Spring Framework Reference Documentation
Table of Contents
	I. Overview of Spring Framework	1. Getting Started with Spring
	2. Introduction to the Spring Framework	Dependency Injection and Inversion of Control
	Framework Modules	Core Container
	AOP and Instrumentation
	Messaging
	Data Access/Integration
	Web
	Test

	Usage scenarios	Dependency Management and Naming Conventions	Spring Dependencies and Depending on Spring
	Maven Dependency Management
	Maven "Bill Of Materials" Dependency
	Gradle Dependency Management
	Ivy Dependency Management
	Distribution Zip Files

	Logging	Using Log4j 1.2 or 2.x
	Avoiding Commons Logging
	Using SLF4J with Log4j or Logback
	Using JUL (java.util.logging)
	Commons Logging on WebSphere

	II. What’s New in Spring Framework 4.x	3. New Features and Enhancements in Spring Framework 4.0	Improved Getting Started Experience
	Removed Deprecated Packages and Methods
	Java 8 (as well as 6 and 7)
	Java EE 6 and 7
	Groovy Bean Definition DSL
	Core Container Improvements
	General Web Improvements
	WebSocket, SockJS, and STOMP Messaging
	Testing Improvements

	4. New Features and Enhancements in Spring Framework 4.1	JMS Improvements
	Caching Improvements
	Web Improvements
	WebSocket Messaging Improvements
	Testing Improvements

	5. New Features and Enhancements in Spring Framework 4.2	Core Container Improvements
	Data Access Improvements
	JMS Improvements
	Web Improvements
	WebSocket Messaging Improvements
	Testing Improvements

	6. New Features and Enhancements in Spring Framework 4.3	Core Container Improvements
	Data Access Improvements
	Caching Improvements
	JMS Improvements
	Web Improvements
	WebSocket Messaging Improvements
	Testing Improvements
	Support for new library and server generations

	III. Core Technologies	7. The IoC container	Introduction to the Spring IoC container and beans
	Container overview	Configuration metadata
	Instantiating a container	Composing XML-based configuration metadata
	The Groovy Bean Definition DSL

	Using the container

	Bean overview	Naming beans	Aliasing a bean outside the bean definition

	Instantiating beans	Instantiation with a constructor
	Instantiation with a static factory method
	Instantiation using an instance factory method

	Dependencies	Dependency Injection	Constructor-based dependency injection	Constructor argument resolution

	Setter-based dependency injection
	Dependency resolution process
	Examples of dependency injection

	Dependencies and configuration in detail	Straight values (primitives, Strings, and so on)	The idref element

	References to other beans (collaborators)
	Inner beans
	Collections	Collection merging
	Limitations of collection merging
	Strongly-typed collection

	Null and empty string values
	XML shortcut with the p-namespace
	XML shortcut with the c-namespace
	Compound property names

	Using depends-on
	Lazy-initialized beans
	Autowiring collaborators	Limitations and disadvantages of autowiring
	Excluding a bean from autowiring

	Method injection	Lookup method injection
	Arbitrary method replacement

	Bean scopes	The singleton scope
	The prototype scope
	Singleton beans with prototype-bean dependencies
	Request, session, global session, application, and WebSocket scopes	Initial web configuration
	Request scope
	Session scope
	Global session scope
	Application scope
	Scoped beans as dependencies	Choosing the type of proxy to create

	Custom scopes	Creating a custom scope
	Using a custom scope

	Customizing the nature of a bean	Lifecycle callbacks	Initialization callbacks
	Destruction callbacks
	Default initialization and destroy methods
	Combining lifecycle mechanisms
	Startup and shutdown callbacks
	Shutting down the Spring IoC container gracefully in non-web applications

	ApplicationContextAware and BeanNameAware
	Other Aware interfaces

	Bean definition inheritance
	Container Extension Points	Customizing beans using a BeanPostProcessor	Example: Hello World, BeanPostProcessor-style
	Example: The RequiredAnnotationBeanPostProcessor

	Customizing configuration metadata with a BeanFactoryPostProcessor	Example: the Class name substitution PropertyPlaceholderConfigurer
	Example: the PropertyOverrideConfigurer

	Customizing instantiation logic with a FactoryBean

	Annotation-based container configuration	@Required
	@Autowired
	Fine-tuning annotation-based autowiring with @Primary
	Fine-tuning annotation-based autowiring with qualifiers
	Using generics as autowiring qualifiers
	CustomAutowireConfigurer
	@Resource
	@PostConstruct and @PreDestroy

	Classpath scanning and managed components	@Component and further stereotype annotations
	Meta-annotations
	Automatically detecting classes and registering bean definitions
	Using filters to customize scanning
	Defining bean metadata within components
	Naming autodetected components
	Providing a scope for autodetected components
	Providing qualifier metadata with annotations

	Using JSR 330 Standard Annotations	Dependency Injection with @Inject and @Named
	@Named and @ManagedBean: standard equivalents to the @Component annotation
	Limitations of JSR-330 standard annotations

	Java-based container configuration	Basic concepts: @Bean and @Configuration
	Instantiating the Spring container using AnnotationConfigApplicationContext	Simple construction
	Building the container programmatically using register(Class<?>…​)
	Enabling component scanning with scan(String…​)
	Support for web applications with AnnotationConfigWebApplicationContext

	Using the @Bean annotation	Declaring a bean
	Bean dependencies
	Receiving lifecycle callbacks
	Specifying bean scope	Using the @Scope annotation
	@Scope and scoped-proxy

	Customizing bean naming
	Bean aliasing
	Bean description

	Using the @Configuration annotation	Injecting inter-bean dependencies
	Lookup method injection
	Further information about how Java-based configuration works internally

	Composing Java-based configurations	Using the @Import annotation	Injecting dependencies on imported @Bean definitions

	Conditionally include @Configuration classes or @Bean methods
	Combining Java and XML configuration	XML-centric use of @Configuration classes
	@Configuration class-centric use of XML with @ImportResource

	Environment abstraction	Bean definition profiles	@Profile
	XML bean definition profiles
	Activating a profile
	Default profile

	PropertySource abstraction
	@PropertySource
	Placeholder resolution in statements

	Registering a LoadTimeWeaver
	Additional capabilities of the ApplicationContext	Internationalization using MessageSource
	Standard and custom events	Annotation-based event listeners
	Asynchronous Listeners
	Ordering listeners
	Generic events

	Convenient access to low-level resources
	Convenient ApplicationContext instantiation for web applications
	Deploying a Spring ApplicationContext as a Java EE RAR file

	The BeanFactory	BeanFactory or ApplicationContext?
	Glue code and the evil singleton

	8. Resources	Introduction
	The Resource interface
	Built-in Resource implementations	UrlResource
	ClassPathResource
	FileSystemResource
	ServletContextResource
	InputStreamResource
	ByteArrayResource

	The ResourceLoader
	The ResourceLoaderAware interface
	Resources as dependencies
	Application contexts and Resource paths	Constructing application contexts	Constructing ClassPathXmlApplicationContext instances - shortcuts

	Wildcards in application context constructor resource paths	Ant-style Patterns	Implications on portability

	The classpath*: prefix
	Other notes relating to wildcards

	FileSystemResource caveats

	9. Validation, Data Binding, and Type Conversion	Introduction
	Validation using Spring’s Validator interface
	Resolving codes to error messages
	Bean manipulation and the BeanWrapper	Setting and getting basic and nested properties
	Built-in PropertyEditor implementations	Registering additional custom PropertyEditors	Using PropertyEditorRegistrars

	Spring Type Conversion	Converter SPI
	ConverterFactory
	GenericConverter	ConditionalGenericConverter

	ConversionService API
	Configuring a ConversionService
	Using a ConversionService programmatically

	Spring Field Formatting	Formatter SPI
	Annotation-driven Formatting	Format Annotation API

	FormatterRegistry SPI
	FormatterRegistrar SPI
	Configuring Formatting in Spring MVC

	Configuring a global date & time format
	Spring Validation	Overview of the JSR-303 Bean Validation API
	Configuring a Bean Validation Provider	Injecting a Validator
	Configuring Custom Constraints
	Spring-driven Method Validation
	Additional Configuration Options

	Configuring a DataBinder
	Spring MVC 3 Validation

	10. Spring Expression Language (SpEL)	Introduction
	Evaluation	EvaluationContext	Type conversion

	Parser configuration
	SpEL compilation	Compiler configuration
	Compiler limitations

	Expressions in bean definitions	XML configuration
	Annotation config

	Language Reference	Literal expressions
	Properties, Arrays, Lists, Maps, Indexers
	Inline lists
	Inline Maps
	Array construction
	Methods
	Operators	Relational operators
	Logical operators
	Mathematical operators

	Assignment
	Types
	Constructors
	Variables	The #this and #root variables

	Functions
	Bean references
	Ternary Operator (If-Then-Else)
	The Elvis Operator
	Safe Navigation operator
	Collection Selection
	Collection Projection
	Expression templating

	Classes used in the examples

	11. Aspect Oriented Programming with Spring	Introduction	AOP concepts
	Spring AOP capabilities and goals
	AOP Proxies

	@AspectJ support	Enabling @AspectJ Support	Enabling @AspectJ Support with Java configuration
	Enabling @AspectJ Support with XML configuration

	Declaring an aspect
	Declaring a pointcut	Supported Pointcut Designators
	Combining pointcut expressions
	Sharing common pointcut definitions
	Examples
	Writing good pointcuts

	Declaring advice	Before advice
	After returning advice
	After throwing advice
	After (finally) advice
	Around advice
	Advice parameters	Access to the current JoinPoint
	Passing parameters to advice
	Advice parameters and generics
	Determining argument names
	Proceeding with arguments

	Advice ordering

	Introductions
	Aspect instantiation models
	Example

	Schema-based AOP support	Declaring an aspect
	Declaring a pointcut
	Declaring advice	Before advice
	After returning advice
	After throwing advice
	After (finally) advice
	Around advice
	Advice parameters
	Advice ordering

	Introductions
	Aspect instantiation models
	Advisors
	Example

	Choosing which AOP declaration style to use	Spring AOP or full AspectJ?
	@AspectJ or XML for Spring AOP?

	Mixing aspect types
	Proxying mechanisms	Understanding AOP proxies

	Programmatic creation of @AspectJ Proxies
	Using AspectJ with Spring applications	Using AspectJ to dependency inject domain objects with Spring	Unit testing @Configurable objects
	Working with multiple application contexts

	Other Spring aspects for AspectJ
	Configuring AspectJ aspects using Spring IoC
	Load-time weaving with AspectJ in the Spring Framework	A first example
	Aspects
	'META-INF/aop.xml'
	Required libraries (JARS)
	Spring configuration
	Environment-specific configuration	Tomcat
	WebLogic, WebSphere, Resin, GlassFish, JBoss
	Generic Java applications

	Further Resources

	12. Spring AOP APIs	Introduction
	Pointcut API in Spring	Concepts
	Operations on pointcuts
	AspectJ expression pointcuts
	Convenience pointcut implementations	Static pointcuts	Regular expression pointcuts
	Attribute-driven pointcuts

	Dynamic pointcuts	Control flow pointcuts

	Pointcut superclasses
	Custom pointcuts

	Advice API in Spring	Advice lifecycles
	Advice types in Spring	Interception around advice
	Before advice
	Throws advice
	After Returning advice
	Introduction advice

	Advisor API in Spring
	Using the ProxyFactoryBean to create AOP proxies	Basics
	JavaBean properties
	JDK- and CGLIB-based proxies
	Proxying interfaces
	Proxying classes
	Using 'global' advisors

	Concise proxy definitions
	Creating AOP proxies programmatically with the ProxyFactory
	Manipulating advised objects
	Using the "auto-proxy" facility	Autoproxy bean definitions	BeanNameAutoProxyCreator
	DefaultAdvisorAutoProxyCreator
	AbstractAdvisorAutoProxyCreator

	Using metadata-driven auto-proxying

	Using TargetSources	Hot swappable target sources
	Pooling target sources
	Prototype target sources
	ThreadLocal target sources

	Defining new Advice types
	Further resources

	IV. Testing	13. Introduction to Spring Testing
	14. Unit Testing	Mock Objects	Environment
	JNDI
	Servlet API
	Portlet API

	Unit Testing support Classes	General testing utilities
	Spring MVC

	15. Integration Testing	Overview
	Goals of Integration Testing	Context management and caching
	Dependency Injection of test fixtures
	Transaction management
	Support classes for integration testing

	JDBC Testing Support
	Annotations	Spring Testing Annotations	@BootstrapWith
	@ContextConfiguration
	@WebAppConfiguration
	@ContextHierarchy
	@ActiveProfiles
	@TestPropertySource
	@DirtiesContext
	@TestExecutionListeners
	@Commit
	@Rollback
	@BeforeTransaction
	@AfterTransaction
	@Sql
	@SqlConfig
	@SqlGroup

	Standard Annotation Support
	Spring JUnit 4 Testing Annotations	@IfProfileValue
	@ProfileValueSourceConfiguration
	@Timed
	@Repeat

	Meta-Annotation Support for Testing

	Spring TestContext Framework	Key abstractions	TestContext
	TestContextManager
	TestExecutionListener
	Context Loaders

	Bootstrapping the TestContext framework
	TestExecutionListener configuration	Registering custom TestExecutionListeners
	Automatic discovery of default TestExecutionListeners
	Ordering TestExecutionListeners
	Merging TestExecutionListeners

	Context management	Context configuration with XML resources
	Context configuration with Groovy scripts
	Context configuration with annotated classes
	Mixing XML, Groovy scripts, and annotated classes
	Context configuration with context initializers
	Context configuration inheritance
	Context configuration with environment profiles
	Context configuration with test property sources
	Loading a WebApplicationContext
	Context caching
	Context hierarchies

	Dependency injection of test fixtures
	Testing request and session scoped beans
	Transaction management	Test-managed transactions
	Enabling and disabling transactions
	Transaction rollback and commit behavior
	Programmatic transaction management
	Executing code outside of a transaction
	Configuring a transaction manager
	Demonstration of all transaction-related annotations

	Executing SQL scripts	Executing SQL scripts programmatically
	Executing SQL scripts declaratively with @Sql

	TestContext Framework support classes	Spring JUnit 4 Runner
	Spring JUnit 4 Rules
	JUnit 4 support classes
	JUnit 5 Support
	TestNG support classes

	Spring MVC Test Framework	Server-Side Tests	Static Imports
	Setup Choices
	Performing Requests
	Defining Expectations
	Filter Registrations
	Differences between Out-of-Container and End-to-End Integration Tests
	Further Server-Side Test Examples

	HtmlUnit Integration	Why HtmlUnit Integration?	Integration testing to the rescue?
	Enter HtmlUnit Integration
	HtmlUnit Integration Options

	MockMvc and HtmlUnit	MockMvc and HtmlUnit Setup
	MockMvc and HtmlUnit Usage
	Advanced MockMvcWebClientBuilder

	MockMvc and WebDriver	Why WebDriver and MockMvc?
	MockMvc and WebDriver Setup
	MockMvc and WebDriver Usage
	Advanced MockMvcHtmlUnitDriverBuilder

	MockMvc and Geb	Why Geb and MockMvc?
	MockMvc and Geb Setup
	MockMvc and Geb Usage

	Client-Side REST Tests	Static Imports
	Further Examples of Client-side REST Tests

	PetClinic Example

	16. Further Resources

	V. Data Access	17. Transaction Management	Introduction to Spring Framework transaction management
	Advantages of the Spring Framework’s transaction support model	Global transactions
	Local transactions
	Spring Framework’s consistent programming model

	Understanding the Spring Framework transaction abstraction
	Synchronizing resources with transactions	High-level synchronization approach
	Low-level synchronization approach
	TransactionAwareDataSourceProxy

	Declarative transaction management	Understanding the Spring Framework’s declarative transaction implementation
	Example of declarative transaction implementation
	Rolling back a declarative transaction
	Configuring different transactional semantics for different beans
	<tx:advice/> settings
	Using @Transactional	@Transactional settings
	Multiple Transaction Managers with @Transactional
	Custom shortcut annotations

	Transaction propagation	Required
	RequiresNew
	Nested

	Advising transactional operations
	Using @Transactional with AspectJ

	Programmatic transaction management	Using the TransactionTemplate	Specifying transaction settings

	Using the PlatformTransactionManager

	Choosing between programmatic and declarative transaction management
	Transaction bound event
	Application server-specific integration	IBM WebSphere
	Oracle WebLogic Server

	Solutions to common problems	Use of the wrong transaction manager for a specific DataSource

	Further resources

	18. DAO support	Introduction
	Consistent exception hierarchy
	Annotations used for configuring DAO or Repository classes

	19. Data access with JDBC	Introduction to Spring Framework JDBC	Choosing an approach for JDBC database access
	Package hierarchy

	Using the JDBC core classes to control basic JDBC processing and error handling	JdbcTemplate	Examples of JdbcTemplate class usage	Querying (SELECT)
	Updating (INSERT/UPDATE/DELETE) with JdbcTemplate
	Other JdbcTemplate operations

	JdbcTemplate best practices

	NamedParameterJdbcTemplate
	SQLExceptionTranslator
	Executing statements
	Running queries
	Updating the database
	Retrieving auto-generated keys

	Controlling database connections	DataSource
	DataSourceUtils
	SmartDataSource
	AbstractDataSource
	SingleConnectionDataSource
	DriverManagerDataSource
	TransactionAwareDataSourceProxy
	DataSourceTransactionManager
	NativeJdbcExtractor

	JDBC batch operations	Basic batch operations with the JdbcTemplate
	Batch operations with a List of objects
	Batch operations with multiple batches

	Simplifying JDBC operations with the SimpleJdbc classes	Inserting data using SimpleJdbcInsert
	Retrieving auto-generated keys using SimpleJdbcInsert
	Specifying columns for a SimpleJdbcInsert
	Using SqlParameterSource to provide parameter values
	Calling a stored procedure with SimpleJdbcCall
	Explicitly declaring parameters to use for a SimpleJdbcCall
	How to define SqlParameters
	Calling a stored function using SimpleJdbcCall
	Returning ResultSet/REF Cursor from a SimpleJdbcCall

	Modeling JDBC operations as Java objects	SqlQuery
	MappingSqlQuery
	SqlUpdate
	StoredProcedure

	Common problems with parameter and data value handling	Providing SQL type information for parameters
	Handling BLOB and CLOB objects
	Passing in lists of values for IN clause
	Handling complex types for stored procedure calls

	Embedded database support	Why use an embedded database?
	Creating an embedded database using Spring XML
	Creating an embedded database programmatically
	Selecting the embedded database type	Using HSQL
	Using H2
	Using Derby

	Testing data access logic with an embedded database
	Generating unique names for embedded databases
	Extending the embedded database support

	Initializing a DataSource	Initializing a database using Spring XML	Initialization of other components that depend on the database

	20. Object Relational Mapping (ORM) Data Access	Introduction to ORM with Spring
	General ORM integration considerations	Resource and transaction management
	Exception translation

	Hibernate	SessionFactory setup in a Spring container
	Implementing DAOs based on plain Hibernate API
	Declarative transaction demarcation
	Programmatic transaction demarcation
	Transaction management strategies
	Comparing container-managed and locally defined resources
	Spurious application server warnings with Hibernate

	JDO	PersistenceManagerFactory setup
	Implementing DAOs based on the plain JDO API
	Transaction management
	JdoDialect

	JPA	Three options for JPA setup in a Spring environment	LocalEntityManagerFactoryBean
	Obtaining an EntityManagerFactory from JNDI
	LocalContainerEntityManagerFactoryBean
	Dealing with multiple persistence units

	Implementing DAOs based on JPA: EntityManagerFactory and EntityManager
	Spring-driven JPA transactions
	JpaDialect and JpaVendorAdapter
	Setting up JPA with JTA transaction management

	21. Marshalling XML using O/X Mappers	Introduction	Ease of configuration
	Consistent interfaces
	Consistent exception hierarchy

	Marshaller and Unmarshaller	Marshaller
	Unmarshaller
	XmlMappingException

	Using Marshaller and Unmarshaller
	XML configuration namespace
	JAXB	Jaxb2Marshaller	XML configuration namespace

	Castor	CastorMarshaller
	Mapping	XML configuration namespace

	XMLBeans	XmlBeansMarshaller	XML configuration namespace

	JiBX	JibxMarshaller	XML configuration namespace

	XStream	XStreamMarshaller

	VI. The Web	22. Web MVC framework	Introduction to Spring Web MVC framework	Features of Spring Web MVC
	Pluggability of other MVC implementations

	The DispatcherServlet	Special Bean Types In the WebApplicationContext
	Default DispatcherServlet Configuration
	DispatcherServlet Processing Sequence

	Implementing Controllers	Defining a controller with @Controller
	Mapping Requests With @RequestMapping	Composed @RequestMapping Variants
	@Controller and AOP Proxying
	New Support Classes for @RequestMapping methods in Spring MVC 3.1
	URI Template Patterns
	URI Template Patterns with Regular Expressions
	Path Patterns
	Path Pattern Comparison
	Path Patterns with Placeholders
	Suffix Pattern Matching
	Suffix Pattern Matching and RFD
	Matrix Variables
	Consumable Media Types
	Producible Media Types
	Request Parameters and Header Values
	HTTP HEAD and HTTP OPTIONS

	Defining @RequestMapping handler methods	Supported method argument types
	Supported method return types
	Binding request parameters to method parameters with @RequestParam
	Mapping the request body with the @RequestBody annotation
	Mapping the response body with the @ResponseBody annotation
	Creating REST Controllers with the @RestController annotation
	Using HttpEntity
	Using @ModelAttribute on a method
	Using @ModelAttribute on a method argument
	Using @SessionAttributes to store model attributes in the HTTP session between requests
	Using @SessionAttribute to access pre-existing global session attributes
	Using @RequestAttribute to access request attributes
	Working with "application/x-www-form-urlencoded" data
	Mapping cookie values with the @CookieValue annotation
	Mapping request header attributes with the @RequestHeader annotation
	Method Parameters And Type Conversion
	Customizing WebDataBinder initialization	Customizing data binding with @InitBinder
	Configuring a custom WebBindingInitializer

	Advising controllers with @ControllerAdvice and @RestControllerAdvice
	Jackson Serialization View Support
	Jackson JSONP Support

	Asynchronous Request Processing	Exception Handling for Async Requests
	Intercepting Async Requests
	HTTP Streaming
	HTTP Streaming With Server-Sent Events
	HTTP Streaming Directly To The OutputStream
	Configuring Asynchronous Request Processing	Servlet Container Configuration
	Spring MVC Configuration

	Testing Controllers

	Handler mappings	Intercepting requests with a HandlerInterceptor

	Resolving views	Resolving views with the ViewResolver interface
	Chaining ViewResolvers
	Redirecting to Views	RedirectView	Passing Data To the Redirect Target

	The redirect: prefix
	The forward: prefix

	ContentNegotiatingViewResolver

	Using flash attributes
	Building URIs	Building URIs to Controllers and methods
	Working with "Forwarded" and "X-Forwarded-*" Headers
	Building URIs to Controllers and methods from views

