter.userQperations().getUserProfile();
return new UserProfileBuil der().setNane(profile.getNane()). setUser nanme(
profile. get ScreenName()). build();
}

public void updateStatus(Twitter twitter, String nmessage) {
twitter.tinelineOperations().updateStatus(nessage);

}

As you can see, test(..) returns true if the APl instance is functional and false if it is not.
setConnectionValues(...) sets the connection's providerUserld, displayName, profileUrl, and imageUrl
propertiesfrom TwitterProfile data. fetchUserProfile(...) mapsa TwitterProfile onto the normalized UserProfile
model. updateStatus(...) update'sthe user's Twitter status. Consult the JavaDoc for ApiAdapter and Connection
for more information and implementation guidance. We also recommend reviewing the other ApiAdapter
implementations for additional examples.

3.6 Creating a ConnectionFactory

By now, you should have an API binding to the provider's API, a ServiceProvider<A> implementation for
conducting the "authorization dance", and an ApiAdapter<A> implementation for mapping onto the uniform
Connection model. Thelast step in adding support for anew service provider isto create a ConnectionFactory
that wraps up these artifacts and provides a simple interface for establishing Connections. After thisis done,
you may use your connection factory directly, or you may add it to a registry where it can be used by the
framework to establish connections in a dynamic, self-service manner.

Like a ServiceProvider<A>, a ConnectionFactory specialization exists for each authorization protocol.
For example, if you are adding support for a OAuth2-based provider, you would extend from
OA uth2ConnectionFactory. Implementation guidelines for each type are provided below.

OAuth2

Create a subclass of OAuth2ConnectionFactory<A> named { Providerld} ConnectionFactory and parameterize
A to be the Java binding to the service provider's API. Define a single constructor that accepts a
clientld and clientSecret. Within the constructor call super, passing up the assigned providerld, a new

1.0.0.RC1 Spring Socia Reference Manual 26

Spring Social

{ Providerld} ServiceProvider instance configured with the clientld/clientSecret, and a new { Provider} Adapter
instance.

See org. springframework. soci al . facebook. connect . FacebookConnecti onFact ory
as an example OAuth2ConnectionFactory:

publ i c cl ass FacebookConnecti onFactory extends QAut h2Connecti onFact or y<Facebook> {
publ i ¢ FacebookConnectionFactory(String clientld, String clientSecret) {
super (" facebook", new FacebookServi ceProvider(clientld, clientSecret), new FacebookAdapter());

}

OAuthl

Create a subclass of OA uth1ConnectionFactory<A> named { Providerl d} ConnectionFactory and parameterize
A to be the Java binding to the service provider's API. Define a single constructor that accepts a
consumerKey and consumerSecret. Within the constructor call super, passing up the assigned providerld,
a new { Providerld} ServiceProvider instance configured with the consumerK ey/consumerSecret, and a new
{ Provider} Adapter instance.

See org. springframework. social.twitter.connect. Twi tterConnecti onFactory as
an example OAuth1ConnectionFactory:

public class Tw tterConnecti onFactory extends QAut hl1Connecti onFact or y<Facebook> {
public Tw tterConnecti onFactory(String consunerKey, String consunerSecret) {
super ("twitter", new TwitterServi ceProvider(consunerKey, consunerSecret), new TwitterAdapter());

}

Consult the source and JavaDoc API for ConnectionFactory and its subclasses more information, examples,
and advanced customization options.

1.0.0.RC1 Spring Socia Reference Manual 27

Spring Social

4. Connecting to Service Providers

4.1 Introduction

In Chapter 2, Service Provider 'Connect’ Framework, you learned how Spring Social's Service Provider
'Connect’ Framework can be used to manage user connections that link your application's user accounts with
accounts on external service providers. In this chapter, you'll learn how to control the connect flow in aweb
application environment.

Spring Socia'sspri ng- soci al - web moduleincludesConnect Cont r ol | er,aSpring MV C controller
that coordinates the connection flow between an application and service providers. Connect Control | er
takes care of redirecting the user to the service provider for authorization and responding to the callback after
authorization.

4.2 Configuring ConnectController

As Connect Cont r ol | er directsthe overall connection flow, it depends on several other objects to do its
job. Before getting into those, first we'll define a single Java @Configuration class where the various Spring
Socia objects, including ConnectController, will be configured:

@configuration
public class Social Config {

}

Now, Connect Control | er first delegates to one or more ConnectionFactory instances to establish
connections to providers on behalf of users. Once a connection has been established, it delegates to a
Connect i onReposi t ory to persist user connection data.

Each of the Spring Social provider modulesincludesaConnect i onFact or y implementation:

* org.springframework. social.tw tter.connect. Twi tterConnecti onFactory

* org. springframework. soci al . facebook. connect . FacebookConnect i onFact ory
* org. springframework. soci al . |inkedi n.connect. Li nkedl nConnecti onFact ory
* org.springframework. social.tripit.connect. TripltConnectionFactory

» org. springframework. soci al . gi thub. connect. G t HubConnecti onFactory

e org. springframework. soci al . gowal | a. connect . Gowal | aConnecti onFactory

To register one or more ConnectionFactories, simply define a ConnectionFactorylL ocator @Bean as follows:

@onfiguration
public class Social Config {

1.0.0.RC1 Spring Socia Reference Manual 28

Spring Social

@ean
publ i ¢ Connecti onFactorylLocat or connecti onFactorylLocator () {
Connecti onFactoryRegi stry regi stry = new Connecti onFactoryRegi stry();
regi stry. addConnect i onFact or y(new FacebookConnect i onFact ory(
envi ronnent . get Property("facebook.clientld"),
envi ronnment . get Property("facebook. clientSecret")));
regi stry. addConnect i onFact ory(new Twi tt er Connecti onFact or y(
envi ronnment . get Property("tw tter.consumerKey"),
envi ronnment . get Property("“twi tter.consumer Secret")));
return registry;

}

@ nj ect
private Environnment environnent;

Above, two connection factories, one for Facebook and one for Twitter, have been registered. If you would
like to support other providers, smply register their connection factories here. Because client ids and secrets
may be different across environments (e.g., test, production, etc), we recommend you externalize these values.

