Spring Web Services Reference
Documentation

Arjen Poutsma, Rick Evans, Tareq Abed Rabbo, Greg Turnquist, Jay Bryant,
Corneil du Plessis, Stéphane Nicoll

Version 4.0.16, 2025-10-21

Table of Contents

Preface
I. Introduction

1. What is Spring Web Services?

1.1. Introduction
1.1.1. Powerful mappings
1.1.2. XML API support
1.1.3. Flexible XML Marshalling
1.1.4. Reusing Your Spring expertise
1.1.5. Support for WS-Security
1.1.6. Integration with Spring Security
1.1.7. Apache license
1.2. Runtime environment

1.3. Supported standards

2. Why Contract First?

2.1. Object/XML Impedance Mismatch
2.1.1. XSD Extensions
2.1.2. Unportable Types
2.1.3. Cyclic Graphs
2.2. Contract-first Versus Contract-last
2.2.1. Fragility
2.2.2. Performance
2.2.3. Reusability
2.2.4. Versioning

3. Writing Contract-First Web Services

3.1. Messages
3.1.1. Holiday
3.1.2. Employee
3.1.3. HolidayRequest
3.2. Data Contract
3.3. Service Contract
3.4. Creating the project
3.5. Implementing the Endpoint
3.5.1. Handling the XML Message
3.5.2. Routing the Message to the Endpoint
3.5.3. Providing the Service and Stub implementation
3.6. Publishing the WSDL

II1. Reference
4. Shared components

© 00 4 9 9 g 1 U1 U1 g sk RN

DN NN N DNDNR B R B oR R Rl Rl Rl))) e,
0 g b A OO0 O O W WNDNNDDNR PR O O o

4.1. Web Service MeSSages.ot 28

4.1.1. WebServiceMessageo 28
4.1.2. S0apMessage. 28
4.1.3. Message Factories. 28
SaajSoapMessageFactory 29
SOAP 1.1 01 1.2, 29
4.1.4. MessageContext. 30
4.2. TransportContext. ... o 30
4.3. Handling XML With XPath. 31
4.3.1. XPathEXPresSion. 31
4.3.2. XPathOperations. 33
4.4. Message Logging and TraCing. 33
5. Creating a Web service with Spring-WS. 35
5.1. The MessageDispatcher. ... 35
5.2, TransSPOTTS « .. .o 36
5.2.1. MessageDispatcherServiet 36
Automatic WSDL eXPOSUTEt 38
5.2.2. Wiring up Spring-WS in a DispatcherServlet 41
S5.2. 3. JMS transSpOrt. . . . oo 42
5.2.4. Email Transport 43
5.2.5. Embedded HTTP Server transport., 44
5.2.6. XMPP transport.o 46
5.2.7. MTOM . . o 46
5.3. ENAPOINTS oo 47
5.4. @Endpoint handling methods 50
5.4.1. Handling Method Parameters. i, 50
OXPathParam. . . oo 53
5.4.2. Handling method return types 54
5.5. Endpoint mappings 55
5.5.1. WS-AdAressing 56
Using AnnotationActionEndpointMapping 57
5.5.2. Intercepting Requests — the EndpointInterceptor Interface 58
PayloadlLoggingInterceptor and SoapEnvelopeloggingInterceptor....................... 59
PayloadValidatingInterceptor o 59
Using PayloadTransformingInterceptor o . 60

5.6. Handling EXCepPtioNnS 61
5.6.1. SoapFaultMappingExceptionResolver 62
5.6.2. Using SoapFaultAnnotationExceptionResolver 63
5.7.Server-side TeSting. 63
5.7.1. Writing server-side integration tests. 64

5.7.2. Using RequestCreator and RequestCreators. 66

5.7.3. Using ResponseMatcher and ResponseMatchers
6. Using Spring-WS on the Client
6.1. Using the Client-side API
6.1.1. WebServiceTemplate
URIs and Transports
Message factories
6.1.2. Sending and Receiving a WebServiceMessage
6.1.3. Sending and Receiving POJOs — Marshalling and Unmarshalling
6.1.4. Using WebServiceMessageCallback
WS-Addressing
6.1.5. Using WebServiceMessageExtractor
6.2. Client-side Testing
6.2.1. Writing Client-side Integration Tests
6.2.2. Using RequestMatcher and RequestMatchers
6.2.3. Using ResponseCreator and ResponseCreators
7. Securing Your Web services with Spring-WS§
7.1. XwsSecurityInterceptor
7.1.1. Keystores
Using keytool
Using KeyStoreFactoryBean
KeyStoreCallbackHandler
7.1.2. Authentication
Plain Text Username Authentication
Digest Username Authentication
Certificate Authentication
7.1.3. Digital Signatures
Verifying Signatures
Signing Messages
7.1.4. Decryption and Encryption
Decryption
Encryption
7.1.5. Security Exception Handling
7.2. Using Wss4jSecurityInterceptor
7.2.1. Configuring Wss4jSecurityInterceptor
7.2.2. Handling Digital Certificates
CryptoFactoryBean
7.2.3. Authentication
Validating Username Token
Adding Username Token
Certificate Authentication

7.2.4. Security Timestamps

67
69

69
69
69
73
73
75
75
75
76
76
77
80
81
82
82
83
84
84
84
86
86
88
89
92
92
93
94
94
95
96
96
97
97
98
98
98
99
100
101

Validating Timestamps
Adding Timestamps

7.2.5. Digital Signatures
Verifying Signatures
Signing Messages
Signature Confirmation

7.2.6. Decryption and Encryption
Decryption
Encryption

7.2.7. Security Exception Handling

I1I. Other Resources

Bibliography

101
101
102
102
102
103
104
104
105
107
108
109

Copies of this document may be made for your own use and for distribution to
others, provided that you do not charge any fee for such copies and further
provided that each copy contains this Copyright Notice, whether distributed in print

or electronically.

NOTE

Preface

In the current age of Service Oriented Architectures, more and more people use web services to
connect previously unconnected systems. Initially, web services were considered to be just another
way to do a Remote Procedure Call (RPC). Over time, however, people found out that there is a big
difference between RPCs and web services. Especially when interoperability with other platforms is
important, it is often better to send encapsulated XML documents that contain all the data
necessary to process the request. Conceptually, XML-based web services are better compared to
message queues than to remoting solutions. Overall, XML should be considered the platform-
neutral representation of data, the common language of SOA. When developing or using web
services, the focus should be on this XML and not on Java.

Spring-WS focuses on creating these document-driven web services. Spring-WS facilitates contract-
first SOAP service development, allowing for the creation of flexible web services by using one of
the many ways to manipulate XML payloads. Spring-WS provides a powerful message dispatching
framework, a WS-Security solution that integrates with your existing application security solution,
and a Client-side API that follows the familiar Spring template pattern.

I. Introduction

This first part of the reference documentation is an overview of Spring Web Services and the
underlying concepts. Then, the concepts behind contract-first web service development are
explained. Finally, the third section provides a tutorial.

Chapter 1. What is Spring Web Services?

1.1. Introduction

Spring Web Services (Spring-WS) is a product of the Spring community and is focused on creating
document-driven web services. Spring Web Services aims to facilitate contract-first SOAP service
development, allowing for the creation of flexible web services by using one of the many ways to
manipulate XML payloads. The product is based on Spring itself, which means you can use the
Spring concepts (such as dependency injection) as an integral part of your web service.

People use Spring-WS for many reasons, but most are drawn to it after finding alternative SOAP
stacks lacking when it comes to following web service best practices. Spring-WS makes the best
practice an easy practice. This includes practices such as the WS-I basic profile, contract-first
development, and having a loose coupling between contract and implementation. The other key
features of Spring-WS are:

* Powerful mappings.

XML API support.

Flexible XML Marshalling.

* Reusing Your Spring expertise.

Support for WS-Security.
* Integration with Spring Security.

* Apache license.

1.1.1. Powerful mappings

You can distribute incoming XML requests to any object, depending on message payload, SOAP
Action header, or an XPath expression.

1.1.2. XML API support

Incoming XML messages can be handled not only with standard JAXP APIs such as DOM, SAX, and
StAX, but also with JDOM, dom4j, XOM, or even marshalling technologies.

1.1.3. Flexible XML Marshalling

Spring-WS builds on the Object/XML Mapping module in the Spring Framework, which supports
JAXB 1 and 2, Castor, XMLBeans, JiBX, and XStream.

1.1.4. Reusing Your Spring expertise

Spring-WS uses Spring application contexts for all configuration, which should help Spring
developers get up-to-speed quickly. Also, the architecture of Spring-WS resembles that of Spring-
MVC.

1.1.5. Support for WS-Security

WS-Security lets you sign SOAP messages, encrypt and decrypt them, or authenticate against them.

1.1.6. Integration with Spring Security

The WS-Security implementation of Spring-WS provides integration with Spring Security. This
means you can use your existing Spring Security configuration for your SOAP service as well.

1.1.7. Apache license

You can confidently use Spring-WS in your project.

1.2. Runtime environment

Spring-WS requires a standard Java 17 Runtime Environment. Spring-WS is built on Spring
Framework 6.x.

Spring-WS consists of a number of modules, which are described in the remainder of this section.

* The XML module (spring-xml) contains various XML support classes for Spring-WS. This module
is mainly intended for the Spring-WS framework itself and not web service developers.

* The Core module (spring-ws-core) is the central part of the Spring’s web services functionality. It
provides the central WebServiceMessage and SoapMessage interfaces, the server-side framework
(with powerful message dispatching), the various support classes for implementing web service
endpoints, and the client-side WebServiceTemplate.

* The Support module (spring-ws-support) contains additional transports (JMS, Email, and others).

* The Security module (spring-ws-security) provides a WS-Security implementation that
integrates with the core web service package. It lets you sign, decrypt and encrypt, and add
principal tokens to SOAP messages. Additionally, it lets you use your existing Spring Security
implementation for authentication and authorization.

The following figure shows and the dependencies between the Spring-WS modules. Arrows indicate
dependencies (that is, Spring-WS Core depends on Spring-XML and the Spring OXM).

S |
Spring Spring-Ws
OXM Support
N | —
Spring-Ws
Core F
Spring Spring-Ws
XML Security
—

1.3. Supported standards

Spring-WS supports the following standards:

SOAP 1.1 and 1.2.

WSDL 1.1 and 2.0 (XSD-based generation is supported only for WSDL 1.1).
WS-I Basic Profile 1.0, 1.1, 1.2, and 2.0.

WS-Addressing 1.0 and the August 2004 draft.

SOAP Message Security 1.1, Username Token Profile 1.1, X.509 Certificate Token Profile 1.1,
SAML Token Profile 1.1, Kerberos Token Profile 1.1, Basic Security Profile 1.1.

Chapter 2. Why Contract First?

When creating web services, there are two development styles: contract-last and contract-first.
When you use a contract-last approach, you start with the Java code and let the web service
contract (in WSDL — see sidebar) be generated from that. When using contract-first, you start with
the WSDL contract and use Java to implement the contract.

What is WSDL?

WSDL stands for Web Service Description Language. A WSDL file is an XML document that
describes a web service. It specifies the location of the service and the operations (or
methods) the service exposes. For more information about WSDL, see the WSDL specification.

Spring-WS supports only the contract-first development style, and this section explains why.

2.1. Object/XML Impedance Mismatch

Similar to the field of ORM, where we have an Object/Relational impedance mismatch, converting
Java objects to XML has a similar problem. At first glance, the O/X mapping problem appears
simple: Create an XML element for each Java object to convert all Java properties and fields to sub-
elements or attributes. However, things are not as simple as they appear, because there is a
fundamental difference between hierarchical languages, such as XML (and especially XSD), and the
graph model of Java.

NOTE Most of the contents in this section were inspired by [alpine] and [effective-
enterprise-javal.

2.1.1. XSD Extensions

In Java, the only way to change the behavior of a class is to subclass it to add the new behavior to
that subclass. In XSD, you can extend a data type by restricting it—that is, constraining the valid
values for the elements and attributes. For instance, consider the following example:

<simpleType name="AirportCode">
<restriction base="string">
<pattern value="[A-Z][A-Z][A-Z]"/>
</restriction>
</simpleType>

This type restricts a XSD string by way of a regular expression, allowing only three upper case
letters. If this type is converted to Java, we end up with an ordinary java.lang.String. The regular
expression is lost in the conversion process, because Java does not allow for these sorts of
extensions.

https://www.w3.org/TR/wsdl
https://en.wikipedia.org/wiki/Object-Relational_impedance_mismatch

2.1.2. Unportable Types

One of the most important goals of a web service is to be interoperable: to support multiple
platforms such as Java, .NET, Python, and others. Because all of these languages have different class
libraries, you must use some common, cross-language format to communicate between them. That
format is XML, which is supported by all of these languages.

Because of this conversion, you must make sure that you use portable types in your service
implementation. Consider, for example, a service that returns a java.util.TreeMap:

public Map getFlights() {
// use a tree map, to make sure it's sorted
TreeMap map = new TreeMap();
map.put("KL1117", "Stockholm");

return map;

}

Undoubtedly, the contents of this map can be converted into some sort of XML, but since there is no
standard way to describe a map in XML, it will be proprietary. Also, even if it can be converted to
XML, many platforms do not have a data structure similar to the TreeMap. So when a .NET client
accesses your web service, it probably ends up with a System.Collections.Hashtable, which has
different semantics.

This problem is also present when working on the client side. Consider the following XSD snippet,
which describes a service contract:

<element name="GetFlightsRequest">
<complexType>
<all>
<element name="departureDate" type="date"/>
<element name="from" type="string"/>
<element name="to" type="string"/>
</all>
</complexType>
</element>

This contract defines a request that takes an date, which is a XSD datatype representing a year,
month, and day. If we call this service from Java, we probably use either a java.time.LocalDateTime
or java.time.Instant. However, both of these classes actually describe times, rather than dates. So,
we actually end up sending data that represents the fourth of April 2007 at midnight (2007-04-
04T00:00:00), which is not the same as 2007-04-04.

2.1.3. Cyclic Graphs

Imagine we have the following class structure:

public class Flight {
private String number;
private List<Passenger> passengers;

// getters and setters omitted
¥

public class Passenger {
private String name;
private Flight flight;

// getters and setters omitted
}

This is a cyclic graph: the Flight refers to the Passenger, which refers to the Flight again. Cyclic
graphs like these are quite common in Java. If we take a naive approach to converting this to XML,
we end up with something like:

<flight number="KL1117">
<passengers>
<passenger>
<name>Arjen Poutsma</name>
<flight number="KL1117">
<passengers>
<passenger>
<name>Arjen Poutsma</name>
<flight number="KL1117">
<passengers>
<passenger>
<name>Arjen Poutsma</name>

Processing such a structure is likely to take a long time to finish, because there is no stop condition
for this loop.

One way to solve this problem is to use references to objects that were already marshalled:

<flight number="KL1117">
<passengers>
<passenger>

<name>Arjen Poutsma</name>
<flight href="KL1117" />
</passenger>

</passengers>
</flight>

This solves the recursion problem but introduces new ones. For one, you cannot use an XML
validator to validate this structure. Another issue is that the standard way to use these references in
SOAP (RPC/encoded) has been deprecated in favor of document/literal (see the WS-I Basic Profile).

These are just a few of the problems when dealing with O/X mapping. It is important to respect
these issues when writing web services. The best way to respect them is to focus on the XML
completely, while using Java as an implementation language. This is what contract-first is all about.

2.2. Contract-first Versus Contract-last

Besides the Object/XML Mapping issues mentioned in the previous section, there are other reasons
for preferring a contract-first development style.

 Fragility.

» Performance.

Reusability.

» Versioning.

2.2.1. Fragility

As mentioned earlier, the contract-last development style results in your web service contract
(WSDL and your XSD) being generated from your Java contract (usually an interface). If you use
this approach, you have no guarantee that the contract stays constant over time. Each time you
change your Java contract and redeploy it, there might be subsequent changes to the web service
contract.

Additionally, not all SOAP stacks generate the same web service contract from a Java contract. This
means that changing your current SOAP stack for a different one (for whatever reason) might also
change your web service contract.

When a web service contract changes, users of the contract have to be instructed to obtain the new
contract and potentially change their code to accommodate for any changes in the contract.

For a contract to be useful, it must remain constant for as long as possible. If a contract changes,
you have to contact all the users of your service and instruct them to get the new version of the
contract.

2.2.2. Performance

When a Java object is automatically transformed into XML, there is no way to be sure as to what is

10

http://www.ws-i.org/Profiles/BasicProfile-1.1.html#SOAP_encodingStyle_Attribute

sent across the wire. An object might reference another object, which refers to another, and so on.
In the end, half of the objects on the heap in your virtual machine might be converted into XML,
which results in slow response times.

When using contract-first, you explicitly describe what XML is sent where, thus making sure that it
is exactly what you want.

2.2.3. Reusability

Defining your schema in a separate file lets you reuse that file in different scenarios. Consider the
definition of an AirportCode in a file called airline.xsd:

<simpleType name="AirportCode">
<restriction base="string">
<pattern value="[A-Z][A-Z][A-Z]"/>
</restriction>
</simpleType>

You can reuse this definition in other schemas, or even WSDL files, by using an import statement.

2.2.4. Versioning

Even though a contract must remain constant for as long as possible, they do need to be changed
sometimes. In Java, this typically results in a new Java interface, such as AirlineService2, and a
(new) implementation of that interface. Of course, the old service must be kept around, because
there might be clients who have not yet migrated.

If using contract-first, we can have a looser coupling between contract and implementation. Such a
looser coupling lets us implement both versions of the contract in one class. We could, for instance,
use an XSLT stylesheet to convert any “old-style” messages to the “new-style” messages.

11

Chapter 3. Writing Contract-First Web
Services

This tutorial shows you how to write contract-first web services—that is, how to develop web
services that start with the XML Schema or WSDL contract first followed by the Java code second.
Spring-WS focuses on this development style, and this tutorial should help you get started. Note that
the first part of this tutorial contains almost no Spring-WS specific information. It is mostly about
XML, XSD, and WSDL. The second part focuses on implementing this contract with Spring-Ws .

The most important thing when doing contract-first web service development is to think in terms of
XML. This means that Java language concepts are of lesser importance. It is the XML that is sent
across the wire, and you should focus on that. Java being used to implement the web service is an
implementation detail.

In this tutorial, we define a web service that is created by a Human Resources department. Clients
can send holiday request forms to this service to book a holiday.

3.1. Messages

In this section, we focus on the actual XML messages that are sent to and from the web service. We
start out by determining what these messages look like.

3.1.1. Holiday

In the scenario, we have to deal with holiday requests, so it makes sense to determine what a
holiday looks like in XML:

<Holiday xmlns="http://mycompany.com/hr/schemas">
<StartDate>2006-07-03</StartDate>
<EndDate>2006-07-07</EndDate>

</Holiday>

A holiday consists of a start date and an end date. We have also decided to use the standard ISO
8601 date format for the dates, because that saves a lot of parsing hassle. We have also added a
namespace to the element, to make sure our elements can be used within other XML documents.

3.1.2. Employee

There is also the notion of an employee in the scenario. Here is what it looks like in XML:

<Employee xmlns="http://mycompany.com/hr/schemas">
<Number>42</Number>
<FirstName>Arjen</FirstName>

12

https://www.cl.cam.ac.uk/~mgk25/iso-time.html
https://www.cl.cam.ac.uk/~mgk25/iso-time.html

<LastName>Poutsma</LastName>
</Employee>

We have used the same namespace as before. If this <Employee/> element could be used in other
scenarios, it might make sense to use a different namespace, such as http://example.com/employees/
schemas.

3.1.3. HolidayRequest

Both the holiday element and the employee element can be put in a <HolidayRequest/>:

<HolidayRequest xmlns="http://mycompany.com/hr/schemas">
<Holiday>
<StartDate>2006-07-03</StartDate>
<EndDate>2006-07-07</EndDate>
</Holiday>
<Employee>
<Number>42</Number>
<FirstName>Arjen</FirstName>
<LastName>Poutsma</LastName>
</Employee>
</HolidayRequest>

The order of the two elements does not matter: <Employee/> could have been the first element. What
matters is that all the data is there. In fact, the data is the only thing that is important: we take a
data-driven approach.

3.2. Data Contract

Now that we have seen some examples of the XML data that we can use, it makes sense to formalize
this into a schema. This data contract defines the message format we accept. There are four
different ways of defining such a contract for XML:

e DTDs.

¢ XML Schema (XSD).

¢ RELAX NG.

e Schematron.
DTDs have limited namespace support, so they are not suitable for web services. Relax NG and

Schematron are easier than XML Schema. Unfortunately, they are not so widely supported across
platforms. As a result, we use XML Schema.

By far, the easiest way to create an XSD is to infer it from sample documents. Any good XML editor
or Java IDE offers this functionality. Basically, these tools use some sample XML documents to

13

http://example.com/employees/schemas
http://example.com/employees/schemas
https://www.w3.org/XML/Schema
http://www.relaxng.org/
http://www.schematron.com/

generate a schema that validates them all. The end result certainly needs to be polished up, but it is
a great starting point.

Using the sample described earlier, we end up with the following generated schema:

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"”
elementFormDefault="qualified"
targetNamespace="http://mycompany.com/hr/schemas"
xmlns:hr="http://mycompany.com/hr/schemas">
<xs:element name="HolidayRequest">
<xs:complexType>
<Xs:sequence>
<xs:element ref="hr:Holiday"/>
<xs:element ref="hr:Employee"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="Holiday">
<xs:complexType>
<xs:sequence>
<xs:element ref="hr:StartDate"/>
<xs:element ref="hr:EndDate"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="StartDate" type="xs:NMTOKEN"/>
<xs:element name="EndDate" type="xs:NMTOKEN"/>
<xs:element name="Employee">
<xs:complexType>
<Xxs:sequence>
<xs:element ref="hr:Number"/>
<xs:element ref="hr:FirstName"/>
<xs:element ref="hr:LastName"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="Number" type="xs:integer"/>
<xs:element name="FirstName" type="xs:NCName"/>
<xs:element name="LastName" type="xs:NCName"/>
</xs:schema>

This generated schema can be improved. The first thing to notice is that every type has a root-level
element declaration. This means that the web service should be able to accept all of these elements
as data. This is not desirable: We want to accept only a <HolidayRequest/>. By removing the
wrapping element tags (thus keeping the types) and inlining the results, we can accomplish this, as
follows:

14

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:hr="http://mycompany.com/hr/schemas"
elementFormDefault="qualified"
targetNamespace="http://mycompany.com/hr/schemas">
<xs:element name="HolidayRequest">
<xs:complexType>
<xs:sequence>
<xs:element name="Holiday" type="hr:HolidayType"/>
<xs:element name="Employee" type="hr:EmployeeType"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:complexType name="HolidayType">
<xs:sequence>
<xs:element name="StartDate" type="xs:NMTOKEN"/>
<xs:element name="EndDate" type="xs:NMTOKEN"/>
</Xs:sequence>
</xs:complexType>
<xs:complexType name="EmployeeType">
<xs:sequence>
<xs:element name="Number" type="xs:integer"/>
<xs:element name="FirstName" type="xs:NCName"/>
<xs:element name="LastName" type="xs:NCName"/>
</Xs:sequence>
</xs:complexType>
</xs:schema>

The schema still has one problem: With a schema like this, you can expect the following message to
validate:

<HolidayRequest xmlns="http://mycompany.com/hr/schemas">
<Holiday>
<StartDate>this is not a date</StartDate>
<EndDate>neither is this</EndDate>
</Holiday>
PlainText Section gName:lineannotation level:4, chunks:[<, !-- ... --, >]
attrs:[:]
</HolidayRequest>

Clearly, we must make sure that the start and end date are really dates. XML Schema has an
excellent built-in date type that we can use. We also change the NCName s to string instances. Finally,
we change the sequence in <HolidayRequest/> to all. This tells the XML parser that the order of
<Holiday/> and <Employee/> is not significant. Our final XSD now looks like the following listing:

15

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:hr="http://mycompany.com/hr/schemas"
elementFormDefault="qualified"
targetNamespace="http://mycompany.com/hr/schemas">
<xs:element name="HolidayRequest">
<xs:complexType>
<xs:all>
<xs:element name="Holiday" type="hr:HolidayType"/> @
<xs:element name="Employee" type="hr:EmployeeType"/> @
</xs:all>
</xs:complexType>
</xs:element>
<xs:complexType name="HolidayType">
<xs:sequence>
<xs:element name="StartDate" type="xs:date"/> @
<xs:element name="EndDate" type="xs:date"/> @
</Xs:sequence>
</xs:complexType>
<xs:complexType name="EmployeeType">
<xs:sequence>
<xs:element name="Number" type="xs:integer"/>
<xs:element name="FirstName" type="xs:string"/> ®
<xs:element name="LastName" type="xs:string"/> @
</Xs:sequence>
</xs:complexType>
</xs:schema>

@ all tells the XML parser that the order of <Holiday/> and <Employee/> is not significant.