	Using locales	Obtaining Time Zone Information
	AcceptHeaderLocaleResolver
	CookieLocaleResolver
	SessionLocaleResolver
	LocaleChangeInterceptor

	Using themes	Overview of themes
	Defining themes
	Theme resolvers

	Spring’s multipart (file upload) support	Introduction
	Using a MultipartResolver with Commons FileUpload
	Using a MultipartResolver with Servlet 3.0
	Handling a file upload in a form
	Handling a file upload request from programmatic clients

	Handling exceptions	HandlerExceptionResolver
	@ExceptionHandler
	Handling Standard Spring MVC Exceptions
	Annotating Business Exceptions With @ResponseStatus
	Customizing the Default Servlet Container Error Page

	Web Security
	Convention over configuration support	The Controller ControllerClassNameHandlerMapping
	The Model ModelMap (ModelAndView)
	Default view name

	HTTP caching support	Cache-Control HTTP header
	HTTP caching support for static resources
	Support for the Cache-Control, ETag and Last-Modified response headers in Controllers
	Shallow ETag support

	Code-based Servlet container initialization
	Configuring Spring MVC	Enabling the MVC Java Config or the MVC XML Namespace
	Customizing the Provided Configuration
	Conversion and Formatting
	Validation
	Interceptors
	Content Negotiation
	View Controllers
	View Resolvers
	Serving of Resources
	Default Servlet
	Path Matching
	Message Converters
	Advanced Customizations with MVC Java Config
	Advanced Customizations with the MVC Namespace

	23. View Technologies	Introduction
	Thymeleaf
	Groovy Markup	Configuration
	Example

	Velocity & FreeMarker	Dependencies
	Context configuration
	Creating templates
	Advanced configuration	velocity.properties
	FreeMarker

	Bind support and form handling	The bind macros
	Simple binding
	Form input generation macros	Input Fields
	Selection Fields

	HTML escaping and XHTML compliance

	JSP & JSTL	View resolvers
	'Plain-old' JSPs versus JSTL
	Spring’s JSP tag library
	Spring’s form tag library	Configuration
	The form tag
	The input tag
	The checkbox tag
	The checkboxes tag
	The radiobutton tag
	The radiobuttons tag
	The password tag
	The select tag
	The option tag
	The options tag
	The textarea tag
	The hidden tag
	The errors tag
	HTTP method conversion
	HTML5 tags

	Script views	Requirements
	Script templates

	XML Marshalling
	Tiles	Dependencies
	Configuration	UrlBasedViewResolver
	ResourceBundleViewResolver
	SimpleSpringPreparerFactory and SpringBeanPreparerFactory

	XSLT	Beans
	Controller
	Transformation

	Document views: PDF, Excel	Introduction
	Configuration
	View definition
	Controller
	Excel views
	PDF views

	JasperReports	Dependencies
	Configuration	Configuring the ViewResolver
	Configuring the Views
	About Report Files
	Using JasperReportsMultiFormatView

	Populating the ModelAndView
	Working with sub-reports	Configuring sub-report files
	Configuring sub-report data sources

	Configuring exporter parameters

	Feed views: RSS, Atom
	JSON Mapping View
	XML Mapping View

	24. Integrating with other web frameworks	Introduction
	Common configuration
	JavaServer Faces 1.2	SpringBeanFacesELResolver (JSF 1.2+)
	FacesContextUtils

	Apache Struts 2.x
	Tapestry 5.x
	Further Resources

	25. Portlet MVC Framework	Introduction	Controllers - The C in MVC
	Views - The V in MVC
	Web-scoped beans

	The DispatcherPortlet
	The ViewRendererServlet
	Controllers	AbstractController and PortletContentGenerator
	Other simple controllers
	Command Controllers
	PortletWrappingController

	Handler mappings	PortletModeHandlerMapping
	ParameterHandlerMapping
	PortletModeParameterHandlerMapping
	Adding HandlerInterceptors
	HandlerInterceptorAdapter
	ParameterMappingInterceptor

	Views and resolving them
	Multipart (file upload) support	Using the PortletMultipartResolver
	Handling a file upload in a form

	Handling exceptions
	Annotation-based controller configuration	Setting up the dispatcher for annotation support
	Defining a controller with @Controller
	Mapping requests with @RequestMapping
	Supported handler method arguments
	Binding request parameters to method parameters with @RequestParam
	Providing a link to data from the model with @ModelAttribute
	Specifying attributes to store in a Session with @SessionAttributes
	Customizing WebDataBinder initialization	Customizing data binding with @InitBinder
	Configuring a custom WebBindingInitializer

	Portlet application deployment

	26. WebSocket Support	Introduction	WebSocket Fallback Options
	A Messaging Architecture
	Sub-Protocol Support in WebSocket
	Should I Use WebSocket?

	WebSocket API	WebSocketHandler
	WebSocket Handshake
	WebSocketHandler Decoration
	Deployment
	Configuring the WebSocket Engine
	Configuring allowed origins

	SockJS Fallback	Overview
	Enable SockJS
	IE 8, 9
	Heartbeats
	Client disconnects
	SockJS and CORS
	SockJsClient

	STOMP	Overview
	Benefits
	Enable STOMP
	Flow of Messages
	Annotated Controllers	@MessageMapping
	@SubscribeMapping
	@MessageExceptionHandler

	Send Messages
	Simple Broker
	External Broker
	Connect to Broker
	Dot as Separator
	Authentication
	Token Authentication
	User Destinations
	Events and Interception
	STOMP Client
	WebSocket Scope
	Performance
	Monitoring
	Testing

	27. CORS Support	Introduction
	Controller method CORS configuration
	Global CORS configuration	JavaConfig
	XML namespace

	Advanced Customization
	Filter based CORS support

	VII. Integration	28. Remoting and web services using Spring	Introduction
	Exposing services using RMI	Exporting the service using the RmiServiceExporter
	Linking in the service at the client

	Using Hessian or Burlap to remotely call services via HTTP	Wiring up the DispatcherServlet for Hessian and co.
	Exposing your beans by using the HessianServiceExporter
	Linking in the service on the client
	Using Burlap
	Applying HTTP basic authentication to a service exposed through Hessian or Burlap

	Exposing services using HTTP invokers	Exposing the service object
	Linking in the service at the client

	Web services	Exposing servlet-based web services using JAX-WS
	Exporting standalone web services using JAX-WS
	Exporting web services using the JAX-WS RI’s Spring support
	Accessing web services using JAX-WS

	JMS	Server-side configuration
	Client-side configuration

	AMQP
	Auto-detection is not implemented for remote interfaces
	Considerations when choosing a technology
	Accessing RESTful services on the client	RestTemplate	Working with the URI
	Dealing with request and response headers
	Jackson JSON Views support

	HTTP message conversion	StringHttpMessageConverter
	FormHttpMessageConverter
	ByteArrayHttpMessageConverter
	MarshallingHttpMessageConverter
	MappingJackson2HttpMessageConverter
	MappingJackson2XmlHttpMessageConverter
	SourceHttpMessageConverter
	BufferedImageHttpMessageConverter

	Async RestTemplate

	29. Enterprise JavaBeans (EJB) integration	Introduction
	Accessing EJBs	Concepts
	Accessing local SLSBs
	Accessing remote SLSBs
	Accessing EJB 2.x SLSBs versus EJB 3 SLSBs

	Using Spring’s EJB implementation support classes	EJB 3 injection interceptor

	30. JMS (Java Message Service)	Introduction
	Using Spring JMS	JmsTemplate
	Connections	Caching Messaging Resources
	SingleConnectionFactory
	CachingConnectionFactory

	Destination Management
	Message Listener Containers	SimpleMessageListenerContainer
	DefaultMessageListenerContainer

	Transaction management

	Sending a Message	Using Message Converters
	SessionCallback and ProducerCallback

	Receiving a message	Synchronous reception
	Asynchronous reception: Message-Driven POJOs
	SessionAwareMessageListener interface
	MessageListenerAdapter
	Processing messages within transactions

	Support for JCA Message Endpoints
	Annotation-driven listener endpoints	Enable listener endpoint annotations
	Programmatic endpoints registration
	Annotated endpoint method signature
	Response management

	JMS namespace support

	31. JMX	Introduction
	Exporting your beans to JMX	Creating an MBeanServer
	Reusing an existing MBeanServer
	Lazy-initialized MBeans
	Automatic registration of MBeans
	Controlling the registration behavior

	Controlling the management interface of your beans	MBeanInfoAssembler interface
	Using source-level metadata: Java annotations
	Source-level metadata types
	AutodetectCapableMBeanInfoAssembler interface
	Defining management interfaces using Java interfaces
	Using MethodNameBasedMBeanInfoAssembler

	Controlling the ObjectNames for your beans	Reading ObjectNames from Properties
	Using the MetadataNamingStrategy
	Configuring annotation based MBean export

	JSR-160 Connectors	Server-side connectors
	Client-side connectors
	JMX over Burlap/Hessian/SOAP

	Accessing MBeans via proxies
	Notifications	Registering listeners for notifications
	Publishing Notifications

	Further resources

	32. JCA CCI	Introduction
	Configuring CCI	Connector configuration
	ConnectionFactory configuration in Spring
	Configuring CCI connections
	Using a single CCI connection

	Using Spring’s CCI access support	Record conversion
	CciTemplate
	DAO support
	Automatic output record generation
	Summary
	Using a CCI Connection and Interaction directly
	Example for CciTemplate usage

	Modeling CCI access as operation objects	MappingRecordOperation
	MappingCommAreaOperation
	Automatic output record generation
	Summary
	Example for MappingRecordOperation usage
	Example for MappingCommAreaOperation usage

	Transactions

	33. Email	Introduction
	Usage	Basic MailSender and SimpleMailMessage usage
	Using the JavaMailSender and the MimeMessagePreparator

	Using the JavaMail MimeMessageHelper	Sending attachments and inline resources	Attachments
	Inline resources

	Creating email content using a templating library	A Velocity-based example

	34. Task Execution and Scheduling	Introduction
	The Spring TaskExecutor abstraction	TaskExecutor types
	Using a TaskExecutor

	The Spring TaskScheduler abstraction	Trigger interface
	Trigger implementations
	TaskScheduler implementations

	Annotation Support for Scheduling and Asynchronous Execution	Enable scheduling annotations
	The @Scheduled annotation
	The @Async annotation
	Executor qualification with @Async
	Exception management with @Async

	The task namespace	The 'scheduler' element
	The 'executor' element
	The 'scheduled-tasks' element

	Using the Quartz Scheduler	Using the JobDetailFactoryBean
	Using the MethodInvokingJobDetailFactoryBean
	Wiring up jobs using triggers and the SchedulerFactoryBean

	35. Dynamic language support	Introduction
	A first example
	Defining beans that are backed by dynamic languages	Common concepts	The <lang:language/> element
	Refreshable beans
	Inline dynamic language source files
	Understanding Constructor Injection in the context of dynamic-language-backed beans

	JRuby beans
	Groovy beans	Customizing Groovy objects via a callback

	BeanShell beans

	Scenarios	Scripted Spring MVC Controllers
	Scripted Validators

	Bits and bobs	AOP - advising scripted beans
	Scoping

	Further resources

	36. Cache Abstraction	Introduction
	Understanding the cache abstraction
	Declarative annotation-based caching	@Cacheable annotation	Default Key Generation
	Custom Key Generation Declaration
	Default Cache Resolution
	Custom cache resolution
	Synchronized caching
	Conditional caching
	Available caching SpEL evaluation context

	@CachePut annotation
	@CacheEvict annotation
	@Caching annotation
	@CacheConfig annotation
	Enable caching annotations
	Using custom annotations

	JCache (JSR-107) annotations	Feature summary
	Enabling JSR-107 support

	Declarative XML-based caching
	Configuring the cache storage	JDK ConcurrentMap-based Cache
	Ehcache-based Cache
	Caffeine Cache
	Guava Cache
	GemFire-based Cache
	JSR-107 Cache
	Dealing with caches without a backing store

	Plugging-in different back-end caches
	How can I set the TTL/TTI/Eviction policy/XXX feature?

	VIII. Appendices	37. Migrating to Spring Framework 4.x
	38. Spring Annotation Programming Model
	39. Classic Spring Usage	Classic ORM usage	Hibernate	The HibernateTemplate
	Implementing Spring-based DAOs without callbacks

	JMS Usage	JmsTemplate
	Asynchronous Message Reception
	Connections
	Transaction Management

	40. Classic Spring AOP Usage	Pointcut API in Spring	Concepts
	Operations on pointcuts
	AspectJ expression pointcuts
	Convenience pointcut implementations	Static pointcuts	Regular expression pointcuts
	Attribute-driven pointcuts

	Dynamic pointcuts	Control flow pointcuts

	Pointcut superclasses
	Custom pointcuts

	Advice API in Spring	Advice lifecycles
	Advice types in Spring	Interception around advice
	Before advice
	Throws advice
	After Returning advice
	Introduction advice

	Advisor API in Spring
	Using the ProxyFactoryBean to create AOP proxies	Basics
	JavaBean properties
	JDK- and CGLIB-based proxies
	Proxying interfaces
	Proxying classes
	Using 'global' advisors

	Concise proxy definitions
	Creating AOP proxies programmatically with the ProxyFactory
	Manipulating advised objects
	Using the "autoproxy" facility	Autoproxy bean definitions	BeanNameAutoProxyCreator
	DefaultAdvisorAutoProxyCreator
	AbstractAdvisorAutoProxyCreator

	Using metadata-driven auto-proxying

	Using TargetSources	Hot swappable target sources
	Pooling target sources
	Prototype target sources
	ThreadLocal target sources

	Defining new Advice types
	Further resources

	41. XML Schema-based configuration	Introduction
	XML Schema-based configuration	Referencing the schemas
	the util schema	<util:constant/>	Setting a bean property or constructor arg from a field value

	<util:property-path/>	Using <util:property-path/> to set a bean property or constructor-argument

	<util:properties/>
	<util:list/>
	<util:map/>
	<util:set/>

	the jee schema	<jee:jndi-lookup/> (simple)
	<jee:jndi-lookup/> (with single JNDI environment setting)
	<jee:jndi-lookup/> (with multiple JNDI environment settings)
	<jee:jndi-lookup/> (complex)
	<jee:local-slsb/> (simple)
	<jee:local-slsb/> (complex)
	<jee:remote-slsb/>

	the lang schema
	the jms schema
	the tx (transaction) schema
	the aop schema
	the context schema	<property-placeholder/>
	<annotation-config/>
	<component-scan/>
	<load-time-weaver/>
	<spring-configured/>
	<mbean-export/>

	the tool schema
	the jdbc schema
	the cache schema
	the beans schema

	42. Extensible XML authoring	Introduction
	Authoring the schema
	Coding a NamespaceHandler
	BeanDefinitionParser
	Registering the handler and the schema	'META-INF/spring.handlers'
	'META-INF/spring.schemas'

	Using a custom extension in your Spring XML configuration
	Meatier examples	Nesting custom tags within custom tags
	Custom attributes on 'normal' elements

	Further Resources

	43. spring JSP Tag Library	Introduction
	The argument tag
	The bind tag
	The escapeBody tag
	The eval tag
	The hasBindErrors tag
	The htmlEscape tag
	The message tag
	The nestedPath tag
	The param tag
	The theme tag
	The transform tag
	The url tag

	44. spring-form JSP Tag Library	Introduction
	The button tag
	The checkbox tag
	The checkboxes tag
	The errors tag
	The form tag
	The hidden tag
	The input tag
	The label tag
	The option tag
	The options tag
	The password tag
	The radiobutton tag
	The radiobuttons tag
	The select tag
	The textarea tag

Spring Framework Reference Documentation

Rod Johnson

Juergen Hoeller

Keith Donald

Colin Sampaleanu

Rob Harrop

Thomas Risberg

Alef Arendsen

Darren Davison

Dmitriy Kopylenko

Mark Pollack

Thierry Templier

Erwin Vervaet

Portia Tung

Ben Hale

Adrian Colyer

John Lewis

Costin Leau

Mark Fisher

Sam Brannen

Ramnivas Laddad

Arjen Poutsma

Chris Beams

Tareq Abedrabbo

Andy Clement

Dave Syer

Oliver Gierke

Rossen Stoyanchev

Phillip Webb

Rob Winch

Brian Clozel

Stephane Nicoll

Sebastien Deleuze

4.3.20.RELEASE

Copyright © 2004-2016

	Copies of this document may be made for your own use and for distribution to
	others, provided that you do not charge any fee for such copies and further provided
	that each copy contains this Copyright Notice, whether distributed in print or
	electronically.

Part I. Overview of Spring Framework

The Spring Framework is a lightweight solution and a potential one-stop-shop for
building your enterprise-ready applications. However, Spring is modular, allowing you to
use only those parts that you need, without having to bring in the rest. You can use the
IoC container, with any web framework on top, but you can also use only the
Hibernate integration code or the JDBC abstraction
layer. The Spring Framework supports declarative transaction management, remote access
to your logic through RMI or web services, and various options for persisting your data.
It offers a full-featured MVC framework, and enables you to
integrate AOP transparently into your software.

Spring is designed to be non-intrusive, meaning that your domain logic code generally
has no dependencies on the framework itself. In your integration layer (such as the data
access layer), some dependencies on the data access technology and the Spring libraries
will exist. However, it should be easy to isolate these dependencies from the rest of
your code base.

This document is a reference guide to Spring Framework features. If you have any
requests, comments, or questions on this document, please post them on the
user mailing
list. Questions on the Framework itself should be asked on StackOverflow
(see https://spring.io/questions).

Chapter 1. Getting Started with Spring

This reference guide provides detailed information about the Spring Framework.
It provides comprehensive documentation for all features, as well as some background
about the underlying concepts (such as "Dependency Injection") that Spring has
embraced.

If you are just getting started with Spring, you may want to begin using the Spring Framework
by creating a Spring Boot based application.
Spring Boot provides a quick (and opinionated) way to create a production-ready Spring based
application. It is based on the Spring Framework, favors convention over configuration, and is
designed to get you up and running as quickly as possible.

You can use start.spring.io to generate a basic project or follow
one of the "Getting Started" guides like the
Getting Started Building a RESTful Web Service
one. As well as being easier to digest, these guides are very task focused, and most of
them are based on Spring Boot. They also cover other projects from the Spring portfolio
that you might want to consider when solving a particular problem.

Chapter 2. Introduction to the Spring Framework

The Spring Framework is a Java platform that provides comprehensive infrastructure support
for developing Java applications. Spring handles the infrastructure so you can focus on
your application.

Spring enables you to build applications from "plain old Java objects" (POJOs) and to
apply enterprise services non-invasively to POJOs. This capability applies to the Java
SE programming model and to full and partial Java EE.

Examples of how you, as an application developer, can benefit from the Spring platform:

	
Make a Java method execute in a database transaction without having to deal with
transaction APIs.

	
Make a local Java method an HTTP endpoint without having to deal with the Servlet API.

	
Make a local Java method a message handler without having to deal with the JMS API.

	
Make a local Java method a management operation without having to deal with the JMX API.

Dependency Injection and Inversion of Control

A Java application — a loose term that runs the gamut from constrained, embedded
applications to n-tier, server-side enterprise applications — typically consists of
objects that collaborate to form the application proper. Thus the objects in an
application have dependencies on each other.

Although the Java platform provides a wealth of application development functionality,
it lacks the means to organize the basic building blocks into a coherent whole, leaving
that task to architects and developers. Although you can use design patterns such
as Factory, Abstract Factory, Builder, Decorator, and Service Locator
to compose the various classes and object instances that make up an application,
these patterns are simply that: best practices given a name, with a description
of what the pattern does, where to apply it, the problems it addresses, and so forth.
Patterns are formalized best practices that you must implement yourself in your
application.

The Spring Framework Inversion of Control (IoC) component addresses this concern by
providing a formalized means of composing disparate components into a fully working
application ready for use. The Spring Framework codifies formalized design patterns as
first-class objects that you can integrate into your own application(s). Numerous
organizations and institutions use the Spring Framework in this manner to engineer
robust, maintainable applications.

Background

"The question is, what aspect of control are [they] inverting?" Martin Fowler posed
this question about Inversion of Control (IoC)
on his site in 2004. Fowler suggested
renaming the principle to make it more self-explanatory and came up with Dependency
Injection.

Framework Modules

The Spring Framework consists of features organized into about 20 modules. These modules
are grouped into Core Container, Data Access/Integration, Web, AOP (Aspect Oriented
Programming), Instrumentation, Messaging, and Test, as shown in the following diagram.

Figure 2.1. Overview of the Spring Framework

[image: spring overview]

The following sections list the available modules for each feature along with their
artifact names and the topics they cover. Artifact names correlate to artifact IDs used
in Dependency Management tools.

Core Container

The Core Container consists of the spring-core,
spring-beans, spring-context, spring-context-support, and spring-expression
(Spring Expression Language) modules.

The spring-core and spring-beans modules provide the fundamental
parts of the framework, including the IoC and Dependency Injection features. The
BeanFactory is a sophisticated implementation of the factory pattern. It removes the
need for programmatic singletons and allows you to decouple the configuration and
specification of dependencies from your actual program logic.

The Context (spring-context) module builds on the solid
base provided by the Core and Beans modules: it is a means to
access objects in a framework-style manner that is similar to a JNDI registry. The
Context module inherits its features from the Beans module and adds support for
internationalization (using, for example, resource bundles), event propagation, resource
loading, and the transparent creation of contexts by, for example, a Servlet container.
The Context module also supports Java EE features such as EJB, JMX, and basic remoting.
The ApplicationContext interface is the focal point of the Context module.
spring-context-support provides support for integrating common third-party libraries
into a Spring application context for caching (EhCache, Guava, JCache), mailing
(JavaMail), scheduling (CommonJ, Quartz) and template engines (FreeMarker, JasperReports,
Velocity).

The spring-expression module provides a powerful Expression
Language for querying and manipulating an object graph at runtime. It is an extension
of the unified expression language (unified EL) as specified in the JSP 2.1
specification. The language supports setting and getting property values, property
assignment, method invocation, accessing the content of arrays, collections and indexers,
logical and arithmetic operators, named variables, and retrieval of objects by name from
Spring’s IoC container. It also supports list projection and selection as well as common
list aggregations.

AOP and Instrumentation

The spring-aop module provides an AOP Alliance-compliant
aspect-oriented programming implementation allowing you to define, for example,
method interceptors and pointcuts to cleanly decouple code that implements functionality
that should be separated. Using source-level metadata functionality, you can also
incorporate behavioral information into your code, in a manner similar to that of .NET
attributes.

The separate spring-aspects module provides integration with AspectJ.

The spring-instrument module provides class instrumentation support and classloader
implementations to be used in certain application servers. The spring-instrument-tomcat
module contains Spring’s instrumentation agent for Tomcat.

Messaging

Spring Framework 4 includes a spring-messaging module with key abstractions from the
Spring Integration project such as Message, MessageChannel, MessageHandler, and
others to serve as a foundation for messaging-based applications. The module also
includes a set of annotations for mapping messages to methods, similar to the Spring MVC
annotation based programming model.