As discussed in Section 2.3, “Persisting connections’, Connect i onReposi t ory defines operations
for persisting and restoring connections for a specific user. Therefore, when configuring a
Connect i onReposi t ory bean for use by ConnectController, it must be scoped such that it can be created
on a per-user basis. The following Java-based configuration shows how to construct an proxy to a request-
scoped Connect i onReposi t or y instance for the currently authenticated user:

@confi guration
public class Social Config {

@ean
@cope(val ue="request", proxyMde=ScopedProxyMde. | NTERFACES)
publ i ¢ Connecti onRepository connecti onRepository(
Aut henti cati on aut hentication = SecurityContextHol der. get Cont ext (). get Aut henti cation();
if (authentication == null) {
throw new ||| egal St at eException("Unable to get a Connecti onRepository: no user signed in");

}

return usersConnecti onRepository().createConnecti onRepository(authentication.getNane());

The @Bean method above is injected with a Pri nci pal representing the current user's identity. This is
passed to UsersConnectionRepository to construct a ConnectionRepository instance for that user.

This means that we're also going to need to configureaUser sConnect i onReposi t ory @Bean:

@Configuration
public class Social Config {

@ean
publ i c UsersConnecti onRepository usersConnecti onRepository() {
return new JdbcUser sConnecti onReposi t ory(dat aSource, connecti onFactorylLocator (),
t ext Encryptor);

1.0.0.RC1 Spring Socia Reference Manual 29

Spring Social

@ nj ect
private DataSource dataSource;

@ nj ect
private Text Encryptor textEncryptor;

UsersConnectionRepository is a singleton data store for connections across al users.
JdbcUser sConnect i onReposi t ory isthe RDMS-based implementation and needs a Dat aSour ce,
Connecti onFact oryLocat or, and Text Encr ypt or to do itsjob. It will use the Dat aSour ce to
access the RDBM S when persisting and restoring connections. When restoring connections, it will use the
Connect i onFact or yLocat or to locate ConnectionFactory instances.

JdbcUser sConnect i onReposi t ory usestheText Encr ypt or toencrypt credentialswhen persisting
connections. Spring Security 3.1 makes afew useful text encryptors available via static factory methodsin its
Encr ypt or s class. For example, ano-op text encryptor isuseful at development time and can be configured
likethis:

@configuration
public class SecurityConfig {

@configuration
@rofile("dev")
static class Dev {

@ean
publ i c Text Encryptor textEncryptor() {
return Encryptors. noOpText ();

}

Notice that the inner configuration class is annotated with @°r of i | e(" dev") . Spring 3.1 introduced the
profile concept where certain beans will only be created when certain profiles are active. Here, the @r of i | e
annotation ensures that this Text Encr ypt or will only be created when "dev" is an active profile. For
production-time purposes, a stronger text encryptor is recommended and can be created when the " production™
profileis active:

@Configuration
public class SecurityConfig {

@Configuration
@rofile("prod")
static class Prod {

@Bean
publ i c Text Encryptor textEncryptor() {
return Encryptors. queryabl eText (envi ronment. get Property("security. encryptPassword"),
envi ronnment . get Property("security.encryptSalt"));

1.0.0.RC1 Spring Socia Reference Manual 30

Spring Social

}

@ nj ect
private Environment environnent;

Configuring connection support in XML

Up to this point, the connection support configuration has been done using Spring's Java-based configuration
style. But you can configure it in either Java configuration or XML. Here's the XML equivaent of the
Connect i onFact or yRegi st ry configuration:

<bean i d="connecti onFactoryLocat or"
cl ass="org. spri ngframewor k. soci al . connect . support. Connecti onFact oryRegi stry">
<property nane="connectionFactories">
<list>
<bean cl ass="org. spri ngfranmework. social.twitter.connect. Twi tterConnecti onFactory">
<constructor-arg val ue="${tw tter.consunerKey}" />
<constructor-arg val ue="${twi tter.consunerSecret}" />
</ bean>
<bean cl ass="org. spri ngframework. soci al . f acebook. connect . FacebookConnecti onFact ory" >
<constructor-arg val ue="${facebook.clientld}" />
<constructor-arg val ue="${facebook. clientSecret}" />

</ bean>
</[list>
</ property>

</ bean>

Thisisfunctionally equivalent to the Java-based configuration of Connect i onFact or yRegi st ry shown
before.

Heres an XML equivalent of the JdbcUser sConnecti onRepository and
Connect i onReposi t ory configurations shown before:

<bean i d="user sConnect i onReposi tory"
cl ass="org. spri ngfranmework. soci al . connect . j dbc. JdbcUser sConnecti onReposi tory" >
<constructor-arg ref="dataSource" />
<constructor-arg ref="connectionFactorylLocator" />
<constructor-arg ref="textEncryptor" />
</ bean>

<bean i d="connecti onRepository" factory-nethod="createConnecti onRepository"
fact ory-bean="user sConnecti onReposi tory" scope="request">
<constructor-arg val ue="#{request. userPrinci pal . nane}" />
<aop: scoped- proxy proxy-target-class="false" />
</ bean>

Likewise, here isthe equivaent configuration of the Text Encr ypt or beans:

1.0.0.RC1 Spring Socia Reference Manual 31

Spring Social

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="htt p://ww. spri ngf ranmewor k. or g/ schenma/ beans
http://wwv spri ngfranmewor k. or g/ schema/ beans/ spri ng- beans- 3. 1. xsd" >

<beans profil e="dev">
<bean i d="text Encryptor" class="org. springfranework. security.crypto.encrypt.Encryptors"
factory-nethod="noQpText" />
</ beans>

<beans profil e="prod">
<bean i d="textEncryptor" class="org.springfranmework.security.crypto.encrypt.Encryptors"
factory-nethod="text">
<constructor-arg val ue="${security. encrypt Password}" />
<constructor-arg val ue="${security.encryptSalt}" />
</ bean>
</ beans>

</ beans>

Just like the Java-based configuration, profiles are used to select which of the text encryptors will be created.

