Spring Framework Reference Documentation

4.1.6.RELEASE

Rod Johnson , Juergen Hoeller , Keith Donald , Colin Sampaleanu , Rob Harrop , Thomas Risberg , Alef
Arendsen , Darren Davison , Dmitriy Kopylenko , Mark Pollack , Thierry Templier , Erwin Vervaet , Portia
Tung , Ben Hale , Adrian Colyer , John Lewis , Costin Leau , Mark Fisher , Sam Brannen , Ramnivas
Laddad , Arjen Poutsma , Chris Beams , Tareq Abedrabbo , Andy Clement , Dave Syer , Oliver Gierke ,
Rossen Stoyanchev , Phillip Webb , Rob Winch , Brian Clozel , Stephane Nicoll , Sebastien Deleuze

Copyright © 2004-2014

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Framework Reference Documentation

Table of Contents

[. Overview Of SPring FrameEWOTKiiiiiiiiii e et e e 1
1. Getting Started With SPriNg ..o e e 2
2. Introduction to the Spring Framework ... 3

2.1. Dependency Injection and Inversion of CONrolcociiieiiiiiiiiii e 3
2.2, MOGUIES ...ttt e et e 3
(0] (=R Ofo] o] =11 =7 S PP 4
AOP and INSIrUMENTALIONciiiitiiiiii e et ees 5

T LTSTST= o[o PPN 5
Data ACCESS/INTEGIAtiONoeeeiiieee et e e e e e eens 5

KT o S 5
IS S PP 6

2.3, USAQE SCENAIIOSietueit it et et et e ettt et e e et e et e e et e e et e e et e e ebn s e eaaaeenaeeen 6
Dependency Management and Naming CONVENLioNScc.ovveeievinneeeiiinneeeennnnnn. 9
Spring Dependencies and Depending 0N SPringccoevvveeiieeeinieiiieeeineen, 11

Maven Dependency Managementoooeuuiiiuiieeiiiaiii e eei e 11

Maven "Bill Of Materials" Dependencyccccviieiiiiiniiiiiiinieeein e 12

Gradle Dependency Managementceevvuieiiiieeiiieeiiiee e e e e eanes 12

vy Dependency Managementc..viiuueiinaiiieei e e 13
Distribution Zip FilESiiiiiii e 13

[0 To 1T R P 13

Not Using CommONS LOGQING ...uuevniiiiiiii et ea e 14

USING SLFAJ ..ot 14

L LT o 1o T 0 15

[I. What's New in SPring FrameEWOIK 4.Xiiiuuoiiiii e e e e e e e eens 17

3. New Features and Enhancements in Spring Framework 4.0cccoovviiiiiiiiiiiiinneeciin, 18
3.1. Improved Getting Started EXPEriENCEccvvvuiiiiiieiiiiice e 18
3.2. Removed Deprecated Packages and Methodsccoiiiiiiiiiiiniiiiniiiieeeean 18
3.3..Java 8 (8S WEI @S 6 QNG 7) ..eeierinieiiiii et 18
3.4, JAVA EE 6 @NA 7 ... 19
3.5. Groovy Bean Definition DSLoiiiuiiiiiiiici e 19
3.6. Core Container IMProOVEMENTSviiiiiieiiiie ettt a e e e 19
3.7. General Web IMProVEMENLSc.uuiiiiiiiii e e e e e e e 20
3.8. WebSocket, SockJS, and STOMP MESSAQING .. cvvuuairniiiieaeiiaeiieeiaeeii e eeieeeannn 20
3.9. TestiNg IMPrOVEMENTSuiiiiiiieiiii e et e et e e 21
4. New Features and Enhancements in Spring Framework 4.1cccocoiiiiiiiiiiii e 22
4.1, IMS IMPIOVEMENTSeeiiiiiiieee ettt ettt et e e et e et e e e et e e e et aeaaenns 22
4.2, Caching IMPrOVEMENTSciiiiiii it e e 22
4.3. WED IMPrOVEMENTS ...t e e e e e e e e et e e et e e eanaeee 23
4.4. WebSocket STOMP Messaging IMProvEMENtSc..oeieuniiiiiieiiaeiieeei e eeiees 24
4.5, Testing IMPIrOVEMENTSiiiiiii et e s 24

11T to T =T =Tl 1 o] (oo 1T P 26

5. The T0C CONLAINETniiieee et et e e et e et e et e e ea e aeanaas 27
5.1. Introduction to the Spring 1oC container and beansc.cccoovviiieiiieii e, 27

5.2, CONAINET OVEIVIEWieiiiiiiiie ettt ettt e ettt e e e e e e e e s bbb e e e e e eeenes 27
Configuration MEetadatalvieuuiiiii e 28
Instantiating @ CONTAINETviiiiiiiieiei e 29
Composing XML-based configuration metadataccooeeviieviiiiiinnennnnn. 30

4.1.6.RELEASE Spring Framework iii

Spring Framework Reference Documentation

USING the CONTAINET ...oouiiii e e e e e eaen 31
5.3, BEAN OVEIVIEW ...ttt et e ettt ettt et e et e et e et e e et e e et e e et e e e at e e eaeaebnaes 31
NAMING DEANS ..o et 32
Aliasing a bean outside the bean definitionc.cccooviiiiiiiiin e, 33
InStantiating DEANScoei i 34
Instantiation with @ CONSIIUCTOrovvviiiiii e 34
Instantiation with a static factory methodccoiviiiiiii i, 35
Instantiation using an instance factory methodc...ccoooiiiii, 35

5.4, DEPENUENCIES ...oetuieiiii ettt ettt e e e et e et e e et e e s 36
Dependency INJECHIONcvii e e e e e e e an s 36
Constructor-based dependency iNJECHONcc.oviiiiiiiiiiiiiee e 37
Setter-based dependency INJECIONcovcieeiiiiiiiiiiiieii e 39
Dependency resolUtioN PrOCESSccvuiiiiiieeiieieii e e e e e e e e 40
Examples of dependency iNJECtIONcc.iiiiiiiiiiiiiii e 41
Dependencies and configuration in detailccooooviiiiiiiii 43
Straight values (primitives, Strings, and SO ON)cc.ovvviiiviiiiieeiieeeeeis 43
References to other beans (collaborators)coeiiiiiiiiiiiiiniieee, 44

T =] gl o= g 45
10701 1=T o 1o o TSP 45

Null and empty String VAlUEScc.uiiiiiiiiiii e 48
XML shortcut with the p-namespacecccovviiiiiiiiiiii e 48
XML shortcut with the c-namespaceccooeviiiiiiiii e 49
Compound PropPerty NAMESceeuniiiiiaei e e e e e e e e e eeenns 50
USING AEPENTS-0N ...uiiiiii ettt ettt et eeeaa e eeaens 51
Lazy-initialized DEANScoouniii i 51
AUtOWIriNg COlADOTALOrSceuiiii e 52
Limitations and disadvantages of autOWIrNgocoeuviiiiiiiiinneiiiineecie, 53
Excluding a bean from autowiringcooeeuiiiiiiieiin e 53
Method INJECTIONceeiit e et e e e 54
Lookup method INJECHIONc..uuiiiiiiiiei e 55
Arbitrary method replacementcoouiiiiiiiii i 56

5.5, BBAN SCOPES ...eiiiiiiiieii ettt ees 57
The SINGIEION SCOPE ...t 58
I I o101 011/ 0L oT o] o 1= T 59
Singleton beans with prototype-bean dependenciesc.cococoiviiiiiiiiiiiieeennnn. 60
Request, session, and global SESSION SCOPESc.uvvviiieiiiiiiiiieiiii e 60
Initial web configurationcocoii i 60
REQUESE SCOPE ..eiiiiiii ettt et e ea e 61
SESSION SCOPE ittt ettt ettt et ettt et e 61
(€[] o F= LIESY= TS [0 N oo o 1= 1P 61
APPLICALION SCOPE ..eeniiiei it 62
Scoped beans as dependenCiesSovviiiiiiiiiiiiiiie e 62
(LT] (o] g Yo 0] o1 64
Creating @ CUSIOM SCOPEccvuiiiieiit et e et e e e e e e e e e ean s 64
USING 8 CUSLOM SCOPE ..cevtueiiiiiieeiiti e eeeeti e e e eett e e eeti e e e eeti e e e eebt e eeeebeaeeeee 65

5.6. Customizing the nature of a beanccooeiiiiii i 66
LifecyCle CallDACKSoiieei e 66
Initialization CallDACKSiiiiiiie e 67
Destruction Callbacksoiiiiiiiiiii 67
Default initialization and destroy methodscccooviiiiiiiiiiii e, 68

4.1.6.RELEASE Spring Framework iv

Spring Framework Reference Documentation

Combining lifecycle mechanismscoovviiiiiiiiiin e 69
Startup and shutdown callbackscoooiiiiiiiiiii 70

Shutting down the Spring 1oC container gracefully in non-web applications
... 71
ApplicationContextAware and BeanNameAWarecccovveuiiiiiieiiineiiieeiieeeanne 72
Other AWare INEITACESiiie e e 73
5.7. Bean definition iNNertanCeooooiiiiiiiiiii e 74
5.8. Container EXteNSION POINESiiuiiiiiiiiii e 76
Customizing beans using a BeanPOStPrOCESSOrcuuuveiiiieiiiiieiiieeeiiieeiineeiiees 76
Example: Hello World, BeanPostProcessor-styleccooovveeviiiiiiiincvinnen, 77
Example: The RequiredAnnotationBeanPoStProcessorcccoceeveeevneeennn. 79
Customizing configuration metadata with a BeanFactoryPostProcessor 79
Example: the Class name substitution PropertyPlaceholderConfigurer 80
Example: the PropertyOverrideConfigurercoooeiviiiiiiiiniiiineiieeeiees 81
Customizing instantiation logic with a FactoryBeanccccoccoviiniiiiiinneeiininnnnn. 82
5.9. Annotation-based container configurationcccoviiiii i 82
@REQUITEA ..ottt 84
(@YX 1 (011171 (=T IR 84
Fine-tuning annotation-based autowiring with qualifiersccccoovviiieennnnn. 87
Using generics as autowiring qualifiersooooiioiiiiii e 92
CUStOMAULOWIFECONTIGUIET ..t 92
@RESOUITE ..eeviieieit ettt e e et e e ettt e e e et e e e ettt e e e etbeneeeeatnaeeeentnaeeeenes 93
@PostConstruct and @PreDESIIOYuiiiuniiiiieiie e 94
5.10. Classpath scanning and managed COMPONENTSuuviiiiiinieiiiiineeiiiieeeeeiien 94
@Component and further stereotype annotationscccoceeviviiiveiieeiiiiecineennn, 95
Meta-anNOTALIONSc.uiiit e et aans 95
Automatically detecting classes and registering bean definitionscc.......... 96
Using filters to CUStOMIZE SCANNINGcvvueiieieiiiee e e e e e 97
Defining bean metadata within COMPONENtSocouiiiiiiiiiiiiii e 98
Naming autodetected COMPONENTSiiiiiiiiiiiiiie e 100
Providing a scope for autodetected cOmpoNentsc.ccecveviiieiiiieiiiieeii e, 100
Providing qualifier metadata with annotationscccooviiiiiiiiii i, 101
5.11. Using JSR 330 Standard ANNOLAtIONScooieviiiiiiiiiiieiiiie e 102
Dependency Injection with @Inject and @Namedccooeviveiiiieviineiieeeenn, 102
@Named: a standard equivalent to the @Component annotation 103
Limitations of the standard approachcccooveiiiiiiiiiii e 104
5.12. Java-based container configurationccoceiiiiiiieiiii e 104
Basic concepts: @Bean and @Configurationcccoeeviiiiiiiieiiinei e 104
Instantiating the Spring container using AnnotationConfigApplicationContext 105
SIMPIE CONSIIUCTION ..ovutiiiiici e e e e e e e e 105
Building the container programmatically using register(Class<?>...) 106
Enabling component scanning with scan(String...)oooviiveiiiinieiiiiinnenes 106

Support for web applications with AnnotationConfigWebApplicationContext
... 107
Using the @Bean annotationc.oceuiiiiiiiiiiiei e e 108
Declaring @ bBeanccouuiiii i 108
Receiving lifecycle callbacks ..o 109
SPEeCIfyiNg DEAN SCOPE .. .iiiiii i 110
Customizing bean NamMIiNGccuviiiiiiiee e 111
Bean @li@SinNgccuuiiiiiiiii e 111
4.1.6.RELEASE Spring Framework v

Spring Framework Reference Documentation

Bean deSCIPLION ...iiiiii e 111

Using the @Configuration annotationcc.ivieuiiiiiiiiiiie e 112
Injecting inter-bean dependenciescoovieiiiiiiiiiiiii 112

Lookup mMethod INJECHIONuieei e e e e 112

Further information about how Java-based configuration works internally.... 113
Composing Java-based configurationsccoeiiiiiiiiiiiniiiii e 114
Using the @Import annotationccceuviiiiieiiin e 114
Conditionally including @Configuration classes or @Beans 117
Combining Java and XML configurationccoeeveuvinneiiiiinneiiiineeceiinnee, 117

5.13. Environment abStraCtioniiiiiiiiiiiiiii e 119
Bean definition profiles ... 120
(@] d (011 121

XML Bean definition profilescoooeiiiiiiiii i 122
Enabling @ profile ... 123

Default Profile ... 123
PropertySource ADSIIaCtiONovviiiirii e 123

@ PIOPEITYSOUICE ...ttt ettt e e et e e e eaa e eeen 124
Placeholder resolution in StAteMENEScooiiiiiiiiiiiii e 125
5.14. Registering a LoadTiMEWEAVELcceuuiiiiiiiii e e e e e e e eaaaeees 125
5.15. Additional Capabilities of the ApplicationContextc.cocoueviiiiiiiiiiiiiiineeieeenn, 126
Internationalization USINg MESSAgESOUICEiiiiiiiniiiiiiiiieeeeii e 126
Standard and CUSIOM EVENLSc.ouuiiiiiiiiiiiii e 129
Convenient access to [ow-level reSOUICEScooouviiiiiiiiiiii e 132
Convenient ApplicationContext instantiation for web applications 133
Deploying a Spring ApplicationContext as a Java EE RARfilecccoceunnis 133
5.16. ThE BEANFACIONYcuiiiiiiieiii ettt et et et e e e eaa e ees 134
BeanFactory or ApplicatioNCONEXE?viiiiiiiieiiiii e 134

Glue code and the evil SINGIETONccouviiiiii e 135

B. RESOUICES ...ttt ettt ettt et et e e et e e e e e et e e e en e enns 137
L0 I 1o o [o3 1T o I PP 137
6.2. The ReSOUICE INLEITACEociiiiiiieii e 137
6.3. Built-in Resource implementationsiviiiiiiiiiii e 138
| =TT 11] o= 138
ClasSPatNRESOUICEoiiiiiiiiiii et 138
FIleSYSIEMRESOUITE ...t et e e e 139
ServIetCONEXIRESOUICEiiviiiiieii et e e e e e e eenns 139
INPUESTIEAMRESOUITE ...ivniiieii et e e e e e e e e e e e e e e e e eaaeanaeannes 139
BYIEAITAYRESOUITE ...t e e eans 139

6.4. The RESOUICELOAUET .. oouuiiiiii et e e s 139
6.5. The ResourceLoaderAware iNtErfacecooveviuiiiiiiiiiiiieie e 140
6.6. Resources as dependenCIeSccuuiiiiuiiiiieii e 141
6.7. Application contexts and Resource pathsccoooviiiiiiiiiiiiii e 141
Constructing application CONEXLS ...vuvuiiiunieiii e e eae e 141
Constructing ClassPathXmlApplicationContext instances - shortcuts 142

Wildcards in application context constructor resource pathsccccoeveeeiiiineens 142
ANE-SEYIE PAtterNS ..oovvniiei i e 143

The Classpath*: portability classpath®: prefixccoooeviiiiiiiiiiiis 143

Other notes relating to WIldCardscovveiiiiiiiiiiii e 144
FileSYyStEMRESOUICE CAVEALSuuiviieiiiieeiiie e e e e e e e e et e e e ann s 144

7. Validation, Data Binding, and Type CONVEISIONccuiiiuiiiiiiiiiieeiiee e 146

4.1.6.RELEASE Spring Framework Vi

Spring Framework Reference Documentation

4% T [1o Yo [U T 1 o] o I PP 146
7.2. Validation using Spring’s Validator interfacec.ocoiviiiiiiiiiiii e 146
7.3. ResoIving COUES 10 ITON MESSAGES ...cvvvuneieetineieitieterti e terii e eeeti e eerie e eenanns 148
7.4. Bean manipulation and the BeanWrappercoovvuiiiiiiieeiinicii e ev e 149
Setting and getting basic and nested Propertiesccooeveiieeiiniiiiieiiineeeeeenn 149
Built-in PropertyEditor implementationscoovviiiiiiiiiiin e 151
Registering additional custom PropertyEditorsc.cccoevvviiviiiiieiiineeinens 154

7.5. SPring TYPE CONVEISIONcuuniiiieiii ettt et et e e e et e e e e ean s 156
CONVEIEE SPI L.t e e e aaas 156

L0701)Y =T o (=T = Vo (0] Y 157
GENEINCCONVEITETeeeett ettt ettt e e e et e e et e e e ent e e eentneeees 157
ConditionalGeNEriCCONVEIETcieviieiiieei e e e 158
CONVEISIONSEIVICE AP ... e eenes 158
Configuring @ CONVEISIONSEIVICEccuuuiiitiiiiieiei et eens 159
Using a ConversionService programmaticallycccooooviiiiiiiiiiiiniiiiin, 160

7.6. Spring Field FOrMAattiNgoiviiiiiie e e e e e e e e eees 160
FOrMAatter SPIooveiii 161
Annotation-driven FOrMAattingoooeuuiiiiiiiiieiii e 162
Format ANNOLAtioN APcooiiiiiiiie e 163
FOrmatterREgISIIY SPI ... e 163
FOrmatterRegISIIar SPIiiiii e 164
Configuring Formatting in Spring MVC ..o e 164

7.7. Configuring a global date & time formatccooiiiiiiiiiii e, 166
7.8. SPriNg Validationco.uuiiiiiiiiiii e 167
Overview of the JSR-303 Bean Validation APloiiiiiiiiiiiiiii e 167
Configuring a Bean Validation Providerccoooiiiiiiiiiiiee e 168
Injecting @ Validatorc.uuiiiiiiii e 168
Configuring Custom CONSLraNtSoevveieiiiiieeii e e e 169
Spring-driven Method Validationccoooiiiiiiiiiii e 169

Additional Configuration OPLiONSuuiiiiiiiiiieiiiii e 170
Configuring @ DataBiNderccuuiiiiieei e e 170
Spring MVC 3 Validationooiiuiiii e 170
Triggering @Controller Input Validationcccooeeiiiiniiiiiiin e, 170
Configuring a Validator for use by Spring MVCcccccoiviviiiiiiiccie e, 171
Configuring a JSR-303/JSR-349 Validator for use by Spring MVC 171

8. Spring Expression Language (SPEL)coouuuiiiiiiiii e 173
ST I [0 1o Yo [U T (o] o ISP 173
8.2. FEALUIE OVEIVIEWiiiiiiieiieii ettt ettt et ettt e e et e e e r e e ennans 173
8.3. Expression Evaluation using Spring’s Expression Interfaceccccooovevviinneees 174
The EvaluationContext iNterfacCeouuuiiiiiiiiiiiiiii e 176
TYPE CONVEISION ..ottt e e et et e e e e e et e eeanaaee 176

Parser CONFIQUIALIONcoouuuiiiiii e e 177

Y o =X I o 1 4] 1 = 1o 1 o PP 177
Compiler CoNfiQUIALIONcouuiiiiiie e e 178

Compiler IMItAtIONSiiiii e e 179

8.4. Expression support for defining bean definitionsc.cccoovviiiiiii i 179
XML based CONfIQUIALIONc.uuiiiiiiiii et eens 179
Annotation-based configurationccooiiiiiiiiii 180

8.5. Language REfEIENCEc..uiiii i 181
Literal @XPreSSIONSuuiie ittt eeas 181

4.1.6.RELEASE Spring Framework Vii

Spring Framework Reference Documentation

Properties, Arrays, Lists, Maps, INAEXEIScc.ovevuiiiiiiieii e 181
INHINE TISTS ..t e e aa s 182
INTINE IMAPS .ot et ettt e e ettt e e e e e e et ees 182
F N g VA o0) 153 1 U] 1 o I 183
113 1 0 To Lo LS UPPTRPPT 183
10 01T = 1 (0] £ TP 183
Relational OPEratorsoiveuiiiiiiei e e 183
LOGQICAl OPEIALOIS .. cetiiiei ettt et e e e e 184
MathematiCal OPEIatOrSiiiiiiiiiieiiii e 184
ST T [.41 o 185
[/ 8L T PP UPTPPPPPR 185
1070 0111 4B o1 (0] £ PSP 185
VaNADIES ..o s 185
The #this and #root variables ... 186
L] o3 T 1PN 186
BEAN TEIEIENCES ...t e 186
Ternary Operator (If-Then-EIS€)cccuiiiiiiii e 187
THE EIVIS OPEIALONiiiiiiii ettt e et e e e 187
Safe Navigation OPEIatOrccuuiiiei i e e e e e e e e e e eanaeees 187
ColleCtion SEIBCHONiiiieii e 188
COlleCtion ProjECLIONoiiiiiiiieiii e e 188
EXPression temMPIatingoovuiiiiiii e 189
8.6. Classes used in the eXamples ... 189
9. Aspect Oriented Programming With SPringccoouiiiiiiiiiiiii e 193
LS [1 o To [1T o o H PSP 193
Y @ i olo] o [o1] o] T PP 193
Spring AOP capabilities and goalSoviiiiiiiiiiiiiii e 195
F O]l o (o) =P 196
9.2, @ASPECLI SUPPOIT .ttt ettt e e et e e e et et et e et e e et e e aa e e e e eanas 196
Enabling @ASPECEI SUPPOIT ...cevveeiiiiee ettt 196
Enabling @AspectJ Support with Java configurationc..ccoevvvnnnns 196
Enabling @AspectJ Support with XML configurationc..ocoeieeeeee. 197
DeClarng AN @SPECL ...covuuiiiiiii ettt 197
(D= To F= T TaTo = T o T 11 (o1 U | N 198
Supported PointCut DeSIGNAtOrScocuuiieiiieii e 198
Combining PoINtCUt EXPreSSIONSuiiiiiii it 200
Sharing common pointcut definitionsccooeviiivii i 200
EXAMPIES ... 202
WIiting go0d POINICULSciiiiiieiiiiie et 204
1= Tod P T TV =T AV o = 205
BefOre @0VICEoieeiiiiei e 205
AFter returning A0VICEuiviiiiii e 205
After throwing @dVICEccevniiiii i e e e 206
After (finally) 0VICEo.uiiii i 207

Y o 10T o =T L o - PN 207
AdVICE PArAMELEIS ..uiiieiiii e e e e e e e e e e e e aaen 208
AAVICE OFEIING ..ttt ettt e e e e eans 211

T 10T [0 T 1o] 1P 212
Aspect instantiation MOAEISuiiiiiiiii 212
EXAMPIE oo e 213

4.1.6.RELEASE

Spring Framework viii

Spring Framework Reference Documentation

9.3. Schema-based AOP SUPPOIT .. couuuiieiieiei e e e e e e e e e e e e e e ean e eaes 215
DeClaring @n @SPECLc.uuiiiiiiii e 215
Declarng @ POINTCULiiiiiiee ittt et e et e e e e e enees 216
(1= Tod P T 1T =T AV o = 217

BefOre @0VICEoeeeiiiiiei e 217
AFter returning @0VICEuiiiiiiii e 218
After throwing @dVICEcoevniiiii i e 218
After (finally) @0VICEc.uiiiiii e 219
F Y o 10T o =T L [- P 219
AdVICE PArAMELEIS ...uiiieiciiii e e e e e e e e e e e aaen 220
AAVICE OFEIING ...ttt ettt e e e e e eans 221
T 10T [0 1o 1o] 1R 222
Aspect instantiation MOAEISuuiiiiiiiii 222
AAVISOIS oottt ettt e e e ee 222
B XA e e e 223

9.4. Choosing which AOP declaration style t0 US€cccvvvviiiiiiiiiiii e, 225
Spring AOP 0OF fUll ASPECII? ... 225
@Aspectd or XML for SPring AOP? e 226

9.5. MiXING @SPECTE TYPES ovuiiiiiiiii it e et e e e e e e e e e e e e e e aans 226

9.6. Proxying MECNANISIMS ittt e e e e e ea e eaes 227
Understanding AOP PrOXIEScccuuuiiiiiuineiiiii et e et e e e e e e eneans 228

9.7. Programmatic creation of @ASPECt] ProXi€Scveveuiiviiiiiiiiieiiieeei e eeeeeeen 230

9.8. Using AspectJ with Spring appliCationscocoiiiiiiiiiii e 230
Using AspectJ to dependency inject domain objects with Spring 231

Unit testing @Configurable ObJeCtScccvviviiiiiiii e 233

Working with multiple application CONtEXIScoeuiiiiiiiiiiiiiii e, 233

Other Spring aspects fOr ASPECLIoiiiiuiiieiiii e 234
Configuring Aspect] aspects using Spring 10Ccooevviiiiiiiiiii e, 234
Load-time weaving with AspectJ in the Spring Frameworkcccoooiiiin 235

A FIrSt @XAMPIE ... 236

] 1= o £ 238
META-INF/Q0PXMI .ot 239

Required lbraries (JARS) ... 239

SpPring ConfigUIAtioNuiiiii i 239
Environment-specific configurationcccooiiiiiiiiii e, 242

9.9, FUMNEI RESOUICESuiiiiiieiii ettt e e e s e e e e e e een s 243
10. SPrING AOP APIS .ot 244

ORI [a0 To [U T i To] o I PP 244

10.2. POINtCUL AP IN SPFING .. eiiiiiieiiii e 244
L 0] 07T o] £ 244
Operations 0N POINTCULSiietiiii et e e e e e et e e e e eanaeeaes 245
ASpPeCtI eXPresSSioN POINTCULSiiieeeeeiiiii ettt 245
Convenience pointcut implementationscovviviiieiin e 245

StAtIC POINTCULS ...ttt e e e e e et eeaa e eees 245
DYNAMIC POINTCULS ...evviiiiiiiie ettt e 246
POINTCUL SUPEICIASSES ..uniiiiiiiii i e e e e e 247
CUSLOM POINTCULS ...ttt ettt ettt e e et e et e e e e e et e e e e eanaeeeen 247

10.3. AAVICE APT N SPIING .euniiiiiieiiii et 247
AVICE [IfECYCIES . e 247
AdVICE TYPES IN SPIING .evniiiieii et e e e e eeas 247

4.1.6.RELEASE Spring Framework ix

Spring Framework Reference Documentation

Interception around AdVICEcc.uiiiiiiiiiiiie e 247

BefOre @0VICEcoeeiiiiei e 248

LI LTS T= Lo 1Y T S 249

After REtUrNiNg adVICEccvuuiiii e e e e 250
INErOdUCEION AAVICE ...t e e 251

10.4. AAVISOr AP N SPFING .oeeiiieiii e 253
10.5. Using the ProxyFactoryBean to create AOP ProXi€Scccevvverieeenierinierennennnn 253
B CS ittt 253
JavaBeaNn PrOPEITIEScovuiiiiiiii e e e et 254
JDK- and CGLIB-based ProXIESccuuieiiiiiiiieiiiieeii e ee e e e e e ean e een 255
Proxying INTEITACESccuuiiii e 255
PrOXYING ClASSES . .oviiiiiiiiiii e 257
UsiNg global @dVISOIScveeiiii i 258
10.6. Concise proxy defiNitiONScoouuiiiiiiiii e 258
10.7. Creating AOP proxies programmatically with the ProxyFactoryc.......... 259
10.8. Manipulating advised ODJECESccceuiiiiiiii 260
10.9. Using the "auto-proxy" facCilityoooeiiiiiiiiiii e 261
Autoproxy bean definitionsoiiiiiiiii 261
BeanNameAUtOPIOXYCIEALONc.uveeieiiiei e e e e e e e e eaees 261
DefaultAdViSOrAUtOPIOXYCIEALONuiieiiiiii et 262
AbstractAdViSOrAULOPIOXYCIEALONiiiiiiieeiiiii et 263

Using metadata-driven auto-proXyingeeeeuieerierrineeeieeeieeesneeanneeeneeeenns 263
10.10. USING TAIgELSOUITESuietniiiieeii et e et e e e et e et et e et e e e e e et e e et e eanaeeees 265
Hot swappable target SOUICESccieiuiiiiiiiii e 265
eLoTo] [T To T e= T[] =T o 0o = P 265
Prototype target SOUICESccuuiieiii ittt e e e e e e eeans 267
ThreadLocal target SOUICESuiiiiiii i 267
10.11. Defining NEW ACVICE tYPES ...ucvvrieiii e ettt e e e e e e e e e e e e eanaeees 267
10.12. FUINEI FESOUITESiitieitiie ettt et e et e et et e e e et e e et e e e eeanns 268
O =T (] T PP PP P 269
11.1. Introduction to SPriNg TESHING ...ccvvuieiriieii e e e s 269
3 U Lo 1 =211 T PP 269
MOCK ODJECLS ..ot 269
ENVIFONMENT ... e e et e e e et e eeees 269

B | O 269

SEIVIEE AP o 269

POIIEt AP e 269

Unit Testing SUPPOIT CIASSES ... ccuuiiiiiiiiiiei e 270
General ULITITIES ...voveeieeeii et e eees 270

SPIING MVC Lo 270

11.3. INteQration TESHNGuuiieeeiii i e et e e et e eea e ean s 270
L@ YT T 270
Goals of Integration TEeSHNGovvviiiiiii e 271
Context management and CaChINGc.viiuiiiiiiiiii e 271
Dependency Injection of test fiIXtUrescoiviiiiiiiiiiiiiii e 271
Transaction MaNAGEMENTccuuiiii e e e e e e e e e e eanees 272

Support classes for integration teStNGcccuviiiiiiiiiiiee e 272

JIDBC TESHNG SUPPOIT ettt ettt ettt e e e e e e 273

F Y] g l0] 7= 11T LSS 273
Spring Testing ANNOLALIONSoiiuiiiiie e eea e 273

4.1.6.RELEASE Spring Framework X

Spring Framework Reference Documentation

Standard AnNotation SUPPOITceeeniiiiieii e e e e e 279
Spring JUnit Testing ANNOLALIONSviiuiiiiiiiii e 280
Meta-Annotation Support for TESINGc..vveiiiiiiiiiiiiier e 281
Spring TestContexXt FrameWOrKcooiuiiiiiiiiii e 282
KeY DSIraCLIONS .. .ceiiiii e 283
TestExecutionListener configurationcccoiiiiiiiiieiiiin e 284
Context MAaNAGEMENTiiei e e e e e e e e e e an e eanns 286
Dependency injection of test fIXIUIeScoouiiiiiiiiiiiii e 305
Testing request and session scoped beanscccooivviiiiiiii, 307
Transaction MaNAGEMENTccuuiiii e e e e e e e e e e e 309
EXEeCUtING SQL SCIPLS ..uietiiiiieiit ettt e e e e ea e 313
TestContext Framework SUppOrt ClaSSESocoevuiiiiiiiiiieiiiiie e 317
Spring MVC Test FrameWOIKcouuiiiiiiiiicc e 319
SEIVEI-SIAE TEOSES ettt e e e eeens 320
Client-Side REST TeSS ...ttt e e e 325
PetCliniC EXAMPIE ... et 325
11.4. FUINEI RESOUICES .. .cuuiiiieii ettt et e et et e e e et e et e eanaas 327
AV B T L= N Y oo L= PP 328
12. Transaction ManagQEMENTuiiiiiiiieii e ee e e e e e e e e e e e et e e et e et e e e e eeens 329
12.1. Introduction to Spring Framework transaction managementcc...cccoeeeennn.. 329
12.2. Advantages of the Spring Framework’s transaction support model 329
Global tranSACLIONSoiiiiii e 329
LOCAl traNSACLIONS ...c.uiiii e 330
Spring Framework’s consistent programming modelcooiiiiiiiiineiiinnnnn. 330
12.3. Understanding the Spring Framework transaction abstraction 331
12.4. Synchronizing resources with transactionscccocoiiiiiiiiiiiiein e, 334
High-level synchronization approachcccooveiiiiiiiiiiiiie e 334
Low-level synchronization approachcceeveieiiiiiiii e 335
TransactionAwareDataSOUrCEPTOXYviiuuiiiiiiiiiieei e 335
12.5. Declarative transaction Managementveveeiuniiieiiiieieei e 335
Understanding the Spring Framework’s declarative transaction implementation... 337
Example of declarative transaction implementationcccocoeiiiiiiiiiineinnneen. 337
Rolling back a declarative transactioncccoveeiiiiiieiiiiine e 341
Configuring different transactional semantics for different beans 342
SEXIAAVICE/> SEHINGS ..enieiiiiie ettt e e e e e e eees 344
USING @TranSACONEAIoieueeiiei et e e e e e e eees 345
@Transactional SEHiNGSocvvuiiiii e 350
Multiple Transaction Managers with @Transactionalccccoeeiieenns 351
Custom shortcut annotationsoveiiiiiiiiiiiii e 352
Transaction ProPagationcceueioieeeeei e e e e e e e e e e e e e et e e e e ae 352
REQUITEA ...t et e a e 352
REQUIFESINEW ...ttt ettt e e e eeena e e 353
[N =2 (=0 PP 353
Advising transactional OPEratioNScccuuiieiiiiiiiiie e 353
Using @Transactional With ASPECoiiiiiiiiiiiiiii e 356
12.6. Programmatic transaction managementcc.ovevuiieeiiieiiierin e eainee e eeenes 357
Using the TransactionTemplateoooiiiii e 357
Specifying transaction SEttiNGScoeuuiiiiiiiiiiieii e 359
Using the PlatformTransactionManagerc.cc.uviviiiieiiiieii e e 359
12.7. Choosing between programmatic and declarative transaction management 360

4.1.6.RELEASE Spring Framework Xi

Spring Framework Reference Documentation

12.8. Application server-specific integrationcccoevuiiiiiii i 360
IBM WEDSPRNEIE ..o et 360
Oracle WEDLOGIC SEIVET ...t 360

12.9. Solutions to COMMON ProbIEMScovuiii e e 361
Use of the wrong transaction manager for a specific DataSource 361

12.10. FUINEI RESOUICESieuiiiiiiieiie ettt e e e e e e e e et e e eeenns 361

R T I N @ 211 o oL 362

R O I [10T [BT i To] o ISP 362

13.2. Consistent exception hierarChy ... 362

13.3. Annotations used for configuring DAO or Repository classesccoevvvvneennnnn. 363

14. Data acCess WIth JDBCuiiiiiiiiieiii ettt et e e e e e e eaes 365

14.1. Introduction to Spring Framework JDBCccooiiiiiiiiiiiiii e 365
Choosing an approach for JDBC database acCessccovvvvieeeieviiineeiiennnns 365
Package hierarchy ... 366

14.2. Using the JDBC core classes to control basic JDBC processing and error

NANAIING eeei e 367
JADCTEMPIALE ... e 367

Examples of JdbcTemplate class usageccoevveeiiiiiiieeiiniiiieeeeeee 367

JdbcTemplate best PractiCescoovvviviiiiiiiiii e 369
NamedParameterJdbCTemplateo 371
SQLEXCEPHONTIANSIALON ...iiiiiiiee it ea e 373
EXECULING STAtEMENTS ...oiiniiii e e e e e e e aaas 374
RUNNING QUETIES ...ttt e e et e e e e e ean s 375
Updating the database ..o e 376
Retrieving auto-generated KEYScviiuieiiiiiii e e e e e e e e e e 376

14.3. Controlling database CONNECHIONSc..iiiuniiiiiii e 376
DAtASOUICE ...ttt et e e e et aaas 376
DataSoUrCEULIISiiiiiii i e e e 378
SMArDAASOUITEieiiiieieiei et et e e e e e e e enaenns 378
ADSITACIDAtASOUICE . ..uiiiiiiieiie et e e e e e et e e e ae 378
SiNgleConNNECtioNDAtASOUICEcvvviieiiieiiii e e e e e e e e e e e e e e aaeees 378
DriverManagerDataSOUICEoccuueeuuaiiieeii e e e e e e et e e e e eeens 378
TransactionAWAareDataSOUICEPTOXYcccuuuuiiiiiiiieeiiii e e et 379
DataSourceTranSacCtioNMaNAJETovvuuieiiiieiei e e e e e e e e e e e e e eanaeees 379
NatIVEIADCEXITACTIONuiitii i 379

14.4. JDBC DAtCh OPEratioNScc.uuiiiiiiiiieiiiii et e e e e e 380
Basic batch operations with the JdbcTemplateccooeviiiiiiiiiii i 380
Batch operations with @ List Of 0DJECESoiiviiiiiii e, 381
Batch operations with multiple batches ... 382

14.5. Simplifying JDBC operations with the SimpleJdbc classesccocoevvvevnnnnnne. 382
Inserting data using SiIMpIeJdDCINSErto 383
Retrieving auto-generated keys using SimpleJdbcInsertccccooeeiiiiiiieiinnnnnn. 383
Specifying columns for a SimpleJdbcInsertccooveiiiiiiiiiii e 384
Using SqlParameterSource to provide parameter valuescccoovveviiiennneennnn. 385
Calling a stored procedure with SimpleJddbcCallcoiiiiiiiiiiiiii, 385
Explicitly declaring parameters to use for a SimpleJdbcCallccceeveenenenn. 387
How to define SOIPArameters ... 388
Calling a stored function using SimpleJddbcCallocooiiiiiiiiiiiiiii e, 388
Returning ResultSet/REF Cursor from a SimpleJdbcCallc.ocoeiiinnennnnn. 389

14.6. Modeling JDBC operations as Java 0DJecCtScooviiiiiiiiiiiiiii e 390

4.1.6.RELEASE Spring Framework Xii

Spring Framework Reference Documentation

o] [1T Y 390
MapPINGSGIQUETY ...eneie et ean s 391
SOIUPAALE ..o 392

S (0] (=To | = oTot=To U (PSP 392
14.7. Common problems with parameter and data value handlingccc..cees 395
Providing SQL type information for parameterscccoeveviiiiieiiiiinneeciieeenen 395
Handling BLOB and CLOB OBJECESuivvviiiiiiieii e 396
Passing in lists of values for IN ClauSecoiiiiiiiiiii e, 397
Handling complex types for stored procedure callsccoovveiiiiiiieiiiiinneecinnnnn. 397
14.8. Embedded database SUPPOITc..uuiiiiiieii e e e e 398
Why use an embedded database? ..o 399
Creating an embedded database instance using Spring XMLcccccoveevennnnnn. 399
Creating an embedded database instance programmaticallyccccocevvneeen. 399
Extending the embedded database SUPPOItcc.oviiiiiiiiiiiiii e 399
USING HS QL ottt ettt e et ettt e e e e e e e e e aetan e e e e e e eeeennnnes 399

L £ T o N P 399
USING DBIDY .ttt e e e e e e 400
Testing data access logic with an embedded databaseccveiviiiiinnene, 400
14.9. Initializing @ DAtASOUICEuiviiiiiiee e ee e e e e e e e e e eaens 400
Initializing a database instance using Spring XMLcccooiiiiiiiiiiiiiniceeeeen 400
Initialization of Other Components that Depend on the Database 401

15. Object Relational Mapping (ORM) Data ACCESSccvuieiinieiiiieeiieeeieeeieeeaaere e eeens 403
15.1. Introduction to ORM With SPriNgcceuuiiiiiiii e 403
15.2. General ORM integration cONSIderationscccoeveiiiiiiieiiiinieeeii e 404
Resource and transaction Managementcccouuivveuiieiiiieeiin e eeen e e eaeeeaes 404
EXCeption transSIationooiueiiiii e 405
15.3. HIDEINALE ...oeiiiiie e 405
SessionFactory setup in a Spring CONtAINErcovvvviieiiiieiii e, 405
Implementing DAOs based on plain Hibernate 3 APlcccoooiiiiiiiiiiiinie, 406
Declarative transaction demarCationooeeeuuieiiiiiieieiieeeei e 407
Programmatic transaction demarCationc.cc.vivereeiiieriii e e eeeeaeeeee 409
Transaction management SIrategIeSocveuuiieuniieiiieiiii e 410
Comparing container-managed and locally defined resourcesccccoccuueeennnn. 412
Spurious application server warnings with Hibernatecccoocoeviiiieven e, 413
L5.4. IDO ..t et e e e e eaaaeaaraa 414
PersistenceManagerFactory SEIUDovvveuiiieiiiie e 414
Implementing DAOs based on the plain JIDO APooooiviiiiii e 415
Transaction MAaNAGEMENTiiuu i e e e e e ea e eees 417

N [(0] D= 1 =Y ot PN 418
1D, IR A e 418
Three options for JPA setup in a Spring enviroNMeNtcoooeviveeiiniiiineeenneennn. 418
LocalEntityManagerFactoryBeanccoiviiiiiiiiiiiiiiiei e 418

Obtaining an EntityManagerFactory from IJNDIcccooeviiiiiiiiiiineeinns 419
LocalContainerEntityManagerFactoryBeancccoovviiiiiiiiiiieiiiieeiies 419

Dealing with multiple persistence UNItScoovviiiiiiiiieieii e 421
Implementing DAOs based on plain JPAcoooi i 422
Transaction ManageMENT i e e eees 424
JPADIAIECT ...t 424

16. Marshalling XML uSING O/X MAPPEIS ...ucveuuieeiieiiieeiie e e e e e e e e e e e et e e e eaneeaens 426
16.1. INEFOAUCTION ..iiee et ettt e e e e e e et e e e e eannas 426

4.1.6.RELEASE Spring Framework Xiii

Spring Framework Reference Documentation

Ease of CoNfiQurationccooouiiiiiiei e e 426
CoNSIStENE INTEITACES ... it e 426
Consistent EXception HIErarChycooiiiiiiiiiiiiii e 426
16.2. Marshaller and Unmarshalleriiiiiiiiiiiii e 426
MAFSNAIIET ... et 426
UNMAISNAIIET ...t e 427
D S 11\ F=T o] o1 o | St (o =Y o] 1 o] o 428
16.3. Using Marshaller and Unmarshaller ... 428
16.4. XML Schema-based Configurationccooeiiiiiiiiiiiiiieiii e 430
LB.5. JAXB ottt et eaaas 430
JaXD2MArSNaller ..o 430
XML Schema-based Configurationccoooviiiiiiiiiiiin e, 431
G G 02] (o] PP UPPTRUPPTPPN 431
CastorMarshallerooe i e 431
F= o] o1 o R TP P PR TPPPTTR 432
XML Schema-based Configurationcccoveviiieiiiiiiii e, 432
16.7. XIMLBEANS ... et 433
XMIBEANSMAISNAIIETnieiii e e 433
XML Schema-based Configurationcccoveviiieiiiiiiii e, 433
GRS TN 11 2) PP 433
JIDXMAISNANIEE ...eeee e 434
XML Schema-based Configurationcccoveviiiiiiiiiiiii e, 434
R TS (=T 1 o PSPPI 434
XStreamMarshalleroou i 434
Vo TRE WD e e e 436
17. Web MVC framEWOTK ... et e e et e e e e eeens 437
17.1. Introduction to Spring Web MVC frameworkccooiiiiiiiinieiiiiineiei e, 437
Features of Spring Web MVC ... e 437
Pluggability of other MVC implementationsccoiiiiiiiiiiiiiiieeeeeee 439
17.2. The DispatCherSErVIEEoi i 439
Special Bean Types In the WebApplicationContextc.cccoevvvvieeiiiveviineeinnenn, 442
Default DispatcherServiet Configurationccoooiiiiiiiiiiiie e, 443
DispatcherServiet Processing SEQUENCEccovuviieiiiiiiieeiiiie e 443
17.3. Implementing CONtrOIIEIScuuiiii e e 445
Defining a controller with @CONLrollerooeeiiiiii e 445
Mapping Requests With @RequestMappingccccuovieiiiiiiniiiiiinee e 446
@control |l er's and AOP ProXyingcoceeuieieiiiiiiieeiiiesiseeeis e eeeeeaines 447

New Support Classes for @RequestMapping methods in Spring MVC 3.1. 447
URI Template Patternsoioiiiiiieiiii e e 448
URI Template Patterns with Regular EXPressionsccccooceveviiieviinennnnnns 449
Path Patterns ... e 450
Path Pattern COMPAIiSONc..uiiiiiiiiiieiiiii et 450
Path Patterns with Placeholders ..., 450
Path Pattern Matching By SUffiXocooiiiiiiiii e 450
MatriX Variablesoooeuiriii e 451
Consumable Media TYPES ...cvvvuiieeiieeiiee e e e e e e e eens 452
Producible Media TYPES ... 453
Request Parameters and Header Valuesc.cooooviiiiiiiiiiiniiiiiineecci, 453
Defining @RequestMapping handler methodscccoeeviiiiiiicii e, 454
Supported method argument tyPesScoeuiiiiiiiiiiiei e 454
4.1.6.RELEASE Spring Framework Xiv

Spring Framework Reference Documentation

Supported method return tYPEeSvveeeiiii e 456
Binding request parameters to method parameters with @RequestParam.. 457
Mapping the request body with the @RequestBody annotation 457
Mapping the response body with the @ResponseBody annotation 459
Creating REST Controllers with the @RestController annotation 459
USING HEPENTILY ..o 459
Using @ModelAttribute on a methodocooiviiiiiii e, 460
Using @ModelAttribute on a method argumentccooooiiiiiiiiineinne. 461
Using @SessionAttributes to store model attributes in the HTTP session
DEIWEEN FEAUESES ..eeiciii i e e a e 462
Specifying redirect and flash attributesccooooiiiiiiii 463
Working with "application/x-www-form-urlencoded” datacccuunn... 463
Mapping cookie values with the @CookieValue annotation 464
Mapping request header attributes with the @RequestHeader annotation.. 464
Method Parameters And Type CONVEISIONcoevvuieiiiiinieiiiiineeeeiineeeenenn 465
Customizing WebDataBinder initializationcccoveviiiiiiiiiiiicciceees 465
Support for the Last-Modified Response Header To Facilitate Content
CACNING et 466
Advising controllers with the @ont r ol | er Advi ce annotation 467
Jackson Serialization VIeW SUPPOITc.uuiiiiiiiiiiiii e 467
Jackson JSONP SUPPOIT ...uuiiiiiiieieit et 468
Asynchronous ReqUEst PrOCESSING .. .c.uuviuuiiiiiieiii e ieeiie e e e e e e e e eanns 469
Exception Handling for ASync REQUESLESc..viiiuiiiiiiiiiiieeiecei e 470
Intercepting ASYNC REQUESLEScovuiiiiiiiiiiciei e 470
Configuration for Async Request ProCessingc.ccuvevevveeiieriieriineneinnnns 471
TeStiNg CONLIOIEISoenee e 472
17.4. HanNdIEr MapPINgSeeeeeeneeeeii ettt e et e et e et e e e et e e e aaa s 472
Intercepting requests with a HandlerInterceptorccoevvieiiiiiiiiiineiiieee e 473
17.5. RESOIVING VIBWS ...ttt ettt ettt ettt e e et e e e e ean s 475
Resolving views with the ViewResolver interfaceccccoovviiiiiniiiiinnn. 475
Chaining VIEWRESOIVELSccuuiiiiiii e e e e 477
REdIrECING 10 VIBWSeiii ittt ettt e e e et e et eean s 477
L= T0 [T =T o AT P 478
The redireCt: PrefiX .o e 478
The forward: PrefiX ... 479
ContentNegotiatingVIEWRESOIVETciiiiiiiiiii e 479
17.6. Using flash attribULEScoovniii e 481
17.7. BUIIING URIS ..ttt e e e 482
Building URIs to Controllers and methodsooooviiiiiiiiiiiiii e, 483
Building URIs to Controllers and methods from VIEWSccoeveviviiiiiiiiiienennnnns 483
17.8. USING [0CAIES ..o e e 484
Obtaining Time Zone INfOrmationoooeuiiiiiiiinie e 484
AcceptHeaderLoCalERESOIVESccvviiiiii e e 485
COOKIELOCAIERESOIVET ... 485
SESSIONLOCAIERESOIVET ... e e 485
(o Tor-11=T0d g =T aTo 1] [£=T (ot=] o] (o] 485
17.9. USING TREMES ..ot aes 486
OVEINVIEW Of tNBIMES .oiiiiiii e e e e een 486
DefiNiNg theMES ...oei e 486
TREME FESOIVEIS ... et 487
4.1.6.RELEASE Spring Framework XV

Spring Framework Reference Documentation

17.10. Spring’s multipart (file upload) SUPPOIToniviriiiiii e 487
INEFOAUCTION ..t ettt e e e e et e et eean s 487
Using a MultipartResolver with Commons FileUploadc.cccoviviiiiiiiieinnnnn, 487
Using a MultipartResolver with Servlet 3.0cc.oviiiiiiiiii e 488
Handling a file upload in @ form ... 488
Handling a file upload request from programmatic clientscccceeveevennnnnnn. 489

A O o - T g T | o = (o =Y o 1 o 490
HandIerEXCeptioNRESOIVETcouuiiiie e 490
@EXCEPtIONHANAIETiiie e 490
Handling Standard Spring MVC EXCEPLIONSc.ueviiiiiiiieiii e e e e e 491
Annotating Business Exceptions With @ResponseStatusccceeveevineennnnnne. 492
Customizing the Default Servlet Container Error Pageccooevevevvinieiiiiinnenenn. 492

o V=T T = o U P 493

17.13. Convention over configuration SUPPOIToeeuiiiiiiiiiiieci e 493
The Controller ControllerClassNameHandlerMappingcccooeveveiinieiiiinnenenns 493
The Model ModelMap (ModelANdVIEW)c.uveviniiiiiiiei e 494
The View - RequestToViewNameTranslatoroccoviiiiiiiiiiiiinicc e 496

17.04. ETAG SUPPOIT .oeeeeieei ettt ettt ettt e et et e e et e e e ena e 497

17.15. Code-based Servlet container initializationcccoooeiiiiiiiiiiiineee, 497

17.16. Configuring SPring MVC .. .o e e 499
Enabling the MVC Java Config or the MVC XML Namespacecccceeeeeennnnnn. 499
Customizing the Provided Configurationcccocouiiiviiiiiiiiiiii e 501
[l (S oT=] o] (o] £ T TP 501
Content NEGOLIATIONiiiiiiei et 502
VIEW CONIOIEIS ...t et e s 503
VIBW RESOIVEIS ..ottt ettt e e et e eeas 503
ServiNg Of RESOUICESciiiiiiiiiii et e e 505
Falling Back On the "Default" Servlet To Serve ReSOUICEScocevvvevevnvennnnnnnn. 507
Path MatChingoouiii e 508
Advanced Customizations with MVC Java Configcccooeeeiiiiiiiiiiiiiiiii e, 508
Advanced Customizations with the MVC Namespacecccoevevviveviieriinennnnnnns 509

18. VIEW tECHNOIOGIES ... c.uiiitiei e et e e e e et eeaaeaees 510

S0 R 0 T [T o) o 510

18.2. ISP & JSTL ittt ettt 510
VIBW TESOIVEIS ...ttt ettt e et e e et e e e e ean s 510
Plain-old JSPS VEISUS JSTL ..iiutiiiiieii et e e e e e e e e eeens 511
Additional tags facilitating developmentcooviiiiiiiiii i 511
Using Spring’s form tag lbrary ... 511

CONFIGUIALION ..eeeiee e e 511
LI L0 2 0 = Vo 511
TRE INPUL TAG . eeeiiii et eees 513
The CheCKDOX TG .. iieveiiieiiii e 513
The CheCKDOXES TaQ . .ovvuivii i e ea e 515
The radiobULION TAG ...c..uiieeiiei e 515
The radiobUONS TAQG ...covvviiiiiiii e e 515
LI L= 0= 115 1Yo o = o P 516
THE SEIECE TAG .. ieviiiiii e e 516
THE OPLION TAG 1eeeenieiii e 516
LI L3 o] 1 0] g 0 = Vo 517
THE TEXIAIEA TAQ .vvueietneeet et e e e 518

4.1.6.RELEASE Spring Framework XVi

Spring Framework Reference Documentation

LI =3 1 o =T o T - T 518

TRE ©ITOIS TAG «. et e 518

HTTP Method CONVEISIONccuniiiiiiiie e e e ees 520

L I 1= T PP 521

R TR T 11T PSP 521
DEPENUEINCIES ...ttt 521

L (01T A (o] (=T = L (T][521
UrIBasedVIiEeWRESOIVET ... 522
ResourceBundleVIieWRESOIVETooiuiiiiiiiiii e 522
SimpleSpringPreparerFactory and SpringBeanPreparerFactory 523

18.4. VeloCity & FreeMarker ... 523
DEPENUEINCIES ...ttt 524
Context CoNfIQUIALIONoieeiiis e e 524
Creating tEMPIALESiiie e 524
Advanced CONfIQUIAtIONuiiiiiiiiei e 525

(V= [oTod1 3V o] o] 0 1= 3 1= 525
FrE@MAIKET ..o e 525

Bind support and form handling ... 526

The DN MACTOS ...ccoviiiiiiiie e 526

SIMple DINAING .c.ne 526

Form input generation MAaCIOScoeeuuuieiiiiiieieii e 527

HTML escaping and XHTML complianCec.ccuoveveiiiiiiiieiiiieeiin e, 530

TR T T IR PP 531
MY FIFSt WOEAS ..ooeiiiiiii ettt et e e e e e eaeens 531
Bean definitionNsSoooeiiiiiii e 531

Standard MVC controller COUE ... 531

Convert the model data to XMLooovviiiiiiii e 532

Defining the VIeW Propertiesc.oiiiiiiiiii e e 532
Document transformMationc.voiiiiiiii e 533

SUMMATY ettt et ettt e et r et e e e e e et neenneera e 533
18.6. Document VIieWS (PDF/EXCEI)uuovueiiiieii e 534
INEFOAUCTION ..t ettt e b e e e et e et eeaa s 534
Configuration and SELUPcceuurieiiiiie et 534
Document view definitioNScoveiiiiiiiii e 534

COoNLrOllEr COAR ...t 534
Subclassing for EXCEl VIEBWSviiiiiiiiiiiiieccc e 534
Subclassing fOr PDF VIEWScouuiiiiiiiii e e e e 536

18.7. JASPEIREPOIS ..e.itiiitiie ittt ettt e e e 536
DEPENUEINCIES ...ttt 536

(0] 01T 81 r=\ 1o o [536
Configuring the VIEWRESOIVET ..o 537
Configuring the VIEWScoiiiiiiiiiii e 537

ADOUL REPOIM FlES ..eriiii e e 537

Using JasperReportsSMUltiFOrMatViewccocoeiiiiiniiiiiniiiicciece e 537
Populating the MOAelANAVIEWcouuuiiiiiii e 538
Working With SUD-REPOISciiiiiii i e e e 539
Configuring Sub-Report FIles ... 539
Configuring Sub-Report Data SOUICESccoeviiieiiiiinieiiiie e 540
Configuring EXpOrter ParameEtersvevuuieeiieeii e e e e e e e e e e e eeens 540
18.8. FEEA VIBWS ...ttt et e e 541
4.1.6.RELEASE Spring Framework XVii

Spring Framework Reference Documentation

18.9. XML Marshalling VIEWciiuniiiiiiie e e e e e e e e 541
18.10. JSON MaAPPING VIBW ...uiieiiitiieeie ettt e e e e eenns 542
18.11. XML MAPPING VIBW ..ottt ettt e e et e e e et e e eaa e eenes 542
19. Integrating with other web framewWorkscoovviiiiiii i 543
TR [10T [U T i [o] I PP 543
19.2. CommON CONFIGUIALIONeiiiiieeiii et e 544
19.3. JAVASEIVEN FACES 1.2 ..ottt et et 545
SpringBeanFacesELRESOIVEr (JSF 1.24) ..o 545
FaceSCONEXIULIIS ...t e e 545
19.4. APACNE STTULS 2.X .uuiiiiiiiiii i e e e e e e e e e e e e e e e e e anaae 545
19,5, T APESIIY DX ettt aa e 546
19.6. FUINEI RESOUICES ...cvuiiiiieiiiei ettt e e et e e e e e e et neean e e ean e 546
20. Portlet MVC FrameEWOIKcouuuiiiiiiiieeiii ettt e et e e et e e e et e e e eeaaaeeeens 547
b0 % [0 o o [FTod 1o o PP UP PP UUPTRUPTRN 547
Controllers - The C in MVC ... e e 548
VIEWS - The V IN IMVC ooui e 548
WED-SCOPEA DBANS ...t e 548
20.2. The DispatCherPOrIEtooiiiiiieii e 548
20.3. The VIeWRENEIerSEIVIELoiiiiiiiiei e e 550
20.4. CONIOHEIS ...t ettt 551
AbstractController and PortletContentGeneratorcovvvveiiinviiiiiinieieiiineeeenn, 552
Other SImple CONLIOIIEIScoveiie e e e 553
Command CONLIOIEISuuei e e 553
PortletWrappingCoNtrollEroiiiiiiiieei e 554
4O o = T o [T gl g T o] o1 Vo £ 554
PortletModeHaNdIerMappingcc.. e 555
ParameterHandlerMappingu oot 555
PortletModeParameterHandlerMappingcc.cveveuiieiiiieiiiieiie e ee e 556
Adding HandlerINterCePLOrso.u i e 556
HandlerInterCeptorAAPIETuu it 557
ParameterMappingInterCePIOrcvue i e 557
20.6. Views and resolving them ... 557
20.7. Multipart (file upload) SUPPOITuuiiiii e 557
Using the PortletMultipartRESOIVETviviiiiiiiii e 558
Handling a file upload in @ form ... 558
20.8. HandliNg ©XCEPLIONS .. .cvevuiieiiiiiiee ettt ettt et 562
20.9. Annotation-based controller configurationc.ccoiieiiiiii i 562
Setting up the dispatcher for annotation SUPPOIToeeviiiiiiiiiiiiiiieeeeeeeen 562
Defining a controller with @CONtrollerviviiiiiii e 563
Mapping requests with @RequeStMapPINgcvvvvireiiieiiee e 563
Supported handler method argumentscoooiiiiiiiii e 565
Binding request parameters to method parameters with @RequestParam 566
Providing a link to data from the model with @ModelAttributeccoeeeenniis 566
Specifying attributes to store in a Session with @SessionAttributes 567
Customizing WebDataBinder initializationccoooriiiiiiiiii e 567
Customizing data binding with @InitBindercccoveviiiviiiciiee e, 568
Configuring a custom WebBindingInitializerc.c.ooiiiiiiiiin 568

20.10. Portlet application deploymeENntcoooiiiiiiiiiiii e 568
21, WEDSOCKEE SUPPOIT ..ot e e e e e et e e e e eaens 570
b0 T [o o (U T4 1 o o PP UP PR UUPTRUPTRN 570

4.1.6.RELEASE Spring Framework Xviii

Spring Framework Reference Documentation

WebSocket Fallback OPtioNScc.oviiiiiiiiic e 570
A Messaging ArChItECIUIEcoeuiii e 571
Sub-Protocol Support in WeDSOCKELoviiiiiiiiiiiiiic e 571
Should | Use WEDSOCKEL?ooeeiiiiiiii e 571
21.2. WEDSOCKEE AP ...ttt e e e eenae 572
Create and Configure a WebSocketHandlerccooooiviiiiiiiinii e, 572
Customizing the WebSocket Handshakeccoooeviiiiiiiii e, 573
WebSocketHandler DECOrationooceuuiieuiiiiiiieiie e 574
Deployment CONSIAEIAtIONSc..uuiiiiiiieiieii e 574
Configuring the WebSocket ENQINEco.oviiiiiiiiiiii e 575
Configuring allowed OFIgINSiiiiie e 577
21.3. SOCkJIS FallDack OPLiONScccuuuiiiiiiiie e 578
OVEIVIEW OF SOCKJIS ...ooiiiii i e 578
ENADIe SOCKIS ... 579
HTTP Streaming in IE 8, 9: Ajax/XHR vS IFramecccoooviiiiiiiiiiiiiicieees 580
Heartheat MESSAGES ... cvvviieii i e e e e e e e 581
Serviet 3 ASYNC REQUESTESouuiiiiiii e e e e e 581
CORS Headers for SOCKJIS ..o e e 582
SOCKIS ClHENL ..ot e e e e e e 582
21.4. STOMP Over WebSocket Messaging Architectureccooveveiiiiiniiiiieeineeen, 584
OVENVIEW Of STOMP ..o e et e e eee 584
Enable STOMP over WEDSOCKELveiiiuiiiiiiiii e 585
FIOW Of MESSAGES ...evniiiiiiit ettt e e e e e e e e ees 587
Annotation Message Handlingcooouuiiiiiiiiiiii e 588
SENAING MESSAQGES ...evuiiiiiiieii ettt e e e e e e et e e e e e e e et e e e aaaee 589
SIMPIE BIOKET ..o et 590
FUI-FEALUIEd BIOKENieei et e e e e e e ean e eees 590
Connections To Full-Featured BroKerccoooveiiiiiiiiiiiiciieec e 591
Using Dot as Separator in @/essageMappi ng Destinationscccoocevueeennne. 592
Y0 11 0 T=T o[> o o PRSP 593
USEr DESHNALIONS ..oovuiiiiiiiiie et e a e 594
Listening To ApplicationContext Events and Intercepting Messages 595
WEDSOCKET SCOPE ..o 596
Configuration and PerformancCecoovuiiiiiiiicii e 597
RUNEME MONITOTING ottt e e e e eeas 600
Testing Annotated Controller Methodsooooviiiiiiiiiiiii e 601
RV TR [01 (=T = o 602
22. Remoting and web Services USiNg SPringocoeuiiiiiiiiiii e 603
205 T [o1 o o (U] 1T o I PP 603
22.2. EXposing Services USING RMI ..o 604
Exporting the service using the RmiServiceEXpPOrterc.ooooiveiiiiiiineiiineennnn. 604
Linking in the service at the ClIent ..., 605
22.3. Using Hessian or Burlap to remotely call services via HTTPcoccceviviiiivinnn, 605
Wiring up the DispatcherServlet for Hessian and CO.ccoovvviiiiiiiiiiiiiieeee, 605
Exposing your beans by using the HessianServiceExXporterccccoovvveviineeens 606
Linking in the service on the Client ... 606
USING BUITAP e et 607
Applying HTTP basic authentication to a service exposed through Hessian or
2T T o P 607
22.4. Exposing services using HTTP INVOKEISc..oiiuiiiiiiiiiiii e 607
4.1.6.RELEASE Spring Framework XiX

Spring Framework Reference Documentation

EXposing the Service ObJECtoiviiiiiii i 608
Linking in the service at the Client ... 609
22.5. WED SEIVICES ...eiiiiiiiei et 609
Exposing servlet-based web services using JAX-WSc.ccoiviiiiiiiiiiviienis 609
Exporting standalone web services using JAX-WS ... 610
Exporting web services using the JAX-WS RI's Spring supportcccceeeevevnnnnn. 611
Accessing web services Using JAX-WS ... 611
22.8. IMIS et e et et e e e e e eanraa 612
Server-side CONfIQUIAtIoNooiiiiiiiiiii e e 613
Client-side configurationcciiiiiiiiiii e e e e 613
22.7. AMQP . e 614
22.8. Auto-detection is not implemented for remote interfacesccccoevvviiiinieinnnnn. 614
22.9. Considerations when choosing a technologyc.ccoeviviiieiii i, 615
22.10. Accessing RESTful services on the Clientcooveeiiiiiiiiiii e 615
RESITEMPIALEceeiiiee e e e 615
Working With the URIuiii e e 618

Dealing with request and response headersccooeveiviiiiiiiiiieiiineeeiees 619

Jackson JSON ViIEWS SUPPOIT ...cceuuuneeiiiiieeeiii e eeii e eeti e e et eeeni e eens 619