Data Access/Integration

The Data Access/Integration layer consists of the JDBC, ORM, OXM, JMS, and
Transaction modules.

The spring-jdbc module provides a JDBC-abstraction layer that
removes the need to do tedious JDBC coding and parsing of database-vendor specific error
codes.

The spring-tx module supports programmatic and declarative transaction
management for classes that implement special interfaces and for all your POJOs (Plain
Old Java Objects).

The spring-orm module provides integration layers for popular
object-relational mapping APIs, including JPA,
JDO, and Hibernate. Using the spring-orm module you can
use all of these O/R-mapping frameworks in combination with all of the other features
Spring offers, such as the simple declarative transaction management feature mentioned
previously.

The spring-oxm module provides an abstraction layer that supports Object/XML
mapping implementations such as JAXB, Castor, XMLBeans, JiBX and XStream.

The spring-jms module (Java Messaging Service) contains features for producing and
consuming messages. Since Spring Framework 4.1, it provides integration with the
spring-messaging module.

Web

The Web layer consists of the spring-web, spring-webmvc, spring-websocket, and
spring-webmvc-portlet modules.

The spring-web module provides basic web-oriented integration features such as
multipart file upload functionality and the initialization of the IoC container using
Servlet listeners and a web-oriented application context. It also contains an HTTP client
and the web-related parts of Spring’s remoting support.

The spring-webmvc module (also known as the Web-Servlet module) contains Spring’s
model-view-controller (MVC) and REST Web Services implementation
for web applications. Spring’s MVC framework provides a clean separation between domain
model code and web forms and integrates with all of the other features of the Spring
Framework.

The spring-webmvc-portlet module (also known as the Web-Portlet module) provides
the MVC implementation to be used in a Portlet environment and mirrors the functionality
of the Servlet-based spring-webmvc module.

Test

The spring-test module supports the unit testing and
integration testing of Spring components with JUnit or TestNG. It
provides consistent loading of Spring
ApplicationContexts and caching of those
contexts. It also provides mock objects that you can use to test your
code in isolation.

Usage scenarios

The building blocks described previously make Spring a logical choice in many scenarios,
from embedded applications that run on resource-constrained devices to full-fledged
enterprise applications that use Spring’s transaction management functionality and web
framework integration.

Figure 2.2. Typical full-fledged Spring web application

[image: overview full]

Spring’s declarative transaction management features make
the web application fully transactional, just as it would be if you used EJB
container-managed transactions. All your custom business logic can be implemented with
simple POJOs and managed by Spring’s IoC container. Additional services include support
for sending email and validation that is independent of the web layer, which lets you
choose where to execute validation rules. Spring’s ORM support is integrated with JPA,
Hibernate and JDO; for example, when using Hibernate, you can continue to use
your existing mapping files and standard Hibernate SessionFactory configuration. Form
controllers seamlessly integrate the web-layer with the domain model, removing the need
for ActionForms or other classes that transform HTTP parameters to values for your
domain model.

Figure 2.3. Spring middle-tier using a third-party web framework

[image: overview thirdparty web]

Sometimes circumstances do not allow you to completely switch to a different framework.
The Spring Framework does not force you to use everything within it; it is not an
all-or-nothing solution. Existing front-ends built with Struts, Tapestry, JSF
or other UI frameworks can be integrated with a Spring-based middle-tier, which allows
you to use Spring transaction features. You simply need to wire up your business logic
using an ApplicationContext and use a WebApplicationContext to integrate your web
layer.

Figure 2.4. Remoting usage scenario

[image: overview remoting]

When you need to access existing code through web services, you can use Spring’s
Hessian-, Burlap-, Rmi- or JaxRpcProxyFactory classes. Enabling remote access to
existing applications is not difficult.

Figure 2.5. EJBs - Wrapping existing POJOs

[image: overview ejb]

The Spring Framework also provides an access and abstraction layer for
Enterprise JavaBeans, enabling you to reuse your existing POJOs and wrap them in
stateless session beans for use in scalable, fail-safe web applications that might need
declarative security.

Dependency Management and Naming Conventions

Dependency management and dependency injection are different things. To get those nice
features of Spring into your application (like dependency injection) you need to
assemble all the libraries needed (jar files) and get them onto your classpath at
runtime, and possibly at compile time. These dependencies are not virtual components
that are injected, but physical resources in a file system (typically). The process of
dependency management involves locating those resources, storing them and adding them to
classpaths. Dependencies can be direct (e.g. my application depends on Spring at
runtime), or indirect (e.g. my application depends on commons-dbcp which depends on
commons-pool). The indirect dependencies are also known as "transitive" and it is
those dependencies that are hardest to identify and manage.

If you are going to use Spring you need to get a copy of the jar libraries that comprise
the pieces of Spring that you need. To make this easier Spring is packaged as a set of
modules that separate the dependencies as much as possible, so for example if you don’t
want to write a web application you don’t need the spring-web modules. To refer to
Spring library modules in this guide we use a shorthand naming convention spring-* or
spring-*.jar, where * represents the short name for the module
(e.g. spring-core, spring-webmvc, spring-jms, etc.). The actual jar file name that
you use is normally the module name concatenated with the version number
(e.g. spring-core-4.3.20.RELEASE.jar).

Each release of the Spring Framework will publish artifacts to the following places:

	
Maven Central, which is the default repository that Maven queries, and does not
require any special configuration to use. Many of the common libraries that Spring
depends on also are available from Maven Central and a large section of the Spring
community uses Maven for dependency management, so this is convenient for them. The
names of the jars here are in the form spring-*-<version>.jar and the Maven groupId
is org.springframework.

	
In a public Maven repository hosted specifically for Spring. In addition to the final
GA releases, this repository also hosts development snapshots and milestones. The jar
file names are in the same form as Maven Central, so this is a useful place to get
development versions of Spring to use with other libraries deployed in Maven Central.
This repository also contains a bundle distribution zip file that contains all Spring
jars bundled together for easy download.

So the first thing you need to decide is how to manage your dependencies: we generally
recommend the use of an automated system like Maven, Gradle or Ivy, but you can also do
it manually by downloading all the jars yourself.

Below you will find the list of Spring artifacts. For a more complete description of
each module, see the section called “Framework Modules”.

Table 2.1. Spring Framework Artifacts

	GroupId	ArtifactId	Description
	org.springframework
	spring-aop
	Proxy-based AOP support

	org.springframework
	spring-aspects
	AspectJ based aspects

	org.springframework
	spring-beans
	Beans support, including Groovy

	org.springframework
	spring-context
	Application context runtime, including scheduling and remoting abstractions

	org.springframework
	spring-context-support
	Support classes for integrating common third-party libraries into a Spring application context

	org.springframework
	spring-core
	Core utilities, used by many other Spring modules

	org.springframework
	spring-expression
	Spring Expression Language (SpEL)

	org.springframework
	spring-instrument
	Instrumentation agent for JVM bootstrapping

	org.springframework
	spring-instrument-tomcat
	Instrumentation agent for Tomcat

	org.springframework
	spring-jdbc
	JDBC support package, including DataSource setup and JDBC access support

	org.springframework
	spring-jms
	JMS support package, including helper classes to send/receive JMS messages

	org.springframework
	spring-messaging
	Support for messaging architectures and protocols

	org.springframework
	spring-orm
	Object/Relational Mapping, including JPA and Hibernate support

	org.springframework
	spring-oxm
	Object/XML Mapping

	org.springframework
	spring-test
	Support for unit testing and integration testing Spring components

	org.springframework
	spring-tx
	Transaction infrastructure, including DAO support and JCA integration

	org.springframework
	spring-web
	Foundational web support, including web client and web-based remoting

	org.springframework
	spring-webmvc
	HTTP-based Model-View-Controller and REST endpoints for Servlet stacks

	org.springframework
	spring-webmvc-portlet
	MVC implementation to be used in a Portlet environment

	org.springframework
	spring-websocket
	WebSocket and SockJS infrastructure, including STOMP messaging support

Spring Dependencies and Depending on Spring

Although Spring provides integration and support for a huge range of enterprise and
other external tools, it intentionally keeps its mandatory dependencies to an absolute
minimum: you shouldn’t have to locate and download (even automatically) a large number
of jar libraries in order to use Spring for simple use cases. For basic dependency
injection there is only one mandatory external dependency, and that is for logging (see
below for a more detailed description of logging options).

Next we outline the basic steps needed to configure an application that depends on
Spring, first with Maven and then with Gradle and finally using Ivy. In all cases, if
anything is unclear, refer to the documentation of your dependency management system, or
look at some sample code - Spring itself uses Gradle to manage dependencies when it is
building, and our samples mostly use Gradle or Maven.

Maven Dependency Management

If you are using Maven for dependency management you don’t even
need to supply the logging dependency explicitly. For example, to create an application
context and use dependency injection to configure an application, your Maven dependencies
will look like this:

<dependencies>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context</artifactId>
 <version>4.3.20.RELEASE</version>
 <scope>runtime</scope>
 </dependency>
</dependencies>

That’s it. Note the scope can be declared as runtime if you don’t need to compile
against Spring APIs, which is typically the case for basic dependency injection use
cases.

The example above works with the Maven Central repository. To use the Spring Maven
repository (e.g. for milestones or developer snapshots), you need to specify the
repository location in your Maven configuration. For full releases:

<repositories>
 <repository>
 <id>io.spring.repo.maven.release</id>
 <url>http://repo.spring.io/release/</url>
 <snapshots><enabled>false</enabled></snapshots>
 </repository>
</repositories>

For milestones:

<repositories>
 <repository>
 <id>io.spring.repo.maven.milestone</id>
 <url>http://repo.spring.io/milestone/</url>
 <snapshots><enabled>false</enabled></snapshots>
 </repository>
</repositories>

And for snapshots:

<repositories>
 <repository>
 <id>io.spring.repo.maven.snapshot</id>
 <url>http://repo.spring.io/snapshot/</url>
 <snapshots><enabled>true</enabled></snapshots>
 </repository>
</repositories>

Maven "Bill Of Materials" Dependency

It is possible to accidentally mix different versions of Spring JARs when using Maven.
For example, you may find that a third-party library, or another Spring project,
pulls in a transitive dependency to an older release. If you forget to explicitly declare
a direct dependency yourself, all sorts of unexpected issues can arise.

To overcome such problems Maven supports the concept of a "bill of materials" (BOM)
dependency. You can import the spring-framework-bom in your dependencyManagement
section to ensure that all spring dependencies (both direct and transitive) are at
the same version.

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-framework-bom</artifactId>
 <version>4.3.20.RELEASE</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

An added benefit of using the BOM is that you no longer need to specify the <version>
attribute when depending on Spring Framework artifacts:

<dependencies>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-web</artifactId>
 </dependency>
<dependencies>

Gradle Dependency Management

To use the Spring repository with the Gradle build system,
include the appropriate URL in the repositories section:

repositories {
 mavenCentral()
 // and optionally...
 maven { url "http://repo.spring.io/release" }
}

You can change the repositories URL from /release to /milestone or /snapshot as
appropriate. Once a repository has been configured, you can declare dependencies in the
usual Gradle way:

dependencies {
 compile("org.springframework:spring-context:4.3.20.RELEASE")
 testCompile("org.springframework:spring-test:4.3.20.RELEASE")
}

Ivy Dependency Management

If you prefer to use Ivy to manage dependencies then there
are similar configuration options.

To configure Ivy to point to the Spring repository add the following resolver to your
ivysettings.xml:

<resolvers>
 <ibiblio name="io.spring.repo.maven.release"
 m2compatible="true"
 root="http://repo.spring.io/release/"/>
</resolvers>

You can change the root URL from /release/ to /milestone/ or /snapshot/ as
appropriate.

Once configured, you can add dependencies in the usual way. For example (in ivy.xml):

<dependency org="org.springframework"
 name="spring-core" rev="4.3.20.RELEASE" conf="compile->runtime"/>

Distribution Zip Files

Although using a build system that supports dependency management is the recommended
way to obtain the Spring Framework, it is still possible to download a distribution
zip file.

Distribution zips are published to the Spring Maven Repository (this is just for our
convenience, you don’t need Maven or any other build system in order to download them).

To download a distribution zip open a web browser to
http://repo.spring.io/release/org/springframework/spring and select the appropriate
subfolder for the version that you want. Distribution files end -dist.zip, for example
spring-framework-{spring-version}-RELEASE-dist.zip. Distributions are also published
for milestones and
snapshots.

Logging

Logging is a very important dependency for Spring because a) it is the only mandatory
external dependency, b) everyone likes to see some output from the tools they are
using, and c) Spring integrates with lots of other tools all of which have also made
a choice of logging dependency. One of the goals of an application developer is often to
have unified logging configured in a central place for the whole application, including
all external components. This is more difficult than it might have been since there are so
many choices of logging framework.

The mandatory logging dependency in Spring is the Jakarta Commons Logging API (JCL). We
compile against JCL and we also make JCL Log objects visible for classes that extend
the Spring Framework. It’s important to users that all versions of Spring use the same
logging library: migration is easy because backwards compatibility is preserved even
with applications that extend Spring. The way we do this is to make one of the modules
in Spring depend explicitly on commons-logging (the canonical implementation of JCL),
and then make all the other modules depend on that at compile time. If you are using
Maven for example, and wondering where you picked up the dependency on commons-logging,
then it is from Spring and specifically from the central module called spring-core.

The nice thing about commons-logging is that you don’t need anything else to make your
application work. It has a runtime discovery algorithm that looks for other logging
frameworks in well known places on the classpath and uses one that it thinks is
appropriate (or you can tell it which one if you need to). If nothing else is available
you get pretty nice looking logs just from the JDK (java.util.logging or JUL for short).
You should find that your Spring application works and logs happily to the console out
of the box in most situations, and that’s important.

Using Log4j 1.2 or 2.x

	[image: [Note]]	Note
	
Log4j 1.2 is EOL in the meantime. Also, Log4j 2.3 is the last Java 6 compatible
release, with newer Log4j 2.x releases requiring Java 7+.

Many people use Log4j as a logging framework for
configuration and management purposes. It is efficient and well-established, and in
fact it is what we use at runtime when we build Spring. Spring also provides some
utilities for configuring and initializing Log4j, so it has an optional compile-time
dependency on Log4j in some modules.

To make Log4j 1.2 work with the default JCL dependency (commons-logging) all you
need to do is put Log4j on the classpath, and provide it with a configuration file
(log4j.properties or log4j.xml in the root of the classpath). So for Maven users
this is your dependency declaration:

<dependencies>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-core</artifactId>
 <version>4.3.20.RELEASE</version>
 </dependency>
 <dependency>
 <groupId>log4j</groupId>
 <artifactId>log4j</artifactId>
 <version>1.2.17</version>
 </dependency>
</dependencies>

And here’s a sample log4j.properties for logging to the console:

log4j.rootCategory=INFO, stdout

log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d{ABSOLUTE} %5p %t %c{2}:%L - %m%n

log4j.category.org.springframework.beans.factory=DEBUG

To use Log4j 2.x with JCL, all you need to do is put Log4j on the classpath and
provide it with a configuration file (log4j2.xml, log4j2.properties, or other
supported configuration
formats). For Maven users, the minimal dependencies needed are:

<dependencies>
 <dependency>
 <groupId>org.apache.logging.log4j</groupId>
 <artifactId>log4j-core</artifactId>
 <version>2.6.2</version>
 </dependency>
 <dependency>
 <groupId>org.apache.logging.log4j</groupId>
 <artifactId>log4j-jcl</artifactId>
 <version>2.6.2</version>
 </dependency>
</dependencies>

If you also wish to enable SLF4J to delegate to Log4j, e.g. for other libraries
which use SLF4J by default, the following dependency is also needed:

<dependencies>
 <dependency>
 <groupId>org.apache.logging.log4j</groupId>
 <artifactId>log4j-slf4j-impl</artifactId>
 <version>2.6.2</version>
 </dependency>
</dependencies>

Here is an example log4j2.xml for logging to the console:

<?xml version="1.0" encoding="UTF-8"?>
<Configuration status="WARN">
 <Appenders>
 <Console name="Console" target="SYSTEM_OUT">
 <PatternLayout pattern="%d{HH:mm:ss.SSS} [%t] %-5level %logger{36} - %msg%n"/>
 </Console>
 </Appenders>
 <Loggers>
 <Logger name="org.springframework.beans.factory" level="DEBUG"/>
 <Root level="error">
 <AppenderRef ref="Console"/>
 </Root>
 </Loggers>
</Configuration>

Avoiding Commons Logging

Unfortunately, the runtime discovery algorithm in the standard commons-logging API,
while convenient for the end-user, can be problematic. If you’d like to avoid JCL’s
standard lookup, there are basically two ways to switch it off:

	
Exclude the dependency from the spring-core module (as it is the only module that
explicitly depends on commons-logging)

	
Depend on a special commons-logging dependency that replaces the library with
an empty jar (more details can be found in the
SLF4J FAQ)

To exclude commons-logging, add the following to your dependencyManagement section:

<dependencies>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-core</artifactId>
 <version>4.3.20.RELEASE</version>
 <exclusions>
 <exclusion>
 <groupId>commons-logging</groupId>
 <artifactId>commons-logging</artifactId>
 </exclusion>
 </exclusions>
 </dependency>
</dependencies>

Now this application is currently broken because there is no implementation of the JCL
API on the classpath, so to fix it a new one has to be provided. In the next section we
show you how to provide an alternative implementation of JCL using SLF4J.

Using SLF4J with Log4j or Logback

The Simple Logging Facade for Java (SLF4J) is a popular API
used by other libraries commonly used with Spring. It is typically used with
Logback which is a native implementation of the SLF4J API.

SLF4J provides bindings to many common logging frameworks, including Log4j, and it also
does the reverse: bridges between other logging frameworks and itself. So to use SLF4J
with Spring you need to replace the commons-logging dependency with the SLF4J-JCL
bridge. Once you have done that then logging calls from within Spring will be translated
into logging calls to the SLF4J API, so if other libraries in your application use that
API, then you have a single place to configure and manage logging.

A common choice might be to bridge Spring to SLF4J, and then provide explicit binding
from SLF4J to Log4j. You need to supply several dependencies (and exclude the existing
commons-logging): the JCL bridge, the SLF4j binding to Log4j, and the Log4j provider
itself. In Maven you would do that like this

<dependencies>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-core</artifactId>
 <version>4.3.20.RELEASE</version>
 <exclusions>
 <exclusion>
 <groupId>commons-logging</groupId>
 <artifactId>commons-logging</artifactId>
 </exclusion>
 </exclusions>
 </dependency>
 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>jcl-over-slf4j</artifactId>
 <version>1.7.21</version>
 </dependency>
 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-log4j12</artifactId>
 <version>1.7.21</version>
 </dependency>
 <dependency>
 <groupId>log4j</groupId>
 <artifactId>log4j</artifactId>
 <version>1.2.17</version>
 </dependency>
</dependencies>

A more common choice amongst SLF4J users, which uses fewer steps and generates fewer
dependencies, is to bind directly to Logback. This removes the
extra binding step because Logback implements SLF4J directly, so you only need to depend
on just two libraries, namely jcl-over-slf4j and logback):

<dependencies>
 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>jcl-over-slf4j</artifactId>
 <version>1.7.21</version>
 </dependency>
 <dependency>
 <groupId>ch.qos.logback</groupId>
 <artifactId>logback-classic</artifactId>
 <version>1.1.7</version>
 </dependency>
</dependencies>

Using JUL (java.util.logging)

Commons Logging will delegate to java.util.logging by default, provided that no
Log4j is detected on the classpath. So there is no special dependency to set up:
just use Spring with no external dependency for log output to java.util.logging,
either in a standalone application (with a custom or default JUL setup at the JDK
level) or with an application server’s log system (and its system-wide JUL setup).

Commons Logging on WebSphere

Spring applications may run on a container that itself provides an implementation of
JCL, e.g. IBM’s WebSphere Application Server (WAS). This does not cause issues per se
but leads to two different scenarios that need to be understood:

In a "parent first" ClassLoader delegation model (the default on WAS), applications
will always pick up the server-provided version of Commons Logging, delegating to the
WAS logging subsystem (which is actually based on JUL). An application-provided variant
of JCL, whether standard Commons Logging or the JCL-over-SLF4J bridge, will effectively
be ignored, along with any locally included log provider.

With a "parent last" delegation model (the default in a regular Servlet container but
an explicit configuration option on WAS), an application-provided Commons Logging
variant will be picked up, enabling you to set up a locally included log provider,
e.g. Log4j or Logback, within your application. In case of no local log provider,
regular Commons Logging will delegate to JUL by default, effectively logging to
WebSphere’s logging subsystem like in the "parent first" scenario.

All in all, we recommend deploying Spring applications in the "parent last" model
since it naturally allows for local providers as well as the server’s log subsystem.

Part II. What’s New in Spring Framework 4.x

This chapter provides an overview of the new features and improvements that have been
introduced with Spring Framework 4.3. If you are interested in more details, please see the link:
Issue Tracker tickets
that were resolved as part of the 4.3 development process.

Chapter 3. New Features and Enhancements in Spring Framework 4.0

The Spring Framework was first released in 2004; since then there have been significant
major revisions: Spring 2.0 provided XML namespaces and AspectJ support; Spring 2.5
embraced annotation-driven configuration; Spring 3.0 introduced a strong Java 5+ foundation
across the framework codebase, and features such as the Java-based @Configuration model.

Version 4.0 is the latest major release of the Spring Framework and the first to fully
support Java 8 features. You can still use Spring with older versions of Java, however,
the minimum requirement has now been raised to Java SE 6. We have also taken the
opportunity of a major release to remove many deprecated classes and methods.

A migration guide for upgrading to Spring 4.0
is available on the Spring Framework GitHub Wiki.

Improved Getting Started Experience

The new spring.io website provides a whole series of
"Getting Started" guides to help you learn Spring. You
can read more about the guides in the Chapter 1, Getting Started with Spring section
in this document. The new website also provides a comprehensive overview of the many
additional projects that are released under the Spring umbrella.

If you are a Maven user you may also be interested in the helpful
bill of materials POM file that is now published with each Spring
Framework release.

Removed Deprecated Packages and Methods

All deprecated packages, and many deprecated classes and methods have been removed with
version 4.0. If you are upgrading from a previous release of Spring, you should ensure
that you have fixed any deprecated calls that you were making to outdated APIs.

For a complete set of changes, check out the
API
Differences Report.

Note that optional third-party dependencies have been raised to a 2010/2011 minimum
(i.e. Spring 4 generally only supports versions released in late 2010 or later now):
notably, Hibernate 3.6+, EhCache 2.1+, Quartz 1.8+, Groovy 1.8+, and Joda-Time 2.0+.
As an exception to the rule, Spring 4 requires the recent Hibernate Validator 4.3+,
and support for Jackson has been focused on 2.0+ now (with Jackson 1.8/1.9 support
retained for the time being where Spring 3.2 had it; now just in deprecated form).