@ We use the xs:date data type (which consist of a year, a month, and a day) for <StartDate/>
and <EndDate/>.

® xs:string is used for the first and last names.

We store this file as hr.xsd.

3.3. Service Contract

A service contract is generally expressed as a WSDL file. Note that, in Spring-WS, writing the WSDL
by hand is not required. Based on the XSD and some conventions, Spring-WS can create the WSDL
for you, as explained in the section entitled Implementing the Endpoint. The remainder of this
section shows how to write WSDL by hand. You may want to skip to the next section.

We start our WSDL with the standard preamble and by importing our existing XSD. To separate the
schema from the definition, we use a separate namespace for the WSDL definitions:
http://mycompany.com/hr/definitions. The following listing shows the preamble:

16

https://www.w3.org/TR/wsdl
http://mycompany.com/hr/definitions

<wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsd1/soap/"
xmlns:schema="http://mycompany.com/hr/schemas”
xmlns:tns="http://mycompany.com/hr/definitions"
targetNamespace="http://mycompany.com/hr/definitions">
<wsdl:types>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:import namespace="http://mycompany.com/hr/schemas"
schemalocation="hr.xsd"/>
</xsd:schema>
</wsdl:types>

Next, we add our messages based on the written schema types. We only have one message, the
<HolidayRequest/> we put in the schema:

<wsdl:message name="HolidayRequest">
<wsdl:part element="schema:HolidayRequest" name="HolidayRequest"/>
</wsdl:message>

We add the message to a port type as an operation:

<wsdl:portType name="HumanResource">
<wsdl:operation name="Holiday">
<wsdl:input message="tns:HolidayRequest" name="HolidayRequest"/>
</wsdl:operation>
</wsdl:portType>

That message finishes the abstract part of the WSDL (the interface, as it were) and leaves the
concrete part. The concrete part consists of a binding (which tells the client how to invoke the
operations you have just defined) and a service (which tells the client where to invoke it).

Adding a concrete part is pretty standard. To do so, refer to the abstract part you defined
previously, make sure you use document/literal for the soap:binding elements (rpc/encoded is
deprecated), pick a soapAction for the operation (in this case, http://mycompany.com/RequestHoliday,
but any URI works), and determine the location URL where you want the request to arrive (in this
case, http://mycompany.com/humanresources):

<wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:schema="http://mycompany.com/hr/schemas"
xmlns:tns="http://mycompany.com/hr/definitions"

17

http://mycompany.com/RequestHoliday
http://mycompany.com/humanresources

18

targetNamespace="http://mycompany.com/hr/definitions">
<wsdl:types>
<xsd:schema xmlns:xsd="http://www.w3.0rg/20@1/XMLSchema">
<xsd:import namespace="http://mycompany.com/hr/schemas"

schemalocation="hr.xsd"/>
</xsd:schema>
</wsdl:types>
<wsdl:message name="HolidayRequest">

<wsdl:part element="schema:HolidayRequest" name="HolidayRequest"/>

</wsdl:message>
<wsdl:portType name="HumanResource">

<wsdl:operation name="Holiday">
<wsdl:input message="tns:HolidayRequest" name="HolidayRequest"/>

</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="HumanResourceBinding" type="tns:HumanResource">

@®

<soap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http"/>

@
<wsdl:operation name="Holiday">
<soap:operation soapAction="http://mycompany.com/RequestHoliday"/>
®
<wsdl:input name="HolidayRequest">
<soap:body use="literal"/>
®

</wsdl:input>
</wsdl:operation>
</wsdl:binding>
<wsdl:service name="HumanResourceService">
<wsdl:port binding="tns:HumanResourceBinding" name="HumanResourcePort">

<soap:address location="http://localhost:8080/holidayService/"/>

</wsdl:port>
</wsdl:service>
</wsdl:definitions>

® We import the schema defined in Data Contract.
@ We define the HolidayRequest message, which gets used in the portType.
® The HolidayRequest type is defined in the schema.

@ We define the HumanResource port type, which gets used in the binding.

® We define the HumanResourceBinding binding, which gets used in the port.
® We use a document/literal style.
@ The literal http://schemas.xmlsoap.org/soap/http signifies a HTTP transport.

The soapAction attribute signifies the SOAPAction HTTP header that will be sent with every
request.

© The http://localhost:8080/holidayService/ address is the URL where the web service can
be invoked.

The preceding listing shows the final WSDL. We describe how to implement the resulting schema
and WSDL in the next section.

3.4. Creating the project

In this section, we use Maven to create the initial project structure for us. Doing so is not required
but greatly reduces the amount of code we have to write to set up our HolidayService.

The following command creates a Maven web application project for us by using the Spring-WS
archetype (that is, project template):

mvn archetype:create -DarchetypeGroupld=org.springframework.ws \
-DarchetypeArtifactId=spring-ws-archetype \
-DarchetypeVersion= \
-DgroupId=com.mycompany.hr \
-DartifactId=holidayService

The preceding command creates a new directory called holidayService. In this directory is a
src/main/webapp directory, which contains the root of the WAR file. You can find the standard web
application deployment descriptor (WEB-INF/web.xml) here, which defines a Spring-WS
MessageDispatcherServlet and maps all incoming requests to this servlet:

<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
version="2.4">

<display-name>MyCompany HR Holiday Service</display-name>

<!-- take special notice of the name of this servlet -->
<servlet>
<servlet-name>spring-ws</servlet-name>
<servlet-
class>org.springframework.ws.transport.http.MessageDispatcherServlet</servlet-

19

http://schemas.xmlsoap.org/soap/http
http://localhost:8080/holidayService/
https://maven.apache.org/

class>
</servlet>

<servlet-mapping>
<servlet-name>spring-ws</servlet-name>
<url-pattern>/*</url-pattern>
</servlet-mapping>

</web-app>

In addition to the preceding WEB-INF/web.xml file, you also need another, Spring-WS-specific,
configuration file, named WEB-INF/spring-ws-servlet.xml. This file contains all the Spring-WS-
specific beans, such as EndPoints and WebServiceMessageReceivers and is used to create a new Spring
container. The name of this file is derived from the name of the attendant servlet (in this case
"spring-ws') with -servlet.xml appended to it. So if you define a MessageDispatcherServlet with the
name dynamite, the name of the Spring-WS-specific configuration file becomes WEB-INF/dynamite-
servlet.xml.

Once you had the project structure created, you can put the schema and the WSDL from the
previous section into WEB-INF/ folder.

3.5. Implementing the Endpoint

In Spring-WS, you implement endpoints to handle incoming XML messages. An endpoint is
typically created by annotating a class with the @Endpoint annotation. In this endpoint class, you can
create one or more methods that handle incoming request. The method signatures can be quite
flexible. You can include almost any sort of parameter type related to the incoming XML message,
as we explain later in this chapter.

3.5.1. Handling the XML Message

In this sample application, we use JDom 2 to handle the XML message. We also use XPath, because it
lets us select particular parts of the XML JDOM tree without requiring strict schema conformance.

The following listing shows the class that defines our holiday endpoint:

package com.mycompany.hr.ws;

import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.Arrays;

import java.util.Date;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.ws.server.endpoint.annotation.Endpoint;
import org.springframework.ws.server.endpoint.annotation.PayloadRoot;
import org.springframework.ws.server.endpoint.annotation.RequestPayload;

20

http://www.jdom.org/
https://www.w3.org/TR/xpath20/

import com.mycompany.hr.service.HumanResourceService;
import org.jdom2.Element;

import org.jdom2.JDOMException;

import org.jdom2.Namespace;

import org.jdom2.filter.Filters;

import org.jdom2.xpath.XPathExpression;

import org.jdom2.xpath.XPathFactory;

@Endpoint
O]
public class HolidayEndpoint {

private static final String NAMESPACE_URI = "http://mycompany.com/hr/schemas";
private XPathExpression<Element> startDateExpression;

private XPathExpression<Element> endDateExpression;

private XPathExpression<Element> firstNameExpression;

private XPathExpression<Element> lastNameExpression;

private HumanResourceService humanResourceService;

@Autowired
@
public HolidayEndpoint(HumanResourceService humanResourceService) throws
JDOMException {
this.humanResourceService = humanResourceService;

Namespace namespace = Namespace.getNamespace("hr", NAMESPACE_URI);

XPathFactory xPathFactory = XPathFactory.instance();

startDateExpression = xPathFactory.compile("//hr:StartDate",
Filters.element(), null, namespace);

endDateExpression = xPathFactory.compile("//hr:EndDate",
Filters.element(), null, namespace);

firstNameExpression = xPathFactory.compile("//hr:FirstName",
Filters.element(), null, namespace);

lastNameExpression = xPathFactory.compile("//hr:LastName",
Filters.element(), null, namespace);

}

@PayloadRoot(namespace = NAMESPACE_URI, localPart = "HolidayRequest")
®
public void handleHolidayRequest(@RequestPayload Element holidayRequest)
throws Exception {®
Date startDate = parseDate(startDateExpression, holidayRequest);
Date endDate = parseDate(endDateExpression, holidayRequest);
String name = firstNameExpression.evaluateFirst(holidayRequest).getText()
+ " " + lastNameExpression.evaluateFirst(holidayRequest).getText();

21

humanResourceService.bookHoliday(startDate, endDate, name);

private Date parseDate(XPathExpression<Element> expression, Element element)
throws ParseException {
Element result = expression.evaluateFirst(element);
if (result !'= null) {
SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd");
return dateFormat.parse(result.getText());
} else {
throw new I1legalArgumentException("Could not evaluate [" + expression
+ "] on [" + element + "]");

}

® The HolidayEndpoint is annotated with @Endpoint. This marks the class as a special sort of
@Component, suitable for handling XML messages in Spring-WS, and also makes it eligible for
suitable for component scanning.

@ The HolidayEndpoint requires the HumanResourceService business service to operate, so we
inject the dependency in the constructor and annotate it with @Autowired. Next, we set up
XPath expressions by using the JDOM2 API. There are four expressions: //hr:StartDate for
extracting the <StartDate> text value, //hr:EndDate for extracting the end date, and two for
extracting the names of the employee.

® The @PayloadRoot annotation tells Spring-WS that the handleHolidayRequest method is
suitable for handling XML messages. The sort of message that this method can handle is
indicated by the annotation values. In this case, it can handle XML elements that have the
HolidayRequest local part and the http://mycompany.com/hr/schemas namespace. More
information about mapping messages to endpoints is provided in the next section.

@ The handleHolidayRequest(..) method is the main handling method, which gets passed the
<HolidayRequest/> element from the incoming XML message. The @RequestPayload
annotation indicates that the holidayRequest parameter should be mapped to the payload of
the request message. We use the XPath expressions to extract the string values from the
XML messages and convert these values to Date objects by using a SimpleDateFormat (the
parseData method). With these values, we invoke a method on the business service.
Typically, this results in a database transaction being started and some records being
altered in the database. Finally, we define a void return type, which indicates to Spring-WS
that we do not want to send a response message. If we want a response message, we could
return a JDOM Element to represent the payload of the response message.

Using JDOM is just one of the options to handle the XML. Other options include DOM, dom4j, XOM,
SAX, and StAX, but also marshalling techniques like JAXB, Castor, XMLBeans, JiBX, and XStream, as
explained in the next chapter. We chose JDOM because it gives us access to the raw XML and
because it is based on classes (not interfaces and factory methods as with W3C DOM and dom4j),
which makes the code less verbose. We use XPath because it is less fragile than marshalling

22

http://mycompany.com/hr/schemas

technologies. We do not need strict schema conformance as long as we can find the dates and the
name.

Because we use JDOM, we must add some dependencies to the Maven pom.xml, which is in the root
of our project directory. Here is the relevant section of the POM:

<dependencies>
<dependency>
<groupld>org.springframework.ws</groupld>
<artifactId>spring-ws-core</artifactId>
<version></version>
</dependency>
<dependency>
<groupld>jdom</groupId>
<artifactId>jdom</artifactId>
<version>2.0.1</version>
</dependency>
<dependency>
<groupId>jaxen</groupIld>
<artifactId>jaxen</artifactId>
<version>1.1</version>
</dependency>
</dependencies>

Here is how we would configure these classes in our spring-ws-servlet.xml Spring XML
configuration file by using component scanning. We also instruct Spring-WS to use annotation-
driven endpoints, with the <sws:annotation-driven> element.

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:sws="http://www.springframework.org/schema/web-services"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/web-services
http://www.springframework.org/schema/web-services/web-services-2.0.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-3.0.xsd">

<context:component-scan base-package="com.mycompany.hr"/>
<sws:annotation-driven/>

</beans>

23

3.5.2. Routing the Message to the Endpoint

As part of writing the endpoint, we also used the @PayloadRoot annotation to indicate which sort of
messages can be handled by the handleHolidayRequest method. In Spring-WS, this process is the
responsibility of an EndpointMapping. Here, we route messages based on their content by using a
PayloadRootAnnotationMethodEndpointMapping. The following listing shows the annotation we used
earlier:

@PayloadRoot(namespace = "http://mycompany.com/hr/schemas", localPart =
"HolidayRequest")

The annotation shown in the preceding example basically means that whenever an XML message is
received with the namespace http://mycompany.com/hr/schemas and the HolidayRequest local name, it
is routed to the handleHolidayRequest method. By using the <sws:annotation-driven> element in our
configuration, we enable the detection of the @PayloadRoot annotations. It is possible (and quite
common) to have multiple, related handling methods in an endpoint, each of them handling
different XML messages.

There are other ways to map endpoints to XML messages, which is described in the next chapter.

3.5.3. Providing the Service and Stub implementation

Now that we have the endpoint, we need HumanResourceService and its implementation for use by
HolidayEndpoint. The following listing shows the HumanResourceService interface:

package com.mycompany.hr.service;
import java.util.Date;
public interface HumanResourceService {

void bookHoliday(Date startDate, Date endDate, String name);
}

For tutorial purposes, we use a simple stub implementation of the HumanResourceService:

package com.mycompany.hr.service;

import java.util.Date;

import org.springframework.stereotype.Service;

@Service @

public class StubHumanResourceService implements HumanResourceService {

24

http://mycompany.com/hr/schemas

public void bookHoliday(Date startDate, Date endDate, String name) {
System.out.println("Booking holiday for [" + startDate + "-" + endDate +
"] for [II + name + ll] II);

}

® The StubHumanResourceService is annotated with @Service. This marks the class as a business
facade, which makes this a candidate for injection by @Autowired in HolidayEndpoint.

3.6. Publishing the WSDL

Finally, we need to publish the WSDL. As stated in Service Contract, we do not need to write a
WSDL ourselves. Spring-WS can generate one based on some conventions. Here is how we define
the generation:

<sws:dynamic-wsdl id="holiday"
portTypeName="HumanResource"
locationUri="/holidayService/"
targetNamespace="http://mycompany.com/hr/definitions">
<sws:xsd location="/WEB-INF/hr.xsd"/>
</sws:dynamic-wsd1>

OOO®VO

@ The id determines the URL where the WSDL can be retrieved. In this case, the id is holiday,
which means that the WSDL can be retrieved as holiday.wsdl in the servlet context. The full
URL is http://1localhost:8080/holidayService/holiday.wsdl.

@ Next, we set the WSDL port type to be HumanResour ce.

(3 We set the location where the service can be reached: /holidayService/. We use a relative
URI, and we instruct the framework to transform it dynamically to an absolute URI. Hence,
if the service is deployed to different contexts, we do not have to change the URI manually.
For more information, see the section called “Automatic WSDL exposure”. For the location
transformation to work, we need to add an init parameter to spring-ws servlet in web.xml
(shown in the next listing).

@ We define the target namespace for the WSDL definition itself. Setting this attribute is not
required. If not set, the WSDL has the same namespace as the XSD schema.

® The xsd element refers to the human resource schema we defined in Data Contract. We
placed the schema in the WEB-INF directory of the application.

The following listing shows how to add the init parameter:

<init-param>
<param-name>transformWsdllLocations</param-name>
<param-value>true</param-value>

25

http://localhost:8080/holidayService/holiday.wsdl

</init-param>

You can create a WAR file by using mvn install. If you deploy the application (to Tomcat, Jetty, and
so on) and point your browser at this location, you see the generated WSDL. This WSDL is ready to
be used by clients, such as soapUI or other SOAP frameworks.

That concludes this tutorial. The tutorial code can be found in the full distribution of Spring-WS. If
you wish to continue, look at the echo sample application that is part of the distribution. After that,
look at the airline sample, which is a bit more complicated, because it uses JAXB, WS-Security,
Hibernate, and a transactional service layer. Finally, you can read the rest of the reference
documentation.

26

http://localhost:8080/holidayService/holiday.wsdl
http://www.soapui.org/

I1. Reference

This part of the reference documentation details the various components that comprise Spring Web
Services. This includes a chapter that discusses the parts common to both client- and server-side
WS, a chapter devoted to the specifics of writing server-side web services, a chapter about using
web services on the client-side, and a chapter on using WS-Security.

27

Chapter 4. Shared components

This chapter explores the components that are shared between client- and server-side Spring-WS$
development. These interfaces and classes represent the building blocks of Spring-W§, so you need
to understand what they do, even if you do not use them directly.

4.1. Web Service Messages

This section describes the messages and message factories that Spring-WS uses.

4.1.1. WebServiceMessage

One of the core interfaces of Spring-WS is the WebServiceMessage. This interface represents a
protocol-agnostic XML message. The interface contains methods that provide access to the payload
of the message, in the form of a javax.xml.transform.Source or a javax.xml.transform.Result. Source
and Result are tagging interfaces that represent an abstraction over XML input and output.
Concrete implementations wrap various XML representations, as indicated in the following table:

Source or Result implementation Wrapped XML representation
javax.xml.transform.dom.DOMSource org.w3c.dom.Node
javax.xml.transform.dom.DOMResult org.w3c.dom.Node
javax.xml.transform.sax.SAXSource org.xml.sax.InputSource and
org.xml.sax.XMLReader
javax.xml.transform.sax.SAXResult org.xml.sax.ContentHandler
javax.xml.transform.stream.StreamSource java.io.File, java.io.InputStream, or

java.io.Reader

javax.xml.transform.stream.StreamResult java.io.File, java.io.OutputStream, or
java.io.Writer

In addition to reading from and writing to the payload, a web service message can write itself to an
output stream.

4.1.2. SoapMessage

SoaplMessage is a subclass of WebServiceMessage. It contains SOAP-specific methods, such as getting
SOAP Headers, SOAP Faults, and so on. Generally, your code should not be dependent on
SoapMessage, because the content of the SOAP Body (the payload of the message) can be obtained by
using getPayloadSource() and getPayloadResult() in the WebServiceMessage. Only when it is
necessary to perform SOAP-specific actions (such as adding a header, getting an attachment, and so
on) should you need to cast WebServiceMessage to SoapMessage.

4.1.3. Message Factories

Concrete message implementations are created by a WebServiceMessageFactory. This factory can
create an empty message or read a message from an input stream. One concrete implementations
of WebServiceMessageFactory is provided based on SAAJ, the SOAP with Attachments API for Java.

28

SaajSoapMessageFactory

The SaajSoapMessageFactory uses the SOAP with Attachments API for Java (SAAJ]) to create
SoaplMessage implementations. SAA]J is part of J2EE 1.4, so it should be supported under most modern
application servers. Here is an overview of the SAAJ versions supplied by common application
servers:

Application Server SAAJ Version
BEA WebLogic 8 1.1

BEA WebLogic 9 1.1/1.2"

IBM WebSphere 6 1.2

SUN Glassfish 1 1.3

'Weblogic 9 has a known bug in the SAAJ 1.2 implementation: it implements all the 1.2 interfaces
but throws an UnsupportedOperationException when called. Spring-WS has a workaround: It uses
SAAJ 1.1 when operating on WebLogic 9.

Additionally, Java SE 6 includes SAAJ 1.3. You can wire up a SaajSoapMessageFactory as follows:

<bean id="messageFactory"
class="org.springframework.ws.soap.saaj.SaajSoapMessageFactory" />

SAAJ is based on DOM, the Document Object Model. This means that all SOAP
NOTE messages are stored in memory. For larger SOAP messages, this may not be
performant.

SOAP1.10r1.2

SaajSoapMessageFactory has a soapVersion property, where you can inject a SoapVersion constant. By
default, the version is 1.1, but you can set it to 1.2:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:util="http://www.springframework.org/schema/util"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
http://www.springframework.org/schema/util
http://www.springframework.org/schema/util/spring-util-2.0.xsd">

<bean id="messageFactory"
class="org.springframework.ws.soap.saaj.SaajSoapMessageFactory">
<property name="soapVersion">
<util:constant static-
field="org.springframework.ws.soap.SoapVersion.SOAP_12"/>
</property>

29

</bean>

</beans>

In the preceding example, we define a SaajSoapMessageFactory that accepts only SOAP 1.2 messages.

Even though both versions of SOAP are quite similar in format, the 1.2 version
is not backwards compatible with 1.1, because it uses a different XML
namespace. Other major differences between SOAP 1.1 and 1.2 include the
different structure of a fault and the fact that SOAPAction HTTP headers are

effectively deprecated, though they still work.
WARNING
One important thing to note with SOAP version numbers (or WS-* specification

version numbers in general) is that the latest version of a specification is
generally not the most popular version. For SOAP, this means that (currently)
the best version to use is 1.1. Version 1.2 might become more popular in the
future, but 1.1 is currently the safest bet.

4.1.4. MessageContext

Typically, messages come in pairs: a request and a response. A request is created on the client-side,
which is sent over some transport to the server-side, where a response is generated. This response
gets sent back to the client, where it is read.

In Spring-WS, such a conversation is contained in a MessageContext, which has properties to get
request and response messages. On the client-side, the message context is created by the
WebServiceTemplate. On the server-side, the message context is read from the transport-specific
input stream. For example, in HTTP, it is read from the HttpServletRequest, and the response is
written back to the HttpServletResponse.

4.2. TransportContext

One of the key properties of the SOAP protocol is that it tries to be transport-agnostic. This is why,
for instance, Spring-WS does not support mapping messages to endpoints by HTTP request URL but
rather by message content.