HTTP MeSSage CONVEISION ...uvuiiiiiiiieiieeii et e e e e e e e e e e e e e e e e e e eanaeees 619
StringHIPMESSAgECONVEITETiieiiiiiieei e e 620
FOrmHttpMessSageCONVEITErccvuiiiiieie e 620
ByteArrayHttpMessageCONVEITETovuiiei e e 620
MarshallingHttpMesSSageCONVEITETcveuiiiiiiei e 620
MappingJackson2HttpMessageCoNVErtErcccuvviiieiiiieeiii e 620
MappingJackson2XmlIHttpMessageCOoNVEMErcoevvvievieeviiieeeiieeeieeens 621
SourceHttpMesSageCONVEITENciuiiieiiee e 621
BufferedimageHttpMessageCoNVErterccovuuiieeiiiiiieeiiii e 621

ASYNC RESITEMPIALE . .oovniiiiiieii e e e e e 621

23. Enterprise JavaBeans (EJB) INtEGrationcocuiiiiiiiiiiiii e ee e 623
b2 25 T [o1 o o (1] 1T o I PP 623
23.2. ACCESSING EJIBS ..ouiiiiiiiiii et 623
1000] g [o7=T o] (= T PP UPTTPTN 623
ACCESSING 10CAI SLSBS ...couiiiiiiiiiieiei e 623
ACCESSING FEMOLE SLSBS ...iiuiiiiiiiiii e ee e e e e e e e e e e e e eanaaees 625
Accessing EJB 2.x SLSBs versus EJB 3 SLSBScociviiiiiiiiiie, 625
23.3. Using Spring’s EJB implementation support Classescccevvveveveiiiiiiieeineennnn, 626
EJB 3 iNJECHION INtEICEPION ..uuiiiiiiee e e e e e e e e e een 626

24, JMS (JaVa MESSAJE SEIVICE)cuuiiineiit ettt ettt e e et e e et e et e eaaes 627
2 T [o1 o o (U] 1T o I PP 627
24.2. USING SPriNG JMS . oiiiiiiiii e e e 627
JMSTEMPIALE ... e e e e e e eeaa e ees 627

L©] o] o T=Tox 1 o] o 628
Caching Messaging RESOUICESccvuuiiiiieeiieiei e e e e e e e e eaaeee 628
SiNGleCOoNNECHONFACIONYcieiiiiiie e 629
CachingCoNNECHONFACIONYc.uuuiiiiiiiieiei et 629
Destination ManagemENtociuuiiiiii i e e e 629
Message Listener CONLAINEISciuuuiiiii it 630
SimpleMessageListenerCONtAINETcccuuuiiiiiiiieeee e 630
DefaultMessageListenerCoNntaiNeroeveviieiiiieeii e 630
Transaction MANAGEMENTiiuu it e e e e e ea e eeees 631

4.1.6.RELEASE Spring Framework XX

Spring Framework Reference Documentation

24.3. SENAING @ MESSATE ...cevueiiiieiitiei e et e et e e e e et e e e e e et e e e e et e e e eaans 631
USING MESSAJE CONVEITEIS . ..uuiiitiiiii ettt ettt e et e e et e e ea e ean s 632
SessionCallback and ProducerCallbackccoooiiiiiiiiiiiiiiii e, 633

24.4. RECEIVING @ MESSAQE 1.vuueieueiinieieieeeiieeet i et e ettt et et e e et e e et e et e e et e eetn e eanaeeannes 633
SYNChrONOUS RECEPLION ...vuniieiiiii et e e e 633
Asynchronous Reception - Message-Driven POJOSc.coiveviiiiiieiiiiineeeeiie, 633
the SessionAwareMessageListener interfaceccoocvvveviiiiiiii i, 634
the MesSageLiStenNerAdAPLEr 635
Processing messages within transactionsccoovvveiiiiiiiiiiiieecii e 637

24.5. Support for JCA Message ENdPointSoevveieiiiiiiiiiieii e 637

24.6. Annotation-driven listener endpointSoooeuiiiiiiiiiiii e 639
Enable listener endpoint annotationscoocveeiiiiiiiiniei e 639
Programmatic endpoints registrationcccoveviiiiiiiiieeii e 640
Annotated endpoint method SIgNAtUre ... 640
RePIY MANAGEMENT ... 641

24.7. IMS NAMESPACE SUPPOIT ..eutieeiei e e et e e e e e e e e e e e e e e e e e e e aneeanns 642

S TN Y) TP PSP P PP 647

b0 T [o1 o o (U] 1T o I PP 647

25.2. Exporting your beans t0 JMXciiuiiiiiii e 647
Creating an MBEANSEIVETcc.uuiiii ettt e e e e e eens 649
Reusing an existing MBEANSEIVETc..uiiiiiiiiiieiiii e 649
Lazy-initialized MBEEANSccouuiiiiiiieii e e 650
Automatic registration of MBEANSccouiiiiiiiiiiiii e 650
Controlling the registration Denavior ... 650

25.3. Controlling the management interface of your beanscccocceiiviiiiienennnn, 651
the MBeanIinfoAssembler Interfacecooooeiiiiiiii 652
Using Source-Level Metadata (Java annotations)ccccoeveviiiiviiiinieeeenineeen, 652
Source-Level Metadata TYPES ..vvvuieviieii e e e e e e e e e e e 654
the AutodetectCapableMBeanIinfoAssembler interfacecc.ocooviiiiiiinninnn.o. 655
Defining management interfaces using Java interfacesccccoovveviiinieeinnnnnn. 656
Using MethodNameBasedMBeanInfoAssemblercoccoveiiiiiiiiiiii e 657

25.4. Controlling the ObjectNames for your beanscccocoiviiiiiiiiiiiin e, 658
Reading ObjectNames from Propertiesccoovveiviiiiiiiiiiiiecii e 658
Using the MetadataNamingStrategyc.veveriieiriiiiiiierie e e e e 659
Configuring annotation based MBean eXpOrtcccuiviiiiiiiiiiiiiiiei e, 659

25.5. JSR-160 CONNECIOISieiiiiniiieiie et e e e e e et et e et e an e eneeanns 660
Server-Side CONNECLOISciiuueieeiiii et e et e e e e et e e eeta e eeees 660
Client-Side CONNECLOISiieeniiie et e e e e eeaaaees 661
JMX over Burlap/HESSIAN/SOAPoiiiiiiiiiii e 661

25.6. Accessing MBEaNS Via PrOXI€Scccuuiiiiiiiiiieiii e e e e e e e e 661

25.7. NOUFICALIONS ..ottt et e e et e e e et e eaaaaees 662
Registering Listeners for NOtIfiCatioNSovveiiiiiiiiiiiii e 662
Publishing NOtfICAtiONSccuuiiiiiiii e e 665

25.8. FUIMNEr RESOUICESuiiiiiiiie ettt e e e eees 666

P2 TN [N O O LSRR 668

P2 0 I 1o o U Tox 1 o o PRSP 668

26.2. CoNfIQUIING CCl .uniiiiie e e aans 668
Connector CONfIGUIALIONuuiiiiiiiie e e eens 668
ConnectionFactory configuration in SPringccevvvviieiiiieeine e, 669
Configuring CCl CONNECTIONSciutiiiiieie e 669

4.1.6.RELEASE Spring Framework XXi

Spring Framework Reference Documentation

Using a single CCl CONNECTIONuiiiiieiiii e e e e e e 670
26.3. Using Spring’s CCl @CCESS SUPPOITeuuriiitiiii et eeie et e e e e e e eaie e 671
(=T ot] o [o0 01V T €] T] o I 671

the CCITEMPIALEieecee e e e e e e e e aen 671
(D)Y@ =] T o] o o] § AP UP T PPRPPR 673
Automatic output record generationooceeueieeieiiine e 674

IS0 0 0= T Y 674
Using a CCI Connection and Interaction directlyccooviiiiiiiiiiiiiiiniiiiis 675
Example for CCiTemplate USAJEcccouuiiiiiiiiieiiiii e 675
26.4. Modeling CCl access as operation ObJECEScoeuvviiiiieiiiieiii e 677
MappingRECOrdOPEIatiONcceuuiiiiieiii et eees 677
MappingComMmMAIreaOPEIAtIONciieuiiieiiiii e e 678
Automatic output record generationcocc.uieviiiiiiiie e 679
SUMIMIBITY ettt et et et e et et e et e et e e e e e e et e et e et eenaennnas 679
Example for MappingRecordOperation USAJEc.uvieeierineeiirinneeieiinaeeeenennns 679
Example for MappingCommAreaOperation USAQEceevvvveernieeinierinnerannaennnns 681
26.5. TrANSACLIONS ...ctiiiti ittt ettt et e e e e et e e et e et e e e e aa e eaa s 683
P2 R = 11 T- 1| SRR 684
P2 A S 1o o [T 1 o] o PRSP 684
27,2, USBQE .oeiiiiiiieii ettt e aees 684
Basic MailSender and SimpleMailMeSSage USAgecccuvuieririnniereiiineeneiinnnnn. 685
Using the JavaMailSender and the MimeMessagePreparatorccccocvvvneenn. 685
27.3. Using the JavaMail MimeMessageHelper ... 686
Sending attachments and inline reSOUICEScc.uoviiiiiiiiiiiiii e 687
ALBCNMENTS ...t 687

INHINE FESOUICES ..eeiiit et e e e e 687

Creating email content using a templating libraryccoooiiiiiiiniin. 688

A Velocity-based eXamplecooveiiiiiie s 688

28. Task Execution and SChedulingccouiiiiiiii e 691
b2 < 20 T [o o (U] 1T o IR 691
28.2. The Spring TaskExecutor abstractioncoevvuiiiiiiiiiiiieiii e e, 691
TASKEXECULOT TYPES . .eeiiiitiiei ettt e et e e e et e e et e e e eaaeees 691
USING @ TASKEXECULOLceeiiiiiiiiii e 692
28.3. The Spring TaskScheduler abstractionccoooviviiiiiiiii e 693
the Trigger INtEITACE oo e 694
Trigger iImpIeMENTAtiONSi i 694
TaskScheduler implementationsccoovuiiiviiiii i 695
28.4. Annotation Support for Scheduling and Asynchronous Execution 695
Enable scheduling annotationscooieiiiiiiiiii e 695

The @Scheduled ANNOLALIONcoiiuiiiiii e 696

The @ASYNC ANNOLALIONiiuiiii e e e e 697
Executor qualification With @ASYNCociiviiiiiiiiii e 698
Exception management With @ASYNCcvvuiiiiiieeieeee e e 698
28.5. The Task NAMESPACEuiiuuiiii et e e eaa s 698
The scheduler ElemMeENtcouuiiii e 698

The eXecUutor IEMENToiiii e 698

The scheduled-tasks €lement e 700
28.6. Using the Quartz SCheduler ... 700
Using the JobDetailFactoryBeanccccuuiiviiiiiiiieiiie e e e e e e e 700
Using the MethodInvokingJobDetailFactoryBeancoooviiiiiiiiiiiiniiiiiiis 701

4.1.6.RELEASE Spring Framework XXii

Spring Framework Reference Documentation

Wiring up jobs using triggers and the SchedulerFactoryBeanc.c.cccuveen. 702
29. DyNamic 1angUAQ0E SUPPOIT «....ieun ettt e ettt et et e et e e et e e et e e et e e aaaeeanaaeees 703
b4 5 T [o1 o o (U] 1T o ISP 703
29.2. A IrSt @XAMPIE e 703
29.3. Defining beans that are backed by dynamic languagesccooccoiiiiiiniinnn. 705
107e] 1011 40T [oTe] g [o1=T o] £ PPN 705
The <lang:language/> elementcoooeuiiiiiiii e 706
Refreshable beans ... 706
Inline dynamic language source filesccoiiiiiiiiiiii e 708
Understanding Constructor Injection in the context of dynamic-language-
backed DEANS ... 709
JRUDY DEANS ..o 710
LT {07014V o T= - 1 P 711
Customizing Groovy objects via a callbackccc.ooiiiiii 712
BeanShell DEANSoiiiii e 714
P o= o - 1o 1 RSP PPT 715
Scripted Spring MVC Controllerscoooui i 715
Scripted ValIdAtOrSuuiiiiiiiiei e 716
29.5. BitS @nd DODS ... 716
AOP - advising scripted DEANSoiiiiiiiiiiii e 716
S Telo] o] [o H PSP TUPPTTR 717
29.6. FUIMNEIr RESOUICESuiiiiiiiii e e s 717
30. CaChe ADSIIACTION ...t et e e et et e et e e eenas 718
110 5 T [o1 o o (1] 1T o I 718
30.2. Understanding the cache abstractioncccooviiii i, 718
30.3. Declarative annotation-based cachingc.cocoiiiiiiiiiiin e, 719
@Cacheable anNNOTALIONcceiiiiiiie e 719
Default Key GeNerationoiveuiiiiiiieiii e ee e e e e e e e 720
Custom Key Generation Declarationcooceuiiiiiiniiiiiiieeeeei 720
Default Cache ReSOIULIONcoivuiiiiiiiii e 721
Custom cache reSOIULIONuiiiiiiiiiiee e 721
Conditional CaChingcc.uiiiiiii 722
Available caching SpEL evaluation CONteXtcoevvuviiiiiiiiinieiiiiineeeeiiinnn, 722
@CachePut anNOLAtIONoveiiiiiiiiiiii e eeees 723
(@] @Yo 1=\ Tox A=T 0] L0 ¢= 1 (0] o [P 724
(@) @%=Ted o1 aTo =TT aTo] ¢= 11 o o PP 724
@CacheConfig anNOtationooivuiriiiiiir e e 724
Enable caching annotations ... 725
UsiNg CUSTOM @NNOTALIONS ... cieveiieiiiii e 728
30.4. JCache (JSR-107) anNNOtatiONSccvvuiiiiiiiiii e e e e e e e e e eaes 728
FeatUreS SUMIMAIY ... ettt e e e e e e e e e e ees 728
ENabling JSR-107 SUPPOIT ..eevuuieiiiiieeeiiii ettt ettt e et et eeeebi e eeees 730
30.5. Declarative XML-based cachingccoovvuiiiiiiiiiii e 730
30.6. Configuring the cache StOragecooiuuiiiiiiiiiiiii e 731
JDK ConcurrentMap-based Cachecoooiiiiiiiiiiiii e 731
EhCache-based Cachecoooiiiiiiiiii e 731
GUAVA CACKNE ...t e 732
GemFire-based CaChe ..o 732
JSR-107 CACNE ..t 732
Dealing with caches without a backing Storecooooiiiiiiiiiiii e, 732

4.1.6.RELEASE Spring Framework XXiii

Spring Framework Reference Documentation

30.7. Plugging-in different back-end Cachesccooeiiiiiiii i 733
30.8. How can | set the TTL/TTI/Eviction policy/XXX feature?cccoevveiiiiiiiiiinnennnn. 733
VLI o] o 1= [0 o7 = PP SPPPTR 734
31. Migrating to Spring FramewWork 4.0oiiiiiiiii e e e 735
32. ClasSIC SPrNG USAQGEcuuuiiiniiitaei et e e e e e ettt e et et e et e e et e e aneeanaaes 736
32.1. ClasSIC ORM USAQE ...ccutuiiiiiiieiiiii ettt ettt e e et e e et e e e eae e eeees 736
HIDEINALE ..ot 736

the HibernateTemPplateo 736
Implementing Spring-based DAOs without callbacksccoeiieiiinnnnn. 737

B | L LS P TP PSPPUPPRTIN 738
JdoTemplate and JAODaOSUPPOTr T ..veeniiiiiiiiiieee e 738

B RSO T 739
JpaTemplate and JpaDaoSUPPOrt ..oveveieiiieiiie e e 739

32.2. ClassiC SPriNg MVC ... et 741
32.3. IMS USBUE .eeniiiiiiiiee ittt 741
I 141 =T 0 0] o] = L (= N 741
Asynchronous Message ReCeplioNncc.viiiiiiiiiiiiiiiie e 741

L©] o] o T=Tox 1 o] o PP 742
Transaction ManagemMENTc.uuiiiii e e e e e e e e ea e eees 742

33. ClassiC SPring AOP USAQJEueiituiiiiiieiiieii ettt et et e e e e e ean e eees 743
33.1. POIiNtCUt APT iN SPIING oeetiiiiii et 743
L 0] 07T 0] £ 743
Operations 0N POINTCULSuiiitiieii ettt e e e e e e et e e e eanaeeaes 744
ASpPeCtI eXPresSSioN POINTCULSiiiieeeiiiii et 744
Convenience pointcut implementationscc.ovviiiieiin e 744
StAtIC POINTCULS ...t e e e e et e e e eees 744

DYNAMIC POINTCULS .eeveiiiiiiie ettt e s 745

POINTCUL SUPEICIASSES ..uniiiiiiiii i e e e e e e e eaaees 746
CUSLOM POINTCULS ...ttt ettt e e e et e et e e et e e et e e e e eanaaeees 746
33.2. AAVICE APL N SPIING ..ottt 746
AVICE [IfECYCIES . e 746
AdVICE TYPES IN SPIING ..eeneiiiiei ettt e e e e e eeas 747
Interception around AdVICEcooouiiiiiiiiiiieii e 747

BefOre @dVICEvvuiiii e 747

TRIOWS GOVICEciiiiiiiieii e e et 748

After RetUrNiNg @0VICEuuiiiiiiiieiii e 749
INtrOdUCHION @OVICE ...oeveiiiiii e 750

33.3. AdVISOr AP IN SPIING ettt et e e et e e e e et e e e e eeas 752
33.4. Using the ProxyFactoryBean to create AOP ProXi€scccoveveuieeeenneeinierinneennn 753
BASICS .iiiiittit e 753
JavaBean PrOPEITIESccuuiii ittt 753
JDK- and CGLIB-based ProXi€Scoiiiiuiiiiiiiiiiiieiiiie e 754
ProxXying INTEITACEScuvuiiii e 755
PrOXYING ClASSES .. .eniitiiii ettt 757
USING gIobal AAVISOIScooviiiiiiiiieecee e 758
33.5. Concise proxy definitionNScc.iiiiiiiiii e 758
33.6. Creating AOP proxies programmatically with the ProxyFactorycc.......... 759
33.7. Manipulating adviSed ODJECEScoiuuiiiiiiii e 759
33.8. Using the "autoproxy" facCilitycoeveiiiiiiiiii e e 761
Autoproxy bean definitioNSo 761

4.1.6.RELEASE Spring Framework XXiv

Spring Framework Reference Documentation

BeanNameAUtOPIOXYCIEALONcvuueeeieei e et e e e e e e e e 761
DefaultAdViSOrAUtOPIOXYCIEALONuiieieiiiiieiie e 762
AbstractAdViSOrAULOPIOXYCIEALONeiieiiieeiiii et 763

Using metadata-driven auto-proXyingceeeeieeruieeeieeeineeeineesneeanneeeneeeenns 763
33.9. USING TArgEISOUITES .. .ceuuiiiineeiteiet ettt e et et e e e e e e et e e et e eenaeeees 765
Hot swappable target SOUICESccoeuuiiiiiiiii et 765
eLoTo] [T To T c= T[] =T o 0o = PN 766
Prototype target SOUICESceuuiieiii it e e e e e e e eeans 767
ThreadLocal target SOUICESuiiiiiiieiiiii e 767
33.10. DefiniNng NEW AQVICE tYPES ...evvnieiiiieiie e e e e e e e e e e e e eanas 767
33.11. FUINEI FESOUICEScitiiiiieeet ettt et ettt e e e e e e ea e 768
34. XML Schema-based configuration ... 769
7 I 1 o o U T 1 o] o PRSP 769
34.2. XML Schema-based configurationcoocouiiiiiiiiiiiii e 769
Referencing the SChEmMAscooiiiiiiii i 769

the ULl SChEM@ ... e 770
SULICONSTANT/> .. e e 771
<SULIEProperty-path/> ... 772

U] B o] o] 0= 1 =T 774

SULILIISE/> e et 774
SULIEMAP/> o 775

SULIESB> e e 775

the JEE SCREMA ...eeiii e 776
<jee:jndi-lookup/> (SIMPIE) ...ceuuneiiii e 776
<jee:jndi-lookup/> (with single JNDI environment setting)ccceevvvnnnns 777
<jee:jndi-lookup/> (with multiple JNDI environment settings) 777
<jee:jndi-lookup/> (COMPIEX)iveieiieiiii e 777
<jee:local-sIsh/> (SIMPIE) ...ccoviieie 778
<jee:local-sIsh/> (COMPIEX) ...oevniie e 778
<JeeIrEMOLE-SIS/> oo 778

the 1ang SCheM@Aci e 779

the JMS SCREIMA ..o e e 779

the tx (transaction) SCHEMAiiiiiiiiiiii e 780

the @0P SCHEMA ... 780

the CONEEXE SCREMA . ..uiiii et 781
<property-placeholder/>cooiiiiii s 781
<anNotation-CoNfig/>cooviiii e 781
<COMPONENT-SCAN/S ..uiiiiiii et e e 781
<I0Ad-tIME-WEAVEI>ouiiiiii et aaes 782
<SPHNG-CONfIGUIBAI> ..o 782
<MDEAN-EXPOI/> oo e 782

the 00l SChEMAvei e e e 782

the JADC SChEMAiceec e 782

the cache SChEeMA ... e 782

the DeaNs SCHEM@iii e 783

35. Extensible XML authOriNgcocuieiiiei et e e e e e e e e e eeen 784
T I [o1 o o [FTod 1o o PP UUPTRUPTRN 784
35.2. AUhOriNg the SCheMIAuiiiii e 784
35.3. Coding a NamespaceHaNdIErvviiiiiiii e 785
35.4. BeanDefiNIONPAISErttt e 786

4.1.6.RELEASE Spring Framework XXV

Spring Framework Reference Documentation

35.5. Registering the handler and the schemacccooviiiiiii i 787
META-INF/Spring.handlers ... 787
META-INF/SPING.SChEMAScoiviiiiiiiii e 788

35.6. Using a custom extension in your Spring XML configurationcc.eee. 788

35.7. Meatier @XaAMPIESuieii e 788
Nesting custom tags within custom tagsocoeeviiiiiiiiiniei e, 788
Custom attributes on normal elementsoooveiiiiiiiiinie e 792

35.8. FUMNEr RESOUICESuiiiiiiiie et e e e 794

36. SPHNGHIA <o e 795

1L G 70 I 1o o U Tox 1 o o PSP 795

36.2. the DINA tAG ...cvniieeie e 795

36.3. the eSCAPEBOAY TAG ...evvuuiiiiiiiiieiiii e 796

36.4. the hasBINAEITOIS Tagccuuiiiie i e e e e e e e 796

36.5. the htMIESCAPE TG -..cvuniiieieii e e 796

36.6. the MESSAYE LAY oevvuriiiiiii ettt e e et e e e et e eeena e aaes 796

36.7. the NeStedPath tagovvvnieiii e 797

36.8. the theme tagooee e 798

36.9. the tranSfOrM TAGcvvuiiiii e 799

1T O {1 I = Vo 799

36.11. the EVAl TAQ ..vuieeiiiiiiee e 800

37, SPHNG-TOMMLTIT oo e et e e e 801

G A I 1 oo o [T 1 oo PRSP 801

37.2. the CheCKDOX T8G ..uiitiiiie e e 801

37.3. the CheCKDOXES TG .. .cevviniiiiiii e 802

A | TSI =T 0 {0 £ = o [N 804

37.5. the fOrM A0 ..cvuiieiiii et 805

37.6. the NIdAEN TAGuiieieiie et 806

G A R (o L= T o U A Vo 806

37.8. the [abel tagccouuii 808

37.9. the OPLION TAG ...uiiiiiii et 809

G A (O { g T= T 11 TS - T [810

37.11. the PASSWOIT TAG ...eeuuietniiiiieei ettt et e e et e e e et e e ea e e eaaaes 811

37.12. the radioDULION TAGoceevenieiiii e 812

37.13. the radiobUONS TAG .. cvvvuieiiiei e e e e e 813

37.14. the SEIECE TAQ .vuniien i 815

37.15. the tEXIArEa TAG «..vuiiieiti ettt 816

4.1.6.RELEASE Spring Framework XXVi

Part |I. Overview of Spring Framework

The Spring Framework is a lightweight solution and a potential one-stop-shop for building your
enterprise-ready applications. However, Spring is modular, allowing you to use only those parts that you
need, without having to bring in the rest. You can use the loC container, with any web framework on
top, but you can also use only the Hibernate integration code or the JDBC abstraction layer. The Spring
Framework supports declarative transaction management, remote access to your logic through RMI or
web services, and various options for persisting your data. It offers a full-featured MVC framework, and
enables you to integrate AOP transparently into your software.

Spring is designed to be non-intrusive, meaning that your domain logic code generally has no
dependencies on the framework itself. In your integration layer (such as the data access layer), some
dependencies on the data access technology and the Spring libraries will exist. However, it should be
easy to isolate these dependencies from the rest of your code base.

This document is a reference guide to Spring Framework features. If you have any requests, comments,
or questions on this document, please post them on the user mailing list. Questions on the Framework
itself should be asked on StackOverflow (see https://spring.io/questions).

https://groups.google.com/forum/#!forum/spring-framework-contrib
https://spring.io/questions

Spring Framework Reference Documentation

1. Getting Started with Spring

This reference guide provides detailed information about the Spring Framework. It provides
comprehensive documentation for all features, as well as some background about the underlying
concepts (such as "Dependency Injection™) that Spring has embraced.

If you are just getting started with Spring, you may want to begin using the Spring Framework by
creating a Spring Boot based application. Spring Boot provides a quick (and opinionated) way to create
a production-ready Spring based application. It is based on the Spring Framework, favors convention
over configuration, and is designed to get you up and running as quickly as possible.

You can use start.spring.io to generate a basic project or follow one of the "Getting Started" guides like
the Getting Started Building a RESTful Web Service one. As well as being easier to digest, these guides
are very task focused, and most of them are based on Spring Boot. They also cover other projects from
the Spring portfolio that you might want to consider when solving a particular problem.

4.1.6.RELEASE Spring Framework 2

http://projects.spring.io/spring-boot/
http://start.spring.io
https://spring.io/guides
https://spring.io/guides/gs/rest-service/

Spring Framework Reference Documentation

2. Introduction to the Spring Framework

The Spring Framework is a Java platform that provides comprehensive infrastructure support for
developing Java applications. Spring handles the infrastructure so you can focus on your application.

Spring enables you to build applications from "plain old Java objects" (POJOs) and to apply enterprise
services non-invasively to POJOs. This capability applies to the Java SE programming model and to
full and partial Java EE.

Examples of how you, as an application developer, can benefit from the Spring platform:

» Make a Java method execute in a database transaction without having to deal with transaction APIs.
* Make a local Java method a remote procedure without having to deal with remote APIs.

» Make a local Java method a management operation without having to deal with IMX APIs.

* Make a local Java method a message handler without having to deal with IMS APIs.

2.1 Dependency Injection and Inversion of Control

A Java application — a loose term that runs the gamut from constrained, embedded applications to n-tier,
server-side enterprise applications — typically consists of objects that collaborate to form the application
proper. Thus the objects in an application have dependencies on each other.

Although the Java platform provides a wealth of application development functionality, it lacks the
means to organize the basic building blocks into a coherent whole, leaving that task to architects and
developers. Although you can use design patterns such as Factory, Abstract Factory, Builder, Decorator,
and Service Locator to compose the various classes and object instances that make up an application,
these patterns are simply that: best practices given a name, with a description of what the pattern does,
where to apply it, the problems it addresses, and so forth. Patterns are formalized best practices that
you must implement yourself in your application.

The Spring Framework Inversion of Control (IloC) component addresses this concern by providing a
formalized means of composing disparate components into a fully working application ready for use.
The Spring Framework codifies formalized design patterns as first-class objects that you can integrate
into your own application(s). Numerous organizations and institutions use the Spring Framework in this
manner to engineer robust, maintainable applications.

Background

"The question is, what aspect of control are [they] inverting?" Martin Fowler posed this question
about Inversion of Control (IoC) on his site in 2004. Fowler suggested renaming the principle to
make it more self-explanatory and came up with Dependency Injection.

2.2 Modules

The Spring Framework consists of features organized into about 20 modules. These modules are
grouped into Core Container, Data Access/Integration, Web, AOP (Aspect Oriented Programming),
Instrumentation, Messaging, and Test, as shown in the following diagram.

4.1.6.RELEASE Spring Framework 3

http://martinfowler.com/articles/injection.html

Spring Framework Reference Documentation

;{I Spring Framework Runtime

Data Access/Integration Web

JDBEC ORM WebSocket Serviet

OXM JMS

Transactions

Core Container

Core Context

Figure 2.1. Overview of the Spring Framework

The following sections list the available modules for each feature along with their artifact names and the
topics they cover. Artifact names correlate to artifact IDs used in Dependency Management tools.

Core Container

The Core Container consists of the spring-core, spring-beans, spri ng-context, spring-
cont ext - support, and spri ng- expr essi on (Spring Expression Language) modules.

The spring-core and spring- beans modules provide the fundamental parts of the framework,
including the loC and Dependency Injection features. The BeanFactory is a sophisticated
implementation of the factory pattern. It removes the need for programmatic singletons and allows you
to decouple the configuration and specification of dependencies from your actual program logic.

The Context (spri ng- cont ext) module builds on the solid base provided by the Core and Beans
modules: it is a means to access objects in a framework-style manner that is similar to a JNDI
registry. The Context module inherits its features from the Beans module and adds support for
internationalization (using, for example, resource bundles), event propagation, resource loading, and the
transparent creation of contexts by, for example, a Servlet container. The Context module also supports
Java EE features such as EJB, JMX, and basic remoting. The Appl i cat i onCont ext interface is
the focal point of the Context module. spri ng- cont ext - support provides support for integrating
common third-party libraries into a Spring application context for caching (EhCache, Guava, JCache),
mailing (JavaMail), scheduling (CommonJ, Quartz) and template engines (FreeMarker, JasperReports,
Velocity).

The spring-expressi on module provides a powerful Expression Language for querying and
manipulating an object graph at runtime. It is an extension of the unified expression language (unified
EL) as specified in the JSP 2.1 specification. The language supports setting and getting property values,
property assignment, method invocation, accessing the content of arrays, collections and indexers,

4.1.6.RELEASE Spring Framework 4

Spring Framework Reference Documentation

logical and arithmetic operators, named variables, and retrieval of objects by name from Spring’s l1oC
container. It also supports list projection and selection as well as common list aggregations.

AOP and Instrumentation

The spring-aop module provides an AOP Alliance-compliant aspect-oriented programming
implementation allowing you to define, for example, method interceptors and pointcuts to cleanly
decouple code that implements functionality that should be separated. Using source-level metadata
functionality, you can also incorporate behavioral information into your code, in a manner similar to that
of .NET attributes.

The separate spri ng- aspect s module provides integration with AspectJ.

The spring-instrunment module provides class instrumentation support and classloader
implementations to be used in certain application servers. The spri ng-i nst runent - t oncat module
contains Spring’s instrumentation agent for Tomcat.

Messaging

Spring Framework 4 includes a spri ng- nessagi ng module with key abstractions from the Spring
Integration project such as Message, MessageChannel , MessageHandl er, and others to serve as a
foundation for messaging-based applications. The module also includes a set of annotations for mapping
messages to methods, similar to the Spring MVC annotation based programming model.

Data Access/Integration

The Data Access/Integration layer consists of the JDBC, ORM, OXM, JMS, and Transaction modules.

The spri ng-j dbc module provides a JDBC-abstraction layer that removes the need to do tedious
JDBC coding and parsing of database-vendor specific error codes.

The spri ng-t x module supports programmatic and declarative transaction management for classes
that implement special interfaces and for all your POJOs (Plain Old Java Objects).

The spri ng- or m module provides integration layers for popular object-relational mapping APIs,
including JPA, JDO, and Hibernate. Using the spri ng- or mmodule you can use all of these O/R-
mapping frameworks in combination with all of the other features Spring offers, such as the simple
declarative transaction management feature mentioned previously.

The spring-oxm module provides an abstraction layer that supports Object/XML mapping
implementations such as JAXB, Castor, XMLBeans, JiBX and XStream.

The spri ng-j ms module (Java Messaging Service) contains features for producing and consuming
messages. Since Spring Framework 4.1, it provides integration with the spri ng- messagi ng module.

Web

The Web layer consists of the spri ng- web, spri ng-webmvc, spri ng- websocket, and spri ng-
webnvc- portl et modules.

The spri ng- web module provides basic web-oriented integration features such as multipart file upload
functionality and the initialization of the IoC container using Servlet listeners and a web-oriented
application context. It also contains an HTTP client and the web-related parts of Spring’s remoting
support.

4.1.6.RELEASE Spring Framework 5

Spring Framework Reference Documentation

The spri ng-webnmvc module (also known as the Web-Servlet module) contains Spring’s model-
view-controller (MVC) and REST Web Services implementation for web applications. Spring’s MVC
framework provides a clean separation between domain model code and web forms and integrates with
all of the other features of the Spring Framework.

The spri ng- webmvc- portl et module (also known as the Web-Portlet module) provides the MVC
implementation to be used in a Portlet environment and mirrors the functionality of the spri ng- webnvc
module.

Test

The spri ng-t est module supports the unit testing and integration testing of Spring components with
JUnit or TestNG. It provides consistent loading of Spring Appl i cat i onCont ext s and caching of those
contexts. It also provides mock objects that you can use to test your code in isolation.

2.3 Usage scenarios

The building blocks described previously make Spring a logical choice in many scenarios, from
embedded applications that run on resource-constrained devices to full-fledged enterprise applications
that use Spring’s transaction management functionality and web framework integration.

L i L4 | | Integration
Form Multipart Dynamic with JSP
Binding to
Controllers Resolver Domain Model Velocity, SLT.
N | | | | PDF Excel
WebApplication Context
Sending Remote
Email Accees
Custom domain logic
Declarative Transactions
for POJOs
ORM Mappings
Tomcat Serviet Container | Custom DAO/Repositories

Figure 2.2. Typical full-fledged Spring web application

Spring’s declarative transaction management features make the web application fully transactional, just
as it would be if you used EJB container-managed transactions. All your custom business logic can be
implemented with simple POJOs and managed by Spring’s IoC container. Additional services include
support for sending email and validation that is independent of the web layer, which lets you choose
where to execute validation rules. Spring’s ORM support is integrated with JPA, Hibernate and and
JDO; for example, when using Hibernate, you can continue to use your existing mapping files and
standard Hibernate Sessi onFact ory configuration. Form controllers seamlessly integrate the web-

4.1.6.RELEASE Spring Framework 6

Spring Framework Reference Documentation

layer with the domain model, removing the need for Act i onFor ns or other classes that transform HTTP
parameters to values for your domain model.

Web frontend using
Struts or Tapestry

WebApplication Context

Custom domain logic

Declarative Transactions
for POJOs

ORM Mappings
Tomcat Servlet Container Custom DAO/Repositories

Figure 2.3. Spring middle-tier using a third-party web framework

Sometimes circumstances do not allow you to completely switch to a different framework. The Spring
Framework does not force you to use everything within it; it is not an all-or-nothing solution. Existing
front-ends built with Struts, Tapestry, JSF or other Ul frameworks can be integrated with a Spring-
based middle-tier, which allows you to use Spring transaction features. You simply need to wire up your
business logic using an Appl i cati onCont ext and use a WebAppl i cati onCont ext to integrate
your web layer.

4.1.6.RELEASE Spring Framework 7

Spring Framework Reference Documentation

JAX RPC Client Hessian Client Burlap Client RMI Client

Transparent Remote Access

Custom domain logic

Tomcat Serviet Container

Figure 2.4. Remoting usage scenario

When you need to access existing code through web services, you can use Spring’s Hessi an-,
Bur | ap-, Rm - or JaxRpcPr oxyFact ory classes. Enabling remote access to existing applications
is not difficult.

EJB Access Layer
(using Sisbinvokers)

Spring-managed EJBs
(using AbstractEnterpriseBean)

Application Server (e.g. WebSphere, WeblLogic, JBoss)

Figure 2.5. EJBs - Wrapping existing POJOs

The Spring Framework also provides an access and abstraction layer for Enterprise JavaBeans,
enabling you to reuse your existing POJOs and wrap them in stateless session beans for use in scalable,
fail-safe web applications that might need declarative security.

4.1.6.RELEASE Spring Framework 8

Spring Framework Reference Documentation

Dependency Management and Naming Conventions

Dependency management and dependency injection are different things. To get those nice features of
Spring into your application (like dependency injection) you need to assemble all the libraries needed (jar
files) and get them onto your classpath at runtime, and possibly at compile time. These dependencies
are not virtual components that are injected, but physical resources in a file system (typically). The
process of dependency management involves locating those resources, storing them and adding them
to classpaths. Dependencies can be direct (e.g. my application depends on Spring at runtime), or indirect
(e.g. my application depends on conmons- dbcp which depends on conmons- pool). The indirect
dependencies are also known as "transitive" and it is those dependencies that are hardest to identify
and manage.

If you are going to use Spring you need to get a copy of the jar libraries that comprise the pieces of
Spring that you need. To make this easier Spring is packaged as a set of modules that separate the
dependencies as much as possible, so for example if you don’'t want to write a web application you
don’'t need the spring-web modules. To refer to Spring library modules in this guide we use a shorthand
naming convention spri ng-* or spri ng-*. j ar, where * represents the short name for the module
(e.g. spring-core, spring-webnmvc, spring-j ns, etc.). The actual jar file name that you use is
normally the module name concatenated with the version number (e.g. spring-core-4.1.6.RELEASE .jar).

Each release of the Spring Framework will publish artifacts to the following places:

» Maven Central, which is the default repository that Maven queries, and does not require any special
configuration to use. Many of the common libraries that Spring depends on also are available
from Maven Central and a large section of the Spring community uses Maven for dependency
management, so this is convenient for them. The names of the jars here are in the form spri ng- *-
<versi on>. j ar and the Maven groupld is or g. spri ngf r amewor k.

 In a public Maven repository hosted specifically for Spring. In addition to the final GA releases, this
repository also hosts development snapshots and milestones. The jar file names are in the same form
as Maven Central, so this is a useful place to get development versions of Spring to use with other
libraries deployed in Maven Central. This repository also contains a bundle distribution zip file that
contains all Spring jars bundled together for easy download.

So the first thing you need to decide is how to manage your dependencies: we generally recommend the
use of an automated system like Maven, Gradle or Ivy, but you can also do it manually by downloading
all the jars yourself.

You will find bellow the list of Spring artifacts. For a more complete description of each modules, see
Section 2.2, “Modules”.

Table 2.1. Spring Framework Artifacts

Groupld Artifactld Description
org.springframework spring-aop Proxy-based AOP support
org.springframework spring-aspects AspectJ based aspects
org.springframework spring-beans Beans support, including
Groovy
org.springframework spring-context Application context runtime,
including scheduling and
remoting abstractions

4.1.6.RELEASE Spring Framework 9

Spring Framework Reference Documentation

Groupld

Artifactld

Description

org.springframework

spring-context-support

Support classes for integrating
common third-party libraries
into a Spring application context

org.springframework

org.springframework

org.springframework

spring-core

spring-expression

spring-instrument

Core utilities, used by many
other Spring modules

Spring Expression Language
(SpEL)

Instrumentation agent for JVM
bootstrapping

org.springframework

org.springframework

org.springframework

spring-instrument-tomcat

spring-jdbc

spring-jms

Instrumentation agent for
Tomcat

JDBC support package,
including DataSource setup and
JDBC access support

JMS support package, including
helper classes to send and
receive JMS messages

org.springframework

spring-messaging

Support for messaging
architectures and protocols

org.springframework spring-orm Object/Relational Mapping,
including JPA and Hibernate
support
org.springframework spring-oxm Object/XML Mapping
org.springframework spring-test Support for unit testing and
integration testing Spring
components
org.springframework spring-tx Transaction infrastructure,
including DAO support and JCA
integration
org.springframework spring-web Web support packages,

org.springframework

org.springframework

spring-webmvc

spring-webmvc-portlet

including client and web
remoting

REST Web Services and
model-view-controller
implementation for web
applications

MVC implementation to be used
in a Portlet environment

4.1.6.RELEASE

Spring Framework

10

Spring Framework Reference Documentation

Groupld Artifactld Description

org.springframework spring-websocket WebSocket and SockJS
implementations, including
STOMP support

Spring Dependencies and Depending on Spring

Although Spring provides integration and support for a huge range of enterprise and other external tools,
it intentionally keeps its mandatory dependencies to an absolute minimum: you shouldn’t have to locate
and download (even automatically) a large number of jar libraries in order to use Spring for simple use
cases. For basic dependency injection there is only one mandatory external dependency, and that is
for logging (see below for a more detailed description of logging options).

Next we outline the basic steps needed to configure an application that depends on Spring, first with
Maven and then with Gradle and finally using Ivy. In all cases, if anything is unclear, refer to the
documentation of your dependency management system, or look at some sample code - Spring itself
uses Gradle to manage dependencies when it is building, and our samples mostly use Gradle or Maven.

Maven Dependency Management

If you are using Maven for dependency management you don’'t even need to supply the logging
dependency explicitly. For example, to create an application context and use dependency injection to
configure an application, your Maven dependencies will look like this:

<dependenci es>
<dependency>
<groupl d>or g. spri ngf ramewor k</ gr oupl d>
<artifactld>spring-context</artifactld>
<version>4.1. 6. RELEASE</ ver si on>
<scope>runti nme</ scope>
</ dependency>
</ dependenci es>

That's it. Note the scope can be declared as runtime if you don’t need to compile against Spring APls,
which is typically the case for basic dependency injection use cases.

The example above works with the Maven Central repository. To use the Spring Maven repository
(e.g. for milestones or developer snapshots), you need to specify the repository location in your Maven
configuration. For full releases:

<repositories>
<repository>
<i d>i 0. spring. repo. maven. rel ease</i d>
<url >http://repo.spring.iolrel ease/ </ url >
<snapshot s><enabl ed>f al se</ enabl ed></ snapshot s>
</repository>
</repositories>

For milestones:

<repositories>
<repository>
<i d>i 0. spring.repo. maven. m | estone</i d>
<url >http://repo.spring.io/mlestone/</url>
<snapshot s><enabl ed>f al se</ enabl ed></ snapshot s>
</repository>
</repositories>

4.1.6.RELEASE Spring Framework 11

http://maven.apache.org/

Spring Framework Reference Documentation

And for snapshots:

<repositories>
<repository>
<i d>i 0. spring. repo. maven. snapshot </ i d>
<url >http://repo.spring.iol/snapshot/</url>
<snapshot s><enabl ed>t r ue</ enabl ed></ snapshot s>
</repository>
</repositories>

Maven "Bill Of Materials" Dependency

It is possible to accidentally mix different versions of Spring JARs when using Maven. For example,
you may find that a third-party library, or another Spring project, pulls in a transitive dependency to an
older release. If you forget to explicitly declare a direct dependency yourself, all sorts of unexpected
issues can arise.

To overcome such problems Maven supports the concept of a "bill of materials" (BOM) dependency.
You can import the spri ng- f ranewor k- bomin your dependencyManagenent section to ensure
that all spring dependencies (both direct and transitive) are at the same version.

<dependencyManagenent >
<dependenci es>
<dependency>
<groupl d>or g. spri ngf ramewor k</ gr oupl d>
<artifactld>spring-framework-bom</ artifactld>
<version>4.1. 6. RELEASE</ versi on>
<t ype>ponk/type>
<scope>i nport </ scope>
</ dependency>
</ dependenci es>
</ dependencyManagenent >

An added benefit of using the BOM is that you no longer need to specify the <ver si on> attribute when
depending on Spring Framework artifacts:

<dependenci es>
<dependency>
<groupl d>or g. spri ngf ramewor k</ gr oupl d>
<artifactld>spring-context</artifactld>
</ dependency>
<dependency>
<groupl d>or g. spri ngf ramewor k</ gr oupl d>
<artifactld>spring-web</artifactld>
</ dependency>
<dependenci es>

Gradle Dependency Management

To use the Spring repository with the Gradle build system, include the appropriate URL in the
repositories section:

repositories {
mavenCentral ()
/1 and optionally..
maven { url "http://repo.spring.iolrel ease" }

You can change the repositories URL from /rel ease to /m | estone or /snapshot as
appropriate. Once a repository has been configured, you can declare dependencies in the usual Gradle
way:

4.1.6.RELEASE Spring Framework 12

http://www.gradle.org/

Spring Framework Reference Documentation

dependenci es {
conpi | e("org. springframework: spring-context:4.1. 6. RELEASE")
t est Conpi | e("org. springfranmework: spring-test: 4. 1. 6. RELEASE")

}

Ivy Dependency Management
If you prefer to use lvy to manage dependencies then there are similar configuration options.
To configure Ivy to point to the Spring repository add the following resolver to youri vysetti ngs. xm :

<resol vers>
<i bi blio name="i 0. spring.repo. maven. rel ease"
n2conpat i bl e="true"
root="http://repo.spring.iol/rel ease/"/>
</resol ver s>

You can change the r oot URL from/r el ease/ to/ ni |l est one/ or/snapshot/ as appropriate.

Once configured, you can add dependencies in the usual way. For example (ini vy. xmi):

<dependency or g="org. springfranmewor k"
nane="spring-core" rev="4.1. 6. RELEASE" conf="conpile->runtine"/>

Distribution Zip Files

Although using a build system that supports dependency management is the recommended way to
obtain the Spring Framework, it is still possible to download a distribution zip file.

Distribution zips are published to the Spring Maven Repository (this is just for our convenience, you
don’t need Maven or any other build system in order to download them).

To download a distribution zip open a web browser to http://repo.spring.io/release/org/springframework/
spring and select the appropriate subfolder for the version that you want. Distribution files end -
di st. zi p, for example spri ng-f ranmewor k- 4. 1. 6. RELEASE- RELEASE- di st . zi p. Distributions
are also published for milestones and snapshots.

Logging

Logging is a very important dependency for Spring because a) it is the only mandatory external
dependency, b) everyone likes to see some output from the tools they are using, and c) Spring integrates
with lots of other tools all of which have also made a choice of logging dependency. One of the goals
of an application developer is often to have unified logging configured in a central place for the whole
application, including all external components. This is more difficult than it might have been since there
are so many choices of logging framework.

The mandatory logging dependency in Spring is the Jakarta Commons Logging API (JCL). We compile
against JCL and we also make JCL Log objects visible for classes that extend the Spring Framework.
It's important to users that all versions of Spring use the same logging library: migration is easy because
backwards compatibility is preserved even with applications that extend Spring. The way we do this
is to make one of the modules in Spring depend explicitly on comons- | oggi ng (the canonical
implementation of JCL), and then make all the other modules depend on that at compile time. If you are
using Maven for example, and wondering where you picked up the dependency on conmons- | oggi ng,
then it is from Spring and specifically from the central module called spri ng- cor e.

The nice thing about conmons- | oggi ng is that you don’t need anything else to make your application
work. It has a runtime discovery algorithm that looks for other logging framewaorks in well known places

4.1.6.RELEASE Spring Framework 13

http://ant.apache.org/ivy
http://repo.spring.io/release/org/springframework/spring
http://repo.spring.io/release/org/springframework/spring
http://repo.spring.io/milestone/org/springframework/spring
http://repo.spring.io/snapshot/org/springframework/spring

Spring Framework Reference Documentation

on the classpath and uses one that it thinks is appropriate (or you can tell it which one if you need to).
If nothing else is available you get pretty nice looking logs just from the JDK (java.util.logging or JUL
for short). You should find that your Spring application works and logs happily to the console out of the
box in most situations, and that's important.

Not Using Commons Logging

Unfortunately, the runtime discovery algorithm in conmons- | oggi ng, while convenient for the end-
user, is problematic. If we could turn back the clock and start Spring now as a new project it would use
a different logging dependency. The first choice would probably be the Simple Logging Facade for Java
(SLF4J), which is also used by a lot of other tools that people use with Spring inside their applications.

There are basically two ways to switch off cormons- | oggi ng:

1. Exclude the dependency from the spri ng- core module (as it is the only module that explicitly
depends on commons- | oggi ng)

2. Depend on a special conmons- | oggi ng dependency that replaces the library with an empty jar
(more details can be found in the SLF4J FAQ)

To exclude commons-logging, add the following to your dependencyManagenent section:

<dependenci es>

<dependency>
<groupl d>or g. spri ngf ramewor k</ gr oupl d>
<artifactld>spring-core</artifactld>

<ver si on>4. 1. 6. RELEASE</ ver si on>
<excl usi ons>
<excl usi on>
<gr oupl d>commons- | oggi ng</ gr oupl d>
<artifactld>commons-|ogging</artifactld>
</ excl usi on>
</ excl usi ons>
</ dependency>
</ dependenci es>

Now this application is probably broken because there is no implementation of the JCL API on the
classpath, so to fix it a new one has to be provided. In the next section we show you how to provide an
alternative implementation of JCL using SLF4J as an example.

Using SLF4J

SLF4J is a cleaner dependency and more efficient at runtime than conmons- | oggi ng because it uses
compile-time bindings instead of runtime discovery of the other logging frameworks it integrates. This
also means that you have to be more explicit about what you want to happen at runtime, and declare it
or configure it accordingly. SLF4J provides bindings to many common logging frameworks, so you can
usually choose one that you already use, and bind to that for configuration and management.

SLF4J provides bindings to many common logging frameworks, including JCL, and it also does the
reverse: bridges between other logging frameworks and itself. So to use SLF4J with Spring you need
to replace the cormons- | oggi ng dependency with the SLF4J-JCL bridge. Once you have done that
then logging calls from within Spring will be translated into logging calls to the SLF4J API, so if other
libraries in your application use that API, then you have a single place to configure and manage logging.

A common choice might be to bridge Spring to SLF4J, and then provide explicit binding from SLF4J to
Log4J. You need to supply 4 dependencies (and exclude the existing conmons- | oggi ng): the bridge,

4.1.6.RELEASE Spring Framework 14

http://www.slf4j.org
http://slf4j.org/faq.html#excludingJCL

Spring Framework Reference Documentation

the SLF4J API, the binding to Log4J, and the Log4J implementation itself. In Maven you would do that
like this

<dependenci es>

<dependency>
<groupl d>or g. spri ngf ramewor k</ gr oupl d>
<artifactld>spring-core</artifactld>
<versi on>4. 1. 6. RELEASE</ ver si on>
<excl usi ons>

<excl usi on>
<gr oupl d>comons- | oggi ng</ gr oupl d>
<artifact|d>commons-|oggi ng</artifactld>
</ excl usi on>

</ excl usi ons>

</ dependency>

<dependency>
<gr oupl d>or g. sl f 4j </ gr oupl d>
<artifactld>jcl-over-slfdj</artifactld>
<versi on>1. 5. 8</ ver si on>

</ dependency>

<dependency>
<gr oupl d>or g. sl f 4j </ gr oupl d>
<artifactld>slf4j-api</artifactld>
<ver si on>1. 5. 8</ ver si on>

</ dependency>

<dependency>
<gr oupl d>or g. sl f 4j </ gr oupl d>
<artifactld>slf4j-1og4j12</artifactld>
<version>1.5. 8</versi on>

</ dependency>

<dependency>
<groupl d>I og4j </ gr oupl d>
<artifactld>l og4j</artifactld>
<version>1. 2. 14</ ver si on>

</ dependency>

</ dependenci es>

That might seem like a lot of dependencies just to get some logging. Well it is, but it is optional, and it
should behave better than the vanilla conmrons- | oggi ng with respect to classloader issues, notably if
you are in a strict container like an OSGi platform. Allegedly there is also a performance benefit because
the bindings are at compile-time not runtime.

A more common choice amongst SLF4J users, which uses fewer steps and generates fewer
dependencies, is to bind directly to Logback. This removes the extra binding step because Logback
implements SLF4J directly, so you only need to depend on two libraries not four (j cl - over - sl f 4j and
| ogback). If you do that you might also need to exclude the slf4j-api dependency from other external
dependencies (not Spring), because you only want one version of that API on the classpath.

Using Log4J

Many people use Log4j as a logging framework for configuration and management purposes. It's efficient
and well-established, and in fact it's what we use at runtime when we build and test Spring. Spring
also provides some utilities for configuring and initializing Log4j, so it has an optional compile-time
dependency on Log4j in some modules.

To make Log4j work with the default JCL dependency (cormons- | oggi ng) all you need to do is put
Log4j on the classpath, and provide it with a configuration file (1 og4j . properti es orl og4j . xm in
the root of the classpath). So for Maven users this is your dependency declaration:

4.1.6.RELEASE Spring Framework 15

http://logback.qos.ch
http://logging.apache.org/log4j

Spring Framework Reference Documentation

<dependenci es>
<dependency>
<groupl d>or g. spri ngf ramewor k</ gr oupl d>
<artifactld>spring-core</artifactld>
<ver si on>4. 1. 6. RELEASE</ ver si on>
</ dependency>
<dependency>
<gr oupl d>l og4j </ gr oupl d>
<artifactld>l og4j</artifactld>
<ver si on>1. 2. 14</ ver si on>
</ dependency>
</ dependenci es>

And here’s a sample log4j.properties for logging to the console:

| 0g4j . r oot Cat egory=I NFO, st dout

| 0g4j . appender . st dout =or g. apache. | og4j . Consol eAppender

| og4j . appender. st dout . | ayout =or g. apache. | og4j . Pat t er nLayout

| 0og4j . appender . st dout . | ayout . Conver si onPat t er n=%{ ABSOLUTE} %p % %{2}: % - %?;n

| 0g4j . cat egory. or g. spri ngf ramewor k. beans. f act or y=DEBUG

Runtime Containers with Native JCL

Many people run their Spring applications in a container that itself provides an implementation
of JCL. IBM Websphere Application Server (WAS) is the archetype. This often causes problems,
and unfortunately there is no silver bullet solution; simply excluding conmons- | oggi ng from your
application is not enough in most situations.

To be clear about this: the problems reported are usually not with JCL per se, or even with conmons-
| oggi ng: rather they are to do with binding commons- | oggi ng to another framework (often Log4J).
This can fail because commons- | oggi ng changed the way they do the runtime discovery in between
the older versions (1.0) found in some containers and the modern versions that most people use now
(1.1). Spring does not use any unusual parts of the JCL API, so nothing breaks there, but as soon as
Spring or your application tries to do any logging you can find that the bindings to Log4J are not working.

In such cases with WAS the easiest thing to do is to invert the class loader hierarchy (IBM calls it "parent
last") so that the application controls the JCL dependency, not the container. That option isn't always
open, but there are plenty of other suggestions in the public domain for alternative approaches, and
your mileage may vary depending on the exact version and feature set of the container.

4.1.6.RELEASE Spring Framework 16

Part Il. What’s New In
Spring Framework 4.x

Spring Framework Reference Documentation

3. New Features and Enhancements in Spring
Framework 4.0

The Spring Framework was first released in 2004; since then there have been significant major revisions:
Spring 2.0 provided XML namespaces and AspectJ support; Spring 2.5 embraced annotation-driven
configuration; Spring 3.0 introduced a strong Java 5+ foundation across the framework codebase, and
features such as the Java-based @onf i gur ati on model.

Version 4.0 is the latest major release of the Spring Framework and the first to fully support Java 8
features. You can still use Spring with older versions of Java, however, the minimum requirement has
now been raised to Java SE 6. We have also taken the opportunity of a major release to remove many
deprecated classes and methods.

A migration guide for upgrading to Spring 4.0 is available on the Spring Framework GitHub Wiki.

3.1 Improved Getting Started Experience

The new spring.io website provides a whole series of "Getting Started" guides to help you learn Spring.
You can read more about the guides in the Chapter 1, Getting Started with Spring section in this
document. The new website also provides a comprehensive overview of the many additional projects
that are released under the Spring umbrella.

If you are a Maven user you may also be interested in the helpful bill of materials POM file that is now
published with each Spring Framework release.

3.2 Removed Deprecated Packages and Methods

All deprecated packages, and many deprecated classes and methods have been removed with version
4.0. If you are upgrading from a previous release of Spring, you should ensure that you have fixed any
deprecated calls that you were making to outdated APIs.

For a complete set of changes, check out the API Differences Report.

Note that optional third-party dependencies have been raised to a 2010/2011 minimum (i.e. Spring 4
generally only supports versions released in late 2010 or later now): notably, Hibernate 3.6+, EhCache
2.1+, Quartz 1.8+, Groovy 1.8+, and Joda-Time 2.0+. As an exception to the rule, Spring 4 requires the
recent Hibernate Validator 4.3+, and support for Jackson has been focused on 2.0+ now (with Jackson
1.8/1.9 support retained for the time being where Spring 3.2 had it; now just in deprecated form).

3.3Java 8 (as well as 6 and 7)

Spring Framework 4.0 provides support for several Java 8 features. You can make use of lambda
expressions and method references with Spring’s callback interfaces. There is first-class support for
j ava. ti nme (JSR-310), and several existing annotations have been retrofitted as @repeat abl e. You
can also use Java 8's parameter name discovery (based on the - par anet er s compiler flag) as an
alternative to compiling your code with debug information enabled.

Spring remains compatible with older versions of Java and the JDK: concretely, Java SE 6 (specifically,
a minimum level equivalent to JDK 6 update 18, as released in January 2010) and above are still fully

4.1.6.RELEASE Spring Framework 18

https://github.com/spring-projects/spring-framework/wiki/Migrating-from-earlier-versions-of-the-spring-framework
https://github.com/spring-projects/spring-framework/wiki
https://spring.io
https://spring.io/guides
http://docs.spring.io/spring-framework/docs/3.2.4.RELEASE_to_4.0.0.RELEASE/
http://jcp.org/en/jsr/detail?id=310

Spring Framework Reference Documentation

supported. However, for newly started development projects based on Spring 4, we recommend the
use of Java 7 or 8.

3.4JavaEE6 and 7

Java EE version 6 or above is now considered the baseline for Spring Framework 4, with the JPA 2.0
and Servlet 3.0 specifications being of particular relevance. In order to remain compatible with Google
App Engine and older application servers, it is possible to deploy a Spring 4 application into a Servlet
2.5 environment. However, Servlet 3.0+ is strongly recommended and a prerequisite in Spring’s test
and mock packages for test setups in development environments.

Note

If you are a WebSphere 7 user, be sure to install the JPA 2.0 feature pack. On WebLogic 10.3.4
or higher, install the JPA 2.0 patch that comes with it. This turns both of those server generations
into Spring 4 compatible deployment environments.

On a more forward-looking note, Spring Framework 4.0 supports the Java EE 7 level of applicable
specifications now: in particular, JMS 2.0, JTA 1.2, JPA 2.1, Bean Validation 1.1, and JSR-236
Concurrency Utilities. As usual, this support focuses on individual use of those specifications, e.g. on
Tomcat or in standalone environments. However, it works equally well when a Spring application is
deployed to a Java EE 7 server.

Note that Hibernate 4.3 is a JPA 2.1 provider and therefore only supported as of Spring Framework 4.0.
The same applies to Hibernate Validator 5.0 as a Bean Validation 1.1 provider. Neither of the two are
officially supported with Spring Framework 3.2.

3.5 Groovy Bean Definition DSL

Beginning with Spring Framework 4.0, it is possible to define external bean configuration using a Groovy
DSL. This is similar in concept to using XML bean definitions but allows for a more concise syntax. Using
Groovy also allows you to easily embed bean definitions directly in your bootstrap code. For example:

def reader = new G oovyBeanDefi niti onReader (nyAppl i cati onContext)
reader. beans {
dat aSour ce(Basi cDat aSour ce) {
driverC assName = "org. hsql db. j dbcDriver"

url = "jdbc: hsql db: mem grai | sDB"
usernanme = "sa"

password =

settings = [mynew "setting"]

}
sessi onFact ory(Sessi onFactory) {
dat aSour ce = dat aSource
}
nyServi ce(MyService) {
nest edBean = { Anot her Bean bean ->
dat aSour ce = dat aSour ce

}
}

For more information consult the G- oovyBeanDef i ni t i onReader javadocs.

3.6 Core Container Improvements

There have been several general improvements to the core container:

4.1.6.RELEASE Spring Framework 19

http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/beans/factory/groovy/GroovyBeanDefinitionReader.html

Spring Framework Reference Documentation

» Spring now treats generic types as a form of qualifier when injecting Beans. For example, if you are
using a Spring Data Reposi t or y you can now easily inject a specific implementation: @\ut owi r ed
Reposi t or y<Cust oner > cust oner Repository.

« If you use Spring’s meta-annotation support, you can now develop custom annotations that expose
specific attributes from the source annotation.

» Beans can now be ordered when they are autowired into lists and arrays. Both the @D der annotation
and Or der ed interface are supported.

» The @azy annotation can now be used on injection points, as well as on @ean definitions.

e The @escri pti on annotation has been introduced for developers using Java-based configuration.

» A generalized model for conditionally filtering beans has been added via the @Condi ti onal
annotation. This is similar to @r of i | e support but allows for user-defined strategies to be developed
programmatically.

» CGLIB-based proxy classes no longer require a default constructor. Support is provided via the
objenesis library which is repackaged inline and distributed as part of the Spring Framework. With
this strategy, no constructor at all is being invoked for proxy instances anymore.

» There is managed time zone support across the framework now, e.g. on Local eCont ext .

3.7 General Web Improvements

Deployment to Servlet 2.5 servers remains an option, but Spring Framework 4.0 is now focused primarily
on Servlet 3.0+ environments. If you are using the Spring MVC Test Framework you will need to ensure
that a Servlet 3.0 compatible JAR is in your test classpath.

In addition to the WebSocket support mentioned later, the following general improvements have been
made to Spring’s Web modules:

* You can use the new @Rest Cont r ol | er annotation with Spring MVC applications, removing the
need to add @esponseBody to each of your @Request Mappi ng methods.

* The AsyncRest Tenpl at e class has been added, allowing non-blocking asynchronous support
when developing REST clients.

» Spring now offers comprehensive timezone support when developing Spring MVC applications.

3.8 WebSocket, SockJS, and STOMP Messaging

A new spri ng- websocket module provides comprehensive support for WebSocket-based, two-way
communication between client and server in web applications. It is compatible with JSR-356, the Java
WebSocket API, and in addition provides SockJS-based fallback options (i.e. WebSocket emulation)
for use in browsers that don't yet support the WebSocket protocol (e.g. Internet Explorer < 10).

Anew spring- nessagi hg module adds support for STOMP as the WebSocket sub-protocol to use in
applications along with an annotation programming model for routing and processing STOMP messages
from WebSocket clients. As a result an @ont r ol | er can now contain both @equest Mappi ng and
@kssageMappi ng methods for handling HTTP requests and messages from WebSocket-connected
clients. The new spri ng- nessagi ng module also contains key abstractions formerly from the Spring

4.1.6.RELEASE Spring Framework 20

http://code.google.com/p/objenesis/
http://jcp.org/en/jsr/detail?id=356
http://projects.spring.io/spring-integration/

Spring Framework Reference Documentation

Integration project such as Message, MessageChannel , MessageHandl| er, and others to serve as
a foundation for messaging-based applications.

For further details, including a more thorough introduction, see the Chapter 21, WebSocket Support
section.

3.9 Testing Improvements

In addition to pruning of deprecated code within the spri ng-test module, Spring Framework 4.0
introduces several new features for use in unit and integration testing.

e Almost all annotations in the spring-test module (e.g., @ontextConfiguration,
@\ebAppConfi gurati on, @ont ext H erarchy, @\ctiveProfiles, etc.) can now be used
as meta-annotations to create custom composed annotations and reduce configuration duplication
across a test suite.

« Active bean definition profiles can now be resolved programmatically, simply by implementing
a custom ActiveProfil esResol ver and registering it via the resol ver attribute of
@\ctiveProfiles.

 Anew Socket Ut i | s class has been introduced in the spri ng- cor e module which enables you to
scan for free TCP and UDP server ports on localhost. This functionality is not specific to testing but
can prove very useful when writing integration tests that require the use of sockets, for example tests
that start an in-memory SMTP server, FTP server, Servlet container, etc.

» As of Spring 4.0, the set of mocks in the org. springframework. nock. web package is
now based on the Servlet 3.0 API. Furthermore, several of the Servlet APl mocks (e.g.,
MockHt t pSer vl et Request, MockSer vl et Cont ext, etc.) have been updated with minor
enhancements and improved configurability.

4.1.6.RELEASE Spring Framework 21

http://projects.spring.io/spring-integration/

Spring Framework Reference Documentation

4. New Features and Enhancements in Spring
Framework 4.1

4.1 JMS Improvements

Spring 4.1 introduces a much simpler infrastructure to register JMS listener endpoints by annotating
bean methods with @nsLi st ener. The XML namespace has been enhanced to support this new
style (j ns: annot at i on-dri ven), and it is also possible to fully configure the infrastructure using
Java config (@nabl eJns, JnsLi st ener Cont ai ner Fact ory). It is also possible to register listener
endpoints programmatically using JnsLi st ener Conf i gurer.