Java 8 (as well as 6 and 7)

Spring Framework 4.0 provides support for several Java 8 features. You can make use of
lambda expressions and method references with Spring’s callback interfaces. There
is first-class support for java.time (JSR-310),
and several existing annotations have been retrofitted as @Repeatable. You can also
use Java 8’s parameter name discovery (based on the -parameters compiler flag) as an
alternative to compiling your code with debug information enabled.

Spring remains compatible with older versions of Java and the JDK: concretely, Java SE 6
(specifically, a minimum level equivalent to JDK 6 update 18, as released in January 2010)
and above are still fully supported. However, for newly started development projects
based on Spring 4, we recommend the use of Java 7 or 8.

	[image: [Note]]	Note
	
As of late 2017, JDK 6 is being phased out and therefore also Spring’s JDK 6 support.
Oracle as well as IBM will terminate all commercial support efforts for JDK 6 in 2018.
While Spring will retain its JDK 6 runtime compatibility for the entire 4.3.x line,
we require an upgrade to JDK 7 or higher for any further support beyond this point:
in particular for JDK 6 specific bug fixes or other issues where an upgrade to JDK 7
addresses the problem.

Java EE 6 and 7

Java EE version 6 or above is now considered the baseline for Spring Framework 4, with
the JPA 2.0 and Servlet 3.0 specifications being of particular relevance. In order to
remain compatible with Google App Engine and older application servers, it is possible
to deploy a Spring 4 application into a Servlet 2.5 environment. However, Servlet 3.0+
is strongly recommended and a prerequisite in Spring’s test and mock packages for test
setups in development environments.

	[image: [Note]]	Note
	
If you are a WebSphere 7 user, be sure to install the JPA 2.0 feature pack. On
WebLogic 10.3.4 or higher, install the JPA 2.0 patch that comes with it. This turns
both of those server generations into Spring 4 compatible deployment environments.

On a more forward-looking note, Spring Framework 4.0 supports the Java EE 7 level of
applicable specifications now: in particular, JMS 2.0, JTA 1.2, JPA 2.1, Bean Validation
1.1, and JSR-236 Concurrency Utilities. As usual, this support focuses on individual
use of those specifications, e.g. on Tomcat or in standalone environments. However,
it works equally well when a Spring application is deployed to a Java EE 7 server.

Note that Hibernate 4.3 is a JPA 2.1 provider and therefore only supported as of
Spring Framework 4.0. The same applies to Hibernate Validator 5.0 as a Bean Validation
1.1 provider. Neither of the two are officially supported with Spring Framework 3.2.

Groovy Bean Definition DSL

Beginning with Spring Framework 4.0, it is possible to define external bean configuration
using a Groovy DSL. This is similar in concept to using XML bean definitions but allows
for a more concise syntax. Using Groovy also allows you to easily embed bean definitions
directly in your bootstrap code. For example:

def reader = new GroovyBeanDefinitionReader(myApplicationContext)
reader.beans {
 dataSource(BasicDataSource) {
 driverClassName = "org.hsqldb.jdbcDriver"
 url = "jdbc:hsqldb:mem:grailsDB"
 username = "sa"
 password = ""
 settings = [mynew:"setting"]
 }
 sessionFactory(SessionFactory) {
 dataSource = dataSource
 }
 myService(MyService) {
 nestedBean = { AnotherBean bean ->
 dataSource = dataSource
 }
 }
}

For more information consult the GroovyBeanDefinitionReader
javadocs.

Core Container Improvements

There have been several general improvements to the core container:

	
Spring now treats generic types as a form of
qualifier when injecting Beans. For example, if you are using a Spring Data
Repository you can now easily inject a specific implementation:
@Autowired Repository<Customer> customerRepository.

	
If you use Spring’s meta-annotation support, you can now develop custom annotations that
expose specific attributes from the source annotation.

	
Beans can now be ordered when they are autowired into
lists and arrays. Both the @Order annotation and Ordered interface are
supported.

	
The @Lazy annotation can now be used on injection points, as well as on @Bean
definitions.

	
The @Description annotation has been introduced for
developers using Java-based configuration.

	
A generalized model for conditionally filtering beans has
been added via the @Conditional annotation. This is similar to @Profile support but
allows for user-defined strategies to be developed programmatically.

	
CGLIB-based proxy classes no longer require a default
constructor. Support is provided via the objenesis
library which is repackaged inline and distributed as part of the Spring Framework.
With this strategy, no constructor at all is being invoked for proxy instances anymore.

	
There is managed time zone support across the framework now, e.g. on LocaleContext.

General Web Improvements

Deployment to Servlet 2.5 servers remains an option, but Spring Framework 4.0 is now
focused primarily on Servlet 3.0+ environments. If you are using the
Spring MVC Test Framework you
will need to ensure that a Servlet 3.0 compatible JAR is in your test classpath.

In addition to the WebSocket support mentioned later, the following general improvements
have been made to Spring’s Web modules:

	
You can use the new @RestController annotation with Spring
MVC applications, removing the need to add @ResponseBody to each of your
@RequestMapping methods.

	
The AsyncRestTemplate class has been added, allowing
non-blocking asynchronous support when developing REST clients.

	
Spring now offers comprehensive timezone support when developing
Spring MVC applications.

WebSocket, SockJS, and STOMP Messaging

A new spring-websocket module provides comprehensive support for WebSocket-based,
two-way communication between client and server in web applications. It is compatible with
JSR-356, the Java WebSocket API, and in addition
provides SockJS-based fallback options (i.e. WebSocket emulation) for use in browsers
that don’t yet support the WebSocket protocol (e.g. Internet Explorer < 10).

A new spring-messaging module adds support for STOMP as the WebSocket sub-protocol
to use in applications along with an annotation programming model for routing and
processing STOMP messages from WebSocket clients. As a result an @Controller
can now contain both @RequestMapping and @MessageMapping methods for handling
HTTP requests and messages from WebSocket-connected clients. The new spring-messaging
module also contains key abstractions formerly from the
Spring Integration project such as
Message, MessageChannel, MessageHandler, and others to serve as a foundation
for messaging-based applications.

For further details, including a more thorough introduction, see the Chapter 26, WebSocket Support section.

Testing Improvements

In addition to pruning of deprecated code within the spring-test module, Spring
Framework 4.0 introduces several new features for use in unit and integration testing.

	
Almost all annotations in the spring-test module (e.g., @ContextConfiguration,
@WebAppConfiguration, @ContextHierarchy, @ActiveProfiles, etc.) can now be used
as meta-annotations to create custom
composed annotations and reduce configuration duplication across a test suite.

	
Active bean definition profiles can now be resolved programmatically, simply by
implementing a custom ActiveProfilesResolver
and registering it via the resolver attribute of @ActiveProfiles.

	
A new SocketUtils class has been introduced in the spring-core module
which enables you to scan for free TCP and UDP server ports on localhost. This
functionality is not specific to testing but can prove very useful when writing
integration tests that require the use of sockets, for example tests that start
an in-memory SMTP server, FTP server, Servlet container, etc.

	
As of Spring 4.0, the set of mocks in the org.springframework.mock.web package is
now based on the Servlet 3.0 API. Furthermore, several of the Servlet API mocks
(e.g., MockHttpServletRequest, MockServletContext, etc.) have been updated with
minor enhancements and improved configurability.

Chapter 4. New Features and Enhancements in Spring Framework 4.1

Version 4.1 included a number of improvements, as described in the following sections:

	
the section called “JMS Improvements”

	
the section called “Caching Improvements”

	
the section called “Web Improvements”

	
the section called “WebSocket Messaging Improvements”

	
the section called “Testing Improvements”

JMS Improvements

Spring 4.1 introduces a much simpler infrastructure to register JMS
listener endpoints by annotating bean methods with
@JmsListener.
The XML namespace has been enhanced to support this new style (jms:annotation-driven),
and it is also possible to fully configure the infrastructure using Java config
(@EnableJms,
JmsListenerContainerFactory). It is also possible to register listener endpoints
programmatically using
JmsListenerConfigurer.

Spring 4.1 also aligns its JMS support to allow you to benefit from the spring-messaging
abstraction introduced in 4.0, that is:

	
Message listener endpoints can have a more flexible signature and benefit from
standard messaging annotations such as @Payload, @Header, @Headers, and @SendTo. It
is also possible to use a standard Message in lieu of javax.jms.Message as method
argument.

	
A new JmsMessageOperations
interface is available and permits JmsTemplate like operations using the Message
abstraction.

Finally, Spring 4.1 provides additional miscellaneous improvements:

	
Synchronous request-reply operations support in JmsTemplate

	
Listener priority can be specified per <jms:listener/> element

	
Recovery options for the message listener container are configurable using a
BackOff implementation

	
JMS 2.0 shared consumers are supported

Caching Improvements

Spring 4.1 supports JCache (JSR-107) annotations using Spring’s
existing cache configuration and infrastructure abstraction; no changes are required
to use the standard annotations.

Spring 4.1 also improves its own caching abstraction significantly:

	
Caches can be resolved at runtime using a
CacheResolver. As a result the
value argument defining the cache name(s) to use is no longer mandatory.

	
More operation-level customizations: cache resolver, cache manager, key
generator

	
A new @CacheConfig class-level annotation allows
common settings to be shared at the class level without enabling any cache operation.

	
Better exception handling of cached methods using CacheErrorHandler

Spring 4.1 also has a breaking change in the Cache interface as a new putIfAbsent
method has been added.

Web Improvements

	
The existing support for resource handling based on the ResourceHttpRequestHandler
has been expanded with new abstractions ResourceResolver, ResourceTransformer,
and ResourceUrlProvider. A number of built-in implementations provide support
for versioned resource URLs (for effective HTTP caching), locating gzipped resources,
generating an HTML 5 AppCache manifests, and more. See the section called “Serving of Resources”.

	
JDK 1.8’s java.util.Optional is now supported for @RequestParam, @RequestHeader,
and @MatrixVariable controller method arguments.

	
ListenableFuture is supported as a return value alternative to DeferredResult
where an underlying service (or perhaps a call to AsyncRestTemplate) already
returns ListenableFuture.

	
@ModelAttribute methods are now invoked in an order that respects inter-dependencies.
See SPR-6299.

	
Jackson’s @JsonView is supported directly on @ResponseBody and ResponseEntity
controller methods for serializing different amounts of detail for the same POJO (e.g.
summary vs. detail page). This is also supported with View-based rendering by
adding the serialization view type as a model attribute under a special key.
See the section called “Jackson Serialization View Support” for details.

	
JSONP is now supported with Jackson. See the section called “Jackson JSONP Support”.

	
A new lifecycle option is available for intercepting @ResponseBody and ResponseEntity
methods just after the controller method returns and before the response is written.
To take advantage declare an @ControllerAdvice bean that implements ResponseBodyAdvice.
The built-in support for @JsonView and JSONP take advantage of this.
See the section called “Intercepting requests with a HandlerInterceptor”.

	
There are three new HttpMessageConverter options:

	
Gson — lighter footprint than Jackson; has already been in use in Spring Android.

	
Google Protocol Buffers — efficient and effective as an inter-service communication
data protocol within an enterprise but can also be exposed as JSON and XML for browsers.

	
Jackson based XML serialization is now supported through the
jackson-dataformat-xml extension.
When using @EnableWebMvc or <mvc:annotation-driven/>, this is used by default
instead of JAXB2 if jackson-dataformat-xml is in the classpath.

	
Views such as JSPs can now build links to controllers by referring to controller mappings
by name. A default name is assigned to every @RequestMapping. For example FooController
with method handleFoo is named "FC#handleFoo". The naming strategy is pluggable.
It is also possible to name an @RequestMapping explicitly through its name attribute.
A new mvcUrl function in the Spring JSP tag library makes this easy to use in JSP pages.
See the section called “Building URIs to Controllers and methods from views”.

	
ResponseEntity provides a builder-style API to guide controller methods
towards the preparation of server-side responses, e.g. ResponseEntity.ok().

	
RequestEntity is a new type that provides a builder-style API to guide client-side REST
code towards the preparation of HTTP requests.

	
MVC Java config and XML namespace:

	
View resolvers can now be configured including support for content
negotiation, see the section called “View Resolvers”.

	
View controllers now have built-in support for redirects and for setting the response
status. An application can use this to configure redirect URLs, render 404 responses
with a view, send "no content" responses, etc.
Some use cases are
listed here.

	
Path matching customizations are frequently used and now built-in.
See the section called “Path Matching”.

	
Groovy markup template
support (based on Groovy 2.3). See the GroovyMarkupConfigurer and respecitve
ViewResolver and `View' implementations.

WebSocket Messaging Improvements

	
SockJS (Java) client-side support. See SockJsClient and classes in same package.

	
New application context events SessionSubscribeEvent and SessionUnsubscribeEvent published
when STOMP clients subscribe and unsubscribe.

	
New "websocket" scope. See the section called “WebSocket Scope”.

	
@SendToUser can target only a single session and does not require an authenticated user.

	
@MessageMapping methods can use dot "." instead of slash "/" as path separator.
See SPR-11660.

	
STOMP/WebSocket monitoring info collected and logged. See the section called “Monitoring”.

	
Significantly optimized and improved logging that should remain very readable
and compact even at DEBUG level.

	
Optimized message creation including support for temporary message mutability
and avoiding automatic message id and timestamp creation. See Javadoc of
MessageHeaderAccessor.

	
Close STOMP/WebSocket connections that have no activity within 60 seconds after the
WebSocket session is established. See SPR-11884.

Testing Improvements

	
Groovy scripts can now be used to configure the ApplicationContext loaded for
integration tests in the TestContext framework.

	
See the section called “Context configuration with Groovy scripts” for details.

	
Test-managed transactions can now be programmatically started and ended within
transactional test methods via the new TestTransaction API.

	
See the section called “Programmatic transaction management” for details.

	
SQL script execution can now be configured declaratively via the new @Sql and
@SqlConfig annotations on a per-class or per-method basis.

	
See the section called “Executing SQL scripts” for details.

	
Test property sources which automatically override system and application property
sources can be configured via the new @TestPropertySource annotation.

	
See the section called “Context configuration with test property sources” for details.

	
Default TestExecutionListeners can now be automatically discovered.

	
See the section called “Automatic discovery of default TestExecutionListeners” for details.

	
Custom TestExecutionListeners can now be automatically merged with the default
listeners.

	
See the section called “Merging TestExecutionListeners” for details.

	
The documentation for transactional testing support in the TestContext framework has
been improved with more thorough explanations and additional examples.

	
See the section called “Transaction management” for details.

	
Various improvements to MockServletContext, MockHttpServletRequest, and other
Servlet API mocks.

	
AssertThrows has been refactored to support Throwable instead of Exception.

	
In Spring MVC Test, JSON responses can be asserted with JSON Assert
as an extra option to using JSONPath much like it has been possible to do for XML with
XMLUnit.

	
MockMvcBuilder recipes can now be created with the help of MockMvcConfigurer. This
was added to make it easy to apply Spring Security setup but can be used to encapsulate
common setup for any 3rd party framework or within a project.

	
MockRestServiceServer now supports the AsyncRestTemplate for client-side testing.

Chapter 5. New Features and Enhancements in Spring Framework 4.2

Version 4.2 included a number of improvements, as described in the following sections:

	
the section called “Core Container Improvements”

	
the section called “Data Access Improvements”

	
the section called “JMS Improvements”

	
the section called “Web Improvements”

	
the section called “WebSocket Messaging Improvements”

	
the section called “Testing Improvements”

Core Container Improvements

	
Annotations such as @Bean get detected and processed on Java 8 default methods as well,
allowing for composing a configuration class from interfaces with default @Bean methods.

	
Configuration classes may declare @Import with regular component classes now, allowing
for a mix of imported configuration classes and component classes.

	
Configuration classes may declare an @Order value, getting processed in a corresponding
order (e.g. for overriding beans by name) even when detected through classpath scanning.

	
@Resource injection points support an @Lazy declaration, analogous to @Autowired,
receiving a lazy-initializing proxy for the requested target bean.

	
The application event infrastructure now offers an annotation-based model as well as the ability to publish any arbitrary event.

	
Any public method in a managed bean can be annotated with @EventListener to consume events.

	
@TransactionalEventListener provides transaction-bound event support.

	
Spring Framework 4.2 introduces first-class support for declaring and
looking up aliases for annotation attributes. The new @AliasFor
annotation can be used to declare a pair of aliased attributes within
a single annotation or to declare an alias from one attribute in a
custom composed annotation to an attribute in a meta-annotation.

	
The following annotations have been retrofitted with @AliasFor support
in order to provide meaningful aliases for their value attributes:
@Cacheable, @CacheEvict, @CachePut, @ComponentScan,
@ComponentScan.Filter, @ImportResource, @Scope, @ManagedResource,
@Header, @Payload, @SendToUser, @ActiveProfiles,
@ContextConfiguration, @Sql, @TestExecutionListeners,
@TestPropertySource, @Transactional, @ControllerAdvice,
@CookieValue, @CrossOrigin, @MatrixVariable, @RequestHeader,
@RequestMapping, @RequestParam, @RequestPart, @ResponseStatus,
@SessionAttributes, @ActionMapping, @RenderMapping,
@EventListener, @TransactionalEventListener.

	
For example, @ContextConfiguration from the spring-test module
is now declared as follows:

public @interface ContextConfiguration {

 @AliasFor("locations")
 String[] value() default {};

 @AliasFor("value")
 String[] locations() default {};

 // ...
}

	
Similarly, composed annotations that override attributes from
meta-annotations can now use @AliasFor for fine-grained control
over exactly which attributes are overridden within an annotation
hierarchy. In fact, it is now possible to declare an alias for the
value attribute of a meta-annotation.

	
For example, one can now develop a composed annotation with a custom
attribute override as follows.

@ContextConfiguration
public @interface MyTestConfig {

 @AliasFor(annotation = ContextConfiguration.class, attribute = "value")
 String[] xmlFiles();

 // ...
}

	
See Spring Annotation Programming Model.

	
Numerous improvements to Spring’s search algorithms used for finding
meta-annotations. For example, locally declared composed annotations
are now favored over inherited annotations.

	
Composed annotations that override attributes from meta-annotations
can now be discovered on interfaces and on abstract, bridge, & interface
methods as well as on classes, standard methods, constructors, and
fields.

	
Maps representing annotation attributes (and AnnotationAttributes instances)
can be synthesized (i.e., converted) into an annotation.

	
The features of field-based data binding (DirectFieldAccessor) have been aligned with the current
property-based data binding (BeanWrapper). In particular, field-based binding now supports
navigation for Collections, Arrays, and Maps.

	
DefaultConversionService now provides out-of-the-box converters for Stream, Charset,
Currency, and TimeZone. Such converters can be added individually to any arbitrary
ConversionService as well.

	
DefaultFormattingConversionService comes with out-of-the-box support for the value types
in JSR-354 Money & Currency (if the 'javax.money' API is present on the classpath): namely,
MonetaryAmount and CurrencyUnit. This includes support for applying @NumberFormat.

	
@NumberFormat can now be used as a meta-annotation.

	
JavaMailSenderImpl has a new testConnection() method for checking connectivity to the server.

	
ScheduledTaskRegistrar exposes scheduled tasks.

	
Apache commons-pool2 is now supported for a pooling AOP CommonsPool2TargetSource.

	
Introduced StandardScriptFactory as a JSR-223 based mechanism for scripted beans,
exposed through the lang:std element in XML. Supports e.g. JavaScript and JRuby.
(Note: JRubyScriptFactory and lang:jruby are deprecated now, in favor of using JSR-223.)

Data Access Improvements

	
javax.transaction.Transactional is now supported via AspectJ.

	
SimpleJdbcCallOperations now supports named binding.

	
Full support for Hibernate ORM 5.0: as a JPA provider (automatically adapted) as well as
through its native API (covered by the new org.springframework.orm.hibernate5 package).

	
Embedded databases can now be automatically assigned unique names, and
<jdbc:embedded-database> supports a new database-name attribute.
See "Testing Improvements" below for further details.

JMS Improvements

	
The autoStartup attribute can be controlled via JmsListenerContainerFactory.

	
The type of the reply Destination can now be configured per listener container.

	
The value of the @SendTo annotation can now use a SpEL expression.

	
The response destination can be computed at runtime using JmsResponse

	
@JmsListener is now a repeatable annotation to declare several JMS containers on the same
method (use the newly introduced @JmsListeners if you’re not using Java8 yet).

Web Improvements

	
HTTP Streaming and Server-Sent Events support, see the section called “HTTP Streaming”.

	
Built-in support for CORS including global (MVC Java config and XML namespace) and
local (e.g. @CrossOrigin) configuration. See Chapter 27, CORS Support for details.

	
HTTP caching updates:

	
new CacheControl builder; plugged into ResponseEntity, WebContentGenerator,
ResourceHttpRequestHandler.

	
improved ETag/Last-Modified support in WebRequest.

	
Custom mapping annotations, using @RequestMapping as a meta-annotation.

	
Public methods in AbstractHandlerMethodMapping to register and unregister request
mappings at runtime.

	
Protected createDispatcherServlet method in AbstractDispatcherServletInitializer to
further customize the DispatcherServlet instance to use.

	
HandlerMethod as a method argument on @ExceptionHandler methods, especially
handy in @ControllerAdvice components.

	
java.util.concurrent.CompletableFuture as an @Controller method return value type.

	
Byte-range request support in HttpHeaders and for serving static resources.

	
@ResponseStatus detected on nested exceptions.

	
UriTemplateHandler extension point in the RestTemplate.

	
DefaultUriTemplateHandler exposes baseUrl property and path segment encoding options.

	
the extension point can also be used to plug in any URI template library.

	
OkHTTP integration with the RestTemplate.

	
Custom baseUrl alternative for methods in MvcUriComponentsBuilder.

	
Serialization/deserialization exception messages are now logged at WARN level.

	
Default JSON prefix has been changed from "{} && " to the safer ")]}', " one.

	
New RequestBodyAdvice extension point and built-in implementation to support Jackson’s
@JsonView on @RequestBody method arguments.

	
When using GSON or Jackson 2.6+, the handler method return type is used to improve
serialization of parameterized types like List<Foo>.

	
Introduced ScriptTemplateView as a JSR-223 based mechanism for scripted web views,
with a focus on JavaScript view templating on Nashorn (JDK 8).

WebSocket Messaging Improvements

	
Expose presence information about connected users and subscriptions:

	
new SimpUserRegistry exposed as a bean named "userRegistry".

	
sharing of presence information across cluster of servers (see broker relay config options).

	
Resolve user destinations across cluster of servers (see broker relay config options).

	
StompSubProtocolErrorHandler extension point to customize and control STOMP ERROR frames to clients.

	
Global @MessageExceptionHandler methods via @ControllerAdvice components.

	
Heart-beats and a SpEL expression 'selector' header for subscriptions with SimpleBrokerMessageHandler.

	
STOMP client for use over TCP and WebSocket; see the section called “STOMP Client”.

	
@SendTo and @SendToUser can contain destination variable placeholders.

	
Jackson’s @JsonView supported for return values on @MessageMapping and @SubscribeMapping methods.