However, it is sometimes necessary to get access to the underlying transport, either on the client or
the server side. For this, Spring-WS has the TransportContext. The transport context allows access to
the underlying WebServiceConnection, which typically is a HttpServletConnection on the server side
or a HttpUr1Connection or CommonsHttpConnection on the client side. For example, you can obtain the
IP address of the current request in a server-side endpoint or interceptor:

TransportContext context = TransportContextHolder.getTransportContext();
HttpServletConnection connection = (HttpServletConnection
)context.getConnection();

HttpServletRequest request = connection.getHttpServletRequest();

30

String ipAddress = request.getRemoteAddr();

4.3. Handling XML With XPath

One of the best ways to handle XML is to use XPath. Quoting [effective-xml], item 35:

XPath is a fourth generation declarative language that allows you to specify
which nodes you want to process without specifying exactly how the
processor is supposed to navigate to those nodes. XPath’s data model is very
well designed to support exactly what almost all developers want from
XML. For instance, it merges all adjacent text including that in CDATA
sections, allows values to be calculated that skip over comments and
processing instructions’ and include text from child and descendant
elements, and requires all external entity references to be resolved. In
practice, XPath expressions tend to be much more robust against
unexpected but perhaps insignificant changes in the input document.

— Elliotte Rusty Harold

Spring-WS has two ways to use XPath within your application: the faster XPathExpression or the
more flexible XPathOperations.

4.3.1. XPathExpression

The XPathExpression is an abstraction over a compiled XPath expression, such as the Java 5
javax.xml.xpath.XPathExpression interface or the Jaxen XPath class. To construct an expression in an
application context, you can use XPathExpressionFactoryBean. The following example uses this
factory bean:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd">

<bean id="nameExpression"
class="org.springframework.xml.xpath.XPathExpressionFactoryBean">
<property name="expression" value="/Contacts/Contact/Name"/>
</bean>

<bean id="myEndpoint" class="sample.MyXPathClass">

<constructor-arg ref="nameExpression"/>
</bean>

31

</beans>

The preceding expression does not use namespaces, but we could set those by using the namespaces
property of the factory bean. The expression can be used in the code as follows:

package sample;
public class MyXPathClass {
private final XPathExpression nameExpression;

public MyXPathClass(XPathExpression nameExpression) {
this.nameExpression = nameExpression;

}

public void doXPath(Document document) {
String name =
nameExpression.evaluateAsString(document.getDocumentElement());
System.out.println("Name: " + name);

}

For a more flexible approach, you can use a NodeMapper, which is similar to the RowMapper in Spring’s
JDBC support. The following example shows how to use it:

package sample;
public class MyXPathClass {
private final XPathExpression contactExpression;

public MyXPathClass(XPathExpression contactExpression) {
this.contactExpression = contactExpression;

}

public void doXPath(Document document) {
List contacts = contactExpression.evaluate(document,
new NodeMapper() {
public Object mapNode(Node node, int nodeNum) throws DOMException {

Element contactElement = (Element) node;

Element nameElement = (Element)
contactElement.getElementsByTagName("Name").item(0);

Element phoneElement = (Element)
contactElement.getElementsByTagName("Phone").item(0);

32

return new Contact(nameElement.getTextContent(),
phoneElement.getTextContent());

}

b
PlainText Section gName; // do something with the 1list of Contact objects

}

Similar to mapping rows in Spring JDBC’s RowMapper, each result node is mapped by using an
anonymous inner class. In this case, we create a Contact object, which we use later on.

4.3.2. XPathOperations

The XPathExpression lets you evaluate only a single, pre-compiled expression. A more flexible,
though slower, alternative is the XPathOperations. This class follows the common template pattern
used throughout Spring (JdbcTemplate, JmsTemplate, and others). The following listing shows an
example:

package sample;
public class MyXPathClass {
private XPathOperations template = new Jaxp13XPathTemplate();

public void doXPath(Source source) {
String name = template.evaluateAsString("/Contacts/Contact/Name",
request);
// do something with name

}

4.4. Message Logging and Tracing

When developing or debugging a web service, it can be quite useful to look at the content of a
(SOAP) message when it arrives, or before it is sent. Spring-WS offer this functionality, through the
standard Commons Logging interface.

To log all server-side messages, set the org.springframework.ws.server.MessageTracing logger level to
DEBUG or TRACE. On the DEBUG level, only the payload root element is logged. On the TRACE level, the
entire message content is logged. If you want to log only sent messages, use the
org.springframework.ws.server.MessageTracing.sent logger. Similarly, you can use
org.springframework.ws.server.MessageTracing.received to log only received messages.

On the client-side, similar loggers exist: org.springframework.ws.client.MessageTracing.sent and

33

org.springframework.ws.client.MessageTracing.received.

The following example of a log4j2.properties configuration file logs the full content of sent
messages on the client side and only the payload root element for client-side received messages. On
the server-side, the payload root is logged for both sent and received messages:

appender.console.name=STDOUT
appender.console.type=Console
appender.console.layout.type=PatternLayout
appender.console.layout.pattern=%-5p [%c{3}] %m%n

rootLogger=DEBUG, STDOUT
logger.org.springframework.ws.client.MessageTracing.sent=TRACE
logger.org.springframework.ws.client.MessageTracing.received=DEBUG
logger.org.springframework.ws.server.MessageTracing=DEBUG

With this configuration, a typical output is:

TRACE [client.MessageTracing.sent] Sent request [<SOAP-ENV:Envelope xmlns:SOAP-
ENV="...

DEBUG [server.MessageTracing.received] Received request [SaajSoapMessage
{http://example.com}request] ...

DEBUG [server.MessageTracing.sent] Sent response [SaajSoapMessage
{http://example.com}response] ...

DEBUG [client.MessageTracing.received] Received response [SaajSoapMessage
{http://example.com}response] ...

34

Chapter 5. Creating a Web service with
Spring-WS

Spring-WS server-side support is designed around a MessageDispatcher that dispatches incoming
messages to endpoints, with configurable endpoint mappings, response generation, and endpoint
interception. Endpoints are typically annotated with the @Endpoint annotation and have one or
more handling methods. These methods handle incoming XML request messages by inspecting
parts of the message (typically the payload) and create some sort of response. You can annotate the
method with another annotation, typically @PayloadRoot, to indicate what sort of messages it can
handle.

Spring-WS XML handling is extremely flexible. An endpoint can choose from a large number of
XML handling libraries supported by Spring-WS, including:

The DOM family: W3C DOM, JDOM, dom4j, and XOM.

SAX or StAX: For faster performance.

XPath: To extract information from the message.

* Marshalling techniques (JAXB, Castor, XMLBeans, JiBX, or XStream): To convert the XML to
objects and vice-versa.

5.1. The MessageDispatcher

The server-side of Spring-WS is designed around a central class that dispatches incoming XML
messages to endpoints. Spring-WS MessageDispatcher is extremely flexible, letting you use any sort
of class as an endpoint, as long as it can be configured in the Spring IoC container. In a way, the
message dispatcher resembles Spring’s DispatcherServlet, the "Front Controller" used in Spring
Web MVC.

The following sequence diagram shows the processing and dispatching flow of the
MessageDispatcher:

:‘MessageDispatcher, | :EndpointMapping :EndpointAdapter endpoint

dispatchi{request) E

gelEndpoint{request)

i
endpoint i
_________ supports lendpoint) - :
! :
T invoke(requést, endpoin) N |
i invoke(request) i

i ___Tesponse

P response | |

response

When a MessageDispatcher is set up for use and a request comes in for that specific dispatcher, the
MessageDispatcher starts processing the request. The following process describes how

35

MessageDispatcher handles a request:

1. The configured EndpointMapping(s) is searched for an appropriate endpoint. If an endpoint is
found, the invocation chain associated with the endpoint (pre-processors, post-processors, and
endpoints) is invoked to create a response.

2. An appropriate adapter is found for the endpoint. The MessageDispatcher delegates to this
adapter to invoke the endpoint.

3. If a response is returned, it is sent on its way. If no response is returned (which could be due to a
pre- or post-processor intercepting the request, for example, for security reasons), no response
is sent.

Exceptions that are thrown during the handling of the request get picked up by any of the endpoint
exception resolvers that are declared in the application context. Using these exception resolvers lets
you define custom behaviors (such as returning a SOAP fault), in case such exceptions get thrown.

The MessageDispatcher has several properties for setting endpoint adapters, mappings, exception
resolvers. However, setting these properties is not required, since the dispatcher automatically
detects all the types that are registered in the application context. You should set these properties
only when you need to override detection.

The message dispatcher operates on a message context and not on a transport-specific input stream
and output stream. As a result, transport-specific requests need to read into a MessageContext. For
HTTP, this is done with a WebServiceMessageReceiverHandlerAdapter (which is a Spring Web
HandlerInterceptor) so that the MessageDispatcher can be wired in a standard DispatcherServlet.
There is a more convenient way to do this, however, which is shown in MessageDispatcherServlet.

5.2. Transports

Spring-WS supports multiple transport protocols. The most common is the HTTP transport, for
which a custom servlet is supplied, but you can also send messages over JMS and even email.

5.2.1. MessageDispatcherServlet

The MessageDispatcherServlet is a standard Servlet that conveniently extends from the standard
Spring Web DispatcherServlet and wraps a MessageDispatcher. As a result, it combines the attributes
of these into one. As a MessageDispatcher, it follows the same request handling flow as described in
the previous section. As a servlet, the MessageDispatcherServlet is configured in the web.xml of your
web application. Requests that you want the MessageDispatcherServlet to handle must be mapped
by a URL mapping in the same web.xml file. This is standard JavaEE servlet configuration. The
following example shows such a MessageDispatcherServlet declaration and mapping:

<web-app>

<servlet>
<servlet-name>spring-ws</servlet-name>
<servlet-
class>org.springframework.ws.transport.http.MessageDispatcherServlet</servlet-

36

class>
<load-on-startup>1</load-on-startup>
</servlet>

<servlet-mapping>
<servlet-name>spring-ws</servlet-name>
<url-pattern>/*</url-pattern>
</servlet-mapping>

</web-app>

In the preceding example, all requests are handled by the spring-ws MessageDispatcherServlet. This
is only the first step in setting up Spring-WS, because the various component beans used by the
Spring-WS framework also need to be configured. This configuration consists of standard Spring
XML <bean/> definitions. Because the MessageDispatcherServlet is a standard Spring
DispatcherServlet, it looks for a file named [servlet-name]-servlet.xml in the WEB-INF directory of
your web application and creates the beans defined there in a Spring container. In the preceding
example, it looks for /WEB-INF/spring-ws-servlet.xml. This file contains all the Spring-WS beans,
such as endpoints, marshallers, and so on.

As an alternative for web.xml, you can configure Spring-WS programmatically. For this purpose,
Spring-WS provides a number of abstract base classes that extend the WebApplicationInitializer
interface found in the Spring Framework. If you also use @Configuration classes for your bean
definitions, you should extend the AbstractAnnotationConfigMessageDispatcherServletInitializer:

public class MyServletInitializer
extends AbstractAnnotationConfigMessageDispatcherServletInitializer {

@0verride
protected Class<?>[] getRootConfigClasses() {
return new Class[]{MyRootConfig.class};

}

@0verride
protected Class<?>[] getServletConfigClasses() {
return new Class[]{MyEndpointConfig.class};

}

In the preceding example, we tell Spring that endpoint bean definitions can be found in the
MyEndpointConfig class (which is a @Configuration class). Other bean definitions (typically services,
repositories, and so on) can be found in the MyRootConfig class. By default, the
AbstractAnnotationConfigMessageDispatcherServletInitializer maps the servlet to two patterns:
/services and *.wsdl, though you can change this by overriding the getServletMappings() method.
For more details on the programmatic configuration of the MessageDispatcherServlet, refer to the

37

Javadoc of AbstractMessageDispatcherServletInitializer and
AbstractAnnotationConfigMessageDispatcherServlietInitializer.

Automatic WSDL exposure

The MessageDispatcherServlet automatically detects any Wsd1Definition beans defined in its Spring
container. All the WsdlDefinition detected beans are also exposed through a
Wsd1DefinitionHandlerAdapter. This is a convenient way to expose your WSDL to clients by defining
some beans.

By way of an example, consider the following <static-wsd1> definition, defined in the Spring-WS§
configuration file (/WEB-INF/[servlet-name]-servlet.xml). Take notice of the value of the id attribute,
because it is used when exposing the WSDL.

<sws:static-wsdl id="orders" location="orders.wsdl"/>

Alternatively, it can be a @Bean method in a @Configuration class:

@Bean
public SimpleWsd111Definition orders() {
return new SimpleWsd111Definition(new ClassPathResource("orders.wsd1"));

}

You can access the WSDL defined in the orders.wsdl file on the classpath through GET requests to a
URL of the following form (substitute the host, port and servlet context path as appropriate):

http://localhost:8080/spring-ws/orders.wsdl

All Wsd1Definition bean definitions are exposed by the MessageDispatcherServlet
under their bean name with a suffix of ".wsdl . So, if the bean name is echo, the host
name is server, and the Servlet context (war name) is spring-ws, the WSDL can be
found at http://server/spring-ws/echo.wsdl.

NOTE

Another nice feature of the MessageDispatcherServlet (or more correctly the
Wsd1DefinitionHandlerAdapter) is that it can transform the value of the location of all the WSDL that
it exposes to reflect the URL of the incoming request.

Note that this location transformation feature is off by default. To switch this feature on, you need
to specify an initialization parameter to the MessageDispatcherServlet:

38

https://docs.spring.io/spring-ws/docs/4.0.16/api/org/springframework/ws/transport/http/support/AbstractMessageDispatcherServletInitializer.html
https://docs.spring.io/spring-ws/docs/4.0.16/api/org/springframework/ws/transport/http/support/AbstractAnnotationConfigMessageDispatcherServletInitializer.html
http://server/spring-ws/echo.wsdl

<web-app>

<servlet>
<servlet-name>spring-ws</servlet-name>
<servlet-
class>org.springframework.ws.transport.http.MessageDispatcherServlet</servlet-
class>

<init-param>
<param-name>transformWsdlLocations</param-name>
<param-value>true</param-value>
</init-param>
</servlet>

<servlet-mapping>
<servlet-name>spring-ws</servlet-name>
<url-pattern>/*</url-pattern>
</servlet-mapping>

</web-app>

If you use AbstractAnnotationConfigMessageDispatcherServletInitializer, enabling transformation
is as simple as overriding the isTransformWsdlLocations() method to return true.

Consult the class-level Javadoc on the Wsd1DefinitionHandlerAdapter class to learn more about the
whole transformation process.

As an alternative to writing the WSDL by hand and exposing it with <static-wsdl>, Spring-WS can
also generate a WSDL from an XSD schema. This is the approach shown in Publishing the WSDL.
The next application context snippet shows how to create such a dynamic WSDL file:

<sws:dynamic-wsdl id="orders"
portTypeName="0rders"
locationUri="http://localhost:8080/ordersService/">
<sws:xsd location="0Orders.xsd"/>
</sws:dynamic-wsdl>

Alternatively, you can use the Java @Bean method:

@Bean

public DefaultWsd111Definition orders() {
DefaultWsd111Definition definition = new DefaultWsdl11Definition();
definition.setPortTypeName("Orders");
definition.setlocationUri("http://localhost:8080/ordersService/");
definition.setSchema(new SimpleXsdSchema(new

39

https://docs.spring.io/spring-ws/docs/4.0.16/api/org/springframework/ws/transport/http/WsdlDefinitionHandlerAdapter.html

ClassPathResource("0Orders.xsd")));
return definition;

The <dynamic-wsd1> element depends on the DefaultWsd111Definition class. This definition class uses
WSDL providers in the org.springframework.ws.wsdl.wsd111.provider package and the
ProviderBasedWsd14jDefinition class to generate a WSDL the first time it is requested. See the class-
level Javadoc of these classes to see how you can extend this mechanism, if necessary.

The DefaultWsd111Definition (and therefore, the <dynamic-wsdl> tag) builds a WSDL from an XSD
schema by using conventions. It iterates over all element elements found in the schema and creates
a message for all elements. Next, it creates a WSDL operation for all messages that end with the
defined request or response suffix. The default request suffix is Request. The default response suffix
is Response, though these can be changed by setting the requestSuffix and responseSuffix attributes
on <dynamic-wsdl />, respectively. It also builds a portType, binding, and service based on the
operations.

For instance, if our Orders.xsd schema defines the GetOrdersRequest and GetOrdersResponse
elements, <dynamic-wsd1l> creates a GetOrdersRequest and GetOrdersResponse message and a GetOrders
operation, which is put in a Orders port type.

To use multiple schemas, either by includes or imports, you can put Commons XMLSchema on the
class path. If Commons XMLSchema is on the class path, the <dynamic-wsd1> element follows all XSD
imports and includes and inlines them in the WSDL as a single XSD. With Java config, you can use
CommonsXsdSchemaCollection as shown in the following example:

@Bean

public DefaultWsd111Definition ordersWsdlDefinition() throws Exception {
DefaultWsd111Definition wsd111Definition = new DefaultWsd111Definition();
// ... configuration
CommonsXsdSchemaCollection schemas = new CommonsXsdSchemaCollection(

new ClassPathResource("xsd/order/main.xsd"));

schemas.setInline(true);
wsd111Definition.setSchemaCollection(schemas);
return wsd111Definition;

This greatly simplifies the deployment of the schemas, while still making it possible to edit them
separately.

Even though it can be handy to create the WSDL at runtime from your XSDs,
there are a couple of drawbacks to this approach. First, though we try to keep

WARNING the WSDL generation process consistent between releases, there is still the
possibility that it changes (slightly). Second, the generation is a bit slow,
though, once generated, the WSDL is cached for later reference.

Therefore, you should use <dynamic-wsd1> only during the development stages of your project. We

40

https://docs.spring.io/spring-ws/docs/4.0.16/api/org/springframework/ws/wsdl/wsdl11/provider/package-summary.html
https://docs.spring.io/spring-ws/docs/4.0.16/api/org/springframework/ws/wsdl/wsdl11/ProviderBasedWsdl4jDefinition.html

recommend using your browser to download the generated WSDL, store it in the project, and
expose it with <static-wsd1l>. This is the only way to be really sure that the WSDL does not change
over time

5.2.2. Wiring up Spring-WS in a DispatcherServlet

As an alternative to the MessageDispatcherServlet, you can wire up a MessageDispatcher in a
standard, Spring-Web MVC DispatcherServlet. By default, the DispatcherServlet can delegate only to
Controllers, but we can instruct it to delegate to a MessageDispatcher by adding a
WebServiceMessageReceiverHandlerAdapter to the servlet’s web application context:

<beans>

<bean
class="org.springframework.ws.transport.http.WebServiceMessageReceiverHandlerAdapt
er"/>

<bean class="org.springframework.web.servlet.handler.SimpleUr1lHandlerMapping">

<property name="defaultHandler" ref="messageDispatcher"/>
</bean

<bean id="messageDispatcher"
class="org.springframework.ws.soap.server.SoapMessageDispatcher"/>

<bean
class="org.springframework.web.servlet.mvc.method.annotation.RequestMappingHandler
Adapter"/>

</beans>

Note that, by explicitly adding the WebServiceMessageReceiverHandlerAdapter, the dispatcher servlet
does not load the default adapters and is unable to handle standard Spring-MVC @Controllers.
Therefore, we add the RequestMappingHandlerAdapter at the end.

In a similar fashion, you can wire a WsdlDefinitionHandlerAdapter to make sure the
DispatcherServlet can handle implementations of the Wsd1Definition interface:

<beans>
<bean
class="org.springframework.ws.transport.http.WebServiceMessageReceiverHandlerAdapt

er"/>

<bean

41

class="org.springframework.ws.transport.http.Wsd1DefinitionHandlerAdapter"/>

<bean class="org.springframework.web.servlet.handler.SimpleUr1HandlerMapping">
<property name="mappings">

<props>
<prop key="*.wsd1">myServiceDefinition</prop>
</props>
</property>
<property name="defaultHandler" ref="messageDispatcher"/>
</bean>

<bean id="messageDispatcher"
class="org.springframework.ws.soap.server.SoapMessageDispatcher"/>

<bean id="myServiceDefinition"
class="org.springframework.ws.wsdl.wsd111.SimpleWsd111Definition">
<prop name="wsdl" value="/WEB-INF/myServiceDefinition.wsd1"/>
</bean>

</beans>

5.2.3. JMS transport

Spring-WS supports server-side JMS handling through the JMS functionality provided in the Spring
framework. Spring-WS provides the WebServiceMessagelistener to plug in to a
MessageListenerContainer. This message listener requires a WebServiceMessageFactory and
MessageDispatcher to operate. The following configuration example shows this:

<beans>

<bean id="connectionFactory"
class="org.apache.activemq.ActiveMQConnectionFactory">
<property name="brokerURL"
value="vm://localhost?broker.persistent=false"/>
</bean>

<bean id="messageFactory"
class="org.springframework.ws.soap.saaj.SaajSoapMessageFactory"/>

<bean
class="org.springframework.jms.listener.DefaultMessagelistenerContainer">
<property name="connectionFactory" ref="connectionFactory"/>
<property name="destinationName" value="RequestQueue"/>
<property name="messagelistener">
<bean
class="org.springframework.ws.transport.jms.WebServiceMessagelListener">

42

<property name="messageFactory" ref="messageFactory"/>
<property name="messageReceiver" ref="messageDispatcher"/>
</bean>
</property>
</bean>

<bean id="messageDispatcher"
class="org.springframework.ws.soap.server.SoapMessageDispatcher">
<property name="endpointMappings">
<bean

class="org.springframework.ws.server.endpoint.mapping.PayloadRootAnnotationMethodE
ndpointMapping">
<property name="defaultEndpoint">
<bean class="com.example.MyEndpoint"/>
</property>
</bean>
</property>
</bean>
</beans>

5.2.4. Email Transport

In addition to HTTP and JMS, Spring-WS also provides server-side email handling. This
functionality is provided through the MailMessageReceiver class. This class monitors a POP3 or IMAP
folder, converts the email to a WebServiceMessage, and sends any response by using SMTP. You can
configure the host names through the storeUri, which indicates the mail folder to monitor for
requests (typically a POP3 or IMAP folder), and a transportUri, which indicates the server to use for
sending responses (typically an SMTP server).

You can configure how the MailMessageReceiver monitors incoming messages with a pluggable
strategy: the MonitoringStrategy. By default, a polling strategy is used, where the incoming folder is
polled for new messages every five minutes. You can change this interval by setting the
pollingInterval property on the strategy. By default, all MonitoringStrategy implementations delete
the handled messages. You can change this setting by setting the deleteMessages property.

As an alternative to the polling approaches, which are quite inefficient, there is a monitoring
strategy that uses IMAP IDLE. The IDLE command is an optional expansion of the IMAP email
protocol that lets the mail server send new message updates to the MailMessageReceiver
asynchronously. If you use an IMAP server that supports the IDLE command, you can plug the
ImapIdleMonitoringStrategy into the monitoringStrategy property.

The following piece of configuration shows how to use the server-side email support, overriding the
default polling interval to check every 30 seconds (30.000 milliseconds):

<beans>

43

<bean id="messageFactory"
class="org.springframework.ws.soap.saaj.SaajSoapMessageFactory"/>

<bean id="messagingReceiver"
class="org.springframework.ws.transport.mail.MailMessageReceiver">
<property name="messageFactory" ref="messageFactory"/>
<property name="from" value="Spring-WS SOAP Server
<server@example.com>"/>
<property name="storeUri"
value="1imap://server:s@4p@imap.example.com/INBOX" />
<property name="transportUri" value="smtp://smtp.example.com"/>
<property name="messageReceiver" ref="messageDispatcher"/>
<property name="monitoringStrategy">
<bean
class="org.springframework.ws.transport.mail.monitor.PollingMonitoringStrategy">
<property name="pollingInterval" value="30000"/>
</bean>
</property>
</bean>

<bean id="messageDispatcher"
class="org.springframework.ws.soap.server.SoapMessageDispatcher">
<property name="endpointMappings">
<bean

class="org.springframework.ws.server.endpoint.mapping.PayloadRootAnnotationMethodE
ndpointMapping">
<property name="defaultEndpoint">
<bean class="com.example.MyEndpoint"/>
</property>
</bean>
</property>
</bean>
</beans>

5.2.5. Embedded HTTP Server transport
NOTE This should only be used for testing purposes.

Spring-WS provides a transport based on Sun’s JRE HTTP server. The embedded HTTP Server is a
standalone server that is simple to configure. It offers a lighter alternative to conventional servlet
containers.