Spring 4.1 also aligns its JMS support to allow you to benefit from the spri ng- messagi ng abstraction
introduced in 4.0, that is:

» Message listener endpoints can have a more flexible signature and benefit from standard messaging
annotations such as @&ayl oad, @leader, @eader s, and @endTo. It is also possible to use a
standard Message in lieu of j avax. j ns. Message as method argument.

* A new JnsMessageQper at i ons interface is available and permits JnsTenpl at e like operations
using the Message abstraction.

Finally, Spring 4.1 provides additional miscellaneous improvements:
» Synchronous request-reply operations support in Jms Tenpl at e
* Listener priority can be specified per <j ms: | i st ener/ > element

» Recovery options for the message listener container are configurable using a BackO f
implementation

« JMS 2.0 shared consumers are supported
4.2 Caching Improvements

Spring 4.1 supports JCache (JSR-107) annotations using Spring’s existing cache configuration and
infrastructure abstraction; no changes are required to use the standard annotations.

Spring 4.1 also improves its own caching abstraction significantly:

» Caches can be resolved at runtime using a CacheResol ver. As a result the val ue argument
defining the cache name(s) to use is no longer mandatory.

» More operation-level customizations: cache resolver, cache manager, key generator

* Anew @acheConf i g class-level annotation allows common settings to be shared at the class level
without enabling any cache operation.

» Better exception handling of cached methods using CacheEr r or Handl er

Spring 4.1 also has a breaking change in the Cachel nt er f ace as a new put | f Absent method has
been added.

4.1.6.RELEASE Spring Framework 22

http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/jms/annotation/JmsListener.html
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/jms/annotation/EnableJms.html
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/jms/annotation/JmsListenerConfigurer.html
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/jms/core/JmsMessageOperations.html
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/util/backoff/BackOff.html

Spring Framework Reference Documentation

4.3 Web Improvements

* The existing support for resource handling based on the ResourceHttpRequest Handl er
has been expanded with new abstractions Resour ceResol ver, Resour ceTr ansf or mer, and
Resour ceUr | Provi der. A number of built-in implementations provide support for versioned
resource URLs (for effective HTTP caching), locating gzipped resources, generating an HTML 5
AppCache manifests, and more. See the section called “Serving of Resources”.

« JDK 1.8'sjava. util. Optional is now supported for @Request Par am @Request Header, and
@t ri xVari abl e controller method arguments.

e Listenabl eFuture is supported as a return value alternative to DeferredResult
where an underlying service (or perhaps a call to AsyncRest Tenpl at e) already returns
Li st enabl eFut ure.

e @bdel Attri but e methods are now invoked in an order that respects inter-dependencies. See
SPR-6299.

» Jackson's @sonVi ew is supported directly on @esponseBody and ResponseEnti ty controller
methods for serializing different amounts of detail for the same POJO (e.g. summary vs. detail page).
This is also supported with View-based rendering by adding the serialization view type as a model
attribute under a special key. See the section called “Jackson Serialization View Support” for details.

» JSONP is now supported with Jackson. See the section called “Jackson JSONP Support”.

» A new lifecycle option is available for intercepting @ResponseBody and ResponseEnt i t y methods
just after the controller method returns and before the response is written. To take advantage declare
an @ontrol | er Advi ce bean that implements ResponseBodyAdvi ce. The built-in support for
@sonVi ew and JSONP take advantage of this. See the section called “Intercepting requests with
a HandlerInterceptor”.

» There are three new Ht t pMessageConvert er options:
» Gson — lighter footprint than Jackson; has already been in use in Spring Android.

« Google Protocol Buffers — efficient and effective as an inter-service communication data protocol
within an enterprise but can also be exposed as JSON and XML for browsers.

« Jackson based XML serialization is now supported through the jackson-dataformat-xml extension.
When using @nabl eWebMrc or <mvc: annot at i on-dri ven/ >, this is used by default instead
of JAXB2 if j ackson- dat af or mat - xn is in the classpath.

 Views such as JSPs can now build links to controllers by referring to controller mappings by name. A
default name is assigned to every @Request Mappi ng. For example FooCont r ol | er with method
handl eFoo is named "FC#handleFoo". The naming strategy is pluggable. It is also possible to name
an @Request Mappi ng explicitly through its name attribute. Anew nvcUr | function in the Spring JSP
tag library makes this easy to use in JSP pages. See the section called “Building URIs to Controllers
and methods from views”.

» ResponseEnti ty provides a builder-style API to guide controller methods towards the preparation
of server-side responses, e.g. ResponseEntity. ok().

* RequestEntity is a new type that provides a builder-style API to guide client-side REST code
towards the preparation of HTTP requests.

4.1.6.RELEASE Spring Framework 23

https://jira.spring.io/browse/SPR-6299
https://github.com/FasterXML/jackson-dataformat-xml

Spring Framework Reference Documentation

e MVC Java config and XML namespace:

< View resolvers can now be configured including support for content negotiation, see the section
called “View Resolvers”.

< View controllers now have built-in support for redirects and for setting the response status. An
application can use this to configure redirect URLs, render 404 responses with a view, send "no
content" responses, etc. Some use cases are listed here.

« Path matching customizations are frequently used and now built-in. See the section called “Path
Matching”.

» Groovy markup template support (based on Groovy 2.3). See the Gr oovyMar kupConf i gur er and
respecitve Vi ewResol ver and ‘View’' implementations.

4.4 WebSocket STOMP Messaging Improvements

» SockJS (Java) client-side support. See SockJsC i ent and classes in same package.

* New application context events Sessi onSubscri beEvent and Sessi onUnsubscri beEvent
published when STOMP clients subscribe and unsubscribe.

* New "websocket" scope. See the section called “WebSocket Scope”.
* @endToUser can target only a single session and does not require an authenticated user.

* @kssageMappi ng methods can use dot "." instead of slash "/" as path separator. See SPR-11660.

« STOMP/WebSocket monitoring info collected and logged. See the section called “Runtime
Monitoring”.

« Significantly optimized and improved logging that should remain very readable and compact even at
DEBUG level.

» Optimized message creation including support for temporary message mutability and avoiding
automatic message id and timestamp creation. See Javadoc of MessageHeader Accessor.

» Close STOMP/WebSocket connections that have no activity within 60 seconds after the WebSocket
session is established. See SPR-11884.

4.5 Testing Improvements

» Groovy scripts can now be used to configure the Appl i cati onCont ext loaded for integration tests
in the TestContext framework.

< See the section called “Context configuration with Groovy scripts” for details.

» Test-managed transactions can now be programmatically started and ended within transactional test
methods via the new Test Tr ansact i on API.

« See the section called “Programmatic transaction management” for detalils.

* SQL script execution can now be configured declaratively via the new @ql and @qgl Confi g
annotations on a per-class or per-method basis.

4.1.6.RELEASE Spring Framework 24

https://jira.spring.io/browse/SPR-11543?focusedCommentId=100308&page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel#comment-100308
http://groovy-lang.org/docs/groovy-2.3.6/html/documentation/markup-template-engine.html
https://jira.spring.io/browse/SPR-11660
https://jira.spring.io/browse/SPR-11884

Spring Framework Reference Documentation

« See the section called “Executing SQL scripts” for details.

» Test property sources which automatically override system and application property sources can be
configured via the new @est Pr opert ySour ce annotation.

» See the section called “Context configuration with test property sources” for details.

» Default Test Execut i onLi st ener s can now be automatically discovered.
» See the section called “Automatic discovery of default TestExecutionListeners” for details.

» Custom Test Execut i onLi st ener s can now be automatically merged with the default listeners.
» See the section called “Merging TestExecutionListeners” for details.

» The documentation for transactional testing support in the TestContext framework has been improved
with more thorough explanations and additional examples.

» See the section called “Transaction management” for details.

» Various improvements to MockSer vl et Cont ext , MockHt t pSer vl et Request , and other Servlet
APl mocks.

e Assert Thr ows has been refactored to support Thr owabl e instead of Except i on.

 In Spring MVC Test, JSON responses can be asserted with JSON Assert as an extra option to using
JSONPath much like it has been possible to do for XML with XMLUnit.

* MockMvcBui | der recipes can now be created with the help of MockMrcConf i gur er. This was
added to make it easy to apply Spring Security setup but can be used to encapsulate common setup
for any 3rd party framework or within a project.

» MockRest Ser vi ceSer ver now supports the AsyncRest Tenpl at e for client-side testing.

4.1.6.RELEASE Spring Framework 25

https://github.com/skyscreamer/JSONassert

Part Ill. Core Technologies

This part of the reference documentation covers all of those technologies that are absolutely integral
to the Spring Framework.

Foremost amongst these is the Spring Framework’s Inversion of Control (I1oC) container. A thorough
treatment of the Spring Framework’s 10C container is closely followed by comprehensive coverage of
Spring’s Aspect-Oriented Programming (AOP) technologies. The Spring Framework has its own AOP
framework, which is conceptually easy to understand, and which successfully addresses the 80% sweet
spot of AOP requirements in Java enterprise programming.

Coverage of Spring’s integration with AspectJ (currently the richest - in terms of features - and certainly
most mature AOP implementation in the Java enterprise space) is also provided.

Finally, the adoption of the test-driven-development (TDD) approach to software development is
certainly advocated by the Spring team, and so coverage of Spring’s support for integration testing is
covered (alongside best practices for unit testing). The Spring team has found that the correct use of
loC certainly does make both unit and integration testing easier (in that the presence of setter methods
and appropriate constructors on classes makes them easier to wire together in a test without having
to set up service locator registries and suchlike)... the chapter dedicated solely to testing will hopefully
convince you of this as well.

» Chapter 5, The IoC container

» Chapter 6, Resources

» Chapter 7, Validation, Data Binding, and Type Conversion
» Chapter 8, Spring Expression Language (SpEL)

» Chapter 9, Aspect Oriented Programming with Spring

» Chapter 10, Spring AOP APIs

» Chapter 11, Testing

Spring Framework Reference Documentation

5. The loC container

5.1 Introduction to the Spring lIoC container and beans

This chapter covers the Spring Framework implementation of the Inversion of Control (IoC) ! principle.
loC is also known as dependency injection (DI). It is a process whereby objects define their
dependencies, that is, the other objects they work with, only through constructor arguments, arguments
to a factory method, or properties that are set on the object instance after it is constructed or returned
from a factory method. The container then injects those dependencies when it creates the bean. This
process is fundamentally the inverse, hence the name Inversion of Control (IoC), of the bean itself
controlling the instantiation or location of its dependencies by using direct construction of classes, or a
mechanism such as the Service Locator pattern.

The org. spri ngframewor k. beans and or g. spri ngf ramewor k. cont ext packages are the
basis for Spring Framework’s 10C container. The BeanFact ory interface provides an advanced
configuration mechanism capable of managing any type of object. Appl i cati onCont ext is a sub-
interface of BeanFact ory. It adds easier integration with Spring’'s AOP features; message resource
handling (for use in internationalization), event publication; and application-layer specific contexts such
as the WebAppl i cat i onCont ext for use in web applications.

In short, the BeanFact ory provides the configuration framework and basic functionality, and the
Appl i cati onCont ext adds more enterprise-specific functionality. The Appl i cati onCont ext is
a complete superset of the BeanFact ory, and is used exclusively in this chapter in descriptions
of Spring’'s l1oC container. For more information on using the BeanFactory instead of the
Appl i cati onCont ext, referto Section 5.16, “The BeanFactory”.

In Spring, the objects that form the backbone of your application and that are managed by the Spring 1oC
container are called beans. A bean is an object that is instantiated, assembled, and otherwise managed
by a Spring loC container. Otherwise, a bean is simply one of many objects in your application. Beans,
and the dependencies among them, are reflected in the configuration metadata used by a container.

5.2 Container overview

The interface or g. spri ngf r amewor k. cont ext . Appl i cat i onCont ext represents the Spring loC
container and is responsible for instantiating, configuring, and assembling the aforementioned beans.
The container gets its instructions on what objects to instantiate, configure, and assemble by reading
configuration metadata. The configuration metadata is represented in XML, Java annotations, or Java
code. It allows you to express the objects that compose your application and the rich interdependencies
between such objects.

Several implementations of the ApplicationContext interface are supplied out-of-the-
box with Spring. In standalone applications it is common to create an instance of
Cl assPat hXm Appl i cati onCont ext or Fi | eSyst emXm Appl i cat i onCont ext . While XML has
been the traditional format for defining configuration metadata you can instruct the container to use
Java annotations or code as the metadata format by providing a small amount of XML configuration to
declaratively enable support for these additional metadata formats.

In most application scenarios, explicit user code is not required to instantiate one or more instances
of a Spring 1oC container. For example, in a web application scenario, a simple eight (or so) lines

'see Background

4.1.6.RELEASE Spring Framework 27

http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/beans/factory/BeanFactory.html
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/context/ApplicationContext.html
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/context/support/ClassPathXmlApplicationContext.html
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/context/support/FileSystemXmlApplicationContext.html

Spring Framework Reference Documentation

of boilerplate web descriptor XML in the web. xmi file of the application will typically suffice (see the
section called “Convenient ApplicationContext instantiation for web applications”). If you are using the
Spring Tool Suite Eclipse-powered development environment this boilerplate configuration can be easily
created with few mouse clicks or keystrokes.

The following diagram is a high-level view of how Spring works. Your application classes are combined
with configuration metadata so that after the Appl i cat i onCont ext is created and initialized, you have
a fully configured and executable system or application.

Your Business Objects (FOJOs)

The Spri
Configuration antapirrwlgrg

Metadata

figur

-REld;%nr Use _

Figure 5.1. The Spring loC container
Configuration metadata

As the preceding diagram shows, the Spring loC container consumes a form of configuration metadata;
this configuration metadata represents how you as an application developer tell the Spring container to
instantiate, configure, and assemble the objects in your application.

Configuration metadata is traditionally supplied in a simple and intuitive XML format, which is what most
of this chapter uses to convey key concepts and features of the Spring loC container.

Note

XML-based metadata is not the only allowed form of configuration metadata. The Spring 10C
container itself is totally decoupled from the format in which this configuration metadata is
actually written. These days many developers choose Java-based configuration for their Spring
applications.

For information about using other forms of metadata with the Spring container, see:

» Annotation-based configuration: Spring 2.5 introduced support for annotation-based configuration
metadata.

» Java-based configuration: Starting with Spring 3.0, many features provided by the Spring JavaConfig
project became part of the core Spring Framework. Thus you can define beans external to your
application classes by using Java rather than XML files. To use these new features, see the
@confi gurati on, @ean, @ nport and @ependsOn annotations.

Spring configuration consists of at least one and typically more than one bean definition that the
container must manage. XML-based configuration metadata shows these beans configured as <bean/
> elements inside a top-level <beans/ > element. Java configuration typically uses @ean annotated
methods within a @onf i gur at i on class.

4.1.6.RELEASE Spring Framework 28

https://spring.io/tools/sts

Spring Framework Reference Documentation

These bean definitions correspond to the actual objects that make up your application. Typically you
define service layer objects, data access objects (DAOS), presentation objects such as Struts Act i on
instances, infrastructure objects such as Hibernate Sessi onFact ori es, JMS Queues, and so forth.
Typically one does not configure fine-grained domain objects in the container, because it is usually the
responsibility of DAOs and business logic to create and load domain objects. However, you can use
Spring’s integration with AspectJ to configure objects that have been created outside the control of an
loC container. See Using AspectJ to dependency-inject domain objects with Spring.

The following example shows the basic structure of XML-based configuration metadata:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://ww. spri ngframewor k. or g/ schema/ beans
ht t p: // www. spri ngf ramewor k. or g/ schenma/ beans/ spri ng- beans. xsd" >

<bean id="..." class="...">

<l'-- collaborators and configuration for this bean go here -->
</ bean>
<bean id="..." class="...">

<l-- collaborators and configuration for this bean go here -->
</ bean>

<I-- nore bean definitions go here -->

</ beans>

The i d attribute is a string that you use to identify the individual bean definition. The cl ass attribute
defines the type of the bean and uses the fully qualified classname. The value of the id attribute refers
to collaborating objects. The XML for referring to collaborating objects is not shown in this example; see
Dependencies for more information.

Instantiating a container

Instantiating a Spring loC container is straightforward. The location path or paths supplied to an
Appl i cati onCont ext constructor are actually resource strings that allow the container to load
configuration metadata from a variety of external resources such as the local file system, from the Java
CLASSPATH, and so on.

Appl i cati onCont ext context =
new Cl assPat hXm Appl i cati onContext (new String[] {"services.xm", "daos.xm "});

Note

After you learn about Spring’s IoC container, you may want to know more about Spring's
Resour ce abstraction, as described in Chapter 6, Resources, which provides a convenient
mechanism for reading an InputStream from locations defined in a URI syntax. In particular,
Resour ce paths are used to construct applications contexts as described in Section 6.7,
“Application contexts and Resource paths”.

The following example shows the service layer objects (ser vi ces. xm) configuration file:

4.1.6.RELEASE Spring Framework 29

Spring Framework Reference Documentation

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://wwm. spri ngframewor k. or g/ schena/ beans
http: // wwv. spri ngfranewor k. or g/ schena/ beans/ spri ng- beans. xsd" >

<l-- services -->
<bean id="petStore" class="org.springframework.sanpl es.] petstore.services. PetStoreServicel npl">

<property nanme="account Dao" ref="accountDao"/>
<property name="itenDao" ref="itenDao"/>

<!-- additional collaborators and configuration for this bean go here -->
</ bean>
<!-- nore bean definitions for services go here -->
</ beans>

The following example shows the data access objects daos. xm file:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://wwmw. spri ngframewor k. or g/ schena/ beans
http://ww. spri ngfranewor k. or g/ schena/ beans/ spri ng- beans. xsd" >

<bean id="account Dao"

cl ass="org. springfranmewor k. sanpl es. j pet st or e. dao.] pa. JpaAccount Dao" >

<!-- additional collaborators and configuration for this bean go here -->
</ bean>

<bean id="itenDao" class="org.springfranmework. sanpl es. j petstore. dao.jpa.Jpal tenDao">

<l-- additional collaborators and configuration for this bean go here -->
</ bean>
<I-- nore bean definitions for data access objects go here -->
</ beans>

In the preceding example, the service layer consists of the class Pet St or eSer vi cel npl , and two data
access objects of the type JpaAccount Dao and Jpal t enDao (based on the JPA Object/Relational
mapping standard). The property nane element refers to the name of the JavaBean property,
and the r ef element refers to the name of another bean definition. This linkage between i d and
ref elements expresses the dependency between collaborating objects. For details of configuring an
object’s dependencies, see Dependencies.

Composing XML-based configuration metadata

It can be useful to have bean definitions span multiple XML files. Often each individual XML configuration
file represents a logical layer or module in your architecture.

You can use the application context constructor to load bean definitions from all these XML fragments.
This constructor takes multiple Resour ce locations, as was shown in the previous section. Alternatively,
use one or more occurrences of the <i nport /> element to load bean definitions from another file or
files. For example:

<beans>
<i nport resource="services.xm"/>
<i nport resource="resources/ nessageSource. xm "/ >
<inport resource="/resources/theneSource. xm"/>

<bean id="beanl" class="..."/>
<bean id="bean2" class="..."/>
</ beans>

4.1.6.RELEASE Spring Framework 30

Spring Framework Reference Documentation

In the preceding example, external bean definitions are loaded from three files: servi ces. xm ,
messageSour ce. xm , and t hemeSour ce. xnl . All location paths are relative to the definition file
doing the importing, so ser vi ces. xrm must be in the same directory or classpath location as the file
doing the importing, while messageSour ce. xm and t henmeSour ce. xnl must be in a r esour ces
location below the location of the importing file. As you can see, a leading slash is ignored, but given
that these paths are relative, it is better form not to use the slash at all. The contents of the files being
imported, including the top level <beans/ > element, must be valid XML bean definitions according to
the Spring Schema.

Note

It is possible, but not recommended, to reference files in parent directories using a relative
".I" path. Doing so creates a dependency on a file that is outside the current application. In
particular, this reference is not recommended for "classpath:" URLs (for example, "classpath:../
services.xml"), where the runtime resolution process chooses the "nearest" classpath root and
then looks into its parent directory. Classpath configuration changes may lead to the choice of a
different, incorrect directory.

You can always use fully qualified resource locations instead of relative paths: for example, "file:C:/
config/services.xml" or "classpath:/config/services.xml". However, be aware that you are coupling
your application’s configuration to specific absolute locations. It is generally preferable to keep an
indirection for such absolute locations, for example, through "${...}" placeholders that are resolved
against JVM system properties at runtime.

Using the container

The Appl i cat i onCont ext is the interface for an advanced factory capable of maintaining a registry
of different beans and their dependencies. Using the method T get Bean(Stri ng nanme, O ass<T>
requi redType) you can retrieve instances of your beans.

The Appl i cat i onCont ext enables you to read bean definitions and access them as follows:

/| create and configure beans
Appl i cati onCont ext context =
new C assPat hXm Appl i cati onCont ext (new String[] {"services.xm ", "daos.xm "});

/'l retrieve configured instance
Pet St oreServi ce service = context.getBean("petStore", PetStoreService.class);

/] use configured instance
Li st<String> userlList = service.getUsernaneList();

You use get Bean() to retrieve instances of your beans. The Appl i cati onCont ext interface has a
few other methods for retrieving beans, but ideally your application code should never use them. Indeed,
your application code should have no calls to the get Bean() method at all, and thus no dependency
on Spring APIs at all. For example, Spring’s integration with web frameworks provides for dependency
injection for various web framework classes such as controllers and JSF-managed beans.

5.3 Bean overview

A Spring loC container manages one or more beans. These beans are created with the configuration
metadata that you supply to the container, for example, in the form of XML <bean/ > definitions.

Within the container itself, these bean definitions are represented as BeanDef i ni t i on objects, which
contain (among other information) the following metadata:

4.1.6.RELEASE Spring Framework 31

Spring Framework Reference Documentation

» A package-qualified class name: typically the actual implementation class of the bean being defined.

» Bean behavioral configuration elements, which state how the bean should behave in the container
(scope, lifecycle callbacks, and so forth).

» References to other beans that are needed for the bean to do its work; these references are also
called collaborators or dependencies.

» Other configuration settings to set in the newly created object, for example, the number of connections
to use in a bean that manages a connection pool, or the size limit of the pool.

This metadata translates to a set of properties that make up each bean definition.

Table 5.1. The bean definition

Property Explained in...

class the section called “Instantiating beans”
name the section called “Naming beans”

scope Section 5.5, “Bean scopes”

constructor arguments the section called “Dependency injection”
properties the section called “Dependency injection”
autowiring mode the section called “Autowiring collaborators”
lazy-initialization mode the section called “Lazy-initialized beans”
initialization method the section called “Initialization callbacks”
destruction method the section called “Destruction callbacks”

In addition to bean definitions that contain information on how to create a specific bean, the
Appl i cati onCont ext implementations also permit the registration of existing objects that are
created outside the container, by users. This is done by accessing the ApplicationContext's
BeanFactory via the method get BeanFact ory() which returns the BeanFactory implementation
Def aul t Li st abl eBeanFactory. Def aul t Li st abl eBeanFact ory supports this registration
through the methods r egi ster Si ngl eton(..) and regi st er BeanDefi nition(..). However,
typical applications work solely with beans defined through metadata bean definitions.

Naming beans

Every bean has one or more identifiers. These identifiers must be unique within the container that hosts
the bean. A bean usually has only one identifier, but if it requires more than one, the extra ones can
be considered aliases.

In XML-based configuration metadata, you use the i d and/or nanme attributes to specify the bean
identifier(s). The i d attribute allows you to specify exactly one id. Conventionally these names are
alphanumeric (myBean, fooService, etc.), but may contain special characters as well. If you want to
introduce other aliases to the bean, you can also specify them in the nane attribute, separated by a
comma (,), semicolon (;), or white space. As a historical note, in versions prior to Spring 3.1, thei d
attribute was defined as an xsd: | Dtype, which constrained possible characters. As of 3.1, it is defined
as an xsd: stri ng type. Note that bean i d uniqueness is still enforced by the container, though no
longer by XML parsers.

4.1.6.RELEASE Spring Framework 32

Spring Framework Reference Documentation

You are not required to supply a name or id for a bean. If no name or id is supplied explicitly, the container
generates a unique name for that bean. However, if you want to refer to that bean by name, through the
use of the r ef element or Service Locator style lookup, you must provide a name. Motivations for not
supplying a name are related to using inner beans and autowiring collaborators.

Bean Naming Conventions

The convention is to use the standard Java convention for instance field names when naming
beans. That is, bean names start with a lowercase letter, and are camel-cased from then on.
Examples of such names would be (without quotes) ' account Manager' ,' account Servi ce',
‘userDao',' | ogi nController',and so forth.

Naming beans consistently makes your configuration easier to read and understand, and if you
are using Spring AOP it helps a lot when applying advice to a set of beans related by name.

Aliasing a bean outside the bean definition

In a bean definition itself, you can supply more than one name for the bean, by using a combination
of up to one name specified by the i d attribute, and any number of other names in the nane attribute.
These names can be equivalent aliases to the same bean, and are useful for some situations, such as
allowing each component in an application to refer to a common dependency by using a bean name
that is specific to that component itself.

Specifying all aliases where the bean is actually defined is not always adequate, however. It is
sometimes desirable to introduce an alias for a bean that is defined elsewhere. This is commonly the
case in large systems where configuration is split amongst each subsystem, each subsystem having its
own set of object definitions. In XML-based configuration metadata, you can use the <al i as/ > element
to accomplish this.

<al i as nanme="fronmNane" alias="toNanme"/>

In this case, a bean in the same container which is named f r onName, may also, after the use of this
alias definition, be referred to as t oNane.

For example, the configuration metadata for subsystem A may refer to a DataSource via the name
subsyst emA- dat aSour ce. The configuration metadata for subsystem B may refer to a DataSource
via the name subsyst enB- dat aSour ce. When composing the main application that uses both these
subsystems the main application refers to the DataSource via the name ny App- dat aSour ce. To have
all three names refer to the same object you add to the MyApp configuration metadata the following
aliases definitions:

<al i as name="subsyst emA- dat aSour ce" al i as="subsyst enB- dat aSour ce"/ >
<al i as name="subsyst emA- dat aSour ce" al i as="nyApp- dat aSour ce" />

Now each component and the main application can refer to the dataSource through a name that is
unigue and guaranteed not to clash with any other definition (effectively creating a namespace), yet
they refer to the same bean.

Java-configuration

If you are using Java-configuration, the @ean annotation can be used to provide aliases see the
section called “Using the @Bean annotation” for details.

4.1.6.RELEASE Spring Framework 33

Spring Framework Reference Documentation

Instantiating beans

A bean definition essentially is a recipe for creating one or more objects. The container looks at the
recipe for a named bean when asked, and uses the configuration metadata encapsulated by that bean
definition to create (or acquire) an actual object.

If you use XML-based configuration metadata, you specify the type (or class) of object that is to be
instantiated in the cl ass attribute of the <bean/ > element. This cl ass attribute, which internally is a
Cl ass property onaBeanDef i ni t i on instance, is usually mandatory. (For exceptions, see the section
called “Instantiation using an instance factory method” and Section 5.7, “Bean definition inheritance”.)
You use the O ass property in one of two ways:

» Typically, to specify the bean class to be constructed in the case where the container itself directly
creates the bean by calling its constructor reflectively, somewhat equivalent to Java code using the
new operator.

» To specify the actual class containing the st at i ¢ factory method that will be invoked to create the
object, in the less common case where the container invokes a st at i ¢ factory method on a class
to create the bean. The object type returned from the invocation of the st at i ¢ factory method may
be the same class or another class entirely.

Inner class names. If you want to configure a bean definition for a st at i ¢ nested class, you
have to use the binary name of the inner class.

For example, if you have a class called Foo in the com exanpl e package, and this Foo class
has a st ati ¢ inner class called Bar, the value of the ' cl ass' attribute on a bean definition
would be...

com exanpl e. Foo$Bar

Notice the use of the $ character in the name to separate the inner class name from the outer
class name.

Instantiation with a constructor

When you create a bean by the constructor approach, all normal classes are usable by and compatible
with Spring. That is, the class being developed does not need to implement any specific interfaces or
to be coded in a specific fashion. Simply specifying the bean class should suffice. However, depending
on what type of 1oC you use for that specific bean, you may need a default (empty) constructor.

The Spring 10C container can manage virtually any class you want it to manage; it is not limited to
managing true JavaBeans. Most Spring users prefer actual JavaBeans with only a default (no-argument)
constructor and appropriate setters and getters modeled after the properties in the container. You can
also have more exotic non-bean-style classes in your container. If, for example, you need to use a legacy
connection pool that absolutely does not adhere to the JavaBean specification, Spring can manage it
as well.

With XML-based configuration metadata you can specify your bean class as follows:

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean"/ >

<bean nane="anot her Exanpl e" cl ass="exanpl es. Exanpl eBeanTwo" / >

4.1.6.RELEASE Spring Framework 34

Spring Framework Reference Documentation

For details about the mechanism for supplying arguments to the constructor (if required) and setting
object instance properties after the object is constructed, see Injecting Dependencies.

Instantiation with a static factory method

When defining a bean that you create with a static factory method, you use the cl ass attribute to specify
the class containing the st at i ¢ factory method and an attribute named f act or y- net hod to specify
the name of the factory method itself. You should be able to call this method (with optional arguments as
described later) and return a live object, which subsequently is treated as if it had been created through
a constructor. One use for such a bean definition is to call st at i ¢ factories in legacy code.

The following bean definition specifies that the bean will be created by calling a factory-method. The
definition does not specify the type (class) of the returned object, only the class containing the factory
method. In this example, the cr eat el nst ance() method must be a static method.

<bean id="client Service"
cl ass="exanpl es. C i ent Servi ce"
factory-net hod="cr eat el nst ance"/ >

public class COientService {
private static CientService clientService = new O ientService();
private dientService() {}

public static CientService createlnstance() {
return clientService;

}

For details about the mechanism for supplying (optional) arguments to the factory method and
setting object instance properties after the object is returned from the factory, see Dependencies and
configuration in detail.

Instantiation using an instance factory method

Similar to instantiation through a static factory method, instantiation with an instance factory method
invokes a non-static method of an existing bean from the container to create a new bean. To use this
mechanism, leave the cl ass attribute empty, and inthe f act or y- bean attribute, specify the name of a
bean in the current (or parent/ancestor) container that contains the instance method that is to be invoked
to create the object. Set the name of the factory method itself with the f act or y- met hod attribute.

<l-- the factory bean, which contains a nethod called createl nstance() -->
<bean id="servi ceLocator" cl ass="exanpl es. Def aul t Servi ceLocat or">

<l'-- inject any dependencies required by this |ocator bean -->
</ bean>

<l-- the bean to be created via the factory bean -->
<bean id="client Service"

factory-bean="servi ceLocat or"

factory-nmet hod="creat ed i ent Servi cel nstance"/ >

public class DefaultServiceLocator {

private static CientService clientService = new OientServicelnpl();
private Default ServiceLocator () {}

public CientService createC ientServicelnstance() {
return clientService;

}

One factory class can also hold more than one factory method as shown here:

4.1.6.RELEASE Spring Framework 35

Spring Framework Reference Documentation

<bean id="serviceLocator" cl ass="exanpl es. Def aul t Servi ceLocat or">
<l-- inject any dependencies required by this |ocator bean -->
</ bean>

<bean id="clientService"
factory-bean="servi ceLocator"
factory-net hod="creat ed i ent Servi cel nstance"/ >

<bean id="account Servi ce"
factory-bean="servi ceLocat or"
f act ory- met hod="cr eat eAccount Ser vi cel nst ance"/ >

public class DefaultServicelLocator {

private static CientService clientService = new dientServicelnpl();
private static Account Service account Servi ce = new Account Servi cel npl ();

private DefaultServiceLocator() {}

public CientService createC ientServicelnstance() {
return clientService;

}

publ i ¢ Account Servi ce createAccount Servi cel nstance() {
return account Servi ce;

}

This approach shows that the factory bean itself can be managed and configured through dependency
injection (D). See Dependencies and configuration in detail.

Note

In Spring documentation, factory bean refers to a bean that is configured in the Spring container
that will create objects through an instance or static factory method. By contrast, Fact or yBean
(notice the capitalization) refers to a Spring-specific Fact or yBean.

5.4 Dependencies

A typical enterprise application does not consist of a single object (or bean in the Spring parlance). Even
the simplest application has a few objects that work together to present what the end-user sees as a
coherent application. This next section explains how you go from defining a number of bean definitions
that stand alone to a fully realized application where objects collaborate to achieve a goal.

Dependency injection

Dependency injection (DI) is a process whereby objects define their dependencies, that is, the other
objects they work with, only through constructor arguments, arguments to a factory method, or properties
that are set on the object instance after it is constructed or returned from a factory method. The container
then injects those dependencies when it creates the bean. This process is fundamentally the inverse,
hence the name Inversion of Control (IoC), of the bean itself controlling the instantiation or location of
its dependencies on its own by using direct construction of classes, or the Service Locator pattern.

Code is cleaner with the DI principle and decoupling is more effective when objects are provided with
their dependencies. The object does not look up its dependencies, and does not know the location
or class of the dependencies. As such, your classes become easier to test, in particular when the
dependencies are on interfaces or abstract base classes, which allow for stub or mock implementations
to be used in unit tests.

4.1.6.RELEASE Spring Framework 36

Spring Framework Reference Documentation

DI exists in two major variants, Constructor-based dependency injection and Setter-based dependency
injection.

Constructor-based dependency injection

Constructor-based DI is accomplished by the container invoking a constructor with a number of
arguments, each representing a dependency. Calling a st at i ¢ factory method with specific arguments
to construct the bean is nearly equivalent, and this discussion treats arguments to a constructor and to
ast at i ¢ factory method similarly. The following example shows a class that can only be dependency-
injected with constructor injection. Notice that there is nothing special about this class, it is a POJO that
has no dependencies on container specific interfaces, base classes or annotations.

public class SinpleMvielLister {

/1 the SinpleMvieLister has a dependency on a Movi eFi nder
private Mvi eFi nder novi eFi nder

/1 a constructor so that the Spring container can inject a MvieFinder
publi c Si npl eMovi eLi st er (Mvi eFi nder novi eFi nder) {
t hi s. novi eFi nder = novi eFi nder;

}

/'l business logic that actually uses the injected MvieFinder is omtted..

Constructor argument resolution

Constructor argument resolution matching occurs using the argument’s type. If no potential ambiguity
exists in the constructor arguments of a bean definition, then the order in which the constructor
arguments are defined in a bean definition is the order in which those arguments are supplied to the
appropriate constructor when the bean is being instantiated. Consider the following class:

package X.y
public class Foo {

public Foo(Bar bar, Baz baz) {
/1

}

No potential ambiguity exists, assuming that Bar and Baz classes are not related by inheritance. Thus
the following configuration works fine, and you do not need to specify the constructor argument indexes
and/or types explicitly in the <const r uct or - ar g/ > element.

<beans>
<bean id="foo0" class="x.y.Foo">
<constructor-arg ref="bar"/>
<constructor-arg ref="baz"/>
</ bean>

<bean id="bar" class="x.y.Bar"/>

<bean id="baz" class="x.y.Baz"/>
</ beans>

When another bean is referenced, the type is known, and matching can occur (as was the case with
the preceding example). When a simple type is used, such as <val ue>t r ue</ val ue>, Spring cannot
determine the type of the value, and so cannot match by type without help. Consider the following class:

4.1.6.RELEASE Spring Framework 37

Spring Framework Reference Documentation

package exanpl es;

public class Exanpl eBean {

/1 Nunber of years to calculate the Utinate Answer
private int years;

/1 The Answer to Life, the Universe, and Everything
private String ultimateAnswer;

publ i c Exanpl eBean(int years, String ultinmateAnswer) {
this.years = years;
this.ultinmteAnswer = ultinateAnswer;

In the preceding scenario, the container can use type matching with simple types if you explicitly specify
the type of the constructor argument using the t ype attribute. For example:

<bean id="exanpl eBean" cl ass="exanpl es. Exanpl eBean" >
<constructor-arg type="int" val ue="7500000"/>
<constructor-arg type="java.l ang. String" val ue="42"/>
</ bean>

Use the i ndex attribute to specify explicitly the index of constructor arguments. For example:

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean" >
<constructor-arg i ndex="0" val ue="7500000"/>

<constructor-arg i ndex="1" val ue="42"/>
</ bean>

In addition to resolving the ambiguity of multiple simple values, specifying an index resolves ambiguity
where a constructor has two arguments of the same type. Note that the index is 0 based.

You can also use the constructor parameter name for value disambiguation:

<bean id="exanpl eBean" cl ass="exanpl es. Exanpl eBean" >
<constructor-arg nanme="years" val ue="7500000"/ >
<constructor-arg name="ul ti mat eAnswer" val ue="42"/>
</ bean>

Keep in mind that to make this work out of the box your code must be compiled with the debug flag
enabled so that Spring can look up the parameter name from the constructor. If you can’t compile your
code with debug flag (or don’t want to) you can use @ConstructorProperties JDK annotation to explicitly
name your constructor arguments. The sample class would then have to look as follows:

package exanpl es;

public class Exanpl eBean {
/1 Fields onitted
@onstructorProperties({"years", "ultinmteAnswer"})
publi c Exanpl eBean(int years, String ultimteAnswer) {

this.years = years;
this.ultinmteAnswer = ultinateAnswer;

4.1.6.RELEASE Spring Framework 38

http://download.oracle.com/javase/6/docs/api/java/beans/ConstructorProperties.html

Spring Framework Reference Documentation

Setter-based dependency injection

Setter-based DI is accomplished by the container calling setter methods on your beans after invoking a
no-argument constructor or no-argument st at i ¢ factory method to instantiate your bean.

The following example shows a class that can only be dependency-injected using pure setter injection.
This class is conventional Java. It is a POJO that has no dependencies on container specific interfaces,
base classes or annotations.

public class SinpleMvieLister {

/'l the SinpleMyvielister has a dependency on the Mvi eFi nder
private MovieFi nder novi eFi nder;

/1 a setter nethod so that the Spring container can inject a MvieFinder
public void set Mvi eFi nder (Mvi eFi nder novi eFi nder) {
this. novi eFi nder = novi eFi nder;

}

/'l business logic that actually uses the injected MvieFinder is omtted...

The Appl i cat i onCont ext supports constructor-based and setter-based DI for the beans it manages.
It also supports setter-based DI after some dependencies have already been injected through the
constructor approach. You configure the dependencies in the form of a BeanDefi ni ti on, which
you use in conjunction with Propert yEdi t or instances to convert properties from one format to
another. However, most Spring users do not work with these classes directly (i.e., programmatically) but
rather with XML bean definitions, annotated components (i.e., classes annotated with @onponent ,
@ont rol | er, etc.), or @ean methods in Java-based @onf i gur at i on classes. These sources are
then converted internally into instances of BeanDef i ni ti on and used to load an entire Spring 1oC
container instance.

Constructor-based or setter-based DI?

Since you can mix constructor-based and setter-based DI, it is a good rule of thumb to use
constructors for mandatory dependencies and setter methods or configuration methods for
optional dependencies. Note that use of the @Required annotation on a setter method can be
used to make the property a required dependency.

The Spring team generally advocates constructor injection as it enables one to implement
application components as immutable objects and to ensure that required dependencies are not
nul | . Furthermore constructor-injected components are always returned to client (calling) code
in a fully initialized state. As a side note, a large number of constructor arguments is a bad code
smell, implying that the class likely has too many responsibilities and should be refactored to better
address proper separation of concerns.

Setter injection should primarily only be used for optional dependencies that can be assigned
reasonable default values within the class. Otherwise, not-null checks must be performed
everywhere the code uses the dependency. One benefit of setter injection is that setter methods
make objects of that class amenable to reconfiguration or re-injection later. Management through
JMX MBeans is therefore a compelling use case for setter injection.

Use the DI style that makes the most sense for a particular class. Sometimes, when dealing with
third-party classes for which you do not have the source, the choice is made for you. For example,

4.1.6.RELEASE Spring Framework 39

Spring Framework Reference Documentation

if a third-party class does not expose any setter methods, then constructor injection may be the
only available form of DI.

Dependency resolution process
The container performs bean dependency resolution as follows:

* The Appl i cati onCont ext is created and initialized with configuration metadata that describes all
the beans. Configuration metadata can be specified via XML, Java code, or annotations.

» For each bean, its dependencies are expressed in the form of properties, constructor arguments, or
arguments to the static-factory method if you are using that instead of a normal constructor. These
dependencies are provided to the bean, when the bean is actually created.

» Each property or constructor argument is an actual definition of the value to set, or a reference to
another bean in the container.

» Each property or constructor argument which is a value is converted from its specified format to the
actual type of that property or constructor argument. By default Spring can convert a value supplied
in string format to all built-in types, such asi nt, | ong, Stri ng, bool ean, etc.

The Spring container validates the configuration of each bean as the container is created. However,
the bean properties themselves are not set until the bean is actually created. Beans that are singleton-
scoped and set to be pre-instantiated (the default) are created when the container is created. Scopes
are defined in Section 5.5, “Bean scopes”. Otherwise, the bean is created only when it is requested.
Creation of a bean potentially causes a graph of beans to be created, as the bean’s dependencies and
its dependencies' dependencies (and so on) are created and assigned. Note that resolution mismatches
among those dependencies may show up late, i.e. on first creation of the affected bean.

Circular dependencies

If you use predominantly constructor injection, it is possible to create an unresolvable circular
dependency scenario.

For example: Class A requires an instance of class B through constructor injection, and class B
requires an instance of class A through constructor injection. If you configure beans for classes
A and B to be injected into each other, the Spring 10C container detects this circular reference at
runtime, and throws a BeanCurrent | yl nCr eat i onExcepti on.

One possible solution is to edit the source code of some classes to be configured by setters
rather than constructors. Alternatively, avoid constructor injection and use setter injection only. In
other words, although it is not recommended, you can configure circular dependencies with setter
injection.

Unlike the typical case (with no circular dependencies), a circular dependency between bean A
and bean B forces one of the beans to be injected into the other prior to being fully initialized itself
(a classic chicken/egg scenario).

You can generally trust Spring to do the right thing. It detects configuration problems, such as references
to non-existent beans and circular dependencies, at container load-time. Spring sets properties and

4.1.6.RELEASE Spring Framework 40

Spring Framework Reference Documentation

resolves dependencies as late as possible, when the bean is actually created. This means that a Spring
container which has loaded correctly can later generate an exception when you request an object if there
is a problem creating that object or one of its dependencies. For example, the bean throws an exception
as a result of a missing or invalid property. This potentially delayed visibility of some configuration issues
is why Appl i cat i onCont ext implementations by default pre-instantiate singleton beans. At the cost
of some upfront time and memory to create these beans before they are actually needed, you discover
configuration issues when the Appl i cati onCont ext is created, not later. You can still override this
default behavior so that singleton beans will lazy-initialize, rather than be pre-instantiated.

If no circular dependencies exist, when one or more collaborating beans are being injected into a
dependent bean, each collaborating bean is totally configured prior to being injected into the dependent
bean. This means that if bean A has a dependency on bean B, the Spring loC container completely
configures bean B prior to invoking the setter method on bean A. In other words, the bean is instantiated
(if not a pre-instantiated singleton), its dependencies are set, and the relevant lifecycle methods (such
as a configured init method or the InitializingBean callback method) are invoked.

Examples of dependency injection

The following example uses XML-based configuration metadata for setter-based DI. A small part of a
Spring XML configuration file specifies some bean definitions:

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean" >
<l-- setter injection using the nested ref elenment -->
<property nanme="beanCOne">
<ref bean="anot her Exanpl eBean"/ >
</ property>

<l-- setter injection using the neater ref attribute -->
<property name="beanTwo" ref="yet Anot her Bean"/ >
<property name="integerProperty" val ue="1"/>

</ bean>

<bean i d="anot her Exanpl eBean" cl ass="exanpl es. Anot her Bean"/ >
<bean i d="yet Anot her Bean" cl ass="exanpl es. Yet Anot her Bean"/ >

public class Exanpl eBean {

private Anot her Bean beanOne;
private YetAnotherBean beanTwo;
private int i;

public void set BeanOne(Anot her Bean beanOne) {
this. beanOne = beanOne;

}

public voi d set BeanTwo(Yet Anot her Bean beanTwo) {
t his. beanTwo = beanTwo;

}

public void setlntegerProperty(int i) {
this.i =i;

}

In the preceding example, setters are declared to match against the properties specified in the XML file.
The following example uses constructor-based DI:

4.1.6.RELEASE Spring Framework 41

Spring Framework Reference Documentation

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean" >
<l-- constructor injection using the nested ref elenment -->
<constructor-arg>
<ref bean="anot her Exanpl eBean"/ >
</ constructor-arg>

<l-- constructor injection using the neater ref attribute -->
<constructor-arg ref="yet Anot her Bean"/ >

<constructor-arg type="int" value="1"/>
</ bean>

<bean i d="anot her Exanpl eBean" cl ass="exanpl es. Anot her Bean"/ >
<bean id="yet Anot her Bean" cl ass="exanpl es. Yet Anot her Bean"/ >

public class Exanpl eBean {

private AnotherBean beanOne;
private YetAnot her Bean beanTwo;
private int i;

publ i ¢ Exanpl eBean(
Anot her Bean anot her Bean, Yet Anot her Bean yet Anot herBean, int i) {
this. beanOne = anot her Bean;
t hi s. beanTwo = yet Anot her Bean;
this.i =1i;

The constructor arguments specified in the bean definition will be used as arguments to the constructor
of the Exanpl eBean.

Now consider a variant of this example, where instead of using a constructor, Spring is told to call a
st ati c factory method to return an instance of the object:

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean" factory-nethod="creat el nst ance">
<constructor-arg ref="anot her Exanpl eBean"/ >
<constructor-arg ref="yet Anot her Bean"/ >
<constructor-arg val ue="1"/>

</ bean>

<bean i d="anot her Exanpl eBean" cl ass="exanpl es. Anot her Bean"/ >
<bean i d="yet Anot her Bean" cl ass="exanpl es. Yet Anot her Bean"/ >

public class Exanpl eBean {

/'l a private constructor
private ExanpleBean(...) {

}

/1 a static factory nethod; the argunents to this nethod can be
/'l considered the dependenci es of the bean that is returned,
/'l regardl ess of how those argunents are actually used.
public static Exanpl eBean createl nstance (
Anot her Bean anot her Bean, Yet Anot her Bean yet Anot herBean, int i) {

Exanpl eBean eb = new Exanpl eBean (...);
/'l sone other operations...
return eb;

Arguments to the st at i ¢ factory method are supplied via <const r uct or - ar g/ > elements, exactly
the same as if a constructor had actually been used. The type of the class being returned by the factory

4.1.6.RELEASE Spring Framework 42

Spring Framework Reference Documentation

method does not have to be of the same type as the class that contains the st at i ¢ factory method,
although in this example it is. An instance (non-static) factory method would be used in an essentially
identical fashion (aside from the use of the f act or y- bean attribute instead of the cl ass attribute),
so details will not be discussed here.

Dependencies and configuration in detail

As mentioned in the previous section, you can define bean properties and constructor arguments as
references to other managed beans (collaborators), or as values defined inline. Spring’s XML-based
configuration metadata supports sub-element types within its <pr operty/ > and <construct or -
ar g/ > elements for this purpose.

Straight values (primitives, Strings, and so on)

The val ue attribute of the <pr operty/ > element specifies a property or constructor argument as a
human-readable string representation. Spring’s conversion service is used to convert these values from
a St ri ng to the actual type of the property or argument.

<bean i d="myDat aSour ce" cl ass="org. apache. commons. dbcp. Basi cDat aSour ce" destroy-nmet hod="cl ose">
<l-- results in a setDriverC assName(String) call -->
<property name="driverCl assNane" val ue="com nysql .jdbc. Driver"/>
<property name="url" val ue="j dbc: nysql://| ocal host: 3306/ nydb"/ >
<property nanme="usernane" val ue="root"/>
<property nanme="password" val ue="nasterkaoli"/>
</ bean>

The following example uses the p-namespace for even more succinct XML configuration.

<beans xm ns="http://ww. spri ngframework. org/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: p="http://ww. springfranmework. or g/ schema/ p"
xsi : schemaLocat i on="http://ww. spri ngfranework. or g/ schena/ beans
http://ww. springfranework. or g/ schema/ beans/ spri ng- beans. xsd" >

<bean id="nyDat aSource" class="org. apache. conmons. dbcp. Basi cDat aSour ce"
dest roy- net hod="cl ose"
p: driverd assNane="com nysql . j dbc. Dri ver"
p:url="jdbc: nysql://1ocal host: 3306/ nmydb"
p: user nane="r oot "
p: passwor d="nast er kaol i "/ >

</ beans>

The preceding XML is more succinct; however, typos are discovered at runtime rather than design time,
unless you use an IDE such as IntelliJ IDEA or the Spring Tool Suite (STS) that support automatic
property completion when you create bean definitions. Such IDE assistance is highly recommended.

You can also configure aj ava. uti | . Properti es instance as:

<bean i d="rmappi ngs"
cl ass="org. spri ngfranmewor k. beans. factory. confi g. PropertyPl acehol der Confi gurer">

<l-- typed as a java.util.Properties -->
<property name="properties">
<val ue>

jdbc.driver.classNanme=com nysql . j dbc. Dri ver
jdbc.url=jdbc: mysql ://1ocal host: 3306/ nydb
</ val ue>
</ property>
</ bean>

4.1.6.RELEASE Spring Framework 43

http://www.jetbrains.com/idea/
https://spring.io/tools/sts

Spring Framework Reference Documentation

The Spring container converts the text inside the <val ue/ > elementintoaj ava. util. Properties
instance by using the JavaBeans Pr oper t yEdi t or mechanism. This is a nice shortcut, and is one of
a few places where the Spring team do favor the use of the nested <val ue/ > element over the val ue
attribute style.

The idref element

Thei dr ef elementis simply an error-proof way to pass the id (string value - not a reference) of another
bean in the container to a <const r uct or - ar g/ > or <pr oper t y/ > element.

<bean id="theTargetBean" class="..."/>

<bean id="theCientBean" class="...">
<property nanme="t ar get Name" >
<i dref bean="t heTar get Bean" />
</ property>
</ bean>

The above bean definition snippet is exactly equivalent (at runtime) to the following snippet:

<bean id="theTargetBean" class="..." />
<bean id="client" class="...">

<property name="target Name" val ue="t heTar get Bean" />
</ bean>

The first form is preferable to the second, because using the i dr ef tag allows the container to validate at
deployment time that the referenced, named bean actually exists. In the second variation, no validation
is performed on the value that is passed to the t ar get Nanme property of the cl i ent bean. Typos are
only discovered (with most likely fatal results) when the cl i ent bean is actually instantiated. If the
cli ent bean is a prototype bean, this typo and the resulting exception may only be discovered long
after the container is deployed.

Note

The | ocal attribute on the i dr ef element is no longer supported in the 4.0 beans xsd since
it does not provide value over a regular bean reference anymore. Simply change your existing
i dref | ocal referencestoi dref bean when upgrading to the 4.0 schema.

A common place (at least in versions earlier than Spring 2.0) where the <i dr ef / > element brings value
is in the configuration of AOP interceptors in a Pr oxyFact or yBean bean definition. Using <i dr ef / >
elements when you specify the interceptor names prevents you from misspelling an interceptor id.

References to other beans (collaborators)

The ref element is the final element inside a <construct or-ar g/ > or <pr operty/ > definition
element. Here you set the value of the specified property of a bean to be a reference to another
bean (a collaborator) managed by the container. The referenced bean is a dependency of the bean
whose property will be set, and it is initialized on demand as needed before the property is set. (If
the collaborator is a singleton bean, it may be initialized already by the container.) All references are
ultimately a reference to another object. Scoping and validation depend on whether you specify the id/
name of the other object through the bean, | ocal , or par ent attributes.

Specifying the target bean through the bean attribute of the <r ef / > tag is the most general form, and
allows creation of a reference to any bean in the same container or parent container, regardless of

4.1.6.RELEASE Spring Framework 44

Spring Framework Reference Documentation

whether it is in the same XML file. The value of the bean attribute may be the same as the i d attribute
of the target bean, or as one of the values in the nane attribute of the target bean.

<ref bean="sonmeBean"/ >

Specifying the target bean through the par ent attribute creates a reference to a bean that is in a parent
container of the current container. The value of the par ent attribute may be the same as either the i d
attribute of the target bean, or one of the values in the nane attribute of the target bean, and the target
bean must be in a parent container of the current one. You use this bean reference variant mainly when
you have a hierarchy of containers and you want to wrap an existing bean in a parent container with a
proxy that will have the same name as the parent bean.

<l-- in the parent context -->

<bean id="account Servi ce" class="com foo. Si npl eAccount Servi ce">
<l-- insert dependencies as required as here -->

</ bean>

<l-- in the child (descendant) context -->

<bean id="account Service" <!-- bean nane is the sane as the parent bean -->
cl ass="org. spri ngfranmewor k. aop. f ramewor k. Pr oxyFact or yBean" >
<property name="target">

<ref parent="accountService"/> <!-- notice how we refer to the parent bean -->
</ property>
<l-- insert other configuration and dependencies as required here -->
</ bean>
Note

The | ocal attribute on the r ef element is no longer supported in the 4.0 beans xsd since it
does not provide value over a regular bean reference anymore. Simply change your existing r ef
| ocal referencestoref bean when upgrading to the 4.0 schema.

Inner beans

A <bean/ > elementinside the <pr operty/ > or <const r uct or - ar g/ > elements defines a so-called
inner bean.

<bean id="outer" class="...">
<l-- instead of using a reference to a target bean, sinply define the target bean inline -->
<property nanme="target">
<bean cl ass="com exanpl e. Person"> <!-- this is the inner bean -->

<property name="nanme" val ue="Fi ona Apple"/>
<property name="age" val ue="25"/>
</ bean>
</ property>
</ bean>

An inner bean definition does not require a defined id or name; the container ignores these values. It also
ignores the scope flag. Inner beans are always anonymous and they are always created with the outer
bean. It is not possible to inject inner beans into collaborating beans other than into the enclosing bean.

Collections

Inthe <li st/ >, <set/ >, <map/ >, and <pr ops/ > elements, you set the properties and arguments of
the Java Col | ecti on types Li st, Set, Map, and Properti es, respectively.

4.1.6.RELEASE Spring Framework 45

Spring Framework Reference Documentation

<bean i d="noreConpl exbj ect" cl ass="exanpl e. Conpl exhj ect" >

<l-- results in a set Adm nEmail s(java.util.Properties) call -->
<property name="adm nEmail s">
<pr ops>

<prop key="admi ni strator">admn ni strator @xanpl e. or g</ prop>
<prop key="support">support @xanpl e. org</ prop>
<prop key="devel opnent " >devel opnent @xanpl e. or g</ pr op>

</ pr ops>
</ property>
<I-- results in a setSoneList(java.util.List) call -->
<property name="soneList">

<list>

<val ue>a list element followed by a reference</val ue>
<ref bean="nyDat aSource" />

</list>
</ property>
<l-- results in a setSomeMap(java.util.Mp) call -->
<property name="someMap">

<map>

<entry key="an entry" val ue="just sone string"/>
<entry key ="a ref" val ue-ref="nyDat aSour ce"/ >

</ map>
</ property>
<l-- results in a setSoneSet(java.util.Set) call -->
<property name="soneSet">

<set >

<val ue>j ust some string</val ue>
<ref bean="nyDat aSource" />
</ set >
</ property>
</ bean>

The value of a map key or value, or a set value, can also again be any of the following elements:

bean | ref | idref | list | set | map | props | value | null

Collection merging

The Spring container also supports the merging of collections. An application developer can define a
parent-style <l i st/ >, <map/ >, <set/ > or <pr ops/ > element, and have child-style <l i st/ >, <map/
>, <set /> or <pr ops/ > elements inherit and override values from the parent collection. That is, the
child collection’s values are the result of merging the elements of the parent and child collections, with
the child’s collection elements overriding values specified in the parent collection.

This section on merging discusses the parent-child bean mechanism. Readers unfamiliar with parent
and child bean definitions may wish to read the relevant section before continuing.

The following example demonstrates collection merging:

4.1.6.RELEASE Spring Framework 46

Spring Framework Reference Documentation

<beans>
<bean id="parent" abstract="true" class="exanpl e. Conpl exChj ect">
<property nanme="adm nEnail s">
<props>
<prop key="admi ni strator">admn ni strator @xanpl e. com</ prop>
<prop key="support">support @xanpl e. comx/ prop>
</ pr ops>
</ property>
</ bean>
<bean id="child" parent="parent">
<property name="admi nEmail s">
<l-- the nerge is specified on the child collection definition -->
<props nerge="true">
<prop key="sal es">sal es@xanpl e. com</ pr op>
<prop key="support">support @xanpl e. co. uk</ prop>
</ props>
</ property>
</ bean>
<beans>

Notice the use of the mer ge=t r ue attribute on the <pr ops/ > element of the admi nEmai | s property
of the chi | d bean definition. When the chi | d bean is resolved and instantiated by the container, the
resulting instance has an adm nEmai | s Properti es collection that contains the result of the merging
of the child’s adm nEnai | s collection with the parent’s adni nEmai | s collection.

admi ni strat or=adm ni strat or @xanpl e. com
sal es=sal es@xanpl e. com
suppor t =suppor t @xanpl e. co. uk

The child Pr oper ti es collection’s value set inherits all property elements from the parent <pr ops/ >,
and the child’s value for the support value overrides the value in the parent collection.

This merging behavior applies similarly to the <l i st/ >, <map/ >, and <set / > collection types. In the
specific case of the <l i st/ > element, the semantics associated with the Li st collection type, that is,
the notion of an or der ed collection of values, is maintained; the parent’s values precede all of the child
list's values. In the case of the Map, Set , and Pr oper ti es collection types, no ordering exists. Hence
no ordering semantics are in effect for the collection types that underlie the associated Map, Set , and
Pr operti es implementation types that the container uses internally.

Limitations of collection merging

You cannot merge different collection types (such as a Map and a Li st), and if you do attempt to do
S0 an appropriate Except i on is thrown. The ner ge attribute must be specified on the lower, inherited,
child definition; specifying the mer ge attribute on a parent collection definition is redundant and will not
result in the desired merging.

Strongly-typed collection

With the introduction of generic types in Java 5, you can use strongly typed collections. That is, it is
possible to declare a Col | ect i on type such that it can only contain St ri ng elements (for example).
If you are using Spring to dependency-inject a strongly-typed Col | ecti on into a bean, you can
take advantage of Spring’'s type-conversion support such that the elements of your strongly-typed
Col | ect i on instances are converted to the appropriate type prior to being added to the Col | ecti on.

4.1.6.RELEASE Spring Framework 47

Spring Framework Reference Documentation

public class Foo {
private Map<String, Float> accounts
public void setAccounts(Mip<String, Float> accounts) {

this.accounts = accounts;

}

<beans>
<bean id="foo" class="x.y.Foo">
<property name="accounts">
<map>
<entry key="one" value="9.99"/>
<entry key="two" val ue="2.75"/>
<entry key="six" val ue="3.99"/>
</ map>
</ property>
</ bean>
</ beans>

When the account s property of the f 00 bean is prepared for injection, the generics information about
the element type of the strongly-typed Map<Stri ng, Fl oat > is available by reflection. Thus Spring’s
type conversion infrastructure recognizes the various value elements as being of type Fl oat , and the
string values 9. 99, 2. 75, and 3. 99 are converted into an actual Fl oat type.

Null and empty string values

Spring treats empty arguments for properties and the like as empty St ri ngs. The following XML-based
configuration metadata snippet sets the email property to the empty St r i ng value (™).

<bean cl ass="Exanpl eBean" >
<property nanme="enmil" val ue=""/>
</ bean>

The preceding example is equivalent to the following Java code:

exanpl eBean. set Emai | ("")

The <nul | / > element handles nul | values. For example:

<bean cl ass="Exanpl eBean" >
<property name="email">
<nul | />
</ property>
</ bean>

The above configuration is equivalent to the following Java code:

exanpl eBean. set Emai | (nul)

XML shortcut with the p-namespace

The p-namespace enables you to use the bean element’s attributes, instead of nested <pr operty/ >
elements, to describe your property values and/or collaborating beans.

Spring supports extensible configuration formats with namespaces, which are based on an XML Schema
definition. The beans configuration format discussed in this chapter is defined in an XML Schema
document. However, the p-namespace is not defined in an XSD file and exists only in the core of Spring.

The following example shows two XML snippets that resolve to the same result: The first uses standard
XML format and the second uses the p-namespace.

4.1.6.RELEASE Spring Framework 48

Spring Framework Reference Documentation

<beans xm ns="http://ww. springframework. or g/ schenma/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: p="http://ww. springframework. or g/ schema/ p"
xsi : schemaLocati on="http://wwm. spri ngframewor k. or g/ schena/ beans
http: // wwv. spri ngfranewor k. or g/ schena/ beans/ spri ng- beans. xsd" >

<bean nanme="cl assi ¢c" cl ass="com exanpl e. Exanpl eBean" >
<property name="email" val ue="foo@ar.coni'/>
</ bean>

<bean nane="p-namespace" class="com exanpl e. Exanpl eBean"
p: emai | =" f oo@ar . cont'/ >
</ beans>

The example shows an attribute in the p-namespace called email in the bean definition. This tells Spring
to include a property declaration. As previously mentioned, the p-namespace does not have a schema
definition, so you can set the name of the attribute to the property name.

This next example includes two more bean definitions that both have a reference to another bean:

<beans xm ns="http://ww. spri ngfranmework. or g/ schenma/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: p="http://ww. springfranmework. or g/ schema/ p"
xsi : schemalLocati on="http://ww. spri ngfranmework. or g/ schema/ beans
http://ww. spri ngfranewor k. or g/ schena/ beans/ spri ng- beans. xsd" >

<bean nanme="j ohn-cl assi ¢c" cl ass="com exanpl e. Person" >
<property name="nanme" val ue="John Doe"/>
<property name="spouse" ref="jane"/>

</ bean>

<bean nane="j ohn- noder n"
cl ass="com exanpl e. Per son"
p: nane="John Doe"
p: spouse-ref="jane"/>

<bean nane="j ane" cl ass="com exanpl e. Person" >
<property name="nanme" val ue="Jane Doe"/>
</ bean>
</ beans>

As you can see, this example includes not only a property value using the p-namespace, but also uses
a special format to declare property references. Whereas the first bean definition uses <property
nane="spouse" ref="jane"/> to create a reference from bean j ohn to bean j ane, the second
bean definition uses p: spouse-r ef ="j ane" as an attribute to do the exact same thing. In this case
spouse is the property name, whereas the - r ef part indicates that this is not a straight value but rather
a reference to another bean.

Note

The p-namespace is not as flexible as the standard XML format. For example, the format for
declaring property references clashes with properties that end in Ref , whereas the standard XML
format does not. We recommend that you choose your approach carefully and communicate this
to your team members, to avoid producing XML documents that use all three approaches at the
same time.

XML shortcut with the c-namespace

Similar to the the section called “XML shortcut with the p-namespace”, the c-namespace, newly
introduced in Spring 3.1, allows usage of inlined attributes for configuring the constructor arguments
rather then nested const r uct or - ar g elements.

4.1.6.RELEASE Spring Framework 49

Spring Framework Reference Documentation

Let's review the examples from the section called “Constructor-based dependency injection” with the
C: namespace:

<beans xm ns="http://ww. springframework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: c="http://ww. springfranmework. org/ schema/c"
xsi : schemaLocat i on="ht t p: // www. spri ngf ramewor k. or g/ schena/ beans
http://ww. springfranework. org/ schena/ beans/ spri ng- beans. xsd" >

<bean id="bar" class="x.y.Bar"/>
<bean id="baz" class="x.y.Baz"/>

<!-- traditional declaration -->

<bean id="foo" class="x.y.Foo">
<constructor-arg ref="bar"/>
<constructor-arg ref="baz"/>
<constructor-arg val ue="foo@ar. coni'/>

</ bean>

<l'-- c-nanmespace declaration -->

<bean id="fo00" class="x.y.Foo" c:bar-ref="bar" c:baz-ref="baz" c:emil ="foo@ar.conl'/>
</ beans>

The c: namespace uses the same conventions as the p: one (trailing - r ef for bean references) for
setting the constructor arguments by their names. And just as well, it needs to be declared even though
it is not defined in an XSD schema (but it exists inside the Spring core).