	
ListenableFuture and CompletableFuture as return value types from
@MessageMapping and @SubscribeMapping methods.

	
MarshallingMessageConverter for XML payloads.

Testing Improvements

	
JUnit-based integration tests can now be executed with JUnit rules instead of the
SpringJUnit4ClassRunner. This allows Spring-based integration tests to be run with
alternative runners like JUnit’s Parameterized or third-party runners such as the
MockitoJUnitRunner.

	
See the section called “Spring JUnit 4 Rules” for details.

	
The Spring MVC Test framework now provides first-class support for HtmlUnit,
including integration with Selenium’s WebDriver, allowing for page-based
web application testing without the need to deploy to a Servlet container.

	
See the section called “HtmlUnit Integration” for details.

	
AopTestUtils is a new testing utility that allows developers to
obtain a reference to the underlying target object hidden behind one
or more Spring proxies.

	
See the section called “General testing utilities” for details.

	
ReflectionTestUtils now supports setting and getting static fields,
including constants.

	
The original ordering of bean definition profiles declared via
@ActiveProfiles is now retained in order to support use cases such
as Spring Boot’s ConfigFileApplicationListener which loads
configuration files based on the names of active profiles.

	
@DirtiesContext supports new BEFORE_METHOD, BEFORE_CLASS, and
BEFORE_EACH_TEST_METHOD modes for closing the ApplicationContext
before a test — for example, if some rogue (i.e., yet to be
determined) test within a large test suite has corrupted the original
configuration for the ApplicationContext.

	
@Commit is a new annotation that may be used as a direct replacement for
@Rollback(false).

	
@Rollback may now be used to configure class-level default rollback semantics.

	
Consequently, @TransactionConfiguration is now deprecated and will be removed in a
subsequent release.

	
@Sql now supports execution of inlined SQL statements via a new
statements attribute.

	
The ContextCache that is used for caching ApplicationContexts
between tests is now a public API with a default implementation that
can be replaced for custom caching needs.

	
DefaultTestContext, DefaultBootstrapContext, and
DefaultCacheAwareContextLoaderDelegate are now public classes in the
support subpackage, allowing for custom extensions.

	
TestContextBootstrappers are now responsible for building the
TestContext.

	
In the Spring MVC Test framework, MvcResult details can now be logged
at DEBUG level or written to a custom OutputStream or Writer. See
the new log(), print(OutputStream), and print(Writer) methods in
MockMvcResultHandlers for details.

	
The JDBC XML namespace supports a new database-name attribute in
<jdbc:embedded-database>, allowing developers to set unique names
for embedded databases –- for example, via a SpEL expression or a
property placeholder that is influenced by the current active bean
definition profiles.

	
Embedded databases can now be automatically assigned a unique name,
allowing common test database configuration to be reused in different
ApplicationContexts within a test suite.

	
See the section called “Generating unique names for embedded databases” for details.

	
MockHttpServletRequest and MockHttpServletResponse now provide better
support for date header formatting via the getDateHeader and setDateHeader
methods.

Chapter 6. New Features and Enhancements in Spring Framework 4.3

Version 4.3 included a number of improvements, as described in the following sections:

	
the section called “Core Container Improvements”

	
the section called “Data Access Improvements”

	
the section called “Caching Improvements”

	
the section called “JMS Improvements”

	
the section called “Web Improvements”

	
the section called “WebSocket Messaging Improvements”

	
the section called “Testing Improvements”

	
the section called “Support for new library and server generations”

Core Container Improvements

	
Core container exceptions provide richer metadata to evaluate programmatically.

	
Java 8 default methods get detected as bean property getters/setters.

	
Lazy candidate beans are not being created in case of injecting a primary bean.

	
It is no longer necessary to specify the @Autowired annotation if the target
bean only defines one constructor.

	
@Configuration classes support constructor injection.

	
Any SpEL expression used to specify the condition of an @EventListener can
now refer to beans (e.g. @beanName.method()).

	
Composed annotations can now override array attributes in meta-annotations
with a single element of the component type of the array. For example, the
String[] path attribute of @RequestMapping can be overridden with
String path in a composed annotation.

	
@PersistenceContext/@PersistenceUnit selects a primary EntityManagerFactory
bean if declared as such.

	
@Scheduled and @Schedules may now be used as meta-annotations to create
custom composed annotations with attribute overrides.

	
@Scheduled is properly supported on beans of any scope.

Data Access Improvements

	
jdbc:initialize-database and jdbc:embedded-database support a configurable
separator to be applied to each script.

Caching Improvements

Spring 4.3 allows concurrent calls on a given key to be synchronized so that the
value is only computed once. This is an opt-in feature that should be enabled via
the new sync attribute on @Cacheable. This features introduces a breaking
change in the Cache interface as a get(Object key, Callable<T> valueLoader)
method has been added.

Spring 4.3 also improves the caching abstraction as follows:

	
SpEL expressions in caches-related annotations can now refer to beans (i.e.
@beanName.method()).

	
ConcurrentMapCacheManager and ConcurrentMapCache now support the serialization
of cache entries via a new storeByValue attribute.

	
@Cacheable, @CacheEvict, @CachePut, and @Caching may now be used as
meta-annotations to create custom composed annotations with attribute overrides.

JMS Improvements

	
@SendTo can now be specified at the class level to share a common reply destination.

	
@JmsListener and @JmsListeners may now be used as meta-annotations to create
custom composed annotations with attribute overrides.

Web Improvements

	
Built-in support for HTTP HEAD and HTTP OPTIONS.

	
New @GetMapping, @PostMapping, @PutMapping, @DeleteMapping, and @PatchMapping
composed annotations for @RequestMapping.

	
See Composed @RequestMapping Variants for details.

	
New @RequestScope, @SessionScope, and @ApplicationScope composed annotations
for web scopes.

	
See Request scope,
Session scope, and
Application scope for details.

	
New @RestControllerAdvice annotation with combined @ControllerAdvice with @ResponseBody semantics.

	
@ResponseStatus is now supported at the class level and inherited by all methods.

	
New @SessionAttribute annotation for access to session attributes (see example).

	
New @RequestAttribute annotation for access to request attributes (see example).

	
@ModelAttribute allows preventing data binding via binding=false attribute (see reference).

	
@PathVariable may be declared as optional (for use on @ModelAttribute methods).

	
Consistent exposure of Errors and custom Throwables to MVC exception handlers.

	
Consistent charset handling in HTTP message converters, including a UTF-8 default for multipart text content.

	
Static resource handling uses the configured ContentNegotiationManager for media type determination.

	
RestTemplate and AsyncRestTemplate support strict URI variable encoding via DefaultUriTemplateHandler.

	
AsyncRestTemplate supports request interception.

WebSocket Messaging Improvements

	
@SendTo and @SendToUser can now be specified at class-level to share a common destination.

Testing Improvements

	
The JUnit support in the Spring TestContext Framework now requires JUnit 4.12 or higher.

	
New SpringRunner alias for the SpringJUnit4ClassRunner.

	
Test related annotations may now be declared on interfaces — for example, for use with
test interfaces that make use of Java 8 based interface default methods.

	
An empty declaration of @ContextConfiguration can now be completely omitted if default
XML files, Groovy scripts, or @Configuration classes are detected.

	
@Transactional test methods are no longer required to be public (e.g., in TestNG and JUnit 5).

	
@BeforeTransaction and @AfterTransaction methods are no longer required to be public
and may now be declared on Java 8 based interface default methods.

	
The ApplicationContext cache in the Spring TestContext Framework is now bounded with a
default maximum size of 32 and a least recently used eviction policy. The maximum size
can be configured by setting a JVM system property or Spring property called
spring.test.context.cache.maxSize.

	
New ContextCustomizer API for customizing a test ApplicationContext after bean
definitions have been loaded into the context but before the context has been refreshed.
Customizers can be registered globally by third parties, foregoing the need to implement a
custom ContextLoader.

	
@Sql and @SqlGroup may now be used as meta-annotations to create custom composed
annotations with attribute overrides.

	
ReflectionTestUtils now automatically unwraps proxies when setting or getting a field.

	
Server-side Spring MVC Test supports expectations on response headers with multiple values.

	
Server-side Spring MVC Test parses form data request content and populates request parameters.

	
Server-side Spring MVC Test supports mock-like assertions for invoked handler methods.

	
Client-side REST test support allows indicating how many times a request is expected and
whether the order of declaration for expectations should be ignored (see the section called “Client-Side REST Tests”).

	
Client-side REST Test supports expectations for form data in the request body.

Support for new library and server generations

	
Hibernate ORM 5.2 (still supporting 4.2/4.3 and 5.0/5.1 as well, with 3.6 deprecated now)

	
Hibernate Validator 5.3 (minimum remains at 4.3)

	
Jackson 2.8 (minimum raised to Jackson 2.6+ as of Spring 4.3)

	
OkHttp 3.x (still supporting OkHttp 2.x side by side)

	
Tomcat 8.5 as well as 9.0 milestones

	
Netty 4.1

	
Undertow 1.4

	
WildFly 10.1

Furthermore, Spring Framework 4.3 embeds the updated ASM 5.1, CGLIB 3.2.4, and Objenesis 2.4
in spring-core.jar.

Part III. Core Technologies

This part of the reference documentation covers all of those technologies that are
absolutely integral to the Spring Framework.

Foremost amongst these is the Spring Framework’s Inversion of Control (IoC) container. A
thorough treatment of the Spring Framework’s IoC container is closely followed by
comprehensive coverage of Spring’s Aspect-Oriented Programming (AOP) technologies. The
Spring Framework has its own AOP framework, which is conceptually easy to understand,
and which successfully addresses the 80% sweet spot of AOP requirements in Java
enterprise programming.

Coverage of Spring’s integration with AspectJ (currently the richest - in terms of
features - and certainly most mature AOP implementation in the Java enterprise space) is
also provided.

	
Chapter 7, The IoC container

	
Chapter 8, Resources

	
Chapter 9, Validation, Data Binding, and Type Conversion

	
Chapter 10, Spring Expression Language (SpEL)

	
Chapter 11, Aspect Oriented Programming with Spring

	
Chapter 12, Spring AOP APIs

Chapter 7. The IoC container

Introduction to the Spring IoC container and beans

This chapter covers the Spring Framework implementation of the Inversion of Control
(IoC) [1] principle. IoC
is also known as dependency injection (DI). It is a process whereby objects define
their dependencies, that is, the other objects they work with, only through constructor
arguments, arguments to a factory method, or properties that are set on the object
instance after it is constructed or returned from a factory method. The container then
injects those dependencies when it creates the bean. This process is fundamentally
the inverse, hence the name Inversion of Control (IoC), of the bean itself
controlling the instantiation or location of its dependencies by using direct
construction of classes, or a mechanism such as the Service Locator pattern.

The org.springframework.beans and org.springframework.context packages are the basis
for Spring Framework’s IoC container. The
BeanFactory
interface provides an advanced configuration mechanism capable of managing any type of
object.
ApplicationContext
is a sub-interface of BeanFactory. It adds easier integration with Spring’s AOP
features; message resource handling (for use in internationalization), event
publication; and application-layer specific contexts such as the WebApplicationContext
for use in web applications.

In short, the BeanFactory provides the configuration framework and basic
functionality, and the ApplicationContext adds more enterprise-specific functionality.
The ApplicationContext is a complete superset of the BeanFactory, and is used
exclusively in this chapter in descriptions of Spring’s IoC container. For more
information on using the BeanFactory instead of the ApplicationContext, refer to
the section called “The BeanFactory”.

In Spring, the objects that form the backbone of your application and that are managed
by the Spring IoC container are called beans. A bean is an object that is
instantiated, assembled, and otherwise managed by a Spring IoC container. Otherwise, a
bean is simply one of many objects in your application. Beans, and the dependencies
among them, are reflected in the configuration metadata used by a container.

[1] See Background

Container overview

The interface org.springframework.context.ApplicationContext represents the Spring IoC
container and is responsible for instantiating, configuring, and assembling the
aforementioned beans. The container gets its instructions on what objects to
instantiate, configure, and assemble by reading configuration metadata. The
configuration metadata is represented in XML, Java annotations, or Java code. It allows
you to express the objects that compose your application and the rich interdependencies
between such objects.

Several implementations of the ApplicationContext interface are supplied
out-of-the-box with Spring. In standalone applications it is common to create an
instance of
ClassPathXmlApplicationContext
or FileSystemXmlApplicationContext.
 While XML has been the traditional format for defining configuration metadata you can
instruct the container to use Java annotations or code as the metadata format by
providing a small amount of XML configuration to declaratively enable support for these
additional metadata formats.

In most application scenarios, explicit user code is not required to instantiate one or
more instances of a Spring IoC container. For example, in a web application scenario, a
simple eight (or so) lines of boilerplate web descriptor XML in the web.xml file
of the application will typically suffice (see the section called “Convenient ApplicationContext instantiation for web applications”). If you are using the
Spring Tool Suite Eclipse-powered development
environment this boilerplate configuration can be easily created with few mouse clicks or
keystrokes.

The following diagram is a high-level view of how Spring works. Your application classes
are combined with configuration metadata so that after the ApplicationContext is
created and initialized, you have a fully configured and executable system or
application.

Figure 7.1. The Spring IoC container

[image: container magic]

Configuration metadata

As the preceding diagram shows, the Spring IoC container consumes a form of
configuration metadata; this configuration metadata represents how you as an
application developer tell the Spring container to instantiate, configure, and assemble
the objects in your application.

Configuration metadata is traditionally supplied in a simple and intuitive XML format,
which is what most of this chapter uses to convey key concepts and features of the
Spring IoC container.

	[image: [Note]]	Note
	
XML-based metadata is not the only allowed form of configuration metadata. The
Spring IoC container itself is totally decoupled from the format in which this
configuration metadata is actually written. These days many developers choose
Java-based configuration for their Spring applications.

For information about using other forms of metadata with the Spring container, see:

	
Annotation-based configuration: Spring 2.5 introduced
support for annotation-based configuration metadata.

	
Java-based configuration: Starting with Spring 3.0, many features
provided by the Spring JavaConfig project became part of the core Spring Framework.
Thus you can define beans external to your application classes by using Java rather
than XML files. To use these new features, see the @Configuration, @Bean, @Import
and @DependsOn annotations.

Spring configuration consists of at least one and typically more than one bean
definition that the container must manage. XML-based configuration metadata shows these
beans configured as <bean/> elements inside a top-level <beans/> element. Java
configuration typically uses @Bean annotated methods within a @Configuration class.

These bean definitions correspond to the actual objects that make up your application.
Typically you define service layer objects, data access objects (DAOs), presentation
objects such as Struts Action instances, infrastructure objects such as Hibernate
SessionFactories, JMS Queues, and so forth. Typically one does not configure
fine-grained domain objects in the container, because it is usually the responsibility
of DAOs and business logic to create and load domain objects. However, you can use
Spring’s integration with AspectJ to configure objects that have been created outside
the control of an IoC container. See Using AspectJ to
dependency-inject domain objects with Spring.

The following example shows the basic structure of XML-based configuration metadata:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean id="..." class="...">
 <!-- collaborators and configuration for this bean go here -->
 </bean>

 <bean id="..." class="...">
 <!-- collaborators and configuration for this bean go here -->
 </bean>

 <!-- more bean definitions go here -->

</beans>

The id attribute is a string that you use to identify the individual bean definition.
The class attribute defines the type of the bean and uses the fully qualified
classname. The value of the id attribute refers to collaborating objects. The XML for
referring to collaborating objects is not shown in this example; see
Dependencies for more information.

Instantiating a container

Instantiating a Spring IoC container is straightforward. The location path or paths
supplied to an ApplicationContext constructor are actually resource strings that allow
the container to load configuration metadata from a variety of external resources such
as the local file system, from the Java CLASSPATH, and so on.

ApplicationContext context = new ClassPathXmlApplicationContext("services.xml", "daos.xml");

	[image: [Note]]	Note
	
After you learn about Spring’s IoC container, you may want to know more about Spring’s
Resource abstraction, as described in Chapter 8, Resources, which provides a convenient
mechanism for reading an InputStream from locations defined in a URI syntax. In
particular, Resource paths are used to construct applications contexts as described in
the section called “Application contexts and Resource paths”.

The following example shows the service layer objects (services.xml) configuration file:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <!-- services -->

 <bean id="petStore" class="org.springframework.samples.jpetstore.services.PetStoreServiceImpl">
 <property name="accountDao" ref="accountDao"/>
 <property name="itemDao" ref="itemDao"/>
 <!-- additional collaborators and configuration for this bean go here -->
 </bean>

 <!-- more bean definitions for services go here -->

</beans>

The following example shows the data access objects daos.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean id="accountDao"
 class="org.springframework.samples.jpetstore.dao.jpa.JpaAccountDao">
 <!-- additional collaborators and configuration for this bean go here -->
 </bean>

 <bean id="itemDao" class="org.springframework.samples.jpetstore.dao.jpa.JpaItemDao">
 <!-- additional collaborators and configuration for this bean go here -->
 </bean>

 <!-- more bean definitions for data access objects go here -->

</beans>

In the preceding example, the service layer consists of the class PetStoreServiceImpl,
and two data access objects of the type JpaAccountDao and JpaItemDao (based
on the JPA Object/Relational mapping standard). The property name element refers to the
name of the JavaBean property, and the ref element refers to the name of another bean
definition. This linkage between id and ref elements expresses the dependency between
collaborating objects. For details of configuring an object’s dependencies, see
Dependencies.

Composing XML-based configuration metadata

It can be useful to have bean definitions span multiple XML files. Often each individual
XML configuration file represents a logical layer or module in your architecture.

You can use the application context constructor to load bean definitions from all these
XML fragments. This constructor takes multiple Resource locations, as was shown in the
previous section. Alternatively, use one or more occurrences of the <import/> element
to load bean definitions from another file or files. For example:

<beans>
 <import resource="services.xml"/>
 <import resource="resources/messageSource.xml"/>
 <import resource="/resources/themeSource.xml"/>

 <bean id="bean1" class="..."/>
 <bean id="bean2" class="..."/>
</beans>

In the preceding example, external bean definitions are loaded from three files:
services.xml, messageSource.xml, and themeSource.xml. All location paths are
relative to the definition file doing the importing, so services.xml must be in the
same directory or classpath location as the file doing the importing, while
messageSource.xml and themeSource.xml must be in a resources location below the
location of the importing file. As you can see, a leading slash is ignored, but given
that these paths are relative, it is better form not to use the slash at all. The
contents of the files being imported, including the top level <beans/> element, must
be valid XML bean definitions according to the Spring Schema.

	[image: [Note]]	Note
	
It is possible, but not recommended, to reference files in parent directories using a
relative "../" path. Doing so creates a dependency on a file that is outside the current
application. In particular, this reference is not recommended for "classpath:" URLs (for
example, "classpath:../services.xml"), where the runtime resolution process chooses the
"nearest" classpath root and then looks into its parent directory. Classpath
configuration changes may lead to the choice of a different, incorrect directory.

You can always use fully qualified resource locations instead of relative paths: for
example, "file:C:/config/services.xml" or "classpath:/config/services.xml". However, be
aware that you are coupling your application’s configuration to specific absolute
locations. It is generally preferable to keep an indirection for such absolute
locations, for example, through "${…​}" placeholders that are resolved against JVM
system properties at runtime.

The import directive is a feature provided by the beans namespace itself. Further
configuration features beyond plain bean definitions are available in a selection
of XML namespaces provided by Spring, e.g. the "context" and the "util" namespace.

The Groovy Bean Definition DSL

As a further example for externalized configuration metadata, bean definitions can also
be expressed in Spring’s Groovy Bean Definition DSL, as known from the Grails framework.
Typically, such configuration will live in a ".groovy" file with a structure as follows:

beans {
 dataSource(BasicDataSource) {
 driverClassName = "org.hsqldb.jdbcDriver"
 url = "jdbc:hsqldb:mem:grailsDB"
 username = "sa"
 password = ""
 settings = [mynew:"setting"]
 }
 sessionFactory(SessionFactory) {
 dataSource = dataSource
 }
 myService(MyService) {
 nestedBean = { AnotherBean bean ->
 dataSource = dataSource
 }
 }
}

This configuration style is largely equivalent to XML bean definitions and even
supports Spring’s XML configuration namespaces. It also allows for importing XML
bean definition files through an "importBeans" directive.

Using the container

The ApplicationContext is the interface for an advanced factory capable of maintaining
a registry of different beans and their dependencies. Using the method T getBean(String
name, Class<T> requiredType) you can retrieve instances of your beans.

The ApplicationContext enables you to read bean definitions and access them as follows:

// create and configure beans
ApplicationContext context = new ClassPathXmlApplicationContext("services.xml", "daos.xml");

// retrieve configured instance
PetStoreService service = context.getBean("petStore", PetStoreService.class);

// use configured instance
List<String> userList = service.getUsernameList();

With Groovy configuration, bootstrapping looks very similar, just a different context
implementation class which is Groovy-aware (but also understands XML bean definitions):

ApplicationContext context = new GenericGroovyApplicationContext("services.groovy", "daos.groovy");

The most flexible variant is GenericApplicationContext in combination with reader
delegates, e.g. with XmlBeanDefinitionReader for XML files:

GenericApplicationContext context = new GenericApplicationContext();
new XmlBeanDefinitionReader(context).loadBeanDefinitions("services.xml", "daos.xml");
context.refresh();

Or with GroovyBeanDefinitionReader for Groovy files:

GenericApplicationContext context = new GenericApplicationContext();
new GroovyBeanDefinitionReader(context).loadBeanDefinitions("services.groovy", "daos.groovy");
context.refresh();

Such reader delegates can be mixed and matched on the same ApplicationContext,
reading bean definitions from diverse configuration sources, if desired.

You can then use getBean to retrieve instances of your beans. The ApplicationContext
interface has a few other methods for retrieving beans, but ideally your application
code should never use them. Indeed, your application code should have no calls to the
getBean() method at all, and thus no dependency on Spring APIs at all. For example,
Spring’s integration with web frameworks provides dependency injection for various web
framework components such as controllers and JSF-managed beans, allowing you to declare
a dependency on a specific bean through metadata (e.g. an autowiring annotation).

Bean overview

A Spring IoC container manages one or more beans. These beans are created with the
configuration metadata that you supply to the container, for example, in the form of XML
<bean/> definitions.

Within the container itself, these bean definitions are represented as BeanDefinition
objects, which contain (among other information) the following metadata:

	
A package-qualified class name: typically the actual implementation class of the
bean being defined.

	
Bean behavioral configuration elements, which state how the bean should behave in the
container (scope, lifecycle callbacks, and so forth).

	
References to other beans that are needed for the bean to do its work; these
references are also called collaborators or dependencies.

	
Other configuration settings to set in the newly created object, for example, the
number of connections to use in a bean that manages a connection pool, or the size
limit of the pool.

This metadata translates to a set of properties that make up each bean definition.