When using the embedded HTTP server, you need no external deployment descriptor (web.xml). You
need only define an instance of the server and configure it to handle incoming requests.
SimpleHttpServerFactoryBean wires things up, and the most important property is contexts, which
maps context paths to corresponding HttpHandler instances.

Spring-WS provides two implementations of the HttpHandler interface: Wsd1DefinitionHttpHandler

44

http://java.sun.com/javase/6/docs/jre/api/net/httpserver/spec/index.html
https://docs.spring.io/spring-ws/docs/4.0.16/api/org/springframework/ws/transport/http/WsdlDefinitionHttpHandler.html

and WebServiceMessageReceiverHttpHandler. The former maps an incoming GET request to a
Wsd1Definition. The latter is responsible for handling POST requests for web services messages and,
thus, needs a WebServiceMessageFactory (typically a SaajSoapMessageFactory) and a
WebServiceMessageReceiver (typically the SoapMessageDispatcher) to accomplish its task.

To draw parallels with the servlet world, the contexts property plays the role of servlet mappings in
web.xml and the WebServiceMessageReceiverHttpHandler is the equivalent of a
MessageDispatcherServlet

The following snippet shows a configuration example of the HTTP server transport:

<beans>

<bean id="messageFactory"
class="org.springframework.ws.soap.saaj.SaajSoapMessageFactory"/>

<bean id="messageReceiver"
class="org.springframework.ws.soap.server.SoapMessageDispatcher">
<property name="endpointMappings" ref="endpointMapping"/>
</bean>

<bean id="endpointMapping"
class="org.springframework.ws.server.endpoint.mapping.PayloadRootAnnotationMethodE
ndpointMapping">
<property name="defaultEndpoint" ref="stockEndpoint"/>
</bean>

<bean id="httpServer"
class="org.springframework.ws.transport.http.SimpleHttpServerFactoryBean">
<property name="contexts">
<map>
<entry key="/StockService.wsdl" value-ref="wsdlHandler"/>
<entry key="/StockService" value-ref="soapHandler"/>
</map>
</property>
</bean>

<bean id="soapHandler"
class="org.springframework.ws.transport.http.WebServiceMessageReceiverHttpHandler"
>
<property name="messageFactory" ref="messageFactory"/>
<property name="messageReceiver" ref="messageReceiver"/>
</bean>

<bean id="wsd1Handler"
class="org.springframework.ws.transport.http.Wsd1DefinitionHttpHandler">
<property name="definition" ref="wsd1Definition"/>
</bean>
</beans>

45

https://docs.spring.io/spring-ws/docs/4.0.16/api/org/springframework/ws/transport/http/WebServiceMessageReceiverHttpHandler.html

5.2.6. XMPP transport

Spring-WS has support for XMPP, otherwise known as Jabber. The support is based on the Smack
library.

Spring-WS support for XMPP is very similar to the other transports: There is a a XmppMessageSender
for the WebServiceTemplate and a XmppMessageReceiver to use with the MessageDispatcher.

The following example shows how to set up the server-side XMPP components:

<beans>

<bean id="messageFactory"
class="org.springframework.ws.soap.saaj.SaajSoapMessageFactory"/>

<bean id="connection"
class="org.springframework.ws.transport.xmpp.support.XmppConnectionFactoryBean">
<property name="host" value="jabber.org"/>
<property name="username" value="username"/>
<property name="password" value="password"/>
</bean>

<bean id="messagingReceiver"
class="org.springframework.ws.transport.xmpp.XmppMessageReceiver">
<property name="messageFactory" ref="messageFactory"/>
<property name="connection" ref="connection"/>
<property name="messageReceiver" ref="messageDispatcher"/>
</bean>

<bean id="messageDispatcher"
class="org.springframework.ws.soap.server.SoapMessageDispatcher">
<property name="endpointMappings">
<bean

class="org.springframework.ws.server.endpoint.mapping.PayloadRootAnnotationMethodE
ndpointMapping">
<property name="defaultEndpoint">
<bean class="com.example.MyEndpoint"/>
</property>
</bean>
</property>
</bean>

</beans>

5.2.7. MTOM

MTOM is the mechanism for sending binary data to and from Web Services. You can look at how to

46

https://www.igniterealtime.org/projects/smack/index.jsp
https://en.wikipedia.org/wiki/Message_Transmission_Optimization_Mechanism

implement this with Spring WS through the MTOM sample.

5.3. Endpoints

Endpoints are the central concept in Spring-WS server-side support. Endpoints provide access to
the application behavior, which is typically defined by a business service interface. An endpoint
interprets the XML request message and uses that input to (typically) invoke a method on the
business service. The result of that service invocation is represented as a response message. Spring-
WS has a wide variety of endpoints and uses various ways to handle the XML message and to create
aresponse.

You can create an endpoint by annotating a class with the @Endpoint annotation. In the class, you
define one or more methods that handle the incoming XML request, by using a wide variety of
parameter types (such as DOM elements, JAXB2 objects, and others). You can indicate the sort of
messages a method can handle by using another annotation (typically @PayloadRoot).

Consider the following sample endpoint:

package samples;
import org.w3c.dom.Element;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.ws.server.endpoint.annotation.Endpoint;
import org.springframework.ws.server.endpoint.annotation.PayloadRoot;
import org.springframework.ws.soap.SoapHeader;

@Endpoint M
public class AnnotationOrderEndpoint {

private final OrderService orderService;

public AnnotationOrderEndpoint(OrderService orderService) {
this.orderService = orderService;

}

@PayloadRoot(localPart = "order", namespace = "http://samples") @
public void order(@RequestPayload Element orderElement) { @
Order order = createOrder(orderElement);
orderService.createOrder(order);

}

@PayloadRoot(localPart = "orderRequest", namespace = "http://samples") @
@ResponsePayload
public Order getOrder(@RequestPayload OrderRequest orderRequest, SoapHeader
header) { ®
checkSoapHeaderForSomething(header);
return orderService.getOrder(orderRequest.getId());

}

47

https://github.com/spring-projects/spring-ws-samples/tree/main/mtom

@ The class is annotated with @Endpoint, marking it as a Spring-WS endpoint.

@ The order method takes an Element (annotated with @RequestPayload) as a parameter. This
means that the payload of the message is passed on this method as a DOM element. The
method has a void return type, indicating that no response message is sent. For more
information about endpoint methods, see @Endpoint handling methods.

3 The getOrder method takes an OrderRequest (also annotated with @RequestPayload) as a
parameter. This parameter is a JAXB2-supported object (it is annotated with
@XmlRootElement). This means that the payload of the message is passed to this method as a
unmarshalled object. The SoapHeader type is also given as a parameter. On invocation, this
parameter contains the SOAP header of the request message. The method is also annotated
with @ResponsePayload, indicating that the return value (the Order) is used as the payload of
the response message. For more information about endpoint methods, see @Endpoint
handling methods.

@ The two handling methods of this endpoint are marked with @PayloadRoot, indicating what
sort of request messages can be handled by the method: the getOrder method is invoked for
requests with a orderRequest local name and a http://samples namespace URI. The order
method is invoked for requests with a order local name. For more information about
@PayloadRoot, see Endpoint mappings.

To enable the support for @Endpoint and related Spring-WS annotations, you need to add the
following to your Spring application context:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:sws="http://www.springframework.org/schema/web-services"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
*http://www.springframework.org/schema/web-services
http://www.springframework.org/schema/web-services/web-services.xsd">

<sws:annotation-driven />

</beans>

Alternatively, if you use @Configuration classes instead of Spring XML, you can annotate your
configuration class with @EnablelWs:

@EnableWs
@Configuration
public class EchoConfig {

48

http://samples

// @Bean definitions go here

To customize the @Enablells configuration, you can implement WsConfigurer and override individual
methods:

@Configuration
@EnableWs
public class EchoConfig extends WsConfigurerAdapter {

@0verride
public void addInterceptors(List<EndpointInterceptor> interceptors) {
interceptors.add(new MyInterceptor());

}

@0verride
public void addArgumentResolvers(List<MethodArgumentResolver> argumentResolvers)

argumentResolvers.add(new MyArgumentResolver());

}

If WsConfigurer does not expose some more advanced setting that needs to be configured, consider
removing @Enablells and extending directly from WsConfigurationSupport or
DelegatingWsConfiguration

@Configuration
public class EchoConfig extends WsConfigurationSupport {

@0verride
public void addInterceptors(List<EndpointInterceptor> interceptors) {
interceptors.add(new MyInterceptor());

}

@Bean
@0verride
public PayloadRootAnnotationMethodEndpointMapping
payloadRootAnnotationMethodEndpointMapping() {
// Create or delegate to "super" to create and
// customize properties of PayloadRootAnnotationMethodEndpointMapping

49

In the next couple of sections, a more elaborate description of the @Endpoint programming model is
given.

Endpoints, like any other Spring Bean, are scoped as a singleton by default. That is,
one instance of the bean definition is created per container. Being a singleton

NOTE implies that more than one thread can use it at the same time, so the endpoint has
to be thread safe. If you want to use a different scope, such as prototype, see the
Spring Framework reference documentation.

Note that all abstract base classes provided in Spring-WS are thread safe, unless otherwise
indicated in the class-level Javadoc.

5.4. @Endpoint handling methods

For an endpoint to actually handle incoming XML messages, it needs to have one or more handling
methods. Handling methods can take wide range of parameters and return types. However, they
typically have one parameter that contains the message payload, and they return the payload of the
response message (if any). This section covers which parameter and return types are supported.

To indicate what sort of messages a method can handle, the method is typically annotated with
either the @PayloadRoot or the @SoapAction annotation. You can learn more about these annotations
in Endpoint mappings.

The following example shows a handling method:

@PayloadRoot(localPart = "order", namespace = "http://samples")
public void order(@RequestPayload Element orderElement) {
Order order = createOrder(orderElement);
orderService.createOrder(order);

}

The order method takes an Element (annotated with @RequestPayload) as a parameter. This means
that the payload of the message is passed on this method as a DOM element. The method has a void
return type, indicating that no response message is sent.

5.4.1. Handling Method Parameters

The handling method typically has one or more parameters that refer to various parts of the
incoming XML message. Most commonly, the handling method has a single parameter that maps to
the payload of the message, but it can also map to other parts of the request message, such as a
SOAP header. This section describes the parameters you can use in your handling method
signatures.

50

https://docs.spring.io/spring-framework/reference/6.1/core/beans/factory-scopes.html#beans-factory-scopes-other-injection

To map a parameter to the payload of the request message, you need to annotate this parameter
with the @RequestPayload annotation. This annotation tells Spring-WS that the parameter needs to
be bound to the request payload.

The following table describes the supported parameter types. It shows the supported types,
whether the parameter should be annotated with @RequestPayload, and any additional notes.

Name

TrAX

W3C DOM

dom4;j

JDOM

XOM

StAX

XPath

Message context

Supported parameter
types
javax.xml.transform.So
urce and sub-interfaces
(DOMSource, SAXSource,
StreamSource, and
StAXSource)

org.w3c.dom.Element

org.dom4j.Element

org.jdom.Element

nu.xom.Element

javax.xml.stream.XMLSt

reamReader and
javax.xml.stream.XMLEv
entReader

Any boolean, double,
String, org.w3c.Node,
org.w3c.dom.Nodelist,
or type that can be
converted from a
String by a Spring
conversion service, and
that is annotated with
@XPathParam.
org.springframework.ws

.context.MessageContex
t

@RequestPayload
required?

Yes

Yes

Yes

Yes

Yes

Yes

No

No

Additional notes

Enabled by default.

Enabled by default

Enabled when dom4;j is
on the classpath.

Enabled when JDOM is
on the classpath.

Enabled when XOM is
on the classpath.

Enabled when StAX is
on the classpath.

Enabled by default, see
the section called
XPathParam.

Enabled by default.

31

https://docs.spring.io/spring-framework/reference/6.1/core/validation/convert.html#core-convert-ConversionService-API

Name

SOAP

JAXB2

OXM

Supported parameter @RequestPayload
types required?

org.springframework.ws No

.50ap.SoapMessage,
org.springframework.ws

.s0ap. SoapBody,
org.springframework.ws

.soap.SoapEnvelope,
org.springframework.ws

.soap.SoapHeader, and
org.springframework.ws
.50ap.SoapHeaderElemen
t's when used in
combination with the

‘@SoapHeader
annotation.

Any type that is Yes

annotated with
javax.xml.bind.annotat

ion.XmlRootElement, and
javax.xml.bind.JAXBEle
ment.

Any type supported by Yes
a Spring OXM
Unmarshaller.

Additional notes

Enabled by default.

Enabled when JAXB2 is
on the classpath.

Enabled when the
unmarshaller attribute
of <sws:annotation-

driven/> is specified.

The next few examples show possible method signatures. The following method is invoked with the
payload of the request message as a DOM org.w3c.dom.Element:

public void handle(@RequestPayload Element element)

The following method is invoked with the payload of the request message as a
javax.xml.transform.dom.DOMSource. The header parameter is bound to the SOAP header of the
request message.

public void handle(@RequestPayload DOMSource domSource, SoapHeader header)

The following method is invoked with the payload of the request message unmarshalled into a
MyJaxb20bject (which is annotated with @XmlRootElement). The payload of the message is also given
as a DOM Element. The whole message context is passed on as the third parameter.

32

https://docs.spring.io/spring-framework/reference/6.1/data-access/oxm.html#oxm-marshaller-unmarshaller

public void handle(@RequestPayload Mylaxb20bject requestObject, @RequestPayload
Element element, Message messageContext)

As you can see, there are a lot of possibilities when it comes to defining how to handle method
signatures. You can even extend this mechanism to support your own parameter types. See the
Javadoc of DefaultMethodEndpointAdapter and MethodArgumentResolver to see how.

@XPathParam

One parameter type needs some extra explanation: @XPathParam. The idea here is that you annotate
one or more method parameters with an XPath expression and that each such annotated parameter
is bound to the evaluation of the expression. The following example shows how to do so:

package samples;
import javax.xml.transform.Source;

import org.springframework.ws.server.endpoint.annotation.Endpoint;
import org.springframework.ws.server.endpoint.annotation.Namespace;
import org.springframework.ws.server.endpoint.annotation.PayloadRoot;
import org.springframework.ws.server.endpoint.annotation.XPathParam;

@Endpoint
public class AnnotationOrderEndpoint {

private final OrderService orderService;

public AnnotationOrderEndpoint(OrderService orderService) {
this.orderService = orderService;

}

@PayloadRoot(localPart = "orderRequest”, namespace = "http://samples")
@Namespace(prefix = "s", uri="http://samples")
public Order getOrder(@XPathParam("/s:orderRequest/@id") int orderId) {
Order order = orderService.getOrder(orderId);
// create Source from order and return it

}

Since we use the s prefix in our XPath expression, we must bind it to the http://samples namespace.
This is accomplished with the @Namespace annotation. Alternatively, we could have placed this
annotation on the type-level to use the same namespace mapping for all handler methods or even
the package-level (in package-info.java) to use it for multiple endpoints.

33

https://docs.spring.io/spring-ws/docs/4.0.16/api/org/springframework/ws/server/endpoint/adapter/DefaultMethodEndpointAdapter.html
https://docs.spring.io/spring-ws/docs/4.0.16/api/org/springframework/ws/server/endpoint/adapter/method/MethodArgumentResolver.html
http://samples

By using the @XPathParam, you can bind to all the data types supported by XPath:

* boolean or Boolean.
* double or Double.

* String.

* Node.

* Nodelist.

In addition to this list, you can use any type that can be converted from a String by a Spring
conversion service.

5.4.2. Handling method return types

To send a response message, the handling needs to specify a return type. If no response message is
required, the method can declare a void return type. Most commonly, the return type is used to
create the payload of the response message. However, you can also map to other parts of the
response message. This section describes the return types you can use in your handling method
signatures.

To map the return value to the payload of the response message, you need to annotate the method
with the @ResponsePayload annotation. This annotation tells Spring-WS that the return value needs
to be bound to the response payload.

The following table describes the supported return types. It shows the supported types, whether the
parameter should be annotated with @ResponsePayload, and any additional notes.

Name Supported return @ResponsePayload Additional notes
types required?

No response void No Enabled by default.

TrAX javax.xml.transform.So Yes Enabled by default.

urce and sub-interfaces
(DOMSource, SAXSource,
StreamSource, and

StAXSource)
W3C DOM org.w3c.dom.Element Yes Enabled by default
dom4;j org.dom4j.Element Yes Enabled when dom4;j is
on the classpath.
JDOM org.jdom.Element Yes Enabled when JDOM is
on the classpath.
XOM nu.xom.Element Yes Enabled when XOM is

on the classpath.

54

https://docs.spring.io/spring-framework/reference/6.1/core/validation/convert.html#core-convert-ConversionService-API

Name Supported return @ResponsePayload Additional notes

types required?
JAXB2 Any type that is Yes Enabled when JAXB2 is
annotated with on the classpath.

javax.xml.bind.annotat
jon.XmlRootElement, and
javax.xml.bind.JAXBE1le

ment.

OXM Any type supported by Yes Enabled when the
a Spring OXM marshaller attribute of
Marshaller. <sws:annotation-

driven/> is specified.

There are a lot of possibilities when it comes to defining handling method signatures. It is even
possible to extend this mechanism to support your own parameter types. See the class-level Javadoc
of DefaultMethodEndpointAdapter and MethodReturnValueHandler to see how.

5.5. Endpoint mappings

The endpoint mapping is responsible for mapping incoming messages to appropriate endpoints.
Some endpoint mappings are enabled by default — for example, the
PayloadRootAnnotationMethodEndpointMapping or the SoapActionAnnotationMethodEndpointMapping.
However, we first need to examine the general concept of an EndpointMapping.

An EndpointMapping delivers a EndpointInvocationChain, which contains the endpoint that matches
the incoming request and may also contain a list of endpoint interceptors that are applied to the
request and response. When a request comes in, the MessageDispatcher hands it over to the
endpoint mapping to let it inspect the request and come up with an appropriate
EndpointInvocationChain. Then the MessageDispatcher invokes the endpoint and any interceptors in
the chain.

The concept of configurable endpoint mappings that can optionally contain interceptors (which
can, in turn, manipulate the request, the response, or both) is extremely powerful. A lot of
supporting functionality can be built into custom EndpointMapping implementations. For example, a
custom endpoint mapping could choose an endpoint based not only on the contents of a message
but also on a specific SOAP header (or, indeed, multiple SOAP headers).

Most endpoint mappings inherit from the AbstractEndpointMapping, which offers an ‘interceptors’
property, which is the list of interceptors to use. EndpointInterceptors are discussed in Intercepting
Requests — the EndpointInterceptor Interface.

As explained in Endpoints, the @Endpoint style lets you handle multiple requests in one endpoint
class. This is the responsibility of the MethodEndpointMapping. This mapping determines which
method is to be invoked for an incoming request message.

There are two endpoint mappings that can direct requests to methods: the
PayloadRootAnnotationMethodEndpointMapping and the SoapActionAnnotationMethodEndpointMapping
You can enable both methods by using <sws:annotation-driven/> in your application context.

55

https://docs.spring.io/spring-framework/reference/6.1/data-access/oxm.html#oxm-marshaller-unmarshaller
https://docs.spring.io/spring-ws/docs/4.0.16/api/org/springframework/ws/server/endpoint/adapter/DefaultMethodEndpointAdapter.html
https://docs.spring.io/spring-ws/docs/4.0.16/api/org/springframework/ws/server/endpoint/adapter/method/MethodReturnValueHandler.html

The PayloadRootAnnotationMethodEndpointMapping uses the @PayloadRoot annotation, with the
localPart and namespace elements, to mark methods with a particular qualified name. Whenever a
message comes in with this qualified name for the payload root element, the method is invoked.

Alternatively, the SoapActionAnnotationMethodEndpointMapping uses the @SoapAction annotation to
mark methods with a particular SOAP Action. Whenever a message comes in with this SOAPAction
header, the method is invoked.

AbstractEndpointMapping implementations provides a defaultEndpoint property that configures the
endpoint to use when a configured mapping does not result in a matching endpoint.

5.5.1. WS-Addressing

WS-Addressing specifies a transport-neutral routing mechanism. It is based on the To and Action
SOAP headers, which indicate the destination and intent of the SOAP message, respectively.
Additionally, WS-Addressing lets you define a return address (for normal messages and for faults)
and a unique message identifier, which can be used for correlation. For more information on WS-
Addressing, see https://en.wikipedia.org/wiki/WS-Addressing. The following example shows a WS-
Addressing message:

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://www.w3.0rg/2003/05/soap-envelope"
xmlns:wsa="http://www.w3.0rqg/2005/08/addressing">
<SOAP-ENV:Header>
<wsa:MessageID>urn:uuid:21363e0d-2645-4eb7-8afd-2f5eel1bb25cf</wsa:MessagelD>
<wsa:ReplyTo>
<wsa:Address>http://example.com/business/client1</wsa:Address>
</wsa:ReplyTo>
<wsa:To S:mustUnderstand="true">http://example/com/fabrikam</wsa:To>
<wsa:Action>http://example.com/fabrikam/mail/Delete</wsa:Action>
</SOAP-ENV:Header>
<SOAP-ENV:Body>
<f:Delete xmlns:f="http://example.com/fabrikam">
<f:maxCount>42</f:maxCount>
</f:Delete>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

In the preceding example, the destination is set to http://example/com/fabrikam, while the action is
set to http://example.com/fabrikam/mail/Delete. Additionally, there is a message identifier and a
reply-to address. By default, this address is the "anonymous" address, indicating that a response
should be sent by using the same channel as the request (that is, the HTTP response), but it can also
be another address, as indicated in this example.

In Spring-WS, WS-Addressing is implemented as an endpoint mapping. By using this mapping, you
associate WS-Addressing actions with endpoints, similar to the
SoapActionAnnotationMethodEndpointMapping described earlier.

36

https://en.wikipedia.org/wiki/WS-Addressing
http://example/com/fabrikam
http://example.com/fabrikam/mail/Delete

Using AnnotationActionEndpointMapping

The AnnotationActionEndpointMapping is similar to the SoapActionAnnotationMethodEndpointMapping
but uses WS-Addressing headers instead of the SOAP Action transport header.

To use the AnnotationActionEndpointMapping, annotate the handling methods with the @Action
annotation, similar to the @PayloadRoot and @SoapAction annotations described in @Endpoint
handling methods and Endpoint mappings. The following example shows how to do so:

package samples;

import org.springframework.ws.server.endpoint.annotation.Endpoint;
import org.springframework.ws.soap.addressing.server.annotation.Action

@Endpoint
public class AnnotationOrderEndpoint {

private final OrderService orderService;

public AnnotationOrderEndpoint(OrderService orderService) {
this.orderService = orderService;

}

@Action("http://samples/RequestOrder")
public Order getOrder(OrderRequest orderRequest) {
return orderService.getOrder(orderRequest.getId());

}

@Action("http://samples/CreateOrder")
public void order(Order order) {
orderService.createOrder(order);

}

The preceding mapping routes requests that have a WS-Addressing Action of http://samples/
RequestOrder to the getOrder method. Requests with http://samples/CreateOrder are routed to the
order method.