4.3 Creating connections with Connect Control | er

With its dependencies configured, Connect Cont r ol | er now haswhat it needs to allow usersto establish
connections with registered service providers. Now, simply add it to your Social @Configuration:

@onfiguration
public class Social Config {

@Bean
publ i ¢ Connect Controller connectController() {
return new Connect Control | er (connecti onFact orylLocator (),
connecti onRepository());

Or, if you prefer Spring's XM L-based configuration, then you can configure Connect Cont r ol | er likethis:

<bean cl ass="org. spri ngframewor k. soci al . connect . web. Connect Control | er">
<l-- relies on by-type autowiring for the constructor-args -->
</ bean>

Connect Control | er supports authorization flows for OAuth 1 and OAuth 2, relying on
QAut h1Qperations or QAuth2Operations to handle the specifics for each protocol.
Connect Control | er will obtain the appropriate OAuth operations interface from one of the
provider connection factories registered with Connect i onFact or yRegi stry. It will select a specific
Connect i onFact ory to use by matching the connection factory's ID with the URL path. The path pattern
that Connect Control | er handlesis "/connect/{ providerld}". Therefore, if Connect Control | er is

1.0.0.RC1 Spring Socia Reference Manual 32

Spring Social

handling a request for "/connect/twitter", then the Connecti onFact ory whose get Provi der | d()
returns "twitter" will be used. (As configured in the previous section, Twi t t er Connect i onFact ory will
be chosen.)

When coordinating a connection with aservice provider, Connect Cont r ol | er constructs acallback URL
for the provider to redirect to after the user grants authorization. By default Connect Control | er uses
information from the request to determine the protocol, host name, and port number to use when creating the
callback URL. Thisisfinein many cases, but if your application is hosted behind a proxy those details may
point to an internal server and will not be suitable for constructing a public callback URL.

If you have this problem, you can set the appl i cati onUr| property to the base externa URL of your
application. Connect Control | er will use that URL to construct the callback URL instead of using
information from the request. For example:

@Configuration
public class Social Config {

@Bean
publ i ¢ Connect Control |l er connectController() {
Connect Controll er controller = new Connect Control |l er(
connecti onFact oryLocator (), connectionRepository());
control |l er.set ApplicationUrl (environnment.getProperty("application.url"));
return controller

Or if you prefer XML configuration:

<bean cl ass="org. spri ngfranmewor k. soci al . connect . web. Connect Control |l er">

<l-- relies on by-type autowiring for the constructor-args -->
<property nanme="applicationUrl" value="${application.url}" />
</ bean>

Just aswith the authorization keys and secrets, we recommend that you externalize the application URL because
it will likely vary across different deployment environments.

Theflow that Connect Cont r ol | er followsisslightly different, depending on which authorization protocol
is supported by the service provider. For OAuth 2-based providers, the flow isasfollows:

e GET /connect/{providerld} - Displaysaweb page showing connection statusto the provider.
e POST /connect/{providerld} -Initiatesthe connection flow with the provider.

e GET /connect/{providerld}?code={code} - Receives the authorization calback from the
provider, accepting an authorization code. Uses the code to request an access token and complete the
connection.

e DELETE /connect/{providerl d} - Seversall of the user's connection with the provider.

1.0.0.RC1 Spring Socia Reference Manual 33

Spring Social

« DELETE /connect/{providerld}/{providerUserld} - Seversa specific connection with the
provider, based on the user's provider user ID.

For an OAuth 1 provider, the flow isvery similar, with only a subtle differencein how the callback is handled:
 GET /connect/{providerld} - Displaysaweb page showing connection statusto the provider.
 POST /connect/{providerld} - Initiatesthe connection flow with the provider.

o GET / connect / {provi der | d}?o0aut h_t oken={r equest
t oken} &aut h_verifier={verifier} - Receves the authorization callback from the provider,
accepting a verification code. Exchanges this verification code along with the request token for an access
token and completes the connection. The oaut h_veri fi er parameter is optional and is only used for
providers implementing OAuth 1.0a

e DELETE /connect/{providerl d} - Seversall of the user's connection with the provider.

* DELETE /connect/{providerld}/{providerUserld} - Seversaspecific connection with the
provider, based on the user's provider user ID.

Displaying a connection page

Before the connection flow starts in earnest, a web application may choose to show a page that offers the
user information on their connection status. This page would offer them the opportunity to create a connection
between their account and their social profile. Connect Cont r ol | er can display such apageif the browser
navigatesto/ connect / { provi der}.

For example, to display a connection status page for Twitter, where the provider name is "twitter", your
application should provide alink similar to this:

<a href="<c:url value="/connect/twitter" />">Connect to Twitter

Connect Cont r ol | er will respond to this request by first checking to see if a connection already exists
between the user'saccount and Twitter. If not, thenit will with aview that should offer the user an opportunity to
create the connection. Otherwise, it will respond with aview to inform the user that a connection already exists.

The view names that Connect Cont rol | er responds with are based on the provider's name. In this
case, since the provider name is "twitter", the view names are "connect/twitterConnect" and "connect/
twitterConnected".

Initiating the connection flow

To kick off the connection flow, the application should POST to/ connect / { pr ovi der | d} . Continuing
with the Twitter example, a JSP view resolved from "connect/twitterConnect™ might include the following
form:

<form action="<c:url value="/connect/twitter" />" method="POST">
<p>You haven't created any connections with Twitter yet. Cick the button to create
a connection between your account and your Twitter profile.