For the rare cases where the constructor argument names are not available (usually if the bytecode was
compiled without debugging information), one can use fallback to the argument indexes:

<l-- c-nanespace index declaration -->
<bean id="foo" class="x.y.Foo" c:_O-ref="bar" c:_1-ref="baz"/>

Note

Due to the XML grammar, the index notation requires the presence of the leading _ as XML
attribute names cannot start with a number (even though some IDE allow it).

In practice, the constructor resolution mechanism is quite efficient in matching arguments so unless one
really needs to, we recommend using the name notation through-out your configuration.

Compound property names

You can use compound or nested property names when you set bean properties, as long as all
components of the path except the final property name are not nul | . Consider the following bean
definition.

<bean id="foo0" class="foo.Bar">
<property name="fred. bob. sammy" val ue="123" />
</ bean>

The f oo beanhas af r ed property, which has a bob property, which has a samy property, and that final
sanmy property is being set to the value 123. In order for this to work, the f r ed property of f 00, and the
bob property of f r ed must not be nul | after the bean is constructed, or a Nul | Poi nt er Excepti on
is thrown.

4.1.6.RELEASE Spring Framework 50

Spring Framework Reference Documentation

Using depends-on

If a bean is a dependency of another that usually means that one bean is set as a property of another.
Typically you accomplish this with the <r ef / > element in XML-based configuration metadata. However,
sometimes dependencies between beans are less direct; for example, a static initializer in a class needs
to be triggered, such as database driver registration. The depends- on attribute can explicitly force one
or more beans to be initialized before the bean using this element is initialized. The following example
uses the depends- on attribute to express a dependency on a single bean:

<bean id="beanOne" cl ass="Exanpl eBean" depends-on="nanager"/>
<bean id="manager" cl ass="ManagerBean" />

To express a dependency on multiple beans, supply a list of bean names as the value of the depends-
on attribute, with commas, whitespace and semicolons, used as valid delimiters:

<bean id="beanOne" cl ass="Exanpl eBean" depends-on="manager, account Dao" >
<property name="manager" ref="manager" />
</ bean>

<bean id="manager" cl ass="ManagerBean" />
<bean id="account Dao" cl ass="x.y.]dbc.JdbcAccount Dao" />

Note

The depends- on attribute in the bean definition can specify both an initialization time dependency
and, in the case of singleton beans only, a corresponding destroy time dependency. Dependent
beans that define a depends- on relationship with a given bean are destroyed first, prior to the
given bean itself being destroyed. Thus depends- on can also control shutdown order.

Lazy-initialized beans

By default, Appl i cati onCont ext implementations eagerly create and configure all singleton beans
as part of the initialization process. Generally, this pre-instantiation is desirable, because errors in the
configuration or surrounding environment are discovered immediately, as opposed to hours or even
days later. When this behavior is not desirable, you can prevent pre-instantiation of a singleton bean by
marking the bean definition as lazy-initialized. A lazy-initialized bean tells the 10C container to create a
bean instance when it is first requested, rather than at startup.

In XML, this behavior is controlled by the | azy-i ni t attribute on the <bean/ > element; for example:

<bean id="lazy" class="com foo. Expensi veToCr eat eBean" |azy-init="true"/>
<bean nanme="not. | azy" cl ass="com f 00. Anot her Bean"/ >

When the preceding configuration is consumed by an Appl i cati onCont ext , the bean named | azy
is not eagerly pre-instantiated when the Appl i cat i onCont ext is starting up, whereas the not . | azy
bean is eagerly pre-instantiated.

However, when a lazy-initialized bean is a dependency of a singleton bean that is not lazy-initialized,
the Appl i cati onCont ext creates the lazy-initialized bean at startup, because it must satisfy the
singleton’s dependencies. The lazy-initialized bean is injected into a singleton bean elsewhere that is
not lazy-initialized.

You can also control lazy-initialization at the container level by using the def aul t - | azy-i ni t attribute
on the <beans/ > element; for example:

4.1.6.RELEASE Spring Framework 51

Spring Framework Reference Documentation

<beans default-lazy-init="true">
<l-- no beans will be pre-instantiated... -->
</ beans>

Autowiring collaborators

The Spring container can autowire relationships between collaborating beans. You can allow Spring
to resolve collaborators (other beans) automatically for your bean by inspecting the contents of the
Appl i cati onCont ext . Autowiring has the following advantages:

» Autowiring can significantly reduce the need to specify properties or constructor arguments. (Other
mechanisms such as a bean template discussed elsewhere in this chapter are also valuable in this
regard.)

» Autowiring can update a configuration as your objects evolve. For example, if you need to add a
dependency to a class, that dependency can be satisfied automatically without you needing to modify
the configuration. Thus autowiring can be especially useful during development, without negating the
option of switching to explicit wiring when the code base becomes more stable.

When using XML-based configuration metadata 101 you specify autowire mode for a bean definition
with the aut owi r e attribute of the <bean/ > element. The autowiring functionality has five modes. You
specify autowiring per bean and thus can choose which ones to autowire.

Table 5.2. Autowiring modes

Mode Explanation

no (Default) No autowiring. Bean references must
be defined via a r ef element. Changing the
default setting is not recommended for larger
deployments, because specifying collaborators
explicitly gives greater control and clarity. To
some extent, it documents the structure of a
system.

byName Autowiring by property name. Spring looks for
a bean with the same name as the property
that needs to be autowired. For example, if a
bean definition is set to autowire by name, and
it contains a master property (that is, it has a
setMaster(..) method), Spring looks for a bean
definition named nmast er, and uses it to set the

property.

byType Allows a property to be autowired if exactly one
bean of the property type exists in the container.
If more than one exists, a fatal exception is
thrown, which indicates that you may not use
byType autowiring for that bean. If there are no
matching beans, nothing happens; the property
is not set.

%see the section called “Dependency injection”

4.1.6.RELEASE Spring Framework 52

Spring Framework Reference Documentation

Mode Explanation

constructor Analogous to byType, but applies to constructor
arguments. If there is not exactly one bean of
the constructor argument type in the container, a
fatal error is raised.

With byType or constructor autowiring mode, you can wire arrays and typed-collections. In such cases
all autowire candidates within the container that match the expected type are provided to satisfy the
dependency. You can autowire strongly-typed Maps if the expected key type is St ri ng. An autowired
Maps values will consist of all bean instances that match the expected type, and the Maps keys will
contain the corresponding bean names.

You can combine autowire behavior with dependency checking, which is performed after autowiring
completes.

Limitations and disadvantages of autowiring

Autowiring works best when it is used consistently across a project. If autowiring is not used in general,
it might be confusing to developers to use it to wire only one or two bean definitions.

Consider the limitations and disadvantages of autowiring:

» Explicit dependencies in property and construct or - ar g settings always override autowiring.
You cannot autowire so-called simple properties such as primitives, St ri ngs, and O asses (and
arrays of such simple properties). This limitation is by-design.

» Autowiring is less exact than explicit wiring. Although, as noted in the above table, Spring is careful
to avoid guessing in case of ambiguity that might have unexpected results, the relationships between
your Spring-managed objects are no longer documented explicitly.

» Wiring information may not be available to tools that may generate documentation from a Spring
container.

» Multiple bean definitions within the container may match the type specified by the setter method
or constructor argument to be autowired. For arrays, collections, or Maps, this is not necessarily
a problem. However for dependencies that expect a single value, this ambiguity is not arbitrarily
resolved. If no unique bean definition is available, an exception is thrown.

In the latter scenario, you have several options:
» Abandon autowiring in favor of explicit wiring.

» Avoid autowiring for a bean definition by setting its aut owi r e- candi dat e attributes to f al se as
described in the next section.

» Designate a single bean definition as the primary candidate by setting the pri mary attribute of its
<bean/ > elementtotrue.

* Implement the more fine-grained control available with annotation-based configuration, as described
in Section 5.9, “Annotation-based container configuration”.

Excluding a bean from autowiring

On a per-bean basis, you can exclude a bean from autowiring. In Spring’s XML format, set the
aut owi r e- candi dat e attribute of the <bean/ > element to f al se; the container makes that specific

4.1.6.RELEASE Spring Framework 53

Spring Framework Reference Documentation

bean definition unavailable to the autowiring infrastructure (including annotation style configurations
such as @\ut owi r ed).

You can also limit autowire candidates based on pattern-matching against bean names. The top-
level <beans/ > element accepts one or more patterns within its def aul t - aut owi r e- candi dat es
attribute. For example, to limit autowire candidate status to any bean whose name ends with Repository,
provide a value of *Repository. To provide multiple patterns, define them in a comma-separated list. An
explicit value of t r ue or f al se for a bean definitions aut owi r e- candi dat e attribute always takes
precedence, and for such beans, the pattern matching rules do not apply.

These techniques are useful for beans that you never want to be injected into other beans by autowiring.
It does not mean that an excluded bean cannot itself be configured using autowiring. Rather, the bean
itself is not a candidate for autowiring other beans.

Method injection

In most application scenarios, most beans in the container are singletons. When a singleton bean needs
to collaborate with another singleton bean, or a non-singleton bean needs to collaborate with another
non-singleton bean, you typically handle the dependency by defining one bean as a property of the
other. A problem arises when the bean lifecycles are different. Suppose singleton bean A needs to use
non-singleton (prototype) bean B, perhaps on each method invocation on A. The container only creates
the singleton bean A once, and thus only gets one opportunity to set the properties. The container cannot
provide bean A with a new instance of bean B every time one is needed.

A solution is to forego some inversion of control. You can make bean A aware of the container by
implementing the Appl i cati onCont ext Awar e interface, and by making a getBean("B") call to the
container ask for (a typically new) bean B instance every time bean A needs it. The following is an
example of this approach:

/1 a class that uses a stateful Command-style class to perform sone processing
package fiona. appl e;

/1 Spring-APl inports

i nport org.springfranework. beans. BeansExcepti on;

i mport org.springframework. cont ext. Appli cationCont ext;

i mport org.springframework. cont ext. Appl i cati onCont ext Awar e;

public class CommandManager inplenents ApplicationContextAware {
private ApplicationContext applicationContext;

public Cbject process(Map commandState) {
/1 grab a new instance of the appropriate Conmand
Command conmmand = creat eCommand() ;
/] set the state on the (hopefully brand new) Command i nstance
command. set St at e(commandsSt at e) ;
return command. execute();

}

protected Command creat eCommand() {
/1 notice the Spring APl dependency!
return this.applicationContext.getBean("conmand", Conmand. cl ass);

}

public void setApplicationContext (
Appl i cati onCont ext applicationContext) throws BeansException {
this.applicationContext = applicationContext;

4.1.6.RELEASE Spring Framework 54

Spring Framework Reference Documentation

The preceding is not desirable, because the business code is aware of and coupled to the Spring
Framework. Method Injection, a somewhat advanced feature of the Spring loC container, allows this
use case to be handled in a clean fashion.

You can read more about the motivation for Method Injection in this blog entry.

Lookup method injection

Lookup method injection is the ability of the container to override methods on container managed beans,
to return the lookup result for another named bean in the container. The lookup typically involves a
prototype bean as in the scenario described in the preceding section. The Spring Framework implements
this method injection by using bytecode generation from the CGLIB library to generate dynamically a
subclass that overrides the method.

Note

For this dynamic subclassing to work, the class that the Spring container will subclass cannot
be fi nal , and the method to be overridden cannot be fi nal either. Also, testing a class that
has an abstract method requires you to subclass the class yourself and to supply a stub
implementation of the abst ract method. Finally, objects that have been the target of method
injection cannot be serialized. As of Spring 3.2 it is no longer necessary to add CGLIB to your
classpath, because CGLIB classes are repackaged under org.springframework and distributed
within the spring-core JAR. This is done both for convenience as well as to avoid potential conflicts
with other projects that use differing versions of CGLIB.

Looking at the CommandManager class in the previous code snippet, you see that the Spring
container will dynamically override the implementation of the creat eComrand() method. Your
ConmandManager class will not have any Spring dependencies, as can be seen in the reworked
example:

package fiona. appl e;
/1 no nore Spring inports!
public abstract class ConmandManager {

public Object process(Object cormmandState) {
/1 grab a new instance of the appropriate Command interface
Conmand conmmand = creat eConmand() ;
/] set the state on the (hopefully brand new) Conmand i nstance
command. set St at e(commandSt at e) ;
return conmand. execut e() ;

}

/'l okay... but where is the inplenentation of this nethod?
protected abstract Command creat eConmand();

In the client class containing the method to be injected (the ConmandManager in this case), the method
to be injected requires a signature of the following form:

<public|protected> [abstract] <return-type> theMethodNane(no-argunments);

If the method is abst r act, the dynamically-generated subclass implements the method. Otherwise,
the dynamically-generated subclass overrides the concrete method defined in the original class. For
example:

4.1.6.RELEASE Spring Framework 55

https://spring.io/blog/2004/08/06/method-injection/

Spring Framework Reference Documentation

<l-- a stateful bean depl oyed as a prototype (non-singleton) -->

<bean id="command" cl ass="fi ona. appl e. AsyncCommand" scope="prototype">
<I'-- inject dependencies here as required -->

</ bean>

<l -- commandProcessor uses st ateful CommandHel per -->

<bean id="commandManager" cl ass="fi ona. appl e. CommandManager" >
<l ookup- et hod nanme="cr eat eCommand" bean="conmmand"/ >
</ bean>

The bean identified as commandManager calls its own method cr eat eComrmand() whenever it needs
a new instance of the command bean. You must be careful to deploy the conmand bean as a prototype,
if that is actually what is needed. If it is deployed as a singleton, the same instance of the command
bean is returned each time.

Tip

The interested reader may also find the ServicelocatorFactoryBean (in the
org. spri ngframewor k. beans. factory. confi g package) to be of use. The approach
used in ServiceLocatorFactoryBean is similar to that of another utility class,
hj ect Fact or yCr eat i ngFact or yBean, but it allows you to specify your own lookup interface
as opposed to a Spring-specific lookup interface. Consult the javadocs of these classes for
additional information.

Arbitrary method replacement

A less useful form of method injection than lookup method Injection is the ability to replace arbitrary
methods in a managed bean with another method implementation. Users may safely skip the rest of
this section until the functionality is actually needed.

With XML-based configuration metadata, you can use the r epl aced- net hod element to replace an
existing method implementation with another, for a deployed bean. Consider the following class, with
a method computeValue, which we want to override:

public class MyVal ueCal cul ator {
public String conputeValue(String input) {
/I sonme real code...

}

/'l sone other nethods. ..

A class implementing the or g. spri ngf r amewor k. beans. f act ory. support. Met hodRepl acer
interface provides the new method definition.

/**
* meant to be used to override the existing conputeVal ue(String)
* inplementation in MyVal ueCal cul at or
*/

public class Repl acenent Conput eVal ue i npl enents Met hodRepl acer {

public Cbject reinplenment(oject o, Method m Object[] args) throws Throwabl e {
/1 get the input value, work with it, and return a conputed result
String input = (String) args[O0];

return ..

4.1.6.RELEASE Spring Framework 56

Spring Framework Reference Documentation

The bean definition to deploy the original class and specify the method override would look like this:

<bean id="nyVal ueCal cul ator" class="x.y.z. MVal ueCal cul ator">
<l-- arbitrary nethod replacenment -->
<repl aced- net hod nanme="conput eVal ue" repl acer="repl acenent Conput eVal ue" >
<arg-type>String</arg-type>
</ repl aced- net hod>
</ bean>

<bean i d="repl acenent Conput eVal ue" cl ass="a. b. c. Repl acenent Conput eVal ue"/ >

You can use one or more contained <ar g-type/ > elements within the <r epl aced- net hod/ >
element to indicate the method signature of the method being overridden. The signature for the
arguments is necessary only if the method is overloaded and multiple variants exist within the class.
For convenience, the type string for an argument may be a substring of the fully qualified type name.
For example, the following all match j ava. | ang. Stri ng:

java.lang. String
String
Str

Because the number of arguments is often enough to distinguish between each possible choice, this
shortcut can save a lot of typing, by allowing you to type only the shortest string that will match an
argument type.

5.5 Bean scopes

When you create a bean definition, you create a recipe for creating actual instances of the class defined
by that bean definition. The idea that a bean definition is a recipe is important, because it means that,
as with a class, you can create many object instances from a single recipe.

You can control not only the various dependencies and configuration values that are to be plugged into
an object that is created from a particular bean definition, but also the scope of the objects created from
a particular bean definition. This approach is powerful and flexible in that you can choose the scope
of the objects you create through configuration instead of having to bake in the scope of an object at
the Java class level. Beans can be defined to be deployed in one of a number of scopes: out of the
box, the Spring Framework supports five scopes, three of which are available only if you use a web-
aware Appl i cat i onCont ext .

The following scopes are supported out of the box. You can also create a custom scope.

Table 5.3. Bean scopes

Scope Description
singleton (Default) Scopes a single bean definition to a

single object instance per Spring 1oC container.

prototype Scopes a single bean definition to any number of
object instances.

request Scopes a single bean definition to the lifecycle
of a single HTTP request; that is, each HTTP
request has its own instance of a bean created
off the back of a single bean definition. Only

4.1.6.RELEASE Spring Framework 57

Spring Framework Reference Documentation

Scope Description

valid in the context of a web-aware Spring
Appl i cati onCont ext .

session Scopes a single bean definition to the lifecycle of
an HTTP Sessi on. Only valid in the context of a
web-aware Spring Appl i cat i onCont ext .

global session Scopes a single bean definition to the lifecycle
of a global HTTP Sessi on. Typically only
valid when used in a portlet context. Only
valid in the context of a web-aware Spring
Appl i cati onCont ext .

application Scopes a single bean definition to the lifecycle of
a Ser vl et Cont ext . Only valid in the context of
a web-aware Spring Appl i cat i onCont ext .

Note

As of Spring 3.0, athread scope is available, but is not registered by default. For more information,
see the documentation for Si npl eThr eadScope. For instructions on how to register this or any
other custom scope, see the section called “Using a custom scope”.

The singleton scope

Only one shared instance of a singleton bean is managed, and all requests for beans with an id or
ids matching that bean definition result in that one specific bean instance being returned by the Spring
container.

To put it another way, when you define a bean definition and it is scoped as a singleton, the Spring 1oC
container creates exactly one instance of the object defined by that bean definition. This single instance
is stored in a cache of such singleton beans, and all subsequent requests and references for that named
bean return the cached object.

‘ Only one instance is ever created...

1

<bean id="accountDao" class="..." />

... and this same shared instance is injected into each collaborating object

Figure 5.2.

4.1.6.RELEASE Spring Framework 58

http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/context/support/SimpleThreadScope.html

Spring Framework Reference Documentation

Spring’s concept of a singleton bean differs from the Singleton pattern as defined in the Gang of Four
(GoF) patterns book. The GoF Singleton hard-codes the scope of an object such that one and only
one instance of a particular class is created per ClassLoader. The scope of the Spring singleton is best
described as per container and per bean. This means that if you define one bean for a particular class
in a single Spring container, then the Spring container creates one and only one instance of the class
defined by that bean definition. The singleton scope is the default scope in Spring. To define a bean as
a singleton in XML, you would write, for example:

<bean id="account Servi ce" class="com foo. Def aul t Account Servi ce"/>

<!-- the following is equival ent, though redundant (singleton scope is the default) -->
<bean id="account Servi ce" cl ass="com f 0o. Def aul t Account Servi ce" scope="singl eton"/>

The prototype scope

The non-singleton, prototype scope of bean deployment results in the creation of a new bean instance
every time a request for that specific bean is made. That is, the bean is injected into another bean or
you request it through a get Bean() method call on the container. As a rule, use the prototype scope
for all stateful beans and the singleton scope for stateless beans.

The following diagram illustrates the Spring prototype scope. A data access object (DAO) is not typically
configured as a prototype, because a typical DAO does not hold any conversational state; it was just
easier for this author to reuse the core of the singleton diagram.

A brand new bean instance is created...

<bean id="accountDao" class="..."
scope="prototype" />

... each and every time the prototype is referenced by collaborating beans

Figure 5.3.

The following example defines a bean as a prototype in XML:

<bean id="account Servi ce" cl ass="com f 0o. Def aul t Account Servi ce" scope="prototype"/>

In contrast to the other scopes, Spring does not manage the complete lifecycle of a prototype bean: the
container instantiates, configures, and otherwise assembles a prototype object, and hands it to the client,
with no further record of that prototype instance. Thus, although initialization lifecycle callback methods
are called on all objects regardless of scope, in the case of prototypes, configured destruction lifecycle
callbacks are not called. The client code must clean up prototype-scoped objects and release expensive
resources that the prototype bean(s) are holding. To get the Spring container to release resources held
by prototype-scoped beans, try using a custom bean post-processor, which holds a reference to beans
that need to be cleaned up.

4.1.6.RELEASE Spring Framework 59

Spring Framework Reference Documentation

In some respects, the Spring container’s role in regard to a prototype-scoped bean is a replacement
for the Java new operator. All lifecycle management past that point must be handled by the client. (For
details on the lifecycle of a bean in the Spring container, see the section called “Lifecycle callbacks”.)

Singleton beans with prototype-bean dependencies

When you use singleton-scoped beans with dependencies on prototype beans, be aware that
dependencies are resolved at instantiation time. Thus if you dependency-inject a prototype-scoped bean
into a singleton-scoped bean, a new prototype bean is instantiated and then dependency-injected into
the singleton bean. The prototype instance is the sole instance that is ever supplied to the singleton-
scoped bean.

However, suppose you want the singleton-scoped bean to acquire a new instance of the prototype-
scoped bean repeatedly at runtime. You cannot dependency-inject a prototype-scoped bean into your
singleton bean, because that injection occurs only once, when the Spring container is instantiating the
singleton bean and resolving and injecting its dependencies. If you need a new instance of a prototype
bean at runtime more than once, see the section called “Method injection”

Request, session, and global session scopes

The request, sessi on, and gl obal sessi on scopes are only available if you use a web-aware
Spring Appl i cat i onCont ext implementation (such as Ximl WebAppl i cati onCont ext). If you use
these scopes with regular Spring loC containers such as the Cl assPat hXni Appl i cati onCont ext,
yougetan ||| egal St at eExcepti on complaining about an unknown bean scope.

Initial web configuration

To support the scoping of beans atthe r equest , sessi on, and gl obal sessi on levels (web-scoped
beans), some minor initial configuration is required before you define your beans. (This initial setup is
not required for the standard scopes, singleton and prototype.)

How you accomplish this initial setup depends on your particular Servlet environment..

If you access scoped beans within Spring Web MVC, in effect, within a request that is processed
by the Spring Di spat cher Ser vl et, or Di spat cher Port| et, then no special setup is necessary:
Di spat cher Servl et and Di spat cher Port| et already expose all relevant state.

If you use a Servlet 2.5 web container, with requests processed outside of
Spring’s DispatcherServlet (for example, when using JSF or Struts), you need
to register the org.springfranework. web. cont ext.request. Request Cont ext Li st ener
Servl et Request Li stener. For Servlet 3.0+, this can done programmatically via the
WebApplicationlnitializer interface. Alternatively, or for older containers, add the following
declaration to your web application’s web. xm file:

<web- app>

<li stener>
<li stener-cl ass>
or g. spri ngf ramewor k. web. cont ext . request . Request Cont ext Li st ener
</listener-class>
</listener>

</ web- app>

4.1.6.RELEASE Spring Framework 60

Spring Framework Reference Documentation

Alternatively, if there are issues with your listener setup, consider the provided
Request Context Fil ter. The filter mapping depends on the surrounding web application
configuration, so you have to change it as appropriate.

<web- app>
<filter>
<filter-name>requestContextFilter</filter-name>
<filter-class>org.springframework.web.filter.RequestContextFilter</filter-class>
</filter>
<filter-mppi ng>
<filter-name>requestContextFilter</filter-nanme>
<url -pattern>/*</url-pattern>
</filter-mappi ng>
</ web- app>

Di spat cher Servl et, Request Cont ext Li st ener and Request Cont ext Fi |l t er all do exactly
the same thing, namely bind the HTTP request object to the Thr ead that is servicing that request. This
makes beans that are request- and session-scoped available further down the call chain.

Request scope

Consider the following bean definition:

<bean id="1ogi nAction" class="com foo0.Logi nAction" scope="request"/>

The Spring container creates a new instance of the Logi nAct i on bean by using the | ogi nActi on
bean definition for each and every HTTP request. That is, the | ogi nActi on bean is scoped at the
HTTP request level. You can change the internal state of the instance that is created as much as you
want, because other instances created from the same | ogi nAct i on bean definition will not see these
changes in state; they are particular to an individual request. When the request completes processing,
the bean that is scoped to the request is discarded.

Session scope

Consider the following bean definition:

<bean id="userPreferences" class="com foo.UserPreferences" scope="session"/>

The Spring container creates a new instance of the User Preferences bean by using the
user Pr ef er ences bean definition for the lifetime of a single HTTP Sessi on. In other words, the
user Pr ef er ences bean is effectively scoped at the HTTP Sessi on level. As with r equest - scoped
beans, you can change the internal state of the instance that is created as much as you want,
knowing that other HTTP Sessi on instances that are also using instances created from the same
user Pr ef er ences bean definition do not see these changes in state, because they are particular to an
individual HTTP Sessi on. When the HTTP Sessi on is eventually discarded, the bean that is scoped
to that particular HTTP Sessi on is also discarded.

Global session scope

Consider the following bean definition:

<bean id="userPreferences" class="com foo. UserPreferences" scope="gl obal Sessi on"/ >

The gl obal sessi on scope is similar to the standard HTTP Sessi on scope (described above), and
applies only in the context of portlet-based web applications. The portlet specification defines the notion

4.1.6.RELEASE Spring Framework 61

Spring Framework Reference Documentation

of a global Sessi on that is shared among all portlets that make up a single portlet web application.
Beans defined at the gl obal sessi on scope are scoped (or bound) to the lifetime of the global portlet
Sessi on.

If you write a standard Servlet-based web application and you define one or more beans as having
gl obal sessi on scope, the standard HTTP Sessi on scope is used, and no error is raised.

Application scope

Consider the following bean definition:

<bean id="appPreferences" class="com foo. AppPreferences" scope="application"/>

The Spring container creates a new instance of the AppPreferences bean by using the
appPr ef er ences bean definition once for the entire web application. That is, the appPr ef er ences
bean is scoped at the Ser vl et Cont ext level, stored as a regular Ser vl et Cont ext attribute. This
is somewhat similar to a Spring singleton bean but differs in two important ways: It is a singleton per
Ser vl et Cont ext , not per Spring ApplicationContext (or which there may be several in any given web
application), and it is actually exposed and therefore visible as a Ser vl et Cont ext attribute.

Scoped beans as dependencies

The Spring loC container manages not only the instantiation of your objects (beans), but also the wiring
up of collaborators (or dependencies). If you want to inject (for example) an HTTP request scoped bean
into another bean, you must inject an AOP proxy in place of the scoped bean. That is, you need to inject
a proxy object that exposes the same public interface as the scoped object but that can also retrieve
the real, target object from the relevant scope (for example, an HTTP request) and delegate method
calls onto the real object.

Note

You do not need to use the <aop: scoped- pr oxy/ > in conjunction with beans that are scoped
as si ngl et ons or pr ot ot ypes.

The configuration in the following example is only one line, but it is important to understand the "why"
as well as the "how" behind it.

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngframework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns: aop="http://ww. spri ngfranmewor k. or g/ schema/ aop"
xsi : schemalLocati on="http://ww. springfranework. or g/ schema/ beans
http://ww. springfranework. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. spri ngfranmewor k. or g/ schema/ aop
ht t p: / / www. spri ngf ramewor k. or g/ schenma/ aop/ spri ng- aop. xsd" >

<l-- an HTTP Sessi on-scoped bean exposed as a proxy -->

<bean id="userPreferences" class="com foo. UserPreferences" scope="session">
<l-- instructs the container to proxy the surrounding bean -->
<aop: scoped- pr oxy/ >

</ bean>

<l-- a singl eton-scoped bean injected with a proxy to the above bean -->
<bean id="user Servi ce" class="com foo. Si npl eUser Servi ce">
<l-- a reference to the proxi ed userPreferences bean -->
<property name="user Preferences" ref="userPreferences"/>
</ bean>
</ beans>

4.1.6.RELEASE Spring Framework 62

Spring Framework Reference Documentation

To create such a proxy, you insert a child <aop: scoped- pr oxy/ > element into a scoped bean
definition. See the section called “Choosing the type of proxy to create” and Chapter 34, XML Schema-
based configuration.) Why do definitions of beans scoped at the r equest , sessi on, gl obal Sessi on
and custom-scope levels require the <aop: scoped- pr oxy/ > element ? Let's examine the following
singleton bean definition and contrast it with what you need to define for the aforementioned scopes.
(The following user Pr ef er ences bean definition as it stands is incomplete.)

<bean id="userPreferences" class="com foo. UserPreferences" scope="session"/>

<bean id="user Manager" cl ass="com fo0o. User Manager" >
<property nanme="user Preferences" ref="userPreferences"/>
</ bean>

In the preceding example, the singleton bean user Manager is injected with a reference to the HTTP
Sessi on-scoped bean user Pr ef er ences. The salient point here is that the user Manager beanis a
singleton: it will be instantiated exactly once per container, and its dependencies (in this case only one,
the user Pr ef er ences bean) are also injected only once. This means that the user Manager bean
will only operate on the exact same user Pr ef er ences object, that is, the one that it was originally
injected with.

This is not the behavior you want when injecting a shorter-lived scoped bean into a longer-
lived scoped bean, for example injecting an HTTP Sessi on-scoped collaborating bean as a
dependency into singleton bean. Rather, you need a single user Manager object, and for the
lifetime of an HTTP Sessi on, you need a user Pr ef er ences object that is specific to said HTTP
Sessi on. Thus the container creates an object that exposes the exact same public interface as
the User Pr ef erences class (ideally an object that is a User Pr ef er ences instance) which can
fetch the real User Pr ef er ences object from the scoping mechanism (HTTP request, Sessi on,
etc.). The container injects this proxy object into the user Manager bean, which is unaware that this
User Pr ef er ences reference is a proxy. In this example, when a User Manager instance invokes
a method on the dependency-injected User Pr ef er ences object, it actually is invoking a method on
the proxy. The proxy then fetches the real User Pr ef er ences object from (in this case) the HTTP
Sessi on, and delegates the method invocation onto the retrieved real User Pr ef er ences object.

Thus you need the following, correct and complete, configuration when injecting r equest -, sessi on-,
and gl obal Sessi on- scoped beans into collaborating objects:

<bean id="userPreferences" class="com foo. UserPreferences" scope="session">
<aop: scoped- pr oxy/ >

</ bean>

<bean id="user Manager" cl ass="com f 0o. User Manager" >
<property name="user Pref erences" ref="userPreferences"/>

</ bean>

Choosing the type of proxy to create

By default, when the Spring container creates a proxy for a bean that is marked up with the
<aop: scoped- pr oxy/ > element, a CGLIB-based class proxy is created.

Note

CGLIB proxies only intercept public method calls! Do not call non-public methods on such a proxy;
they will not be delegated to the actual scoped target object.

Alternatively, you can configure the Spring container to create standard JDK interface-based proxies
for such scoped beans, by specifying f al se for the value of the pr oxy-t ar get - cl ass attribute of

4.1.6.RELEASE Spring Framework 63

Spring Framework Reference Documentation

the <aop: scoped- pr oxy/ > element. Using JDK interface-based proxies means that you do not need
additional libraries in your application classpath to effect such proxying. However, it also means that the
class of the scoped bean must implement at least one interface, and that all collaborators into which the
scoped bean is injected must reference the bean through one of its interfaces.

<I-- Defaul tUserPreferences inplenents the UserPreferences interface -->

<bean i d="user Preferences" class="com foo. Defaul t User Pref erences" scope="session">
<aop: scoped- proxy proxy-target-class="fal se"/>

</ bean>

<bean id="user Manager" cl ass="com fo0o. User Manager" >
<property nanme="user Preferences" ref="userPreferences"/>

</ bean>

For more detailed information about choosing class-based or interface-based proxying, see Section 9.6,
“Proxying mechanisms”.

Custom scopes

The bean scoping mechanism is extensible; You can define your own scopes, or even redefine existing
scopes, although the latter is considered bad practice and you cannot override the built-in si ngl et on
and pr ot ot ype scopes.

Creating a custom scope

To integrate your custom scope(s) into the Spring container, you need to implement the
org. spri ngframewor k. beans. factory. confi g. Scope interface, which is described in this
section. For an idea of how to implement your own scopes, see the Scope implementations that are
supplied with the Spring Framework itself and the Scope javadocs, which explains the methods you
need to implement in more detail.

The Scope interface has four methods to get objects from the scope, remove them from the scope,
and allow them to be destroyed.

The following method returns the object from the underlying scope. The session scope implementation,
for example, returns the session-scoped bean (and if it does not exist, the method returns a new instance
of the bean, after having bound it to the session for future reference).

Obj ect get(String nanme, ObjectFactory objectFactory)

The following method removes the object from the underlying scope. The session scope implementation
for example, removes the session-scoped bean from the underlying session. The object should be
returned, but you can return null if the object with the specified name is not found.

Obj ect renove(String nane)

The following method registers the callbacks the scope should execute when it is destroyed or when
the specified object in the scope is destroyed. Refer to the javadocs or a Spring scope implementation
for more information on destruction callbacks.

voi d regi sterDestructionCal | back(String name, Runnabl e destructionCal | back)

The following method obtains the conversation identifier for the underlying scope. This identifier is
different for each scope. For a session scoped implementation, this identifier can be the session
identifier.

String get Conversationld()

4.1.6.RELEASE Spring Framework 64

http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/beans/factory/config/Scope.html

Spring Framework Reference Documentation

Using a custom scope

After you write and test one or more custom Scope implementations, you need to make the Spring
container aware of your new scope(s). The following method is the central method to register a new
Scope with the Spring container:

voi d regi sterScope(String scopeNane, Scope scope);

This method is declared on the Conf i gur abl eBeanFact ory interface, which is available on most
of the concrete Appl i cati onCont ext implementations that ship with Spring via the BeanFactory

property.

The first argument to the regi st er Scope(..) method is the unigue name associated with a
scope; examples of such names in the Spring container itself are si ngl et on and pr ot ot ype. The
second argument to the r egi st er Scope(..) method is an actual instance of the custom Scope
implementation that you wish to register and use.

Suppose that you write your custom Scope implementation, and then register it as below.

Note

The example below uses Si npl eThr eadScope which is included with Spring, but not registered
by default. The instructions would be the same for your own custom Scope implementations.

Scope threadScope = new Si npl eThr eadScope();
beanFact ory. regi st er Scope("thread", threadScope);

You then create bean definitions that adhere to the scoping rules of your custom Scope:

<bean id="..." class="..." scope="thread">

With a custom Scope implementation, you are not limited to programmatic registration of the scope.
You can also do the Scope registration declaratively, using the Cust onScopeConf i gur er class:

4.1.6.RELEASE Spring Framework 65

Spring Framework Reference Documentation

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: aop="http://ww.springfranework. org/ schema/ aop"
xsi : schemaLocati on="http://ww. spri ngframewor k. or g/ schema/ beans
ht t p: // www. spri ngf ramewor k. or g/ schena/ beans/ spri ng- beans. xsd
http://ww. spri ngfranmewor k. or g/ schema/ aop
http://ww. springfranework. org/ schema/ aop/ spri ng- aop. xsd" >

<bean cl ass="org. springfranmewor k. beans. factory. confi g. Cust onScopeConfi gurer">
<property name="scopes">
<map>
<entry key="thread">
<bean cl ass="org. spri ngframewor k. cont ext. support. Si npl eThr eadScope"/ >
</entry>
</ map>
</ property>
</ bean>

<bean id="bar" class="x.y.Bar" scope="thread">
<property name="name" val ue="Ri ck"/>
<aop: scoped- pr oxy/ >

</ bean>

<bean id="foo0" class="x.y.Foo">
<property name="bar" ref="bar"/>

</ bean>

</ beans>

Note

When you place <aop: scoped- proxy/ > in a Fact or yBean implementation, it is the factory
bean itself that is scoped, not the object returned from get Obj ect () .

5.6 Customizing the nature of a bean

Lifecycle callbacks

To interact with the container's management of the bean lifecycle, you can implement
the Spring InitializingBean and Disposabl eBean interfaces. The container calls
after PropertiesSet () for the former and dest roy() for the latter to allow the bean to perform
certain actions upon initialization and destruction of your beans.

Tip

The JSR-250 @Post Const ruct and @r eDest r oy annotations are generally considered best
practice for receiving lifecycle callbacks in a modern Spring application. Using these annotations
means that your beans are not coupled to Spring specific interfaces. For details see the section
called “@PostConstruct and @PreDestroy”.

If you don’t want to use the JSR-250 annotations but you are still looking to remove coupling
consider the use of init-method and destroy-method object definition metadata.

Internally, the Spring Framework uses BeanPost Pr ocessor implementations to process any callback
interfaces it can find and call the appropriate methods. If you need custom features or other lifecycle
behavior Spring does not offer out-of-the-box, you can implement a BeanPost Pr ocessor yourself.
For more information, see Section 5.8, “Container Extension Points”.

4.1.6.RELEASE Spring Framework 66

Spring Framework Reference Documentation

In addition to the initialization and destruction callbacks, Spring-managed objects may also implement
the Li f ecycl e interface so that those objects can participate in the startup and shutdown process as
driven by the container’s own lifecycle.

The lifecycle callback interfaces are described in this section.
Initialization callbacks

The org. springframewor k. beans. factory. I nitializingBean interface allows a bean to
perform initialization work after all necessary properties on the bean have been set by the container.
The I nitializi ngBean interface specifies a single method:

void afterPropertiesSet() throws Exception;

It is recommended that you do not use the | ni ti al i zi ngBean interface because it unnecessarily
couples the code to Spring. Alternatively, use the @ost Const r uct annotation or specify a POJO
initialization method. In the case of XML-based configuration metadata, you use the i ni t - met hod
attribute to specify the name of the method that has a void no-argument signature. With Java config
you use the i ni t Met hod attribute of @ean, see the section called “Receiving lifecycle callbacks”. For
example, the following:

<bean id="exanpl el ni t Bean" cl ass="exanpl es. Exanpl eBean" init-nmethod="init"/>

public class Exanpl eBean {

public void init() {
/1 do sone initialization work

}

...Iis exactly the same as...

<bean id="exanpl el ni t Bean" cl ass="exanpl es. Anot her Exanpl eBean"/ >

public class Anot her Exanpl eBean i npl enents InitializingBean {

public void afterPropertiesSet() {
/1 do sone initialization work

}

but does not couple the code to Spring.
Destruction callbacks

Implementing the or g. spri ngf r amewor k. beans. f act ory. Di sposabl eBean interface allows a
bean to get a callback when the container containing it is destroyed. The Di sposabl eBean interface
specifies a single method:

voi d destroy() throws Exception;

It is recommended that you do not use the Di sposabl eBean callback interface because it
unnecessarily couples the code to Spring. Alternatively, use the @r eDest r oy annotation or specify
a generic method that is supported by bean definitions. With XML-based configuration metadata, you
use the dest r oy- et hod attribute on the <bean/ >. With Java config you use the dest r oyMet hod

4.1.6.RELEASE Spring Framework 67

Spring Framework Reference Documentation

attribute of @ean, see the section called “Receiving lifecycle callbacks”. For example, the following
definition:

<bean i d="exanpl el ni t Bean" cl ass="exanpl es. Exanpl eBean" destroy- net hod="cl eanup"/ >

public class Exanpl eBean {

public void cleanup() {
/1 do sonme destruction work (like rel easing pool ed connecti ons)

}

is exactly the same as:

<bean i d="exanpl el ni t Bean" cl ass="exanpl es. Anot her Exanpl eBean"/ >

public class Another Exanpl eBean i npl enents Di sposabl eBean {

public void destroy() {
/1 do sone destruction work (like rel easing pool ed connecti ons)

}

but does not couple the code to Spring.
Tip

The dest r oy- net hod attribute of a <bean> element can be assigned a special (i nf err ed)
value which instructs Spring to automatically detect a public cl ose or shut down method on the
specific bean class. This special (i nf er r ed) value can also be set on the def aul t - dest r oy-
nmet hod attribute of a <beans> element to apply this behavior to an entire set of beans (see the
section called “Default initialization and destroy methods”). Note that this is the default behavior
with Java config.

Default initialization and destroy methods

When you write initialization and destroy method callbacks that do not use the Spring-specific
InitializingBean and D sposabl eBean callback interfaces, you typically write methods with
namessuchasinit(),initialize(),dispose(),andso on. Ideally, the names of such lifecycle
callback methods are standardized across a project so that all developers use the same method names
and ensure consistency.

You can configure the Spring container to | ook for named initialization and destroy callback method
names on every bean. This means that you, as an application developer, can write your application
classes and use an initialization callback called i ni t (), without having to configure an init-
nmet hod="init" attribute with each bean definition. The Spring 10C container calls that method
when the bean is created (and in accordance with the standard lifecycle callback contract described
previously). This feature also enforces a consistent naming convention for initialization and destroy
method callbacks.

Suppose that your initialization callback methods are named i ni t () and destroy callback methods are
named dest r oy() . Your class will resemble the class in the following example.

4.1.6.RELEASE Spring Framework 68

Spring Framework Reference Documentation

public class DefaultBlogService inplenents Bl ogService {
private Bl ogDao bl ogDao;

public void set Bl ogDao(Bl ogDao bl ogDao) {
this. bl ogDao = bl ogDao;
}

/1 this is (unsurprisingly) the initialization callback nethod
public void init() {
if (this.blogbao == null) {
throw new Il egal StateException("The [bl ogDao] property nust be set.");
}

<beans defaul t-init-nethod="init">
<bean id="bl ogServi ce" class="com foo. Def aul t Bl ogServi ce">
<property nanme="bl ogDao" ref="bl ogDao" />

</ bean>

</ beans>

The presence of the def aul t -i ni t - met hod attribute on the top-level <beans/ > element attribute
causes the Spring loC container to recognize a method called i ni t on beans as the initialization method
callback. When a bean is created and assembled, if the bean class has such a method, it is invoked
at the appropriate time.

You configure destroy method callbacks similarly (in XML, that is) by using the def aul t - dest r oy-
nmet hod attribute on the top-level <beans/ > element.

Where existing bean classes already have callback methods that are named at variance with the
convention, you can override the default by specifying (in XML, that is) the method name using the
i ni t-nethodand dest roy-net hod attributes of the <bean/> itself.

The Spring container guarantees that a configured initialization callback is called immediately after
a bean is supplied with all dependencies. Thus the initialization callback is called on the raw bean
reference, which means that AOP interceptors and so forth are not yet applied to the bean. A target
bean is fully created first, then an AOP proxy (for example) with its interceptor chain is applied. If the
target bean and the proxy are defined separately, your code can even interact with the raw target bean,
bypassing the proxy. Hence, it would be inconsistent to apply the interceptors to the init method, because
doing so would couple the lifecycle of the target bean with its proxy/interceptors and leave strange
semantics when your code interacts directly to the raw target bean.

Combining lifecycle mechanisms

As of Spring 2.5, you have three options for controlling bean lifecycle behavior: the I ni ti al i zi ngBean
and Di sposabl eBean callback interfaces; custom init() and destroy() methods; and the
@Post Const ruct and @r eDest r oy annotations. You can combine these mechanisms to control a
given bean.

Note

If multiple lifecycle mechanisms are configured for a bean, and each mechanism is configured
with a different method name, then each configured method is executed in the order listed below.
However, if the same method name is configured - for example, i ni t () for an initialization

4.1.6.RELEASE Spring Framework 69

Spring Framework Reference Documentation

method - for more than one of these lifecycle mechanisms, that method is executed once, as
explained in the preceding section.

Multiple lifecycle mechanisms configured for the same bean, with different initialization methods, are
called as follows:

* Methods annotated with @ost Const r uct

« afterPropertiesSet() asdefinedbythelnitializi ngBean callback interface
» A custom configured i ni t () method

Destroy methods are called in the same order:

» Methods annotated with @°r eDest r oy

» destroy() as defined by the Di sposabl eBean callback interface

» A custom configured dest r oy() method

Startup and shutdown callbacks

The Li f ecycl e interface defines the essential methods for any object that has its own lifecycle
requirements (e.g. starts and stops some background process):

public interface Lifecycle {
void start();
void stop();

bool ean i sRunni ng();

Any Spring-managed object may implement that interface. Then, when the Appl i cat i onCont ext
itself starts and stops, it will cascade those calls to all Li f ecycl e implementations defined within that
context. It does this by delegating to a Li f ecycl ePr ocessor:

public interface Lifecycl eProcessor extends Lifecycle {
voi d onRefresh();

voi d ond ose();

Notice that the Li f ecycl ePr ocessor is itself an extension of the Li f ecycl e interface. It also adds
two other methods for reacting to the context being refreshed and closed.

The order of startup and shutdown invocations can be important. If a "depends-on" relationship exists
between any two objects, the dependent side will start after its dependency, and it will stop before its
dependency. However, at times the direct dependencies are unknown. You may only know that objects
of a certain type should start prior to objects of another type. In those cases, the SmartLi f ecycl e
interface defines another option, namely the get Phase() method as defined on its super-interface,
Phased.

4.1.6.RELEASE Spring Framework 70

Spring Framework Reference Documentation

public interface Phased {

i nt getPhase();

public interface SmartlLifecycle extends Lifecycle, Phased {
bool ean i sAutoStartup();

voi d stop(Runnabl e cal | back);

}

When starting, the objects with the lowest phase start first, and when stopping, the reverse order is
followed. Therefore, an object that implements Snart Li f ecycl e and whose get Phase() method
returns | nt eger. M N_VALUE would be among the first to start and the last to stop. At the other end of
the spectrum, a phase value of | nt eger . MAX_VALUE would indicate that the object should be started
last and stopped first (likely because it depends on other processes to be running). When considering
the phase value, it's also important to know that the default phase for any "normal” Li f ecycl e object
that does not implement Smart Li f ecycl e would be 0. Therefore, any negative phase value would
indicate that an object should start before those standard components (and stop after them), and vice
versa for any positive phase value.

As you can see the stop method defined by Smar t Li f ecycl e accepts a callback. Any implementation
must invoke that callback’s r un() method after that implementation’s shutdown process is complete.
That enables asynchronous shutdown where necessary since the default implementation of the
Li fecycl eProcessor interface, Def aul t Li f ecycl eProcessor, will wait up to its timeout value
for the group of objects within each phase to invoke that callback. The default per-phase timeout
is 30 seconds. You can override the default lifecycle processor instance by defining a bean named
"lifecycleProcessor" within the context. If you only want to modify the timeout, then defining the following
would be sufficient:

<bean id="1ifecycl eProcessor" class="org.springframework. context.support.DefaultLifecycleProcessor">
<l-- timeout value in mlliseconds -->
<property name="ti meout Per Shut downPhase" val ue="10000"/>

</ bean>

As mentioned, the Li f ecycl ePr ocessor interface defines callback methods for the refreshing and
closing of the context as well. The latter will simply drive the shutdown process as if st op() had
been called explicitly, but it will happen when the context is closing. The refresh callback on the other
hand enables another feature of Smart Li f ecycl e beans. When the context is refreshed (after all
objects have been instantiated and initialized), that callback will be invoked, and at that point the
default lifecycle processor will check the boolean value returned by each Snart Li f ecycl e object’s
i sSAut oSt art up() method. If "true”, then that object will be started at that point rather than waiting for
an explicit invocation of the context’s or its own st art () method (unlike the context refresh, the context
start does not happen automatically for a standard context implementation). The "phase" value as well
as any "depends-on" relationships will determine the startup order in the same way as described above.

Shutting down the Spring loC container gracefully in non-web applications

Note

This section applies only to non-web applications. Spring’s web-based Appl i cat i onCont ext
implementations already have code in place to shut down the Spring IoC container gracefully
when the relevant web application is shut down.

4.1.6.RELEASE Spring Framework 71

Spring Framework Reference Documentation

If you are using Spring’s I0C container in a non-web application environment; for example, in a rich
client desktop environment; you register a shutdown hook with the JVM. Doing so ensures a graceful
shutdown and calls the relevant destroy methods on your singleton beans so that all resources are
released. Of course, you must still configure and implement these destroy callbacks correctly.

To register a shutdown hook, you call the r egi st er Shut downHook () method that is declared on the
Abst ract Appl i cati onCont ext class:

i nport org.springfranework. cont ext. support. Abstract Appl i cati onCont ext ;
i nport org.springfranework. cont ext. support.C assPat hXm Appl i cati onCont ext ;

public final class Boot {
public static void main(final String[] args) throws Exception {

Abstract Appl i cati onContext ctx = new O assPat hXnl Appl i cati onCont ext (
new String []{"beans.xm "});

/1 add a shutdown hook for the above context...
ct x. regi st er Shut downHook() ;

/1 app runs here...

/1 main nethod exits, hook is called prior to the app shutting down...

ApplicationContextAware and BeanNameAware

When an ApplicationContext creates an object instance that implements the
org. spri ngframewor k. cont ext . Appl i cati onCont ext Awar e interface, the instance s
provided with a reference to that Appl i cat i onCont ext .

public interface ApplicationContextAware {

voi d set Appli cationContext (ApplicationContext applicationContext) throws BeansExcepti on;

Thus beans can manipulate programmatically the Appl i cat i onCont ext that created them, through
the Appl i cat i onCont ext interface, or by casting the reference to a known subclass of this interface,
such as Confi gurabl eAppl i cati onCont ext, which exposes additional functionality. One use
would be the programmatic retrieval of other beans. Sometimes this capability is useful, however, in
general you should avoid it, because it couples the code to Spring and does not follow the Inversion
of Control style, where collaborators are provided to beans as properties. Other methods of the
Appl i cati onCont ext provide access to file resources, publishing application events, and accessing
a MessageSour ce. These additional features are described in Section 5.15, “Additional Capabilities
of the ApplicationContext”

As of Spring 2.5, autowiring is another alternative to obtain reference to the Appl i cat i onCont ext .
The "traditional" construct or and byType autowiring modes (as described in the section called
“Autowiring collaborators”) can provide a dependency of type Appl i cat i onCont ext for a constructor
argument or setter method parameter, respectively. For more flexibility, including the ability to autowire
fields and multiple parameter methods, use the new annotation-based autowiring features. If you do,
the Appl i cati onCont ext is autowired into a field, constructor argument, or method parameter that
is expecting the Appl i cati onCont ext type if the field, constructor, or method in question carries the
@\ut owi r ed annotation. For more information, see the section called “@Autowired”.

4.1.6.RELEASE Spring Framework 72

Spring Framework Reference Documentation

When an Appl i cati onCont ext creates a class that implements the
or g. spri ngframewor k. beans. f act ory. BeanNaneAwar e interface, the class is provided with a
reference to the name defined in its associated object definition.

public interface BeanNaneAware {

voi d set BeanNane(string nane) throws BeansExcepti on;

The callback is invoked after population of normal bean properties but before an initialization callback
such as | nitializi ngBean afterPropertiesSet or a custom init-method.

Other Aware interfaces

Besides Appl i cati onCont ext Awar e and BeanNaneAwar e discussed above, Spring offers a range
of Awar e interfaces that allow beans to indicate to the container that they require a certain infrastructure
dependency. The most important Awar e interfaces are summarized below - as a general rule, the name
is a good indication of the dependency type:

Table 5.4. Aware interfaces

Name Injected Dependency Explained in...
Appl i cati onCont ext Awar e | Declaring the section called
Appl i cati onCont ext “ApplicationContextAware and
BeanNameAware”

Appl i cati onEvent Publ i sher Bwanepublisher of the enclosing Section 5.15, “Additional
Appl i cati onCont ext Capabilities of the
ApplicationContext”

BeanCl assLoader Awar e Class loader used to load the the section called “Instantiating
bean classes. beans”

BeanFact or yAwar e Declaring BeanFact ory the section called
“ApplicationContextAware and
BeanNameAware”

BeanNameAwar e Name of the declaring bean the section called
“ApplicationContextAware and
BeanNameAware”

Boot st r apCont ext Awar e Resource adapter Chapter 26, JCA CCI

Boot st rapCont ext the
container runs in. Typically
available only in JCA aware
Appl i cati onCont ext s

LoadTi mreWWeaver Awar e Defined weaver for processing the section called “Load-time
class definition at load time weaving with AspectJ in the
Spring Framework”

MessageSour ceAwar e Configured strategy for Section 5.15, “Additional
resolving messages (with Capabilities of the
ApplicationContext”

4.1.6.RELEASE Spring Framework 73

Spring Framework Reference Documentation

Name

Injected Dependency

Explained in...

support for parametrization and
internationalization)

Not i fi cati onPubl i sher Awa

Port| et Confi gAwar e

Por t | et Cont ext Awar e

Resour ceLoader Awar e

8&pring JMX notification
publisher

Current Port | et Confi g
the container runs in. Valid
only in a web-aware Spring
Appl i cati onCont ext

Current Por t | et Cont ext
the container runs in. Valid
only in a web-aware Spring
Appl i cati onCont ext

Configured loader for low-level
access to resources

Section 25.7, “Notifications

Chapter 20, Portlet MVC
Framework

Chapter 20, Portlet MVC
Framework

Chapter 6, Resources

Servl et Confi gAwar e

Current Ser vl et Confi g
the container runs in. Valid
only in a web-aware Spring
Appl i cati onCont ext

Chapter 17, Web MVC
framework

Ser vl et Cont ext Awar e

Current Ser vl et Cont ext
the container runs in. Valid

Chapter 17, Web MVC
framework

only in a web-aware Spring
Appl i cati onCont ext

Note again that usage of these interfaces ties your code to the Spring APl and does not follow
the Inversion of Control style. As such, they are recommended for infrastructure beans that require
programmatic access to the container.

5.7 Bean definition inheritance

A bean definition can contain a lot of configuration information, including constructor arguments, property
values, and container-specific information such as initialization method, static factory method name,
and so on. A child bean definition inherits configuration data from a parent definition. The child definition
can override some values, or add others, as needed. Using parent and child bean definitions can save
a lot of typing. Effectively, this is a form of templating.

If you work with an Applicati onCont ext interface programmatically, child bean definitions
are represented by the ChildBeanDefinition class. Most users do not work with
them on this level, instead configuring bean definitions declaratively in something like the
Cl assPat hXm Appl i cati onCont ext. When you use XML-based configuration metadata, you
indicate a child bean definition by using the par ent attribute, specifying the parent bean as the value
of this attribute.

4.1.6.RELEASE Spring Framework 74

Spring Framework Reference Documentation

<bean id="inheritedTest Bean" abstract="true"
cl ass="org. springframewor k. beans. Test Bean" >
<property name="name" val ue="parent"/>
<property name="age" val ue="1"/>
</ bean>

<bean id="inheritsWthDi fferentd ass"
cl ass="org. springfranmewor k. beans. Deri vedTest Bean"
parent ="inheritedTest Bean" init-method="initialize">
<property nanme="nane" val ue="override"/>
<l-- the age property value of 1 will be inherited fromparent -->
</ bean>

A child bean definition uses the bean class from the parent definition if none is specified, but can also
override it. In the latter case, the child bean class must be compatible with the parent, that is, it must
accept the parent’s property values.

A child bean definition inherits scope, constructor argument values, property values, and method
overrides from the parent, with the option to add new values. Any scope, initialization method, destroy
method, and/or st at i ¢ factory method settings that you specify will override the corresponding parent
settings.

The remaining settings are always taken from the child definition: depends on, autowire mode,
dependency check, singleton, lazy init.

The preceding example explicitly marks the parent bean definition as abstract by using the abst r act
attribute. If the parent definition does not specify a class, explicitly marking the parent bean definition
as abstract is required, as follows:

<bean id="inheritedTest BeanWthout Gl ass" abstract="true">
<property name="nanme" val ue="parent"/>
<property name="age" val ue="1"/>

</ bean>

<bean id="inheritsWthC ass" cl ass="org. spri ngfranmework. beans. Deri vedTest Bean"
parent ="i nheritedTest BeanWthout d ass" init-nmethod="initialize">
<property name="nanme" val ue="override"/>
<l-- age will inherit the value of 1 fromthe parent bean definition-->
</ bean>

The parent bean cannot be instantiated on its own because it is incomplete, and it is also explicitly
marked as abstract. When a definition is abst r act like this, it is usable only as a pure template
bean definition that serves as a parent definition for child definitions. Trying to use such an
abstract parent bean on its own, by referring to it as a ref property of another bean or doing an
explicit get Bean() call with the parent bean id, returns an error. Similarly, the container’s internal
prel nstanti at eSi ngl et ons() method ignores bean definitions that are defined as abstract.

Note

Appl i cati onCont ext pre-instantiates all singletons by default. Therefore, it is important (at
least for singleton beans) that if you have a (parent) bean definition which you intend to use only
as atemplate, and this definition specifies a class, you must make sure to set the abstract attribute
to true, otherwise the application context will actually (attempt to) pre-instantiate the abst r act
bean.

4.1.6.RELEASE Spring Framework 75

Spring Framework Reference Documentation

5.8 Container Extension Points

Typically, an application developer does not need to subclass Appl i cat i onCont ext implementation
classes. Instead, the Spring 10C container can be extended by plugging in implementations of special
integration interfaces. The next few sections describe these integration interfaces.

Customizing beans using a BeanPostProcessor

The BeanPost Pr ocessor interface defines callback methods that you can implement to provide your
own (or override the container’'s default) instantiation logic, dependency-resolution logic, and so forth. If
you want to implement some custom logic after the Spring container finishes instantiating, configuring,
and initializing a bean, you can plug in one or more BeanPost Pr ocessor implementations.

You can configure multiple BeanPost Processor instances, and you can control the order in
which these BeanPost Processors execute by setting the order property. You can set this
property only if the BeanPost Processor implements the Or der ed interface; if you write your own
BeanPost Processor you should consider implementing the Or der ed interface too. For further
details, consult the javadocs of the BeanPost Pr ocessor and Or der ed interfaces. See also the note
below on programmatic registration of BeanPost Pr ocessor s

Note

BeanPost Pr ocessor s operate on bean (or object) instances; that is to say, the Spring 1oC
container instantiates a bean instance and then BeanPost Pr ocessor s do their work.

BeanPost Pr ocessor s are scoped per-container. This is only relevant if you are using container
hierarchies. If you define a BeanPost Processor in one container, it will only post-process the
beans in that container. In other words, beans that are defined in one container are not post-
processed by a BeanPost Pr ocessor defined in another container, even if both containers are
part of the same hierarchy.

To change the actual bean definition (i.e., the blueprint that defines the bean), you instead
need to use a BeanFact or yPost Processor as described in the section called “Customizing
configuration metadata with a BeanFactoryPostProcessor”.

The or g. spri ngf ranewor k. beans. fact ory. confi g. BeanPost Pr ocessor interface consists
of exactly two callback methods. When such a class is registered as a post-processor with the container,
for each bean instance that is created by the container, the post-processor gets a callback from the
container both before container initialization methods (such as InitializingBean's afterPropertiesSet()
and any declared init method) are called as well as after any bean initialization callbacks. The post-
processor can take any action with the bean instance, including ignoring the callback completely. A
bean post-processor typically checks for callback interfaces or may wrap a bean with a proxy. Some
Spring AOP infrastructure classes are implemented as bean post-processors in order to provide proxy-
wrapping logic.

An Appl i cati onCont ext automatically detects any beans that are defined in the configuration
metadata which implement the BeanPost Pr ocessor interface. The Appl i cat i onCont ext registers
these beans as post-processors so that they can be called later upon bean creation. Bean post-
processors can be deployed in the container just like any other beans.

Note that when declaring a BeanPost Pr ocessor using an @ean factory method on a configuration
class, the return type of the factory method should be the implementation class itself or at least

4.1.6.RELEASE Spring Framework 76

Spring Framework Reference Documentation

the org. springframework. beans. factory. confi g. BeanPost Processor interface, clearly
indicating the post-processor nature of that bean. Otherwise, the Appl i cat i onCont ext won't be able
to autodetect it by type before fully creating it. Since a BeanPost Pr ocessor needs to be instantiated
early in order to apply to the initialization of other beans in the context, this early type detection is critical.

Note
Programmatically registering BeanPostProcessors

While the recommended approach for BeanPost Processor registration is through
Appl i cati onCont ext auto-detection (as described above), it is also possible to register them
programmatically against a Conf i gur abl eBeanFact or y using the addBeanPost Pr ocessor
method. This can be useful when needing to evaluate conditional logic before registration,
or even for copying bean post processors across contexts in a hierarchy. Note however
that BeanPost Processor s added programmatically do not respect the Or der ed interface.
Here it is the order of registration that dictates the order of execution. Note also that
BeanPost Processors registered programmatically are always processed before those
registered through auto-detection, regardless of any explicit ordering.

Note
BeanPostProcessors and AOP auto-proxying

Classes that implement the BeanPost Pr ocessor interface are special and are treated differently
by the container. All BeanPost Processors and beans that they reference directly are
instantiated on startup, as part of the special startup phase of the Appl i cat i onCont ext . Next,
all BeanPost Pr ocessor s are registered in a sorted fashion and applied to all further beans in the
container. Because AOP auto-proxying is implemented as a BeanPost Pr ocessor itself, neither
BeanPost Pr ocessor s nor the beans they reference directly are eligible for auto-proxying, and
thus do not have aspects woven into them.

For any such bean, you should see an informational log message: "Bean foo is not eligible
for getting processed by all BeanPostProcessor interfaces (for example: not eligible for auto-

proxying)".

Note that if you have beans wired into your BeanPost Processor using autowiring or
@=esour ce (which may fall back to autowiring), Spring might access unexpected beans when
searching for type-matching dependency candidates, and therefore make them ineligible for
auto-proxying or other kinds of bean post-processing. For example, if you have a dependency
annotated with @esour ce where the field/setter name does not directly correspond to the
declared name of a bean and no name attribute is used, then Spring will access other beans for
matching them by type.

The following examples show how to write, register, and use BeanPost Processors in an

Appl i cati onCont ext .

Example: Hello World, BeanPostProcessor-style

This first example illustrates basic usage. The example shows a custom BeanPost Processor
implementation that invokes the t oSt ri ng() method of each bean as it is created by the container

and prints the resulting string to the system console.

4.1.6.RELEASE Spring Framework

7

Spring Framework Reference Documentation

Find below the custom BeanPost Pr ocessor implementation class definition:

package scripting;

i nport org.springfranework. beans. factory. confi g. BeanPost Processor;
i nport org.springfranework. beans. BeansExcepti on;

public class InstantiationTraci ngBeanPost Processor i npl enents BeanPost Processor {

/] sinply return the instantiated bean as-is
public Object postProcessBeforelnitialization(Object bean,
String beanNane) throws BeansException {
return bean; // we could potentially return any object reference here...

}

public Object postProcessAfterlnitialization(Object bean,
String beanNane) throws BeansException {
Systemout.println("Bean '" + beanName + "' created : " + bean.toString());
return bean;

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngframework. or g/ schenma/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: | ang="http://ww. spri ngframewor k. or g/ schenma/ | ang"
xsi : schemalLocati on="http://ww. spri ngfranmework. or g/ schena/ beans
ht t p: // www. spri ngf ramewor k. or g/ schena/ beans/ spri ng- beans. xsd
http://ww. spri ngfranework. org/ schena/ | ang
ht t p: // www. spri ngf ramewor k. or g/ schenma/ | ang/ spri ng-| ang. xsd" >

<l ang: gr oovy id="messenger"
script-source="cl asspat h: or g/ spri ngf ramewor k/ scri pti ng/ gr oovy/ Messenger . gr oovy" >
<l ang: property name="nessage" val ue="Fiona Apple |Is Just So Dreany."/>
</ | ang: gr oovy>

&l e

when the above bean (nessenger) is instantiated, this custom

BeanPost Processor inplenentation will output the fact to the system consol e
-->

<bean cl ass="scripting.|nstantiati onTraci ngBeanPost Processor"/ >

</ beans>

Notice how the | nst anti ati onTr aci ngBeanPost Processor is simply defined. It does not even
have a name, and because it is a bean it can be dependency-injected just like any other bean. (The
preceding configuration also defines a bean that is backed by a Groovy script. The Spring dynamic
language support is detailed in the chapter entitled Chapter 29, Dynamic language support.)