By default, the AnnotationActionEndpointMapping supports both the 1.0 (May 2006), and the August
2004 editions of WS-Addressing. These two versions are most popular and are interoperable with
Axis 1 and 2, JAX-WS, XFire, Windows Communication Foundation (WCF), and Windows Services
Enhancements (WSE) 3.0. If necessary, specific versions of the spec can be injected into the versions

property.

In addition to the @Action annotation, you can annotate the class with the @Address annotation. If
set, the value is compared to the To header property of the incoming message.

57

http://samples/RequestOrder
http://samples/RequestOrder
http://samples/CreateOrder

Finally, there is the messageSenders property, which is required for sending response messages to
non-anonymous, out-of-bound addresses. You can set MessageSender implementations in this
property, the same as you would on the WebServiceTemplate. See URIs and Transports.

5.5.2. Intercepting Requests — the EndpointInterceptor Interface

The endpoint mapping mechanism has the notion of endpoint interceptors. These can be extremely
useful when you want to apply specific functionality to certain requests —for example, dealing
with security-related SOAP headers or the logging of request and response message.

Endpoint interceptors are typically defined by using a <sws:interceptors> element in your
application context. In this element, you can define endpoint interceptor beans that apply to all
endpoints defined in that application context. Alternatively, you can use <sws:payloadRoot> or
<sws:soapAction> elements to specify for which payload root name or SOAP action the interceptor
should apply. The following example shows how to do so:

<sws:interceptors>
<bean class="samples.MyGlobalInterceptor"/>
<sws:payloadRoot namespaceUri="http://www.example.com">
<bean class="samples.MyPayloadRootInterceptor"/>
</sws:payloadRoot>
<sws:soapAction value="http://www.example.com/SoapAction">
<bean class="samples.MySoapActionInterceptor1"/>
<ref bean="mySoapActionInterceptor2"/>
</sws:soapAction>
</sws:interceptors>

<bean id="mySoapActionInterceptor2" class="samples.MySoapActionInterceptor2"/>

In the preceding example, we define one “global” interceptor (MyGlobalInterceptor) that intercepts
all requests and responses. We also define an interceptor that applies only to XML messages that
have the http://www.example.com as a payload root namespace. We could have defined a localPart
attribute in addition to the namespaceUri to further limit the messages to which the interceptor
applies. Finally, we define two interceptors that apply when the message has a
http://www.example.com/SoapAction SOAP action. Notice how the second interceptor is actually a
reference to a bean definition outside the <interceptors> element. You can use bean references
anywhere inside the <interceptors> element.

When you use @Configuration classes, you can extend from WsConfigurerAdapter to add interceptors:

@Configuration
@EnablelWs
public class MyWsConfiguration extends WsConfigurerAdapter {

@0verride
public void addInterceptors(List<EndpointInterceptor> interceptors) {

38

http://www.example.com
http://www.example.com/SoapAction

interceptors.add(new MyPayloadRootInterceptor());
}

Interceptors must implement EndpointInterceptor. This interface defines three methods, one that
can be used for handling the request message before the actual endpoint is processed, one that can
be used for handling a normal response message, and one that can be used for handling fault
messages. The second two are called after the endpoint is processed. These three methods should
provide enough flexibility to do all kinds of pre- and post-processing.

The handleRequest(..) method on the interceptor returns a boolean value. You can use this method
to interrupt or continue the processing of the invocation chain. When this method returns true, the
endpoint processing chain will continue. When it returns false, the MessageDispatcher interprets
this to mean that the interceptor itself has taken care of things and does not continue processing
the other interceptors and the actual endpoint in the invocation chain. The handleResponse(..) and
handleFault(..) methods also have a boolean return value. When these methods return false, the
response will not be sent back to the client.

There are a number of standard EndpointInterceptor implementations that you can use in your
Web service. Additionally, there is the XwsSecurityInterceptor, which is described in
XwsSecurityInterceptor.

PayloadlLoggingInterceptor and SoapEnvelopeloggingInterceptor

When developing a web service, it can be useful to log the incoming and outgoing XML messages.
Spring WS facilitates this with the PayloadlLoggingInterceptor and SoapEnvelopeloggingInterceptor
classes. The former logs only the payload of the message. The latter logs the entire SOAP envelope,
including SOAP headers. The following example shows how to define the PayloadLoggingInterceptor
in an endpoint mapping:

<sws:interceptors>
<bean
class="org.springframework.ws.server.endpoint.interceptor.PayloadLoggingIntercepto
r/>
</sws:interceptors>

Both of these interceptors have two properties, logRequest and logResponse, which can be set to
false to disable logging for either request or response messages.

You could wuse the WsConfigurerAdapter approach, as described earlier, for the
PayloadlLoggingInterceptor as well.

PayloadValidatingInterceptor

One of the benefits of using a contract-first development style is that we can use the schema to

39

https://docs.spring.io/spring-ws/docs/4.0.16/api/org/springframework/ws/server/EndpointInterceptor.html

validate incoming and outgoing XML messages. Spring-WS facilitates this with the
PayloadValidatingInterceptor. This interceptor requires a reference to one or more W3C XML or
RELAX NG schemas and can be set to validate requests, responses, or both.

While request validation may sound like a good idea, it makes the resulting Web
service very strict. Usually, it is not really important whether the request validates,
only if the endpoint can get sufficient information to fulfill a request. Validating the
response is a good idea, because the endpoint should adhere to its schema.
Remember Postel’s Law: "Be conservative in what you do; be liberal in what you
accept from others."

NOTE

The following example uses the PayloadValidatingInterceptor. In this example, we use the schema
in /WEB-INF/orders.xsd to validate the response but not the request. Note that the
PayloadValidatingInterceptor can also accept multiple schemas by setting the schemas property.

<bean id="validatingInterceptor"

class="org.springframework.ws.soap.server.endpoint.interceptor.PayloadValidatingIn
terceptor">

<property name="schema" value="/WEB-INF/orders.xsd"/>

<property name="validateRequest" value="false"/>

<property name="validateResponse" value="true"/>
</bean>

Of course, you could use the WsConfigurerAdapter approach, as described earlier, for the
PayloadValidatingInterceptor as well.

Using PayloadTransformingInterceptor

To transform the payload to another XML format, Spring-WS offers the
PayloadTransformingInterceptor. This endpoint interceptor is based on XSLT style sheets and is
especially useful when supporting multiple versions of a web service, because you can transform
the older message format to the newer format. The following example uses the
PayloadTransformingInterceptor:

<bean id="transformingInterceptor"

class="org.springframework.ws.server.endpoint.interceptor.PayloadTransformingInter
ceptor">

<property name="requestXslt" value="/WEB-INF/oldRequests.xslt"/>

<property name="responseXslt" value="/WEB-INF/oldResponses.xslt"/>
</bean>

In the preceding example, we transform requests by using /WEB-INF/oldRequests.xslt and response

60

messages by using /WEB-INF/oldResponses.xslt. Note that, since endpoint interceptors are registered
at the endpoint-mapping level, you can create an endpoint mapping that applies to the “old style”
messages and add the interceptor to that mapping. Hence, the transformation applies only to these
“old style” message.

You could wuse the WsConfigurerAdapter approach, as described earlier, for the
PayloadTransformingInterceptor as well.

5.6. Handling Exceptions

Spring-WS provides EndpointExceptionResolver implementations to ease the pain of unexpected
exceptions occurring while your message is being processed by an endpoint that matched the
request. Endpoint exception resolvers somewhat resemble the exception mappings that can be
defined in the web application descriptor web.xml. However, they provide a more flexible way to
handle exceptions. They provide information about what endpoint was invoked when the
exception was thrown. Furthermore, a programmatic way of handling exceptions gives you many
more options for how to respond appropriately. Rather than expose the innards of your application
by giving an exception and stack trace, you can handle the exception any way you want— for
example, by returning a SOAP fault with a specific fault code and string.

Endpoint exception resolvers are automatically picked up by the MessageDispatcher, so no explicit
configuration is necessary.

Besides implementing the EndpointExceptionResolver interface, which is only a matter of
implementing the resolveException(MessageContext, endpoint, Exception) method, you may also
use one of the provided implementations.

The simplest implementation is the SimpleSoapExceptionResolver, which creates a SOAP 1.1 Server
or SOAP 1.2 Receiver fault and uses the exception message as the fault string. You can subclass it to
customize the fault, as shown in the following example:

public class CustomSoapExceptionResolver extends SimpleSoapExceptionResolver {
private final Transformer transformer;

public CustomSoapExceptionResolver(Transformer transformer) {
this.transformer = transformer;

}

@0verride
protected void customizeFault(MessageContext messageContext, Object endpoint,
Exception exception,
SoapFault fault) {
SoapFaultDetail faultDetail = fault.addFaultDetail();
try {
this.transformer.transform(new StringSource(
<ns2:YourCustomException xmlns:ns2="http://serviceendpoint/">
<errorCode>Your custom error code</errorCode>
<systemMessage>A system message</systemMessage>

61

https://docs.spring.io/spring-ws/docs/4.0.16/api/org/springframework/ws/server/EndpointExceptionResolver.html

</ns2:YourCustomException >
"""y, faultDetail.getResult());
}
catch (TransformerException ex) {
throw new I1legalArgumentException("Failed to write detail", ex);

}

The SimpleSoapExceptionResolver is the default, but it can be overridden by explicitly adding
another resolver.

5.6.1. SoapFaultMappingExceptionResolver

The SoapFaultMappingExceptionResolver is a more sophisticated implementation. This resolver lets
you take the class name of any exception that might be thrown and map it to a SOAP Fault:

<beans>
<bean id="exceptionResolver"

class="org.springframework.ws.soap.server.endpoint.SoapFaultMappingExceptionResolv
er">
<property name="defaultFault" value="SERVER"/>
<property name="exceptionMappings">
<value>
org.springframework.oxm.ValidationFailureException=CLIENT,Invalid
request
</value>
</property>
</bean>
</beans>

The key values and default endpoint use a format of faultCode,faultString,locale, where only the
fault code is required. If the fault string is not set, it defaults to the exception message. If the
language is not set, it defaults to English. The preceding configuration maps exceptions of type
ValidationFailureException to a client-side SOAP fault with a fault string of Invalid request, as
follows:

62

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<SOAP-ENV:Fault>
<faultcode>SOAP-ENV:Client</faultcode>
<faultstring>Invalid request</faultstring>
</SOAP-ENV:Fault>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

If any other exception occurs, it returns the default fault: a server-side fault with the exception
message as the fault string.

5.6.2. Using SoapFaultAnnotationExceptionResolver

You can also annotate exception classes with the @SoapFault annotation, to indicate the SOAP fault
that should be returned whenever that exception is thrown. For these annotations to be picked up,
you need to add the SoapFaultAnnotationExceptionResolver to your application context. The
elements of the annotation include a fault code enumeration, fault string or reason, and language.
The following example shows such an exception:

package samples;

import org.springframework.ws.soap.server.endpoint.annotation.FaultCode;
import org.springframework.ws.soap.server.endpoint.annotation.SoapFault;

@SoapFault(faultCode = FaultCode.SERVER)
public class MyBusinessException extends Exception {

public MyClientException(String message) {
super (message);

}

Whenever the MyBusinessException is thrown with the constructor string "Oops!" during endpoint
invocation, it results in the following response:

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<SOAP-ENV:Fault>
<faultcode>SOAP-ENV:Server</faultcode>
<faultstring>0ops!</faultstring>
</SOAP-ENV:Fault>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

5.7. Server-side Testing

When it comes to testing your Web service endpoints, you have two possible approaches:

* Write Unit Tests, where you provide (mock) arguments for your endpoint to consume. The

63

advantage of this approach is that it is quite easy to accomplish (especially for classes annotated
with @Endpoint). The disadvantage is that you are not really testing the exact content of the XML
messages that are sent over the wire.

» Write Integrations Tests, which do test the contents of the message.

The first approach can easily be accomplished with mocking frameworks such as Mockito,
EasyMock, and others. The next section focuses on writing integration tests.

5.7.1. Writing server-side integration tests

Spring-WS has support for creating endpoint integration tests. In this context, an endpoint is a class
that handles (SOAP) messages (see Endpoints).

The integration test support lives in the org.springframework.ws.test.server package. The core class
in that package is the MockWebServiceClient. The underlying idea is that this client creates a request
message and then sends it over to the endpoints that are configured in a standard
MessageDispatcherServlet application context (see MessageDispatcherServlet). These endpoints
handle the message and create a response. The client then receives this response and verifies it
against registered expectations.

The typical usage of the MockWebServiceClient is: .

1. Create a MockWebServiceClient instance by calling
MockWebServiceClient.createClient(ApplicationContext) or
MockWebServiceClient.createClient(WebServiceMessageReceiver, WebServiceMessageFactory).

2. Send request messages by calling sendRequest(RequestCreator), possibly by using the default
Request(reator implementations provided in RequestCreators (which can be statically imported).

3. Set up response expectations by calling andExpect(ResponseMatcher), possibly by using the
default ResponseMatcher implementations provided in ResponseMatchers (which can be statically
imported). Multiple expectations can be set up by chaining andExpect(ResponseMatcher) calls.

MockWebServiceClient (and related classes) offers a “fluent” API, so you can typically
NOTE use the code-completion features in your IDE to guide you through the process of
setting up the mock server.

You can rely on the standard logging features available in Spring-WS in your unit
tests. Sometimes, it might be useful to inspect the request or response message to
find out why a particular tests failed. See Message Logging and Tracing for more
information.

NOTE

Consider, for example, the following web service endpoint class:

import org.springframework.ws.server.endpoint.annotation.Endpoint;
import org.springframework.ws.server.endpoint.annotation.RequestPayload;
import org.springframework.ws.server.endpoint.annotation.ResponsePayload;

64

@Endpoint ®
public class CustomerEndpoint {

@ResponsePayload @
public CustomerCountResponse getCustomerCount(
@RequestPayload CustomerCountRequest request) {
CustomerCountResponse response = new CustomerCountResponse();
response.setCustomerCount(10);
return response;

}

® The CustomerEndpoint in annotated with @Endpoint. See Endpoints.

@ The getCustomerCount() method takes a CustomerCountRequest as its argument and returns a
CustomerCountResponse. Both of these classes are objects supported by a marshaller. For
instance, they can have a @XmlRootElement annotation to be supported by JAXB2.

The following example shows a typical test for CustomerEndpoint:

import javax.xml.transform.Source;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.context.ApplicationContext;

import org.springframework.test.context.ContextConfiguration;

import org.springframework.test.context.junit4.SpringJUnit4ClassRunner;
import org.springframework.xml.transform.StringSource;

import org.junit.Before;
import org.junit.Test;
import org.junit.runner.RunWith;

import org.springframework.ws.test.server.MockWebServiceClient;
import static org.springframework.ws.test.server.RequestCreators.*;
import static org.springframework.ws.test.server.ResponseMatchers.*;

@RunWith(SpringJUnit4ClassRunner.class)
®

@ContextConfiguration("spring-ws-servliet.xml")
public class CustomerEndpointIntegrationTest {

@Autowired
private ApplicationContext applicationContext;

@
private MockWebServiceClient mockClient;

@Before
public void createClient() {

65

mockClient = MockWebServiceClient.createClient(applicationContext);
®
}

@Test
public void customerEndpoint() throws Exception {
Source requestPayload = new StringSource("""
<customerCountRequest xmlns="http://springframework.org/spring-ws'>
<customerName>John Doe</customerName>
</customerCountRequest>
)
Source responsePayload = new StringSource(
<customerCountResponse xmlns="http://springframework.org/spring-ws'>
<customerCount>10</customerCount>
</customerCountResponse>

llllll);
mockClient.sendRequest(withPayload(requestPayload)).
@
andExpect(payload(responsePayload));
}
}

@ This test uses the standard testing facilities provided in the Spring Framework. This is not
required but is generally the easiest way to set up the test.

@ The application context is a standard Spring-WS application context (see
MessageDispatcherServlet), read from spring-ws-servlet.xml. In this case, the application
context contains a bean definition for CustomerEndpoint (or perhaps a <context:component-
scan />1isused).

® In a @Before method, we create a MockWebServiceClient by using the createClient factory
method.

@ We send a request by calling sendRequest () with a withPayload() RequestCreator provided by
the statically imported Request(reators (see Using RequestCreator and RequestCreators). We
also set up response expectations by calling andExpect() with a payload() ResponseMatcher
provided by the statically imported ResponseMatchers (see Using ResponseMatcher and
ResponseMatchers).

This part of the test might look a bit confusing, but the code completion features of your IDE
are of great help. After typing sendRequest(, your IDE can provide you with a list of possible
request creating strategies, provided you statically imported RequestCreators. The same applies
to andExpect(), provided you statically imported ResponseMatchers.

5.7.2. Using RequestCreator and RequestCreators

Initially, the MockWebServiceClient needs to create a request message for the endpoint to consume.
The client uses the RequestCreator strategy interface for this purpose:

66

public interface RequestCreator {

WebServiceMessage createRequest(WebServiceMessageFactory messageFactory)
throws IOException;

You can write your own implementations of this interface, creating a request message by using the
message factory, but you certainly do not have to. The RequestCreators class provides a way to
create a Request(Creator based on a given payload in the withPayload() method. You typically
statically import RequestCreators.

5.7.3. Using ResponseMatcher and ResponseMatchers

When the request message has been processed by the endpoint and a response has been received,
the MockWebServiceClient can verify whether this response message meets certain expectations. The
client uses the ResponseMatcher strategy interface for this purpose:

public interface ResponseMatcher {

void match(WebServiceMessage request, WebServiceMessage response)
throws IOException, AssertionError;

Once again, you can write your own implementations of this interface, throwing AssertionError
instances when the message does not meet your expectations, but you certainly do not have to, as
the ResponseMatchers class provides standard ResponseMatcher implementations for you to use in
your tests. You typically statically import this class.

The ResponseMatchers class provides the following response matchers:

ResponseMatchers method Description

payload() Expects a given response payload. May include
XMLUnit Placeholders.

validPayload() Expects the response payload to validate against

given XSD schemas.

xpath() Expects a given XPath expression to exist, not
exist, or evaluate to a given value.

soapHeader () Expects a given SOAP header to exist in the
response message.

67

https://github.com/xmlunit/user-guide/wiki/Placeholders

ResponseMatchers method Description

soapEnvelope() Expects a given SOAP payload. May include
XMLUnit Placeholders.
noFault() Expects that the response message does not

contain a SOAP Fault.

mustUnderstandFault(), clientOrSenderFault(), Expects the response message to contain a

serverOrReceijverFault(), and specific SOAP Fault.
versionMismatchFault()

You can set up multiple response expectations by chaining andExpect() calls:

mockClient.sendRequest(...).
andExpect(payload(expectedResponsePayload)).
andExpect(validPayload(schemaResource));

For more information on the response matchers provided by ResponseMatchers, see the Javadoc.

68

https://github.com/xmlunit/user-guide/wiki/Placeholders
https://docs.spring.io/spring-ws/docs/4.0.16/api/org/springframework/ws/test/server/ResponseMatchers.html

Chapter 6. Using Spring-WS on the Client

Spring-WS provides a client-side Web service API that allows for consistent, XML-driven access to
web services. It also caters to the use of marshallers and unmarshallers so that your service-tier
code can deal exclusively with Java objects.

The org.springframework.ws.client.core package provides the core functionality for using the
client-side access API. It contains template classes that simplify the use of Web services, much like
the core Spring JdbcTemplate does for JDBC. The design principle common to Spring template classes
is to provide helper methods to perform common operations and, for more sophisticated usage,
delegate to user implemented callback interfaces. The web service template follows the same
design. The classes offer various convenience methods for

* Sending and receiving of XML messages.
* Marshalling objects to XML before sending.

» Allowing for multiple transport options.

6.1. Using the Client-side API

This section describes how to use the client-side API. For how to use the server-side API, see
Creating a Web service with Spring-WSs.

6.1.1. WebServiceTemplate

The WebServiceTemplate is the core class for client-side web service access in Spring-WS. It contains
methods for sending Source objects and receiving response messages as either Source or Result.
Additionally, it can marshal objects to XML before sending them across a transport and unmarshal
any response XML into an object again.

URIs and Transports

The WebServiceTemplate class uses a URI as the message destination. You can either set a defaultUri
property on the template itself or explicitly supply a URI when calling a method on the template.
The URI is resolved into a WebServiceMessageSender, which is responsible for sending the XML
message across a transport layer. You can set one or more message senders by using the
messageSender or messageSenders properties of the WebServiceTemplate class.

HTTP transports

There are three implementations of the WebServiceMessageSender interface for sending messages
over HTTP. The default implementation is the HttpUrlConnectionMessageSender, which uses the
facilities provided by Java itself. The alternatives are either JdkHttpClientMessageSender that uses
the JDK’s HttpClient, or HttpComponents5MessageSender, which uses the Apache HttpClient. Use the
latter if you need more advanced and easy-to-use functionality (such as authentication, HTTP
connection pooling, and so forth).

To use the HTTP transport, either set the defaultUri to something like http://example.com/services
or supply the uri parameter for one of the methods.

69

https://docs.spring.io/spring-ws/docs/4.0.16/api/org/springframework/ws/client/core/WebServiceTemplate.html
https://hc.apache.org/httpcomponents-client-ga
http://example.com/services

The following example shows how to use default configuration for HTTP transports:

<beans>

<bean id="messageFactory"
class="org.springframework.ws.soap.saaj.SaajSoapMessageFactory"/>

<bean id="webServiceTemplate"
class="org.springframework.ws.client.core.WebServiceTemplate">
<constructor-arg ref="messageFactory"/>

<property name="defaultUri" value="http://example.com/WebService"/>
</bean>

</beans>

The following example shows how to override the default configuration and how to use Apache
HttpClient to authenticate with HTTP authentication:

<bean id="webServiceTemplate"
class="org.springframework.ws.client.core.WebServiceTemplate">
<constructor-arg ref="messageFactory"/>
<property name="messageSender">
<bean
class="org.springframework.ws.transport.http.HttpComponents5MessageSender">
<property name="credentials">
<bean
class="org.apache.hc.client5.http.auth.UsernamePasswordCredentials">
<constructor-arg value="john"/>
<constructor-arg value="secret"/>
</bean>
</property>
</bean>
</property>
<property name="defaultUri" value="http://example.com/WebService"/>
</bean>

JMS transport

For sending messages over JMS, Spring-WS provides JmsMessageSender. This class uses the facilities
of the Spring framework to transform the WebServiceMessage into a JMS Message, send it on its way
on a Queue or Topic, and receive a response (if any).

To use JmsMessageSender, you need to set the defaultUri or uri parameter to a JMS URIL, which —at a
minimum — consists of the jms: prefix and a destination name. Some examples of JMS URIs are:
jms:SomeQueue, jms:SomeTopic?priority=3&deliveryMode=NON_PERSISTENT, and

70

jms:RequestQueue?replyToName=ResponseName. For more information on this URI syntax, see the
Javadoc for JmsMessageSender.

By default, the ImsMessageSender sends JMS BytesMessage, but you can override this to use
TextMessages by using the messageType parameter on the JMS URI—for example,
jms:Queue?messageType=TEXT_MESSAGE. Note that BytesMessages are the preferred type, because
TextMessages do not support attachments and character encodings reliably.