1.0.0.RC1 Spring Socia Reference Manual 34

Spring Social

(You'll be redirected to Twitter where you'll be asked to authorize the connection.)</p>
<p><button type="submt"><ing src="<c:url value="/resources/social/twtter/signin. png" />"/>
</ but t on></ p>

</form

When Connect Cont r ol | er handlestherequest, it will redirect the browser to the provider's authorization
page. In the case of an OAuth 1 provider, it will first fetch arequest token from the provider and passit along
as a parameter to the authorization page. Request tokens aren't used in OAuth 2, however, so instead it passes
the application’'s client ID and redirect URI as parameters to the authorization page.

For example, Twitter's authorization URL has the following pattern:

https://twi tter.conl oaut h/ aut hori ze?oaut h_t oken={t oken}

If the application’s request token were "vaVSe"l, then the browser would be redirected to https://twitter.com/
oauth/authorize?oauth_token=vPyV Se and apage similar to the following would be displayed to the user (from
Twitter)%:

[NaN&] Twitter / Authorize an application &
[el | »] [+ |.¥ https://api.twitter.com/oauth/authorize?oauth_token=QTGNyjXMAHSxjqlfjtpMn O C] I/Q' Google \
hu.litter’ " habuma +

Authorize Spring Social
Showcase to use your
account? Spring Soclal Showcase
By SpringSource
This application will be able to: www.springframework. org/spring-social
« Read Tweets from your timeline. Spring Social is a new extension to

Spring that aims to provide a platform
upon which social-ready Spring
= Update your profile. applications may be built

= Post Tweets on your behalf.

= See who you follow, and follow new people.

]
Authorize app Wl B GFEL L]

This application will not be able to:
= Access your private messages.
« See your Twitter password.

You can revoke access to any application at any time from the Applications tab of your Settings page.

By authorizing an application you continue to operate under Twitter's Terms of Service. In particular, some
usage information will be shared back with Twitter. For more, see our Privacy Policy.

In contrast, Facebook is an OAuth 2 provider, so its authorization URL takes adlightly different pattern:

https://graph. facebook. conf oaut h/ aut hori ze?client _id={clientld}&edirect_uri={redirectUri}

Thus, if the application's Facebook client ID is"0b754" and it's redirect URI is "http://www.mycool app.com/
connect/facebook", then the browser would be redirected to https://graph.facebook.com/oauth/authorize?
client_id=0b754& redirect_uri=http://www.mycool app.com/connect/facebook and Facebook would display
the following authorization page to the user:

This isjust an example. Actual reguest tokens are typically much longer.
2| the user has not yet signed into Twitter, the authorization page will aso include a username and password field for authentication
into Twitter.

1.0.0.RC1 Spring Socia Reference Manual 35

Spring Social

Request for Permission

« ‘ » || E] | 4+ B hup:/ fwww.facebook.com/connect/uiserver.php?method=permissions.request&app_id=1" ¢ | [Qr Google

facebook Search Home Profile Find Friends Account v

Request for Permission

Spring Social Showcase is requesting permission to do the following

%) Access my basic information
%l inciudes name, profile picture, gender,
networks, user ID, list of friends, and any
other information I've shared with
everyone.
Spring Social
Showcase

Report App
Logged in as Art Names (Mot You?) W Don't Allow

Facebook ® 2011 - English (US) About - Advertising - Developers - Careers - Privacy - Terms - Help

If the user clicks the "Allow" button to authorize access, the provider will redirect the browser back to the
authorization callback URL where Connect Cont r ol | er will be waiting to complete the connection.

The behavior varies from provider to provider when the user denies the authorization. For instance, Twitter
will smply show a page telling the user that they denied the application access and does not redirect back to
the application's callback URL. Facebook, on the other hand, will redirect back to the callback URL with error
information as request parameters.

Authorization scope

In the previous example of authorizing an application to interact with a user's Facebook profile, you notice that
the application is only requesting access to the user's basic profile information. But there's much more that an
application can do on behalf of a user with Facebook than simply harvest their profile data. For example, how
can an application gain authorization to post to a user's Facebook wall?

OAuth 2 authorization may optionally include a scope parameter that indicates the type of authorization being
regquested. On the provider, the "scope" parameter should be passed along to the authorization URL. Inthe case
of Facebook, that means that the Facebook authorization URL pattern should be as follows:

https://graph. facebook. conf oaut h/ aut hori ze?client _id={clientld}&edirect_uri={redirectUi}&scope={scope}

Connect Cont rol | er accepts a "scope' parameter at authorization and passes its value along to the
provider's authorization URL. For example, to request permission to post to auser's Facebook wall, the connect
form might look like this:

<form acti on="<c:url value="/connect/tw tter" />" method="POST">
<i nput type="hi dden" nanme="scope" val ue="publish_stream offline_access" />
<p>You haven't created any connections with Twitter yet. Cick the button to create
a connection between your account and your Twitter profile.
(You'll be redirected to Twitter where you'll be asked to authorize the connection.)</p>
<p><button type="submit"><ing src="<c:url value="/resources/social/twtter/signin.png" />"/>
</ but t on></ p>

1.0.0.RC1 Spring Socia Reference Manual 36

Spring Social

</fornp

The hidden "scope” field contains the scope values to be passed along in the scope> parameter to Facebook's
authorization URL. In this case, "publish_stream" requests permission to post to a user's wall. In addition,
"offline_access' requests permission to access Facebook on behalf of a user even when the user isn't using
the application.

Note

\\‘ OAuth 2 access tokens typically expire after some period of time. Per the OAuth 2 specification,
an application may continue accessing a provider after a token expires by using a refresh token
to either renew an expired access token or receive a new access token (all without troubling the
user to re-authorize the application).

Facebook does not currently support refresh tokens. Moreover, Facebook access tokens expire
after about 2 hours. So, to avoid having to ask your usersto re-authorize ever 2 hours, the best way
to keep along-lived access token isto request "offline_access'.