The following simple Java application executes the preceding code and configuration:

i nport org.springfranework. cont ext. Appl i cati onCont ext;
i nport org.springfranmework. cont ext. support.C assPat hXm Appl i cati onCont ext ;
i nport org.springframework. scripting. Messenger;

public final class Boot {

public static void main(final String[] args) throws Exception {
Appl i cationContext ctx = new C assPat hXm Appli cati onContext ("scripting/ beans.xm");
Messenger nessenger = (Messenger) ctx.getBean("nessenger");
System out. printl n(nessenger);

The output of the preceding application resembles the following:

4.1.6.RELEASE Spring Framework 78

Spring Framework Reference Documentation

Bean nessenger created : org.springfranework.scripting.groovy. G oovyMessenger @72961
org. springframework. scri pting. groovy. G oovyMessenger @72961

Example: The RequiredAnnotationBeanPostProcessor

Using callback interfaces or annotations in conjunction with a custom BeanPost Processor
implementation is a common means of extending the Spring IoC container. An example is Spring’s
Requi r edAnnot at i onBeanPost Processor - a BeanPost Processor implementation that ships
with the Spring distribution which ensures that JavaBean properties on beans that are marked with an
(arbitrary) annotation are actually (configured to be) dependency-injected with a value.

Customizing configuration metadata with a BeanFactoryPostProcessor

The next extension point that we will look at is
the org.springfranmework. beans. factory. confi g. BeanFact or yPost Processor. The
semantics of this interface are similar to those of the BeanPost Pr ocessor , with one major difference:
BeanFact or yPost Pr ocessor operates on the bean configuration metadata; that is, the Spring loC
container allows a BeanFact or yPost Pr ocessor to read the configuration metadata and potentially
change it before the container instantiates any beans other than BeanFact or yPost Processors.

You can configure multiple BeanFact or yPost Pr ocessor s, and you can control the order in which
these BeanFact or yPost Pr ocessor s execute by setting the or der property. However, you can only
set this property if the BeanFact or yPost Pr ocessor implements the Or der ed interface. If you write
your own BeanFact or yPost Pr ocessor, you should consider implementing the Or der ed interface
too. Consult the javadocs of the BeanFact or yPost Processor and O der ed interfaces for more
details.

Note

If you want to change the actual bean instances (i.e., the objects that are created from the
configuration metadata), then you instead need to use a BeanPost Processor (described
above in the section called “Customizing beans using a BeanPostProcessor”). While it is
technically possible to work with bean instances within a BeanFact or yPost Pr ocessor (e.g.,
using BeanFact ory. get Bean()), doing so causes premature bean instantiation, violating the
standard container lifecycle. This may cause negative side effects such as bypassing bean post
processing.

Also, BeanFact or yPost Pr ocessor s are scoped per-container. This is only relevant if you are
using container hierarchies. If you define a BeanFact or yPost Pr ocessor in one container, it
will only be applied to the bean definitions in that container. Bean definitions in one container
will not be post-processed by BeanFact or yPost Pr ocessor s in another container, even if both
containers are part of the same hierarchy.

A bean factory post-processor is executed automatically when it is declared inside an
ApplicationContext, in order to apply changes to the configuration metadata that
define the container. Spring includes a number of predefined bean factory post-processors,
such as PropertyQOverri deConfigurer and PropertyPl acehol der Confi gurer. A custom
BeanFact or yPost Pr ocessor can also be used, for example, to register custom property editors.

An Appl i cat i onCont ext automatically detects any beans that are deployed into it that implement
the BeanFact or yPost Pr ocessor interface. It uses these beans as bean factory post-processors, at
the appropriate time. You can deploy these post-processor beans as you would any other bean.

4.1.6.RELEASE Spring Framework 79

Spring Framework Reference Documentation

Note

As with BeanPostProcessors , you typically do not want to configure
BeanFact or yPost Processors for lazy initialization. If no other bean references a
Bean(Fact ory) Post Processor, that post-processor will not get instantiated at all. Thus,
marking it for lazy initialization will be ignored, and the Bean(Fact or y) Post Processor will be
instantiated eagerly even if you setthe def aul t - | azy-i ni t attribute tot r ue on the declaration
of your <beans /> element.

Example: the Class name substitution PropertyPlaceholderConfigurer

You use the PropertyPl acehol der Confi gurer to externalize property values from a bean
definition in a separate file using the standard Java Pr operti es format. Doing so enables the person
deploying an application to customize environment-specific properties such as database URLs and
passwords, without the complexity or risk of modifying the main XML definition file or files for the
container.

Consider the following XML-based configuration metadata fragment, where a Dat aSour ce with
placeholder values is defined. The example shows properties configured from an external Pr operti es
file. At runtime, a PropertyPl acehol der Confi gur er is applied to the metadata that will replace
some properties of the DataSource. The values to replace are specified as placeholders of the form
${ property-nane} which follows the Ant/log4j/ JSP EL style.

<bean cl ass="org. springframework. beans. factory. confi g. PropertyPl acehol der Confi gurer">
<property name="| ocati ons" val ue="cl asspat h: coni f oo/ j dbc. properties"/>
</ bean>

<bean i d="dat aSource" destroy-nethod="cl ose"
cl ass="or g. apache. cormons. dbcp. Basi cDat aSour ce" >
<property name="driverd assNanme" val ue="${j dbc. dri verC assNane}"/ >
<property name="url" val ue="${jdbc.url}"/>
<property nanme="usernanme" val ue="${j dbc. usernane}"/>
<property name="password" val ue="${j dbc. password}"/>
</ bean>

The actual values come from another file in the standard Java Pr operti es format:

jdbc. driverd assNane=or g. hsql db. j dbcDri ver
jdbc. url =j dbc: hsql db: hsql : // producti on: 9002
j dbc. user nane=sa

j dbc. passwor d=r oot

Therefore, the string ${j dbc. username} is replaced at runtime with the value sa, and
the same applies for other placeholder values that match keys in the properties file. The
Pr opert yPl acehol der Conf i gur er checks for placeholders in most properties and attributes of a
bean definition. Furthermore, the placeholder prefix and suffix can be customized.

With the cont ext namespace introduced in Spring 2.5, it is possible to configure property placeholders
with a dedicated configuration element. One or more locations can be provided as a comma-separated
listin the | ocat i on attribute.

<cont ext: property-pl acehol der | ocati on="cl asspat h: coni f oo/ j dbc. properties"/>

The PropertyPl acehol der Confi gur er not only looks for properties in the Pr operti es file you
specify. By default it also checks against the Java Syst emproperties if it cannot find a property in the
specified properties files. You can customize this behavior by setting the syst enProperti esMbde
property of the configurer with one of the following three supported integer values:

4.1.6.RELEASE Spring Framework 80

Spring Framework Reference Documentation

» never (0): Never check system properties

« fallback (1): Check system properties if not resolvable in the specified properties files. This is the
default.

» override (2): Check system properties first, before trying the specified properties files. This allows
system properties to override any other property source.

Consult the Pr opert yPl acehol der Conf i gur er javadocs for more information.
Tip

You can use the PropertyPl acehol der Confi gurer to substitute class names, which is
sometimes useful when you have to pick a particular implementation class at runtime. For
example:

<bean cl ass="org. springframework. beans. factory. confi g. PropertyPl acehol der Confi gurer">
<property name="| ocati ons">
<val ue>cl asspat h: conl f oo/ strat egy. properti es</val ue>
</ property>
<property name="properties">
<val ue>cust om strat egy. cl ass=com f 0oo. Def aul t St r at egy</ val ue>
</ property>
</ bean>

<bean id="serviceStrategy" class="${custom strategy.class}"/>

If the class cannot be resolved at runtime to a valid class, resolution of the bean fails when
it is about to be created, which is during the pr el nst anti at eSi ngl et ons() phase of an
Appl i cati onCont ext for a non-lazy-init bean.

Example: the PropertyOverrideConfigurer

The PropertyOverrideConfigurer, another bean factory post-processor, resembles the
PropertyPl acehol der Confi gur er, but unlike the latter, the original definitions can have default
values or no values at all for bean properties. If an overriding Pr operti es file does not have an entry
for a certain bean property, the default context definition is used.

Note that the bean definition is not aware of being overridden, so it is not immediately obvious
from the XML definition file that the override configurer is being used. In case of multiple
PropertyOverri deConfi gurer instances that define different values for the same bean property,
the last one wins, due to the overriding mechanism.

Properties file configuration lines take this format:

beanNane. pr operty=val ue

For example:

dat aSour ce. dri ver Cl assName=com nysql . j dbc. Dri ver
dat aSour ce. ur | =j dbc: nysql : nydb

This example file can be used with a container definition that contains a bean called dataSource, which
has driver and url properties.

Compound property names are also supported, as long as every component of the path except the
final property being overridden is already non-null (presumably initialized by the constructors). In this
example...

4.1.6.RELEASE Spring Framework 81

Spring Framework Reference Documentation

f oo. fred. bob. sammy=123

i. the sammy property of the bob property of the f r ed property of the f 00 bean is set to the scalar
value 123.

Note

Specified override values are always literal values; they are not translated into bean references.
This convention also applies when the original value in the XML bean definition specifies a bean
reference.

With the cont ext namespace introduced in Spring 2.5, it is possible to configure property overriding
with a dedicated configuration element:

<cont ext: property-override | ocati on="cl asspat h: overri de. properties"/>

Customizing instantiation logic with a FactoryBean

Implement the or g. spri ngf ramewor k. beans. f act ory. Fact or yBean interface for objects that
are themselves factories.

The Fact or yBean interface is a point of pluggability into the Spring loC container’s instantiation logic.
If you have complex initialization code that is better expressed in Java as opposed to a (potentially)
verbose amount of XML, you can create your own Fact or yBean, write the complex initialization inside
that class, and then plug your custom Fact or yBean into the container.

The Fact or yBean interface provides three methods:

« (bj ect get bject(): returns an instance of the object this factory creates. The instance can
possibly be shared, depending on whether this factory returns singletons or prototypes.

* bool ean i sSi ngl et on() : returnst r ue if this Fact or yBean returns singletons, f al se otherwise.

» Cl ass get Obj ect Type() : returns the object type returned by the get Cbj ect () method or nul |
if the type is not known in advance.

The Fact or yBean concept and interface is used in a number of places within the Spring Framework;
more than 50 implementations of the Fact or yBean interface ship with Spring itself.

When you need to ask a container for an actual Fact or yBean instance itself instead of the bean
it produces, preface the bean’s id with the ampersand symbol (& when calling the get Bean()
method of the Appl i cati onCont ext . So for a given Fact or yBean with an id of nyBean, invoking
get Bean(" nyBean") on the container returns the product of the Fact or yBean; whereas, invoking
get Bean(" &ryBean") returns the Fact or yBean instance itself.

5.9 Annotation-based container configuration

Are annotations better than XML for configuring Spring?

The introduction of annotation-based configurations raised the question of whether this approach
is better than XML. The short answer is it depends. The long answer is that each approach has
its pros and cons, and usually it is up to the developer to decide which strategy suits them better.
Due to the way they are defined, annotations provide a lot of context in their declaration, leading
to shorter and more concise configuration. However, XML excels at wiring up components without

4.1.6.RELEASE Spring Framework 82

Spring Framework Reference Documentation

touching their source code or recompiling them. Some developers prefer having the wiring close
to the source while others argue that annotated classes are no longer POJOs and, furthermore,
that the configuration becomes decentralized and harder to control.

No matter the choice, Spring can accommodate both styles and even mix them together. It's worth
pointing out that through its JavaConfig option, Spring allows annotations to be used in a non-
invasive way, without touching the target components source code and that in terms of tooling, all
configuration styles are supported by the Spring Tool Suite.

An alternative to XML setups is provided by annotation-based configuration which rely on the bytecode
metadata for wiring up components instead of angle-bracket declarations. Instead of using XML to
describe a bean wiring, the developer moves the configuration into the component class itself by using
annotations on the relevant class, method, or field declaration. As mentioned in the section called
“Example: The RequiredAnnotationBeanPostProcessor”, using a BeanPost Pr ocessor in conjunction
with annotations is a common means of extending the Spring loC container. For example, Spring
2.0 introduced the possibility of enforcing required properties with the @Required annotation. Spring
2.5 made it possible to follow that same general approach to drive Spring’s dependency injection.
Essentially, the @\ut owi r ed annotation provides the same capabilities as described in the section
called “Autowiring collaborators” but with more fine-grained control and wider applicability. Spring 2.5
also added support for JSR-250 annotations such as @Post Const r uct, and @°r eDest r oy. Spring
3.0 added support for JSR-330 (Dependency Injection for Java) annotations contained in the javax.inject
package such as @ nj ect and @Naned. Details about those annotations can be found in the relevant
section.

Note

Annotation injection is performed before XML injection, thus the latter configuration will override
the former for properties wired through both approaches.

As always, you can register them as individual bean definitions, but they can also be implicitly registered
by including the following tag in an XML-based Spring configuration (notice the inclusion of the cont ext
namespace):

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schenma/ beans"
xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schena- i nst ance"
xm ns: context ="http://ww. springfranmework. or g/ schema/ cont ext "
xsi : schemaLocat i on="http://ww. spri ngfranmewor k. or g/ schena/ beans
http://ww. springfranework. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springfranework. or g/ schena/ cont ext
http://ww. spri ngfranmework. or g/ schema/ cont ext/ spri ng-cont ext . xsd">

<cont ext: annot ati on-confi g/ >

</ beans>

(The implicitly registered post-processors include Aut owi r edAnnot at i onBeanPost Pr ocessor,
CommonAnnot at i onBeanPost Pr ocessor, Per si st enceAnnot at i onBeanPost Pr ocessor, as
well as the aforementioned Requi r edAnnot at i onBeanPost Pr ocessor .)

Note

<cont ext : annot at i on- conf i g/ >only looks for annotations on beans in the same application
context in which it is defined. This means that, if you put <cont ext : annot at i on- confi g/ >

4.1.6.RELEASE Spring Framework 83

https://spring.io/tools/sts
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/beans/factory/annotation/AutowiredAnnotationBeanPostProcessor.html
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/context/annotation/CommonAnnotationBeanPostProcessor.html
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/orm/jpa/support/PersistenceAnnotationBeanPostProcessor.html
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/beans/factory/annotation/RequiredAnnotationBeanPostProcessor.html

Spring Framework Reference Documentation

in a WebAppl i cat i onCont ext for a Di spat cher Servl et it only checks for @\ut owi r ed
beans in your controllers, and not your services. See Section 17.2, “The DispatcherServlet” for
more information.

@Required

The @Requi r ed annotation applies to bean property setter methods, as in the following example:

public class SinpleMvieLister {
private MovieFi nder novi eFi nder;

@Requi red
public void set Mvi eFi nder (Mvi eFi nder novi eFi nder) {
t hi s. novi eFi nder = novi eFi nder;

}

...

This annotation simply indicates that the affected bean property must be populated at configuration time,
through an explicit property value in a bean definition or through autowiring. The container throws an
exception if the affected bean property has not been populated; this allows for eager and explicit failure,
avoiding Nul | Poi nt er Except i ons or the like later on. It is still recommended that you put assertions
into the bean class itself, for example, into an init method. Doing so enforces those required references
and values even when you use the class outside of a container.

@Autowired

As expected, you can apply the @Aut owi r ed annotation to "traditional” setter methods:

public class SinpleMvielister {
private Mvi eFi nder novi eFi nder;
@\ut owi r ed
public voi d set Mvi eFi nder (Mvi eFi nder novi eFi nder) {

t hi s. novi eFi nder = novi eFi nder;

}

N/

Note

JSR 330's @Inject annotation can be used in place of Spring’s @\ut owi r ed annotation in the
examples below. See here for more details

You can also apply the annotation to methods with arbitrary names and/or multiple arguments:

4.1.6.RELEASE Spring Framework 84

Spring Framework Reference Documentation

public class Myvi eRecommender {
private Myvi eCatal og novi eCat al og;
private CustonerPreferenceDao custoner PreferencebDao;

@\ut owi r ed
public void prepare(MyvieCatal og novi eCat al og,
Cust orrer Pr ef er enceDao cust oner Pr ef er enceDao) {
this.novi eCatal og = novi eCat al og;
this.custonerPreferencebDao = custoner PreferencebDao;

You can apply @\ut owi r ed to constructors and fields:

public class Myvi eRecommender {

@\ut owi r ed
private MvieCatal og novi eCat al og;

private CustonerPreferenceDao custoner PreferenceDao;

@\ut owi r ed
publ i ¢ Movi eRecommender (Cust oner Pr ef erenceDao cust oner Pr ef er enceDao) {
this.custonerPreferencebDao = custoner PreferencebDao;

}

Il

It is also possible to provide all beans of a particular type from the Appl i cat i onCont ext by adding
the annotation to a field or method that expects an array of that type:

public class Myvi eRecommender {

@\ut owi r ed
private MvieCatal og[] novi eCat al ogs;

/1

The same applies for typed collections:

public class Myvi eRecommender {
private Set<Mvi eCatal og> novi eCat al ogs;
@\ut owi r ed
public voi d set Myvi eCat al ogs(Set <Movi eCat al og> novi eCat al ogs) {

t hi s. novi eCat al ogs = novi eCat al ogs;

}

Il

4.1.6.RELEASE Spring Framework 85

Spring Framework Reference Documentation

Tip

Your beans can implement the or g. spri ngf r amewor k. cor e. O der ed interface or either use
the @ der or standard @i ori t y annotation if you want items in the array or list to be sorted
into a specific order.

Even typed Maps can be autowired as long as the expected key type is St ri ng. The Map values will
contain all beans of the expected type, and the keys will contain the corresponding bean names:

public class Myvi eRecommender {
private Map<String, MvieCatal og> novi eCat al ogs;
@\ut owi r ed

public void set Mvi eCat al ogs(Map<String, Mvi eCatal og> novi eCat al ogs) {
t hi s. novi eCat al ogs = novi eCat al ogs;

}

...

By default, the autowiring fails whenever zero candidate beans are available; the default behavior is to
treat annotated methods, constructors, and fields as indicating required dependencies. This behavior
can be changed as demonstrated below.

public class SinpleMvielister {
private MovieFi nder novi eFi nder;
@\ut owi red(required=fal se)

public void setMvieFi nder (Mvi eFi nder novi eFi nder) {
t hi s. novi eFi nder = novi eFi nder;

}

...

Note

Only one annotated constructor per-class can be marked as required, but multiple non-required
constructors can be annotated. In that case, each is considered among the candidates and Spring
uses the greediest constructor whose dependencies can be satisfied, that is the constructor that
has the largest number of arguments.

@\ut owi r ed's required attribute is recommended over the @Requi r ed annotation. The required
attribute indicates that the property is not required for autowiring purposes, the property is ignored
if it cannot be autowired. @Requi r ed, on the other hand, is stronger in that it enforces the property
that was set by any means supported by the container. If no value is injected, a corresponding
exception is raised.

You can also wuse @A\utow red for interfaces that are well-known resolvable
dependencies: BeanFactory, ApplicationContext, Environment, Resourceloader,
Appl i cati onEvent Publ i sher, and MessageSource. These interfaces and their extended
interfaces, such as Confi gur abl eAppl i cati onCont ext or Resour cePatt er nResol ver, are
automatically resolved, with no special setup necessary.

4.1.6.RELEASE Spring Framework 86

Spring Framework Reference Documentation

public class Myvi eRecommender {

@\ut owi r ed
private ApplicationContext context;

publ i c Mvi eRecommender () {
}

N/

Note

@\wut owi red, @nj ect, @esource, and @al ue annotations are handled by a Spring
BeanPost Pr ocessor implementations which in turn means that you cannot apply these
annotations within your own BeanPost Pr ocessor or BeanFact or yPost Processor types (if
any). These types must be wired up explicitly via XML or using a Spring @ean method.

Fine-tuning annotation-based autowiring with qualifiers

Because autowiring by type may lead to multiple candidates, it is often necessary to have more control
over the selection process. One way to accomplish this is with Spring’s @ual i fi er annotation. You
can associate qualifier values with specific arguments, narrowing the set of type matches so that a
specific bean is chosen for each argument. In the simplest case, this can be a plain descriptive value:

public class Myvi eRecommender {
@\ut owi r ed
@alifier("main")
private MovieCatal og novi eCat al og;

...

The @ual i fi er annotation can also be specified on individual constructor arguments or method
parameters:

public class Myvi eRecommender {
private MvieCatal og novi eCat al og;
private CustonerPreferenceDao custoner PreferenceDao;

@\ut owi r ed
public void prepare(@ualifier("min")MvieCatal og novi eCat al og,
Cust oner Pr ef er enceDao cust oner Pr ef er enceDao) {
t hi s. novi eCat al og = novi eCat al og;
t hi s. cust omer Pref erenceDao = cust oner Pr ef er enceDao;

The corresponding bean definitions appear as follows. The bean with qualifier value "main" is wired with
the constructor argument that is qualified with the same value.

4.1.6.RELEASE Spring Framework 87

Spring Framework Reference Documentation

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: cont ext ="htt p://wwm. spri ngframewor k. or g/ schena/ cont ext "
xsi : schemaLocati on="http://ww. spri ngframewor k. or g/ schema/ beans
http://ww. spri ngfranework. or g/ schena/ beans/ spri ng- beans. xsd
http://ww. springfranework. or g/ schena/ cont ext
http://ww. springfranework. or g/ schema/ cont ext/ spri ng-cont ext.xsd">

<cont ext : annot ati on- confi g/ >

<bean cl ass="exanpl e. Si npl eMovi eCat al og" >
<qualifier value="main"/>

<l'-- inject any dependencies required by this bean -->
</ bean>

<bean cl ass="exanpl e. Si npl eMovi eCat al og" >
<qualifier value="action"/>

<l'-- inject any dependencies required by this bean -->
</ bean>

<bean i d="novi eRecommender" cl ass="exanpl e. Movi eReconmender"/ >

</ beans>

For a fallback match, the bean name is considered a default qualifier value. Thus you can define the bean
with an id "main" instead of the nested qualifier element, leading to the same matching result. However,
although you can use this convention to refer to specific beans by name, @\ut owi r ed is fundamentally
about type-driven injection with optional semantic qualifiers. This means that qualifier values, even with
the bean name fallback, always have narrowing semantics within the set of type matches; they do not
semantically express a reference to a unique bean id. Good qualifier values are "main" or "EMEA" or
"persistent”, expressing characteristics of a specific component that are independent from the bean id,
which may be auto-generated in case of an anonymous bean definition like the one in the preceding
example.

Qualifiers also apply to typed collections, as discussed above, for example, to Set <Movi eCat al og>. In
this case, all matching beans according to the declared qualifiers are injected as a collection. This implies
that qualifiers do not have to be unique; they rather simply constitute filtering criteria. For example, you
can define multiple Movi eCat al og beans with the same qualifier value "action”; all of which would be
injected into a Set <Movi eCat al og> annotated with @ual i fi er ("action").

Tip

If you intend to express annotation-driven injection by name, do not primarily use @\ut owi r ed,
even if is technically capable of referring to a bean name through @ual i fi er values. Instead,
use the JSR-250 @Resour ce annotation, which is semantically defined to identify a specific target
component by its unique name, with the declared type being irrelevant for the matching process.

As a specific consequence of this semantic difference, beans that are themselves defined as a
collection or map type cannot be injected through @\ut owi r ed, because type matching is not
properly applicable to them. Use @Resour ce for such beans, referring to the specific collection
or map bean by unique name.

@\ut owi r ed applies to fields, constructors, and multi-argument methods, allowing for narrowing
through qualifier annotations at the parameter level. By contrast, @Resour ce is supported only
for fields and bean property setter methods with a single argument. As a consequence, stick with
qualifiers if your injection target is a constructor or a multi-argument method.

4.1.6.RELEASE Spring Framework 88

Spring Framework Reference Documentation

You can create your own custom qualifier annotations. Simply define an annotation and provide the
@ual i fi er annotation within your definition:

@rar get ({ El enent Type. FI ELD, El enent Type. PARAVETER})
@Ret ent i on(Ret ent i onPol i cy. RUNTI ME)

@ualifier

public @nterface Genre {

String val ue();

Then you can provide the custom qualifier on autowired fields and parameters:

public class Myvi eRecommender {

@\ut owi r ed

@zenre("Action")

private Movi eCatal og actionCat al og;
private MovieCatal og conedyCat al og;

@\ut owi r ed
public void set ConedyCat al og(@enr e(" Conedy") Mvi eCat al og conedyCat al og) {
t hi s. conedyCat al og = conedyCat al og;

}

/1

Next, provide the information for the candidate bean definitions. You can add <qual i fi er/ > tags as
sub-elements of the <bean/ > tag and then specify the t ype and val ue to match your custom qualifier
annotations. The type is matched against the fully-qualified class name of the annotation. Or, as a
convenience if no risk of conflicting names exists, you can use the short class name. Both approaches
are demonstrated in the following example.

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngframework. org/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: cont ext ="http://ww. spri ngfranmewor k. or g/ schema/ cont ext "
xsi : schemaLocati on="http://ww. spri ngfranmework. or g/ schena/ beans
http://ww. springfranmework. or g/ schema/ beans/ spri ng- beans. xsd
ht t p: / / www. spri ngf ramewor k. or g/ schena/ cont ext
http: //wwv. spri ngfranewor k. or g/ schena/ cont ext/ spri ng- cont ext . xsd" >

<cont ext: annot ati on-confi g/ >

<bean cl ass="exanpl e. Si npl eMovi eCat al og" >

<qualifier type="Genre" val ue="Action"/>

<!-- inject any dependencies required by this bean -->
</ bean>

<bean cl ass="exanpl e. Si npl eMovi eCat al og" >

_<qualifier type="exanple.Genre" val ue="Conedy"/>

<I-- inject any dependencies required by this bean -->
</ bean>

<bean id="novi eRecommender" cl ass="exanpl e. Movi eReconmender"/ >

</ beans>

In Section 5.10, “Classpath scanning and managed components”, you will see an annotation-based
alternative to providing the qualifier metadata in XML. Specifically, see the section called “Providing
qualifier metadata with annotations”.

4.1.6.RELEASE Spring Framework 89

Spring Framework Reference Documentation

In some cases, it may be sufficient to use an annotation without a value. This may be useful when
the annotation serves a more generic purpose and can be applied across several different types of
dependencies. For example, you may provide an offline catalog that would be searched when no Internet

connection is available. First define the simple annotation:
@ar get ({El enment Type. FI ELD, El enent Type. PARAVETER})
@=et enti on(Ret enti onPol i cy. RUNTI MVE)
@ualifier
public @nterface Ofline {

}

Then add the annotation to the field or property to be autowired:

public class Myvi eRecommender {
@\ut owi r ed
@fline
private MovieCatal og of flineCatal og;

Il

Now the bean definition only needs a qualifier t ype:

<bean cl ass="exanpl e. Si npl eMovi eCat al og" >

<qualifier type="Ofline"/>

<l'-- inject any dependencies required by this bean -->
</ bean>

You can also define custom qualifier annotations that accept named attributes in addition to or instead
of the simple val ue attribute. If multiple attribute values are then specified on a field or parameter
to be autowired, a bean definition must match all such attribute values to be considered an autowire
candidate. As an example, consider the following annotation definition:

@rar get ({ El enent Type. FI ELD, El enent Type. PARAVETER})
@Ret ent i on(Ret ent i onPol i cy. RUNTI ME)

@ualifier

public @nterface MvieQualifier {

String genre();

Format format();

In this case For mat is an enum:

public enum For mat {
VHS, DVD, BLURAY

}

The fields to be autowired are annotated with the custom qualifier and include values for both attributes:
genre and f or mat .

4.1.6.RELEASE Spring Framework 90

Spring Framework Reference Documentation

public class Myvi eRecommender {

@\ut owi r ed
@mbvi eQual i fier(format=Format.VHS, genre="Action")
private MvieCatal og actionVhsCatal og;

@\ut owi r ed
@mbvi eQual i fier(format=Format.VHS, genre="Conedy")
private MvieCatal og conedyVhsCat al og;

@\ut owi r ed
@mbvi eQual i fier(format=Fornmat.DVD, genre="Action")
private MvieCatal og acti onDvdCat al og;

@\ut owi r ed
@mbvi eQual i fier(format=Format . BLURAY, genre="Conedy")
private Mvi eCatal og comedyBl uRayCat al og;

Il

Finally, the bean definitions should contain matching qualifier values. This example also demonstrates
that bean meta attributes may be used instead of the <qual i f i er / > sub-elements. If available, the
<qual i fier/> and its attributes take precedence, but the autowiring mechanism falls back on the
values provided within the <met a/ > tags if no such qualifier is present, as in the last two bean definitions

in the following example.

<?xm version="1.0" encodi ng="UTF-8"?>

<beans xm ns="http://ww. springframework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: context ="http://ww. springfranmework. or g/ schema/ cont ext "
xsi : schemalLocat i on="htt p: // ww. spri ngf ramewor k. or g/ schena/ beans

http://ww. springfranework. or g/ schena/ cont ext

<cont ext : annot ati on-confi g/ >

<bean cl ass="exanpl e. Si npl eMovi eCat al og" >
<qualifier type="MovieQualifier">
<attribute key="format" val ue="VHS"/>
<attribute key="genre" val ue="Action"/>
</qualifier>
<l-- inject any dependencies required by this bean -->
</ bean>

<bean cl ass="exanpl e. Si npl eMovi eCat al og" >
<qualifier type="MyvieQualifier">
<attribute key="format" val ue="VHS"/>
<attribute key="genre" val ue="Conedy"/>
</qualifier>
<l-- inject any dependencies required by this bean -->
</ bean>

<bean cl ass="exanpl e. Si npl eMovi eCat al 0og" >

<nmeta key="format" val ue="DVD'/ >

<nmeta key="genre" val ue="Action"/>

<l-- inject any dependencies required by this bean -->
</ bean>

<bean cl ass="exanpl e. Si npl eMovi eCat al 0og" >

<nmeta key="format" val ue="BLURAY"/>

<nmeta key="genre" val ue="Conedy"/>

<l-- inject any dependencies required by this bean -->
</ bean>

</ beans>

ht t p: // www. spri ngf ramewor k. or g/ schena/ beans/ spri ng- beans. xsd

http://ww. springfranework. or g/ schema/ cont ext/ spri ng-cont ext . xsd" >

4.1.6.RELEASE Spring Framework

91

Spring Framework Reference Documentation

Using generics as autowiring qualifiers

In addition to the @al i fi er annotation, it is also possible to use Java generic types as an implicit
form of qualification. For example, suppose you have the following configuration:

@onfiguration
public class MyConfiguration {

@Bean
public StringStore stringStore() {
return new StringStore();

}

@Bean
public IntegerStore integerStore() {
return new I ntegerStore();

}

Assuming that beans above implement a generic interface, i.e. Store<String> and
St or e<I nt eger >, you can @\ut owi r e the St or e interface and the generic will be used as a qualifier:

@\ut owi r ed
private Store<String> sl1; // <String> qualifier, injects the stringStore bean

@\ut owi r ed
private Store<lnteger> s2; // <Integer> qualifier, injects the integerStore bean

Generic qualifiers also apply when autowiring Lists, Maps and Arrays:

/1 Inject all Store beans as |ong as they have an <l nteger> generic
/| Store<String> beans will not appear in this |ist

@\ut owi r ed

private List<Store<lnteger>> s;

CustomAutowireConfigurer

The Cust omAut owi r eConfi gur er is a BeanFact or yPost Processor that enables you to register
your own custom qualifier annotation types even if they are not annotated with Spring’s @ual i fi er
annotation.

<bean id="cust omAut owi r eConfi gurer"
cl ass="org. springframewor k. beans. fact ory. annot ati on. Cust omAut owi r eConfi gurer">
<property name="customQualifierTypes">
<set >
<val ue>exanpl e. Cust onQual i fi er </ val ue>
</ set >
</ property>
</ bean>

The Aut owi r eCandi dat eResol ver determines autowire candidates by:
» the aut owi r e- candi dat e value of each bean definition
e any def aul t - aut owi r e- candi dat es pattern(s) available on the <beans/ > element

» the presence of @ualifier annotations and any custom annotations registered with the
Cust omAut owi r eConf i gur er

When multiple beans qualify as autowire candidates, the determination of a "primary" is the following:
if exactly one bean definition among the candidates has a pri mary attribute set to t r ue, it will be
selected.

4.1.6.RELEASE Spring Framework 92

http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/beans/factory/annotation/CustomAutowireConfigurer.html

Spring Framework Reference Documentation

@Resource

Spring also supports injection using the JSR-250 @Resour ce annotation on fields or bean property
setter methods. This is a common pattern in Java EE 5 and 6, for example in JSF 1.2 managed beans
or JAX-WS 2.0 endpoints. Spring supports this pattern for Spring-managed objects as well.

@resour ce takes a name attribute, and by default Spring interprets that value as the bean name to be
injected. In other words, it follows by-name semantics, as demonstrated in this example:

public class SinpleMvielister {
private Mvi eFi nder novi eFi nder;

@Resour ce(nane="nyMvi eFi nder ")
public void setMvieFi nder (Mvi eFi nder novi eFi nder) {
t hi s. novi eFi nder = novi eFi nder;

}

If no name is specified explicitly, the default name is derived from the field name or setter method. In
case of a field, it takes the field name; in case of a setter method, it takes the bean property name. So
the following example is going to have the bean with name "movieFinder" injected into its setter method:

public class SinpleMvielister {

private Mvi eFi nder novi eFi nder;

@Resour ce
public voi d set Mvi eFi nder (Mvi eFi nder novi eFi nder) {
t hi s. novi eFi nder = novi eFi nder;
}
}
Note

The name provided with the annotation is resolved as a bean name by the
Appl i cati onCont ext of which the CormonAnnot at i onBeanPost Pr ocessor is aware. The
names can be resolved through JNDI if you configure Spring’s Si npl eJndi BeanFact ory
explicitly. However, it is recommended that you rely on the default behavior and simply use
Spring’s JNDI lookup capabilities to preserve the level of indirection.

In the exclusive case of @Resour ce usage with no explicit name specified, and similar to @\ut owi r ed,
@resour ce finds a primary type match instead of a specific named bean and resolves well-
known resolvable dependencies: the BeanFact ory, Appl i cati onCont ext, Resour ceLoader,
Appl i cati onEvent Publ i sher, and MessageSour ce interfaces.

Thus in the following example, the cust oner PreferenceDao field first looks for a bean
named customerPreferenceDao, then falls back to a primary type match for the type
Cust omrer Pr ef er enceDao. The "context" field is injected based on the known resolvable dependency
type Appl i cati onCont ext .

4.1.6.RELEASE Spring Framework 93

http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/jndi/support/SimpleJndiBeanFactory.html

Spring Framework Reference Documentation

public class Myvi eRecommender {

@resour ce
private CustomnerPreferenceDao customnerPreferenceDao;

@Resour ce
private ApplicationContext context;

publ i c Movi eRecommender () {
}

...

@PostConstruct and @PreDestroy

The ConmonAnnot at i onBeanPost Processor not only recognizes the @Resour ce annotation
but also the JSR-250 lifecycle annotations. Introduced in Spring 2.5, the support for these
annotations offers yet another alternative to those described in initialization callbacks and destruction
callbacks. Provided that the ConmonAnnot at i onBeanPost Pr ocessor is registered within the Spring
Appl i cati onCont ext , a method carrying one of these annotations is invoked at the same point in the
lifecycle as the corresponding Spring lifecycle interface method or explicitly declared callback method.
In the example below, the cache will be pre-populated upon initialization and cleared upon destruction.

public class Cachi nghbvi eLi ster {

@ost Const r uct
public voi d popul at eMovi eCache() {
/'l popul ates the novie cache upon initialization...

}

@r eDest r oy
public void cl earMvieCache() {
/'l clears the novie cache upon destruction...

}

Note

For details about the effects of combining various lifecycle mechanisms, see the section called
“Combining lifecycle mechanisms”.

5.10 Classpath scanning and managed components

Most examples in this chapter use XML to specify the configuration metadata that produces each
BeanDef i ni ti on within the Spring container. The previous section (Section 5.9, “Annotation-based
container configuration”) demonstrates how to provide a lot of the configuration metadata through
source-level annotations. Even in those examples, however, the "base” bean definitions are explicitly
defined in the XML file, while the annotations only drive the dependency injection. This section describes
an option for implicitly detecting the candidate components by scanning the classpath. Candidate
components are classes that match against a filter criteria and have a corresponding bean definition
registered with the container. This removes the need to use XML to perform bean registration, instead
you can use annotations (for example @Component), Aspect] type expressions, or your own custom
filter criteria to select which classes will have bean definitions registered with the container.

4.1.6.RELEASE Spring Framework 94

Spring Framework Reference Documentation

Note

Starting with Spring 3.0, many features provided by the Spring JavaConfig project are part of
the core Spring Framework. This allows you to define beans using Java rather than using the
traditional XML files. Take a look at the @onf i gur at i on, @ean, @ nport , and @ependsOn
annotations for examples of how to use these new features.

@Component and further stereotype annotations

The @Reposi t or y annotation is a marker for any class that fulfills the role or stereotype (also known as
Data Access Object or DAO) of a repository. Among the uses of this marker is the automatic translation
of exceptions as described in the section called “Exception translation”.

Spring provides further stereotype annotations: @onponent, @ervice, and @ontroll er.
@omponent is a generic stereotype for any Spring-managed component. @Reposi t ory, @er vi ce,
and @ontrol | er are specializations of @onponent for more specific use cases, for example,
in the persistence, service, and presentation layers, respectively. Therefore, you can annotate your
component classes with @onponent, but by annotating them with @eposi t ory, @bervi ce, or
@control | er instead, your classes are more properly suited for processing by tools or associating
with aspects. For example, these stereotype annotations make ideal targets for pointcuts. It is also
possible that @Reposi t ory, @er vi ce, and @ont r ol | er may carry additional semantics in future
releases of the Spring Framewaork. Thus, if you are choosing between using @onponent or @er vi ce
for your service layer, @er vi ce is clearly the better choice. Similarly, as stated above, @Reposi t ory
is already supported as a marker for automatic exception translation in your persistence layer.

Meta-annotations
Many of the annotations provided by Spring can be used as "meta-annotations” in your own code. A

meta-annotation is simply an annotation, that can be applied to another annotation. For example, The
@er vi ce annotation mentioned above is meta-annotated with with @onponent :

@rar get ({ El enent Type. TYPE})

@Ret ent i on(Ret ent i onPol i cy. RUNTI ME)

@ocunent ed

@conmponent // Spring will see this and treat @ervice in the same way as @onponent
public @nterface Service {

I ooao

Meta-annotations can also be combined together to create composed annotations. For example,
the @Rest Control | er annotation from Spring MVC is composed of @ontroller and
@ResponseBody.

With the exception of val ue(), meta-annotated types may redeclare attributes from the source
annotation to allow user customization. This can be particularly useful when you want to only expose
a subset of the source annotation attributes. For example, here is a custom @scope annotation that
defines sessi on scope, but still allows customization of the pr oxyMde.

4.1.6.RELEASE Spring Framework 95

Spring Framework Reference Documentation

@rar get ({ El enent Type. TYPE})

@Ret ent i on(Ret enti onPol i cy. RUNTI ME)
@ocunent ed

@bcope("session")

public @nterface SessionScope {

ScopedPr oxyMdde proxyMode() default ScopedProxyMdde. DEFAULT

Automatically detecting classes and registering bean definitions

Spring can automatically detect stereotyped classes and register corresponding BeanDef i ni ti ons
with the Appli cationContext. For example, the following two classes are eligible for such
autodetection:

@ervi ce
public class SinpleMvielLister {

private MvieFi nder novi eFi nder;

@\ut owi r ed
publ i c Si npl eMovi eLi st er (Mvi eFi nder novi eFi nder) {
t hi s. novi eFi nder = novi eFi nder;

}

@Repository
public class JpaMovi eFi nder inplenents MvieFinder {
/] inplenmentation elided for clarity

}

To autodetect these classes and register the corresponding beans, you need to add @onponent Scan
to your @onf i gur ati on class, where the basePackages attribute is a common parent package for
the two classes. (Alternatively, you can specify a comma/semicolon/space-separated list that includes
the parent package of each class.)

@onfiguration
@onponent Scan(basePackages = "org. exanpl e")
public class AppConfig {

}

Note

for concision, the above may have used the val ue attribute of the annotation, i.e.
Conponent Scan(" or g. exanpl e")

The following is an alternative using XML

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngframework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: cont ext ="http://ww. springfranmewor k. or g/ schema/ cont ext "
xsi : schemalLocati on="http://ww. spri ngfranmework. or g/ schena/ beans
ht t p: / / www. spri ngf ramewor k. or g/ schena/ beans/ spri ng- beans. xsd
ht t p: / / www. spri ngf ramewor k. or g/ schena/ cont ext
ht t p: // www. spri ngf ramewor k. or g/ schenma/ cont ext/ spri ng- cont ext . xsd" >

<cont ext: conponent - scan base- package="or g. exanpl e"/ >

</ beans>

4.1.6.RELEASE Spring Framework 96

Spring Framework Reference Documentation

Tip

The use of <context:conponent-scan> implicitty enables the functionality of
<context:annotation-config> There is wusually no need to include the
<cont ext : annot at i on- conf i g> element when using <cont ext : conponent - scan>.

Note

The scanning of classpath packages requires the presence of corresponding directory entries in
the classpath. When you build JARs with Ant, make sure that you do not activate the files-only
switch of the JAR task. Also, classpath directories may not get exposed based on security policies
in some environments, e.g. standalone apps on JDK 1.7.0_45 and higher (which requires Trusted-
Library setup in your manifests; see http://stackoverflow.com/questions/19394570/java-jre-7u45-
breaks-classloader-getresources).

Furthermore, the Aut owi r edAnnot at i onBeanPost Pr ocessor and
ConmonAnnot at i onBeanPost Processor are both included implicitly when you use the component-
scan element. That means that the two components are autodetected and wired together - all without
any bean configuration metadata provided in XML.

Note

You can disable the registration of Aut owi r edAnnot ati onBeanPost Processor and
ConmonAnnot at i onBeanPost Processor by including the annotation-config attribute with a
value of false.

Using filters to customize scanning

By default, classes annotated with @onponent, @Repository, @ervi ce, @ontroller, or
a custom annotation that itself is annotated with @onponent are the only detected candidate
components. However, you can modify and extend this behavior simply by applying custom filters. Add
them as includeFilters or excludeFilters parameters of the @onponent Scan annotation (or as include-
filter or exclude-filter sub-elements of the conponent - scan element). Each filter element requires the
t ype and expr essi on attributes. The following table describes the filtering options.

Table 5.5. Filter Types

Filter Type Example Expression Description

annotation (default) or g. exanpl e. SoneAnnot at i 0An annotation to be present
at the type level in target
components.

assignable or g. exanpl e. Soned ass A class (or interface) that

the target components
are assignable to (extend/
implement).

aspectj org. exanpl e. . *Servi ce+ An AspectJ type expression
to be matched by the target
components.

4.1.6.RELEASE Spring Framework 97

http://stackoverflow.com/questions/19394570/java-jre-7u45-breaks-classloader-getresources
http://stackoverflow.com/questions/19394570/java-jre-7u45-breaks-classloader-getresources

Spring Framework Reference Documentation

Filter Type Example Expression Description

regex org\.exanple\.Default.* A regex expression to be
matched by the target
components class names.

custom org. exanpl e. M\yTypeFi | t er A custom implementation of the
org. springfranmework. core.type . TypeFi
interface.

The following example shows the configuration ignoring all @Reposi t or y annotations and using "stub"
repositories instead.

@onfiguration

@onponent Scan(basePackages = "org. exanpl e",
includeFilters = @ilter(type = FilterType. REGEX, pattern = ".*Stub. *Repository"),
excludeFilters = @ilter(Repository.class))

public class AppConfig {

}

and the equivalent using XML

<beans>
<cont ext : conponent - scan base- package="or g. exanpl e" >
<context:include-filter type="regex"
expressi on=".*St ub. *Reposi tory"/>
<cont ext: exclude-filter type="annotation"
expressi on="org. spri ngf ramewor k. st er eot ype. Reposi tory"/ >
</ cont ext : conponent - scan>
</ beans>

Note

You can also disable the default filters by setting useDef aul t Fi | t er s=f al se on the annotation
or providing use-default-filters="fal se" as an attribute of the <component-scan/>
element. This will in effect disable automatic detection of classes annotated with @onponent ,
@Reposi tory, @ervice,or @ontroller.

Defining bean metadata within components

Spring components can also contribute bean definition metadata to the container. You do this with the
same @ean annotation used to define bean metadata within @onf i gur at i on annotated classes.
Here is a simple example:

@Conponent
public class FactoryMet hodConponent {

@ean
@ualifier("public")
public TestBean publiclnstance() {
return new TestBean("publiclnstance");

}

public void dowrk() {
/'l Conponent nethod inplenentation onitted

}

4.1.6.RELEASE Spring Framework 98

Spring Framework Reference Documentation

This class is a Spring component that has application-specific code contained in its doWr k()
method. However, it also contributes a bean definition that has a factory method referring to the
method publ i cl nst ance(). The @ean annotation identifies the factory method and other bean
definition properties, such as a qualifier value through the @ual i f i er annotation. Other method level
annotations that can be specified are @cope, @Qazy, and custom qualifier annotations.

Tip
In addition to its role for component initialization, the @.azy annotation may also be placed on

injection points marked with @\ut owi r ed or @ nj ect . In this context, it leads to the injection
of a lazy-resolution proxy.

Autowired fields and methods are supported as previously discussed, with additional support for
autowiring of @ean methods:

@onponent
public class FactoryMet hodConponent {

private static int i;

@Bean
@ualifier("public")
public TestBean publiclnstance() {
return new TestBean("publiclnstance");

}

/1 use of a customqualifier and autow ring of nethod paraneters

@ean
protected TestBean protectedl nstance(
@ualifier("public") TestBean spouse,
@/al ve("#{privatelnstance. age}") String country) {
Test Bean tb = new Test Bean("protectedl nstance", 1);
tb. set Spouse(spouse);
tb. set Country(country);
return tb;

}

@Bean
@cope(BeanDef i ni ti on. SCOPE_SI NGLETON)
private TestBean privatel nstance() {
return new TestBean("privatel nstance", i++);

}

@Bean
@cope(val ue = WebAppl i cati onCont ext. SCOPE_SESSI ON, proxyMdde = ScopedPr oxyMde. TARGET _CLASS)
publi c Test Bean request Scopedl nstance() {

return new Test Bean("request Scopedl nstance", 3);

}

The example autowires the St ri ng method parameter count ry to the value of the Age property on
another bean named pri vat el nst ance. A Spring Expression Language element defines the value
of the property through the notation #{ <expressi on> }. For @/al ue annotations, an expression
resolver is preconfigured to look for bean names when resolving expression text.

The @ean methods in a Spring component are processed differently than their counterparts inside
a Spring @onfi guration class. The difference is that @onponent classes are not enhanced
with CGLIB to intercept the invocation of methods and fields. CGLIB proxying is the means by which
invoking methods or fields within @ean methods in @onf i gur at i on classes creates bean metadata

4.1.6.RELEASE Spring Framework 99

Spring Framework Reference Documentation

references to collaborating objects; such methods are not invoked with normal Java semantics. In
contrast, invoking a method or field in an @ean method within a @onponent class has standard Java
semantics.

Naming autodetected components

When a component is autodetected as part of the scanning process, its bean name is generated by the
BeanNameGener at or strategy known to that scanner. By default, any Spring stereotype annotation (
@onponent , @Reposi t ory, @er vi ce, and @ont r ol | er) that contains a nare value will thereby
provide that name to the corresponding bean definition.

If such an annotation contains no nane value or for any other detected component (such as those
discovered by custom filters), the default bean name generator returns the uncapitalized non-qualified
class name. For example, if the following two components were detected, the names would be
myMovieLister and movieFinderimpl:

@ser vi ce("nyMovi eLi ster")

public class SinpleMuvieLister {
/o,

}

@Reposi tory
public class MvieFinderlnpl inplenents MvieFinder {
...

}

Note

If you do not want to rely on the default bean-naming strategy, you can provide a custom bean-
naming strategy. First, implement the BeanNanmeGener at or interface, and be sure to include
a default no-arg constructor. Then, provide the fully-qualified class nhame when configuring the
scanner:

@onfiguration
@onponent Scan(basePackages = "org. exanpl e", naneGenerator = MyNaneGener at or . cl ass)
public class AppConfig {

}

<beans>
<cont ext : conponent - scan base- package="or g. exanpl e"
name- gener at or =" or g. exanpl e. \yNaneGenerator" />
</ beans>

As a general rule, consider specifying the name with the annotation whenever other components may be
making explicit references to it. On the other hand, the auto-generated names are adequate whenever
the container is responsible for wiring.

Providing a scope for autodetected components
As with Spring-managed components in general, the default and most common scope for autodetected

components is singleton. However, sometimes you need other scopes, which Spring 2.5 provides with
a new @scope annotation. Simply provide the name of the scope within the annotation:

4.1.6.RELEASE Spring Framework 100

http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/beans/factory/support/BeanNameGenerator.html

Spring Framework Reference Documentation

@scope(" prot ot ype")

@Reposi tory

public class MvieFinderlnpl inplenents MvieFinder {
/1

}

Note

To provide a custom strategy for scope resolution rather than relying on the annotation-based
approach, implement the ScopeMet adat aResol ver interface, and be sure to include a default
no-arg constructor. Then, provide the fully-qualified class name when configuring the scanner:

@onfiguration
@onponent Scan(basePackages = "org. exanpl e", scopeResol ver = MyScopeResol ver. cl ass)

public class AppConfig {

}

<beans>
<cont ext: conponent - scan base- package="or g. exanpl e"
scope-resol ver ="or g. exanpl e. MyScopeResol ver" />
</ beans>

When using certain non-singleton scopes, it may be necessary to generate proxies for the scoped
objects. The reasoning is described in the section called “Scoped beans as dependencies”. For this
purpose, a scoped-proxy attribute is available on the component-scan element. The three possible
values are: no, interfaces, and targetClass. For example, the following configuration will result in
standard JDK dynamic proxies:

@onfi guration
@onponent Scan(basePackages = "org. exanpl e", scopedProxy = ScopedProxyMde. | NTERFACES)
public class AppConfig {

}

<beans>
<cont ext: conponent - scan base- package="or g. exanpl e"
scoped- proxy="interfaces" />
</ beans>

Providing qualifier metadata with annotations

The @ualifier annotation is discussed in the section called “Fine-tuning annotation-based
autowiring with qualifiers”. The examples in that section demonstrate the use of the @ual i fi er
annotation and custom qualifier annotations to provide fine-grained control when you resolve autowire
candidates. Because those examples were based on XML bean definitions, the qualifier metadata was
provided on the candidate bean definitions using the qual i fi er or et a sub-elements of the bean
element in the XML. When relying upon classpath scanning for autodetection of components, you
provide the qualifier metadata with type-level annotations on the candidate class. The following three
examples demonstrate this technique:

@onponent

@ual i fier("Action")

public class ActionMvieCatal og i npl enents Mvi eCat al og {
11

}

4.1.6.RELEASE Spring Framework 101

http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/context/annotation/ScopeMetadataResolver.html

Spring Framework Reference Documentation

@Conponent

@zenre("Action")

public class ActionMvieCatal og i npl enents Mvi eCat al og {
...

}

@onponent

@xfline

public class Cachi ngWbvi eCat al og i npl enents Myvi eCat al og {
...

}

Note

As with most annotation-based alternatives, keep in mind that the annotation metadata is bound
to the class definition itself, while the use of XML allows for multiple beans of the same type
to provide variations in their qualifier metadata, because that metadata is provided per-instance
rather than per-class.

5.11 Using JSR 330 Standard Annotations

Starting with Spring 3.0, Spring offers support for JSR-330 standard annotations (Dependency
Injection). Those annotations are scanned in the same way as the Spring annotations. You just need
to have the relevant jars in your classpath.

Note

If you are using Maven, the j avax.inject artifact is available in the standard Maven
repository (http://repol.maven.org/maven2/javax/inject/javax.inject/1/). You can add the following
dependency to your file pom.xmil:

<dependency>
<groupl d>j avax. i nj ect </ gr oupl d>
<artifactld>javax.inject</artifactld>
<ver si on>1</ ver si on>

</ dependency>

Dependency Injection with @Inject and @Named
Instead of @Aut owi r ed, @ avax. i nj ect. | nj ect may be used as follows:

i nport javax.inject.Inject;

public class SinpleMvielLister {
private MvieFi nder novi eFi nder;
@ nj ect

public void set Mvi eFi nder (Mvi eFi nder novi eFi nder) {
t hi s. novi eFi nder = novi eFi nder;

}

...

As with @A\ut owi r ed, it is possible to use @ nj ect at the class-level, field-level, method-level and
constructor-argument level. If you would like to use a qualified name for the dependency that should be
injected, you should use the @Naned annotation as follows:

4.1.6.RELEASE Spring Framework 102

http://repo1.maven.org/maven2/javax/inject/javax.inject/1/

Spring Framework Reference Documentation

i nport javax.inject.Inject;
i nport javax.inject. Naned;

public class SinpleMuvielister {
private MvieFi nder novi eFi nder;
@ nj ect

public void setMvieFi nder (@laned("mai n") Mvi eFi nder novi eFi nder) {
this. novi eFi nder = novi eFi nder;

}

Il

@Named: a standard equivalent to the @Component annotation

Instead of @onponent , @ avax. i nj ect . Named may be used as follows:

i nport javax.inject.l|nject;
i nport javax.inject.Naned;

@\aned(" movi eLi st ener™)
public class SinpleMvielister {

private Mvi eFi nder novi eFi nder;
@ nj ect

public void set MvieFi nder (Mvi eFi nder novi eFi nder) {
t hi s. novi eFi nder = novi eFi nder;

}

Il

It is very common to use @onponent without specifying a name for the component. @Naned can be
used in a similar fashion:

i nport javax.inject.Inject;
i nport javax.inject.Naned;

@\aned
public class SinpleMvieLister {

private Mvi eFi nder novi eFi nder;
@ nj ect

public voi d set Mvi eFi nder (Myvi eFi nder novi eFi nder) {
this. novi eFi nder = novi eFi nder;

}

Il

When using @Naned, it is possible to use component-scanning in the exact same way as when using
Spring annotations:

@onfi guration
@onponent Scan(basePackages = "org. exanpl e")
public class AppConfig {

}

4.1.6.RELEASE Spring Framework 103

Spring Framework Reference Documentation

Limitations of the standard approach

When working with standard annotations, it is important to know that some significant features are not
available as shown in the table below:

Table 5.6. Spring annotations vs. standard annotations

Spring javax.inject.* javax.inject restrictions /
comments

@Autowired @Inject @Inject has no required
attribute

@Component @Named -

@Scope("singleton™) @Singleton The JSR-330 default scope

is like Spring’s pr ot ot ype.
However, in order to keep it
consistent with Spring’s general
defaults, a JSR-330 bean
declared in the Spring container
is a si ngl et on by default. In
order to use a scope other than
si ngl et on, you should use
Spring’s @cope annotation.

j avax. i nj ect also provides
a @Scope annotation.
Nevertheless, this one is only
intended to be used for creating
your own annotations.

@Qualifier @Named -

@Value - no equivalent
@Required - no equivalent
@Lazy - no equivalent

5.12 Java-based container configuration

Basic concepts: @Bean and @Configuration

The central artifacts in Spring’s new Java-configuration support are @onf i gur ati on-annotated
classes and @ean-annotated methods.

The @ean annotation is used to indicate that a method instantiates, configures and initializes a
new object to be managed by the Spring 10C container. For those familiar with Spring’s <beans/ >
XML configuration the @ean annotation plays the same role as the <bean/ > element. You can use
@ean annotated methods with any Spring @onponent, however, they are most often used with
@confi gur ati on beans.

Annotating a class with @onf i gur at i on indicates that its primary purpose is as a source of bean
definitions. Furthermore, @onf i gur at i on classes allow inter-bean dependencies to be defined by

4.1.6.RELEASE Spring Framework 104

http://download.oracle.com/javaee/6/api/javax/inject/Scope.html

Spring Framework Reference Documentation

simply calling other @Bean methods in the same class. The simplest possible @onf i gur ati on class
would read as follows:

@onfi guration
public class AppConfig {

@Bean
public MyService nyService() {
return new MyServicel npl ()

}

The AppConf i g class above would be equivalent to the following Spring <beans/ > XML:

<beans>
<bean id="nyService" class="com acne. servi ces. MyServicelnpl"/>
</ beans>

The @ean and @onf i gur ati on annotations will be discussed in depth in the sections below. First,
however, we’'ll cover the various ways of creating a spring container using Java-based configuration.

Full @Configuration vs lite @Beans mode?

When @ean methods are declared within classes that are not annotated with @onf i gur ati on
they are referred to as being processed in a lite mode. For example, bean methods declared in a
@Conponent or even in a plain old class will be considered lite.

Unlike full @onf i gur at i on, lite @ean methods cannot easily declare inter-bean dependencies.
Usually one @ean method should not invoke another @@ean method when operating in lite mode.

Only using @ean methods within @onf i gur ati on classes is a recommended approach of
ensuring that full mode is always used. This will prevent the same @ean method from accidentally
being invoked multiple times and helps to reduce subtle bugs that can be hard to track down when
operating in lite mode.

Instantiating the Spring container using
AnnotationConfigApplicationContext

The sections below document Spring’s Annot at i onConf i gAppl i cat i onCont ext, new in Spring
3.0. This versatile ApplicationContext implementation is capable of accepting not only
@onfi gurati on classes as input, but also plain @onponent classes and classes annotated with
JSR-330 metadata.

When @Conf i gur at i on classes are provided as input, the @onf i gur at i on class itself is registered
as a bean definition, and all declared @ean methods within the class are also registered as bean
definitions.

When @onponent and JSR-330 classes are provided, they are registered as bean definitions, and it
is assumed that DI metadata such as @\ut owi r ed or @ nj ect are used within those classes where
necessary.

Simple construction

In much the same way that Spring XML files are used as input when instantiating a
Cl assPat hXm Appl i cati onCont ext, @onfi gurati on classes may be used as input when

4.1.6.RELEASE Spring Framework 105

Spring Framework Reference Documentation

instantiating an Annot at i onConfi gAppl i cati onCont ext. This allows for completely XML-free
usage of the Spring container:

public static void main(String[] args) {
Appl i cationContext ctx = new Annot ati onConfi gAppl i cati onCont ext (AppConfi g.cl ass);
MyService nyService = ctx.get Bean(M/Service. cl ass);
nmyServi ce. doSt uff ();

As mentioned above, Annot at i onConfi gAppl i cati onCont ext is not limited to working only with
@confi gur ati on classes. Any @onponent or JSR-330 annotated class may be supplied as input
to the constructor. For example:

public static void main(String[] args) {
Appl i cationContext ctx = new Annotati onConfi gAppli cationContext(MServicel npl.class,
Dependencyl. cl ass, Dependency?2. cl ass);
MyServi ce nyService = ctx.getBean(M/Servi ce. cl ass);
nmyService. doStuff();

The above assumes that MySer vi cel npl , Dependency1 and Dependency?2 use Spring dependency
injection annotations such as @\ut owi r ed.

Building the container programmatically using register(Class<?>...)

An Annot at i onConf i gAppl i cati onCont ext may be instantiated using a no-arg constructor
and then configured using the regi ster() method. This approach is particularly useful when
programmatically building an Annot at i onConfi gAppl i cati onCont ext .

public static void main(String[] args) {
Annot at i onConf i gAppl i cati onCont ext ctx = new Annot ati onConfi gAppl i cati onContext();
ctx.regi ster (AppConfig.class, QherConfig.class);
ctx.regi ster(Additional Config.class);
ctx.refresh();
My/Servi ce nyService = ctx.getBean(M/Servi ce. cl ass);
myServi ce. doSt uff ();

Enabling component scanning with scan(String...)

To enable component scanning, just annotate your @onf i gur at i on class as follows:

@onfiguration
@onponent Scan(basePackages = "com acne")
public class AppConfig {

}

Tip

Experienced Spring users will be familiar with the XML declaration equivalent from Spring’s
cont ext : namespace

<beans>
<cont ext : conponent - scan base- package="com acne"/ >
</ beans>

In the example above, the com acrme package will be scanned, looking for any @onponent -
annotated classes, and those classes will be registered as Spring bean definitions within the container.

4.1.6.RELEASE Spring Framework 106

Spring Framework Reference Documentation

Annot at i onConf i gAppl i cati onCont ext exposesthescan(Stri ng...) methodto allow for the
same component-scanning functionality:

public static void main(String[] args) {
Annot at i onConf i gAppl i cati onContext ctx = new Annot ati onConfi gAppl i cati onContext();
ctx.scan("com acne");
ctx.refresh();
MyServi ce nyService = ctx. get Bean(M/Servi ce. cl ass);

Note

Remember that @onfi gurati on classes are meta-annotated with @onponent, so they
are candidates for component-scanning! In the example above, assuming that AppConfi g is
declared within the com acmne package (or any package underneath), it will be picked up during
the callto scan() ,and uponr ef resh() allits @ean methods will be processed and registered
as bean definitions within the container.

Support for web applications with AnnotationConfigWebApplicationContext

A WebAppl i cati onCont ext variant of Annot ati onConfi gAppl i cati onCont ext is available
with Annot at i onConf i g\WebAppl i cati onContext. This implementation may be used
when configuring the Spring Cont extLoaderLi stener servlet listener, Spring MVC
Di spat cher Ser vl et , etc. What follows is a web. xml snippet that configures a typical Spring MVC
web application. Note the use of the cont ext Cl ass context-param and init-param:

4.1.6.RELEASE Spring Framework 107

Spring Framework Reference Documentation

<web- app>

<l-- Configure ContextLoaderlListener to use Annotati onConfi gWebAppli cati onCont ext
i nstead of the default Xm WebApplicationContext -->

<cont ext - par an»
<par am nanme>cont ext 0 ass</ par am nanme>
<par am val ue>

or g. spri ngf ramewor k. web. cont ext . support. Annot at i onConf i g\WebAppl i cat i onCont ext

</ par am val ue>

</ cont ext - par an>

<l-- Configuration |locations nmust consist of one or nore comma- or space-delimted
fully-qualified @onfiguration classes. Fully-qualified packages nay al so be
speci fied for conponent-scanning -->

<cont ext - par an»
<par am nanme>cont ext Conf i gLocat i on</ par am nane>
<param val ue>com acne. AppConfi g</ param val ue>

</ cont ext - par an>

<l-- Bootstrap the root application context as usual using ContextLoaderListener -->
<l i stener>

<l i stener-cl ass>org. spri ngframewor k. web. cont ext . Cont ext Loader Li stener</|istener-class>
</listener>

<l-- Declare a Spring M/C D spat cherServl et as usual -->
<servl et >
<servl et - nane>di spat cher </ ser vl et - nane>
<servl et-cl ass>org. spri ngframewor k. web. servl et. Di spat cher Servl et </ servlet-class>
<!-- Configure DispatcherServlet to use Annotati onConfi gWebAppl i cati onCont ext
instead of the default Xnl WebApplicationContext -->
<init-paranp
<par am nane>cont ext Cl ass</ par am nanme>
<par am val ue>
or g. springfranmewor k. web. cont ext . support . Annot ati onConf i gWebAppl i cati onCont ext
</ param val ue>
</init-paran>
<l-- Again, config |locations nust consist of one or nobre comma- or space-delimted
and fully-qualified @onfiguration classes -->
<init-paranp
<par am nanme>cont ext Conf i gLocat i on</ par am nane>
<param val ue>com acne. web. MrcConfi g</ param val ue>
</init-paranme
</ servlet>

<I-- map all requests for /app/* to the dispatcher servliet -->
<servl et - mappi ng>
<ser vl et - name>di spat cher </ ser vl et - name>
<url -pattern>/app/*</url-pattern>
</ servl et - mappi ng>
</ web- app>

Using the @Bean annotation

@ean is a method-level annotation and a direct analog of the XML <bean/ > element. The annotation
supports some of the attributes offered by <bean/ >, such as: init-method, destroy-method, autowiring
and nane.

You can use the @ean annotation in a @onf i gur ati on-annotated or in a @onponent -annotated
class.