Table 7.1. The bean definition

	Property	Explained in…​
	class
	the section called “Instantiating beans”

	name
	the section called “Naming beans”

	scope
	the section called “Bean scopes”

	constructor arguments
	the section called “Dependency Injection”

	properties
	the section called “Dependency Injection”

	autowiring mode
	the section called “Autowiring collaborators”

	lazy-initialization mode
	the section called “Lazy-initialized beans”

	initialization method
	the section called “Initialization callbacks”

	destruction method
	the section called “Destruction callbacks”

In addition to bean definitions that contain information on how to create a specific
bean, the ApplicationContext implementations also permit the registration of existing
objects that are created outside the container, by users. This is done by accessing the
ApplicationContext’s BeanFactory via the method getBeanFactory() which returns the
BeanFactory implementation DefaultListableBeanFactory. DefaultListableBeanFactory
supports this registration through the methods registerSingleton(..) and
registerBeanDefinition(..). However, typical applications work solely with beans
defined through metadata bean definitions.

	[image: [Note]]	Note
	
Bean metadata and manually supplied singleton instances need to be registered as early
as possible, in order for the container to properly reason about them during autowiring
and other introspection steps. While overriding of existing metadata and existing
singleton instances is supported to some degree, the registration of new beans at
runtime (concurrently with live access to factory) is not officially supported and may
lead to concurrent access exceptions and/or inconsistent state in the bean container.

Naming beans

Every bean has one or more identifiers. These identifiers must be unique within the
container that hosts the bean. A bean usually has only one identifier, but if it
requires more than one, the extra ones can be considered aliases.

In XML-based configuration metadata, you use the id and/or name attributes
to specify the bean identifier(s). The id attribute allows you to specify
exactly one id. Conventionally these names are alphanumeric ('myBean',
'fooService', etc.), but may contain special characters as well. If you want to
introduce other aliases to the bean, you can also specify them in the name
attribute, separated by a comma (,), semicolon (;), or white space. As a
historical note, in versions prior to Spring 3.1, the id attribute was
defined as an xsd:ID type, which constrained possible characters. As of 3.1,
it is defined as an xsd:string type. Note that bean id uniqueness is still
enforced by the container, though no longer by XML parsers.

You are not required to supply a name or id for a bean. If no name or id is supplied
explicitly, the container generates a unique name for that bean. However, if you want to
refer to that bean by name, through the use of the ref element or
Service Locator style lookup, you must provide a name.
Motivations for not supplying a name are related to using inner
beans and autowiring collaborators.

Bean Naming Conventions

The convention is to use the standard Java convention for instance field names when
naming beans. That is, bean names start with a lowercase letter, and are camel-cased
from then on. Examples of such names would be (without quotes) 'accountManager',
'accountService', 'userDao', 'loginController', and so forth.

Naming beans consistently makes your configuration easier to read and understand, and if
you are using Spring AOP it helps a lot when applying advice to a set of beans related
by name.

	[image: [Note]]	Note
	
With component scanning in the classpath, Spring generates bean names for unnamed
components, following the rules above: essentially, taking the simple class name
and turning its initial character to lower-case. However, in the (unusual) special
case when there is more than one character and both the first and second characters
are upper case, the original casing gets preserved. These are the same rules as
defined by java.beans.Introspector.decapitalize (which Spring is using here).

Aliasing a bean outside the bean definition

In a bean definition itself, you can supply more than one name for the bean, by using a
combination of up to one name specified by the id attribute, and any number of other
names in the name attribute. These names can be equivalent aliases to the same bean,
and are useful for some situations, such as allowing each component in an application to
refer to a common dependency by using a bean name that is specific to that component
itself.

Specifying all aliases where the bean is actually defined is not always adequate,
however. It is sometimes desirable to introduce an alias for a bean that is defined
elsewhere. This is commonly the case in large systems where configuration is split
amongst each subsystem, each subsystem having its own set of object definitions. In
XML-based configuration metadata, you can use the <alias/> element to accomplish this.

<alias name="fromName" alias="toName"/>

In this case, a bean in the same container which is named fromName, may also,
after the use of this alias definition, be referred to as toName.

For example, the configuration metadata for subsystem A may refer to a DataSource via
the name subsystemA-dataSource. The configuration metadata for subsystem B may refer to
a DataSource via the name subsystemB-dataSource. When composing the main application
that uses both these subsystems the main application refers to the DataSource via the
name myApp-dataSource. To have all three names refer to the same object you add to the
MyApp configuration metadata the following aliases definitions:

<alias name="subsystemA-dataSource" alias="subsystemB-dataSource"/>
<alias name="subsystemA-dataSource" alias="myApp-dataSource" />

Now each component and the main application can refer to the dataSource through a name
that is unique and guaranteed not to clash with any other definition (effectively
creating a namespace), yet they refer to the same bean.

Java-configuration

If you are using Java-configuration, the @Bean annotation can be used to provide aliases
see the section called “Using the @Bean annotation” for details.

Instantiating beans

A bean definition essentially is a recipe for creating one or more objects. The
container looks at the recipe for a named bean when asked, and uses the configuration
metadata encapsulated by that bean definition to create (or acquire) an actual object.

If you use XML-based configuration metadata, you specify the type (or class) of object
that is to be instantiated in the class attribute of the <bean/> element. This
class attribute, which internally is a Class property on a BeanDefinition
instance, is usually mandatory. (For exceptions, see
the section called “Instantiation using an instance factory method” and the section called “Bean definition inheritance”.)
You use the Class property in one of two ways:

	
Typically, to specify the bean class to be constructed in the case where the container
itself directly creates the bean by calling its constructor reflectively, somewhat
equivalent to Java code using the new operator.

	
To specify the actual class containing the static factory method that will be
invoked to create the object, in the less common case where the container invokes a
static factory method on a class to create the bean. The object type returned
from the invocation of the static factory method may be the same class or another
class entirely.

Inner class names.
If you want to configure a bean definition for a static nested class, you have to use
the binary name of the nested class.

For example, if you have a class called Foo in the com.example package, and this
Foo class has a static nested class called Bar, the value of the 'class'
attribute on a bean definition would be…​

com.example.Foo$Bar

Notice the use of the $ character in the name to separate the nested class name from
the outer class name.

Instantiation with a constructor

When you create a bean by the constructor approach, all normal classes are usable by and
compatible with Spring. That is, the class being developed does not need to implement
any specific interfaces or to be coded in a specific fashion. Simply specifying the bean
class should suffice. However, depending on what type of IoC you use for that specific
bean, you may need a default (empty) constructor.

The Spring IoC container can manage virtually any class you want it to manage; it is
not limited to managing true JavaBeans. Most Spring users prefer actual JavaBeans with
only a default (no-argument) constructor and appropriate setters and getters modeled
after the properties in the container. You can also have more exotic non-bean-style
classes in your container. If, for example, you need to use a legacy connection pool
that absolutely does not adhere to the JavaBean specification, Spring can manage it as
well.

With XML-based configuration metadata you can specify your bean class as follows:

<bean id="exampleBean" class="examples.ExampleBean"/>

<bean name="anotherExample" class="examples.ExampleBeanTwo"/>

For details about the mechanism for supplying arguments to the constructor (if required)
and setting object instance properties after the object is constructed, see
Injecting Dependencies.

Instantiation with a static factory method

When defining a bean that you create with a static factory method, you use the class
attribute to specify the class containing the static factory method and an attribute
named factory-method to specify the name of the factory method itself. You should be
able to call this method (with optional arguments as described later) and return a live
object, which subsequently is treated as if it had been created through a constructor.
One use for such a bean definition is to call static factories in legacy code.

The following bean definition specifies that the bean will be created by calling a
factory-method. The definition does not specify the type (class) of the returned object,
only the class containing the factory method. In this example, the createInstance()
method must be a static method.

<bean id="clientService"
 class="examples.ClientService"
 factory-method="createInstance"/>

public class ClientService {
 private static ClientService clientService = new ClientService();
 private ClientService() {}

 public static ClientService createInstance() {
 return clientService;
 }
}

For details about the mechanism for supplying (optional) arguments to the factory method
and setting object instance properties after the object is returned from the factory,
see Dependencies and configuration in detail.

Instantiation using an instance factory method

Similar to instantiation through a static
factory method, instantiation with an instance factory method invokes a non-static
method of an existing bean from the container to create a new bean. To use this
mechanism, leave the class attribute empty, and in the factory-bean attribute,
specify the name of a bean in the current (or parent/ancestor) container that contains
the instance method that is to be invoked to create the object. Set the name of the
factory method itself with the factory-method attribute.

<!-- the factory bean, which contains a method called createInstance() -->
<bean id="serviceLocator" class="examples.DefaultServiceLocator">
 <!-- inject any dependencies required by this locator bean -->
</bean>

<!-- the bean to be created via the factory bean -->
<bean id="clientService"
 factory-bean="serviceLocator"
 factory-method="createClientServiceInstance"/>

public class DefaultServiceLocator {

 private static ClientService clientService = new ClientServiceImpl();

 public ClientService createClientServiceInstance() {
 return clientService;
 }
}

One factory class can also hold more than one factory method as shown here:

<bean id="serviceLocator" class="examples.DefaultServiceLocator">
 <!-- inject any dependencies required by this locator bean -->
</bean>

<bean id="clientService"
 factory-bean="serviceLocator"
 factory-method="createClientServiceInstance"/>

<bean id="accountService"
 factory-bean="serviceLocator"
 factory-method="createAccountServiceInstance"/>

public class DefaultServiceLocator {

 private static ClientService clientService = new ClientServiceImpl();

 private static AccountService accountService = new AccountServiceImpl();

 public ClientService createClientServiceInstance() {
 return clientService;
 }

 public AccountService createAccountServiceInstance() {
 return accountService;
 }
}

This approach shows that the factory bean itself can be managed and configured through
dependency injection (DI). See Dependencies and
configuration in detail.

	[image: [Note]]	Note
	
In Spring documentation, factory bean refers to a bean that is configured in the
Spring container that will create objects through an
instance or
static factory method. By contrast,
FactoryBean (notice the capitalization) refers to a Spring-specific
FactoryBean.

Dependencies

A typical enterprise application does not consist of a single object (or bean in the
Spring parlance). Even the simplest application has a few objects that work together to
present what the end-user sees as a coherent application. This next section explains how
you go from defining a number of bean definitions that stand alone to a fully realized
application where objects collaborate to achieve a goal.

Dependency Injection

Dependency injection (DI) is a process whereby objects define their dependencies,
that is, the other objects they work with, only through constructor arguments, arguments
to a factory method, or properties that are set on the object instance after it is
constructed or returned from a factory method. The container then injects those
dependencies when it creates the bean. This process is fundamentally the inverse, hence
the name Inversion of Control (IoC), of the bean itself controlling the instantiation
or location of its dependencies on its own by using direct construction of classes, or
the Service Locator pattern.

Code is cleaner with the DI principle and decoupling is more effective when objects are
provided with their dependencies. The object does not look up its dependencies, and does
not know the location or class of the dependencies. As such, your classes become easier
to test, in particular when the dependencies are on interfaces or abstract base classes,
which allow for stub or mock implementations to be used in unit tests.

DI exists in two major variants, Constructor-based
dependency injection and Setter-based dependency injection.

Constructor-based dependency injection

Constructor-based DI is accomplished by the container invoking a constructor with a
number of arguments, each representing a dependency. Calling a static factory method
with specific arguments to construct the bean is nearly equivalent, and this discussion
treats arguments to a constructor and to a static factory method similarly. The
following example shows a class that can only be dependency-injected with constructor
injection. Notice that there is nothing special about this class, it is a POJO that
has no dependencies on container specific interfaces, base classes or annotations.

public class SimpleMovieLister {

 // the SimpleMovieLister has a dependency on a MovieFinder
 private MovieFinder movieFinder;

 // a constructor so that the Spring container can inject a MovieFinder
 public SimpleMovieLister(MovieFinder movieFinder) {
 this.movieFinder = movieFinder;
 }

 // business logic that actually uses the injected MovieFinder is omitted...
}

Constructor argument resolution

Constructor argument resolution matching occurs using the argument’s type. If no
potential ambiguity exists in the constructor arguments of a bean definition, then the
order in which the constructor arguments are defined in a bean definition is the order
in which those arguments are supplied to the appropriate constructor when the bean is
being instantiated. Consider the following class:

package x.y;

public class Foo {

 public Foo(Bar bar, Baz baz) {
 // ...
 }
}

No potential ambiguity exists, assuming that Bar and Baz classes are not related by
inheritance. Thus the following configuration works fine, and you do not need to specify
the constructor argument indexes and/or types explicitly in the <constructor-arg/>
element.

<beans>
 <bean id="foo" class="x.y.Foo">
 <constructor-arg ref="bar"/>
 <constructor-arg ref="baz"/>
 </bean>

 <bean id="bar" class="x.y.Bar"/>

 <bean id="baz" class="x.y.Baz"/>
</beans>

When another bean is referenced, the type is known, and matching can occur (as was the
case with the preceding example). When a simple type is used, such as
<value>true</value>, Spring cannot determine the type of the value, and so cannot match
by type without help. Consider the following class:

package examples;

public class ExampleBean {

 // Number of years to calculate the Ultimate Answer
 private int years;

 // The Answer to Life, the Universe, and Everything
 private String ultimateAnswer;

 public ExampleBean(int years, String ultimateAnswer) {
 this.years = years;
 this.ultimateAnswer = ultimateAnswer;
 }
}

In the preceding scenario, the container can use type matching with simple types if
you explicitly specify the type of the constructor argument using the type attribute.
For example:

<bean id="exampleBean" class="examples.ExampleBean">
 <constructor-arg type="int" value="7500000"/>
 <constructor-arg type="java.lang.String" value="42"/>
</bean>

Use the index attribute to specify explicitly the index of constructor arguments. For
example:

<bean id="exampleBean" class="examples.ExampleBean">
 <constructor-arg index="0" value="7500000"/>
 <constructor-arg index="1" value="42"/>
</bean>

In addition to resolving the ambiguity of multiple simple values, specifying an index
resolves ambiguity where a constructor has two arguments of the same type. Note that the
index is 0 based.

You can also use the constructor parameter name for value disambiguation:

<bean id="exampleBean" class="examples.ExampleBean">
 <constructor-arg name="years" value="7500000"/>
 <constructor-arg name="ultimateAnswer" value="42"/>
</bean>

Keep in mind that to make this work out of the box your code must be compiled with the
debug flag enabled so that Spring can look up the parameter name from the constructor.
If you can’t compile your code with debug flag (or don’t want to) you can use
@ConstructorProperties
JDK annotation to explicitly name your constructor arguments. The sample class would
then have to look as follows:

package examples;

public class ExampleBean {

 // Fields omitted

 @ConstructorProperties({"years", "ultimateAnswer"})
 public ExampleBean(int years, String ultimateAnswer) {
 this.years = years;
 this.ultimateAnswer = ultimateAnswer;
 }
}

Setter-based dependency injection

Setter-based DI is accomplished by the container calling setter methods on your
beans after invoking a no-argument constructor or no-argument static factory method to
instantiate your bean.

The following example shows a class that can only be dependency-injected using pure
setter injection. This class is conventional Java. It is a POJO that has no dependencies
on container specific interfaces, base classes or annotations.

public class SimpleMovieLister {

 // the SimpleMovieLister has a dependency on the MovieFinder
 private MovieFinder movieFinder;

 // a setter method so that the Spring container can inject a MovieFinder
 public void setMovieFinder(MovieFinder movieFinder) {
 this.movieFinder = movieFinder;
 }

 // business logic that actually uses the injected MovieFinder is omitted...
}

The ApplicationContext supports constructor-based and setter-based DI for the beans it
manages. It also supports setter-based DI after some dependencies have already been
injected through the constructor approach. You configure the dependencies in the form of
a BeanDefinition, which you use in conjunction with PropertyEditor instances to
convert properties from one format to another. However, most Spring users do not work
with these classes directly (i.e., programmatically) but rather with XML bean
definitions, annotated components (i.e., classes annotated with @Component,
@Controller, etc.), or @Bean methods in Java-based @Configuration classes. These
sources are then converted internally into instances of BeanDefinition and used to
load an entire Spring IoC container instance.

Constructor-based or setter-based DI?

Since you can mix constructor-based and setter-based DI, it is a good rule of thumb to
use constructors for mandatory dependencies and setter methods or configuration methods
for optional dependencies. Note that use of the @Required
annotation on a setter method can be used to make the property a required dependency.

The Spring team generally advocates constructor injection as it enables one to implement
application components as immutable objects and to ensure that required dependencies
are not null. Furthermore constructor-injected components are always returned to client
(calling) code in a fully initialized state. As a side note, a large number of constructor
arguments is a bad code smell, implying that the class likely has too many
responsibilities and should be refactored to better address proper separation of concerns.

Setter injection should primarily only be used for optional dependencies that can be
assigned reasonable default values within the class. Otherwise, not-null checks must be
performed everywhere the code uses the dependency. One benefit of setter injection is that
setter methods make objects of that class amenable to reconfiguration or re-injection
later. Management through JMX MBeans is therefore a compelling use case for setter
injection.

Use the DI style that makes the most sense for a particular class. Sometimes, when dealing
with third-party classes for which you do not have the source, the choice is made for you.
For example, if a third-party class does not expose any setter methods, then constructor
injection may be the only available form of DI.

Dependency resolution process

The container performs bean dependency resolution as follows:

	
The ApplicationContext is created and initialized with configuration metadata that
describes all the beans. Configuration metadata can be specified via XML, Java code, or
annotations.

	
For each bean, its dependencies are expressed in the form of properties, constructor
arguments, or arguments to the static-factory method if you are using that instead of
a normal constructor. These dependencies are provided to the bean, when the bean is
actually created.

	
Each property or constructor argument is an actual definition of the value to set, or
a reference to another bean in the container.

	
Each property or constructor argument which is a value is converted from its specified
format to the actual type of that property or constructor argument. By default Spring
can convert a value supplied in string format to all built-in types, such as int,
long, String, boolean, etc.

The Spring container validates the configuration of each bean as the container is created.
However, the bean properties themselves are not set until the bean is actually created.
Beans that are singleton-scoped and set to be pre-instantiated (the default) are created
when the container is created. Scopes are defined in the section called “Bean scopes”. Otherwise,
the bean is created only when it is requested. Creation of a bean potentially causes a
graph of beans to be created, as the bean’s dependencies and its dependencies'
dependencies (and so on) are created and assigned. Note that resolution mismatches among
those dependencies may show up late, i.e. on first creation of the affected bean.

Circular dependencies

If you use predominantly constructor injection, it is possible to create an unresolvable
circular dependency scenario.

For example: Class A requires an instance of class B through constructor injection, and
class B requires an instance of class A through constructor injection. If you configure
beans for classes A and B to be injected into each other, the Spring IoC container
detects this circular reference at runtime, and throws a
BeanCurrentlyInCreationException.

One possible solution is to edit the source code of some classes to be configured by
setters rather than constructors. Alternatively, avoid constructor injection and use
setter injection only. In other words, although it is not recommended, you can configure
circular dependencies with setter injection.

Unlike the typical case (with no circular dependencies), a circular dependency
between bean A and bean B forces one of the beans to be injected into the other prior to
being fully initialized itself (a classic chicken/egg scenario).

You can generally trust Spring to do the right thing. It detects configuration problems,
such as references to non-existent beans and circular dependencies, at container
load-time. Spring sets properties and resolves dependencies as late as possible, when
the bean is actually created. This means that a Spring container which has loaded
correctly can later generate an exception when you request an object if there is a
problem creating that object or one of its dependencies. For example, the bean throws an
exception as a result of a missing or invalid property. This potentially delayed
visibility of some configuration issues is why ApplicationContext implementations by
default pre-instantiate singleton beans. At the cost of some upfront time and memory to
create these beans before they are actually needed, you discover configuration issues
when the ApplicationContext is created, not later. You can still override this default
behavior so that singleton beans will lazy-initialize, rather than be pre-instantiated.

If no circular dependencies exist, when one or more collaborating beans are being
injected into a dependent bean, each collaborating bean is totally configured prior
to being injected into the dependent bean. This means that if bean A has a dependency on
bean B, the Spring IoC container completely configures bean B prior to invoking the
setter method on bean A. In other words, the bean is instantiated (if not a
pre-instantiated singleton), its dependencies are set, and the relevant lifecycle
methods (such as a configured init method
or the InitializingBean callback method)
are invoked.

Examples of dependency injection

The following example uses XML-based configuration metadata for setter-based DI. A small
part of a Spring XML configuration file specifies some bean definitions:

<bean id="exampleBean" class="examples.ExampleBean">
 <!-- setter injection using the nested ref element -->
 <property name="beanOne">
 <ref bean="anotherExampleBean"/>
 </property>

 <!-- setter injection using the neater ref attribute -->
 <property name="beanTwo" ref="yetAnotherBean"/>
 <property name="integerProperty" value="1"/>
</bean>

<bean id="anotherExampleBean" class="examples.AnotherBean"/>
<bean id="yetAnotherBean" class="examples.YetAnotherBean"/>

public class ExampleBean {

 private AnotherBean beanOne;

 private YetAnotherBean beanTwo;

 private int i;

 public void setBeanOne(AnotherBean beanOne) {
 this.beanOne = beanOne;
 }

 public void setBeanTwo(YetAnotherBean beanTwo) {
 this.beanTwo = beanTwo;
 }

 public void setIntegerProperty(int i) {
 this.i = i;
 }
}

In the preceding example, setters are declared to match against the properties specified
in the XML file. The following example uses constructor-based DI:

<bean id="exampleBean" class="examples.ExampleBean">
 <!-- constructor injection using the nested ref element -->
 <constructor-arg>
 <ref bean="anotherExampleBean"/>
 </constructor-arg>

 <!-- constructor injection using the neater ref attribute -->
 <constructor-arg ref="yetAnotherBean"/>

 <constructor-arg type="int" value="1"/>
</bean>

<bean id="anotherExampleBean" class="examples.AnotherBean"/>
<bean id="yetAnotherBean" class="examples.YetAnotherBean"/>

public class ExampleBean {

 private AnotherBean beanOne;

 private YetAnotherBean beanTwo;

 private int i;

 public ExampleBean(
 AnotherBean anotherBean, YetAnotherBean yetAnotherBean, int i) {
 this.beanOne = anotherBean;
 this.beanTwo = yetAnotherBean;
 this.i = i;
 }
}

The constructor arguments specified in the bean definition will be used as arguments to
the constructor of the ExampleBean.

Now consider a variant of this example, where instead of using a constructor, Spring is
told to call a static factory method to return an instance of the object:

<bean id="exampleBean" class="examples.ExampleBean" factory-method="createInstance">
 <constructor-arg ref="anotherExampleBean"/>
 <constructor-arg ref="yetAnotherBean"/>
 <constructor-arg value="1"/>
</bean>

<bean id="anotherExampleBean" class="examples.AnotherBean"/>
<bean id="yetAnotherBean" class="examples.YetAnotherBean"/>

public class ExampleBean {

 // a private constructor
 private ExampleBean(...) {
 ...
 }

 // a static factory method; the arguments to this method can be
 // considered the dependencies of the bean that is returned,
 // regardless of how those arguments are actually used.
 public static ExampleBean createInstance (
 AnotherBean anotherBean, YetAnotherBean yetAnotherBean, int i) {

 ExampleBean eb = new ExampleBean (...);
 // some other operations...
 return eb;
 }
}

Arguments to the static factory method are supplied via <constructor-arg/> elements,
exactly the same as if a constructor had actually been used. The type of the class being
returned by the factory method does not have to be of the same type as the class that
contains the static factory method, although in this example it is. An instance
(non-static) factory method would be used in an essentially identical fashion (aside
from the use of the factory-bean attribute instead of the class attribute), so
details will not be discussed here.