The following example shows how to use the JMS transport in combination with an Artemis
connection factory:

<beans>

<bean id="messageFactory"
class="org.springframework.ws.soap.saaj.SaajSoapMessageFactory"/>

<bean id="connectionFactory"
class="org.apache.activemg.artemis.jms.client.ActiveMQConnectionFactory">
<property name="brokerURL"
value="vm://localhost?broker.persistent=false"/>
</bean>

<bean id="webServiceTemplate"
class="org.springframework.ws.client.core.WebServiceTemplate">
<constructor-arg ref="messageFactory"/>
<property name="messageSender">
<bean class="org.springframework.ws.transport.jms.JmsMessageSender">
<property name="connectionFactory" ref="connectionFactory"/>
</bean>
</property>
<property name="defaultUri"
value="jms:RequestQueue?deliveryMode=NON_PERSISTENT"/>
</bean>

</beans>

Email Transport

Spring-WS also provides an email transport, which you can use to send web service messages over
SMTP and retrieve them over either POP3 or IMAP. The client-side email functionality is contained
in MailMessageSender. This class creates an email message from the request WebServiceMessage and
sends it over SMTP. It then waits for a response message to arrive at the incoming POP3 or IMAP
server.

To use the MailMessageSender, set the defaultUri or uri parameter to a mailto URI—for example,
mailto:john@example.com or mailto:server@localhost?subject=S0AP%20Test. Make sure that the
message sender is properly configured with a transportUri, which indicates the server to use for
sending requests (typically a SMTP server), and a storeUri, which indicates the server to poll for

71

https://docs.spring.io/spring-ws/docs/4.0.16/api/org/springframework/ws/transport/jms/JmsMessageSender.html
https://docs.spring.io/spring-ws/docs/4.0.16/api/org/springframework/ws/transport/jms/JmsMessageSender.html
https://docs.spring.io/spring-ws/docs/4.0.16/api/org/springframework/ws/transport/mail/MailMessageSender.html

responses (typically a POP3 or IMAP server).

The following example shows how to use the email transport:

<beans>

<bean id="messageFactory"
class="org.springframework.ws.soap.saaj.SaajSoapMessageFactory"/>

<bean id="webServiceTemplate"
class="org.springframework.ws.client.core.WebServiceTemplate">
<constructor-arg ref="messageFactory"/>
<property name="messageSender">
<bean class="org.springframework.ws.transport.mail.MailMessageSender">
<property name="from" value="Spring-WS SOAP Client
<client@example.com>"/>
<property name="transportUri"
value="smtp://client:s@4p@smtp.example.com"/>
<property name="storeUri"
value="imap://client:s@4p@imap.example.com/INBOX" />
</bean>
</property>
<property name="defaultUri"
value="mailto:server@example.com?subject=S0AP%20Test"/>
</bean>

</beans>

XMPP Transport

Spring-WS also provides a XMPP (Jabber) transport, which you can use to send and receive web
service messages over XMPP. The client-side XMPP functionality is contained in XmppMessageSender.
This class creates an XMPP message from the request WebServiceMessage and sends it over XMPP. It
then listens for a response message to arrive.

To use the XmppMessageSender, set the defaultUri or uri parameter to a xmpp URI—for example,
xmpp: johndoe@jabber.org. The sender also requires an XMPPConnection to work, which can be
conveniently created by using the
org.springframework.ws.transport.xmpp.support.XmppConnectionFactoryBean

The following example shows how to use the XMPP transport:

<beans>

<bean id="messageFactory"
class="org.springframework.ws.soap.saaj.SaajSoapMessageFactory"/>

72

https://docs.spring.io/spring-ws/docs/4.0.16/api/org/springframework/ws/transport/xmpp/XmppMessageSender.html

<bean id="connection"
class="org.springframework.ws.transport.xmpp.support.XmppConnectionFactoryBean">
<property name="host" value="jabber.org"/>
<property name="username" value="username"/>
<property name="password" value="password"/>
</bean>

<bean id="webServiceTemplate"
class="org.springframework.ws.client.core.WebServiceTemplate">
<constructor-arg ref="messageFactory"/>
<property name="messageSender">
<bean class="org.springframework.ws.transport.xmpp.XmppMessageSender">
<property name="connection" ref="connection"/>
</bean>
</property>
<property name="defaultUri" value="xmpp:user@jabber.org"/>
</bean>

</beans>

Message factories

In addition to a message sender, the WebServiceTemplate requires a web service message factory. By
default, SaajSoapMessageFactory is used.

6.1.2. Sending and Receiving a WebServiceMessage

The WebServiceTemplate contains many convenience methods to send and receive web service
messages. There are methods that accept and return a Source and those that return a Result.
Additionally, there are methods that marshal and unmarshal objects to XML. The following
example sends a simple XML message to a web service:

import java.io.StringReader;
import javax.xml.transform.stream.StreamResult;
import javax.xml.transform.stream.StreamSource;

import org.springframework.ws.WebServiceMessageFactory;
import org.springframework.ws.client.core.WebServiceTemplate;
import org.springframework.ws.transport.WebServiceMessageSender;
public class WebServiceClient {
private static final String MESSAGE =
"<message xmlns=\"http://tempuri.org\">Hello, Web Service

World</message>";

private final WebServiceTemplate webServiceTemplate = new
WebServiceTemplate();

73

public void setDefaultUri(String defaultUri) {
webServiceTemplate.setDefaultUri(defaultUri);

}

// send to the configured default URI

public void simpleSendAndReceive() {
StreamSource source = new StreamSource(new StringReader (MESSAGE));
StreamResult result = new StreamResult(System.out);
webServiceTemplate.sendSourceAndReceiveToResult(source, result);

}

// send to an explicit URI

public void customSendAndReceive() {
StreamSource source = new StreamSource(new StringReader (MESSAGE));
StreamResult result = new StreamResult(System.out);

webServiceTemplate.sendSourceAndReceiveToResult("http://1localhost:8080/AnotherWebS
ervice",
source, result);

}

<beans xmlns="http://www.springframework.org/schema/beans">

<bean id="webServiceClient" class="com.example.WebServiceClient">
<property name="defaultUri" value="http://localhost:8080/WebService"/>
</bean>

</beans>

The preceding example uses the WebServiceTemplate to send a “Hello, World” message to the web
service located at http://localhost:8080/WebService (in the case of the simpleSendAndReceive()
method) and writes the result to the console. The WebServiceTemplate is injected with the default
URIL which is used because no URI was supplied explicitly in the Java code.

Note that the WebServiceTemplate class is thread-safe once configured (assuming that all of its
dependencies are also thread-safe, which is the case for all of the dependencies that ship with
Spring-WS), so multiple objects can use the same shared WebServiceTemplate instance. The
WebServiceTemplate exposes a zero-argument constructor and messageFactory and messageSender
bean properties that you can use to construct the instance (by using a Spring container or plain
Java code). Alternatively, consider deriving from Spring-WS WebServiceGatewaySupport convenience
base class, which exposes bean properties to enable easy configuration. (You do not have to extend
this base class, it is provided as a convenience class only).

74

http://localhost:8080/WebService

6.1.3. Sending and Receiving POJOs — Marshalling and Unmarshalling

To facilitate the sending of plain Java objects, the WebServiceTemplate has a number of send(..)
methods that take an Object as an argument for a message’s data content. The method
marshalSendAndReceive(..) in the WebServiceTemplate class delegates the conversion of the request
object to XML to a Marshaller and the conversion of the response XML to an object to an
Unmarshaller. (For more information about marshalling and unmarshaller, see the Spring
Framework reference documentation).

By using the marshallers, your application code can focus on the business object that is being sent
or received and not be concerned with the details of how it is represented as XML. To use the
marshalling functionality, you have to set a marshaller and an unmarshaller with the marshaller
and unmarshaller properties of the WebServiceTemplate class.

6.1.4. Using WlebServiceMessageCallback

To accommodate setting SOAP headers and other settings on the message, the
WebServiceMessageCallback interface gives you access to the message after it has been created but
before it is sent. The following example demonstrates how to set the SOAP action header on a
message that is created by marshalling an object:

public void marshalWithSoapActionHeader (MyObject o) {
webServiceTemplate.marshalSendAndReceive(o, new WebServiceMessageCallback() {

public void doWithMessage(WebServiceMessage message) {
((SoapMessage)message).setSoapAction("http://tempuri.org/Action");

}
});
}
Note that you can also use the
NOTE org.springframework.ws.soap.client.core.SoapActionCallback to set the SOAP action
header.

WS-Addressing

In addition to the server-side WS-Addressing support, Spring-WS also has support for this
specification on the client-side.

For setting WS-Addressing headers on the client, you can use ActionCallback. This callback takes the
desired action header as a parameter. It also has constructors for specifying the WS-Addressing
version and a To header. If not specified, the To header defaults to the URL of the connection being
made.

The following example sets the Action header to http://samples/RequestOrder:

75

https://docs.spring.io/spring/docs/current/spring-framework-reference/data-access.html#oxm-marshaller-unmarshaller
https://docs.spring.io/spring/docs/current/spring-framework-reference/data-access.html#oxm-marshaller-unmarshaller
https://docs.spring.io/spring-ws/docs/4.0.16/api/org/springframework/ws/soap/addressing/client/ActionCallback.html
http://samples/RequestOrder

webServiceTemplate.marshalSendAndReceive(o, new
ActionCallback("http://samples/RequestOrder"));

6.1.5. Using WebServiceMessageExtractor

The WebServiceMessageExtractor interface is a low-level callback interface that gives you full control
over the process to extract an Object from a received WebServiceMessage. The WebServiceTemplate
invokes the extractData(..) method on a supplied WebServiceMessageExtractor while the underlying
connection to the serving resource is still open. The following example shows the
WebServiceMessageExtractor in action:

public void marshalWithSoapActionHeader(final Source s) {
final Transformer transformer = transformerFactory.newTransformer();
webServiceTemplate.sendAndReceive(new WebServiceMessageCallback() {
public void doWithMessage(WebServiceMessage message) {
transformer.transform(s, message.getPayloadResult());

I
new WebServiceMessageExtractor() {
public Object extractData(WebServiceMessage message) throws
IOException {
// do your own transforms with message.getPayloadResult()
// or message.getPayloadSource()

b

6.2. Client-side Testing

When it comes to testing your Web service clients (that is, classes that use the WebServiceTemplate to
access a Web service), you have two possible approaches:

* Write unit tests, which mock away the WebServiceTemplate class, WebServiceOperations interface,
or the complete client class. The advantage of this approach is that it s easy to accomplish. The
disadvantage is that you are not really testing the exact content of the XML messages that are
sent over the wire, especially when mocking out the entire client class.

» Write integrations tests, which do test the contents of the message.

The first approach can easily be accomplished with mocking frameworks, such as Mockito,
EasyMock, and others. The next section focuses on writing integration tests.

76

6.2.1. Writing Client-side Integration Tests

Spring-WS has support for creating for creating Web service client integration tests. In this context,
a client is a class that uses the WebServiceTemplate to access a web service.

The integration test support lives in the org.springframework.ws.test.client package. The core class

in

that package is the MockWebServiceServer. The underlying idea is that the web service template

connects to this mock server and sends it a request message, which the mock server then verifies
against the registered expectations. If the expectations are met, the mock server then prepares a
response message, which is sent back to the template.

The typical usage of the MockWebServiceServer is: .

1.

Create a MockWebServiceServer instance by calling
MockWebServiceServer.createServer(WebServiceTemplate),
MockWebServiceServer.createServer (WebServiceGatewaySupport), or

MockWebServiceServer.createServer(ApplicationContext).

Set up request expectations by calling expect(RequestMatcher), possibly by using the default
RequestMatcher implementations provided in RequestMatchers (which can be statically imported).
Multiple expectations can be set up by chaining andExpect(RequestMatcher) calls.

Create an appropriate response message by calling andRespond(ResponseCreator), possibly by
using the default ResponseCreator implementations provided in ResponseCreators (which can be
statically imported).

Use the WebServiceTemplate as normal, either directly of through client code.

Call MockWebServiceServer.verify() to make sure that all expectations have been met.

MockWebServiceServer (and related classes) offers a 'fluent' API, so you can typically
NOTE use the code-completion features in your IDE to guide you through the process of
setting up the mock server.

You can rely on the standard logging features available in Spring-WS in your unit
tests. Sometimes, it might be useful to inspect the request or response message to
find out why a particular tests failed. See Message Logging and Tracing for more
information.

NOTE

Consider, for example, the following Web service client class:

import org.springframework.ws.client.core.support.WebServiceGatewaySupport;

public class CustomerClient extends WebServiceGatewaySupport {

@

public int getCustomerCount() {
CustomerCountRequest request = new CustomerCountRequest();

@

request.setCustomerName("John Doe");

77

CustomerCountResponse response =
(CustomerCountResponse)
getWebServiceTemplate().marshalSendAndReceive(request); ®
return response.getCustomerCount();

}

® The CustomerClient extends WebServiceGatewaySupport, which provides it with a
webServiceTemplate property.

@ CustomerCountRequest is an object supported by a marshaller. For instance, it can have an
@XmlRootElement annotation to be supported by JAXB2.

® The CustomerClient uses the WebServiceTemplate offered by WebServiceGatewaySupport to
marshal the request object into a SOAP message and sends that to the web service. The
response object is unmarshalled into a CustomerCountResponse.

The following example shows a typical test for CustomerClient:

78

import javax.xml.transform.Source;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.test.context.ContextConfiguration;

import org.springframework.test.context.junit4.SpringlUnit4ClassRunner;
import org.springframework.xml.transform.StringSource;

import org.junit.Before;
import org.junit.Test;
import org.junit.runner.RunWith;

import static org.junit.Assert.assertEquals;

import org.springframework.ws.test.client.MockWebServiceServer;
import static org.springframework.ws.test.client.RequestMatchers.*;
import static org.springframework.ws.test.client.ResponseCreators.*;

@RunWith(SpringJUnit4ClassRunner.class)
®

@ContextConfiguration("integration-test.xml")
public class CustomerClientIntegrationTest {

@Autowired
private CustomerClient client;

@

private MockWebServiceServer mockServer;

®

@Before

public void createServer() throws Exception {
mockServer = MockWebServiceServer.createServer(client);

}

@Test
public void customerClient() throws Exception {
Source requestPayload = new StringSource("""
<customerCountRequest xmlns="http://springframework.org/spring-ws'>
<customerName>John Doe</customerName>
</customerCountRequest>
)
Source responsePayload = new StringSource(
<customerCountResponse xmlns="http://springframework.org/spring-ws'>
<customerCount>10</customerCount>
</customerCountResponse>

")

mockServer.expect(payload(requestPayload)).andRespond(withPayload(responsePayload)
)@

int result = client.getCustomerCount();

®
assertEquals(10, result);
mockServer.verify();
®
}
¥

@ This test uses the standard testing facilities provided in the Spring Framework. This is not
required but is generally the easiest way to set up the test.

@ The CustomerClient is configured in integration-test.xml and wired into this test using
@Autowired.

® In a @Before method, we create a MockWebServiceServer by using the createServer factory
method.

@ We define expectations by calling expect() with a payload() RequestMatcher provided by the
statically imported RequestMatchers (see Using RequestMatcher and RequestMatchers). We also
set up a response by calling andRespond() with a withPayload() ResponseCreator provided by
the statically imported ResponseCreators (see Using ResponseCreator and ResponseCreators).
This part of the test might look a bit confusing, but the code-completion features of your
IDE are of great help. After you type expect(, your IDE can provide you with a list of
possible request matching strategies, provided you statically imported RequestMatchers. The
same applies to andRespond(, provided you statically imported ResponseCreators.

® We call getCustomerCount() on the CustomerClient, thus using the WebServiceTemplate. The
template has been set up for “testing mode” by now, so no real (HTTP) connection is made
by this method call. We also make some JUnit assertions based on the result of the method

79

call.

® We call verify() on the MockWebServiceServer, verifying that the expected message was
actually received.

6.2.2. Using RequestMatcher and RequestMatchers

To verify whether the request message meets certain expectations, the MockWebServiceServer uses
the RequestMatcher strategy interface. The contract defined by this interface is as follows:

public interface RequestMatcher {

void match(URI uri, WebServiceMessage request)
throws IOException, AssertionError;

You can write your own implementations of this interface, throwing AssertionError exceptions
when the message does not meet your expectations, but you certainly do not have to. The
RequestMatchers class provides standard RequestMatcher implementations for you to use in your
tests. You typically statically import this class.

The RequestMatchers class provides the following request matchers:

RequestMatchers method Description

anything() Expects any sort of request.

payload() Expects a given request payload. May include
XMLUnit Placeholders

validPayload() Expects the request payload to validate against

given XSD schemas.

xpath() Expects a given XPath expression to exist, not
exist, or evaluate to a given value.

soapHeader () Expects a given SOAP header to exist in the
request message.

soapEnvelope() Expects a given SOAP payload. May include
XMLUnit Placeholders
connectionTo() Expects a connection to the given URL.

You can set up multiple request expectations by chaining andExpect() calls:

mockServer.expect(connectionTo("http://example.com")).
andExpect(payload(expectedRequestPayload)).

80

https://github.com/xmlunit/user-guide/wiki/Placeholders
https://github.com/xmlunit/user-guide/wiki/Placeholders

andExpect(validPayload(schemaResource)).
andRespond(...);

For more information on the request matchers provided by RequestMatchers, see the Javadoc.

6.2.3. Using ResponseCreator and ResponseCreators

When the request message has been verified and meets the defined expectations, the
MockWebServiceServer creates a response message for the WebServiceTemplate to consume. The server
uses the Response(reator strategy interface for this purpose:

public interface Response(Creator {

WebServiceMessage createResponse(URI uri, WebServiceMessage request,
WebServiceMessageFactory messageFactory)
throws IOException;

Once again, you can write your own implementations of this interface, creating a response message
by using the message factory, but you certainly do not have to, as the Response(Creators class
provides standard ResponseCreator implementations for you to use in your tests. You typically
statically import this class.

The ResponseCreators class provides the following responses:

ResponseCreators method Description

withPayload() Creates a response message with a given
payload.

withError() Creates an error in the response connection.

This method gives you the opportunity to test
your error handling.

withException() Throws an exception when reading from the
response connection. This method gives you the
opportunity to test your exception handling.

withMustUnderstandFault(), Creates a response message with a given SOAP
withClientOrSenderFault(), fault. This method gives you the opportunity to
withServerOrReceiverFault(), or test your Fault handling.

withVersionMismatchFault()

For more information on the request matchers provided by RequestMatchers, see the Javadoc.

81

https://docs.spring.io/spring-ws/docs/4.0.16/api/org/springframework/ws/test/client/RequestMatchers.html
https://docs.spring.io/spring-ws/docs/4.0.16/api/org/springframework/ws/test/client/RequestMatchers.html

Chapter 7. Securing Your Web services with
Spring-WS

This chapter explains how to add WS-Security aspects to your Web services. We focus on the three
different areas of WS-Security:

* Authentication: This is the process of determining whether a principal is who they claim to be.
In this context, a "principal" generally means a user, device or some other system that can
perform an action in your application.

* Digital signatures: The digital signature of a message is a piece of information based on both
the document and the signer’s private key. It is created through the use of a hash function and a
private signing function (encrypting with the signer’s private key).

* Encryption and Decryption: Encryption is the process of transforming data into a form that is
impossible to read without the appropriate key. It is mainly used to keep information hidden
from anyone for whom it is not intended. Decryption is the reverse of encryption. It is the
process of transforming encrypted data back into a readable form.

These three areas are implemented by using the XwsSecurityInterceptor or
Wss4jSecurityInterceptor, which we describe in XwsSecurityInterceptor and Using
Wss4jSecurityInterceptor, respectively.

WS-Security (especially encryption and signing) requires substantial amounts of
NOTE memory and can decrease performance. If performance is important to you, you
might want to consider not using WS-Security or using HTTP-based security.

7.1. XwsSecurityInterceptor

The XwsSecurityInterceptor is an EndpointInterceptor (see Intercepting Requests—the
EndpointInterceptor Interface) that is based on SUN’s XML and Web Services Security package
(XWSS). This WS-Security implementation is part of the Java Web Services Developer Pack (Java
WSDP).

Like any other endpoint interceptor, it is defined in the endpoint mapping (see Endpoint
mappings). This means that you can be selective about adding WS-Security support. Some endpoint
mappings require it, while others do not.

NOTE XWSS requires a SUN SAAJ reference implementation. The WSS4] interceptor does
not have these requirements (see Using Wss4jSecurityInterceptor).
The XwsSecurityInterceptor requires a security policy file to operate. This XML file tells the
interceptor what security aspects to require from incoming SOAP messages and what aspects to add
to outgoing messages. The basic format of the policy file is explained in the following sections, but a
more in-depth tutorial is available. You can set the policy with the policyConfiguration property,
which requires a Spring resource. The policy file can contain multiple elements—for example,
require a username token on incoming messages and sign all outgoing messages. It contains a

82

https://www.oracle.com/java/technologies/java-archive-jwsdp-downloads.html
https://www.oracle.com/java/technologies/java-archive-jwsdp-downloads.html
https://docs.oracle.com/cd/E17802_01/webservices/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp564887

SecurityConfiguration element (not a JAXRPCSecurity element) as its root.

Additionally, the security interceptor requires one or more (allbackHandler instances to operate.
These handlers are used to retrieve certificates, private keys, validate user credentials, and so on.
Spring-WS offers handlers for most common security concerns—for example, authenticating
against a Spring Security authentication manager and signing outgoing messages based on a X509
certificate. The following sections indicate what callback handler to use for which security concern.
You can set the callback handlers by using the callbackHandler or callbackHandlers property.

The following example that shows how to wire up the XwsSecurityInterceptor:

<beans>
<bean id="wsSecurityInterceptor"
class="org.springframework.ws.soap.security.xwss.XwsSecurityInterceptor">
<property name="policyConfiguration"
value="classpath:securityPolicy.xml"/>
<property name="callbackHandlers">
<list>
<ref bean="certificateHandler"/>
<ref bean="authenticationHandler"/>
</list>
</property>
</bean>

</beans>

This interceptor is configured by using the securityPolicy.xml file on the classpath. It uses two
callback handlers that are defined later in the file.

7.1.1. Keystores

For most cryptographic operations, you an use the standard java.security.KeyStore objects. These
operations include certificate verification, message signing, signature verification, and encryption.
They exclude username and time-stamp verification. This section aims to give you some
background knowledge on keystores and the Java tools that you can use to store keys and
certificates in a keystore file. This information is mostly not related to Spring-WS but to the general
cryptographic features of Java.

The java.security.KeyStore class represents a storage facility for cryptographic keys and
certificates. It can contain three different sort of elements:

* Private Keys: These keys are used for self-authentication. The private key is accompanied by a
certificate chain for the corresponding public key. Within the field of WS-Security, this accounts
for message signing and message decryption.

* Symmetric Keys: Symmetric (or secret) keys are also used for message encryption and
decryption — the difference being that both sides (sender and recipient) share the same secret
key.

83

* Trusted certificates: These X509 certificates are called a "trusted certificate” because the
keystore owner trusts that the public key in the certificates does indeed belong to the owner of
the certificate. Within WS-Security, these certificates are used for certificate validation,
signature verification, and encryption.

Using keytool

The keytool program, a key and certificate management utility, is supplied with your Java Virtual
Machine. You can use this tool to create new keystores, add new private keys and certificates to
them, and so on. It is beyond the scope of this document to provide a full reference of the keytool
command, check the standard reference or invoke keytool -help on the command line.

Using KeyStoreFactoryBean

To easily load a keystore by using Spring configuration, you can use the KeyStoreFactoryBean. It has
a resource location property, which you can set to point to the path of the keystore to load. A
password may be given to check the integrity of the keystore data. If a password is not given,
integrity checking is not performed. The following listing configures a KeyStoreFactoryBean:

<bean id="keyStore"
class="org.springframework.ws.soap.security.support.KeyStoreFactoryBean">
<property name="password" value="password"/>
<property name="location"
value="classpath:org/springframework/ws/soap/security/xwss/test-keystore.jks"/>
</bean>

If you do not specify the location property, a new, empty keystore is created,

WARNING
which is most likely not what you want.