Declaring a bean

To declare a bean, simply annotate a method with the @ean annotation. You use this method to register
a bean definition within an Appl i cati onCont ext of the type specified as the method'’s return value.
By default, the bean name will be the same as the method name. The following is a simple example
of a @ean method declaration:

4.1.6.RELEASE Spring Framework 108

Spring Framework Reference Documentation

@onfi guration
public class AppConfig {

@Bean
public TransferService transferService() {
return new TransferServicelnpl ();

}

The preceding configuration is exactly equivalent to the following Spring XML:

<beans>
<bean id="transferService" class="com acne. Transfer Servi cel npl "/ >
</ beans>

Both declarations make a bean named t r ansf er Ser vi ce available in the Appl i cat i onCont ext ,
bound to an object instance of type Tr ansf er Ser vi cel npl :

transferService -> com acne. Transf er Servi cel npl

Receiving lifecycle callbacks

Any classes defined with the @ean annotation support the regular lifecycle callbacks and can use the
@ost Const ruct and @r eDest r oy annotations from JSR-250, see JSR-250 annotations for further
details.

The regular Spring lifecycle callbacks are fully supported as well. If a bean implements
InitializingBean, Di sposabl eBean, or Li f ecycl e, their respective methods are called by the
container.

The standard set of *Aware interfaces such as BeanFactoryAware, BeanNameAware,
MessageSourceAware, ApplicationContextAware, and so on are also fully supported.

The @ean annotation supports specifying arbitrary initialization and destruction callback methods,
much like Spring XML’s i ni t - net hod and dest r oy- net hod attributes on the bean element:

public class Foo {
public void init() {
/1l initialization |ogic
}
}

public class Bar {
public void cleanup() {
/| destruction |ogic
}
}

@onfiguration
public class AppConfig {

@ean(initMethod = "init")
public Foo foo() {
return new Foo();

}

@ean(destroyMet hod = "cl eanup")
public Bar bar() {
return new Bar();

}

4.1.6.RELEASE Spring Framework 109

Spring Framework Reference Documentation

Note

By default, beans defined using Java config that have a public cl ose or shut down method
are automatically enlisted with a destruction callback. If you have a public cl ose or shut down
method and you do not wish for it to be called when the container shuts down, simply add
@ean(dest royMet hod="") to your bean definition to disable the default (i nf err ed) mode.

Of course, in the case of Foo above, it would be equally as valid to call the i ni t () method directly
during construction:

@configuration
public class AppConfig {
@Bean

public Foo foo() {
Foo foo = new Foo();
foo.init();
return foo;

Tip

When you work directly in Java, you can do anything you like with your objects and do not always
need to rely on the container lifecycle!

Specifying bean scope
Using the @Scope annotation

You can specify that your beans defined with the @ean annotation should have a specific scope. You
can use any of the standard scopes specified in the Bean Scopes section.

The default scope is si ngl et on, but you can override this with the @cope annotation:

@onfiguration
public class MyConfiguration {

@Bean

@cope(" prot ot ype")

public Encryptor encryptor() {
/o,

}

@Scope and scoped-proxy

Spring offers a convenient way of working with scoped dependencies through scoped proxies. The
easiest way to create such a proxy when using the XML configuration is the <aop: scoped- pr oxy/
> element. Configuring your beans in Java with a @Scope annotation offers equivalent support with
the proxyMode attribute. The default is no proxy (ScopedPr oxyMode. NO), but you can specify
ScopedPr oxyMode. TARGET_CLASS or ScopedPr oxyMde. | NTERFACES.

If you port the scoped proxy example from the XML reference documentation (see preceding link) to
our @ean using Java, it would look like the following:

4.1.6.RELEASE Spring Framework 110

Spring Framework Reference Documentation

/1 an HTTP Sessi on-scoped bean exposed as a proxy
@Bean
@cope(val ue = "session", proxyMde = ScopedProxyMWbde. TARGET_CLASS)
public UserPreferences userPreferences() {
return new User Preferences();

}

@Bean

public Service userService() {
User Servi ce service = new Sinpl eUser Service();
/1 a reference to the proxied userPreferences bean
servi ce. set User Pref erences(user Pref erences());
return service;

Customizing bean naming

By default, configuration classes use a @ean method’s name as the name of the resulting bean. This
functionality can be overridden, however, with the namne attribute.

@configuration
public class AppConfig {

@ean(nanme = "nmyFoo")
public Foo foo() {
return new Foo();

}

Bean aliasing

As discussed in the section called “Naming beans”, it is sometimes desirable to give a single bean
multiple names, otherwise known asbean aliasing. The nane attribute of the @ean annotation accepts
a String array for this purpose.

@configuration
public class AppConfig {

@ean(nanme = { "dataSource", "subsystemA-dataSource", "subsystenB-dataSource" })
publ i ¢ Dat aSour ce dataSource() {
/] instantiate, configure and return DataSource bean...

}

Bean description

Sometimes it is helpful to provide a more detailed textual description of a bean. This can be particularly
useful when beans are exposed (perhaps via JMX) for monitoring purposes.

To add a description to a @ean the @escr i pti on annotation can be used:

@onfiguration
public class AppConfig {

@Bean
@escription("Provides a basic exanpl e of a bean")
public Foo foo() {

return new Foo();

}

4.1.6.RELEASE Spring Framework 111

http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/context/annotation/Description.html

Spring Framework Reference Documentation

Using the @Configuration annotation

@confi gurati on is a class-level annotation indicating that an object is a source of bean definitions.
@confi gurati on classes declare beans via public @ean annotated methods. Calls to @ean
methods on @Conf i gur ati on classes can also be used to define inter-bean dependencies. See the
section called “Basic concepts: @Bean and @Configuration” for a general introduction.

Injecting inter-bean dependencies

When @eans have dependencies on one another, expressing that dependency is as simple as having
one bean method call another:

@onfiguration
public class AppConfig {

@Bean
public Foo foo() {
return new Foo(bar());

}

@Bean
public Bar bar() {
return new Bar();

}

In the example above, the f 00 bean receives a reference to bar via constructor injection.

Note

This method of declaring inter-bean dependencies only works when the @ean method is declared
within a @onfi gurati on class. You cannot declare inter-bean dependencies using plain
@conponent classes.

Lookup method injection

As noted earlier, lookup method injection is an advanced feature that you should use rarely. It is useful
in cases where a singleton-scoped bean has a dependency on a prototype-scoped bean. Using Java
for this type of configuration provides a natural means for implementing this pattern.

public abstract class ConmandManager {
public Object process(Object coomandState) {
/1 grab a new instance of the appropriate Command interface
Command conmmand = creat eCommand() ;

/1 set the state on the (hopefully brand new) Conmand i nstance
command. set St at e(commandSt at e) ;
return command. execut e();

}

/'l okay... but where is the inplenentation of this nethod?
protected abstract Command creat eCommand();

Using Java-configuration support , you can create a subclass of CormandManager where the abstract
cr eat eCommand() method is overridden in such a way that it looks up a new (prototype) command
object:

4.1.6.RELEASE Spring Framework 112

Spring Framework Reference Documentation

@Bean

@scope(" prot ot ype")

publ i c AsyncConmand asyncCommand() {
AsyncCommand command = new AsyncConmand() ;
/'l inject dependencies here as required
return command;

}

@ean
publ i ¢ CommandManager conmandManager () {
/1 return new anonynous i npl enentation of CommandManager with command() overridden
/1 to return a new prototype Command obj ect
return new CommandManager () {
protected Conmand creat eCommand() {
return asyncConmand();

}

Further information about how Java-based configuration works internally

The following example shows a @ean annotated method being called twice:

@onfi guration
public class AppConfig {

@Bean

public dientService clientServicel() {
ClientServicelnpl clientService = new CientServicelnpl();
clientService.setCientDao(clientDao());
return clientService;

}

@Bean

public CdientService clientService2() {
ClientServicelnpl clientService = new CientServicelnpl();
clientService.setCientDao(clientDao());
return clientService;

}

@Bean
public CientDao clientDao() {
return new C i ent Daol npl ();

}

cl i ent Dao() hasbeen calledonceincl i ent Servi cel() andonceincl i ent Servi ce2(). Since
this method creates a new instance of C i ent Daol npl and returns it, you would normally expect
having 2 instances (one for each service). That definitely would be problematic: in Spring, instantiated
beans have a si ngl et on scope by default. This is where the magic comes in: All @onfi gurati on
classes are subclassed at startup-time with CGLI B. In the subclass, the child method checks the
container first for any cached (scoped) beans before it calls the parent method and creates a new
instance. Note that as of Spring 3.2, it is no longer necessary to add CGLIB to your classpath because
CGLIB classes have been repackaged under org.springframework and included directly within the
spring-core JAR.

Note

The behavior could be different according to the scope of your bean. We are talking about
singletons here.

4.1.6.RELEASE Spring Framework 113

Spring Framework Reference Documentation

Note
There are a few restrictions due to the fact that CGLIB dynamically adds features at startup-time:

» Configuration classes should not be final

» They should have a constructor with no arguments

Composing Java-based configurations
Using the @Import annotation

Much as the <i npor t / > element is used within Spring XML files to aid in modularizing configurations,
the @ npor t annotation allows for loading @ean definitions from another configuration class:

@confi guration
public class ConfigA {

@Bean
public A a() {
return new A();

}
}

@onfiguration
@ nport (Confi gA. cl ass)
public class ConfigB {

@Bean
public B b() {
return new B();

}

Now, rather than needing to specify both Conf i gA. cl ass and Conf i gB. cl ass when instantiating
the context, only Conf i gB needs to be supplied explicitly:

public static void main(String[] args) {
ApplicationContext ctx = new Annotati onConfi gAppli cationContext (ConfigB.class);

/1 now both beans A and B will be available...
A a = ctx.getBean(A. class);
B b = ctx.getBean(B.class);

This approach simplifies container instantiation, as only one class needs to be dealt with, rather than
requiring the developer to remember a potentially large number of @onf i gur ati on classes during
construction.

Injecting dependencies on imported @Bean definitions

The example above works, but is simplistic. In most practical scenarios, beans will have dependencies
on one another across configuration classes. When using XML, this is not an issue, per se, because
there is no compiler involved, and one can simply declare r ef =" someBean" and trust that Spring will
work it out during container initialization. Of course, when using @onf i gur ati on classes, the Java
compiler places constraints on the configuration model, in that references to other beans must be valid
Java syntax.

4.1.6.RELEASE Spring Framework 114

Spring Framework Reference Documentation

Fortunately, solving this problem is simple. Remember that @onf i gur ati on classes are ultimately
just another bean in the container - this means that they can take advantage of @A\ut owi r ed injection
metadata just like any other bean!

Let's consider a more real-world scenario with several @onf i gur at i on classes, each depending on
beans declared in the others:

@onfi guration
public class ServiceConfig {

@\ut owi r ed
private Account Repository account Repository;

@ean
public TransferService transferService() {
return new Transfer Servicel npl (account Reposi tory);

}
}

@onfiguration
public class RepositoryConfig {

@\ut owi r ed
private DataSource dataSource;

@Bean
publ i ¢ Account Repository account Repository() {
return new JdbcAccount Reposi t or y(dat aSour ce) ;

}
}

@onfiguration
@ nport ({Servi ceConfig.class, RepositoryConfig.class})

public class SystenfestConfig {

@Bean
publ i c Dat aSour ce dataSource() {
/1 return new DataSource

}
}

public static void main(String[] args) {
ApplicationContext ctx = new Annotati onConfi gAppli cationContext (SystenTest Config.cl ass);
/'l everything wires up across configuration classes...
TransferService transferService = ctx.getBean(TransferService.class);
transferService. transfer(100. 00, "A123", "C456");

In the scenario above, using @\ut owi red works well and provides the desired modularity, but
determining exactly where the autowired bean definitions are declared is still somewhat ambiguous. For
example, as a developer looking at Ser vi ceConf i g, how do you know exactly where the @\ut owi r ed
Account Reposi tory bean is declared? It's not explicit in the code, and this may be just fine.
Remember that the Spring Tool Suite provides tooling that can render graphs showing how everything
is wired up - that may be all you need. Also, your Java IDE can easily find all declarations and uses of
the Account Reposi t ory type, and will quickly show you the location of @ean methods that return
that type.

In cases where this ambiguity is not acceptable and you wish to have direct navigation from within
your IDE from one @Conf i gur ati on class to another, consider autowiring the configuration classes
themselves:

4.1.6.RELEASE Spring Framework 115

https://spring.io/tools/sts

Spring Framework Reference Documentation

@onfi guration
public class ServiceConfig {

@\ut owi r ed
private RepositoryConfig repositoryConfig;

@Bean
public TransferService transferService() {
/'l navigate through the config class to the @ean method!
return new Transfer Servicel npl (repositoryConfig.account Repository());

In the situation above, it is completely explicit where Account Reposi tory is defined. However,
Ser vi ceConfi g is now tightly coupled to Reposi t or yConf i g; that's the tradeoff. This tight coupling
can be somewhat mitigated by using interface-based or abstract class-based @Confi gurati on
classes. Consider the following:

@onfiguration
public class ServiceConfig {

@\ut owi r ed
private RepositoryConfig repositoryConfig;

@Bean
public TransferService transferService() {
return new Transfer Servicel npl (repositoryConfig.accountRepository());
}
}

@configuration
public interface RepositoryConfig {

@Bean
Account Reposi tory account Repository();

}

@onfiguration
public class Defaul t RepositoryConfig inplenments RepositoryConfig {

@Bean
publ i ¢ Account Reposi tory account Repository() {
return new JdbcAccount Repository(...);

}
}

@configuration
@ nport ({ServiceConfig.class, DefaultRepositoryConfig.class}) // inport the concrete config!

public class SysteniTestConfig {

@Bean
publ i c Dat aSour ce dataSource() {
/'l return DataSource

}
}

public static void main(String[] args) {
Appl i cati onContext ctx = new Annot ati onConfi gAppl i cati onCont ext (Syst eniTest Confi g. cl ass);
TransferService transferService = ctx.getBean(TransferService.cl ass);
transferService.transfer(100.00, "A123", "C456");

Now Ser vi ceConfi g is loosely coupled with respect to the concrete Def aul t Reposi t or yConfi g,
and built-in IDE tooling is still useful: it will be easy for the developer to get a type hierarchy of

4.1.6.RELEASE Spring Framework 116

Spring Framework Reference Documentation

Reposi t or yConfi g implementations. In this way, navigating @onf i gur ati on classes and their
dependencies becomes no different than the usual process of navigating interface-based code.

Conditionally including @Configuration classes or @Beans

Itis often useful to conditionally enable to disable a complete @onf i gur at i on class, or even individual
@ean methods, based on some arbitrary system state. One common example of this it to use the
@r of i | e annotation to active beans only when a specific profile has been enabled in the Spring
Envi ronnent (see the section called “Bean definition profiles” for details).

The @rrofile annotation is actually implemented using a much more flexible
annotation called @Conditional. The @onditional annotation indicates specific
or g. spri ngframewor k. cont ext . annot ati on. Condi ti on implementations that should be
consulted before a @ean is registered.

Implementations of the Condi t i on interface simply provide a mat ches(...) method that returns
true orf al se. For example, here is the actual Condi t i on implementation used for @r of i | e:

@verride
publ i c bool ean mat ches(Condi ti onCont ext context, AnnotatedTypeMetadata netadata) {
if (context.getEnvironment() != null) {

/! Read the @rofile annotation attributes
Ml ti Val ueMap<String, Object> attrs =
met adat a. get Al | Annot ationAttributes(Profile.class.getNane());

if (attrs !'= null) {
for (Cbject value : attrs.get("value")) {
if (context.getEnvironment().acceptsProfiles(((String[]) value))) {

return true;
}
}
return false;
}
}

return true;

See the @ondi ti onal javadocs for more detail.

Combining Java and XML configuration

Spring’s @onf i gur ati on class support does not aim to be a 100% complete replacement for Spring
XML. Some facilities such as Spring XML namespaces remain an ideal way to configure the container.
In cases where XML is convenient or necessary, you have a choice: either instantiate the container in an
"XML-centric" way using, for example, Cl assPat hXm Appl i cati onCont ext, or in a "Java-centric"
fashion using Annot at i onConf i gAppl i cat i onCont ext and the @ nport Resour ce annotation to
import XML as needed.

XML-centric use of @Configuration classes

It may be preferable to bootstrap the Spring container from XML and include @onf i gur at i on classes
in an ad-hoc fashion. For example, in a large existing codebase that uses Spring XML, it will be easier to
create @onf i gur at i on classes on an as-needed basis and include them from the existing XML files.
Below you'll find the options for using @onf i gur at i on classes in this kind of "XML-centric" situation.

Remember that @onf i gur at i on classes are ultimately just bean definitions in the container. In this
example, we create a @onf i gur at i on class named AppConf i g andinclude itwithinsyst em t est -
config.xm as a <bean/ > definition. Because <cont ext : annot ati on-confi g/ > is switched

4.1.6.RELEASE Spring Framework 117

http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/context/annotation/Conditional.html
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/context/annotation/Conditional.html

Spring Framework Reference Documentation

on, the container will recognize the @onfi gur ati on annotation, and process the @ean methods
declared in AppConf i g properly.

@configuration
public class AppConfig {

@\ut owi r ed
private DataSource dataSource;

@Bean
publ i ¢ Account Reposi tory account Repository() {
return new JdbcAccount Reposi t ory(dat aSource);

}

@Bean
public TransferService transferService() {
return new Transfer Servi ce(account Repository());

}

systemtest-config.xn

<beans>
<l-- enabl e processing of annotations such as @\wutow red and @onfiguration -->
<cont ext : annot ati on- confi g/ >
<cont ext: property-placehol der |ocati on="cl asspath:/conl acne/jdbc. properties"/>

<bean cl ass="com acne. AppConfig"/>

<bean cl ass="org. springfranmework.j dbc. dat asour ce. Dri ver Manager Dat aSour ce" >
<property name="url" val ue="${jdbc.url}"/>
<property name="usernanme" val ue="${j dbc. usernane}"/>
<property nanme="password" val ue="${j dbc. password}"/ >
</ bean>
</ beans>

jdbc. properties

jdbc. url =j dbc: hsql db: hsql : //1 ocal host/ xdb
j dbc. user nane=sa

j dbc. passwor d=

public static void main(String[] args) {

Appl i cati onContext ctx = new C assPat hXnl Appl i cati onCont ext ("cl asspat h: / comf acne/ system t est -
config.xm");

Transf er Servi ce transferService = ctx.getBean(TransferService. cl ass);

/1

Note

In systemtest-config.xm above, the AppConfi g<bean/> does not declare an id
element. While it would be acceptable to do so, it is unnecessary given that no other bean will ever
refer to it, and it is unlikely that it will be explicitly fetched from the container by name. Likewise
with the Dat aSour ce bean - it is only ever autowired by type, so an explicit bean id is not strictly
required.

Because @ronfi guration is meta-annotated with @onponent, @Confi gur ati on-annotated
classes are automatically candidates for component scanning. Using the same scenario as above,
we can redefine systemt est-confi g. xnl to take advantage of component-scanning. Note that
in this case, we don't need to explicitly declare <cont ext: annotati on-confi g/ >, because
<cont ext : conponent - scan/ > enables all the same functionality.

4.1.6.RELEASE Spring Framework 118

Spring Framework Reference Documentation

systemtest-config. xm
<beans>
<I'-- picks up and registers AppConfig as a bean definition -->
<cont ext: conponent - scan base- package="com acne"/ >
<cont ext: property-placehol der |ocation="cl asspath:/conf acne/jdbc. properties"/>

<bean cl ass="org. springframework.j dbc. dat asour ce. Dri ver Manager Dat aSour ce" >
<property name="url" val ue="${jdbc.url}"/>
<property nanme="usernanme" val ue="${j dbc. usernane}"/>
<property name="password" val ue="${j dbc. password}"/>
</ bean>
</ beans>

@Configuration class-centric use of XML with @ImportResource

In applications where @Confi gurati on classes are the primary mechanism for configuring the
container, it will still likely be necessary to use at least some XML. In these scenarios, simply use
@ nport Resour ce and define only as much XML as is needed. Doing so achieves a "Java-centric"
approach to configuring the container and keeps XML to a bare minimum.

@confi guration
@ npor t Resour ce("cl asspat h: / coml acne/ properties-config.xm ")
public class AppConfig {

@/al ue("${jdbc.url}")
private String url;

@/al ue(" ${j dbc. user nane}")
private String usernane;

@/al ue(" ${j dbc. password}")
private String password;

@ean
publ i c DataSource dataSource() {
return new Driver Manager Dat aSour ce(url, username, password);

}

properties-config.xm
<beans>

<cont ext: property-placehol der |ocati on="cl asspath:/conl acne/jdbc. properties"/>
</ beans>

jdbc. properties

jdbc. url =j dbc: hsql db: hsql : / /1 ocal host / xdb
j dbc. user nane=sa

j dbc. passwor d=

public static void main(String[] args) {
Appl i cationContext ctx = new Annot ati onConfi gAppl i cati onCont ext (AppConfi g.cl ass);
TransferService transferService = ctx.getBean(TransferService.class);
/1

5.13 Environment abstraction

The Envi r onnment is an abstraction integrated in the container that models two key aspects of the
application environment: profiles and properties.

A profile is a named, logical group of bean definitions to be registered with the container only if the given
profile is active. Beans may be assigned to a profile whether defined in XML or via annotations. The role

4.1.6.RELEASE Spring Framework 119

http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/core/env/Environment.html

Spring Framework Reference Documentation

of the Envi r onnent object with relation to profiles is in determining which profiles (if any) are currently
active, and which profiles (if any) should be active by default.

Properties play an important role in almost all applications, and may originate from a variety of
sources: properties files, JVM system properties, system environment variables, JNDI, servlet context
parameters, ad-hoc Properties objects, Maps, and so on. The role of the Envi r onment object with
relation to properties is to provide the user with a convenient service interface for configuring property
sources and resolving properties from them.

Bean definition profiles

Bean definition profiles is a mechanism in the core container that allows for registration of different beans
in different environments. The word environment can mean different things to different users and this
feature can help with many use cases, including:

» working against an in-memory datasource in development vs looking up that same datasource from
JNDI when in QA or production

 registering monitoring infrastructure only when deploying an application into a performance
environment

* registering customized implementations of beans for customer A vs. customer B deployments

Let's consider the first use case in a practical application that requires a Dat aSour ce. In a test
environment, the configuration may look like this:

@Bean
publ i c DataSource dataSource() {
return new EnbeddedDat abaseBui | der ()
. set Type(EnbeddedDat abaseType. HSQL)
.addScri pt ("ny-schena. sql ")
.addScri pt ("ny-test-data.sql")
Lbuild();

Let’'s now consider how this application will be deployed into a QA or production environment, assuming
that the datasource for the application will be registered with the production application server’'s JNDI
directory. Our dat aSour ce bean now looks like this:

@Bean
publ i ¢ DataSource dataSource() throws Exception {
Context ctx = new Initial Context();
return (DataSource) ctx.|lookup("java: conp/env/jdbc/datasource");

The problem is how to switch between using these two variations based on the current environment.
Over time, Spring users have devised a number of ways to get this done, usually relying on a combination
of system environment variables and XML <i nport/> statements containing ${ pl acehol der}
tokens that resolve to the correct configuration file path depending on the value of an environment
variable. Bean definition profiles is a core container feature that provides a solution to this problem.

If we generalize the example use case above of environment-specific bean definitions, we end up with
the need to register certain bean definitions in certain contexts, while not in others. You could say that
you want to register a certain profile of bean definitions in situation A, and a different profile in situation
B. Let's first see how we can update our configuration to reflect this need.

4.1.6.RELEASE Spring Framework 120

Spring Framework Reference Documentation

@Profile

The @r of i | e annotation allows to indicate that a component is eligible for registration when one
or more specified profiles are active. Using our example above, we can rewrite the dataSource
configuration as follows:

@onfiguration
@rofile("dev")
public class Standal oneDataConfig {

@Bean
publ i c Dat aSour ce dataSource() {
return new EnbeddedDat abaseBui | der ()
. set Type(EnbeddedDat abaseType. HSQL)
.addScri pt ("cl asspat h: cont bank/ confi g/ sql / schema. sql ")
.addScri pt ("cl asspat h: coni bank/ confi g/ sql / t est -dat a. sql ")
Lbuild();

@onfiguration
@rofile("production")
public class Jndi DataConfig {

@Bean
publ i c Dat aSour ce dataSource() throws Exception {
Context ctx = new Initial Context();
return (DataSource) ctx.|ookup("java: conp/env/jdbc/datasource");

@rofile can be used as a meta-annotation, for the purpose of composing custom stereotype
annotations. The following example defines a @ oduct i on custom annotation that can be used as a
drop-in replacement of @r of i | e(" producti on"):

@rar get (El enent Type. TYPE)

@Ret ent i on(Ret enti onPol i cy. RUNTI ME)
@rofile("production")

public @nterface Production {

}

@r of i | e can also be specified at method-level to include only one particular bean of a configuration
class:

@onfi guration
public class AppConfig {

@Bean
@rofile("dev")
publ i ¢ Dat aSour ce devDat aSource() {
return new EnbeddedDat abaseBui | der ()
. set Type(EnbeddedDat abaseType. HSQL)
.addScri pt (" cl asspat h: coml bank/ confi g/ sql / schema. sql ")
.addScri pt ("cl asspat h: com bank/ confi g/ sql /test-data.sql")
Lbuild();
}

@Bean
@rofile("production")
publ i ¢ DataSource productionDataSource() throws Exception {
Context ctx = new Initial Context();
return (DataSource) ctx.lookup("java: conp/env/jdbc/datasource");

4.1.6.RELEASE Spring Framework 121

http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/context/annotation/Profile.html

Spring Framework Reference Documentation

Tip

If a @onfi gurati on class is marked with @r of i | e, all of the @ean methods and @ nport
annotations associated with that class will be bypassed unless one or more of the specified profiles
are active. If a @onponent or @onfi gurati on class is marked with @rofile({"pl",
"p2"}), that class will not be registered/ processed unless profiles pl and/or p2 have been
activated. If a given profile is prefixed with the NOT operator (!), the annotated element will be
registered if the profile is not active. e.g., for @r of i | e({" p1", "!p2"}), registration will occur
if profile p1 is active or if profile p2 is not active.

XML Bean definition profiles

The XML counterpart is an update of the beans element that accepts a pr of i | e attribute. Our sample
configuration above can be rewritten in two XML files as follows:

<beans profil e="dev"
xm ns="http://ww. springframework. or g/ schema/ beans”
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: j dbc="http://wwv springframework. org/ schena/j dbc"
xsi : schenalLocation="...">

<j dbc: enbedded- dat abase i d="dat aSour ce">
<j dbc: script |ocation="classpath: conf bank/ confi g/sqgl/schema.sqgl"/>
<j dbc:script |ocation="classpath:con bank/config/sql/test-data.sql"/>
</ j dbc: enbedded- dat abase>
</ beans>

<beans profile="production"
xm ns="http://ww. springfranmewor k. or g/ schenma/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: jee="http://ww. springframework. org/ schenma/j ee"
xsi : schenalLocation="...">

<j ee:jndi -1 ookup id="dataSource" jndi-nane="java: conp/ env/jdbc/ dat asource"/ >
</ beans>

It is also possible to avoid that split and nest <beans/ > elements within the same file:

<beans xm ns="http://wwm. spri ngframework. org/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: jdbc="http://ww. spri ngframework. or g/ schenma/ j dbc"
xm ns: j ee="http://ww. springfranmework. org/ schenma/j ee"
xsi:schemalLocation="...">

<I-- other bean definitions -->

<beans profil e="dev">
<j dbc: enbedded- dat abase i d="dat aSour ce">
<j dbc: script |ocation="classpath: conf bank/ confi g/sqgl/schema.sqgl"/>
<j dbc:script |ocation="classpath: con bank/config/sql/test-data.sql"/>
</ j dbc: enbedded- dat abase>
</ beans>

<beans profile="production">
<j ee:] ndi -1 ookup id="dataSource" jndi-nanme="java: conp/ env/j dbc/ dat asource"/ >
</ beans>
</ beans>

The spri ng- bean. xsd has been constrained to allow such elements only as the last ones in the file.
This should help provide flexibility without incurring clutter in the XML files.

4.1.6.RELEASE Spring Framework 122

Spring Framework Reference Documentation

Enabling a profile

Now that we have updated our configuration, we still need to instruct which profile is active. If we started
our sample application right now, we would see a NoSuchBeanDef i ni ti onExcepti on thrown,
because the container could not find the Spring bean named dat aSour ce.

Activating a profile can be done in several ways, but the most straightforward is to do it programmatically
against the Appl i cat i onCont ext API:

Annot at i onConf i gAppl i cati onCont ext ctx = new Annot ati onConfi gAppl i cati onContext();
ct x. get Envi ronment (). set ActiveProfil es("dev");

ctx.regi ster(SoneConfig.class, Standal oneDataConfig.class, Jndi DataConfig.class);
ctx.refresh();

In addition, profiles may also be activated declaratively through the spring. profil es. active
property which may be specified through system environment variables, JVM system properties, servlet
context parameters in web. xrm or even as an entry in JNDI (see the section called “PropertySource
Abstraction”).

Note that profiles are not an "either-or" proposition; it is possible to activate multiple profiles at once.
Programmatically, simply provide multiple profile names to the set Act i vePr of i | es() method, which
accepts Stri ng. .. varargs:

ctx. get Environnent ().setActiveProfiles("profilel”, "profile2");

Declaratively, spri ng. profil es. acti ve may accept a comma-separated list of profile names:

‘ -Dspring.profiles.active="profilel,profile2"

Default profile
The default profile represents the profile that is enabled by default. Consider the following:

@onfiguration
@rofile("default")
public class DefaultDataConfig {

@ean
publ i c Dat aSour ce dataSource() {
return new EnbeddedDat abaseBui | der ()
. set Type(EnbeddedDat abaseType. HSQL)
.addScri pt ("cl asspat h: con? bank/ confi g/ sql / schema. sql ")
Lbuild();

}

If no profile is active, the dat aSour ce above will be created; this can be seen as a way to provide a
default definition for one or more beans. If any profile is enabled, the default profile will not apply.

The name of that default profile can be changed using set Def aul t Prof i | es on the Envi r onnent
or declaratively using the spri ng. profi | es. def aul t property.

PropertySource Abstraction

Spring’s Environment abstraction provides search operations over a configurable hierarchy of property
sources. To explain fully, consider the following:

Appl i cationContext ctx = new Ceneri cApplicationContext();

Envi ronnent env = ctx. get Environnent () ;

bool ean cont ai nsFoo = env. cont ai nsProperty("foo");

System out. println("Does ny environment contain the 'foo" property? " + containsFoo);

4.1.6.RELEASE Spring Framework 123

Spring Framework Reference Documentation

Inthe snippet above, we see a high-level way of asking Spring whether the f oo property is defined for the
current environment. To answer this question, the Envi r onnent object performs a search over a set of
Pr opert ySour ce objects. A Propert ySour ce is a simple abstraction over any source of key-value
pairs, and Spring’s St andar dEnvi r onnent is configured with two PropertySource objects —one
representing the set of JVM system properties (ala Syst em get Properti es())and one representing
the set of system environment variables (a la Syst em get env()).

Note

These default property sources are present for StandardEnvironnment, for use in
standalone applications. St andar dSer vl et Envi ronnent is populated with additional
default property sources including servlet config and servlet context parameters.
St andar dPor t | et Envi r onnent similarly has access to portlet config and portlet context
parameters as property sources. Both can optionally enable a Jndi Pr opertySource. See
Javadoc for details.

Concretely, when using the St andar dEnvi r onnent , the call to env. cont ai nsProperty("foo")
will return true if a f 0o system property or f 0o environment variable is present at runtime.

Tip

The search performed is hierarchical. By default, system properties have precedence over
environment variables, so if the f 0o property happens to be set in both places during a call to
env. get Property("foo"), the system property value will win and be returned preferentially
over the environment variable.

Most importantly, the entire mechanism is configurable. Perhaps you have a custom source of properties
that you'd like to integrate into this search. No problem — simply implement and instantiate your own
Pr opert ySour ce and add it to the set of Pr oper t ySour ces for the current Envi r onent :

Confi gur abl eAppl i cati onContext ctx = new GenericApplicationContext();
Mut abl ePr opert ySour ces sources = ctx.get Environnent (). get PropertySources();
sour ces. addFi r st (new MyPropertySource());

In the code above, MyPr opert ySour ce has been added with highest precedence in the search. If
it contains a f oo property, it will be detected and returned ahead of any f oo property in any other
Pr opert ySour ce. The Mut abl ePr oper t ySour ces APl exposes a number of methods that allow for
precise manipulation of the set of property sources.

@PropertySource

The @ opertySour ce annotation provides a convenient and declarative mechanism for adding a
Pr opert ySour ce to Spring’s Envi r onnment .

Given a file "app.properties" containing the key/value pair t est bean. nane=nyTest Bean, the
following @Configuration class uses @ropertySource in such a way that a call to
t est Bean. get Nane() will return "myTestBean".

4.1.6.RELEASE Spring Framework 124

http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/core/env/PropertySource.html
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/core/env/StandardEnvironment.html
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/web/context/support/StandardServletEnvironment.html
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/web/portlet/context/StandardPortletEnvironment.html
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/jndi/JndiPropertySource.html
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/core/env/MutablePropertySources.html
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/context/annotation/PropertySource.html

Spring Framework Reference Documentation

@onfi guration
@r opertySour ce("cl asspat h: / com nyco/ app. properties")
public class AppConfig {

@\ut owi r ed

Envi ronnent env;

@Bean

public TestBean testBean() {
Test Bean testBean = new Test Bean();
t est Bean. set Name(env. get Property("testbean. nane"));
return testBean;

Any ${. ..} placeholders present in a @r oper t ySour ce resource location will be resolved against
the set of property sources already registered against the environment. For example:

@onfiguration
@ropertySource("classpat h:/com ${ny. pl acehol der: def aul t/ pat h}/ app. properties")
public class AppConfig {

@\ut owi r ed

Envi ronnent env;

@Bean

public TestBean testBean() {
Test Bean testBean = new Test Bean();
t est Bean. set Nane(env. get Property("testbean. nane"));
return testBean;

Assuming that "my.placeholder" is present in one of the property sources already registered, e.g. system
properties or environment variables, the placeholder will be resolved to the corresponding value. If not,
then "default/path” will be used as a default. If no default is specified and a property cannot be resolved,
anl || egal Argunent Except i on will be thrown.

Placeholder resolution in statements

Historically, the value of placeholders in elements could be resolved only against JVM system properties
or environment variables. No longer is this the case. Because the Environment abstraction is integrated
throughout the container, it's easy to route resolution of placeholders through it. This means that you
may configure the resolution process in any way you like: change the precedence of searching through
system properties and environment variables, or remove them entirely; add your own property sources
to the mix as appropriate.

Concretely, the following statement works regardless of where the cust onmer property is defined, as
long as it is available in the Envi r onnent :

<beans>
<i nport resource="com bank/servi ce/ ${custonmer}-config.xm"/>
</ beans>

5.14 Registering a LoadTimeWeaver

The LoadTi mneWeaver is used by Spring to dynamically transform classes as they are loaded into the
Java virtual machine (JVM).

To enable load-time weaving add the @nabl eLoadTi meWeavi ng to one of your @onf i gur ati on
classes:

4.1.6.RELEASE Spring Framework 125

Spring Framework Reference Documentation

@onfi guration
@Enabl eLoadTi neWeavi ng
public class AppConfig {

}

Alternatively for XML configuration use the cont ext : | oad- ti me- weaver element:

<beans>
<cont ext: | oad-ti me- weaver/ >
</ beans>

Once configured for the Applicati onContext. Any bean within that Appli cati onCont ext
may implement LoadTi neWeaver Awar e, thereby receiving a reference to the load-time
weaver instance. This is particularly useful in combination with Spring’s JPA support
where load-time weaving may be necessary for JPA class transformation. Consult the
Local Cont ai ner Ent i t yManager Fact or yBean javadocs for more detail. For more on AspectJ
load-time weaving, see the section called “Load-time weaving with AspectJ in the Spring Framework”.

5.15 Additional Capabilities of the ApplicationContext

As was discussed in the chapter introduction, the or g. spr i ngf r anewor k. beans. f act or y package
provides basic functionality for managing and manipulating beans, including in a programmatic
way. The or g. spri ngfranmewor k. cont ext package adds the Appl i cati onCont ext interface,
which extends the BeanFact ory interface, in addition to extending other interfaces to provide
additional functionality in a more application framework-oriented style. Many people use the
Appl i cati onCont ext in a completely declarative fashion, not even creating it programmatically,
but instead relying on support classes such as Cont ext Loader to automatically instantiate an
Appl i cati onCont ext as part of the normal startup process of a Java EE web application.

To enhance BeanFact or y functionality in a more framework-oriented style the context package also
provides the following functionality:

» Access to messages in i18n-style, through the MessageSour ce interface.
» Access to resources, such as URLs and files, through the Resour ceLoader interface.

» Event publication to beans implementing the Appl i cat i onLi st ener interface, through the use of
the Appl i cat i onEvent Publ i sher interface.

 Loading of multiple (hierarchical) contexts, allowing each to be focused on one particular layer, such
as the web layer of an application, through the Hi er ar chi cal BeanFact or y interface.

Internationalization using MessageSource

The ApplicationContext interface extends an interface called MessageSource, and
therefore provides internationalization (i18n) functionality. Spring also provides the interface
Hi er ar chi cal MessageSour ce, which can resolve messages hierarchically. Together these
interfaces provide the foundation upon which Spring effects message resolution. The methods defined
on these interfaces include:

e String getMessage(String code, Object[] args, String default, Locale |oc):
The basic method used to retrieve a message from the MessageSour ce. When no message is found
for the specified locale, the default message is used. Any arguments passed in become replacement
values, using the MessageFor nmat functionality provided by the standard library.

4.1.6.RELEASE Spring Framework 126

http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/context/ApplicationContext.html

Spring Framework Reference Documentation

e« String get Message(String code, Object[] args, Local e |oc): Essentially the same
as the previous method, but with one difference: no default message can be specified; if the message
cannot be found, a NoSuchMessageExcept i on is thrown.

e String getMessage(MessageSourceResol vable resolvable, Locale locale):
All properties used in the preceding methods are also wrapped in a class named
MessageSour ceResol vabl e, which you can use with this method.

When an Appl i cati onCont ext is loaded, it automatically searches for a MessageSour ce bean
defined in the context. The bean must have the name nmessageSour ce. If such a bean is found, all
calls to the preceding methods are delegated to the message source. If no message source is found,
the Appl i cati onCont ext attempts to find a parent containing a bean with the same name. If it does,
it uses that bean as the MessageSour ce. If the Appl i cati onCont ext cannot find any source for
messages, an empty Del egat i ngMessageSour ce is instantiated in order to be able to accept calls
to the methods defined above.

Spring provides two MessageSour ce implementations, Resour ceBundl eMessageSour ce and
St ati cMessageSour ce. Both implement Hi er ar chi cal MessageSour ce in order to do nested
messaging. The St ati cMessageSour ce is rarely used but provides programmatic ways to add
messages to the source. The Resour ceBundl eMessageSour ce is shown in the following example:

<beans>
<bean i d="nmessageSource"
cl ass="org. springframewor k. cont ext. support. Resour ceBundl eMessageSour ce" >
<property nanme="basenanes">
<list>
<val ue>f ormat </ val ue>
<val ue>exceptions</val ue>
<val ue>wi ndows</ val ue>
</list>
</ property>
</ bean>
</ beans>

In the example it is assumed you have three resource bundles defined in your classpath called f or mat ,
excepti ons and wi ndows. Any request to resolve a message will be handled in the JDK standard
way of resolving messages through ResourceBundles. For the purposes of the example, assume the
contents of two of the above resource bundle files are...

in format. properties
nmessage=Al | i gators rock!

in exceptions. properties
argunent . requi red=The {0} argunment is required.

A program to execute the MessageSour ce functionality is shown in the next example. Remember that
all Appl i cati onCont ext implementations are also MessageSour ce implementations and so can be
cast to the MessageSour ce interface.

public static void main(String[] args) {
MessageSour ce resources = new C assPat hXm Appl i cati onCont ext ("beans. xm ");
String nessage = resources. get Message(" nessage", null, "Default", null);
System out. printl n(nmessage) ;

The resulting output from the above program will be...

Al ligators rock!

4.1.6.RELEASE Spring Framework 127

Spring Framework Reference Documentation

So to summarize, the MessageSour ce is defined in a file called beans. xm , which exists at the root of
your classpath. The messageSour ce bean definition refers to a number of resource bundles through
its basenanes property. The three files that are passed in the list to the basenanes property exist as
files at the root of your classpath and are called f or mat . properti es, excepti ons. properties,
and wi ndows. properti es respectively.

The next example shows arguments passed to the message lookup; these arguments will be converted
into Strings and inserted into placeholders in the lookup message.

<beans>

<l-- this MessageSource is being used in a web application -->

<bean id="nmessageSource" class="org.springfranmework. context.support.ResourceBundl eMessageSource" >
<property name="basenanme" val ue="exceptions"/>

</ bean>

<l-- lets inject the above MessageSource into this PQJO -->
<bean id="exanpl e" class="com f oo. Exanpl e" >

<property name="nessages" ref="nessageSource"/>
</ bean>

</ beans>

public class Exanple {
private MessageSource nessages;

public void set Messages(MessageSour ce nessages) {
this. messages = nessages;

}

public void execute() {
String nessage = this.nmessages. get Message("argunment . required”,
new Object [] {"userDao"}, "Required", null);
System out . println(nmessage);

The resulting output from the invocation of the execut e() method will be...

The userDao argunent is required.

With regard to internationalization (i18n), Spring’s various MessageResour ce implementations follow
the same locale resolution and fallback rules as the standard JDK Resour ceBundl e. In short, and
continuing with the example messageSour ce defined previously, if you want to resolve messages
against the British (en- GB) locale, you would create files called format _en_GB. properti es,
exceptions_en_GB. properties,andw ndows_en_GB. properti es respectively.

Typically, locale resolution is managed by the surrounding environment of the application. In this
example, the locale against which (British) messages will be resolved is specified manually.

in exceptions_en_CB. properties
argunent . requi red=Ebagum | ad, the {0} argunment is required, | say, required.

public static void main(final String[] args) {
MessageSour ce resources = new C assPat hXm Appl i cati onCont ext ("beans. xm ") ;
String nessage = resources. get Message("argunent.required",
new Object [] {"userDao"}, "Required", Locale.UK);
System out. printl n(nmessage) ;

The resulting output from the running of the above program will be...

4.1.6.RELEASE Spring Framework 128

Spring Framework Reference Documentation

Ebagum | ad, the userDao argunent is required, | say, required.

You can also use the MessageSour ceAwar e interface to acquire a reference to any MessageSour ce
that has been defined. Any bean that is defined in an Appl i cati onCont ext that implements the
MessageSour ceAwar e interface is injected with the application context’'s MessageSour ce when the
bean is created and configured.

Note

As an alternative to ResourceBundl eMessageSource, Spring provides a
Rel oadabl eResour ceBundl eMessageSour ce class. This variant supports the same bundle
file format but is more flexible than the standard JDK based Resour ceBundl eMessageSour ce
implementation. In particular, it allows for reading files from any Spring resource location (not just
from the classpath) and supports hot reloading of bundle property files (while efficiently caching
them in between). Check out the Rel oadabl eResour ceBundl eMessageSour ce javadocs for
details.

Standard and Custom Events

Event handling in the Appl i cati onCont ext is provided through the Appli cati onEvent class
and ApplicationLi stener interface. If a bean that implements the Appl i cati onLi st ener
interface is deployed into the context, every time an Appli cati onEvent gets published to the
Appl i cati onCont ext , that bean is notified. Essentially, this is the standard Observer design pattern.
Spring provides the following standard events:

Table 5.7. Built-in Events

Event Explanation

Cont ext Ref r eshedEvent Published when the Appl i cati onCont ext
is initialized or refreshed, for example,
using the r ef resh() method on the
Confi gur abl eAppl i cati onCont ext
interface. "Initialized" here means that all
beans are loaded, post-processor beans are
detected and activated, singletons are pre-
instantiated, and the Appl i cati onCont ext
object is ready for use. As long as the
context has not been closed, a refresh can
be triggered multiple times, provided that
the chosen Appl i cati onCont ext actually
supports such "hot" refreshes. For example,
Xm WebAppl i cati onCont ext supports hot
refreshes, but Generi cAppl i cati onCont ext
does not.

Cont ext St art edEvent Published when the Appl i cati onCont ext
is started, using the st art () method on
the Conf i gur abl eAppl i cati onCont ext
interface. "Started" here means that all
Li f ecycl e beans receive an explicit start

4.1.6.RELEASE Spring Framework 129

Spring Framework Reference Documentation

Event Explanation

signal. Typically this signal is used to restart
beans after an explicit stop, but it may also
be used to start components that have not
been configured for autostart , for example,
components that have not already started on
initialization.

Cont ext St oppedEvent Published when the Appl i cat i onCont ext
is stopped, using the st op() method on
the Conf i gur abl eAppl i cati onCont ext
interface. "Stopped" here means that all
Li f ecycl e beans receive an explicit stop
signal. A stopped context may be restarted
throughastart () call

Cont ext Cl osedEvent Published when the Appl i cat i onCont ext
is closed, using the cl ose() method on the
Confi gur abl eAppl i cati onCont ext
interface. "Closed" here means that all singleton
beans are destroyed. A closed context reaches
its end of life; it cannot be refreshed or restarted.

Request Handl edEvent A web-specific event telling all beans that an
HTTP request has been serviced. This event
is published after the request is complete. This
event is only applicable to web applications
using Spring’s Di spat cher Ser vl et .

You can also create and publish your own custom events. This example demonstrates a simple class
that extends Spring’s Appl i cati onEvent base class:

public class Bl ackLi st Event extends Applicati onEvent {

private final String address;
private final String test;

public Bl ackLi st Event (Obj ect source, String address, String test) {
super (source);
t his.address = address;
this.test = test;

}

/'l accessor and ot her nethods...

To publish a custom ApplicationEvent, call the publishEvent() method on an
Appl i cati onEvent Publ i sher. Typically this is done by creating a class that implements
Appl i cati onEvent Publ i sher Awar e and registering it as a Spring bean. The following example
demonstrates such a class:

4.1.6.RELEASE Spring Framework 130

Spring Framework Reference Documentation

public class Enmail Service inplenents ApplicationEvent Publisher Aware {

private List<String> bl ackLi st;
private ApplicationEventPublisher publisher;

public void setBl ackLi st (List<String> bl ackList) {
t his. bl ackLi st = bl ackLi st;
}

public voi d setApplicati onEvent Publi sher (ApplicationEventPublisher publisher) {
t his. publisher = publisher;
}

public void sendEmail (String address, String text) {
i f (bl ackLi st. contai ns(address)) {
Bl ackLi st Event event = new Bl ackLi st Event (this, address, text);
publ i sher. publ i shEvent (event);
return;

}

/1 send enuil ...

At configuration time, the Spring container will detect that Email Service
implements Appl i cati onEvent Publ i sher Awnar e and will automatically call
set Appl i cati onEvent Publ i sher () . Inreality, the parameter passed in will be the Spring container
itself; you're simply interacting with the application context via its Appl i cati onEvent Publ i sher
interface.

To receive the custom Appl i cati onEvent, create a class that implements Appl i cat i onLi st ener
and register it as a Spring bean. The following example demonstrates such a class:

public class Bl ackListNotifier inplenents ApplicationListener<Bl ackLi st Event> {
private String notificationAddress;

public void setNotificationAddress(String notificationAddress) {
this.notificationAddress = notificati onAddress;

}

public voi d onApplicationEvent (Bl ackLi st Event event) {
/1 notify appropriate parties via notificationAddress...

}

Notice that Appl i cati onLi st ener is generically parameterized with the type of your custom event,
Bl ackLi st Event . This means that the onAppl i cati onEvent () method can remain type-safe,
avoiding any need for downcasting. You may register as many event listeners as you wish, but note that
by default event listeners receive events synchronously. This means the publ i shEvent () method
blocks until all listeners have finished processing the event. One advantage of this synchronous and
single-threaded approach is that when a listener receives an event, it operates inside the transaction
context of the publisher if a transaction context is available. If another strategy for event publication
becomes necessary, refer to the JavaDoc for Spring’s Appl i cati onEvent Mul ti cast er interface.

The following example shows the bean definitions used to register and configure each of the classes
above:

4.1.6.RELEASE Spring Framework 131

Spring Framework Reference Documentation

<bean id="email Servi ce" cl ass="exanpl e. Emai | Servi ce">
<property name="bl ackLi st">
<list>
<val ue>known. spanmmrer @xanpl e. or g</ val ue>
<val ue>known. hacker @xanpl e. or g</ val ue>
<val ue>j ohn. doe@xanpl e. or g</ val ue>

</list>
</ property>
</ bean>
<bean id="bl ackLi st Notifier" class="exanple.Bl ackLi stNotifier">
<property nanme="notificati onAddress" val ue="bl ackl i st @xanpl e. org"/ >
</ bean>

Putting it all together, when the sendEnai | () method of the emai | Ser vi ce bean is called, if there
are any emails that should be blacklisted, a custom event of type Bl ackLi st Event is published.
The bl ackLi st Noti fi er bean is registered as an Appl i cati onLi st ener and thus receives the
Bl ackLi st Event , at which point it can notify appropriate parties.

Note

Spring’s eventing mechanism is designed for simple communication between Spring beans within
the same application context. However, for more sophisticated enterprise integration needs,
the separately-maintained Spring Integration project provides complete support for building
lightweight, pattern-oriented, event-driven architectures that build upon the well-known Spring
programming model.

Convenient access to low-level resources

For optimal usage and understanding of application contexts, users should generally familiarize
themselves with Spring’s Resour ce abstraction, as described in the chapter Chapter 6, Resources.

An application context is a Resour ceLoader , which can be used to load Resour ces. A Resour ce is
essentially a more feature rich version of the JDK class j ava. net . URL, in fact, the implementations
of the Resour ce wrap an instance of j ava. net . URL where appropriate. A Resour ce can obtain
low-level resources from almost any location in a transparent fashion, including from the classpath,
a filesystem location, anywhere describable with a standard URL, and some other variations. If the
resource location string is a simple path without any special prefixes, where those resources come from
is specific and appropriate to the actual application context type.

You can configure a bean deployed into the application context to implement the special callback
interface, Resour ceLoader Awar e, to be automatically called back at initialization time with the
application context itself passed in as the Resour ceLoader . You can also expose properties of type
Resour ce, to be used to access static resources; they will be injected into it like any other properties.
You can specify those Resour ce properties as simple String paths, and rely on a special JavaBean
Propert yEdi t or that is automatically registered by the context, to convert those text strings to actual
Resour ce objects when the bean is deployed.

The location path or paths supplied to an Appl i cati onCont ext constructor are actually resource
strings, and in simple form are treated appropriately to the specific context implementation.
G assPat hXm Appl i cati onCont ext treats a simple location path as a classpath location. You can
also use location paths (resource strings) with special prefixes to force loading of definitions from the
classpath or a URL, regardless of the actual context type.

4.1.6.RELEASE Spring Framework 132

http://projects.spring.io/spring-integration/
http://www.enterpriseintegrationpatterns.com

Spring Framework Reference Documentation

Convenient ApplicationContext instantiation for web applications

You can create ApplicationContext instances declaratively by using, for example, a
Cont ext Loader . Of course you can also create Appl i cati onCont ext instances programmatically
by using one of the Appl i cat i onCont ext implementations.

You can register an Appl i cati onCont ext using the Cont ext Loader Li st ener as follows:

<cont ext - par an»

<par am nanme>cont ext Conf i gLocat i on</ par am nane>

<par am val ue>/ WEB- | NF/ daoCont ext . xm /WEB- | NF/ appl i cati onCont ext . xm </ par am val ue>
</ cont ext - par an>

<li stener>
<l i stener-class>org. spri ngframewor k. web. cont ext . Cont ext Loader Li stener</|istener-class>
</listener>

The listener inspects the cont ext Conf i gLocat i on parameter. If the parameter does not exist, the
listener uses / VEEB- | NF/ appl i cat i onCont ext . xml as a default. When the parameter does exist,
the listener separates the String by using predefined delimiters (comma, semicolon and whitespace)
and uses the values as locations where application contexts will be searched. Ant-style path patterns
are supported as well. Examples are / EB- | NF/ * Cont ext . xm for all files with names ending with
"Context.xml", residing in the "WEB-INF" directory, and / VVEB- | NF/ **/ * Cont ext . xm , for all such
files in any subdirectory of "WEB-INF".

Deploying a Spring ApplicationContext as a Java EE RAR file

It is possible to deploy a Spring ApplicationContext as a RAR file, encapsulating the context and all of
its required bean classes and library JARs in a Java EE RAR deployment unit. This is the equivalent
of bootstrapping a standalone ApplicationContext, just hosted in Java EE environment, being able
to access the Java EE servers facilities. RAR deployment is more natural alternative to scenario of
deploying a headless WAR file, in effect, a WAR file without any HTTP entry points that is used only for
bootstrapping a Spring ApplicationContext in a Java EE environment.

RAR deployment is ideal for application contexts that do not need HTTP entry points but rather
consist only of message endpoints and scheduled jobs. Beans in such a context can use application
server resources such as the JTA transaction manager and JNDI-bound JDBC DataSources and JMS
ConnectionFactory instances, and may also register with the platform’s JIMX server - all through Spring’s
standard transaction management and JNDI and JMX support facilities. Application components
can also interact with the application server's JCA WorkManager through Spring’s TaskExecut or
abstraction.

Check out the JavaDoc of the Spri ngCont ext Resour ceAdapt er class for the configuration details
involved in RAR deployment.

For a simple deployment of a Spring ApplicationContext as a Java EE RAR file: package all application
classes into a RAR file, which is a standard JAR file with a different file extension. Add all required
library JARs into the root of the RAR archive. Add a "META-INF/ra.xml" deployment descriptor (as
shown in Spri ngCont ext Resour ceAdapt er 's JavaDoc) and the corresponding Spring XML bean
definition file(s) (typically "META-INF/applicationContext.xml"), and drop the resulting RAR file into your
application server’s deployment directory.

4.1.6.RELEASE Spring Framework 133

http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/jca/context/SpringContextResourceAdapter.html

Spring Framework Reference Documentation

Note

Such RAR deployment units are usually self-contained; they do not expose components to the
outside world, not even to other modules of the same application. Interaction with a RAR-based
ApplicationContext usually occurs through JMS destinations that it shares with other modules. A
RAR-based ApplicationContext may also, for example, schedule some jobs, reacting to new files
in the file system (or the like). If it needs to allow synchronous access from the outside, it could
for example export RMI endpoints, which of course may be used by other application modules
on the same machine.

5.16 The BeanFactory

The BeanFact ory provides the underlying basis for Spring’s 1oC functionality but it is only used
directly in integration with other third-party frameworks and is now largely historical in nature for
most users of Spring. The BeanFact ory and related interfaces, such as BeanFact or yAwar e,
InitializingBean, Di sposabl eBean, are still present in Spring for the purposes of backward
compatibility with the large number of third-party frameworks that integrate with Spring. Often third-party
components that can not use more modern equivalents such as @ost Construct or @r eDest r oy
in order to remain compatible with JDK 1.4 or to avoid a dependency on JSR-250.

This section provides additional background into the differences between the BeanFact ory and
Appl i cati onCont ext and how one might access the 10C container directly through a classic singleton
lookup.

BeanFactory or ApplicationContext?

Use an Appl i cati onCont ext unless you have a good reason for not doing so.

Because the Appl i cat i onCont ext includes all functionality of the BeanFact ory, it is generally
recommended over the BeanFact ory, except for a few situations such as in embedded applications
running on resource-constrained devices where memory consumption might be critical and a few
extra kilobytes might make a difference. However, for most typical enterprise applications and
systems, the Appl i cati onContext is what you will want to use. Spring makes heavy use of
the BeanPost Processor extension point (to effect proxying and so on). If you use only a plain
BeanFact ory, a fair amount of support such as transactions and AOP will not take effect, at least not
without some extra steps on your part. This situation could be confusing because nothing is actually
wrong with the configuration.

The following table lists features provided by the BeanFact or y and Appl i cat i onCont ext interfaces
and implementations.

Table 5.8. Feature Matrix

Feature BeanFact ory Appl i cat i onCont ext
Bean instantiation/wiring Yes Yes
Automatic No Yes

BeanPost Pr ocessor
registration

Automatic No Yes
BeanFact or yPost Processor
registration

4.1.6.RELEASE Spring Framework 134

Spring Framework Reference Documentation

Feature BeanFact ory Appl i cati onCont ext

Convenient MessageSour ce No Yes
access (for i18n)

Appl i cati onEvent No Yes
publication

To explicitly register a bean post-processor with a BeanFact or y implementation, you must write code
like this:

Confi gur abl eBeanFactory factory = new Xm BeanFactory(...);
/1 now register any needed BeanPost Processor instances
MyBeanPost Processor post Processor = new MyBeanPost Processor () ;

factory. addBeanPost Processor (post Processor) ;

/1 now start using the factory

To explicitly register a BeanFact or yPost Pr ocessor when using a BeanFact ory implementation,
you must write code like this:

Xm BeanFactory factory = new Xm BeanFactory(new Fi | eSyst enResour ce("beans. xm "));

/1 bring in sone property values froma Properties file
PropertyPl acehol der Confi gurer cfg = new PropertyPl acehol der Configurer();
cfg.setLocati on(new Fi | eSyst enResour ce("j dbc. properties"));

/1 now actual |y do the repl acenent
cf g. post ProcessBeanFact ory(factory);

In both cases, the explicit registration step is inconvenient, which is one reason why
the various Appli cati onCont ext implementations are preferred above plain BeanFact ory
implementations in the vast majority of Spring-backed applications, especially when using
BeanFact or yPost Processors and BeanPost Processors. These mechanisms implement
important functionality such as property placeholder replacement and AOP.

Glue code and the evil singleton

It is best to write most application code in a dependency-injection (DI) style, where that code is served
out of a Spring loC container, has its own dependencies supplied by the container when it is created, and
is completely unaware of the container. However, for the small glue layers of code that are sometimes
needed to tie other code together, you sometimes need a singleton (or quasi-singleton) style access
to a Spring loC container. For example, third-party code may try to construct new objects directly (
G ass. for Name() style), without the ability to get these objects out of a Spring 1oC container.If the
object constructed by the third-party code is a small stub or proxy, which then uses a singleton style
access to a Spring loC container to get a real object to delegate to, then inversion of control has still been
achieved for the majority of the code (the object coming out of the container). Thus most code is still
unaware of the container or how it is accessed, and remains decoupled from other code, with all ensuing
benefits. EJBs may also use this stub/proxy approach to delegate to a plain Java implementation object,
retrieved from a Spring loC container. While the Spring 10C container itself ideally does not have to be
a singleton, it may be unrealistic in terms of memory usage or initialization times (when using beans in
the Spring loC container such as a Hibernate Sessi onFact or y) for each bean to use its own, non-
singleton Spring IoC container.

Looking up the application context in a service locator style is sometimes the only option for accessing
shared Spring-managed components, such as in an EJB 2.1 environment, or when you want to share

4.1.6.RELEASE Spring Framework 135

Spring Framework Reference Documentation

a single ApplicationContext as a parent to WebApplicationContexts across WAR files. In this case
you should look into using the utility class Cont ext Si ngl et onBeanFact or yLocat or locator that is
described in this Spring team blog entry.

4.1.6.RELEASE Spring Framework 136

http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/context/access/ContextSingletonBeanFactoryLocator.html
https://spring.io/blog/2007/06/11/using-a-shared-parent-application-context-in-a-multi-war-spring-application/

Spring Framework Reference Documentation

6. Resources

6.1 Introduction

Java’'s standard j ava. net . URL class and standard handlers for various URL prefixes unfortunately are
not quite adequate enough for all access to low-level resources. For example, there is no standardized
URL implementation that may be used to access a resource that needs to be obtained from the classpath,
or relative to a Ser vl et Cont ext . While it is possible to register new handlers for specialized URL
prefixes (similar to existing handlers for prefixes such as ht t p:), this is generally quite complicated, and
the URL interface still lacks some desirable functionality, such as a method to check for the existence
of the resource being pointed to.

6.2 The Resource interface

Spring’s Resour ce interface is meant to be a more capable interface for abstracting access to low-
level resources.

public interface Resource extends |nputStreanSource {
bool ean exi sts();
bool ean isOpen();
URL get URL() throws | OException;
File getFile() throws |COException;
Resource createRel ative(String relativePath) throws | OException;
String getFil enane();

String getDescription();

public interface |nputStreanSource {

I nput St ream get | nput Strean() throws | OException;

}

Some of the most important methods from the Resour ce interface are:

» get |l nput Strean() : locates and opens the resource, returning an | nput St r eamfor reading from
the resource. It is expected that each invocation returns a fresh | nput St r eam It is the responsibility
of the caller to close the stream.

e exi sts():returns a bool ean indicating whether this resource actually exists in physical form.

e i sOpen(): returns a bool ean indicating whether this resource represents a handle with an open
stream. If t r ue, the | nput St r eamcannot be read multiple times, and must be read once only and
then closed to avoid resource leaks. Will be f al se for all usual resource implementations, with the
exception of | nput St r eanResour ce.

» get Descri pti on() :returns a description for this resource, to be used for error output when working
with the resource. This is often the fully qualified file name or the actual URL of the resource.

Other methods allow you to obtain an actual URL or Fi | e object representing the resource (if the
underlying implementation is compatible, and supports that functionality).

4.1.6.RELEASE Spring Framework 137

Spring Framework Reference Documentation

The Resour ce abstraction is used extensively in Spring itself, as an argument type in many method
signatures when a resource is needed. Other methods in some Spring APIs (such as the constructors to
various Appl i cat i onCont ext implementations), take a St ri ng which in unadorned or simple form
is used to create a Resour ce appropriate to that context implementation, or via special prefixes on
the St ri ng path, allow the caller to specify that a specific Resour ce implementation must be created
and used.

While the Resour ce interface is used a lot with Spring and by Spring, it's actually very useful to use as
a general utility class by itself in your own code, for access to resources, even when your code doesn't
know or care about any other parts of Spring. While this couples your code to Spring, it really only
couples it to this small set of utility classes, which are serving as a more capable replacement for URL,
and can be considered equivalent to any other library you would use for this purpose.

It is important to note that the Resour ce abstraction does not replace functionality: it wraps it where
possible. For example, a Ur | Resour ce wraps a URL, and uses the wrapped URL to do its work.

6.3 Built-in Resource implementations

There are a number of Resour ce implementations that come supplied straight out of the box in Spring:
UrlResource

The Ur | Resour ce wraps a j ava. net . URL, and may be used to access any object that is normally
accessible via a URL, such as files, an HTTP target, an FTP target, etc. All URLs have a standardized
St ri ng representation, such that appropriate standardized prefixes are used to indicate one URL type
from another. This includes fi | e: for accessing filesystem paths, ht t p: for accessing resources via
the HTTP protocol, f t p: for accessing resources via FTP, etc.

A Ur | Resour ce is created by Java code explicitly using the Ur | Resour ce constructor, but will often
be created implicitly when you call an API method which takes a St ri ng argument which is meant
to represent a path. For the latter case, a JavaBeans Pr opert yEdi t or will ultimately decide which
type of Resour ce to create. If the path string contains a few well-known (to it, that is) prefixes such as
cl asspat h: , it will create an appropriate specialized Resour ce for that prefix. However, if it doesn’t
recognize the prefix, it will assume the this is just a standard URL string, and will create a Ur | Resour ce.

ClassPathResource

This class represents a resource which should be obtained from the classpath. This uses either the
thread context class loader, a given class loader, or a given class for loading resources.

This Resour ce implementation supports resolution as j ava.i o. Fi | e if the class path resource
resides in the file system, but not for classpath resources which reside in a jar and have not been
expanded (by the servlet engine, or whatever the environment is) to the filesystem. To address this the
various Resour ce implementations always support resolution as aj ava. net . URL.

A d assPat hResource is created by Java code explicitly using the O assPat hResource
constructor, but will often be created implicitly when you call an APl method which takes a Stri ng
argument which is meant to represent a path. For the latter case, a JavaBeans Pr opert yEdi t or will
recognize the special prefix cl asspat h: on the string path, and create a G assPat hResour ce in
that case.

4.1.6.RELEASE Spring Framework 138

Spring Framework Reference Documentation

FileSystemResource

This is a Resour ce implementation for j ava. i 0. Fi | e handles. It obviously supports resolution as a
Fi |l e, and as a URL.