Dependencies and configuration in detail

As mentioned in the previous section, you can define bean properties and constructor
arguments as references to other managed beans (collaborators), or as values defined
inline. Spring’s XML-based configuration metadata supports sub-element types within its
<property/> and <constructor-arg/> elements for this purpose.

Straight values (primitives, Strings, and so on)

The value attribute of the <property/> element specifies a property or constructor
argument as a human-readable string representation. Spring’s
conversion service is used to convert these
values from a String to the actual type of the property or argument.

<bean id="myDataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close">
 <!-- results in a setDriverClassName(String) call -->
 <property name="driverClassName" value="com.mysql.jdbc.Driver"/>
 <property name="url" value="jdbc:mysql://localhost:3306/mydb"/>
 <property name="username" value="root"/>
 <property name="password" value="masterkaoli"/>
</bean>

The following example uses the p-namespace for even more succinct
XML configuration.

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:p="http://www.springframework.org/schema/p"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean id="myDataSource" class="org.apache.commons.dbcp.BasicDataSource"
 destroy-method="close"
 p:driverClassName="com.mysql.jdbc.Driver"
 p:url="jdbc:mysql://localhost:3306/mydb"
 p:username="root"
 p:password="masterkaoli"/>

</beans>

The preceding XML is more succinct; however, typos are discovered at runtime rather than
design time, unless you use an IDE such as IntelliJ
IDEA or the Spring Tool Suite (STS)
that support automatic property completion when you create bean definitions. Such IDE
assistance is highly recommended.

You can also configure a java.util.Properties instance as:

<bean id="mappings"
 class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">

 <!-- typed as a java.util.Properties -->
 <property name="properties">
 <value>
 jdbc.driver.className=com.mysql.jdbc.Driver
 jdbc.url=jdbc:mysql://localhost:3306/mydb
 </value>
 </property>
</bean>

The Spring container converts the text inside the <value/> element into a
java.util.Properties instance by using the JavaBeans PropertyEditor mechanism. This
is a nice shortcut, and is one of a few places where the Spring team do favor the use of
the nested <value/> element over the value attribute style.

The idref element

The idref element is simply an error-proof way to pass the id (string value - not
a reference) of another bean in the container to a <constructor-arg/> or <property/>
element.

<bean id="theTargetBean" class="..."/>

<bean id="theClientBean" class="...">
 <property name="targetName">
 <idref bean="theTargetBean"/>
 </property>
</bean>

The above bean definition snippet is exactly equivalent (at runtime) to the
following snippet:

<bean id="theTargetBean" class="..." />

<bean id="client" class="...">
 <property name="targetName" value="theTargetBean"/>
</bean>

The first form is preferable to the second, because using the idref tag allows the
container to validate at deployment time that the referenced, named bean actually
exists. In the second variation, no validation is performed on the value that is passed
to the targetName property of the client bean. Typos are only discovered (with most
likely fatal results) when the client bean is actually instantiated. If the client
bean is a prototype bean, this typo and the resulting exception
may only be discovered long after the container is deployed.

	[image: [Note]]	Note
	
The local attribute on the idref element is no longer supported in the 4.0 beans xsd
since it does not provide value over a regular bean reference anymore. Simply change
your existing idref local references to idref bean when upgrading to the 4.0 schema.

A common place (at least in versions earlier than Spring 2.0) where the <idref/> element
brings value is in the configuration of AOP interceptors in a
ProxyFactoryBean bean definition. Using <idref/> elements when you specify the
interceptor names prevents you from misspelling an interceptor id.

References to other beans (collaborators)

The ref element is the final element inside a <constructor-arg/> or <property/>
definition element. Here you set the value of the specified property of a bean to be a
reference to another bean (a collaborator) managed by the container. The referenced bean
is a dependency of the bean whose property will be set, and it is initialized on demand
as needed before the property is set. (If the collaborator is a singleton bean, it may
be initialized already by the container.) All references are ultimately a reference to
another object. Scoping and validation depend on whether you specify the id/name of the
other object through the bean, local, or parent attributes.

Specifying the target bean through the bean attribute of the <ref/> tag is the most
general form, and allows creation of a reference to any bean in the same container or
parent container, regardless of whether it is in the same XML file. The value of the
bean attribute may be the same as the id attribute of the target bean, or as one of
the values in the name attribute of the target bean.

<ref bean="someBean"/>

Specifying the target bean through the parent attribute creates a reference to a bean
that is in a parent container of the current container. The value of the parent
attribute may be the same as either the id attribute of the target bean, or one of the
values in the name attribute of the target bean, and the target bean must be in a
parent container of the current one. You use this bean reference variant mainly when you
have a hierarchy of containers and you want to wrap an existing bean in a parent
container with a proxy that will have the same name as the parent bean.

<!-- in the parent context -->
<bean id="accountService" class="com.foo.SimpleAccountService">
 <!-- insert dependencies as required as here -->
</bean>

<!-- in the child (descendant) context -->
<bean id="accountService" <!-- bean name is the same as the parent bean -->
 class="org.springframework.aop.framework.ProxyFactoryBean">
 <property name="target">
 <ref parent="accountService"/> <!-- notice how we refer to the parent bean -->
 </property>
 <!-- insert other configuration and dependencies as required here -->
</bean>

	[image: [Note]]	Note
	
The local attribute on the ref element is no longer supported in the 4.0 beans xsd
since it does not provide value over a regular bean reference anymore. Simply change
your existing ref local references to ref bean when upgrading to the 4.0 schema.

Inner beans

A <bean/> element inside the <property/> or <constructor-arg/> elements defines a
so-called inner bean.

<bean id="outer" class="...">
 <!-- instead of using a reference to a target bean, simply define the target bean inline -->
 <property name="target">
 <bean class="com.example.Person"> <!-- this is the inner bean -->
 <property name="name" value="Fiona Apple"/>
 <property name="age" value="25"/>
 </bean>
 </property>
</bean>

An inner bean definition does not require a defined id or name; if specified, the container
does not use such a value as an identifier. The container also ignores the scope flag on
creation: Inner beans are always anonymous and they are always created with the outer
bean. It is not possible to inject inner beans into collaborating beans other than into
the enclosing bean or to access them independently.

As a corner case, it is possible to receive destruction callbacks from a custom scope, e.g.
for a request-scoped inner bean contained within a singleton bean: The creation of the inner
bean instance will be tied to its containing bean, but destruction callbacks allow it to
participate in the request scope’s lifecycle. This is not a common scenario; inner beans
typically simply share their containing bean’s scope.

Collections

In the <list/>, <set/>, <map/>, and <props/> elements, you set the properties
and arguments of the Java Collection types List, Set, Map, and Properties,
respectively.

<bean id="moreComplexObject" class="example.ComplexObject">
 <!-- results in a setAdminEmails(java.util.Properties) call -->
 <property name="adminEmails">
 <props>
 <prop key="administrator">administrator@example.org</prop>
 <prop key="support">support@example.org</prop>
 <prop key="development">development@example.org</prop>
 </props>
 </property>
 <!-- results in a setSomeList(java.util.List) call -->
 <property name="someList">
 <list>
 <value>a list element followed by a reference</value>
 <ref bean="myDataSource" />
 </list>
 </property>
 <!-- results in a setSomeMap(java.util.Map) call -->
 <property name="someMap">
 <map>
 <entry key="an entry" value="just some string"/>
 <entry key ="a ref" value-ref="myDataSource"/>
 </map>
 </property>
 <!-- results in a setSomeSet(java.util.Set) call -->
 <property name="someSet">
 <set>
 <value>just some string</value>
 <ref bean="myDataSource" />
 </set>
 </property>
</bean>

The value of a map key or value, or a set value, can also again be any of the
following elements:

bean | ref | idref | list | set | map | props | value | null

Collection merging

The Spring container also supports the merging of collections. An application
developer can define a parent-style <list/>, <map/>, <set/> or <props/> element,
and have child-style <list/>, <map/>, <set/> or <props/> elements inherit and
override values from the parent collection. That is, the child collection’s values are
the result of merging the elements of the parent and child collections, with the child’s
collection elements overriding values specified in the parent collection.

This section on merging discusses the parent-child bean mechanism. Readers unfamiliar
with parent and child bean definitions may wish to read the
relevant section before continuing.

The following example demonstrates collection merging:

<beans>
 <bean id="parent" abstract="true" class="example.ComplexObject">
 <property name="adminEmails">
 <props>
 <prop key="administrator">administrator@example.com</prop>
 <prop key="support">support@example.com</prop>
 </props>
 </property>
 </bean>
 <bean id="child" parent="parent">
 <property name="adminEmails">
 <!-- the merge is specified on the child collection definition -->
 <props merge="true">
 <prop key="sales">sales@example.com</prop>
 <prop key="support">support@example.co.uk</prop>
 </props>
 </property>
 </bean>
<beans>

Notice the use of the merge=true attribute on the <props/> element of the
adminEmails property of the child bean definition. When the child bean is resolved
and instantiated by the container, the resulting instance has an adminEmails
Properties collection that contains the result of the merging of the child’s
adminEmails collection with the parent’s adminEmails collection.

administrator=administrator@example.com
sales=sales@example.com
support=support@example.co.uk

The child Properties collection’s value set inherits all property elements from the
parent <props/>, and the child’s value for the support value overrides the value in
the parent collection.

This merging behavior applies similarly to the <list/>, <map/>, and <set/>
collection types. In the specific case of the <list/> element, the semantics
associated with the List collection type, that is, the notion of an ordered
collection of values, is maintained; the parent’s values precede all of the child list’s
values. In the case of the Map, Set, and Properties collection types, no ordering
exists. Hence no ordering semantics are in effect for the collection types that underlie
the associated Map, Set, and Properties implementation types that the container
uses internally.

Limitations of collection merging

You cannot merge different collection types (such as a Map and a List), and if you
do attempt to do so an appropriate Exception is thrown. The merge attribute must be
specified on the lower, inherited, child definition; specifying the merge attribute on
a parent collection definition is redundant and will not result in the desired merging.

Strongly-typed collection

With the introduction of generic types in Java 5, you can use strongly typed collections.
That is, it is possible to declare a Collection type such that it can only contain
String elements (for example). If you are using Spring to dependency-inject a
strongly-typed Collection into a bean, you can take advantage of Spring’s
type-conversion support such that the elements of your strongly-typed Collection
instances are converted to the appropriate type prior to being added to the Collection.

public class Foo {

 private Map<String, Float> accounts;

 public void setAccounts(Map<String, Float> accounts) {
 this.accounts = accounts;
 }
}

<beans>
 <bean id="foo" class="x.y.Foo">
 <property name="accounts">
 <map>
 <entry key="one" value="9.99"/>
 <entry key="two" value="2.75"/>
 <entry key="six" value="3.99"/>
 </map>
 </property>
 </bean>
</beans>

When the accounts property of the foo bean is prepared for injection, the generics
information about the element type of the strongly-typed Map<String, Float> is
available by reflection. Thus Spring’s type conversion infrastructure recognizes the
various value elements as being of type Float, and the string values 9.99, 2.75, and
3.99 are converted into an actual Float type.

Null and empty string values

Spring treats empty arguments for properties and the like as empty Strings. The
following XML-based configuration metadata snippet sets the email property to the empty
String value ("").

<bean class="ExampleBean">
 <property name="email" value=""/>
</bean>

The preceding example is equivalent to the following Java code:

exampleBean.setEmail("");

The <null/> element handles null values. For example:

<bean class="ExampleBean">
 <property name="email">
 <null/>
 </property>
</bean>

The above configuration is equivalent to the following Java code:

exampleBean.setEmail(null);

XML shortcut with the p-namespace

The p-namespace enables you to use the bean element’s attributes, instead of nested
<property/> elements, to describe your property values and/or collaborating beans.

Spring supports extensible configuration formats with namespaces, which are
based on an XML Schema definition. The beans configuration format discussed in this
chapter is defined in an XML Schema document. However, the p-namespace is not defined in
an XSD file and exists only in the core of Spring.

The following example shows two XML snippets that resolve to the same result: The first
uses standard XML format and the second uses the p-namespace.

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:p="http://www.springframework.org/schema/p"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean name="classic" class="com.example.ExampleBean">
 <property name="email" value="foo@bar.com"/>
 </bean>

 <bean name="p-namespace" class="com.example.ExampleBean"
 p:email="foo@bar.com"/>
</beans>

The example shows an attribute in the p-namespace called email in the bean definition.
This tells Spring to include a property declaration. As previously mentioned, the
p-namespace does not have a schema definition, so you can set the name of the attribute
to the property name.

This next example includes two more bean definitions that both have a reference to
another bean:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:p="http://www.springframework.org/schema/p"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean name="john-classic" class="com.example.Person">
 <property name="name" value="John Doe"/>
 <property name="spouse" ref="jane"/>
 </bean>

 <bean name="john-modern"
 class="com.example.Person"
 p:name="John Doe"
 p:spouse-ref="jane"/>

 <bean name="jane" class="com.example.Person">
 <property name="name" value="Jane Doe"/>
 </bean>
</beans>

As you can see, this example includes not only a property value using the p-namespace,
but also uses a special format to declare property references. Whereas the first bean
definition uses <property name="spouse" ref="jane"/> to create a reference from bean
john to bean jane, the second bean definition uses p:spouse-ref="jane" as an
attribute to do the exact same thing. In this case spouse is the property name,
whereas the -ref part indicates that this is not a straight value but rather a
reference to another bean.

	[image: [Note]]	Note
	
The p-namespace is not as flexible as the standard XML format. For example, the format
for declaring property references clashes with properties that end in Ref, whereas the
standard XML format does not. We recommend that you choose your approach carefully and
communicate this to your team members, to avoid producing XML documents that use all
three approaches at the same time.

XML shortcut with the c-namespace

Similar to the the section called “XML shortcut with the p-namespace”, the c-namespace, newly introduced in Spring
3.1, allows usage of inlined attributes for configuring the constructor arguments rather
then nested constructor-arg elements.

Let’s review the examples from the section called “Constructor-based dependency injection” with the c: namespace:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:c="http://www.springframework.org/schema/c"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean id="bar" class="x.y.Bar"/>
 <bean id="baz" class="x.y.Baz"/>

 <!-- traditional declaration -->
 <bean id="foo" class="x.y.Foo">
 <constructor-arg ref="bar"/>
 <constructor-arg ref="baz"/>
 <constructor-arg value="foo@bar.com"/>
 </bean>

 <!-- c-namespace declaration -->
 <bean id="foo" class="x.y.Foo" c:bar-ref="bar" c:baz-ref="baz" c:email="foo@bar.com"/>

</beans>

The c: namespace uses the same conventions as the p: one (trailing -ref for bean
references) for setting the constructor arguments by their names. And just as well, it
needs to be declared even though it is not defined in an XSD schema (but it exists
inside the Spring core).

For the rare cases where the constructor argument names are not available (usually if
the bytecode was compiled without debugging information), one can use fallback to the
argument indexes:

<!-- c-namespace index declaration -->
<bean id="foo" class="x.y.Foo" c:_0-ref="bar" c:_1-ref="baz"/>

	[image: [Note]]	Note
	
Due to the XML grammar, the index notation requires the presence of the leading _ as
XML attribute names cannot start with a number (even though some IDE allow it).

In practice, the constructor resolution
mechanism is quite efficient in matching
arguments so unless one really needs to, we recommend using the name notation
through-out your configuration.

Compound property names

You can use compound or nested property names when you set bean properties, as long as
all components of the path except the final property name are not null. Consider the
following bean definition.

<bean id="foo" class="foo.Bar">
 <property name="fred.bob.sammy" value="123" />
</bean>

The foo bean has a fred property, which has a bob property, which has a sammy
property, and that final sammy property is being set to the value 123. In order for
this to work, the fred property of foo, and the bob property of fred must not be
null after the bean is constructed, or a NullPointerException is thrown.

Using depends-on

If a bean is a dependency of another that usually means that one bean is set as a
property of another. Typically you accomplish this with the <ref/>
element in XML-based configuration metadata. However, sometimes dependencies between
beans are less direct; for example, a static initializer in a class needs to be
triggered, such as database driver registration. The depends-on attribute can
explicitly force one or more beans to be initialized before the bean using this element
is initialized. The following example uses the depends-on attribute to express a
dependency on a single bean:

<bean id="beanOne" class="ExampleBean" depends-on="manager"/>
<bean id="manager" class="ManagerBean" />

To express a dependency on multiple beans, supply a list of bean names as the value of
the depends-on attribute, with commas, whitespace and semicolons, used as valid
delimiters:

<bean id="beanOne" class="ExampleBean" depends-on="manager,accountDao">
 <property name="manager" ref="manager" />
</bean>

<bean id="manager" class="ManagerBean" />
<bean id="accountDao" class="x.y.jdbc.JdbcAccountDao" />

	[image: [Note]]	Note
	
The depends-on attribute in the bean definition can specify both an initialization
time dependency and, in the case of singleton beans
only, a corresponding destroy time dependency. Dependent beans that define a
depends-on relationship with a given bean are destroyed first, prior to the given bean
itself being destroyed. Thus depends-on can also control shutdown order.

Lazy-initialized beans

By default, ApplicationContext implementations eagerly create and configure all
singleton beans as part of the initialization
process. Generally, this pre-instantiation is desirable, because errors in the
configuration or surrounding environment are discovered immediately, as opposed to hours
or even days later. When this behavior is not desirable, you can prevent
pre-instantiation of a singleton bean by marking the bean definition as
lazy-initialized. A lazy-initialized bean tells the IoC container to create a bean
instance when it is first requested, rather than at startup.

In XML, this behavior is controlled by the lazy-init attribute on the <bean/>
element; for example:

<bean id="lazy" class="com.foo.ExpensiveToCreateBean" lazy-init="true"/>
<bean name="not.lazy" class="com.foo.AnotherBean"/>

When the preceding configuration is consumed by an ApplicationContext, the bean named
lazy is not eagerly pre-instantiated when the ApplicationContext is starting up,
whereas the not.lazy bean is eagerly pre-instantiated.

However, when a lazy-initialized bean is a dependency of a singleton bean that is
not lazy-initialized, the ApplicationContext creates the lazy-initialized bean at
startup, because it must satisfy the singleton’s dependencies. The lazy-initialized bean
is injected into a singleton bean elsewhere that is not lazy-initialized.

You can also control lazy-initialization at the container level by using the
default-lazy-init attribute on the <beans/> element; for example:

<beans default-lazy-init="true">
 <!-- no beans will be pre-instantiated... -->
</beans>

Autowiring collaborators

The Spring container can autowire relationships between collaborating beans. You can
allow Spring to resolve collaborators (other beans) automatically for your bean by
inspecting the contents of the ApplicationContext. Autowiring has the following
advantages:

	
Autowiring can significantly reduce the need to specify properties or constructor
arguments. (Other mechanisms such as a bean template
discussed elsewhere in this chapter are also valuable
in this regard.)

	
Autowiring can update a configuration as your objects evolve. For example, if you need
to add a dependency to a class, that dependency can be satisfied automatically without
you needing to modify the configuration. Thus autowiring can be especially useful
during development, without negating the option of switching to explicit wiring when
the code base becomes more stable.

When using XML-based configuration metadata [2], you specify autowire
mode for a bean definition with the autowire attribute of the <bean/> element. The
autowiring functionality has four modes. You specify autowiring per bean and thus
can choose which ones to autowire.

Table 7.2. Autowiring modes

	Mode	Explanation
	no
	(Default) No autowiring. Bean references must be defined via a ref element. Changing
 the default setting is not recommended for larger deployments, because specifying
 collaborators explicitly gives greater control and clarity. To some extent, it
 documents the structure of a system.

	byName
	Autowiring by property name. Spring looks for a bean with the same name as the
 property that needs to be autowired. For example, if a bean definition is set to
 autowire by name, and it contains a master property (that is, it has a
 setMaster(..) method), Spring looks for a bean definition named master, and uses
 it to set the property.

	byType
	Allows a property to be autowired if exactly one bean of the property type exists in
 the container. If more than one exists, a fatal exception is thrown, which indicates
 that you may not use byType autowiring for that bean. If there are no matching
 beans, nothing happens; the property is not set.

	constructor
	Analogous to byType, but applies to constructor arguments. If there is not exactly
 one bean of the constructor argument type in the container, a fatal error is raised.

With byType or constructor autowiring mode, you can wire arrays and
typed-collections. In such cases all autowire candidates within the container that
match the expected type are provided to satisfy the dependency. You can autowire
strongly-typed Maps if the expected key type is String. An autowired Maps values will
consist of all bean instances that match the expected type, and the Maps keys will
contain the corresponding bean names.

You can combine autowire behavior with dependency checking, which is performed after
autowiring completes.

Limitations and disadvantages of autowiring

Autowiring works best when it is used consistently across a project. If autowiring is
not used in general, it might be confusing to developers to use it to wire only one or
two bean definitions.

Consider the limitations and disadvantages of autowiring:

	
Explicit dependencies in property and constructor-arg settings always override
autowiring. You cannot autowire so-called simple properties such as primitives,
Strings, and Classes (and arrays of such simple properties). This limitation is
by-design.

	
Autowiring is less exact than explicit wiring. Although, as noted in the above table,
Spring is careful to avoid guessing in case of ambiguity that might have unexpected
results, the relationships between your Spring-managed objects are no longer
documented explicitly.

	
Wiring information may not be available to tools that may generate documentation from
a Spring container.

	
Multiple bean definitions within the container may match the type specified by the
setter method or constructor argument to be autowired. For arrays, collections, or
Maps, this is not necessarily a problem. However for dependencies that expect a single
value, this ambiguity is not arbitrarily resolved. If no unique bean definition is
available, an exception is thrown.

In the latter scenario, you have several options:

	
Abandon autowiring in favor of explicit wiring.

	
Avoid autowiring for a bean definition by setting its autowire-candidate attributes
to false as described in the next section.

	
Designate a single bean definition as the primary candidate by setting the
primary attribute of its <bean/> element to true.

	
Implement the more fine-grained control available
with annotation-based configuration, as described in the section called “Annotation-based container configuration”.

Excluding a bean from autowiring

On a per-bean basis, you can exclude a bean from autowiring. In Spring’s XML format, set
the autowire-candidate attribute of the <bean/> element to false; the container
makes that specific bean definition unavailable to the autowiring infrastructure
(including annotation style configurations such as @Autowired).

	[image: [Note]]	Note
	
The autowire-candidate attribute is designed to only affect type-based autowiring.
It does not affect explicit references by name, which will get resolved even if the
specified bean is not marked as an autowire candidate. As a consequence, autowiring
by name will nevertheless inject a bean if the name matches.