When asking for "publish_stream,offline_access" authorization, the user will be prompted with the following
authorization page from Facebook:

Reguest for Permission

<|‘- 221 + Edhttp:/ fwww.facebook.com/connect/uiserver.php?app_id=162886103757745&method=per & | [Qr Coogle

fa:ebook Search Home Profile Find Friends Account v

Request for Permission

Spring Social Showcase is requesting permission to do the following:

%) Access my basic information

‘_‘ Includes name, profile picture, gender,
networks, user ID, list of friends, and any
other information I've shared with
everyone.

Spring Social

m Post to my Wall Showcase
Spring Social Showcase may post status
messages, notes, photos, and videos to my
Wal
Access my data any time
Spring Social Showcase may access my
data when I'm not using the application

Report App

Logged in as Art Names (Not You?) ﬁ Don't Allow

Facebook © 2011 - English (US) About - Advertising - Developers - Careers - Privacy - Terms - Help

Go to "hitp:/ fwwow.facebook.com/logout.php?h=a86e0938d53976975358334fa825 1eb2&1=12_ ine_access¥2526from_login¥253D1%26logout_hash%3Da86e0938d539769753583341a8251eb2” v

Scope values are provider-specific, so check with the service provider's documentation for the available scopes.
Facebook scopes are documented at http://devel opers.facebook.com/docs/authentication/permissions.

Responding to the authorization callback

After the user agrees to allow the application have access to their profile on the provider, the provider will
redirect their browser back to the application's authorization URL with a code that can be exchanged for an
access token. For OAuth 1.0a providers, the callback URL is expected to receive the code (known as a verifier
in OAuth 1 terms) inan oaut h_veri fi er parameter. For OAuth 2, the code will beinacode parameter.

1.0.0.RC1 Spring Socia Reference Manual 37

http://developers.facebook.com/docs/authentication/permissions

Spring Social

Connect Cont r ol | er will handle the callback request and trade in the verifier/code for an access token.
Once the access token has been received, the OAuth dance is complete and the application may use the access
token to interact with the provider on behalf of the user. The last thing that Connect Cont r ol | er doesis
to hand off the access token to the Ser vi cePr ovi der implementation to be stored for future use.

Disconnecting
To delete aconnection viaConnect Cont r ol | er, submit a DELETE request to "/connect/{ provider}".

In order to support this through a form in a web browser, youll need to have
Spring's Hi ddenHtt pMet hodFi | t er [http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/
springframework/web/filter/HiddenHttpM ethodFilter.html] configured in your application's web.xml. Then
you can provide a disconnect button viaaform like this:

<form action="<c:url value="/connect/twitter" />" nethod="post">
<di v class="form nfo">
<p>Spri ng Soci al Showcase is connected to your Twitter account.
Click the button if you wish to di sconnect.</p>
</ di v>
<button type="subm t">Di sconnect </ button>
<i nput type="hi dden" nane="_met hod" val ue="del ete" />
</form

When this form is submitted, Connect Cont r ol | er will disconnect the user's account from the provider.
It doesthis by calling thedi sconnect () method on each of the Connect i onsreturned by the provider's
get Connecti ons() method.

4.4 Connection interceptors

In the course of creating a connection with a service provider, you may want to inject additional functionality
into the connection flow. For instance, perhaps you'd like to automatically post a tweet to a user's Twitter
timeline immediately upon creating the connection.

Connect Cont r ol | er may be configured with one or more connection interceptorsthat it will call at points
in the connection flow. These interceptors are defined by the Connect | nt er cept or interface:

public interface Connectlnterceptor<A> {
voi d preConnect (Connecti onFact or y<A> connecti onFactory, WbRequest request);

voi d post Connect (Connecti on<A> connecti on, WbRequest request);

The pr eConnect () method will be called by Connect Cont r ol | er just before redirecting the browser
to the provider's authorization page. post Connect () will be called immediately after aconnection has been
persisted linking the user's local account with the provider profile.

1.0.0.RC1 Spring Socia Reference Manual 38

http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/web/filter/HiddenHttpMethodFilter.html
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/web/filter/HiddenHttpMethodFilter.html
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/web/filter/HiddenHttpMethodFilter.html

Spring Social

For example, suppose that after connecting a user account with their Twitter profile, you want to immediately
post a tweet about that connection to the user's Twitter timeline. To accomplish that, you might write the
following connection interceptor:

public class Tweet Aft er Connect | nterceptor inplenents Connectlnterceptor<Tw tter> {

public void preConnect (Connecti onFactory<TwitterApi > provider, WbRequest request) {
/1 nothing to do
}

publ i c voi d post Connect (Connecti on<Twi tterApi > connecti on, WebRequest request) {
connection. updateStatus("l've connected with the Spring Social Showcase!");

}

Thisinterceptor can then be injected into Connect Cont r ol | er whenitis created:

@Bean
publ i ¢ Connect Control |l er connectController() {
Connect Controll er controller = new Connect Control | er (connecti onFactoryLocator (),
connecti onRepository());
control | er. addl nt ercept or (new Tweet Af t er Connect I nterceptor());
return controller;

Or, as configured in XML.:

<bean cl ass="org. spri ngframewor k. soci al . connect . web. Connect Control |l er">
<property nanme="interceptors">
<list>
<bean cl ass="org. spri ngframework. soci al . showcase. twi tter. Tweet Aft er Connect I nterceptor"” />
</list>
</ property>
</ bean>

Note that the i nt er cept or s property is a list and can take as many interceptors as you'd like to wire
into it. When it comes time for Connect Contr ol | er to cal into the interceptors, it will only invoke
the interceptor methods for those interceptors whose service operations type matches the service provider's
operationstype. In the example given here, only connections made through a service provider whose operation
typeisTwi t t er Api will trigger the interceptor's methods.

1.0.0.RC1 Spring Socia Reference Manual 39

Spring Social

5. Signing in with Service Provider Accounts

5.1 Introduction

In order to ease sign in for their users, many applications allow sign in with a service provider such as Twitter
or Facebook. With this authentication technique, the user signsinto (or may already be signed into) hisor her
provider account. The application then tries to match that provider account to alocal user account. If amatch
isfound, the user is automatically signed into the application.