ServletContextResource

This is a Resour ce implementation for Ser vl et Cont ext resources, interpreting relative paths within
the relevant web application’s root directory.

This always supports stream access and URL access, but only allows j ava. i o. Fi | e access when
the web application archive is expanded and the resource is physically on the filesystem. Whether or
not it's expanded and on the filesystem like this, or accessed directly from the JAR or somewhere else
like a DB (it's conceivable) is actually dependent on the Servlet container.

InputStreamResource

A Resour ce implementation for a given | nput St r eam This should only be used if no specific
Resour ce implementation is applicable. In particular, prefer Byt eAr r ayResour ce or any of the file-
based Resour ce implementations where possible.

In contrast to other Resour ce implementations, this is a descriptor for an already opened resource -
therefore returning t r ue from i sQpen() . Do not use it if you need to keep the resource descriptor
somewhere, or if you need to read a stream multiple times.

ByteArrayResource

This is a Resour ce implementation for a given byte array. It creates a Byt eAr r ayl nput St r eamfor
the given byte array.

It's useful for loading content from any given byte array, without having to resort to a single-use
| nput St reanResour ce.

6.4 The ResourcelLoader

The Resour ceLoader interface is meant to be implemented by objects that can return (i.e. load)
Resour ce instances.

public interface ResourcelLoader {

Resour ce get Resource(String |ocation);

All application contexts implement the Resour ceLoader interface, and therefore all application
contexts may be used to obtain Resour ce instances.

When you call get Resour ce() on a specific application context, and the location path specified
doesn’t have a specific prefix, you will get back a Resour ce type that is appropriate to that particular
application context. For example, assume the following snippet of code was executed against a
Cl assPat hXm Appl i cati onCont ext instance:

Resource tenplate = ctx.get Resource("sone/resource/ path/ myTenpl ate. txt");

4.1.6.RELEASE Spring Framework 139

Spring Framework Reference Documentation

What would be returned would be a C assPat hResour ce; if the same method was executed against
aFil eSystemXm Appl i cati onCont ext instance, you'd get back a Fi | eSyst enResour ce. For a
WebAppl i cati onCont ext, you'd get back a Ser vl et Cont ext Resour ce, and so on.

As such, you can load resources in a fashion appropriate to the particular application context.

On the other hand, you may also force Cl assPat hResour ce to be used, regardless of the application
context type, by specifying the special cl asspat h: prefix:

‘ Resource tenpl ate = ctx. get Resource("cl asspat h: sone/ resour ce/ pat h/ nyTenpl ate. txt");

Similarly, one can force a Ur | Resour ce to be used by specifying any of the standard j ava. net . URL
prefixes:

‘ Resource tenplate = ctx.getResource("file:///sone/resourcel/path/ nyTenplate.txt");

‘ Resource tenplate = ctx.getResource("http://myhost.conlresource/path/nyTenpl ate. txt");

The following table summarizes the strategy for converting St ri ngs to Resour ces:

Table 6.1. Resource strings

Prefix Example Explanation
classpath: cl asspat h: cont nyapp/ Loaded from the classpath.
config.xm
file: file:///datal/config.xm Loadedas a URL, from the
filesystem. !
http: http://nyserver/ Loaded as a URL.
| ogo. png
(none) / dat a/ confi g. xm Depends on the underlying
Appl i cati onCont ext .

But see also the section called “FileSystemResource caveats”.

6.5 The ResourceLoaderAware interface

The Resour ceLoader Awar e interface is a special marker interface, identifying objects that expect to
be provided with a Resour ceLoader reference.

public interface ResourcelLoader Anare {

voi d set Resour ceLoader (Resour ceLoader resourcelLoader);

}

When a class implements Resour ceLoader Awar e and is deployed into an application context (as a
Spring-managed bean), it is recognized as Resour ceLoader Awar e by the application context. The
application context will then invoke the set Resour ceLoader (Resour ceLoader) , supplying itself as
the argument (remember, all application contexts in Spring implement the Resour ceLoader interface).

Of course, since an Appl i cati onCont ext is a Resour ceLoader, the bean could also implement
the Appl i cati onCont ext Awar e interface and use the supplied application context directly to load
resources, but in general, it's better to use the specialized Resour ceLoader interface if that's all that's
needed. The code would just be coupled to the resource loading interface, which can be considered a
utility interface, and not the whole Spring Appl i cati onCont ext interface.

4.1.6.RELEASE Spring Framework 140

Spring Framework Reference Documentation

As of Spring 2.5, you can rely upon autowiring of the ResourcelLoader as an alternative to
implementing the Resour ceLoader Awar e interface. The "traditional" construct or and byType
autowiring modes (as described in the section called “Autowiring collaborators”) are now capable
of providing a dependency of type Resour ceLoader for either a constructor argument or setter
method parameter respectively. For more flexibility (including the ability to autowire fields and multiple
parameter methods), consider using the new annotation-based autowiring features. In that case, the
Resour ceLoader will be autowired into a field, constructor argument, or method parameter that is
expecting the Resour ceLoader type as long as the field, constructor, or method in question carries
the @\ut owi r ed annotation. For more information, see the section called “@Autowired”.

6.6 Resources as dependencies

If the bean itself is going to determine and supply the resource path through some sort of dynamic
process, it probably makes sense for the bean to use the Resour ceLoader interface to load resources.
Consider as an example the loading of a template of some sort, where the specific resource that is
needed depends on the role of the user. If the resources are static, it makes sense to eliminate the use
of the Resour ceLoader interface completely, and just have the bean expose the Resour ce properties
it needs, and expect that they will be injected into it.

What makes it trivial to then inject these properties, is that all application contexts register and use a
special JavaBeans Pr opert yEdi t or which can convert Stri ng paths to Resour ce objects. So if
nmyBean has a template property of type Resour ce, it can be configured with a simple string for that
resource, as follows:

<bean id="nyBean" class="...">
<property nanme="tenpl ate" val ue="sone/resource/ path/ myTenpl ate. txt"/>
</ bean>

Note that the resource path has no prefix, so because the application context itself is going to
be used as the Resour ceLoader, the resource itself will be loaded via a C assPat hResour ce,
Fi | eSyst enmResour ce, or Ser vl et Cont ext Resour ce (as appropriate) depending on the exact type
of the context.

If there is a need to force a specific Resour ce type to be used, then a prefix may be used. The following
two examples show how to force a Cl assPat hResour ce and a Ur | Resour ce (the latter being used
to access a filesystem file).

<property name="tenpl ate" val ue="cl asspat h: sone/ resour ce/ pat h/ nyTenpl ate. t xt">

<property name="tenpl ate" value="file:///some/resource/path/ myTenpl ate.txt"/>

6.7 Application contexts and Resource paths

Constructing application contexts

An application context constructor (for a specific application context type) generally takes a string or
array of strings as the location path(s) of the resource(s) such as XML files that make up the definition
of the context.

When such a location path doesn’t have a prefix, the specific Resour ce type built from that path and
used to load the bean definitions, depends on and is appropriate to the specific application context. For
example, if you create a Cl assPat hXm Appl i cati onCont ext as follows:

4.1.6.RELEASE Spring Framework 141

Spring Framework Reference Documentation

‘ Appl i cationContext ctx = new C assPat hXnl Appl i cati onCont ext (" conf/appCont ext.xm ");

The bean definitions will be loaded from the classpath, as a Cl assPat hResour ce will be used. But if
you create a Fi | eSyst enXm Appl i cat i onCont ext as follows:

ApplicationContext ctx =
new Fi | eSyst emXnl Appl i cati onCont ext ("conf/appCont ext.xm ");

The bean definition will be loaded from a filesystem location, in this case relative to the current working
directory.

Note that the use of the special classpath prefix or a standard URL prefix on the location
path will override the default type of Resource created to load the definition. So this
Fi | eSyst emXm Appl i cati onCont ext ...

Appl i cationContext ctx =
new Fi | eSyst enXm Appl i cati onCont ext ("cl asspat h: conf/appCont ext. xm ") ;

i. will actually load its bean definitions from the classpath. However, it is still a
Fi | eSyst emXm Appl i cati onCont ext . If it is subsequently used as a Resour ceLoader, any
unprefixed paths will still be treated as filesystem paths.

Constructing ClassPathXmlApplicationContext instances - shortcuts

The Cl assPat hXm Appl i cati onCont ext exposes a number of constructors to enable convenient
instantiation. The basic idea is that one supplies merely a string array containing just the filenames of
the XML files themselves (without the leading path information), and one also supplies a d ass; the
Gl assPat hXm Appl i cati onCont ext will derive the path information from the supplied class.

An example will hopefully make this clear. Consider a directory layout that looks like this:

conl
f oo/
servi ces. xm
daos. xm
Messenger Ser vi ce. cl ass

A Cl assPat hXm Appli cati onCont ext instance composed of the beans defined in the
"services.xm' and' daos. xm ' could be instantiated like so...

Appl i cationContext ctx = new O assPat hXnl Appl i cati onCont ext (
new String[] {"services.xm", "daos.xm "}, Messenger Servi ce. cl ass);

Please do consult the C assPat hXnl Appl i cat i onCont ext javadocs for details on the various
constructors.

Wildcards in application context constructor resource paths

The resource paths in application context constructor values may be a simple path (as shown
above) which has a one-to-one mapping to a target Resource, or alternately may contain the special
"classpath*:" prefix and/or internal Ant-style regular expressions (matched using Spring’s Pat hivat cher
utility). Both of the latter are effectively wildcards

One use for this mechanism is when doing component-style application assembly. All components can
publish context definition fragments to a well-known location path, and when the final application context
is created using the same path prefixed via cl asspat h*: , all component fragments will be picked up
automatically.

4.1.6.RELEASE Spring Framework 142

Spring Framework Reference Documentation

Note that this wildcarding is specific to use of resource paths in application context constructors (or
when using the Pat hivat cher utility class hierarchy directly), and is resolved at construction time. It
has nothing to do with the Resour ce type itself. It's not possible to use the cl asspat h*: prefix to
construct an actual Resour ce, as a resource points to just one resource at a time.

Ant-style Patterns
When the path location contains an Ant-style pattern, for example:

[V\EB- | NF/ *- cont ext . xni
conl myconpany/ **/ appl i cati onCont ext . xm
file:C /sone/path/*-context.xn
cl asspat h: comf myconpany/ **/ appl i cati onCont ext . xm

i. the resolver follows a more complex but defined procedure to try to resolve the wildcard. It produces
a Resource for the path up to the last non-wildcard segment and obtains a URL from it. If this URL
is not a "jar:" URL or container-specific variant (e.g. " zi p: " in WebLogic, " wsj ar " in WebSphere,
etc.), then aj ava. i o. Fi |l e is obtained from it and used to resolve the wildcard by traversing the
filesystem. In the case of a jar URL, the resolver either gets aj ava. net . Jar URLConnect i on from
it or manually parses the jar URL and then traverses the contents of the jar file to resolve the wildcards.

Implications on portability

If the specified path is already a file URL (either explicitly, or implicity because the base
Resour ceLoader is a filesystem one, then wildcarding is guaranteed to work in a completely portable
fashion.

If the specified path is a classpath location, then the resolver must obtain the last non-wildcard path
segment URL via a Cl assl oader . get Resour ce() call. Since this is just a node of the path (not the
file at the end) it is actually undefined (in the Cl assLoader javadocs) exactly what sort of a URL is
returned in this case. In practice, it is always a j ava. i 0. Fi | e representing the directory, where the
classpath resource resolves to a filesystem location, or a jar URL of some sort, where the classpath
resource resolves to a jar location. Still, there is a portability concern on this operation.

If a jar URL is obtained for the last non-wildcard segment, the resolver must be able to get a
j ava. net . Jar URLConnect i on from it, or manually parse the jar URL, to be able to walk the contents
of the jar, and resolve the wildcard. This will work in most environments, but will fail in others, and it is
strongly recommended that the wildcard resolution of resources coming from jars be thoroughly tested
in your specific environment before you rely on it.

The Classpath*: portability classpath*: prefix

When constructing an XML-based application context, a location string may use the special
cl asspat h*: prefix:

ApplicationContext ctx =
new C assPat hXm Appl i cati onCont ext (" cl asspat h*: conf/ appCont ext . xm ") ;

This special prefix specifies that all classpath resources that match the given name must be obtained
(internally, this essentially happens viaa Cl assLoader . get Resour ces(. ..) call),and then merged
to form the final application context definition.

Note

The wildcard classpath relies on the get Resour ces() method of the underlying classloader.
As most application servers nowadays supply their own classloader implementation, the

4.1.6.RELEASE Spring Framework 143

Spring Framework Reference Documentation

behavior might differ especially when dealing with jar files. A simple test to check if
cl asspat h* works is to use the classloader to load a file from within a jar on the classpath:
get O ass() . get d assLoader (). get Resour ces("<soneFi |l el nsi deTheJdar>"). Try
this test with files that have the same name but are placed inside two different locations. In case
an inappropriate result is returned, check the application server documentation for settings that
might affect the classloader behavior.

The"cl asspat h*: " prefix can also be combined with a Pat hivat cher patternin the rest of the location
path, for example " cl asspat h*: META- | NF/ *- beans. xni ". In this case, the resolution strategy is
fairly simple: a ClassLoader.getResources() call is used on the last non-wildcard path segment to get all
the matching resources in the class loader hierarchy, and then off each resource the same PathMatcher
resolution strategy described above is used for the wildcard subpath.

Other notes relating to wildcards

Please note that " cl asspat h*: " when combined with Ant-style patterns will only work reliably with at
least one root directory before the pattern starts, unless the actual target files reside in the file system.
This means that a pattern like " cl asspat h*: *. xm " will not retrieve files from the root of jar files
but rather only from the root of expanded directories. This originates from a limitation in the JDK'’s
Cl assLoader . get Resour ces() method which only returns file system locations for a passed-in
empty string (indicating potential roots to search).

Ant-style patterns with " cl asspat h: " resources are not guaranteed to find matching resources if the
root package to search is available in multiple class path locations. This is because a resource such as

‘ conl myconpany/ packagel/ servi ce- cont ext . xm

may be in only one location, but when a path such as

cl asspat h: conl nyconpany/ **/ servi ce- cont ext . xni

is used to try to resolve it, the resolver will work off the (first) URL returned by get Resour ce(" com
nmyconpany") ;. If this base package node exists in multiple classloader locations, the actual end
resource may not be underneath. Therefore, preferably, use " cl asspat h*: " with the same Ant-style
pattern in such a case, which will search all class path locations that contain the root package.

FileSystemResource caveats

A Fi | eSyst emResour ce that is not attached to a Fi | eSyst emAppl i cati onCont ext (that is,
a Fil eSystemAppl i cati onCont ext is not the actual Resour ceLoader) will treat absolute vs.
relative paths as you would expect. Relative paths are relative to the current working directory, while
absolute paths are relative to the root of the filesystem.

For backwards compatibility (historical) reasons however, this changes
when the Fi | eSyst emAppl i cati onCont ext is the Resour ceLoader . The
Fi | eSyst emAppl i cati onCont ext simply forces all attached Fi | eSyst enResour ce instances to
treat all location paths as relative, whether they start with a leading slash or not. In practice, this means
the following are equivalent:

Appl i cationContext ctx =
new Fi | eSyst enXm Appl i cati onCont ext (“conf/context.xm");

ApplicationContext ctx =
new Fi | eSystenXm Appl i cationContext ("/conf/context.xm");

4.1.6.RELEASE Spring Framework 144

Spring Framework Reference Documentation

As are the following: (Even though it would make sense for them to be different, as one case is relative
and the other absolute.)

Fi | eSyst emXm Appl i cati onContext ctx = ...;
ct x. get Resour ce("sone/ resour ce/ path/ myTenpl ate. txt");

Fi | eSyst enXm Appl i cati onContext ctx = ...;
ctx. get Resource("/ sone/ resour ce/ path/ nyTenpl ate. txt");

In practice, if true absolute filesystem paths are needed, it is better to forgo the use of absolute paths
with Fi | eSyst enResour ce / Fi | eSyst emXm Appl i cati onCont ext, and just force the use of a
Url Resour ce, by using the fi | e: URL prefix.

/] actual context type doesn't natter, the Resource will always be Url Resource
ct x. get Resource("file:///some/ resource/ path/ nyTenplate.txt");

/| force this FileSystenXnl ApplicationContext to load its definition via a Ul Resource
Appl i cationContext ctx =
new Fi | eSyst enXm Appl i cati onContext (“file:///conf/context.xm");

4.1.6.RELEASE Spring Framework 145

Spring Framework Reference Documentation

7. Validation, Data Binding, and Type Conversion

7.1 Introduction

JSR-303/JSR-349 Bean Validation

Spring Framework 4.0 supports Bean Validation 1.0 (JSR-303) and Bean Validation 1.1 (JSR-349)
in terms of setup support, also adapting it to Spring’s Val i dat or interface.

An application can choose to enable Bean Validation once globally, as described in Section 7.8,
“Spring Validation”, and use it exclusively for all validation needs.

An application can also register additional Spring Val i dat or instances per Dat aBi nder
instance, as described in the section called “Configuring a DataBinder”. This may be useful for
plugging in validation logic without the use of annotations.

There are pros and cons for considering validation as business logic, and Spring offers a design for
validation (and data binding) that does not exclude either one of them. Specifically validation should
not be tied to the web tier, should be easy to localize and it should be possible to plug in any validator
available. Considering the above, Spring has come up with a Val i dat or interface that is both basic
ands eminently usable in every layer of an application.

Data binding is useful for allowing user input to be dynamically bound to the domain model of
an application (or whatever objects you use to process user input). Spring provides the so-called
Dat aBi nder to do exactly that. The Val i dat or and the Dat aBi nder make up the val i dati on
package, which is primarily used in but not limited to the MVC framework.

The BeanW apper is a fundamental concept in the Spring Framework and is used in a lot of places.
However, you probably will not have the need to use the BeanW apper directly. Because this is
reference documentation however, we felt that some explanation might be in order. We will explain the
BeanW apper in this chapter since, if you were going to use it at all, you would most likely do so when
trying to bind data to objects.

Spring’s DataBinder and the lower-level BeanWrapper both use PropertyEditors to parse and format
property values. The PropertyEdi t or concept is part of the JavaBeans specification, and is also
explained in this chapter. Spring 3 introduces a "core.convert" package that provides a general type
conversion facility, as well as a higher-level "format" package for formatting Ul field values. These new
packages may be used as simpler alternatives to PropertyEditors, and will also be discussed in this
chapter.

7.2 Validation using Spring’s Validator interface

Spring features a Val i dat or interface that you can use to validate objects. The Val i dat or interface
works using an Er r or s object so that while validating, validators can report validation failures to the
Err or s object.

Let’s consider a small data object:

4.1.6.RELEASE Spring Framework 146

Spring Framework Reference Documentation

public class Person {

private String nane;
private int age;

/1 the usual getters and setters...

We’'re going to provide validation behavior for the Per son class by implementing the following two
methods of the or g. spri ngfranewor k. val i dati on. Val i dat or interface:

» supports(d ass) - Can this Val i dat or validate instances of the supplied Cl ass?

- validate(Qbject, org.springfranmework.validation.Errors) - validates the given
object and in case of validation errors, registers those with the given Err or s object

Implementing a Validator is fairly straightforward, especially when you know of the
Val i dationUti | s helper class that the Spring Framework also provides.

public class PersonValidator inplenents Validator {

/**
* This Validator validates *just* Person instances
*/
public bool ean supports(d ass clazz) {
return Person.cl ass. equal s(cl azz);

}

public void validate(Object obj, Errors e) {
ValidationUils.rejectlfEnpty(e, "nane", "nane.enpty");
Person p = (Person) obj;
if (p.getAge() < 0) {

e.rejectVal ue("age", "negativeval ue");
} else if (p.getAge() > 110) {
e.rej ectVal ue("age", "too.darn.old");

}

As you can see, thestaticrejectlfEmpty(..) methodonthe ValidationUils classis used
to reject the ' name' property if it is nul | or the empty string. Have a look at the Val i dati onUtil s
javadocs to see what functionality it provides besides the example shown previously.

While it is certainly possible to implement a single Val i dat or class to validate each of the nested
objects in a rich object, it may be better to encapsulate the validation logic for each nested class
of object in its own Val i dat or implementation. A simple example of a 'rich' object would be a
Cust oner that is composed of two Stri ng properties (a first and second name) and a complex
Addr ess object. Addr ess objects may be used independently of Cust onmer objects, and so a distinct
Addr essVal i dat or has been implemented. If you want your Cust oner Val i dat or to reuse the
logic contained within the Addr essVal i dat or class without resorting to copy-and-paste, you can
dependency-inject or instantiate an Addr essVal i dat or within your Cust oner Val i dat or, and use
it like so:

4.1.6.RELEASE Spring Framework 147

Spring Framework Reference Documentation

public class CustonerValidator inplenents Validator {
private final Validator addressValidator;

publ i c CustonerValidator(Validator addressValidator) {

if (addressValidator == null) {
throw new I || egal Argunent Exception("The supplied [Validator] is " +
"required and nmust not be null.");

}
if (!addressValidator.supports(Address.class)) {
throw new I || egal Argunent Excepti on("The supplied [Validator] nust " +
support the validation of [Address] instances.");
}

t his. addressVal i dat or = addressVal i dat or;

}

/**
* This Validator validates Custoner instances, and any subcl asses of Custoner too
*/
publ i c bool ean supports(C ass clazz) {
return Custoner.cl ass.isAssignabl eFron(cl azz);

}

public void validate(Qbject target, Errors errors) {
Val idationUWils.rejectlfEnptyO Wiitespace(errors, "firstNane", "field.required");

Val i dationUils.rejectlfEnptyO Wiitespace(errors, "surnane", "field.required");
Cust omer customer = (Custoner) target;
try {

errors. pushNest edPat h("address") ;

Val i dationUils.invokeValidator(this.addressValidator, custoner.getAddress(), errors);
} finally {

errors. popNest edPat h() ;
}

Validation errors are reported to the Er r or s object passed to the validator. In case of Spring Web MVC
you can use <spri ng: bi nd/ > tag to inspect the error messages, but of course you can also inspect
the errors object yourself. More information about the methods it offers can be found in the javadocs.

7.3 Resolving codes to error messages

We've talked about databinding and validation. Outputting messages corresponding to validation errors
is the last thing we need to discuss. In the example we've shown above, we rejected the nane and
the age field. If we're going to output the error messages by using a MessageSour ce, we will do
so using the error code we've given when rejecting the field (name and age in this case). When
you call (either directly, or indirectly, using for example the Val i dati onUti | s class) r ej ect Val ue
or one of the other r ej ect methods from the Err or s interface, the underlying implementation will
not only register the code you've passed in, but also a number of additional error codes. What
error codes it registers is determined by the MessageCodesResol ver that is used. By default, the
Def aul t MessageCodesResol ver is used, which for example not only registers a message with
the code you gave, but also messages that include the field name you passed to the reject method.
So in case you reject a field using rej ect Val ue("age", "too.darn.old"), apart from the
t 0o. dar n. ol d code, Spring will also register t 0o. dar n. ol d. age and t oo. dar n. ol d. age. i nt
(so the first will include the field name and the second will include the type of the field); this is done as
a convenience to aid developers in targeting error messages and suchlike.

More information on the MessageCodesResol ver and the default strategy can be found online in the
javadocs of MessageCodesResol ver and Def aul t MessageCodesResol ver , respectively.

4.1.6.RELEASE Spring Framework 148

http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/validation/MessageCodesResolver.html
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/validation/DefaultMessageCodesResolver.html

Spring Framework Reference Documentation

7.4 Bean manipulation and the BeanWrapper

The org. spri ngframewor k. beans package adheres to the JavaBeans standard provided by
Oracle. A JavaBean is simply a class with a default no-argument constructor, which follows a naming
convention where (by way of an example) a property named bi ngoMadness would have a setter
method set Bi ngoMadness(..) and a getter method get Bi ngoMadness() . For more information
about JavaBeans and the specification, please refer to Oracle’s website (javabeans).

One quite important class in the beans package is the BeanW apper interface and its corresponding
implementation (BeanW apper | npl). As quoted from the javadocs, the BeanW apper offers
functionality to set and get property values (individually or in bulk), get property descriptors, and to
query properties to determine if they are readable or writable. Also, the BeanW apper offers support
for nested properties, enabling the setting of properties on sub-properties to an unlimited depth. Then,
the BeanW apper supports the ability to add standard JavaBeans Pr oper t yChangelLi st ener s and
Vet oabl eChangeli st ener s, without the need for supporting code in the target class. Last but not
least, the BeanW apper provides support for the setting of indexed properties. The BeanW apper
usually isn't used by application code directly, but by the Dat aBi nder and the BeanFact ory.

The way the BeanW apper works is partly indicated by its name: it wraps a bean to perform actions
on that bean, like setting and retrieving properties.

Setting and getting basic and nested properties
Setting and getting properties is done using the setPropertyValue(s) and
get PropertyVal ue(s) methods that both come with a couple of overloaded variants. They're all

described in more detail in the javadocs Spring comes with. What's important to know is that there are
a couple of conventions for indicating properties of an object. A couple of examples:

Table 7.1. Examples of properties

Expression Explanation

nane Indicates the property nane corresponding to
the methods get Name() ori sNanme() and
set Nanme(. .)

account . nane Indicates the nested property name of the

property account corresponding e.g. to the
methods get Account () . set Nane() or
get Account (). get Name()

account[2] Indicates the third element of the indexed
property account . Indexed properties can be
of type array, | i st or other naturally ordered
collection

account [COVPANYNANME] Indicates the value of the map entry indexed by
the key COMPANYNAME of the Map property
account

Below you'll find some examples of working with the BeanW apper to get and set properties.

4.1.6.RELEASE Spring Framework 149

http://docs.oracle.com/javase/6/docs/api/java/beans/package-summary.html

Spring Framework Reference Documentation

(This next section is not vitally important to you if you're not planning to work with the BeanW apper
directly. If you're just using the Dat aBi nder and the BeanFactory and their out-of-the-box
implementation, you should skip ahead to the section about Pr opert yEdi t ors.)

Consider the following two classes:

public class Conpany {

private String nane;
private Enpl oyee managi ngDirector;

public String getNane() {
return this.name;

}

public void setNane(String nane) {
t his. nanme = nane;

}

publ i c Enpl oyee get Managi ngDirector() {
return this.managi ngDirector;

}

public void set Managi ngDi r ect or (Enpl oyee managi ngDi rector) {
thi s. managi ngDi rect or = managi ngDi rect or;

}

public class Enpl oyee {
private String nane;
private float salary;

public String getNane() {
return this.naneg;

}

public void setNane(String nane) {
this.name = nane;

}

public float getSalary() {
return salary;

}

public void setSalary(float salary) {
this.salary = sal ary;

}

The following code snippets show some examples of how to retrieve and manipulate some of the
properties of instantiated Conpani es and Enpl oyees:

4.1.6.RELEASE Spring Framework 150

Spring Framework Reference Documentation

BeanW apper conpany = BeanW apper | npl (new Conpany());

/] setting the conpany nane..

conpany. set PropertyVal ue("nanme", "Some Conpany Inc.");

/1 ... can also be done like this:

PropertyVal ue val ue = new PropertyVal ue("nane", "Sone Conpany Inc.");
conpany. set PropertyVal ue(val ue);

/1 ok, let's create the director and tie it to the conpany:

BeanW apper jim = BeanW apper | npl (new Enpl oyee());

jimsetPropertyVal ue("nane", "Jim Stravinsky");

conpany. set PropertyVal ue(" managi nghi rector", jim get Wappedl nstance());

/'l retrieving the salary of the nmanagi ngDirector through the conpany
Fl oat salary = (Float) conpany.get PropertyVal ue("nanagi ngDi rector.sal ary");

Built-in PropertyEditor implementations

Spring uses the concept of Propert yEdi t or s to effect the conversion between an Cbj ect and a
String. If you think about it, it sometimes might be handy to be able to represent properties in a
different way than the object itself. For example, a Dat e can be represented in a human readable way
(asthe String'2007-14- 09", while we're still able to convert the human readable form back to the
original date (or even better: convert any date entered in a human readable form, back to Dat e objects).
This behavior can be achieved by registering custom editors, of type j ava. beans. Propert yEdi t or.
Registering custom editors on a BeanW apper or alternately in a specific loC container as mentioned
in the previous chapter, gives it the knowledge of how to convert properties to the desired type. Read
more about Pr opert yEdi t or s in the javadocs of the j ava. beans package provided by Oracle.

A couple of examples where property editing is used in Spring:

e setting properties on beans is done wusing PropertyEditors. When mentioning
java. |l ang. Stri ng as the value of a property of some bean you're declaring in XML file, Spring
will (if the setter of the corresponding property has a Cl ass-parameter) use the Cl assEdi t or to try
to resolve the parameter to a Cl ass object.

e parsing HTTP request parameters in Spring's MVC framework is done using all kinds of
Pr opert yEdi t or s that you can manually bind in all subclasses of the ConmandCont rol | er.

Spring has a number of built-in Pr oper t yEdi t or s to make life easy. Each of those is listed below
and they are all located in the or g. spri ngf r amewor k. beans. propertyedit or s package. Most,
but not all (as indicated below), are registered by default by BeanW apper | npl . Where the property
editor is configurable in some fashion, you can of course still register your own variant to override the
default one:

Table 7.2. Built-in PropertyEditors

Class Explanation

Byt eArrayPr opert yEdi t or Editor for byte arrays. Strings will simply
be converted to their corresponding byte
representations. Registered by default by
BeanW apper | npl .

Cl assEdi tor Parses Strings representing classes to actual
classes and the other way around. When a class
is not found, an I I | egal Ar gunent Excepti on
is thrown. Registered by default by
BeanW apper | mpl .

4.1.6.RELEASE Spring Framework 151

Spring Framework Reference Documentation

Class Explanation

Cust onBool eanEdi t or Customizable property editor for Bool ean
properties. Registered by default by
BeanW apper | npl , but, can be overridden
by registering custom instance of it as custom
editor.

Cust onCol | ecti onEdi t or Property editor for Collections, converting
any source Col | ecti on to a given target
Col | ecti on type.

Cust onDat eEdi t or Customizable property editor for java.util.Date,
supporting a custom DateFormat. NOT
registered by default. Must be user registered as
needed with appropriate format.

Cust omNunber Edi t or Customizable property editor for any Number
subclass like | nt eger, Long, Fl oat, Doubl e.
Registered by default by BeanW apper | npl ,
but can be overridden by registering custom
instance of it as a custom editor.

Fi | eEdi t or Capable of resolving Stringstoj ava.io. Fil e
objects. Registered by default by
BeanW apper | mpl .

| nput St r eanEdi t or One-way property editor, capable of taking a
text string and producing (via an intermediate
Resour ceEdi t or and Resour ce) an
I nput St r eam so | nput St r eamproperties
may be directly set as Strings. Note
that the default usage will not close the
I nput St r eamfor you! Registered by default by
BeanW apper | npl .

Local eEdi t or Capable of resolving Strings to Local e
objects and vice versa (the String format is
[country][variant], which is the same thing
the toString() method of Locale provides).
Registered by default by BeanW apper | npl .

PatternEditor Capable of resolving Strings to
java. util.regex. Pattern objects and vice
versa.

Properti esEditor Capable of converting Strings (formatted

using the format as defined in the javadocs
ofthejava. util. Properties class) to

Pr operti es objects. Registered by default by
BeanW apper | mpl .

4.1.6.RELEASE Spring Framework 152

Spring Framework Reference Documentation

Class Explanation

StringTri mrer Editor Property editor that trims Strings. Optionally
allows transforming an empty string into a nul |
value. NOT registered by default; must be user
registered as needed.

URLEdi t or Capable of resolving a String representation of
a URL to an actual URL object. Registered by
default by BeanW apper | npl .

Spring uses the java. beans. PropertyEdi t or Manager to set the search path for property
editors that might be needed. The search path also includes sun. bean. edi t or s, which includes
Propert yEdi t or implementations for types such as Font, Col or, and most of the primitive types.
Note also that the standard JavaBeans infrastructure will automatically discover Pr opert yEdi t or
classes (without you having to register them explicitly) if they are in the same package as the class
they handle, and have the same name as that class, with ' Edi t or' appended; for example, one could
have the following class and package structure, which would be sufficient for the FooEdi t or class to
be recognized and used as the Pr oper t yEdi t or for Foo-typed properties.

com
chank

pop
Foo
FooEditor // the PropertyEditor for the Foo class

Note that you can also use the standard Beanl nf o JavaBeans mechanism here as well (described
in_not-amazing-detail here). Find below an example of using the Beanl nf o mechanism for explicitly
registering one or more Pr opert yEdi t or instances with the properties of an associated class.

com
chank
pop
Foo
FooBeanl nfo // the Beanlnfo for the Foo class

Here is the Java source code for the referenced FooBeanl nf o class. This would associate a
Cust omNunber Edi t or with the age property of the Foo class.

public class FooBeanl nfo extends SinpleBeanlnfo {

public PropertyDescriptor[] getPropertyDescriptors() {
try {
final PropertyEditor nunber PE = new CustonNunber Edi tor (I nteger.class, true)
PropertyDescri ptor ageDescriptor = new PropertyDescriptor("age", Foo.class) {
public PropertyEditor createPropertyEditor(CObject bean) {
return nunber PE
b
B
return new PropertyDescriptor[] { ageDescriptor }
}
catch (Introspecti onException ex) {
throw new Error(ex.toString())

}

4.1.6.RELEASE Spring Framework 153

http://docs.oracle.com/javase/tutorial/javabeans/advanced/customization.html

Spring Framework Reference Documentation

Registering additional custom PropertyEditors

When setting bean properties as a string value, a Spring 1oC container ultimately uses standard
JavaBeans Pr oper t yEdi t or s to convert these Strings to the complex type of the property. Spring pre-
registers a number of custom Pr opert yEdi t or s (for example, to convert a classname expressed as
a string into a real Cl ass object). Additionally, Java’s standard JavaBeans Pr oper t yEdi t or lookup
mechanism allows a Pr opert yEdi t or for a class simply to be named appropriately and placed in the
same package as the class it provides support for, to be found automatically.

If there is a need to register other custom Pr oper t yEdi t or s, there are several mechanisms available.
The most manual approach, which is not normally convenient or recommended, is to simply use the
regi st er Cust ontdi t or () method of the Confi gur abl eBeanFact ory interface, assuming you
have a BeanFact or y reference. Another, slightly more convenient, mechanism is to use a special bean
factory post-processor called Cust onEdi t or Conf i gur er . Although bean factory post-processors can
be used with BeanFact or y implementations, the Cust onEdi t or Conf i gur er has a nested property
setup, so it is strongly recommended that it is used with the Appl i cat i onCont ext , where it may be
deployed in similar fashion to any other bean, and automatically detected and applied.

Note that all bean factories and application contexts automatically use a number of built-in property
editors, through their use of something called a BeanW apper to handle property conversions. The
standard property editors that the BeanW apper registers are listed in the previous section. Additionally,
Appl i cati onCont ext s also override or add an additional number of editors to handle resource
lookups in a manner appropriate to the specific application context type.

Standard JavaBeans Pr opert yEdi t or instances are used to convert property values expressed as
strings to the actual complex type of the property. Cust onEdi t or Conf i gur er, a bean factory post-
processor, may be used to conveniently add support for additional Pr oper t yEdi t or instances to an
Appl i cati onCont ext .

Consider a user class Exoti cType, and another class DependsOnExoti cType which needs
Exoti cType set as a property:

package exanpl e;
public class ExoticType {
private String nane;
public ExoticType(String name) {
this.name = nane;
}
}
public class DependsOnExoticType {
private ExoticType type;
public void set Type(ExoticType type) {

this.type = type;
}

When things are properly set up, we want to be able to assign the type property as a string, which a
Pr opert yEdi t or will behind the scenes convert into an actual Exot i cType instance:

<bean id="sanpl e" cl ass="exanpl e. DependsOnExoti cType" >
<property name="type" val ue="aNanmeFor Exoti cType"/>
</ bean>

4.1.6.RELEASE Spring Framework 154

Spring Framework Reference Documentation

The Pr opert yEdi t or implementation could look similar to this:

/'l converts string representation to ExoticType object
package exanpl e;

public class ExoticTypeEditor extends PropertyEditorSupport {

public void setAsText (String text) {
set Val ue(new Exoti cType(text.toUpperCase()));
}

Finally, we use CustonEditorConfigurer to register the new PropertyEditor with the
Appl i cati onCont ext , which will then be able to use it as needed:

<bean cl ass="org. spri ngfranewor k. beans. factory. confi g. Cust onEdi t or Confi gurer">
<property name="cust onEdi tors">
<map>
<entry key="exanpl e. Exoti cType" val ue="exanpl e. Exoti cTypeEdi tor"/>
</ map>
</ property>
</ bean>

Using PropertyEditorRegistrars

Another mechanism for registering property editors with the Spring container is to create and
use a PropertyEditorRegistrar. This interface is particularly useful when you need to
use the same set of property editors in several different situations: write a corresponding
registrar and reuse that in each case. PropertyEditorRegi strars work in conjunction with
an interface called PropertyEditor Regi stry, an interface that is implemented by the Spring
BeanW apper (and Dat aBi nder). Propert yEdi t or Regi strars are particularly convenient when
used in conjunction with the Cust onEdit or Confi gurer (introduced here), which exposes a
property called set PropertyEditorRegi strars(..): PropertyEditorRegi strars added to
a Cust onEdi t or Confi gur er in this fashion can easily be shared with Dat aBi nder and Spring
MVC Control | ers. Furthermore, it avoids the need for synchronization on custom editors: a
PropertyEdi t or Regi strar is expected to create fresh Pr oper t yEdi t or instances for each bean
creation attempt.

Using a Pr opert yEdi t or Regi st rar is perhaps best illustrated with an example. First off, you need
to create your own Pr opert yEdi t or Regi st r ar implementation:

package com foo. editors. spring;
public final class CustonPropertyEditorRegistrar inplenents PropertyEditorRegistrar {
public void registerCustonEditors(PropertyEditorRegistry registry) {

/1 it is expected that new PropertyEditor instances are created
registry.regi sterCustonEdi tor (Exoti cType. cl ass, new ExoticTypeEditor());

/1 you could register as nmany custom property editors as are required here...

See also the org. springfranmework. beans. support. ResourceEdi t or Regi strar for an
example PropertyEditorRegi strar implementation. Notice how in its implementation of the
regi st er Cust onkdi t or s(..) method it creates new instances of each property editor.

Next we configure a CustonEditorConfigurer and inject an instance of our
Cust onPropert yEdi t or Regi strar intoit:

4.1.6.RELEASE Spring Framework 155

Spring Framework Reference Documentation

<bean cl ass="org. spri ngfranmewor k. beans. factory. confi g. Cust onEdi t or Confi gurer">
<property name="propertyEditorRegistrars">
<list>
<ref bean="custonPropertyEditorRegistrar"/>
</list>
</ property>
</ bean>

<bean id="custonPropertyEditorRegistrar"
cl ass="com f 0o. edi tors. spri ng. Cust onProper t yEdi t or Regi strar"/ >

Finally, and in a bit of a departure from the focus of this chapter, for those of you using Spring’s MVC
web framework, using Pr oper t yEdi t or Regi st r ar s in conjunction with data-binding Control | ers
(such as Si npl eFornControl | er) can be very convenient. Find below an example of using a
Propert yEdi t or Regi strar in the implementation of ani ni t Bi nder (. .) method:

public final class RegisterUserController extends SinpleFornController {
private final PropertyEditorRegistrar custonPropertyEditorRegistrar;

publ i c Regi sterUserController(PropertyEditorRegistrar propertyEditorRegistrar) {
this. cust onPropertyEditorRegi strar = propertyEditorRegistrar;
}

protected void initBinder(HtpServletRequest request,
Ser vl et Request Dat aBi nder bi nder) throws Exception {
this.custonPropertyEditorRegistrar.registerCustonEditors(binder);
}

/1 other nethods to do with registering a User

This style of PropertyEditor registration can lead to concise code (the implementation of
i ni tBi nder(..) isjustone line long!), and allows common Pr opert yEdi t or registration code to
be encapsulated in a class and then shared amongst as many Cont r ol | er s as needed.

7.5 Spring Type Conversion

Spring 3 introduces a cor e. convert package that provides a general type conversion system. The
system defines an SPIto implement type conversion logic, as well as an API to execute type conversions
at runtime. Within a Spring container, this system can be used as an alternative to PropertyEditors to
convert externalized bean property value strings to required property types. The public APl may also be
used anywhere in your application where type conversion is needed.

Converter SPI

The SPI to implement type conversion logic is simple and strongly typed:

package org. spri ngfranework. core. convert.converter;
public interface Converter<S, T> {

T convert (S source);

To create your own converter, simply implement the interface above. Parameterize S as the type
you are converting from, and T as the type you are converting to. Such a converter can also be
applied transparently if a collection or array of S needs to be converted to an array or collection
of T, provided that a delegating array/collection converter has been registered as well (which
Def aul t Conver si onSer vi ce does by default).

4.1.6.RELEASE Spring Framework 156

Spring Framework Reference Documentation

For each call to convert (S), the source argument is guaranteed to be NOT null. Your Converter
may throw any unchecked exception if conversion fails; specifically, an 1 | | egal Ar gunment Excepti on
should be thrown to report an invalid source value. Take care to ensure that your Converter
implementation is thread-safe.

Several converter implementations are provided in the core. convert. support package as a
convenience. These include converters from Strings to Numbers and other common types. Consider
StringTol nt eger as an example for a typical Conver t er implementation:

package org. springfranmework. core. convert. support;
final class StringTol nteger inplenents Converter<String, |nteger> {

public Integer convert(String source) {
return | nteger.val ueCf (source);

}

ConverterFactory

When you need to centralize the conversion logic for an entire class hierarchy, for example, when
converting from String to java.lang.Enum objects, implement Convert er Fact ory:

package org. springfranework. core. convert.converter;
public interface ConverterFactory<S, R> {

<T extends R> Converter<S, T> getConverter(C ass<T> targetType);

Parameterize S to be the type you are converting from and R to be the base type defining the range of
classes you can convert to. Then implement getConverter(Class<T>), where T is a subclass of R.

Consider the St ri ngToEnumConverterFactory as an example:

package org. springfranework. core. convert. support;
final class StringToEnunConverterFactory inplenents ConverterFactory<String, Enune {

public <T extends Enum> Converter<String, T> getConverter(C ass<T> targetType) {
return new StringToEnuntConverter (target Type);
}

private final class StringToEnunConverter<T extends Enun® inplenents Converter<String, T> {
private O ass<T> enunflype;

public StringToEnunConverter(C ass<T> enuniype) {
thi s. enuniType = enunilype;

}

public T convert(String source) {
return (T) Enum val ueCf (t hi s. enuniType, source.trin());

}

GenericConverter

When you require a sophisticated Converter implementation, consider the GenericConverter interface.
With a more flexible but less strongly typed signature, a GenericConverter supports converting between

4.1.6.RELEASE Spring Framework 157

Spring Framework Reference Documentation

multiple source and target types. In addition, a GenericConverter makes available source and target field
context you can use when implementing your conversion logic. Such context allows a type conversion
to be driven by a field annotation, or generic information declared on a field signature.

package org. springframework. core. convert.converter;
public interface GenericConverter {
publ i c Set<Converti bl ePair> get Convertibl eTypes();

Obj ect convert(Qbj ect source, TypeDescriptor sourceType, TypeDescriptor targetType);

To implement a GenericConverter, have getConvertibleTypes() return the supported source#target type
pairs. Then implement convert(Object, TypeDescriptor, TypeDescriptor) to implement your conversion
logic. The source TypeDescriptor provides access to the source field holding the value being converted.
The target TypeDescriptor provides access to the target field where the converted value will be set.

A good example of a GenericConverter is a converter that converts between a Java Array and a
Collection. Such an ArrayToCollectionConverter introspects the field that declares the target Collection
type to resolve the Collection’s element type. This allows each element in the source array to be
converted to the Collection element type before the Collection is set on the target field.

Note

Because GenericConverter is a more complex SPI interface, only use it when you need it. Favor
Converter or ConverterFactory for basic type conversion needs.

ConditionalGenericConverter

Sometimes you only want a Converter to execute if a specific condition holds true. For example, you
might only want to execute a Converter if a specific annotation is present on the target field. Or you
might only want to execute a Converter if a specific method, such as static valueOf method, is defined
on the target class. ConditionalGenericConverter is an subinterface of GenericConverter that allows you
to define such custom matching criteria:

public interface Conditional GenericConverter extends GenericConverter {

bool ean mat ches(TypeDescri ptor sourceType, TypeDescriptor targetType);

A good example of a ConditionalGenericConverter is an EntityConverter that converts between an
persistent entity identifier and an entity reference. Such a EntityConverter might only match if the target
entity type declares a static finder method e.g. findAccount(Long). You would perform such a finder
method check in the implementation of matches(TypeDescriptor, TypeDescriptor).

ConversionService API

The ConversionService defines a unified API for executing type conversion logic at runtime. Converters
are often executed behind this facade interface:

4.1.6.RELEASE Spring Framework 158

Spring Framework Reference Documentation

package org. springfranework. core. convert;

public interface ConversionService {

bool ean canConvert (C ass<?> sourceType, C ass<?> target Type);

<T> T convert (Cbject source, C ass<T> targetType);

bool ean canConvert (TypeDescri ptor sourceType, TypeDescriptor targetType);

bj ect convert (Qbj ect source, TypeDescriptor sourceType, TypeDescriptor targetType);

Most ConversionService implementations also implement Convert er Regi st ry, which provides an
SPI for registering converters. Internally, a ConversionService implementation delegates to its registered
converters to carry out type conversion logic.

A robust ConversionService implementation is provided in the core. convert. support package.
Generi cConversi onServi ce is the general-purpose implementation suitable for use in most
environments. Conver si onSer vi ceFact ory provides a convenient factory for creating common
ConversionService configurations.

Configuring a ConversionService

A ConversionService is a stateless object designed to be instantiated at application startup, then shared
between multiple threads. In a Spring application, you typically configure a ConversionService instance
per Spring container (or ApplicationContext). That ConversionService will be picked up by Spring and
then used whenever a type conversion needs to be performed by the framework. You may also inject
this ConversionService into any of your beans and invoke it directly.

Note

If no ConversionService is registered with Spring, the original PropertyEditor-based system is
used.

To register a default ConversionService with Spring, add the following bean definition with id
conver si onSer vi ce:

<bean id="conversi onServi ce"
cl ass="org. springframewor k. cont ext. support. Conver si onSer vi ceFact or yBean"/ >

A default ConversionService can convert between strings, numbers, enums, collections, maps, and
other common types. To supplement or override the default converters with your own custom
converter(s), set the convert ers property. Property values may implement either of the Converter,
ConverterFactory, or GenericConverter interfaces.

<bean i d="conversi onService"
cl ass="org. spri ngfranmewor k. cont ext. support. Conver si onSer vi ceFact or yBean" >
<property name="converters">
<set >
<bean cl ass="exanpl e. M\yCust onConverter"/>
</ set >
</ property>
</ bean>

It is also common to use a ConversionService within a Spring MVC application. See the section called
“Configuring Formatting in Spring MVC” for details on use with <mvc: annot ati on-dri ven/ >.

4.1.6.RELEASE Spring Framework 159

Spring Framework Reference Documentation

In certain situations you may wish to apply formatting during conversion. See the section called
“FormatterRegistry SPI” for details on using For mat t i ngConver si onSer vi ceFact or yBean.

Using a ConversionService programmatically

To work with a ConversionService instance programmatically, simply inject a reference to it like you
would for any other bean:

@ervi ce
public class MyService {

@\ut owi r ed
public MyServi ce(ConversionService conversionService) {
this.conversionService = conversionService;

}

public void dolt() {
t hi s. conversionService.convert(...)

}

For most use cases, the conver t method specifying the targetType can be used but it will not work with
more complex types such as a collection of a parameterized element. If you want to convert a Li st of
I nt eger to aList of String programmatically, for instance, you need to provide a formal definition
of the source and target types.

Fortunately, TypeDescri pt or provides various options to make that straightforward:
Def aul t Conver si onServi ce cs = new Defaul t Conver si onService();

Li st<Integer> input =

cs. convert (i nput,
TypeDescriptor.forQoject(input), // List<Integer> type descriptor
TypeDescriptor.col | ection(List.class, TypeDescriptor.valueX(String.class)));

Note that Def aul t Conver si onSer vi ce registers converters automatically which are appropriate for
most environments. This includes collection converters, scalar converters, and also basic (bj ect to
St ri ng converters. The same converters can be registered with any Convert er Regi st ry using the
static addDef aul t Convert er s method on the Def aul t Conver si onSer vi ce class.

Converters for value types will be reused for arrays and collections, so there is no need to create a
specific converter to convert from a Col | ecti on of Sto a Col | ecti on of T, assuming that standard
collection handling is appropriate.

7.6 Spring Field Formatting

As discussed in the previous section, cor e. convert is a general-purpose type conversion system. It
provides a unified ConversionService API as well as a strongly-typed Converter SPI for implementing
conversion logic from one type to another. A Spring Container uses this system to bind bean property
values. In addition, both the Spring Expression Language (SpEL) and DataBinder use this system
to bind field values. For example, when SpEL needs to coerce a Short to a Long to complete
an expressi on. set Val ue(Obj ect bean, bject val ue) attempt, the core.convert system
performs the coercion.

Now consider the type conversion requirements of a typical client environment such as a web or desktop
application. In such environments, you typically convert from String to support the client postback

4.1.6.RELEASE Spring Framework 160

Spring Framework Reference Documentation

process, as well as back to String to support the view rendering process. In addition, you often need to
localize String values. The more general core.convert Converter SPI1 does not address such formatting
requirements directly. To directly address them, Spring 3 introduces a convenient Formatter SPI that
provides a simple and robust alternative to PropertyEditors for client environments.

In general, use the Converter SPI when you need to implement general-purpose type conversion logic;
for example, for converting between a java.util.Date and and java.lang.Long. Use the Formatter SPI
when you’re working in a client environment, such as a web application, and need to parse and print
localized field values. The ConversionService provides a unified type conversion API for both SPIs.

Formatter SPI

The Formatter SPI to implement field formatting logic is simple and strongly typed:

package org. springfranework. fornat ;

public interface Formatter<T> extends Printer<T> Parser<T> {

}

Where Formatter extends from the Printer and Parser building-block interfaces:

public interface Printer<T> {
String print(T fieldValue, Locale |ocale);

}

i nport java.text.ParseException;

public interface Parser<T> {
T parse(String clientValue, Locale l|ocale) throws ParseException;

}

To create your own Formatter, simply implement the Formatter interface above. Parameterize T to be the
type of object you wish to format, for example, j ava. uti | . Dat e. Implement the pri nt () operation
to print an instance of T for display in the client locale. Implement the par se() operation to parse an
instance of T from the formatted representation returned from the client locale. Your Formatter should
throw a ParseException or lllegalArgumentException if a parse attempt fails. Take care to ensure your
Formatter implementation is thread-safe.

Several Formatter implementations are provided in f or mat subpackages as a convenience. The
nunber package provides a Nunber For matt er, CurrencyFor matter, and Per cent Formatt er
toformatj ava. | ang. Nunber objects using aj ava. t ext . Nunber For mat . The dat et i me package
provides a Dat eFor mat t er to format j ava. uti | . Dat e objects with a j ava. t ext . Dat eFor mat .
The dat et i ne. | oda package provides comprehensive datetime formatting support based on the Joda

Time library.

Consider Dat eFor mat t er as an example For mat t er implementation:

4.1.6.RELEASE Spring Framework 161

http://joda-time.sourceforge.net
http://joda-time.sourceforge.net

Spring Framework Reference Documentation

package org. springfranework. format. dateti ne;
public final class DateFormatter inplenents Fornatter<Date> {
private String pattern;

public DateFormatter(String pattern) {
this.pattern = pattern;

}

public String print(Date date, Locale |ocale) {
if (date == null) {
return "";
}

return get Dat eFor mat (1 ocal e) . format (date);

}

public Date parse(String formatted, Locale |ocale) throws ParseException {
if (formatted.l ength() == 0) {
return null;
}

return get Dat eFormat (| ocal e). parse(formatted);

}

protected Dat eFormat get Dat eFor nat (Local e | ocal e) {
Dat eFor mat dat eFormat = new Si npl eDat eFor mat (t hi s. pattern, |ocale);
dat eFor mat . set Leni ent (f al se);
return dateFormat;

The Spring team welcomes community-driven For mat t er contributions; see jira.spring.io to contribute.

Annotation-driven Formatting

As you will see, field formatting can be configured by field type or annotation. To bind an Annotation to
a formatter, implement AnnotationFormatterFactory:

package org. spri ngfranework. f or nat ;

public interface AnnotationFornatterFactory<A extends Annotation> {
Set <Cl ass<?>> get Fi el dTypes();
Printer<?> getPrinter(A annotation, C ass<?> fieldType);

Par ser <?> get Parser (A annotation, C ass<?> fieldType);

Parameterize A to be the field annotationType you wish to associate formatting logic
with, for example org. springfranmework. format. annot ati on. Dat eTi neFor mat. Have
get Fi el dTypes() return the types of fields the annotation may be used on. Have get Pri nt er ()
return a Printer to print the value of an annotated field. Have get Par ser () return a Parser to parse
a clientValue for an annotated field.

The example AnnotationFormatterFactory implementation below binds the @NumberFormat Annotation
to a formatter. This annotation allows either a number style or pattern to be specified:

4.1.6.RELEASE Spring Framework 162

https://jira.spring.io/browse/SPR

Spring Framework Reference Documentation

public final class Nunber For mat Annot ati onFor matt er Fact ory
i npl enent s Annot at i onFor mat t er Fact or y<Nunber For mat > {

public Set<C ass<?>> get Fi el dTypes() {
return new HashSet <Cl ass<?>>(asLi st (new O ass<?>[] {
Short.class, Integer.class, Long.class, Float.class,
Doubl e. cl ass, Bi gDeci mal . cl ass, Biglnteger.class }));

}

public Printer<Nunber> getPrinter(Nunber Format annotation, Cass<?> fieldType) {
return configureFormatterFron{annotation, fieldType);

}

publ i ¢ Par ser <Nunber > get Par ser (Nunber For mat annot ati on, C ass<?> fiel dType) {
return configureFormatterFron{annotation, fieldType);

}

private Formatter<Nunber> confi gureFormatter Fron(Nunber For mat annot ati on,
Cl ass<?> fieldType) {
if (lannotation.pattern().iseEnpty()) {
return new Nunber For matter (annotation. pattern());
} else {
Style style = annotation.style();
if (style == Style. PERCENT) {
return new Percent Formatter();
} else if (style == Style. CURRENCY) {
return new CurrencyFormatter();
} else {
return new Nunber Formatter();

}

To trigger formatting, simply annotate fields with @NumberFormat:

public class MyMdel {

@\unber For mat (st yl e=St yl e. CURRENCY)
private BigDecimal decinal;

Format Annotation API

A portable format annotation API exists in the org. spri ngfranework. f or mat. annot ati on
package. Use @NumberFormat to format java.lang.Number fields. Use @DateTimeFormat to format
java.util.Date, java.util.Calendar, java.util.Long, or Joda Time fields.

The example below uses @DateTimeFormat to format a java.util.Date as a ISO Date (yyyy-MM-dd):

public class MyMdel {

@at eTi neFor mat (i so=I SO. DATE)
private Date date;

FormatterRegistry SPI

The FormatterRegistry is an SPI for registering formatters and converters.
Format t i ngConver si onServi ce is an implementation of FormatterRegistry suitable for most
environments. This implementation may be configured programmatically or declaratively as a Spring
bean using For mat ti ngConver si onServi ceFact or yBean. Because this implementation also

4.1.6.RELEASE Spring Framework 163

Spring Framework Reference Documentation

implements Conver si onSer vi ce, it can be directly configured for use with Spring’s DataBinder and
the Spring Expression Language (SpEL).

Review the FormatterRegistry SPI below:

package org. springframework. fornat;

public interface FormatterRegi stry extends ConverterRegistry {
voi d addFor matter For Fi el dType(d ass<?> fiel dType, Printer<?> printer, Parser<?> parser);
voi d addFor nmat t er For Fi el dType(d ass<?> fiel dType, Formatter<?> formatter);
voi d addFor nat t er For Fi el dType(Fornatter<?> fornatter);

voi d addFor mat t er For Annot at i on(Annot ati onFor mat t er Fact ory<?, ?> factory);

As shown above, Formatters can be registered by fieldType or annotation.

The FormatterRegistry SPI allows you to configure Formatting rules centrally, instead of duplicating such
configuration across your Controllers. For example, you might want to enforce that all Date fields are
formatted a certain way, or fields with a specific annotation are formatted in a certain way. With a shared
FormatterRegistry, you define these rules once and they are applied whenever formatting is needed.

FormatterRegistrar SPI

The FormatterRegistrar is an SPl for registering formatters and converters through the
FormatterRegistry:

package org. springframework. format;
public interface FormatterRegistrar {

voi d regi sterFornatters(FornatterRegistry registry);

A FormatterRegistrar is useful when registering multiple related converters and formatters for a given
formatting category, such as Date formatting. It can also be useful where declarative registration is
insufficient. For example when a formatter needs to be indexed under a specific field type different from
its own <T> or when registering a Printer/Parser pair. The next section provides more information on
converter and formatter registration.

Configuring Formatting in Spring MVC

In a Spring MVC application, you may configure a custom ConversionService instance explicitly as an
attribute of the annot ati on-dri ven element of the MVC namespace. This ConversionService will
then be used anytime a type conversion is required during Controller model binding. If not configured
explicitly, Spring MVC will automatically register default formatters and converters for common types
such as numbers and dates.

To rely on default formatting rules, no custom configuration is required in your Spring MVC config XML:

4.1.6.RELEASE Spring Framework 164

Spring Framework Reference Documentation

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schema/ beans"
xm ns: mve="http://ww:. springframework. or g/ schema/ nvc"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="
ht t p: / / www. spri ngf ramewor k. or g/ schena/ beans
http://ww. springfranework. or g/ schenma/ beans/ spri ng- beans. xsd
http://ww. spri ngfranmewor k. or g/ schema/ mvc
http://ww. springfranmework. org/ schema/ nvc/ spring-nvc. xsd" >

<nvc: annot ati on-driven/ >

</ beans>

With this one-line of configuration, default formatters for Numbers and Date types will be installed,
including support for the @NumberFormat and @DateTimeFormat annotations. Full support for the
Joda Time formatting library is also installed if Joda Time is present on the classpath.

To inject a ConversionService instance with custom formatters and converters registered, set the
conversion-service attribute and then specify custom converters, formatters, or FormatterRegistrars as
properties of the FormattingConversionServiceFactoryBean:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schema/ beans"
xm ns: mve="http://ww. springframework. or g/ schema/ nvc"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="
ht t p: / / www. spri ngf ramewor k. or g/ schena/ beans
http://ww. springfranework. or g/ schenma/ beans/ spri ng- beans. xsd
http://ww. springfranmewor k. or g/ schema/ mvc
http://ww. springfranmework. org/ schema/ nvc/ spring-nvc. xsd" >

<nvc: annot ati on-driven conversi on-servi ce="conversi onServi ce"/ >

<bean id="conversi onServi ce"
cl ass="org. springframework. format. support. Formatti ngConver si onSer vi ceFact or yBean" >
<property name="converters">
<set >
<bean cl ass="org. exanpl e. MyConverter"/>
</ set>
</ property>
<property name="formatters">
<set >
<bean cl ass="org. exanpl e. \yFormatter"/>
<bean cl ass="org. exanpl e. MyAnnot ati onFor mat t er Factory"/ >
</ set>
</ property>
<property name="formatterRegi strars">

<set>
<bean cl ass="org. exanpl e. MyFor matt er Regi strar"/>
</ set >
</ property>
</ bean>

</ beans>
Note
See the section called “FormatterRegistrar SPI” and the

For mat ti ngConver si onSer vi ceFact or yBean for more information on when to use
FormatterRegistrars.

4.1.6.RELEASE Spring Framework 165

Spring Framework Reference Documentation

7.7 Configuring a global date & time format

By default, date and time fields that are not annotated with @Dat eTi meFor mat are converted from
strings using the the Dat eFor nat . SHORT style. If you prefer, you can change this by defining your
own global format.

You will need to ensure that Spring does not register default
formatters, and instead you should register all formatters manually. Use
the org.springfranmework. format. dateti ne.joda. JodaTi neFornmatterRegi strar or
org.springframework. fornat. dateti nme. Dat eFor matt er Regi strar class depending on
whether you use the Joda Time library.

For example, the following Java configuration will register a global ' yyyyMvid' format. This example
does not depend on the Joda Time library:

@onfi guration
public class AppConfig {

@Bean
publ i c FornmattingConversi onService conversionService() {

/'l Use the DefaultFornattingConversionService but do not register defaults
Def aul t For mat t i ngConver si onSer vi ce conver si onServi ce = new
Def aul t For mat t i ngConver si onSer vi ce(f al se);

/| Ensure @WwunberFormat is still supported
conver si onSer vi ce. addFor mat t er For Fi el dAnnot at i on(new Nunber For mat Annot ati onFor matter Factory());

/'l Register date conversion with a specific global format

Dat eFor mat t er Regi strar regi strar = new Dat eFormatterRegistrar();
registrar.set Formatter(new DateFormatter("yyyyMwdd"));

regi strar.regi sterFormatters(conversionService);

return conversi onService;

If you prefer XML based configuration you can use a
For mat ti ngConver si onSer vi ceFact or yBean. Here is the same example, this time using Joda
Time:

4.1.6.RELEASE Spring Framework 166

Spring Framework Reference Documentation

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schenmaLocat i on="
ht t p: / / www. spri ngf ramewor k. or g/ schena/ beans
ht t p: / / www. spri ngf ramewor k. or g/ schena/ beans/ spri ng- beans. xsd>

<bean
i d="conver si onServi ce" class="org. springframework.format.support.Formatti ngConversi onServi ceFact or yBean" >
<property name="regi sterDefaul t Formatters" value="fal se" />
<property name="formatters">
<set >
<bean cl ass="org. springfranmework. f or mat. nunber . Nunber For mat Annot ati onFor matt er Fact ory" /

</ set>
</ property>
<property name="fornmatterRegistrars">
<set >
<bean cl ass="org. springframework. format. dateti ne.j oda. JodaTi mreFor matterRegi strar">
<property name="dateFormatter">

<bean cl ass="org. springfranmework. format. datetine.joda. Dat eTi meFor matt er Fact or yBean" >
<property name="pattern" val ue="yyyyMwd"/ >

</ bean>

</ property>
</ bean>
</ set>
</ property>
</ bean>
</ beans>

Note

Joda Time provides separate distinct types to represent date, tinme and date-tinme
values. The dat eFormatter, ti neFornmatter and dat eTi meFor matt er properties of the
JodaTi neFor mat t er Regi st rar should be used to configure the different formats for each
type. The Dat eTi neFor nat t er Fact or yBean provides a convenient way to create formatters.

If you are using Spring MVC remember to explicitly configure the conversion service that is used. For
Java based @onf i gur at i on this means extending the WebMscConf i gur at i onSupport class and
overriding the mvcConver si onSer vi ce() method. For XML you should use the ' conver si on-
servi ce' attribute of the mvc: annot ati on-dri ven element. See the section called “Configuring
Formatting in Spring MVC” for details.

7.8 Spring Validation

Spring 3 introduces several enhancements to its validation support. First, the JSR-303 Bean Validation
APl is now fully supported. Second, when used programmatically, Spring’s DataBinder can now validate
objects as well as bind to them. Third, Spring MVC now has support for declaratively validating
@control | er inputs.

Overview of the JSR-303 Bean Validation API

JSR-303 standardizes validation constraint declaration and metadata for the Java platform. Using this
API, you annotate domain model properties with declarative validation constraints and the runtime
enforces them. There are a number of built-in constraints you can take advantage of. You may also
define your own custom constraints.

To illustrate, consider a simple PersonForm model with two properties:

4.1.6.RELEASE Spring Framework 167

Spring Framework Reference Documentation

public class PersonForm {
private String nane;
private int age;

}

JSR-303 allows you to define declarative validation constraints against such properties:

public class PersonForm {

@\Not Nul |
@i ze(max=64)
private String nane;

@1 n(0)
private int age;

}

When an instance of this class is validated by a JSR-303 Validator, these constraints will be enforced.