KeyStoreCallbackHandler

To use the keystores within a XwsSecurityInterceptor, you need to define a KeyStoreCallbackHandler.
This callback has three properties with type keystore: (keyStore,trustStore, and symmetricStore). The
exact stores used by the handler depend on the cryptographic operations that are to be performed
by this handler. For private key operation, the keyStore is used. For symmetric key operations, the
symmetricStore is used. For determining trust relationships, the trustStore is used. The following
table indicates this:

Cryptographic operation Keystore used

Certificate validation First keyStore, then trustStore
Decryption based on private key keyStore

Decryption based on symmetric key symmetricStore

Encryption based on public key certificate trustStore

Encryption based on symmetric key symmetricStore

84

https://docs.oracle.com/en/java/javase/17/docs/specs/man/keytool.html

Cryptographic operation Keystore used
Signing keyStore

Signature verification trustStore

Additionally, the KeyStoreCallbackHandler has a privateKeyPassword property, which should be set to
unlock the private keys contained in the "keyStore ".

If the symmetricStore is not set, it defaults to the keyStore. If the key or trust store is not set, the
callback handler wuses the standard Java mechanism to load or create it. See
KeyStoreCallbackHandler for more details.

For instance, if you want to use the KeyStoreCallbackHandler to validate incoming certificates or
signatures, you can use a trust store:

<beans>
<bean id="keyStoreHandler"
class="org.springframework.ws.soap.security.xwss.callback.KeyStoreCallbackHandler"
>
<property name="trustStore" ref="trustStore"/>
</bean>

<bean id="trustStore"
class="org.springframework.ws.soap.security.support.KeyStoreFactoryBean">
<property name="location" value="classpath:truststore.jks"/>
<property name="password" value="changeit"/>
</bean>
</beans>

If you want to use it to decrypt incoming certificates or sign outgoing messages, you can use a key
store:

<beans>
<bean id="keyStoreHandler"
class="org.springframework.ws.soap.security.xwss.callback.KeyStoreCallbackHandler"
>
<property name="keyStore" ref="keyStore"/>
<property name="privateKeyPassword" value="changeit"/>
</bean>

<bean id="keyStore"
class="org.springframework.ws.soap.security.support.KeyStoreFactoryBean">
<property name="location" value="classpath:keystore.jks"/>
<property name="password" value="changeit"/>
</bean>
</beans>

85

https://docs.spring.io/spring-ws/docs/4.0.16/api/org/springframework/ws/soap/security/wss4j2/callback/KeyStoreCallbackHandler.html

The following sections indicate where the KeyStoreCallbackHandler can be used and which
properties to set for particular cryptographic operations.

7.1.2. Authentication

As stated in the introduction to this chapter, authentication is the task of determining whether a
principal is who they claim to be. Within WS-Security, authentication can take two forms: using a
username and password token (using either a plain text password or a password digest) or using a
X509 certificate.

Plain Text Username Authentication

The simplest form of username authentication uses plain text passwords. In this scenario, the SOAP
message contains a UsernameToken element, which itself contains a Username element and a Password
element which contains the plain text password. Plain text authentication can be compared to the
basic authentication provided by HTTP servers.

Plain text passwords are not very secure. Therefore, you should always add
WARNING additional security measures to your transport layer if you use them (using
HTTPS instead of plain HTTP, for instance).

To require that every incoming message contains a UsernameToken with a plain text password, the
security policy file should contain a RequireUsernameToken element, with the passwordDigestRequired
attribute set to false. Fore more details, check the official reference of possible child elements. The
following listing shows how to include a RequireUsernameToken element:

<xwss:SecurityConfiguration xmlns:xwss="http://java.sun.com/xml/ns/xwss/config">

<xwss:RequireUsernameToken passwordDigestRequired="false"
nonceRequired="false"/>

</xwss:SecurityConfiguration>

If the username token is not present, the XwsSecurityInterceptor returns a SOAP fault to the sender.
If it is present, it fires a PasswordValidationCallback with a PlainTextPasswordRequest to the
registered handlers. Within Spring-WS§, there are three classes that handle this particular callback:

* SimplePasswordValidationCallbackHandler

» SpringPlainTextPasswordValidationCallbackHandler

e JaasPlainTextPasswordValidationCallbackHandler

Using SimplePasswordValidationCallbackHandler

The simplest password validation handler is the SimplePasswordValidationCallbackHandler. This
handler validates passwords against an in-memory Properties object, which you can specify by
using the users property:

86

https://docs.oracle.com/cd/E17802_01/webservices/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp567459

<bean id="passwordValidationHandler"

class="org.springframework.ws.soap.security.xwss.callback.SimplePasswordValidation
CallbackHandler">
<property name="users">
<props>
<prop key="Bert">Ernie</prop>
</props>
</property>
</bean>

In this case, we are allowing only the user, "Bert", to log in by using the password, "Ernie".

Using SpringPlainTextPasswordValidationCallbackHandler

The SpringPlainTextPasswordValidationCallbackHandler uses Spring Security to authenticate users. It
is beyond the scope of this document to describe Spring Security, but it is a full-fledged security
framework. You can read more about it in the Spring Security reference documentation.

The SpringPlainTextPasswordValidationCallbackHandler requires an AuthenticationManager to
operate. It uses this manager to authenticate against a UsernamePasswordAuthenticationToken that it
creates. If authentication is successful, the token is stored in the SecurityContextHolder. You can set
the authentication manager by using the authenticationManager property:

<beans>
<bean id="springSecurityHandler"

class="org.springframework.ws.soap.security.xwss.callback.SpringPlainTextPasswordV
alidationCallbackHandler">
<property name="authenticationManager" ref="authenticationManager"/>
</bean>

<bean id="authenticationManager" class="
org.springframework.security.authentication.ProviderManager">
<constructor-arg>
<bean
class="org.springframework.security.providers.dao.DaoAuthenticationProvider">
<property name="userDetailsService" ref="userDetailsService"/>
</bean>
</constructor-arg>
</bean>

<bean id="userDetailsService" class="com.mycompany.app.dao.UserDetailService" />

</beans>

87

https://spring.io/projects/spring-security
https://docs.spring.io/spring-security/reference

Using JaasPlainTextPasswordValidationCallbackHandler

The JaasPlainTextPasswordValidationCallbackHandler is based on the standard Java Authentication
and Authorization Service. It is beyond the scope of this document to provide a full introduction
into JAAS, but tutorials are available.

The JaasPlainTextPasswordValidationCallbackHandler requires only a loginContextName to operate. It
creates a new JAAS LoginContext by using this name and handles the standard JAAS NameCallback
and PasswordCallback by using the username and password provided in the SOAP message. This
means that this callback handler integrates with any JAAS LoginModule that fires these callbacks
during the login() phase, which is standard behavior.

You can wire up a JaasPlainTextPasswordValidationCallbackHandler as follows:

<bean id="jaasValidationHandler"

class="org.springframework.ws.soap.security.xwss.callback.jaas.JaasPlainTextPasswo
rdValidationCallbackHandler">

<property name="loginContextName" value="MyLoginModule" />
</bean>

In this case, the callback handler uses the LoginContext named MyLoginModule. This module should
be defined in your jaas.config file, as explained in the tutorial mentioned earlier.

Digest Username Authentication

When using password digests, the SOAP message also contains a UsernameToken element, which itself
contains a Username element and a Password element. The difference is that the password is not sent
as plain text, but as a digest. The recipient compares this digest to the digest he calculated from the
known password of the user, and, if they are the same, the user is authenticated. This method is
comparable to the digest authentication provided by HTTP servers.

To require that every incoming message contains a UsernameToken element with a password digest,
the security policy file should contain a RequireUsernameToken element, with the
passwordDigestRequired attribute set to true. Additionally, the nonceRequired attribute should be set
to true. For more details, check the official reference of possible child elements. The following
listing shows how to define a RequireUsernameToken element:

<xwss:SecurityConfiguration xmlns:xwss="http://java.sun.com/xml/ns/xwss/config">

<xwss:RequireUsernameToken passwordDigestRequired="true"
nonceRequired="true"/>

</xwss:SecurityConfiguration>

88

https://www.oracle.com/java/technologies/javase/javase-tech-security.html
https://www.oracle.com/java/technologies/javase/javase-tech-security.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/tutorials/index.html
http://www.javaworld.com/javaworld/jw-09-2002/jw-0913-jaas.html
http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp567459

If the username token is not present, the XwsSecurityInterceptor returns a SOAP fault to the sender.
If it is present, it fires a PasswordValidationCallback with a DigestPasswordRequest to the registered
handlers. =~ Within Spring-WS, two classes handle this particular callback:
SimplePasswordValidationCallbackHandler and SpringDigestPasswordValidationCallbackHandler.

Using SimplePasswordValidationCallbackHandler

The SimplePasswordValidationCallbackHandler can handle both plain text passwords as well as
password digests. It is described in Using SimplePasswordValidationCallbackHandler.

Using SpringDigestPasswordValidationCallbackHandler

The SpringDigestPasswordValidationCallbackHandler requires a Spring Security UserDetailService to
operate. It uses this service to retrieve the password of the user specified in the token. The digest of
the password contained in this details object is then compared with the digest in the message. If
they are equal, the user has successfully authenticated, and a UsernamePasswordAuthenticationToken
is stored in the SecurityContextHolder. You can set the service by using the userDetailsService
property. Additionally, you can set a userCache property, to cache loaded user details. The following
example shows how to do so:

<beans>
<bean
class="org.springframework.ws.soap.security.xwss.callback.SpringDigestPasswordVali
dationCallbackHandler">
<property name="userDetailsService" ref="userDetailsService"/>
</bean>

<bean id="userDetailsService" class="com.mycompany.app.dao.UserDetailService"
/>

</beans>

Certificate Authentication

A more secure way of authentication uses X509 certificates. In this scenario, the SOAP message
contains a BinarySecurityToken, which contains a Base 64-encoded version of a X509 certificate. The
certificate is used by the recipient to authenticate. The certificate stored in the message is also used
to sign the message (see Verifying Signatures).

To make sure that all incoming SOAP messages carry a BinarySecurityToken ', the security policy
file should contain a RequireSignature element. This element can further carry other elements,
which are covered in Verifying Signatures. For more details, check the official reference of possible
child elements. The following listing shows how to define a RequireSignature element:

<xwss:SecurityConfiguration xmlns:xwss="http://java.sun.com/xml/ns/xwss/config">

89

http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp565769

<xwss:RequireSignature requireTimestamp="false">

</xwss:SecurityConfiguration>

When a message arrives that carries no certificate, the XwsSecurityInterceptor returns a SOAP fault
to the sender. If it is present, it fires a CertificateValidationCallback. Two handlers within Spring-

WS handle this callback for authentication purposes:

* KeyStoreCallbackHandler

» SpringCertificateValidationCallbackHandler

NOTE

In most cases, certificate authentication should be preceded by certificate
validation, since you want to authenticate against only valid certificates. Invalid
certificates, such as certificates for which the expiration date has passed or which
are not in your store of trusted certificates, should be ignored.

In Spring-WS$S terms, this means that the
SpringCertificateValidationCallbackHandler or
JaasCertificateValidationCallbackHandler should be preceded by
KeyStoreCallbackHandler. This can be accomplished by setting the order of the
callbackHandlers property in the configuration of the XwsSecurityInterceptor:

<bean id="wsSecurityInterceptor"

class="org.springframework.ws.soap.security.xwss.XwsSecurityIntercep
tor">
<property name="policyConfiguration"
value="classpath:securityPolicy.xml"/>
<property name="callbackHandlers">
<list>
<ref bean="keyStoreHandler"/>
<ref bean="springSecurityHandler"/>
</list>
</property>
</bean>

Using this setup, the interceptor first determines if the certificate in the message is
valid by using the keystore and then authenticating against it.

Using KeyStoreCallbackHandler

The KeyStoreCallbackHandler uses a standard Java keystore to validate certificates. This certificate
validation process consists of the following steps:

1. The handler checks whether the certificate is in the private keyStore. If it is, it is valid.

90

2. If the certificate is not in the private keystore, the handler checks whether the current date and
time are within the validity period given in the certificate. If they are not, the certificate is
invalid. If it is, it continues with the final step.

3. A certification path for the certificate is created. This basically means that the handler
determines whether the certificate has been issued by any of the certificate authorities in the
trustStore. If a certification path can be built successfully, the certificate is valid. Otherwise, the
certificate is not valid.

To use the KeyStoreCallbackHandler for certificate validation purposes, you most likely need to set
only the trustStore property:

<beans>
<bean id="keyStoreHandler"
class="org.springframework.ws.soap.security.xwss.callback.KeyStoreCallbackHandler"
>
<property name="trustStore" ref="trustStore"/>
</bean>

<bean id="trustStore"
class="org.springframework.ws.soap.security.support.KeyStoreFactoryBean">
<property name="location" value="classpath:truststore.jks"/>
<property name="password" value="changeit"/>
</bean>
</beans>

Using the setup shown in the preceding example, the certificate that is to be validated must be in
the trust store itself or the trust store must contain a certificate authority that issued the certificate.

Using SpringCertificateValidationCallbackHandler

The SpringCertificateValidationCallbackHandler requires an Spring Security AuthenticationManager
to operate. It uses this manager to authenticate against a X509AuthenticationToken that it creates.
The configured authentication manager is expected to supply a provider that can handle this token
(usually an instance of X509AuthenticationProvider). If authentication is successful, the token is
stored in the SecurityContextHolder. You can set the authentication manager by using the
authenticationManager property:

<beans>
<bean id="springSecurityCertificateHandler"

class="org.springframework.ws.soap.security.xwss.callback.SpringCertificateValidat
ionCallbackHandler">
<property name="authenticationManager" ref="authenticationManager"/>
</bean>

<bean id="authenticationManager"

91

class="org.springframework.security.providers.ProviderManager">
<property name="providers">
<bean
class="org.springframework.ws.soap.security.x509.X509AuthenticationProvider">
<property name="x509AuthoritiesPopulator">
<bean
class="org.springframework.ws.soap.security.x509.populator.DaoX509AuthoritiesPopul
ator">
<property name="userDetailsService"
ref="userDetailsService"/>
</bean>
</property>
</bean>
</property>
</bean>

<bean id="userDetailsService" class="com.mycompany.app.dao.UserDetailService" />

</beans>

In this case, we use a custom user details service to obtain authentication details based on the
certificate. See the Spring Security reference documentation for more information about
authentication against X509 certificates.

7.1.3. Digital Signatures

The digital signature of a message is a piece of information based on both the document and the
signer’s private key. Two main tasks are related to signatures in WS-Security: verifying signatures
and signing messages.

Verifying Signatures

As with certificate-based authentication, a signed message contains a BinarySecurityToken, which
contains the certificate used to sign the message. Additionally, it contains a SignedInfo block, which
indicates what part of the message was signed.

To make sure that all incoming SOAP messages carry a BinarySecurityToken, the security policy file
should contain a RequireSignature element. It can also contain a SignatureTarget element, which
specifies the target message part that was expected to be signed and various other sub-elements.
You can also define the private key alias to use, whether to use a symmetric instead of a private key,
and many other properties. For more details, check the official reference of possible child elements.
The following listing configures a RequireSignature element:

<xwss:SecurityConfiguration xmlns:xwss="http://java.sun.com/xml/ns/xwss/config">
<xwss:RequireSignature requireTimestamp="false"/>
</xwss:SecurityConfiguration>

92

http://www.springframework.org/security
https://docs.oracle.com/cd/E17802_01/webservices/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp565769

If the signature is not present, the XwsSecurityInterceptor returns a SOAP fault to the sender. If it is
present, it fires a SignatureVerificationKeyCallback to the registered handlers. Within Spring-WS§,
one class handles this particular callback: KeyStoreCallbackHandler.

Using KeyStoreCallbackHandler

As described in KeyStoreCallbackHandler, KeyStoreCallbackHandler uses a java.security.KeyStore
for handling various cryptographic callbacks, including signature verification. For signature
verification, the handler uses the trustStore property:

<beans>
<bean id="keyStoreHandler"
class="org.springframework.ws.soap.security.xwss.callback.KeyStoreCallbackHandler"
>
<property name="trustStore" ref="trustStore"/>
</bean>

<bean id="trustStore"
class="org.springframework.ws.soap.security.support.KeyStoreFactoryBean">
<property name="location"
value="classpath:org/springframework/ws/soap/security/xwss/test-truststore.jks"/>
<property name="password" value="changeit"/>
</bean>
</beans>

Signing Messages

When signing a message, the XwsSecurityInterceptor adds the BinarySecurityToken to the message. It
also adds a SignedInfo block, which indicates what part of the message was signed.

To sign all outgoing SOAP messages, the security policy file should contain a Sign element. It can
also contain a SignatureTarget element, which specifies the target message part that was expected
to be signed and various other sub-elements. You can also define the private key alias to use,
whether to use a symmetric instead of a private key, and many other properties. For more details,
check the official reference of possible child elements. The following example includes a Sign
element:

<xwss:SecurityConfiguration xmlns:xwss="http://java.sun.com/xml/ns/xwss/config">
<xwss:Sign includeTimestamp="false" />
</xwss:SecurityConfiguration>

The XwsSecurityInterceptor fires a SignatureKeyCallback to the registered handlers. Within Spring-
WS, the KeyStoreCallbackHandler class handles this particular callback.

93

https://docs.oracle.com/cd/E17802_01/webservices/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp565497

Using KeyStoreCallbackHandler

As described in KeyStoreCallbackHandler, the KeyStoreCallbackHandler uses a
java.security.KeyStore to handle various cryptographic callbacks, including signing messages. For
adding signatures, the handler uses the keyStore property. Additionally, you must set the
privateKeyPassword property to unlock the private key used for signing. The following example uses
a KeyStoreCallbackHandler:

<beans>
<bean id="keyStoreHandler"
class="org.springframework.ws.soap.security.xwss.callback.KeyStoreCallbackHandler"
>
<property name="keyStore" ref="keyStore"/>
<property name="privateKeyPassword" value="changeit"/>
</bean>

<bean id="keyStore"
class="org.springframework.ws.soap.security.support.KeyStoreFactoryBean">
<property name="location" value="classpath:keystore.jks"/>
<property name="password" value="changeit"/>
</bean>
</beans>

7.1.4. Decryption and Encryption

When encrypting, the message is transformed into a form that can be read only with the
appropriate key. The message can be decrypted to reveal the original, readable message.

Decryption

To decrypt incoming SOAP messages, the security policy file should contain a RequireEncryption
element. This element can further carry a EncryptionTarget element that indicates which part of the
message should be encrypted and a SymmetricKey to indicate that a shared secret instead of the
regular private key should be used to decrypt the message. For more details, check the official
reference of the other elements. The following example uses a RequireEncryption element:

<xwss:SecurityConfiguration xmlns:xwss="http://java.sun.com/xml/ns/xwss/config">
<xwss:RequireEncryption />
</xwss:SecurityConfiguration>

If an incoming message is not encrypted, the XwsSecurityInterceptor returns a SOAP fault to the
sender. If it is present, it fires a DecryptionKeyCallback to the registered handlers. Within Spring-WS§,
the KeyStoreCallbackHandler class handles this particular callback.

94

https://docs.oracle.com/cd/E17802_01/webservices/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp565951
https://docs.oracle.com/cd/E17802_01/webservices/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp565951

Using KeyStoreCallbackHandler

As described in KeyStoreCallbackHandler, the KeyStoreCallbackHandler uses a
java.security.KeyStore to handle various cryptographic callbacks, including decryption. For
decryption, the handler wuses the keyStore property. Additionally, you must set the
privateKeyPassword property to unlock the private key used for decryption. For decryption based on
symmetric Kkeys, it uses the symmetricStore. The following example uses KeyStoreCallbackHandler:

<beans>
<bean id="keyStoreHandler"
class="org.springframework.ws.soap.security.xwss.callback.KeyStoreCallbackHandler"
>
<property name="keyStore" ref="keyStore"/>
<property name="privateKeyPassword" value="changeit"/>
</bean>

<bean id="keyStore"
class="org.springframework.ws.soap.security.support.KeyStoreFactoryBean">
<property name="location" value="classpath:keystore.jks"/>
<property name="password" value="changeit"/>
</bean>
</beans>

Encryption

To encrypt outgoing SOAP messages, the security policy file should contain an Encrypt element. This
element can further carry a EncryptionTarget element that indicates which part of the message
should be encrypted and a SymmetricKey to indicate that a shared secret instead of the regular public
key should be used to encrypt the message. For more details, check the official reference of the
other elements. The following example uses an Encrypt element:

<xwss:SecurityConfiguration xmlns:xwss="http://java.sun.com/xml/ns/xwss/config">
<xwss:Encrypt />
</xwss:SecurityConfiguration>

The XwsSecurityInterceptor fires an EncryptionKeyCallback to the registered handlers to retrieve the
encryption information. Within Spring-WS, the KeyStoreCallbackHandler class handles this
particular callback.

Using KeyStoreCallbackHandler

As described in KeyStoreCallbackHandler, the KeyStoreCallbackHandler uses a
java.security.KeyStore to handle various cryptographic callbacks, including encryption. For
encryption based on public keys, the handler uses the trustStore property. For encryption based on
symmetric keys, it uses symmetricStore. The following example uses KeyStoreCallbackHandler:

95

https://docs.oracle.com/cd/E17802_01/webservices/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp565951

<beans>

<bean id="keyStoreHandler"
class="org.springframework.ws.soap.security.xwss.callback.KeyStoreCallbackHandler'
>

<property name="trustStore" ref="trustStore"/>
</bean>

<bean id="trustStore"
class="org.springframework.ws.soap.security.support.KeyStoreFactoryBean">
<property name="location" value="classpath:truststore.jks"/>
<property name="password" value="changeit"/>
</bean>
</beans>

7.1.5. Security Exception Handling

When a securement or validation action fails, the XwsSecurityInterceptor throws a
WsSecuritySecurementException or WsSecurityValidationException respectively. These exceptions
bypass the standard exception handling mechanism but are handled by the interceptor itself.

WsSecuritySecurementException exceptions are handled by the handleSecurementException method of
the XwsSecurityInterceptor. By default, this method logs an error and stops further processing of
the message.

Similarly, WsSecurityValidationException exceptions are handled by the handleValidationException
method of the XwsSecurityInterceptor. By default, this method creates a SOAP 1.1 Client or SOAP 1.2
sender fault and sends that back as a response.

Both handleSecurementException and handleValidationException are protected

NOTE
methods, which you can override to change their default behavior.

7.2. Using Wss4jSecuritylnterceptor

The Wss4jSecurityInterceptor is an EndpointInterceptor (see Intercepting Requests— the
EndpointInterceptor Interface) that is based on Apache’s WSS4].

WSS4] implements the following standards:

* OASIS Web Services Security: SOAP Message Security 1.0 Standard 200401, March 2004.
» Username Token profile V1.0.

e X.509 Token Profile V1.0.

This interceptor supports messages created by the SaajSoapMessageFactory.