Spring Social supports such service provider-based authentication with Pr ovi der Si gnl nControl | er

from the spri ng-soci al -web module. Provi der Si gnl nControl | er works very much like
Connect Cont r ol | er inthat it goesthrough the OAuth flow (either OAuth 1 or OAuth 2, depending on the
provider). Instead of creating aconnection at the end of process, however, Pr ovi der Si gnl nControl | er

attempts to find a previously established connection and uses the connected account to authenticate the user
with the application. If no previous connection matches, the flow will be sent to the application's sign up page
so that the user may register with the application.

5.2 Enabling provider sign in

To add provider sign in capability to your Spring application, configure Pr ovi der Si gnl nControl | er
as a bean in your Spring MV C application:

@Bean
publ i c ProviderSignlnController providerSignlnController() {
return new Provider Si gnl nControl | er(connectionFactorylLocator(),
user sConnecti onRepository(), new Sinpl eSi gnl nAdapter());

Or in XML, if you prefer:

<bean cl ass="org. spri ngframework. soci al . connect . si gni n. web. Provi der Si gnl nControl |l er">
<l-- relies on by-type autowiring for the constructor-args -->
</ bean>

Aswith Connect Control | er, Provi der Si gnl nCont r ol | er usesinformation from the request to
determine the protocol, host name, and port number to use when creating a callback URL. But you may set the
appl i cati onUr | property to the base external URL of your application to overcome any problems where
the request refers to an internal server. For example:

@ean
publ i c ProviderSignlnController providerSignlnController() {
Provi der Si gnl nControl I er controller = new ProviderSi gnlnControll er(connectionFactoryLocator (),
user sConnect i onRepository(), new Sinpl eSi gnl nAdapter());
controller.setApplicationUl (environnent.getProperty("application.url"));
return controller;

1.0.0.RC1 Spring Socia Reference Manual 40

Spring Social

Or when configured in XML:

<bean cl ass="org. spri ngframework. soci al . connect . si gni n. web. Provi der Si gnl nControl |l er">

<l-- relies on by-type autowiring for the constructor-args -->
<property nane="applicationUl" value="${application.url}" />
</ bean>

Once again, we recommend that you externalize the value of the application URL since it will vary between
deployment environments.

When authenticating via an OAuth 2 provider, Pr ovi der Si gnl nCont r ol | er supports the following
flow:

» POST /signin/{providerld} - Initiates the sign in flow by redirecting to the provider's
authentication endpoint.

e« CET /signin/{providerld}?code={verifier} -Recevestheauthentication callback fromthe
provider, accepting a code. Exchanges this code for an access token. Using this access token, it retrievesthe
user's provider user 1D and uses that to lookup a connected account and then authenticates to the application
through the signin service.

* If the provider user ID doesn't match any existing connection, Pr ovi der Si gnl nContr ol | er will
redirect to asign up URL. The sign up URL is"/signup” (relative to the application root).

For OAuth 1 providers, the flow is only dlightly different:

e POST /signin/{providerld} -Initiatesthesigninflow. Thisinvolvesfetching arequest token from
the provider and then redirecting to Provider's authentication endpoint.

o GET / si gni n/{providerld}?oaut h_t oken={request
t oken} &aut h_verifier={verifier} - Recevesthe authentication callback from the provider,
accepting a verification code. Exchanges this verification code along with the request token for an access
token. Using this access token, it retrieves the user's provider user ID and uses that to lookup a connected
account and then authenticates to the application through the sign in service.

« If the provider user ID doesn't match any existing connection, Pr ovi der Si gnl nContr ol | er will
redirect to asign up URL. The sign up URL is"/signup" (relative to the application root).

ProviderSignIinController's dependencies

As shown in the Java-based configuration above, Pr ovi der Si gnl nCont r ol | er depends on a handful
of other objectsto doitsjob.

* A Connecti onFact oryLocat or to lookup the ConnectionFactory used to create the Connection to
the provider.

1.0.0.RC1 Spring Socia Reference Manual 41

Spring Social

* A UsersConnecti onRepository to find the user that has the connection to the provider user
attempting to signiin.

* A Si gnl nAdapt er to sign auser into the application when a matching connection is found.

When using XML configuration, it isn't necessary to explicitly configure these constructor arguments because
Provi der Si gnl nCont r ol | er's constructor is annotated with @ nj ect . Those dependencies will be
givento Pr ovi der Si gnl nContr ol | er viaautowiring. You'l still need to make sure they're available as
beans in the Spring application context so that they can be autowired.

Y ou should have aready configured most of these dependencies when setting up connection support (in the
previous chapter). But when used with Pr ovi der Si gnl nCont r ol | er, you should configure them to be
created as scoped proxies:

@Bean
@cope(val ue="si ngl et on", proxyMbde=ScopedPr oxyMde. | NTERFACES)
publ i ¢ Connecti onFactorylLocat or connecti onFactorylLocator() {
Connecti onFactoryRegi stry regi stry = new Connecti onFactoryRegi stry();
regi stry. addConnect i onFact or y(new FacebookConnecti onFact ory(
envi ronnment . get Property("facebook.clientld"),
envi ronnment . get Property("facebook. clientSecret")));
regi stry. addConnect i onFact ory(new Twi tt er Connecti onFact or y(
envi ronnment . get Property("tw tter.consunerKey"),
envi ronnment . get Property("twi tter.consumer Secret")));
return registry;

}

@ean
@cope(val ue="si ngl et on", proxyMde=ScopedProxyMde. | NTERFACES)
publ i ¢ User sConnecti onRepository usersConnecti onRepository() {
return new JdbcUser sConnecti onReposi t ory(dat aSource, connecti onFactorylLocator(), textEncryptor);

}

In the event that the sign in attempt fails, the sign in attempt will be stored in the session to be used to
present a sign-up page to the user (see Section 5.3, “Signing up after a failed sign in”). By configuring
ConnectionFactoryL ocator and UsersConnectionRepository as scoped proxies, it enables the proxies to be
carried along with the sign in attempt in the session rather than the actual objects themselves.