For general information on JSR-303/JSR-349, see the Bean Validation website. For information on the
specific capabilities of the default reference implementation, see the Hibernate Validator documentation.
To learn how to setup a Bean Validation provider as a Spring bean, keep reading.

Configuring a Bean Validation Provider

Spring provides full support for the Bean Validation API. This includes convenient support for
bootstrapping a JSR-303/JSR-349 Bean Validation provider as a Spring bean. This allows for
a javax.validation. ValidatorFactory or javax. val i dati on. Val i dat or to be injected
wherever validation is needed in your application.

Use the Local Val i dat or Fact or yBean to configure a default Validator as a Spring bean:

<bean id="validator"
cl ass="org. springframework. val i dati on. beanval i dati on. Local Val i dat or Fact or yBean"/ >

The basic configuration above will trigger Bean Validation to initialize using its default bootstrap
mechanism. A JSR-303/JSR-349 provider, such as Hibernate Validator, is expected to be present in
the classpath and will be detected automatically.

Injecting a Validator

Local Val i dat or Fact or yBean implements both j avax. val i dati on. Val i dat or Fact ory and
j avax. val i dati on. Val i dat or, as well as Spring’s
org. springfranmework. val i dati on. Val i dat or. You may inject a reference to either of these
interfaces into beans that need to invoke validation logic.

Inject a reference to j avax. val i dati on. Val i dat or if you prefer to work with the Bean Validation
API directly:

i nport javax.validation.Validator;

@er vi ce
public class MyService {

@\ut owi r ed
private Validator validator;

Inject a reference to or g. spri ngf ramewor k. val i dati on. Val i dat or if your bean requires the
Spring Validation API:

4.1.6.RELEASE Spring Framework 168

http://beanvalidation.org/
https://www.hibernate.org/412.html

Spring Framework Reference Documentation

i nport org.springfranework. validation. Validator;

@ervi ce
public class MyService {

@\ut owi r ed
private Validator validator;

Configuring Custom Constraints

Each Bean Validation constraint consists of two parts. First, a @onstrai nt annotation
that declares the constraint and its configurable properties. Second, an implementation of
the javax.validation. ConstraintValidator interface that implements the constraint's
behavior. To associate a declaration with an implementation, each @Constrai nt annotation
references a corresponding ValidationConstraint implementation class. At runtime, a
Constrai nt Val i dat or Fact ory instantiates the referenced implementation when the constraint
annotation is encountered in your domain model.

By default, the Local Val i dat or Fact or yBean configures a
Spri ngConstrai nt Val i dat or Fact ory that uses Spring to create ConstraintValidator instances.
This allows your custom ConstraintValidators to benefit from dependency injection like any other Spring
bean.

Shown below is an example of a custom @onstrai nt declaration, followed by an associated
Const rai nt Val i dat or implementation that uses Spring for dependency injection:

@ar get ({ El ement Type. METHCD, El enent Type. Fl ELD})
@Ret ent i on(Ret ent i onPol i cy. RUNTI ME)

@onst rai nt (val i dat edBy=MyConst r ai nt Val i dat or . cl ass)
public @nterface MyConstraint {

}

i nport javax.validation. ConstraintValidator;
public class MyConstraintValidator inplenents ConstraintValidator {

@\ut owi r ed;
private Foo aDependency;

As you can see, a ConstraintValidator implementation may have its dependencies @Autowired like any
other Spring bean.

Spring-driven Method Validation

The method validation feature supported by Bean Validation 1.1, and as a custom extension
also by Hibernate Validator 4.3, can be integrated into a Spring context through a
Met hodVal i dat i onPost Pr ocessor bean definition:

<bean cl ass="org. springfranmework. val i dati on. beanval i dati on. Met hodVal i dati onPost Processor"/ >

In order to be eligible for Spring-driven method validation, all target classes need to be annotated
with Spring’s @/al i dat ed annotation, optionally declaring the validation groups to use. Check out the
Met hodVal i dat i onPost Processor javadocs for setup details with Hibernate Validator and Bean
Validation 1.1 providers.

4.1.6.RELEASE Spring Framework 169

Spring Framework Reference Documentation

Additional Configuration Options

The default Local Val i dat or Fact or yBean configuration should prove sufficient for most cases.
There are a number of configuration options for various Bean Validation constructs, from message
interpolation to traversal resolution. See the Local Val i dat or Fact or yBean javadocs for more
information on these options.

Configuring a DataBinder

Since Spring 3, a DataBinder instance can be configured with a Validator. Once configured, the Validator
may be invoked by calling bi nder . val i dat e() . Any validation Errors are automatically added to the
binder’'s BindingResult.

When working with the DataBinder programmatically, this can be used to invoke validation logic after
binding to a target object:

Foo target = new Foo();
Dat aBi nder bi nder = new Dat aBi nder (t arget);
bi nder. set Val i dat or (new FooVal i dator());

/1 bind to the target object
bi nder. bi nd(propertyVal ues);

/1 validate the target object
bi nder. val i date();

/1 get BindingResult that includes any validation errors
Bi ndi ngResult results = binder. getBindi ngResul t ();

A DataBinder can also be configured with multiple Validator instances via
dat aBi nder. addVal i dat ors and dat aBi nder. repl aceVal i dators. This is useful when
combining globally configured Bean Validation with a Spring Val i dat or configured locally on a
DataBinder instance. See the section called “Configuring a Validator for use by Spring MVC”.

Spring MVC 3 Validation

Beginning with Spring 3, Spring MVC has the ability to automatically validate @ont r ol | er inputs. In
previous versions it was up to the developer to manually invoke validation logic.

Triggering @Controller Input Validation

To trigger validation of a @ont r ol | er input, simply annotate the input argument as @/al i d:

@control | er
public class MyController {

@Request Mappi ng("/foo", nethod=Request Met hod. POST)
public void processFoo(@/alid Foo foo) { /* ... */ }

Spring MVC will validate a @Valid object after binding so-long as an appropriate Validator has been
configured.

Note

The @Valid annotation is part of the standard JSR-303 Bean Validation API, and is not a Spring-
specific construct.

4.1.6.RELEASE Spring Framework 170

Spring Framework Reference Documentation

Configuring a Validator for use by Spring MVC

The Val i dat or instance invoked when a @/al i d method argument is encountered may be configured
in two ways. First, you may call bi nder. set Val i dat or (Val i dat or) within a @ontroller's
@ ni t Bi nder callback. This allows you to configure a Val i dat or instance per @ontrol | er class:

@control | er
public class MyController {

@ ni t Bi nder
protected void initBinder(WbDat aBi nder bi nder) {
bi nder. set Val i dat or (new FooVal i dator());

}

@Request Mappi ng("/foo", nethod=Request Met hod. POST)
public void processFoo(@alid Foo foo) { ... }

Second, you may call set Val i dat or (Val i dat or) on the global WebBi ndi ngl ni ti al i zer. This
allows you to configure a Val i dat or instance across all @ont r ol | er classes. This can be achieved
easily by using the Spring MVC namespace:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xml ns="http://wwm. spri ngframework. org/ schena/ beans"
xm ns: mve="http://ww. springfranmework. org/ schema/ m/c"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="
http://ww. springfranmewor k. or g/ schema/ beans
http://ww. springfranework. or g/ schema/ beans/ spri ng- beans. xsd
ht t p: / / www. spri ngf ramewor k. or g/ schenma/ nvc
ht t p: / / www. spri ngf ramewor k. or g/ schenma/ nvc/ spri ng- nvec. xsd" >

<nvc: annot ati on-driven validator="gl obal Val i dator"/>

</ beans>

To combine a global and a local validator, configure the global validator as shown above and then add
a local validator:

@control | er
public class MyController {

@ ni t Bi nder

protected void initBinder(WbDat aBi nder bi nder) {
bi nder . addVal i dat or s(new FooVal i dator ());

}

Configuring a JSR-303/JSR-349 Validator for use by Spring MVC

With Bean Validation, a single j avax. val i dati on. Val i dat or instance typically validates all model
objects that declare validation constraints. To configure such a JSR-303 backed Validator with Spring
MVC, simply add a Bean Validation provider, such as Hibernate Validator, to your classpath. Spring
MVC will detect it and automatically enable Bean Validation support across all Controllers.

The Spring MVC configuration required to enable Bean Validation support is shown below:

4.1.6.RELEASE Spring Framework 171

Spring Framework Reference Documentation

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schema/ beans"
xm ns: mve="http://ww:. springframework. or g/ schema/ nvc"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="
ht t p: / / www. spri ngf ramewor k. or g/ schena/ beans
http://ww. springfranework. or g/ schenma/ beans/ spri ng- beans. xsd
http://ww. spri ngfranmewor k. or g/ schema/ mvc
http://ww. springfranmework. org/ schema/ nvc/ spring-nvc. xsd" >

<!-- JSR-303/JSR-349 support will be detected on classpath and enabled autonmatically -->
<mvc: annot ation-driven/>

</ beans>

With this minimal configuration, anytime a @/al i d @ontrol | er input is encountered, it will be
validated by the Bean Validation provider. That provider, in turn, will enforce any constraints declared
against the input. Any Constrai nt Vi ol ati ons will automatically be exposed as errors in the
Bi ndi ngResul t renderable by standard Spring MVC form tags.

4.1.6.RELEASE Spring Framework 172

Spring Framework Reference Documentation

8. Spring Expression Language (SpEL)

8.1 Introduction

The Spring Expression Language (SpEL for short) is a powerful expression language that supports
guerying and manipulating an object graph at runtime. The language syntax is similar to Unified EL but
offers additional features, most notably method invocation and basic string templating functionality.

While there are several other Java expression languages available, OGNL, MVEL, and JBoss EL, to
name a few, the Spring Expression Language was created to provide the Spring community with a single
well supported expression language that can be used across all the products in the Spring portfolio.
Its language features are driven by the requirements of the projects in the Spring portfolio, including
tooling requirements for code completion support within the eclipse based Spring Tool Suite. That said,
SpEL is based on a technology agnostic API allowing other expression language implementations to
be integrated should the need arise.

While SpEL serves as the foundation for expression evaluation within the Spring portfolio, it is not directly
tied to Spring and can be used independently. In order to be self contained, many of the examples in
this chapter use SpEL as if it were an independent expression language. This requires creating a few
bootstrapping infrastructure classes such as the parser. Most Spring users will not need to deal with this
infrastructure and will instead only author expression strings for evaluation. An example of this typical
use is the integration of SpEL into creating XML or annotated based bean definitions as shown in the
section Expression support for defining bean definitions.

This chapter covers the features of the expression language, its API, and its language syntax. In several
places an Inventor and Inventor’s Society class are used as the target objects for expression evaluation.
These class declarations and the data used to populate them are listed at the end of the chapter.

8.2 Feature Overview

The expression language supports the following functionality
* Literal expressions

» Boolean and relational operators

* Regular expressions

» Class expressions

» Accessing properties, arrays, lists, maps
* Method invocation

» Relational operators

» Assignment

 Calling constructors

» Bean references

« Array construction

4.1.6.RELEASE Spring Framework 173

Spring Framework Reference Documentation

* Inline lists

* Inline maps

e Ternary operator

» Variables

» User defined functions
 Collection projection

» Collection selection

Templated expressions

8.3 Expression Evaluation using Spring’s Expression Interface

This section introduces the simple use of SpEL interfaces and its expression language. The complete
language reference can be found in the section Language Reference.

The following code introduces the SpEL API to evaluate the literal string expression Hello World.

Expr essi onPar ser parser = new Spel Expressi onParser () ;
Expression exp = parser.parseExpression("' Hello Wrld ");
String nessage = (String) exp.getValue();

The value of the message variable is simply Hello World.

The SpEL classes and interfaces you are most likely to use are located in the packages
or g. spri ngframewor k. expr essi on and its sub packages and spel . support.

The interface Expr essi onPar ser is responsible for parsing an expression string. In this example
the expression string is a string literal denoted by the surrounding single quotes. The interface
Expr essi on is responsible for evaluating the previously defined expression string. There are
two exceptions that can be thrown, Par seExcepti on and Eval uati onExcepti on when calling
par ser. par seExpr essi on and exp. get Val ue respectively.

SpEL supports a wide range of features, such as calling methods, accessing properties, and calling
constructors.

As an example of method invocation, we call the concat method on the string literal.
Expr essi onPar ser parser = new Spel Expressi onParser();

Expressi on exp = parser. parseExpression("'Hello Wrld' .concat('!"')");
String nmessage = (String) exp.getValue();

The value of message is now Hello World!.

As an example of calling a JavaBean property, the String property Bytes can be called as shown below.

Expr essi onPar ser parser = new Spel Expressi onParser () ;

/'l invokes getBytes()
Expression exp = parser.parseExpression("' Hello Wrld'.bytes");
byte[] bytes = (byte[]) exp.getValue();

4.1.6.RELEASE Spring Framework 174

Spring Framework Reference Documentation

SpEL also supports nested properties using standard dot notation, i.e. propl.prop2.prop3 and the setting
of property values

Public fields may also be accessed.

Expr essi onPar ser parser = new Spel Expressi onParser();
/'l invokes getBytes().length

Expressi on exp = parser. parseExpression("' Hello Wrld'.bytes.length");
int length = (Integer) exp.getValue();

The String’s constructor can be called instead of using a string literal.

Expr essi onPar ser parser = new Spel Expressi onParser () ;
Expression exp = parser. parseExpression("new String(' hello world).toUpperCase()");
String nessage = exp.getValue(String.class);

Note the use of the generic method publ i ¢ <T> T get Val ue(d ass<T> desi redResul t Type).
Using this method removes the need to cast the value of the expression to the desired result type. An
Eval uati onExcepti on will be thrown if the value cannot be cast to the type T or converted using
the registered type converter.

The more common usage of SpEL is to provide an expression string that is evaluated against a specific
object instance (called the root object). There are two options here and which to choose depends on
whether the object against which the expression is being evaluated will be changing with each call to
evaluate the expression. In the following example we retrieve the name property from an instance of
the Inventor class.

/] Create and set a cal endar
Gregori anCal endar ¢ = new G egori anCal endar () ;
c.set (1856, 7, 9);

/'l The constructor argunents are nane, birthday, and nationality.
Inventor tesla = new Inventor ("N kola Tesla", c.getTinme(), "Serbian");

Expr essi onPar ser parser = new Spel Expressi onParser () ;
Expressi on exp = parser. par seExpressi on("nane");

Eval uati onCont ext context = new Standar dEval uati onCont ext (tesla);
String nanme = (String) exp.getVal ue(context);

In the last line, the value of the string variable name will be set to "Nikola Tesla". The class
StandardEvaluationContext is where you can specify which object the "name" property will be evaluated
against. This is the mechanism to use if the root object is unlikely to change, it can simply be set once
in the evaluation context. If the root object is likely to change repeatedly, it can be supplied on each call
to get Val ue, as this next example shows:

/ Create and set a cal endar
GregorianCal endar ¢ = new G egorianCal endar () ;
c.set (1856, 7, 9);

/1 The constructor argunents are nane, birthday, and nationality.
Inventor tesla = new Inventor ("N kola Tesla", c.getTinme(), "Serbian");

Expressi onParser parser = new Spel Expressi onParser();
Expressi on exp = parser. par seExpressi on("nane");
String name = (String) exp.getValue(tesla);

In this case the inventor t esl a has been supplied directly to get Val ue and the expression evaluation
infrastructure creates and manages a default evaluation context internally - it did not require one to be
supplied.

4.1.6.RELEASE Spring Framework 175

Spring Framework Reference Documentation

The StandardEvaluationContext is relatively expensive to construct and during repeated usage it builds
up cached state that enables subsequent expression evaluations to be performed more quickly. For
this reason it is better to cache and reuse them where possible, rather than construct a new one for
each expression evaluation.

In some cases it can be desirable to use a configured evaluation context and yet still supply a different
root object on each call to get Val ue. get Val ue allows both to be specified on the same call. In these
situations the root object passed on the call is considered to override any (which maybe null) specified
on the evaluation context.

Note

In standalone usage of SpEL there is a need to create the parser, parse expressions and perhaps
provide evaluation contexts and a root context object. However, more common usage is to provide
only the SpEL expression string as part of a configuration file, for example for Spring bean or
Spring Web Flow definitions. In this case, the parser, evaluation context, root object and any
predefined variables are all set up implicitly, requiring the user to specify nothing other than the
expressions.

As a final introductory example, the use of a boolean operator is shown using the Inventor object in
the previous example.

Expressi on exp = parser. parseExpression("nane == 'Ni kola Tesla'");
bool ean result = exp. getVal ue(context, Bool ean.class); // evaluates to true

The EvaluationContext interface

The interface Eval uati onContext is used when evaluating an expression to resolve
properties, methods, fields, and to help perform type conversion. The out-of-the-box
implementation, St andar dEval uat i onCont ext, uses reflection to manipulate the object, caching
java.lang.refl ect's Met hod, Fi el d, and Const r uct or instances for increased performance.

The St andar dEval uat i onCont ext is where you may specify the root object to evaluate against via
the method set Root Cbj ect () or passing the root object into the constructor. You can also specify
variables and functions that will be used in the expression using the methods set Vari abl e() and
regi st er Functi on() . The use of variables and functions are described in the language reference
sections Variables and Functions. The St andar dEval uat i onCont ext is also where you can register
custom Const ruct or Resol ver s, Met hodResol vers, and Propert yAccessors to extend how
SpEL evaluates expressions. Please refer to the JavaDoc of these classes for more details.

Type Conversion

By default SpEL wuses the conversion service available in Spring core (
org. spri ngframewor k. core. convert. Conver si onSer vi ce). This conversion service comes
with many converters built in for common conversions but is also fully extensible so custom conversions
between types can be added. Additionally it has the key capability that it is generics aware. This means
that when working with generic types in expressions, SpEL will attempt conversions to maintain type
correctness for any objects it encounters.

What does this mean in practice? Suppose assignment, using set Val ue() , isbeingusedtosetali st
property. The type of the property is actually Li st <Bool ean>. SpEL will recognize that the elements
of the list need to be converted to Bool ean before being placed in it. A simple example:

4.1.6.RELEASE Spring Framework 176

Spring Framework Reference Documentation

class Sinple {
publ i c List<Bool ean> bool eanLi st = new Arrayli st <Bool ean>();

}
Sinple sinple = new Sinple();

si npl e. bool eanLi st. add(true);

St andar dEval uat i onCont ext si npl eCont ext = new St andar dEval uati onCont ext (si npl e);
/] false is passed in here as a string. SpEL and the conversion service will

/'l correctly recognize that it needs to be a Bool ean and convert it

par ser. par seExpr essi on("bool eanLi st[0] ") . set Val ue(si npl eContext, "false");

/1 b wll be false
Bool ean b = sinpl e. bool eanLi st. get (0);

Parser configuration

It is possible to configure the SpEL expression parser using a parser configuration object
(org. spri ngframewor k. expr essi on. spel . Spel Par ser Confi gurati on). The configuration
object controls the behaviour of some of the expression components. For example, if indexing into an
array or collection and the element at the specified index is nul | itis possible to automatically create the
element. This is useful when using expressions made up of a chain of property references. If indexing
into an array or list and specifying an index that is beyond the end of the current size of the array or list
it is possible to automatically grow the array or list to accommodate that index.

cl ass Denp {
public List<String> list;

}

/l Turn on:

/1 - auto null reference initialization

/1 - auto collection grow ng

Spel Par ser Confi gurati on config = new Spel Parser Confi guration(true,true);
Expr essi onPar ser parser = new Spel Expressi onParser(config);

Expressi on expressi on = parser.parseExpression("list[3]");

Denp denp = new Deno();

Obj ect o = expression. getVal ue(denp);

/'l deno.list will now be a real collection of 4 entries
/] Each entry is a new enpty String

It is also possible to configure the behaviour of the SpEL expression compiler.
SpEL compilation

Spring Framework 4.1 includes a basic expression compiler. Expressions are usually interpreted which
provides a lot of dynamic flexibility during evaluation but does not provide the optimum performance. For
occasional expression usage this is fine, but when used by other components like Spring Integration,
performance can be very important and there is no real need for the dynamism.

The new SpEL compiler is intended to address this need. The compiler will generate a real Java
class on the fly during evaluation that embodies the expression behaviour and use that to achieve
much faster expression evaluation. Due to the lack of typing around expressions the compiler uses
information gathered during the interpreted evaluations of an expression when performing compilation.
For example, it does not know the type of a property reference purely from the expression but during the

4.1.6.RELEASE Spring Framework 177

Spring Framework Reference Documentation

first interpreted evaluation it will find out what it is. Of course, basing the compilation on this information
could cause trouble later if the types of the various expression elements change over time. For this
reason compilation is best suited to expressions whose type information is not going to change on
repeated evaluations.

For a basic expression like this:
someArray[0] . someProperty. someQt her Property < 0.1

which involves array access, some property derefencing and numeric operations, the performance gain
can be very noticeable. In an example microbenchmark run of 50000 iterations, it was taking 75ms to
evaluate using only the interpreter and just 3ms using the compiled version of the expression.

Compiler configuration

The compiler is not turned on by default, but there are two ways to turn it on. It can be turned on using the
parser configuration process discussed earlier or via a system property when SpEL usage is embedded
inside another component. This section discusses both of these options.

Is isimportant to understand that there are a few modes the compiler can operate in, captured in an enum
(or g. spri ngframewor k. expr essi on. spel . Spel Conpi | er Mode). The modes are as follows:

e OFF - The compiler is switched off; this is the default.

» | MVEDI ATE - In immediate mode the expressions are compiled as soon as possible. This is typically
after the first interpreted evaluation. If the compiled expression fails (typically due to a type changing,
as described above) then the caller of the expression evaluation will receive an exception.

* M XED - In mixed mode the expressions silently switch between interpreted and compiled mode over
time. After some number of interpreted runs they will switch to compiled form and if something goes
wrong with the compiled form (like a type changing, as described above) then the expression will
automatically switch back to interpreted form again. Sometime later it may generate another compiled
form and switch to it. Basically the exception that the user gets in | MVEDI ATE mode is instead handled
internally.

| MVEDI ATE mode exists because M XED mode could cause issues for expressions that have side
effects. If a compiled expression blows up after partially succeeding it may have already done something
that has affected the state of the system. If this has happened the caller may not want it to silently re-
run in interpreted mode since part of the expression may be running twice.

After selecting a mode, use the Spel Par ser Confi gur at i on to configure the parser:

Spel Par ser Confi guration config = new Spel Parser Confi gurati on(Spel Conpi | er Mode. | MVEDI ATE,
this.getd ass().getd assLoader());

Spel Expr essi onPar ser parser = new Spel Expr essi onPar ser (config);
Expression expr = parser. parseExpression("payl oad");

M/Message nessage = new MyMessage();

Obj ect payl oad = expr. get Val ue(message) ;

When specifying the compiler mode it is also possible to specify a classloader (passing null is allowed).
Compiled expressions will be defined in a child classloader created under any that is supplied. It is
important to ensure if a classloader is specified it can see all the types involved in the expression
evaluation process. If none is specified then a default classloader will be used (typically the context
classloader for the thread that is running during expression evaluation).

4.1.6.RELEASE Spring Framework 178

Spring Framework Reference Documentation

The second way to configure the compiler is for use when SpEL is embedded inside some other
component and it may not be possible to configure via a configuration object. In these cases it is possible
to use a system property. The property spri ng. expr essi on. conpi | er. node can be set to one of
the Spel Conpi | er Mode enum values (of f, i medi at e or ni xed).

Compiler limitations

With Spring Framework 4.1 the basic compilation framework is in place. However, the framework
does not yet support compiling every kind of expression. The initial focus has been on the common
expressions that are likely to be used in performance critical contexts. These kinds of expression cannot
be compiled at the moment:

» expressions involving assignment

» expressions relying on the conversion service

* expressions using custom resolvers or accessors
* expressions using selection or projection

More and more types of expression will be compilable in the future.

8.4 Expression support for defining bean definitions

SpEL expressions can be used with XML or annotation-based configuration metadata for defining
BeanDef i ni ti ons. In both cases the syntax to define the expression is of the form #{ <expr essi on
string> }.

XML based configuration

A property or constructor-arg value can be set using expressions as shown below.

<bean id="nunber Guess" cl ass="org. spring. sanpl es. Nunber Guess" >
<property name="randomNunber" val ue="#{ T(java.l ang. Math).random() * 100.0 }"/>

<I-- other properties -->
</ bean>

The variable syst enPr oper ti es is predefined, so you can use it in your expressions as shown below.
Note that you do not have to prefix the predefined variable with the # symbol in this context.

<bean id="taxCal cul ator" class="org. spring. sanpl es. TaxCal cul ator">
<property nanme="def aul t Local e" val ue="#{ systenProperties['user.region'] }"/>

<l-- other properties -->
</ bean>

You can also refer to other bean properties by name, for example.

<bean id="nunber Guess" cl ass="org. spring. sanpl es. Nunber Guess" >
<property name="randomNunber" val ue="{ T(java.lang. Math).randon() * 100.0 }"/>

<l-- other properties -->
</ bean>

<bean i d="shapeGuess" cl ass="org. spring. sanpl es. ShapeGuess" >
<property name="initial ShapeSeed" val ue="{ nunber Guess. randomNunber }"/>

<l-- other properties -->
</ bean>

4.1.6.RELEASE Spring Framework 179

Spring Framework Reference Documentation

Annotation-based configuration

The @/al ue annotation can be placed on fields, methods and method/constructor parameters to specify
a default value.

Here is an example to set the default value of a field variable.

public static class FieldVal ueTest Bean

@/al ue("#{ systenProperties['user.region'] }")
private String defaul tLocal e;

public void setDefaultLocal e(String defaultLocale) {
this.defaultLocal e = defaul tLocal e;

}

public String getDefaul tLocal e() {
return this.defaul tLocale;

}

The equivalent but on a property setter method is shown below.

public static class PropertyVal ueTest Bean
private String defaultLocal e;

@/al ue("#{ systenProperties['user.region'] }")
public voi d setDefaul tLocal e(String defaultLocale) {
this.defaul tLocal e = defaul t Local e;

}

public String getDefaultLocale() {
return this.defaul tLocale;

}

Autowired methods and constructors can also use the @/al ue annotation.

public class SinpleMvielister {

private MvieFi nder novi eFi nder;
private String defaultLocal e;

@\ut owi red
public void configure(MvieFinder novieFi nder,
@/al ue("#{ systenProperties['user.region'] }") String defaultLocale) {
t hi s. novi eFi nder = novi eFi nder;
this.defaultLocal e = defaul tLocal e;

4.1.6.RELEASE Spring Framework 180

Spring Framework Reference Documentation

public class Myvi eRecommender {
private String defaultLocal e;
private CustonerPreferenceDao custoner PreferencebDao;

@\ut owi r ed
publ i ¢ Movi eReconmender (Cust oner Pr ef er enceDao cust oner Pr ef er enceDao,
@/al ue("#{systenProperties['user.country']}") String defaultLocale) {
this.custonerPreferencebDao = custoner PreferencebDao;
this.defaul tLocal e = defaul tLocal e;

8.5 Language Reference

Literal expressions

The types of literal expressions supported are strings, dates, numeric values (int, real, and hex), boolean
and null. Strings are delimited by single quotes. To put a single quote itself in a string use two single
guote characters. The following listing shows simple usage of literals. Typically they would not be used
in isolation like this, but as part of a more complex expression, for example using a literal on one side
of a logical comparison operator.

Expr essi onPar ser parser = new Spel Expressi onParser () ;

/'l evals to "Hello World"
String helloWwrld = (String) parser.parseExpression("' Hello Wrld' ").getVal ue();

doubl e avogadr osNunber = (Doubl e) parser. parseExpression("6.0221415E+23"). get Val ue();

/1 evals to 2147483647
int maxVal ue = (Integer) parser.parseExpression("0x7FFFFFFF"). get Val ue();

bool ean trueVal ue = (Bool ean) parser. parseExpression("true"). getVal ue();

Obj ect nul | Val ue = parser. parseExpression("null"). getVal ue();

Numbers support the use of the negative sign, exponential notation, and decimal points. By default real
numbers are parsed using Double.parseDouble().

Properties, Arrays, Lists, Maps, Indexers

Navigating with property references is easy: just use a period to indicate a nested property value. The
instances of the | nvent or class, pupin, and tesla, were populated with data listed in the section Classes
used in the examples. To navigate "down" and get Tesla’s year of birth and Pupin’s city of birth the
following expressions are used.

/1l evals to 1856
int year = (Integer) parser.parseExpression("Birthdate. Year + 1900"). get Val ue(context);

String city = (String) parser.parseExpression("placeOBirth.City").getVal ue(context);

Case insensitivity is allowed for the first letter of property names. The contents of arrays and lists are
obtained using square bracket notation.

4.1.6.RELEASE Spring Framework 181

Spring Framework Reference Documentation

Expr essi onPar ser parser = new Spel Expressi onParser () ;

/'l Inventions Array
St andar dEval uat i onCont ext tesl aContext = new Standar dEval uati onCont ext (tesla);

/1 evaluates to "Induction notor"
String invention = parser.parseExpression("inventions[3]").getVal ue(
tesl aContext, String.class);

/1 Menbers List
St andar dEval uat i onCont ext soci et yCont ext = new St andar dEval uati onCont ext (i eee) ;

/] evaluates to "N kola Tesla"
String name = parser. par seExpressi on("Menbers[0]. Nane") . get Val ue(
soci etyContext, String.class);

/1 List and Array navigation

/| evaluates to "Wreless comuni cation”

String invention = parser.parseExpression("Menbers[0].I|nventions[6]").get Val ue(
soci etyContext, String.class);

The contents of maps are obtained by specifying the literal key value within the brackets. In this case,
because keys for the Officers map are strings, we can specify string literals.

/] Oficer's Dictionary

I nventor pupin = parser.parseExpression("Officers[' president']").getVal ue(
soci etyCont ext, Inventor.class);

/1 evaluates to "ldvor"
String city = parser.parseExpression("Oficers['president'].PlaceOBirth.City"). getVal ue(
soci etyContext, String.class);

/'l setting val ues
par ser. parseExpression("Oficers['advisors'][0].PlaceOBirth. Country"). set Val ue(
soci etyContext, "Croatia");

Inline lists

Lists can be expressed directly in an expression using { } notation.

/] evaluates to a Java list containing the four nunbers
Li st nunbers = (List) parser.parseExpression("{1,2,3,4}").getValue(context);

List listOfLists = (List) parser.parseExpression("{{"a","b"},{"x","y" }}").getValue(context);
{} by itself means an empty list. For performance reasons, if the list is itself entirely composed of fixed

literals then a constant list is created to represent the expression, rather than building a new list on
each evaluation.

Inline Maps

Maps can also be expressed directly in an expression using { key: val ue} notation.

/1 evaluates to a Java nap containing the two entries
Map i nventorlnfo = (Map) parser. parseExpression("{nane:'Ni kol a', dob: " 10-Jul y-1856'}"). get Val ue(cont ext);

Map mapCf Maps = (Map) parser. parseExpression("{nane: {first:' Ni kola',last:' Tesla'}, dob:
{day: 10, nont h: * Jul y' , year: 1856}}") . get Val ue(cont ext);

{:} by itself means an empty map. For performance reasons, if the map is itself composed of fixed
literals or other nested constant structures (lists or maps) then a constant map is created to represent
the expression, rather than building a new map on each evaluation. Quoting of the map keys is optional,
the examples above are not using quoted keys.

4.1.6.RELEASE Spring Framework 182

Spring Framework Reference Documentation

Array construction

Arrays can be built using the familiar Java syntax, optionally supplying an initializer to have the array
populated at construction time.

int[] nunmbersl = (int[]) parser.parseExpression("new int[4]").getVal ue(context);

/1 Array with initializer
int[] nunbers2 (int[]) parser.parseExpression("new int[]{1,2,3}").getValue(context);

/1 Multi dinensional array
int[][] numbers3 = (int[][]) parser.parseExpression("new int[4][5]").getVal ue(context);

It is not currently allowed to supply an initializer when constructing a multi-dimensional array.
Methods

Methods are invoked using typical Java programming syntax. You may also invoke methods on literals.
Varargs are also supported.

/1 string literal, evaluates to "bc"
String ¢ = parser.parseExpression("'abc'.substring(2, 3)").getValue(String.class);

/] evaluates to true
bool ean i sMenber = parser. parseExpression("i sMenber (' M hajlo Pupin')").getVal ue(
soci et yCont ext, Bool ean. cl ass);

Operators
Relational operators

The relational operators; equal, not equal, less than, less than or equal, greater than, and greater than
or equal are supported using standard operator notation.

/] evaluates to true
bool ean trueVal ue = parser. parseExpression("2 == 2"). get Val ue(Bool ean. cl ass);

/1 evaluates to fal se
bool ean fal seVal ue = parser. parseExpression("2 < -5.0"). get Val ue(Bool ean. cl ass);

/] evaluates to true
bool ean trueVal ue = parser. parseExpression("'black’ < 'block'").getVal ue(Bool ean. cl ass);

In addition to standard relational operators SpEL supports the i nst anceof and regular expression
based nat ches operator.

/] evaluates to false
bool ean fal seVal ue = parser. par seExpressi on(
"' xyz' instanceof T(int)").getVal ue(Bool ean.class);

/1l evaluates to true
bool ean trueVal ue = parser. par seExpressi on(
"'5.00" matches '~-2A\d+(\\.\\d{2})?$"").get Val ue(Bool ean. cl ass);

//evaluates to false
bool ean fal seVal ue = parser. par seExpressi on(
"'5.0067" nmatches "\A-2A\d+(\\.\\d{2})?$'"). get Val ue(Bool ean. cl ass);

Each symbolic operator can also be specified as a purely alphabetic equivalent. This avoids problems
where the symbols used have special meaning for the document type in which the expression is
embedded (eg. an XML document). The textual equivalents are shown here: I t (<), gt (=), e (<=), ge
(>=),eq (==),ne (! =),di v (/), nod (%, not (!). These are case insensitive.

4.1.6.RELEASE Spring Framework 183

Spring Framework Reference Documentation

Logical operators

The logical operators that are supported are and, or, and not. Their use is demonstrated below.

/1 -- AND --

/] evaluates to false
bool ean fal seVal ue = parser. parseExpression("true and fal se"). get Val ue(Bool ean. cl ass);

/| evaluates to true
String expression = "isMenber (' Nikola Tesla') and i sMenber('Mhajlo Pupin')";
bool ean trueVal ue = parser. parseExpressi on(expressi on). get Val ue(soci et yCont ext, Bool ean. cl ass);

Il -- OR --

/| evaluates to true
bool ean trueVal ue = parser. parseExpression("true or false").getVal ue(Bool ean. cl ass);

/'l evaluates to true
String expression = "isMenber (' Nikola Tesla') or isMenber(' Al bert Einstein)";
bool ean trueVal ue = parser. par seExpressi on(expressi on) . get Val ue(soci et yCont ext, Bool ean. cl ass);

/1 -- NOT --

/'l evaluates to false
bool ean fal seVal ue = parser. par seExpression("!true"). get Val ue(Bool ean. cl ass);

/1 -- AND and NOT - -
String expression = "isMenber (' Nikola Tesla') and !isMenber('Mhajlo Pupin')";
bool ean fal seVal ue = parser. par seExpressi on(expressi on) . get Val ue(soci et yCont ext, Bool ean. cl ass);

Mathematical operators

The addition operator can be used on both numbers and strings. Subtraction, multiplication and
division can be used only on numbers. Other mathematical operators supported are modulus (%) and
exponential power (). Standard operator precedence is enforced. These operators are demonstrated
below.

/1 Addition
int two = parser.parseExpression("1 + 1").getValue(lnteger.class); // 2

String testString = parser. parseExpression(
"'test' + ' ' + 'string'").getValue(String.class); // test string

/| Subtraction
int four = parser.parseExpression("1 - -3").getValue(lnteger.class); // 4

doubl e d = parser. parseExpressi on("1000. 00 - 1e4"). get Val ue(Doubl e. cl ass); // -9000

/1 Multiplication
int six = parser.parseExpression("-2 * -3").getValue(lnteger.class); // 6

doubl e twentyFour = parser.parseExpression("2.0 * 3e0 * 4").getVal ue(Double.class); // 24.0

/1 Division
int mnusTwo = parser.parseExpression("6 / -3").getValue(lnteger.class); // -2

doubl e one = parser.parseExpression("8.0 / 4e0 / 2").getVal ue(Double.class); // 1.0

/1 Modul us
int three = parser.parseExpression("7 % 4").getValue(lnteger.class); // 3

int one = parser.parseExpression("8 / 5 % 2").getValue(lnteger.class); // 1

/| Operator precedence
int m nusTwentyOne = parser. par seExpressi on("1+2-3*8"). get Val ue(Integer.class); // -21

4.1.6.RELEASE Spring Framework 184

Spring Framework Reference Documentation

Assignment

Setting of a property is done by using the assignment operator. This would typically be done within a
call to set Val ue but can also be done inside a call to get Val ue.

I nventor inventor = new |Inventor();
St andar dEval uat i onCont ext i nventor Context = new StandardEval uati onCont ext (i nventor);

par ser . par seExpr essi on("Nane") . set Val ue(i nvent or Cont ext, "Al exander Seovic2");
/1 alternatively

String al eks = parser. parseExpressi on(
"Nanme = ' Al exandar Seovic'").getVal ue(inventorContext, String.class);

Types

The special T operator can be used to specify an instance of java.lang.Class (the type). Static methods
are invoked using this operator as well. The St andar dEval uat i onCont ext uses a TypelLocat or
to find types and the St andar dTypelLocat or (which can be replaced) is built with an understanding
of the java.lang package. This means T() references to types within java.lang do not need to be fully
qualified, but all other type references must be.

Cl ass dateC ass = parser.parseExpression("T(java.util.Date)").getVal ue(C ass. cl ass);
Class stringCl ass = parser.parseExpression("T(String)").getVal ue(C ass. cl ass);
bool ean trueVal ue = parser. parseExpressi on(

"T(j ava. mat h. Roundi nghvbde) . CEI LI NG < T(j ava. mat h. Roundi nghbde) . FLOOR")
. get Val ue(Bool ean. cl ass);

Constructors

Constructors can be invoked using the new operator. The fully qualified class hame should be used for
all but the primitive type and String (where int, float, etc, can be used).

I nventor einstein = p.parseExpression(
"new org.spring.sanpl es.spel.inventor.lnventor(' Al bert Einstein', 'German')")
. get Val ue(l nventor.cl ass);

//create new inventor instance within add method of List
p. par seExpr essi on(
"Menbers. add(new org. spring. sanpl es. spel . i nventor. | nventor(
"Albert Einstein', 'German'))").getVal ue(societyContext);

Variables

Variables can be referenced in the expression using the syntax #vari abl eNane. Variables are set
using the method setVariable on the St andar dEval uat i onCont ext .

Inventor tesla = new Inventor ("N kol a Tesla", "Serbian");
St andar dEval uat i onCont ext context = new Standar dEval uati onCont ext (tesl a);
cont ext. set Vari abl e("newNane", "M ke Tesla");

par ser. par seExpr essi on("Nanme = #newNane") . get Val ue(cont ext);

Systemout. println(tesla.getName()) // "M ke Tesla"

4.1.6.RELEASE Spring Framework 185

Spring Framework Reference Documentation

The #this and #root variables

The variable #this is always defined and refers to the current evaluation object (against which unqualified
references are resolved). The variable #root is always defined and refers to the root context object.
Although #this may vary as components of an expression are evaluated, #root always refers to the root.

/] create an array of integers
Li st<Integer> prinmes = new Arrayli st<lnteger>();
prinmes. addAl | (Arrays. asList(2,3,5,7,11,13,17));

/| create parser and set variable primes as the array of integers
Expr essi onPar ser parser = new Spel Expressi onParser () ;

St andar dEval uati onCont ext context = new Standar dEval uati onCont ext ();
cont ext.setVariabl e("prinmes", prines);

/1 all prime nunbers > 10 fromthe list (using selection ?2{...})

/1 evaluates to [11, 13, 17]

Li st <l nteger> pri mesG eat er ThanTen = (Li st<lnteger>) parser.parseExpressi on(
"#primes. ?[#thi s>10] ") . get Val ue(cont ext);

Functions

You can extend SpEL by registering user defined functions that can be called within the expression
string. The function is registered with the St andar dEval uat i onCont ext using the method.

public void registerFunction(String nane, Method m

A reference to a Java Method provides the implementation of the function. For example, a utility method
to reverse a string is shown below.

public abstract class StringUils {

public static String reverseString(String input) {
StringBuil der backwards = new StringBuilder();
for (int i =0; i < input.length(); i++)
backwar ds. append(i nput.charAt (input.length() - 1 - i));
}

return backwards.toString();

This method is then registered with the evaluation context and can be used within an expression string.

Expr essi onPar ser parser = new Spel Expressi onParser();
St andar dEval uati onCont ext context = new St andar dEval uati onCont ext ();

cont ext.regi sterFunction("reverseString",
StringUils.class. getDecl aredMet hod("reverseString”, new dass[] { String.class }));

String hell oWrl dReversed = parser. par seExpressi on(
"#reverseString('hello')").getVal ue(context, String.class);

Bean references

If the evaluation context has been configured with a bean resolver it is possible to lookup beans from
an expression using the (@) symbol.

Expr essi onPar ser parser = new Spel Expressi onParser () ;
St andar dEval uat i onCont ext context = new Standar dEval uati onContext();
cont ext . set BeanResol ver (new MyBeanResol ver());

/1 This will end up calling resolve(context,"foo") on M/BeanResol ver during eval uation
Obj ect bean = parser. parseExpression("@o00"). get Val ue(context);

4.1.6.RELEASE Spring Framework 186

Spring Framework Reference Documentation

Ternary Operator (If-Then-Else)

You can use the ternary operator for performing if-then-else conditional logic inside the expression. A
minimal example is:

String falseString = parser. parseExpressi on(
"false ? "trueExp' : 'falseExp' ").getValue(String.class);

In this case, the boolean false results in returning the string value falseExp. A more realistic example
is shown below.

par ser. par seExpr essi on(" Nane") . set Val ue(soci etyContext, "IEEE");
soci et yCont ext . set Vari abl e("queryNanme", "N kola Tesla");
expression = "isMenber (#queryNane) ? #queryName + ' is a menber of the ' " +

"+ Name + ' Society' : #queryNane + ' is not a nmenber of the ' + Nane + ' Society'";

String queryResultString = parser. parseExpressi on(expressi on)
. get Val ue(soci etyContext, String.class);
/1 queryResultString = "Nikola Tesla is a nenber of the | EEE Society"

Also see the next section on the Elvis operator for an even shorter syntax for the ternary operator.

The Elvis Operator

The Elvis operator is a shortening of the ternary operator syntax and is used in the Groovy language.
With the ternary operator syntax you usually have to repeat a variable twice, for example:

String nane = "Elvis Presley";
String displayName = name != null ? nane : "Unknown";

Instead you can use the Elvis operator, named for the resemblance to Elvis' hair style.
Expr essi onPar ser parser = new Spel ExpressionParser();
String name = parser.parseExpression("null ?:" Unknown' ") . get Val ue(String. cl ass);

Systemout. println(nane); // Unknown

Here is a more complex example.

Expressi onParser parser = new Spel Expressi onParser();

Inventor tesla = new Inventor ("N kol a Tesla", "Serbian");
St andar dEval uat i onCont ext context = new StandardEval uati onCont ext (tesl a);

String nanme = parser. parseExpression("Nanme?:"'Elvis Presley'").getValue(context, String.class);
System out. println(nane); // N kola Tesla
tesl a. set Nane(nul I');

nane = parser. parseExpression("Name?:' Elvis Presley'").getVal ue(context, String.class);

Systemout. println(nanme); // Elvis Presley

Safe Navigation operator

The Safe Navigation operator is used to avoid a Nul | Poi nt er Except i on and comes from the Groovy
language. Typically when you have a reference to an object you might need to verify that it is not null
before accessing methods or properties of the object. To avoid this, the safe navigation operator will
simply return null instead of throwing an exception.

4.1.6.RELEASE Spring Framework 187

http://groovy.codehaus.org/Operators#Operators-ElvisOperator(%3F%3A)
http://groovy.codehaus.org/Operators#Operators-SafeNavigationOperator(%3F.)

Spring Framework Reference Documentation

Expr essi onPar ser parser = new Spel Expressi onParser () ;

Inventor tesla = new Inventor ("N kol a Tesla", "Serbian");
tesla.setPlaceO Birth(new PlaceOBirth("Smljan"));

St andar dEval uat i onCont ext context = new Standar dEval uati onContext (tesl a);

String city = parser.parseExpression("PlaceOBirth?. City").getVal ue(context, String.class);
Systemout.println(city); // Smljan

tesla.setPlaceOBirth(null);
city = parser.parseExpression("PlaceOBirth?. City").getVal ue(context, String.class);

Systemout.println(city); // null - does not throw Nul |l Poi nterException!!!

Note

The Elvis operator can be used to apply default values in expressions, e.g. in an @/al ue
expression:

@/al ue("#{systenProperties[' pop3.port'] ?: 25}")

This will inject a system property pop3. port ifit is defined or 25 if not.

Collection Selection

Selection is a powerful expression language feature that allows you to transform some source collection
into another by selecting from its entries.

Selection uses the syntax ?[sel ecti onExpr essi on] . This will filter the collection and return a new
collection containing a subset of the original elements. For example, selection would allow us to easily
get a list of Serbian inventors:

Li st<Inventor> list = (List<lnventor>) parser.parseExpression(
"Menbers. ?[Nationality == 'Serbian']"). getVal ue(soci etyContext);

Selection is possible upon both lists and maps. In the former case the selection criteria is evaluated
against each individual list element whilst against a map the selection criteria is evaluated against each
map entry (objects of the Java type Map. Ent r y). Map entries have their key and value accessible as
properties for use in the selection.

This expression will return a new map consisting of those elements of the original map where the entry
value is less than 27.

Map newMap = parser. par seExpressi on("map. ?[val ue<27]"). get Val ue();

In addition to returning all the selected elements, it is possible to retrieve just the first or the last value.
To obtain the first entry matching the selection the syntax is *[. . .] whilst to obtain the last matching
selection the syntaxis $[...].

Collection Projection

Projection allows a collection to drive the evaluation of a sub-expression and the result is a new
collection. The syntax for projection is ! [proj ecti onExpr essi on] . Most easily understood by
example, suppose we have a list of inventors but want the list of cities where they were born. Effectively
we want to evaluate placeOfBirth.city for every entry in the inventor list. Using projection:

4.1.6.RELEASE Spring Framework 188

Spring Framework Reference Documentation

/] returns [Smiljan, Idvor]
Li st placesOBirth = (List)parser.parseExpression("Mnbers.![placeOBirth.city]");

A map can also be used to drive projection and in this case the projection expression is evaluated
against each entry in the map (represented as a Java Map. Ent r y). The result of a projection across a
map is a list consisting of the evaluation of the projection expression against each map entry.

Expression templating
Expression templates allow a mixing of literal text with one or more evaluation blocks. Each evaluation

block is delimited with prefix and suffix characters that you can define, a common choice isto use #{ }
as the delimiters. For example,

String randonPhrase = parser. par seExpressi on(
"random nunber is #{T(java.lang. Math).randon()}",
new Tenpl at ePar ser Cont ext ()). get Val ue(String. cl ass);

/1 evaluates to "random nunber is 0.7038186818312008"

The string is evaluated by concatenating the literal text 'random number is ' with the result of evaluating
the expression inside the #{ } delimiter, in this case the result of calling that random() method. The second
argument to the method par seExpr essi on() is of the type Par ser Cont ext . The Par ser Cont ext
interface is used to influence how the expression is parsed in order to support the expression templating
functionality. The definition of Tenpl at ePar ser Cont ext is shown below.

public class Tenpl at ePar ser Cont ext i npl enents Parser Cont ext {

public String getExpressionPrefix() {
return "#{";

}

public String get ExpressionSuffix() {
return "}";

}

public bool ean isTenpl ate() {
return true;

}

8.6 Classes used in the examples

Inventor.java

4.1.6.RELEASE Spring Framework 189

Spring Framework Reference Documentation

package org. spring. sanpl es. spel . i nventor;

inport java.util.Date;
inport java.util.G egorianCal endar;

public class Inventor {

private String nane;

private String nationality;
private String[] inventions;
private Date birthdate;

private PlaceOBirth placeOBirth;

public Inventor(String name, String nationality) {
Gregori anCal endar c= new G egorianCal endar () ;
this.name = nane;
this.nationality = nationality;
this.birthdate = c.getTinme();

public Inventor(String nanme, Date birthdate, String nationality) {
this.name = nane;
this.nationality = nationality;
this.birthdate = birthdate;

public Inventor() {

}

public String getNane() {
return nane;

public void setNane(String nane) {
this.name = nane;

public String getNationality() {
return nationality;

public void setNationality(String nationality) {
this.nationality = nationality;

public Date getBirthdate() {
return birthdate;

public void setBirthdate(Date birthdate) {
this.birthdate = birthdate;

public PlaceOBirth getPlaceOBirth() {
return placeOBirth;

public void setPlaceOBirth(PlaceOBirth placeOBirth) {
this.placeOBirth = placeOBirth;

public void setlnventions(String[] inventions) {
this.inventions = inventions;

public String[] getlnventions() {
return inventions;

4.1.6.RELEASE Spring Framework 190

Spring Framework Reference Documentation

PlaceOfBirth.java

package org.spring.sanples.spel.inventor;
public class PlaceOBirth {

private String city;
private String country;

public PlaceO Birth(String city) {
this.city=city;
}

public PlaceOBirth(String city, String country) {
this(city);
this.country = country;

}

public String getGty() {
return city;

}

public void setCity(String s) {
this.city = s;
}

public String getCountry() {
return country;

}

public void setCountry(String country) {
this.country = country;

}

Society.java

4.1.6.RELEASE Spring Framework 191

Spring Framework Reference Documentation

package org. spring. sanpl es. spel . inventor;
inport java.util.*;
public class Society {

private String nane;

public static String Advisors = "advisors";
public static String President = "president";

private List<lnventor> nmenbers = new Arrayli st<lnventor>();
private Map officers = new HashMap();

public List getMenbers() {
return nenbers;

public Map getOfficers() {
return officers;

public String getName() {
return nane;

public void setNanme(String nane) {
this.name = nane;

public bool ean i sMenber(String nanme) {
for (Inventor inventor : nenbers) {
if (inventor.getNane().equal s(nane)) {
return true;

}

return false;

4.1.6.RELEASE Spring Framework 192

Spring Framework Reference Documentation

9. Aspect Oriented Programming with Spring

9.1 Introduction

Aspect-Oriented Programming (AOP) complements Object-Oriented Programming (OOP) by providing
another way of thinking about program structure. The key unit of modularity in OOP is the class, whereas
in AOP the unit of modularity is the aspect. Aspects enable the modularization of concerns such as
transaction management that cut across multiple types and objects. (Such concerns are often termed
crosscutting concerns in AOP literature.)

One of the key components of Spring is the AOP framework. While the Spring IoC container does not
depend on AOP, meaning you do not need to use AOP if you don’t want to, AOP complements Spring
loC to provide a very capable middleware solution.

Spring 2.0 AOP

Spring 2.0 introduces a simpler and more powerful way of writing custom aspects using either a
schema-based approach or the @AspectJ annotation style. Both of these styles offer fully typed
advice and use of the AspectJ pointcut language, while still using Spring AOP for weaving.

The Spring 2.0 schema- and @AspectJ-based AOP supportis discussed in this chapter. Spring 2.0
AOP remains fully backwards compatible with Spring 1.2 AOP, and the lower-level AOP support
offered by the Spring 1.2 APIs is discussed in the following chapter.

AOP is used in the Spring Framework to...

... provide declarative enterprise services, especially as a replacement for EJB declarative services.
The most important such service is declarative transaction management.

... allow users to implement custom aspects, complementing their use of OOP with AOP.

Note

If you are interested only in generic declarative services or other pre-packaged declarative
middleware services such as pooling, you do not need to work directly with Spring AOP, and can
skip most of this chapter.

AOP concepts

Let us begin by defining some central AOP concepts and terminology. These terms are not Spring-
specific... unfortunately, AOP terminology is not particularly intuitive; however, it would be even more
confusing if Spring used its own terminology.

» Aspect: a modularization of a concern that cuts across multiple classes. Transaction management is
a good example of a crosscutting concern in enterprise Java applications. In Spring AOP, aspects
are implemented using regular classes (the schema-based approach) or regular classes annotated
with the @Aspect annotation (the @\spect J style).

 Join point: a point during the execution of a program, such as the execution of a method or the handling
of an exception. In Spring AOP, a join point always represents a method execution.

4.1.6.RELEASE Spring Framework 193

Spring Framework Reference Documentation

» Advice: action taken by an aspect at a particular join point. Different types of advice include "around,"
"before" and "after" advice. (Advice types are discussed below.) Many AOP frameworks, including
Spring, model an advice as an interceptor, maintaining a chain of interceptors around the join point.

» Pointcut: a predicate that matches join points. Advice is associated with a pointcut expression and
runs at any join point matched by the pointcut (for example, the execution of a method with a certain
name). The concept of join points as matched by pointcut expressions is central to AOP, and Spring
uses the AspectJ pointcut expression language by default.

« Introduction: declaring additional methods or fields on behalf of a type. Spring AOP allows you to
introduce new interfaces (and a corresponding implementation) to any advised object. For example,
you could use an introduction to make a bean implement an | sModi fi ed interface, to simplify
caching. (An introduction is known as an inter-type declaration in the Aspect]J community.)

» Target object: object being advised by one or more aspects. Also referred to as the advised object.
Since Spring AOP is implemented using runtime proxies, this object will always be a proxied object.

« AOP proxy: an object created by the AOP framework in order to implement the aspect contracts
(advise method executions and so on). In the Spring Framework, an AOP proxy will be a JDK dynamic
proxy or a CGLIB proxy.

» Weaving: linking aspects with other application types or objects to create an advised object. This can
be done at compile time (using the AspectJ compiler, for example), load time, or at runtime. Spring
AOP, like other pure Java AOP frameworks, performs weaving at runtime.

Types of advice:

» Before advice: Advice that executes before a join point, but which does not have the ability to prevent
execution flow proceeding to the join point (unless it throws an exception).

 After returning advice: Advice to be executed after a join point completes normally: for example, if a
method returns without throwing an exception.

» After throwing advice: Advice to be executed if a method exits by throwing an exception.

« After (finally) advice: Advice to be executed regardless of the means by which a join point exits (normal
or exceptional return).

» Around advice: Advice that surrounds a join point such as a method invocation. This is the most
powerful kind of advice. Around advice can perform custom behavior before and after the method
invocation. It is also responsible for choosing whether to proceed to the join point or to shortcut the
advised method execution by returning its own return value or throwing an exception.

Around advice is the most general kind of advice. Since Spring AOP, like AspectJ, provides a full range
of advice types, we recommend that you use the least powerful advice type that can implement the
required behavior. For example, if you need only to update a cache with the return value of a method, you
are better off implementing an after returning advice than an around advice, although an around advice
can accomplish the same thing. Using the most specific advice type provides a simpler programming
model with less potential for errors. For example, you do not need to invoke the pr oceed() method on
the Joi nPoi nt used for around advice, and hence cannot fail to invoke it.

In Spring 2.0, all advice parameters are statically typed, so that you work with advice parameters of
the appropriate type (the type of the return value from a method execution for example) rather than
bj ect arrays.

4.1.6.RELEASE Spring Framework 194

Spring Framework Reference Documentation

The concept of join points, matched by pointcuts, is the key to AOP which distinguishes it from
older technologies offering only interception. Pointcuts enable advice to be targeted independently
of the Object-Oriented hierarchy. For example, an around advice providing declarative transaction
management can be applied to a set of methods spanning multiple objects (such as all business
operations in the service layer).

Spring AOP capabilities and goals

Spring AOP is implemented in pure Java. There is no need for a special compilation process. Spring AOP
does not need to control the class loader hierarchy, and is thus suitable for use in a Servlet container
or application server.

Spring AOP currently supports only method execution join points (advising the execution of methods
on Spring beans). Field interception is not implemented, although support for field interception could be
added without breaking the core Spring AOP APIs. If you need to advise field access and update join
points, consider a language such as AspectJ.

Spring AOP’s approach to AOP differs from that of most other AOP frameworks. The aim is not to provide
the most complete AOP implementation (although Spring AOP is quite capable); it is rather to provide
a close integration between AOP implementation and Spring 10C to help solve common problems in
enterprise applications.

Thus, for example, the Spring Framework’s AOP functionality is normally used in conjunction with the
Spring 1oC container. Aspects are configured using normal bean definition syntax (although this allows
powerful "autoproxying"” capabilities): this is a crucial difference from other AOP implementations. There
are some things you cannot do easily or efficiently with Spring AOP, such as advise very fine-grained
objects (such as domain objects typically): Aspectd is the best choice in such cases. However, our
experience is that Spring AOP provides an excellent solution to most problems in enterprise Java
applications that are amenable to AOP.

Spring AOP will never strive to compete with AspectJ to provide a comprehensive AOP solution. We
believe that both proxy-based frameworks like Spring AOP and full-blown frameworks such as AspectJ
are valuable, and that they are complementary, rather than in competition. Spring seamlessly integrates
Spring AOP and loC with AspectJ, to enable all uses of AOP to be catered for within a consistent Spring-
based application architecture. This integration does not affect the Spring AOP API or the AOP Alliance
API: Spring AOP remains backward-compatible. See the following chapter for a discussion of the Spring
AOP APIs.

Note

One of the central tenets of the Spring Framework is that of non-invasiveness; this is the idea
that you should not be forced to introduce framework-specific classes and interfaces into your
business/domain model. However, in some places the Spring Framework does give you the option
to introduce Spring Framework-specific dependencies into your codebase: the rationale in giving
you such options is because in certain scenarios it might be just plain easier to read or code some
specific piece of functionality in such a way. The Spring Framework (almost) always offers you
the choice though: you have the freedom to make an informed decision as to which option best
suits your particular use case or scenario.

One such choice that is relevant to this chapter is that of which AOP framework (and which AOP
style) to choose. You have the choice of AspectJ and/or Spring AOP, and you also have the choice
of either the @AspectJ annotation-style approach or the Spring XML configuration-style approach.

4.1.6.RELEASE Spring Framework 195

Spring Framework Reference Documentation

The fact that this chapter chooses to introduce the @AspectJ-style approach first should not be
taken as an indication that the Spring team favors the @AspectJ annotation-style approach over
the Spring XML configuration-style.

See Section 9.4, “Choosing which AOP declaration style to use” for a more complete discussion
of the whys and wherefores of each style.

AOP Proxies

Spring AOP defaults to using standard JDK dynamic proxies for AOP proxies. This enables any interface
(or set of interfaces) to be proxied.

Spring AOP can also use CGLIB proxies. This is necessary to proxy classes, rather than interfaces.
CGLIB is used by default if a business object does not implement an interface. As it is good practice
to program to interfaces rather than classes, business classes normally will implement one or more
business interfaces. It is possible to force the use of CGLIB, in those (hopefully rare) cases where you
need to advise a method that is not declared on an interface, or where you need to pass a proxied object
to a method as a concrete type.

It is important to grasp the fact that Spring AOP is proxy-based. See the section called “Understanding
AOP proxies” for a thorough examination of exactly what this implementation detail actually means.

9.2 @AspectJ support

@AspectJ refers to a style of declaring aspects as regular Java classes annotated with annotations.
The @AspectJ style was introduced by the AspectJ project as part of the AspectJ 5 release. Spring
interprets the same annotations as AspectJ 5, using a library supplied by AspectJ for pointcut parsing
and matching. The AOP runtime is still pure Spring AOP though, and there is no dependency on the
AspectJ compiler or weaver.

Note

Using the AspectJ compiler and weaver enables use of the full AspectJ language, and is discussed
in Section 9.8, “Using AspectJ with Spring applications”.

Enabling @AspectJ Support

To use @AspectJ aspects in a Spring configuration you need to enable Spring support for configuring
Spring AOP based on @AspectJ aspects, and autoproxying beans based on whether or not they are
advised by those aspects. By autoproxying we mean that if Spring determines that a bean is advised by
one or more aspects, it will automatically generate a proxy for that bean to intercept method invocations
and ensure that advice is executed as needed.

The @AspectJ support can be enabled with XML or Java style configuration. In either case you will
also need to ensure that AspectJ’'s aspect j weaver . j ar library is on the classpath of your application
(version 1.6.8 or later). This library is available in the ' | i b' directory of an AspectJ distribution or via
the Maven Central repository.

Enabling @AspectJ Support with Java configuration

To enable @AspectJ support with Java @onfi gur ati on add the @nabl eAspect JAut oPr oxy
annotation:

4.1.6.RELEASE Spring Framework 196

http://www.eclipse.org/aspectj

Spring Framework Reference Documentation

@onfi guration
@nabl eAspect JAut oPr oxy
public class AppConfig {

}

Enabling @AspectJ Support with XML configuration

To enable @AspectJ support with XML based configuration use the aop: aspectj - aut opr oxy
element:

<aop: aspect j - aut opr oxy/ >

This assumes that you are using schema support as described in Chapter 34, XML Schema-based
configuration. See the section called “the aop schema” for how to import the tags in the aop namespace.

Declaring an aspect

With the @AspectJ support enabled, any bean defined in your application context with a class that is
an @AspectJ aspect (has the @Aspect annotation) will be automatically detected by Spring and used
to configure Spring AOP. The following example shows the minimal definition required for a not-very-
useful aspect:

A regular bean definition in the application context, pointing to a bean class that has the @\spect
annotation:

<bean id="nmyAspect" cl ass="org. xyz. Not VeryUsef ul Aspect ">
<l-- configure properties of aspect here as normal -->
</ bean>

And the Not Ver yUsef ul Aspect class definition, annotated with
org. aspectj .l ang. annot ati on. Aspect annotation;

package org. xyz;
i nport org.aspectj.lang. annotati on. Aspect;

@\spect
public class Not VeryUseful Aspect {

}

Aspects (classes annotated with @Aspect) may have methods and fields just like any other class. They
may also contain pointcut, advice, and introduction (inter-type) declarations.

Autodetecting aspects through component scanning

You may register aspect classes as regular beans in your Spring XML configuration, or autodetect
them through classpath scanning - just like any other Spring-managed bean. However, note that
the @Aspect annotation is not sufficient for autodetection in the classpath: For that purpose, you
need to add a separate @Component annotation (or alternatively a custom stereotype annotation
that qualifies, as per the rules of Spring’s component scanner).

Advising aspects with other aspects?

In Spring AOP, it is not possible to have aspects themselves be the target of advice from other
aspects. The @Aspect annotation on a class marks it as an aspect, and hence excludes it from
auto-proxying.

4.1.6.RELEASE Spring Framework 197

Spring Framework Reference Documentation

Declaring a pointcut

Recall that pointcuts determine join points of interest, and thus enable us to control when advice
executes. Spring AOP only supports method execution join points for Spring beans, so you can think of
a pointcut as matching the execution of methods on Spring beans. A pointcut declaration has two parts:
a signature comprising a name and any parameters, and a pointcut expression that determines exactly
which method executions we are interested in. In the @AspectJ annotation-style of AOP, a pointcut
signature is provided by a regular method definition, and the pointcut expression is indicated using the
@Poi nt cut annotation (the method serving as the pointcut signature must have a voi d return type).

An example will help make this distinction between a pointcut signature and a pointcut expression clear.
The following example defines a pointcut named ' anyd dTr ansf er' that will match the execution of
any method named' transfer"' :

@oi nt cut ("execution(* transfer(..))")// the pointcut expression
private void anyd dTransfer() {}// the pointcut signature

The pointcut expression that forms the value of the @oi nt cut annotation is a regular AspectJ 5
pointcut expression. For a full discussion of AspectJ’s pointcut language, see the AspectJ Programming
Guide (and for extensions, the AspectJ 5 Developers Notebook) or one of the books on AspectJ such
as "Eclipse AspectJ" by Colyer et. al. or "AspectJ in Action" by Ramnivas Laddad.

Supported Pointcut Designators

Spring AOP supports the following AspectJ pointcut designators (PCD) for use in pointcut expressions:

Other pointcut types

The full AspectJ pointcut language supports additional pointcut designators that are not supported
in Spring. These are: cal |, get, set, preinitialization, staticinitialization,
initialization, handl er, adviceexecution, wthincode, cflow cflowbel ow,
if, @his, and @u t hi ncode. Use of these pointcut designators in pointcut expressions
interpreted by Spring AO