96

https://ws.apache.org/wss4j/

7.2.1. Configuring Wss4jSecurityInterceptor

WSS4J uses no external configuration file. The interceptor is entirely configured by properties. The
validation and securement actions invoked by this interceptor are specified via validationActions
and securementActions properties, respectively. Actions are passed as a space-separated strings. The
following listing shows an example configuration:

<bean class="org.springframework.ws.soap.security.wss4j.Wss4jSecurityInterceptor">
<property name="validationActions" value="UsernameToken Encrypt"/>

<property name="securementActions" value="Encrypt"/>

</bean>

The following table shows the available validation actions:

Validation action Description
UsernameToken Validates username token
Timestamp Validates the timestamp
Encrypt Decrypts the message
Signature Validates the signature
NoSecurity No action performed

The following table shows the available securement actions:

Securement action Description

UsernameToken Adds a username token

UsernameTokenSignature Adds a username token and a signature
username token secret key

Timestamp Adds a timestamp

Encrypt Encrypts the response

Signature Signs the response

NoSecurity No action performed

The order of the actions is significant and is enforced by the interceptor. If its security actions were
performed in a different order than the one specified by validationActions, the interceptor rejects
an incoming SOAP message.

7.2.2. Handling Digital Certificates

For cryptographic operations that require interaction with a keystore or certificate handling
(signature, encryption, and decryption operations), WSS4] requires an instance of

97

org.apache.ws.security.components.crypto.Crypto.

Crypto instances can be obtained from WSS4]J’s CryptoFactory or more conveniently with the Spring-
WS CryptoFactoryBean.

CryptoFactoryBean

Spring-WS provides a convenient factory bean, CryptoFactoryBean, that constructs and configures
Crypto instances through strongly typed properties (preferred) or through a Properties object.

By default, CryptoFactoryBean returns instances of
org.apache.ws.security.components.crypto.Merlin. You can change this by setting the cryptoProvider
property (or its equivalent org.apache.ws.security.crypto.provider string property).

The following example configuration uses CryptoFactoryBean:

<bean
class="org.springframework.ws.soap.security.wss4j.support.CryptoFactoryBean">
<property name="keyStorePassword" value="mypassword"/>
<property name="keyStorelLocation"
value="file:/path_to_keystore/keystore.jks"/>
</bean>

7.2.3. Authentication

This section addresses how to do authentication with Wss4jSecurityInterceptor.

Validating Username Token

Spring-WS provides a set of callback handlers to integrate with Spring Security. Additionally, a
simple callback handler, SimplePasswordValidationCallbackHandler, is provided to configure users
and passwords with an in-memory Properties object.

Callback handlers are configured through the validationCallbackHandler of the
Wss4jSecurityInterceptor property.

Using SimplePasswordValidationCallbackHandler

SimplePasswordValidationCallbackHandler validates plain text and digest username tokens against
an in-memory Properties object. You can configure it as follows:

<bean id="callbackHandler"

class="org.springframework.ws.soap.security.wss4j.callback.SimplePasswordValidatio
nCallbackHandler">
<property name="users">
<props>

98

<prop key="Bert">Ernie</prop>
</props>
</property>
</bean>

Using SpringSecurityPasswordValidationCallbackHandler

The SpringSecurityPasswordValidationCallbackHandler validates plain text and digest passwords by
using a Spring Security UserDetailService to operate. It uses this service to retrieve the password
(or a digest of the password) of the user specified in the token. The password (or a digest of the
password) contained in this details object is then compared with the digest in the message. If they
are equal, the user has successfully authenticated, and a UsernamePasswordAuthenticationToken is
stored in the SecurityContextHolder. You can set the service by using the userDetailsService.
Additionally, you can set a userCache property, to cache loaded user details, as follows:

<beans>
<bean
class="org.springframework.ws.soap.security.wss4j.callback.SpringDigestPasswordVal
idationCallbackHandler">
<property name="userDetailsService" ref="userDetailsService"/>
</bean>

<bean id="userDetailsService" class="com.mycompany.app.dao.UserDetailService"
/>

</beans>

Adding Username Token

Adding a username token to an outgoing message is as simple as adding UsernameToken to the
securementActions property of the Wss4jSecurityInterceptor and specifying securementUsername and
securementPassword.

The password type can be set by setting the securementPasswordType property. Possible values are
PasswordText for plain text passwords or PasswordDigest for digest passwords, which is the default.

The following example generates a username token with a digest password:

<bean class="org.springframework.ws.soap.security.wss4j.Wss4jSecurityInterceptor">
<property name="securementActions" value="UsernameToken"/>
<property name="securementUsername" value="Ernie"/>
<property name="securementPassword" value="Bert"/>

</bean>

99

If the plain text password type is chosen, it is possible to instruct the interceptor to add Nonce and
Created elements by setting the securementUsernameTokenElements property. The value must be a list
that contains the desired elements' names separated by spaces (case-sensitive).

The following example generates a username token with a plain text password, a Nonce, and a
Created element:

<bean class="org.springframework.ws.soap.security.wss4j.Wss4jSecurityInterceptor">
<property name="securementActions" value="UsernameToken"/>
<property name="securementUsername" value="Ernie"/>
<property name="securementPassword" value="Bert"/>
<property name="securementPasswordType" value="PasswordText"/>
<property name="securementUsernameTokenElements" value="Nonce Created"/>
</bean>

Certificate Authentication

As certificate authentication is akin to digital signatures, WSS4] handles it as part of the signature
validation and securement. Specifically, the securementSignatureKeyIdentifier property must be set
to DirectReference in order to instruct WSS4] to generate a BinarySecurityToken element containing
the X509 certificate and to include it in the outgoing message. The certificate’s name and password
are passed through the securementUsername and securementPassword properties, respectively, as the
following example shows:

<bean class="org.springframework.ws.soap.security.wss4j.Wss4jSecurityInterceptor">
<property name="securementActions" value="Signature"/>
<property name="securementSignatureKeyIdentifier" value="DirectReference"/>
<property name="securementUsername" value="mycert"/>
<property name="securementPassword" value="certpass"/>
<property name="securementSignatureCrypto">
<bean
class="org.springframework.ws.soap.security.wss4j.support.CryptoFactoryBean">
<property name="keyStorePassword" value="123456"/>
<property name="keyStorelLocation" value="classpath:/keystore.jks"/>
</bean>
</property>
</bean>

For the certificate validation, regular signature validation applies:

<bean class="org.springframework.ws.soap.security.wss4j.Wss4jSecurityInterceptor">
<property name="validationActions" value="Signature"/>
<property name="validationSignatureCrypto">

100

<bean
class="org.springframework.ws.soap.security.wss4j.support.CryptoFactoryBean">
<property name="keyStorePassword" value="123456"/>
<property name="keyStorelLocation" value="classpath:/keystore.jks"/>
</bean>
</property>
</bean>

At the end of the validation, the interceptor automatically verifies the validity of the certificate by
delegating to the default WSS4] implementation. If needed, you can change this behavior by
redefining the verifyCertificateTrust method.

For more detail, see to Digital Signatures.

7.2.4. Security Timestamps

This section describes the various timestamp options available in the Wss4jSecurityInterceptor.

Validating Timestamps

To validate timestamps, add Timestamp to the validationActions property. You can override
timestamp semantics specified by the initiator of the SOAP message by setting timestampStrict to
true and specifying a server-side time-to-live in seconds (default: 300) by setting the timeTolLive
property. The interceptor always rejects already expired timestamps, whatever the value of
timeTolLive is.

In the following example, the interceptor limits the timestamp validity window to 10 seconds,
rejecting any valid timestamp token outside that window:

<bean class="org.springframework.ws.soap.security.wss4j.Wss4jSecurityInterceptor">
<property name="validationActions" value="Timestamp"/>
<property name="timestampStrict" value="true"/>
<property name="timeTolLive" value="10"/>

</bean>

Adding Timestamps

Adding Timestamp to the securementActions property generates a timestamp header in outgoing
messages. The timestampPrecisionInMilliseconds property specifies whether the precision of the
generated timestamp is in milliseconds. The default value is true. The following listing adds a
timestamp:

<bean class="org.springframework.ws.soap.security.wss4j.Wss4jSecurityInterceptor">
<property name="securementActions" value="Timestamp"/>
<property name="timestampPrecisionInMilliseconds" value="true"/>

101

</bean>

7.2.5. Digital Signatures

This section describes the various signature options available in the Wss4jSecurityInterceptor.

Verifying Signatures

To instruct the Wss4jSecurityInterceptor, validationActions must contain the Signature action.
Additionally, the validationSignatureCrypto property must point to the keystore containing the
public certificates of the initiator:

<bean id="wsSecurityInterceptor"
class="org.springframework.ws.soap.security.wss4j.Wss4jSecurityInterceptor">
<property name="validationActions" value="Signature"/>
<property name="validationSignatureCrypto">
<bean
class="org.springframework.ws.soap.security.wss4j.support.CryptoFactoryBean">
<property name="keyStorePassword" value="123456"/>
<property name="keyStorelLocation" value="classpath:/keystore.jks"/>
</bean>
</property>
</bean>

Signing Messages

Signing outgoing messages is enabled by adding the Signature action to the securementActions. The
alias and the password of the private key to use are specified by the securementUsername and
securementPassword properties, respectively. securementSignatureCrypto must point to the keystore
that contains the private key:

<bean class="org.springframework.ws.soap.security.wss4j.Wss4jSecurityInterceptor">
<property name="securementActions" value="Signature"/>
<property name="securementUsername" value="mykey"/>
<property name="securementPassword" value="123456"/>
<property name="securementSignatureCrypto">
<bean
class="org.springframework.ws.soap.security.wss4j.support.CryptoFactoryBean">
<property name="keyStorePassword" value="123456"/>
<property name="keyStorelLocation" value="classpath:/keystore.jks"/>
</bean>
</property>
</bean>

102

Furthermore, you can define the signature algorithm by setting the securementSignatureAlgorithm
property.

You can customize the key identifier type to use by setting the securementSignatureKeyIdentifier
property. Only IssuerSerial and DirectReference are valid for the signature.

The securementSignatureParts property controls which part of the message is signed. The value of
this property is a list of semicolon-separated element names that identify the elements to sign. The
general form of a signature part is { }{namespace}Element. Note that the first empty brackets are used
for encryption parts only. The default behavior is to sign the SOAP body.

The following example shows how to sign the echoResponse element in the Spring-WS echo sample:

<property name="securementSignatureParts"
value="{}{http://www.springframework.org/spring-
ws/samples/echo}echoResponse”/>

To specify an element without a namespace, use the string, Null (case sensitive), as the namespace
name.

If no other element in the request has a local name of Body, the SOAP namespace identifier can be
empty ({}).

Signature Confirmation

Signature confirmation is enabled by setting enableSignatureConfirmation to true. Note that the
signature confirmation action spans over the request and the response. This implies that
secureResponse and validateRequest must be set to true (which is the default value) even if there are
no corresponding security actions. The following example sets the enableSignatureConfirmation
property to true:

<bean class="org.springframework.ws.soap.security.wss4j.Wss4jSecurityInterceptor">
<property name="validationActions" value="Signature"/>
<property name="enableSignatureConfirmation" value="true"/>
<property name="validationSignatureCrypto">
<bean
class="org.springframework.ws.soap.security.wss4j.support.CryptoFactoryBean">
<property name="keyStorePassword" value="123456"/>
<property name="keyStorelocation" value="file:/keystore.jks"/>
</bean>
</property>
</bean>

103

7.2.6. Decryption and Encryption

This section describes the various decryption and encryption options available in the
Wss4jSecurityInterceptor.

Decryption

Decryption of incoming SOAP messages requires that the Encrypt action be added to the
validationActions property. The rest of the configuration depends on the key information that
appears in the message. (This is because WSS4] needs only a Crypto for encrypted keys, whereas
embedded key name validation is delegated to a callback handler).

To decrypt messages with an embedded encrypted symmetric key (the xenc:EncryptedKey element),
validationDecryptionCrypto needs to point to a keystore that contains the decryption private Kkey.
Additionally, validationCallbackHandler has to be injected with a KeyStoreCallbackHandler that
specifies the key’s password:

<bean
class="org.springframework.ws.soap.security.wss4j2.Wss4jSecurityInterceptor">
<property name="validationActions" value="Encrypt"/>
<property name="validationDecryptionCrypto">
<bean
class="org.springframework.ws.soap.security.wss4j2.support.CryptoFactoryBean">
<property name="keyStorePassword" value="123456"/>
<property name="keyStorelocation" value="classpath:/keystore.jks"/>
</bean>
</property>
<property name="validationCallbackHandler">
<bean
class="org.springframework.ws.soap.security.wss4j2.callback.KeyStoreCallbackHandle
r'>
<property name="privateKeyPassword" value="mykeypass"/>
</bean>
</property>
</bean>

To support decryption of messages with an embedded key name (ds:KeyName element), you can
configure a KeyStoreCallbackHandler that points to the keystore with the symmetric secret key. The
symmetricKeyPassword property indicates the key’s password, the key name being the one specified
by ds:KeyName element:

<bean
class="org.springframework.ws.soap.security.wss4j2.Wss4jSecurityInterceptor">
<property name="validationActions" value="Encrypt"/>
<property name="validationCallbackHandler">
<bean

104

https://docs.spring.io/spring-ws/docs/4.0.16/api/org/springframework/ws/soap/security/wss4j2/callback/KeyStoreCallbackHandler.html

class="org.springframework.ws.soap.security.wss4j2.callback.KeyStoreCallbackHandle
r'>
<property name="keyStore">
<bean
class="org.springframework.ws.soap.security.support.KeyStoreFactoryBean">
<property name="location" value="classpath:keystore.jks"/>
<property name="type" value="JCEKS"/>
<property name="password" value="123456"/>
</bean>
</property>
<property name="symmetricKeyPassword" value="mykeypass"/>
</bean>
</property>
</bean>

Encryption

Adding Encrypt to the securementActions enables encryption of outgoing messages. You can set the
certificate’s alias to use for the encryption by setting the securementEncryptionUser property. The
keystore where the certificate resides is accessed through the securementEncryptionCrypto property.
As encryption relies on public certificates, no password needs to be passed. The following example
uses the securementEncryptionCrypto property:

<bean
class="org.springframework.ws.soap.security.wss4j2.Wss4jSecurityInterceptor">
<property name="securementActions" value="Encrypt"/>
<property name="securementEncryptionUser" value="mycert"/>
<property name="securementEncryptionCrypto">
<bean
class="org.springframework.ws.soap.security.wss4j2.support.CryptoFactoryBean">
<property name="keyStorePassword" value="123456"/>
<property name="keyStorelLocation" value="file:/keystore.jks"/>
</bean>
</property>
</bean>

You can customize encryption in several ways: The key identifier type to use is defined by the
securementEncryptionKeyIdentifier property. Possible values are IssuerSerial,X509KeyIdentifier,
DirectReference,Thumbprint, SKIKeyIdentifier, and EmbeddedKeyName.

If you choose the EmbeddedKeyName type, you need to specify the secret key to use for the encryption.
The alias of the key is set in the securementEncryptionUser property, as for the other key identifier
types. However, WSS4] requires a callback handler to fetch the secret key. Thus, you must provide
securementCallbackHandler with a KeyStoreCallbackHandler that points to the appropriate keystore.
By default, the ds:KeyName element in the resulting WS-Security header takes the value of the
securementEncryptionUser property. To indicate a different name, you can set the

105

securementEncryptionEmbeddedKeyName with the desired value. In the next example, the outgoing
message is encrypted with a key aliased secretKey, whereas myKey appears in ds:KeyName element:

<bean
class="org.springframework.ws.soap.security.wss4j2.Wss4jSecurityInterceptor">
<property name="securementActions" value="Encrypt"/>
<property name="securementEncryptionKeyIdentifier" value="EmbeddedKeyName"/>
<property name="securementEncryptionUser" value="secretKey"/>
<property name="securementEncryptionEmbeddedKeyName" value="myKey"/>
<property name="securementCallbackHandler">
<bean
class="org.springframework.ws.soap.security.wss4j2.callback.KeyStoreCallbackHandle
r'>
<property name="symmetricKeyPassword" value="keypass"/>
<property name="keyStore">
<bean
class="org.springframework.ws.soap.security.support.KeyStoreFactoryBean">
<property name="location" value="file:/keystore.jks"/>
<property name="type" value="jceks"/>
<property name="password" value="123456"/>
</bean>
</property>
</bean>
</property>
</bean>

The securementEncryptionKeyTransportAlgorithm property defines which algorithm to use to encrypt
the generated symmetric key. Supported values are http://www.w3.0rg/2001/04/xmlenc#irsa-1_5,
which is the default, and http://www.w3.0rg/2001/04/xmlenc#irsa-oaep-mgfip

You <can set the symmetric encryption algorithm to use by setting the
securementEncryptionSymAlgorithm property. Supported values are http://www.w3.0rg/2001/04/
xmlenc#aes128-cbc (default), http://www.w3.0rg/2001/04/xmlenc#tripledes-cbe, http://www.w3.org/
2001/04/xmlenc#faes256-cbe, and http://www.w3.0rg/2001/04/xmlenc#aes192-cbc.

Finally, the securementEncryptionParts property defines which parts of the message are encrypted.
The value of this property is a list of semicolon-separated element names that identify the elements
to encrypt. An encryption mode specifier and a namespace identification, each inside a pair of
curly brackets, may precede each element name. The encryption mode specifier is either {Content}
or {Element} See the W3C XML Encryption specification about the differences between Element and
Content encryption. The following example identifies the echoResponse from the echo sample:

<property name="securementEncryptionParts"
value="{Content}{http://www.springframework.org/spring-
ws/samples/echo}echoResponse”/>

106

http://www.w3.org/2001/04/xmlenc#rsa-1_5
http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p
http://www.w3.org/2001/04/xmlenc#aes128-cbc
http://www.w3.org/2001/04/xmlenc#aes128-cbc
http://www.w3.org/2001/04/xmlenc#tripledes-cbc
http://www.w3.org/2001/04/xmlenc#aes256-cbc
http://www.w3.org/2001/04/xmlenc#aes256-cbc
http://www.w3.org/2001/04/xmlenc#aes192-cbc

Be aware that the element name, the namespace identifier, and the encryption modifier are case-
sensitive. You can omit the encryption modifier and the namespace identifier. If you do, the
encryption mode defaults to Content, and the namespace is set to the SOAP namespace.

To specify an element without a namespace, use the value, Null (case sensitive), as the namespace
name. If no list is specified, the handler encrypts the SOAP Body in Content mode by default.

7.2.7. Security Exception Handling

The exception handling of the Wss4jSecurityInterceptor is identical to that of the
XwsSecurityInterceptor. See Security Exception Handling for more information.

107

II1. Other Resources

In addition to this reference documentation, a number of other resources may help you learn how
to use Spring Web Services. These additional, third-party resources are enumerated in this section.

108

Bibliography

[waldo-94] Jim Waldo, Ann Wollrath, and Sam Kendall. A Note on Distributed Computing.
Springer Verlag. 1994

[alpine] Steve Loughran & Edmund Smith. Rethinking the Java SOAP Stack. May 17, 2005. © 2005
IEEE Telephone Laboratories, Inc.

[effective-enterprise-java] Ted Neward. Scott Meyers. Effective Enterprise Java. Addison-Wesley.
2004

[effective-xml] Elliotte Rusty Harold. Scott Meyers. Effective XML. Addison-Wesley. 2004

109

	Spring Web Services Reference Documentation
	Table of Contents
	Preface
	I. Introduction
	Chapter 1. What is Spring Web Services?
	1.1. Introduction
	1.1.1. Powerful mappings
	1.1.2. XML API support
	1.1.3. Flexible XML Marshalling
	1.1.4. Reusing Your Spring expertise
	1.1.5. Support for WS-Security
	1.1.6. Integration with Spring Security
	1.1.7. Apache license

	1.2. Runtime environment
	1.3. Supported standards

	Chapter 2. Why Contract First?
	2.1. Object/XML Impedance Mismatch
	2.1.1. XSD Extensions
	2.1.2. Unportable Types
	2.1.3. Cyclic Graphs

	2.2. Contract-first Versus Contract-last
	2.2.1. Fragility
	2.2.2. Performance
	2.2.3. Reusability
	2.2.4. Versioning

	Chapter 3. Writing Contract-First Web Services
	3.1. Messages
	3.1.1. Holiday
	3.1.2. Employee
	3.1.3. HolidayRequest

	3.2. Data Contract
	3.3. Service Contract
	3.4. Creating the project
	3.5. Implementing the Endpoint
	3.5.1. Handling the XML Message
	3.5.2. Routing the Message to the Endpoint
	3.5.3. Providing the Service and Stub implementation

	3.6. Publishing the WSDL

	II. Reference
	Chapter 4. Shared components
	4.1. Web Service Messages
	4.1.1. WebServiceMessage
	4.1.2. SoapMessage
	4.1.3. Message Factories
	SaajSoapMessageFactory
	SOAP 1.1 or 1.2

	4.1.4. MessageContext

	4.2. TransportContext
	4.3. Handling XML With XPath
	4.3.1. XPathExpression
	4.3.2. XPathOperations

	4.4. Message Logging and Tracing

	Chapter 5. Creating a Web service with Spring-WS
	5.1. The MessageDispatcher
	5.2. Transports
	5.2.1. MessageDispatcherServlet
	Automatic WSDL exposure

	5.2.2. Wiring up Spring-WS in a DispatcherServlet
	5.2.3. JMS transport
	5.2.4. Email Transport
	5.2.5. Embedded HTTP Server transport
	5.2.6. XMPP transport
	5.2.7. MTOM

	5.3. Endpoints
	5.4. @Endpoint handling methods
	5.4.1. Handling Method Parameters
	@XPathParam

	5.4.2. Handling method return types

	5.5. Endpoint mappings
	5.5.1. WS-Addressing
	Using AnnotationActionEndpointMapping

	5.5.2. Intercepting Requests — the EndpointInterceptor Interface
	PayloadLoggingInterceptor and SoapEnvelopeLoggingInterceptor
	PayloadValidatingInterceptor
	Using PayloadTransformingInterceptor

	5.6. Handling Exceptions
	5.6.1. SoapFaultMappingExceptionResolver
	5.6.2. Using SoapFaultAnnotationExceptionResolver

	5.7. Server-side Testing
	5.7.1. Writing server-side integration tests
	5.7.2. Using RequestCreator and RequestCreators
	5.7.3. Using ResponseMatcher and ResponseMatchers

	Chapter 6. Using Spring-WS on the Client
	6.1. Using the Client-side API
	6.1.1. WebServiceTemplate
	URIs and Transports
	Message factories

	6.1.2. Sending and Receiving a WebServiceMessage
	6.1.3. Sending and Receiving POJOs — Marshalling and Unmarshalling
	6.1.4. Using WebServiceMessageCallback
	WS-Addressing

	6.1.5. Using WebServiceMessageExtractor

	6.2. Client-side Testing
	6.2.1. Writing Client-side Integration Tests
	6.2.2. Using RequestMatcher and RequestMatchers
	6.2.3. Using ResponseCreator and ResponseCreators

	Chapter 7. Securing Your Web services with Spring-WS
	7.1. XwsSecurityInterceptor
	7.1.1. Keystores
	Using keytool
	Using KeyStoreFactoryBean
	KeyStoreCallbackHandler

	7.1.2. Authentication
	Plain Text Username Authentication
	Digest Username Authentication
	Certificate Authentication

	7.1.3. Digital Signatures
	Verifying Signatures
	Signing Messages

	7.1.4. Decryption and Encryption
	Decryption
	Encryption

	7.1.5. Security Exception Handling

	7.2. Using Wss4jSecurityInterceptor
	7.2.1. Configuring Wss4jSecurityInterceptor
	7.2.2. Handling Digital Certificates
	CryptoFactoryBean

	7.2.3. Authentication
	Validating Username Token
	Adding Username Token
	Certificate Authentication

	7.2.4. Security Timestamps
	Validating Timestamps
	Adding Timestamps

	7.2.5. Digital Signatures
	Verifying Signatures
	Signing Messages
	Signature Confirmation

	7.2.6. Decryption and Encryption
	Decryption
	Encryption

	7.2.7. Security Exception Handling

	III. Other Resources
	Bibliography