The Si gnl nAdapt er isexclusively used for provider sign in and so a Si gnl nAdapt er bean will need
to be added to the configuration. But first, you'll need to write an implementation of the Si gnl nAdapt er
interface.

The Si gnl nAdapt er interface is defined as follows:

public interface SignlnAdapter {
void signln(String userld, Connection<?> connection, NativeWbRequest request);

}

The si gnl n() method takes the local application user's user ID normalized as a St ri ng. No other
credentials are necessary here because by the time this method is called the user will have signed into the

1.0.0.RC1 Spring Socia Reference Manual 42

Spring Social

provider and their connection with that provider has been used to prove the user'sidentity. | mplementations of
thisinterface should use this user ID to authenticate the user to the application.

Different applications will implement security differently, so each application must implement
Si gnl nAdapt er in away that fits its unique security scheme. For example, suppose that an application’s
security isbased on Spring Security and simply usesauser's account 1D astheir principal. In that case, asimple
implementation of Si gnl nAdapt er might look likethis:

@vervi ce
public class SpringSecuritySignlnAdapter inplenents SignlnAdapter {
public void signln(String |ocal Userld, Connection<?> connection, NativeWbRequest request) {
Securi t yCont ext Hol der . get Cont ext (). set Aut henti cati on(
new User nanePasswor dAut henti cati onToken(l ocal Userld, null, null));

Adding a provider sign in button
With Provi der Si gnl nControl |l er and a Si gnl nAdapt er configured, the backend support for
provider signinisin place. Thelast thing to do isto add a sign in button to your application that will kick off

the authentication flow with Pr ovi der Si gnl nControl | er.

For example, the following HTML snippet adds a " Signin with Twitter" button to a page:

<formid="tw_ signin" action="<c:url value="/signin/twitter"/>" method="POST">
<button type="submt">

<inmg src="<c:url value="/resources/social/twitter/sign-in-with-twitter-d.png"/>" />
</ butt on>
</form

Notice that the path used in the form's action attribute maps to the first step in
Provi der Si gnl nControl | er'sflow. In this case, the provider isidentified as "twitter".

Clicking this button will trigger a POST request to "/signin/twitter", kicking off the Twitter signin flow. If the
user has not yet signed into Twitter, the user will be presented with the following page from Twitter:

1.0.0.RC1 Spring Socia Reference Manual 43

Spring Social

anNno Twitter / Authorize an application a8
[« [» | [+ | https://api.owitter.com/oauth/authenticatefoauth_token=INELvnCsX8YIQESowWtDDG2) I & | (Qr Google)

hUJittel', Signup>»

You can use your Twitter account to sign in to other sites and services.
By signing in here, you can use Spring Social Showcase without sharing your Twitter password.

Authorize Spring Social
Showcase to use your
account? Spring Social Showcase
By SpringSource
This application will be able to: www.springframework.org/spring-social
« Read Tweets from your timeline. Spring Social is a new extension to
Spring that aims to provide a platform
+ See who you follow, and follow new people.

upon which social-ready Spring
= Update your profile. applications may be built.

« Post Tweets on your behalf.
Username or email

Password

Forgot your password?

W Cancel

This application will not be able to:

« Access your private messages.
= See your Twitter password.

You can revoke access to any application at any time from the Applications tab of your Settings page.

By authorizing an application you continue to operate under Twitter's Terms of Service. In particular, some
usage information will be shared back with Twitter. For more, see our Privacy Policy.

After signing in, the flow will redirect back to the application to complete the sign in process.

5.3 Signing up after a failed sign in

If Provi der Si gnl nCont rol | er can't find alocal user associated with a provider user attempting to sign
in, there may be an opportunity to have the user sign up with the application. Leveraging the information about
the user received from the provider, the user may be presented with a pre-filled sign up form to explicitly
sign up with the application. It's a'so possible to use the user's provider datato implicitly create a new local
application user without presenting asign up form.

Signing up with a sign up form

By default, the sign up URL is "/signup", relative to the application root. You can override that default
by setting the si gnUpUr| property on the controller. For example, the following configuration of
Provi der Si gnl nCont rol | er setsthesign up URL to "/register":

@ean
publ i c ProviderSignlnController providerSignlnController() {
Provi der Si gnl nControl |l er controller = new ProviderSignlnController(connectionFactoryLocator(),
user sConnecti onRepository(), new Si npl eSi gnl nAdapter());
controller.setSignUpUrl ("/register");
return controller;

1.0.0.RC1 Spring Socia Reference Manual 44

Spring Social

Or to set the sign up URL using XML configuration:

<bean cl ass="org. spri ngframework. soci al . connect . si gni n. web. Provi der Si gnl nControl |l er">
<property nanme="signUpUrl" val ue="/register" />
</ bean>

Beforeredirecting to thesign up page, Pr ovi der Si gnl nCont r ol | er collectssomeinformation about the
authentication attempt. Thisinformation can be used to prepopul ate the sign up form and then, after successful
sign up, to establish a connection between the new account and the provider account.

To prepopulate the sign up form, you can fetch the user profile data from a connection retrieved from
Provi der SignlnUtils. get Connection(). For example, consider this Spring MVC controller
method that setups up the sign up form with aSi gnupFor mto bind to the sign up form:

@Request Mappi ng(val ue="/si gnup", nethod=Request Met hod. GET)
publ i ¢ Si gnupFor m si gnupFor m(WebRequest request) {
Connecti on<?> connection = ProviderSignlnUtils.getConnection(request);

if (connection != null) {
return Si gnupForm fronProvi der User (connection. fetchUserProfile());
} else {

return new Si gnupForn();

}

If ProviderSignlnUtils.getConnection() returns a connection, that means there was a failed
provider sign in attempt that can be completed if the user registers to the application. In that
case, a Si gnupFor m object is created from the user profile data obtained from the connection's
fetchUserProfil e() method. WithinfronProvi der User (), the Si gnupFor mproperties may be
set likethis:

public static SignupForm fronmProviderUser(UserProfile providerUser) {
Si gnupForm form = new Si gnupFor n();
form set Fi rst Name(provi der User. get Fi rst Nane()) ;
form set Last Nane(provi der User . get Last Nane()) ;
f orm set User nane(provi der User . get User nane()) ;
form set Enai | (provi derUser. getEnail ());
return form

Here, the Si gnupFor mis created with the user's first name, last name, username, and email from the
User Profi | e.Inaddition, User Pr of i | e alsohasaget Narme() method which will return the user'sfull
name as given by the provider.

The availability of User Pr of i | e's properties will depend on the provider. Twitter, for example, does not
provide a user's email address, so the get Enmi | () method will always return null after a sign in attempt
with Twitter.

1.0.0.RC1 Spring Socia Reference Manual 45

Spring Social

After the wuser has successfully signed up in your application a connection can be
created between the new local user account and their provider account. To complete the
connection call ProviderSignlnUtils. handl ePostSi gnUp(). For example, the following
method handles the sign up form submission, creates an account and then calls
Provi der Signl nUtil s. handl ePost Si gnUp() to complete the connection:

@Request Mappi ng(val ue="/si gnup", net hod=Request Met hod. POST)
public String signup(@alid SignupForm form BindingResult fornBinding, WebRequest request) {
if (fornBinding.hasErrors()) {

return null;
}
Account account = createAccount (form fornBinding);
if (account != null) {
SignlnUtils. signin(account. getUsernane());
Provi der Si gnl nUti | s. handl ePost Si gnUp(account . get User nane(), request);
return "redirect:/";
}
return null;

Implicit sign up

To enable implicit sign up, you must create an implementation of the Connect i onSi gnUp interface and
inject an instance of that Connect i onSi gnUp to the connection repository. The Connect i onSi gnUp
interface is simple, with only a single method to implement:

public interface ConnectionSi gnUp {
String execut e(Connecti on<?> connection);

}

Theexecut e() methodisgivenaConnect i on that it can useto retrieve information about the user. It can
then use that information to create a new local application user and return the new local user ID. For example,
the following implementation fetches the user's provider profile and uses it to create a new account:

public class Account Connecti onSi gnUp i npl enents Connecti onSi gnUp {
private final AccountRepository account Repository;

publ i ¢ Account Connecti onSi gnUp(Account Repository account Repository) {
t hi s. account Reposi tory = account Reposi tory;

}

public String execute(Connection<?> connection) {
UserProfile profile = connection.fetchUserProfile();
Account account = createAccount(profile);

return account != null ? account.getUsernanme() : null;
}
private Account createAccount(UserProfile profile) {
if(profile == null || profile.getUsernane() == null) {
return null;

}

1.0.0.RC1 Spring Socia Reference Manual 46

Spring Social

Account account = new Account (profile.getUsername(), profile.getFirstNane(), profile.getLastNanme());
account Reposi tory. creat eAccount (account) ;
return account;

If execut e() returns null, then it indicates that the user could not be implicitly signed up. In that case,
Provi der Si gnl nCont r ol | er 'sexplicit sign up flow will bein effect and the browser will be redirected

to the sign up form.

Once you've written a Connecti onSi gnUp for your application, you'll need to inject it into the
User sConnect i onReposi t ory. In Java-based configuration:

@Bean
@cope(val ue="si ngl eton", proxyMbde=ScopedProxyMde. | NTERFACES)

publ i c UsersConnecti onRepository usersConnecti onRepository(Account Repository account Repository) {
JdbcUser sConnect i onRepository repository = new JdbcUser sConnecti onReposi tory(
dat aSour ce, connecti onFactorylLocator (), Encryptors.noOpText());
reposi tory. set Connecti onSi gnUp(new Account Connecti onSi gnUp(account Repository));
return repository;

}

1.0.0.RC1 Spring Socia Reference Manual 47

	Spring Social Reference Manual
	Table of Contents
	1. Spring Social Overview
	1.1 Introduction
	1.2 Socializing applications
	1.3 How to get
	Client modules

	1.4 Dependencies
	Java
	Java Servlet API
	Spring Framework
	Spring Security Crypto
	Apache HttpComponents
	Jackson JSON Processor

	1.5 Sample Code

	2. Service Provider 'Connect' Framework
	2.1 Core API
	2.2 Establishing connections
	OAuth2 service providers
	OAuth1 service providers
	Registering ConnectionFactory instances

	2.3 Persisting connections
	JDBC-based persistence

	3. Adding Support for a New Service Provider
	3.1 Process overview
	3.2 Creating a source project for the provider client code
	Code structure guidelines

	3.3 Developing a Java binding to the provider's API
	Designing a new Java API binding
	Implementing a new Java API binding
	Testing a new Java API binding
	Integrating an existing Java API binding

	3.4 Creating a ServiceProvider model
	OAuth2
	OAuth1

	3.5 Creating an ApiAdapter
	3.6 Creating a ConnectionFactory
	OAuth2
	OAuth1

	4. Connecting to Service Providers
	4.1 Introduction
	4.2 Configuring ConnectController
	Configuring connection support in XML

	4.3 Creating connections with ConnectController
	Displaying a connection page
	Initiating the connection flow
	Authorization scope

	Responding to the authorization callback
	Disconnecting

	4.4 Connection interceptors

	5. Signing in with Service Provider Accounts
	5.1 Introduction
	5.2 Enabling provider sign in
	ProviderSignInController's dependencies
	Adding a provider sign in button

	5.3 Signing up after a failed sign in
	Signing up with a sign up form
	Implicit sign up