You can also limit autowire candidates based on pattern-matching against bean names. The
top-level <beans/> element accepts one or more patterns within its
default-autowire-candidates attribute. For example, to limit autowire candidate status
to any bean whose name ends with Repository, provide a value of *Repository. To
provide multiple patterns, define them in a comma-separated list. An explicit value of
true or false for a bean definitions autowire-candidate attribute always takes
precedence, and for such beans, the pattern matching rules do not apply.

These techniques are useful for beans that you never want to be injected into other
beans by autowiring. It does not mean that an excluded bean cannot itself be configured
using autowiring. Rather, the bean itself is not a candidate for autowiring other beans.

Method injection

In most application scenarios, most beans in the container are
singletons. When a singleton bean needs to
collaborate with another singleton bean, or a non-singleton bean needs to collaborate
with another non-singleton bean, you typically handle the dependency by defining one
bean as a property of the other. A problem arises when the bean lifecycles are
different. Suppose singleton bean A needs to use non-singleton (prototype) bean B,
perhaps on each method invocation on A. The container only creates the singleton bean A
once, and thus only gets one opportunity to set the properties. The container cannot
provide bean A with a new instance of bean B every time one is needed.

A solution is to forego some inversion of control. You can make
bean A aware of the container by implementing the ApplicationContextAware interface,
and by making a getBean("B") call to the container ask for (a
typically new) bean B instance every time bean A needs it. The following is an example
of this approach:

// a class that uses a stateful Command-style class to perform some processing
package fiona.apple;

// Spring-API imports
import org.springframework.beans.BeansException;
import org.springframework.context.ApplicationContext;
import org.springframework.context.ApplicationContextAware;

public class CommandManager implements ApplicationContextAware {

 private ApplicationContext applicationContext;

 public Object process(Map commandState) {
 // grab a new instance of the appropriate Command
 Command command = createCommand();
 // set the state on the (hopefully brand new) Command instance
 command.setState(commandState);
 return command.execute();
 }

 protected Command createCommand() {
 // notice the Spring API dependency!
 return this.applicationContext.getBean("command", Command.class);
 }

 public void setApplicationContext(
 ApplicationContext applicationContext) throws BeansException {
 this.applicationContext = applicationContext;
 }
}

The preceding is not desirable, because the business code is aware of and coupled to the
Spring Framework. Method Injection, a somewhat advanced feature of the Spring IoC
container, allows this use case to be handled in a clean fashion.

You can read more about the motivation for Method Injection in
this blog entry.

Lookup method injection

Lookup method injection is the ability of the container to override methods on
container managed beans, to return the lookup result for another named bean in the
container. The lookup typically involves a prototype bean as in the scenario described
in the preceding section. The Spring Framework implements this method injection by using
bytecode generation from the CGLIB library to generate dynamically a subclass that
overrides the method.

	[image: [Note]]	Note
	
	
For this dynamic subclassing to work, the class that the Spring bean container will
subclass cannot be final, and the method to be overridden cannot be final either.

	
Unit-testing a class that has an abstract method requires you to subclass the class
yourself and to supply a stub implementation of the abstract method.

	
Concrete methods are also necessary for component scanning which requires concrete
classes to pick up.

	
A further key limitation is that lookup methods won’t work with factory methods and
in particular not with @Bean methods in configuration classes, since the container
is not in charge of creating the instance in that case and therefore cannot create
a runtime-generated subclass on the fly.

Looking at the CommandManager class in the previous code snippet, you see that the
Spring container will dynamically override the implementation of the createCommand()
method. Your CommandManager class will not have any Spring dependencies, as can be
seen in the reworked example:

package fiona.apple;

// no more Spring imports!

public abstract class CommandManager {

 public Object process(Object commandState) {
 // grab a new instance of the appropriate Command interface
 Command command = createCommand();
 // set the state on the (hopefully brand new) Command instance
 command.setState(commandState);
 return command.execute();
 }

 // okay... but where is the implementation of this method?
 protected abstract Command createCommand();
}

In the client class containing the method to be injected (the CommandManager in this
case), the method to be injected requires a signature of the following form:

<public|protected> [abstract] <return-type> theMethodName(no-arguments);

If the method is abstract, the dynamically-generated subclass implements the method.
Otherwise, the dynamically-generated subclass overrides the concrete method defined in
the original class. For example:

<!-- a stateful bean deployed as a prototype (non-singleton) -->
<bean id="myCommand" class="fiona.apple.AsyncCommand" scope="prototype">
 <!-- inject dependencies here as required -->
</bean>

<!-- commandProcessor uses statefulCommandHelper -->
<bean id="commandManager" class="fiona.apple.CommandManager">
 <lookup-method name="createCommand" bean="myCommand"/>
</bean>

The bean identified as commandManager calls its own method createCommand()
whenever it needs a new instance of the myCommand bean. You must be careful to deploy
the myCommand bean as a prototype, if that is actually what is needed. If it is
 as a singleton, the same instance of the myCommand
bean is returned each time.

Alternatively, within the annotation-based component model, you may declare a lookup
method through the @Lookup annotation:

public abstract class CommandManager {

 public Object process(Object commandState) {
 Command command = createCommand();
 command.setState(commandState);
 return command.execute();
 }

 @Lookup("myCommand")
 protected abstract Command createCommand();
}

Or, more idiomatically, you may rely on the target bean getting resolved against the
declared return type of the lookup method:

public abstract class CommandManager {

 public Object process(Object commandState) {
 MyCommand command = createCommand();
 command.setState(commandState);
 return command.execute();
 }

 @Lookup
 protected abstract MyCommand createCommand();
}

Note that you will typically declare such annotated lookup methods with a concrete
stub implementation, in order for them to be compatible with Spring’s component
scanning rules where abstract classes get ignored by default. This limitation does not
apply in case of explicitly registered or explicitly imported bean classes.

	[image: [Tip]]	Tip
	
Another way of accessing differently scoped target beans is an ObjectFactory/
Provider injection point. Check out the section called “Scoped beans as dependencies”.

The interested reader may also find the ServiceLocatorFactoryBean (in the
org.springframework.beans.factory.config package) to be of use.

Arbitrary method replacement

A less useful form of method injection than lookup method injection is the ability to
replace arbitrary methods in a managed bean with another method implementation. Users
may safely skip the rest of this section until the functionality is actually needed.

With XML-based configuration metadata, you can use the replaced-method element to
replace an existing method implementation with another, for a deployed bean. Consider
the following class, with a method computeValue, which we want to override:

public class MyValueCalculator {

 public String computeValue(String input) {
 // some real code...
 }

 // some other methods...
}

A class implementing the org.springframework.beans.factory.support.MethodReplacer
interface provides the new method definition.

/**
 * meant to be used to override the existing computeValue(String)
 * implementation in MyValueCalculator
 */
public class ReplacementComputeValue implements MethodReplacer {

 public Object reimplement(Object o, Method m, Object[] args) throws Throwable {
 // get the input value, work with it, and return a computed result
 String input = (String) args[0];
 ...
 return ...;
 }
}

The bean definition to deploy the original class and specify the method override would
look like this:

<bean id="myValueCalculator" class="x.y.z.MyValueCalculator">
 <!-- arbitrary method replacement -->
 <replaced-method name="computeValue" replacer="replacementComputeValue">
 <arg-type>String</arg-type>
 </replaced-method>
</bean>

<bean id="replacementComputeValue" class="a.b.c.ReplacementComputeValue"/>

You can use one or more contained <arg-type/> elements within the <replaced-method/>
element to indicate the method signature of the method being overridden. The signature
for the arguments is necessary only if the method is overloaded and multiple variants
exist within the class. For convenience, the type string for an argument may be a
substring of the fully qualified type name. For example, the following all match
java.lang.String:

java.lang.String
String
Str

Because the number of arguments is often enough to distinguish between each possible
choice, this shortcut can save a lot of typing, by allowing you to type only the
shortest string that will match an argument type.

[2] See the section called “Dependency Injection”

Bean scopes

When you create a bean definition, you create a recipe for creating actual instances
of the class defined by that bean definition. The idea that a bean definition is a
recipe is important, because it means that, as with a class, you can create many object
instances from a single recipe.

You can control not only the various dependencies and configuration values that are to
be plugged into an object that is created from a particular bean definition, but also
the scope of the objects created from a particular bean definition. This approach is
powerful and flexible in that you can choose the scope of the objects you create
through configuration instead of having to bake in the scope of an object at the Java
class level. Beans can be defined to be deployed in one of a number of scopes: out of
the box, the Spring Framework supports seven scopes, five of which are available only if
you use a web-aware ApplicationContext.

The following scopes are supported out of the box. You can also create
a custom scope.

Table 7.3. Bean scopes

	Scope	Description
	singleton
	(Default) Scopes a single bean definition to a single object instance per Spring IoC
 container.

	prototype
	Scopes a single bean definition to any number of object instances.

	request
	Scopes a single bean definition to the lifecycle of a single HTTP request; that is,
 each HTTP request has its own instance of a bean created off the back of a single bean
 definition. Only valid in the context of a web-aware Spring ApplicationContext.

	session
	Scopes a single bean definition to the lifecycle of an HTTP Session. Only valid in
 the context of a web-aware Spring ApplicationContext.

	globalSession
	Scopes a single bean definition to the lifecycle of a global HTTP Session. Typically
 only valid when used in a Portlet context. Only valid in the context of a web-aware
 Spring ApplicationContext.

	application
	Scopes a single bean definition to the lifecycle of a ServletContext. Only valid in
 the context of a web-aware Spring ApplicationContext.

	websocket
	Scopes a single bean definition to the lifecycle of a WebSocket. Only valid in
 the context of a web-aware Spring ApplicationContext.

	[image: [Note]]	Note
	
As of Spring 3.0, a thread scope is available, but is not registered by default. For
more information, see the documentation for
SimpleThreadScope.
For instructions on how to register this or any other custom scope, see
the section called “Using a custom scope”.

The singleton scope

Only one shared instance of a singleton bean is managed, and all requests for beans
with an id or ids matching that bean definition result in that one specific bean
instance being returned by the Spring container.

To put it another way, when you define a bean definition and it is scoped as a
singleton, the Spring IoC container creates exactly one instance of the object
defined by that bean definition. This single instance is stored in a cache of such
singleton beans, and all subsequent requests and references for that named bean
return the cached object.

[image: singleton]

Spring’s concept of a singleton bean differs from the Singleton pattern as defined in
the Gang of Four (GoF) patterns book. The GoF Singleton hard-codes the scope of an
object such that one and only one instance of a particular class is created per
ClassLoader. The scope of the Spring singleton is best described as per container
and per bean. This means that if you define one bean for a particular class in a
single Spring container, then the Spring container creates one and only one instance
of the class defined by that bean definition. The singleton scope is the default scope
in Spring. To define a bean as a singleton in XML, you would write, for example:

<bean id="accountService" class="com.foo.DefaultAccountService"/>

<!-- the following is equivalent, though redundant (singleton scope is the default) -->
<bean id="accountService" class="com.foo.DefaultAccountService" scope="singleton"/>

The prototype scope

The non-singleton, prototype scope of bean deployment results in the creation of a new
bean instance every time a request for that specific bean is made. That is, the bean
is injected into another bean or you request it through a getBean() method call on the
container. As a rule, use the prototype scope for all stateful beans and the singleton
scope for stateless beans.

The following diagram illustrates the Spring prototype scope. A data access object
(DAO) is not typically configured as a prototype, because a typical DAO does not hold
any conversational state; it was just easier for this author to reuse the core of the
singleton diagram.

[image: prototype]

The following example defines a bean as a prototype in XML:

<bean id="accountService" class="com.foo.DefaultAccountService" scope="prototype"/>

In contrast to the other scopes, Spring does not manage the complete lifecycle of a
prototype bean: the container instantiates, configures, and otherwise assembles a
prototype object, and hands it to the client, with no further record of that prototype
instance. Thus, although initialization lifecycle callback methods are called on all
objects regardless of scope, in the case of prototypes, configured destruction
lifecycle callbacks are not called. The client code must clean up prototype-scoped
objects and release expensive resources that the prototype bean(s) are holding. To get
the Spring container to release resources held by prototype-scoped beans, try using a
custom bean post-processor, which holds a reference to
beans that need to be cleaned up.

In some respects, the Spring container’s role in regard to a prototype-scoped bean is a
replacement for the Java new operator. All lifecycle management past that point must
be handled by the client. (For details on the lifecycle of a bean in the Spring
container, see the section called “Lifecycle callbacks”.)

Singleton beans with prototype-bean dependencies

When you use singleton-scoped beans with dependencies on prototype beans, be aware that
dependencies are resolved at instantiation time. Thus if you dependency-inject a
prototype-scoped bean into a singleton-scoped bean, a new prototype bean is instantiated
and then dependency-injected into the singleton bean. The prototype instance is the sole
instance that is ever supplied to the singleton-scoped bean.

However, suppose you want the singleton-scoped bean to acquire a new instance of the
prototype-scoped bean repeatedly at runtime. You cannot dependency-inject a
prototype-scoped bean into your singleton bean, because that injection occurs only
once, when the Spring container is instantiating the singleton bean and resolving
and injecting its dependencies. If you need a new instance of a prototype bean at
runtime more than once, see the section called “Method injection”

Request, session, global session, application, and WebSocket scopes

The request, session, globalSession, application, and websocket scopes are
only available if you use a web-aware Spring ApplicationContext implementation
(such as XmlWebApplicationContext). If you use these scopes with regular Spring IoC
containers such as the ClassPathXmlApplicationContext, an IllegalStateException will
be thrown complaining about an unknown bean scope.

Initial web configuration

To support the scoping of beans at the request, session, globalSession,
application, and websocket levels (web-scoped beans), some minor initial
configuration is required before you define your beans. (This initial setup is not
required for the standard scopes, singleton and prototype.)

How you accomplish this initial setup depends on your particular Servlet environment.

If you access scoped beans within Spring Web MVC, in effect, within a request that is
processed by the Spring DispatcherServlet or DispatcherPortlet, then no special
setup is necessary: DispatcherServlet and DispatcherPortlet already expose all
relevant state.

If you use a Servlet 2.5 web container, with requests processed outside of Spring’s
DispatcherServlet (for example, when using JSF or Struts), you need to register the
org.springframework.web.context.request.RequestContextListener ServletRequestListener.
For Servlet 3.0+, this can be done programmatically via the WebApplicationInitializer
interface. Alternatively, or for older containers, add the following declaration to
your web application’s web.xml file:

<web-app>
 ...
 <listener>
 <listener-class>
 org.springframework.web.context.request.RequestContextListener
 </listener-class>
 </listener>
 ...
</web-app>

Alternatively, if there are issues with your listener setup, consider using Spring’s
RequestContextFilter. The filter mapping depends on the surrounding web
application configuration, so you have to change it as appropriate.

<web-app>
 ...
 <filter>
 <filter-name>requestContextFilter</filter-name>
 <filter-class>org.springframework.web.filter.RequestContextFilter</filter-class>
 </filter>
 <filter-mapping>
 <filter-name>requestContextFilter</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>
 ...
</web-app>

DispatcherServlet, RequestContextListener, and RequestContextFilter all do exactly
the same thing, namely bind the HTTP request object to the Thread that is servicing
that request. This makes beans that are request- and session-scoped available further
down the call chain.

Request scope

Consider the following XML configuration for a bean definition:

<bean id="loginAction" class="com.foo.LoginAction" scope="request"/>

The Spring container creates a new instance of the LoginAction bean by using the
loginAction bean definition for each and every HTTP request. That is, the
loginAction bean is scoped at the HTTP request level. You can change the internal
state of the instance that is created as much as you want, because other instances
created from the same loginAction bean definition will not see these changes in state;
they are particular to an individual request. When the request completes processing, the
bean that is scoped to the request is discarded.

When using annotation-driven components or Java Config, the @RequestScope annotation
can be used to assign a component to the request scope.

@RequestScope
@Component
public class LoginAction {
 // ...
}

Session scope

Consider the following XML configuration for a bean definition:

<bean id="userPreferences" class="com.foo.UserPreferences" scope="session"/>

The Spring container creates a new instance of the UserPreferences bean by using the
userPreferences bean definition for the lifetime of a single HTTP Session. In other
words, the userPreferences bean is effectively scoped at the HTTP Session level. As
with request-scoped beans, you can change the internal state of the instance that is
created as much as you want, knowing that other HTTP Session instances that are also
using instances created from the same userPreferences bean definition do not see these
changes in state, because they are particular to an individual HTTP Session. When the
HTTP Session is eventually discarded, the bean that is scoped to that particular HTTP
Session is also discarded.

When using annotation-driven components or Java Config, the @SessionScope annotation
can be used to assign a component to the session scope.

@SessionScope
@Component
public class UserPreferences {
 // ...
}

Global session scope

Consider the following bean definition:

<bean id="userPreferences" class="com.foo.UserPreferences" scope="globalSession"/>

The globalSession scope is similar to the standard HTTP Session scope
(described above), and applies only in the context of
portlet-based web applications. The portlet specification defines the notion of a global
Session that is shared among all portlets that make up a single portlet web
application. Beans defined at the globalSession scope are scoped (or bound) to the
lifetime of the global portlet Session.

If you write a standard Servlet-based web application and you define one or more beans
as having globalSession scope, the standard HTTP Session scope is used, and no
error is raised.

Application scope

Consider the following XML configuration for a bean definition:

<bean id="appPreferences" class="com.foo.AppPreferences" scope="application"/>

The Spring container creates a new instance of the AppPreferences bean by using the
appPreferences bean definition once for the entire web application. That is, the
appPreferences bean is scoped at the ServletContext level, stored as a regular
ServletContext attribute. This is somewhat similar to a Spring singleton bean but
differs in two important ways: It is a singleton per ServletContext, not per Spring
'ApplicationContext' (for which there may be several in any given web application),
and it is actually exposed and therefore visible as a ServletContext attribute.

When using annotation-driven components or Java Config, the @ApplicationScope
annotation can be used to assign a component to the application scope.

@ApplicationScope
@Component
public class AppPreferences {
 // ...
}

Scoped beans as dependencies

The Spring IoC container manages not only the instantiation of your objects (beans),
but also the wiring up of collaborators (or dependencies). If you want to inject (for
example) an HTTP request scoped bean into another bean of a longer-lived scope, you may
choose to inject an AOP proxy in place of the scoped bean. That is, you need to inject
a proxy object that exposes the same public interface as the scoped object but that can
also retrieve the real target object from the relevant scope (such as an HTTP request)
and delegate method calls onto the real object.

	[image: [Note]]	Note
	
You may also use <aop:scoped-proxy/> between beans that are scoped as singleton,
with the reference then going through an intermediate proxy that is serializable
and therefore able to re-obtain the target singleton bean on deserialization.

When declaring <aop:scoped-proxy/> against a bean of scope prototype, every method
call on the shared proxy will lead to the creation of a new target instance which the
call is then being forwarded to.

Also, scoped proxies are not the only way to access beans from shorter scopes in a
lifecycle-safe fashion. You may also simply declare your injection point (i.e. the
constructor/setter argument or autowired field) as ObjectFactory<MyTargetBean>,
allowing for a getObject() call to retrieve the current instance on demand every
time it is needed - without holding on to the instance or storing it separately.

As an extended variant, you may declare ObjectProvider<MyTargetBean> which delivers
several additional access variants, including getIfAvailable and getIfUnique.

The JSR-330 variant of this is called Provider, used with a Provider<MyTargetBean>
declaration and a corresponding get() call for every retrieval attempt.
See here for more details on JSR-330 overall.

The configuration in the following example is only one line, but it is important to
understand the "why" as well as the "how" behind it.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/aop
 http://www.springframework.org/schema/aop/spring-aop.xsd">

 <!-- an HTTP Session-scoped bean exposed as a proxy -->
 <bean id="userPreferences" class="com.foo.UserPreferences" scope="session">
 <!-- instructs the container to proxy the surrounding bean -->
 <aop:scoped-proxy/>
 </bean>

 <!-- a singleton-scoped bean injected with a proxy to the above bean -->
 <bean id="userService" class="com.foo.SimpleUserService">
 <!-- a reference to the proxied userPreferences bean -->
 <property name="userPreferences" ref="userPreferences"/>
 </bean>
</beans>

To create such a proxy, you insert a child <aop:scoped-proxy/> element into a scoped
bean definition (see the section called “Choosing the type of proxy to create” and
Chapter 41, XML Schema-based configuration). Why do definitions of beans scoped at the request, session,
globalSession and custom-scope levels require the <aop:scoped-proxy/> element?
Let’s examine the following singleton bean definition and contrast it with what you need
to define for the aforementioned scopes (note that the following userPreferences bean
definition as it stands is incomplete).

<bean id="userPreferences" class="com.foo.UserPreferences" scope="session"/>

<bean id="userManager" class="com.foo.UserManager">
 <property name="userPreferences" ref="userPreferences"/>
</bean>

In the preceding example, the singleton bean userManager is injected with a reference
to the HTTP Session-scoped bean userPreferences. The salient point here is that the
userManager bean is a singleton: it will be instantiated exactly once per
container, and its dependencies (in this case only one, the userPreferences bean) are
also injected only once. This means that the userManager bean will only operate on the
exact same userPreferences object, that is, the one that it was originally injected
with.

This is not the behavior you want when injecting a shorter-lived scoped bean into a
longer-lived scoped bean, for example injecting an HTTP Session-scoped collaborating
bean as a dependency into singleton bean. Rather, you need a single userManager
object, and for the lifetime of an HTTP Session, you need a userPreferences object
that is specific to said HTTP Session. Thus the container creates an object that
exposes the exact same public interface as the UserPreferences class (ideally an
object that is a UserPreferences instance) which can fetch the real
UserPreferences object from the scoping mechanism (HTTP request, Session, etc.). The
container injects this proxy object into the userManager bean, which is unaware that
this UserPreferences reference is a proxy. In this example, when a UserManager
instance invokes a method on the dependency-injected UserPreferences object, it
actually is invoking a method on the proxy. The proxy then fetches the real
UserPreferences object from (in this case) the HTTP Session, and delegates the
method invocation onto the retrieved real UserPreferences object.

Thus you need the following, correct and complete, configuration when injecting
request-, session-, and globalSession-scoped beans into collaborating objects:

<bean id="userPreferences" class="com.foo.UserPreferences" scope="session">
 <aop:scoped-proxy/>
</bean>

<bean id="userManager" class="com.foo.UserManager">
 <property name="userPreferences" ref="userPreferences"/>
</bean>

Choosing the type of proxy to create

By default, when the Spring container creates a proxy for a bean that is marked up with
the <aop:scoped-proxy/> element, a CGLIB-based class proxy is created.

	[image: [Note]]	Note
	
CGLIB proxies only intercept public method calls! Do not call non-public methods
on such a proxy; they will not be delegated to the actual scoped target object.

Alternatively, you can configure the Spring container to create standard JDK
interface-based proxies for such scoped beans, by specifying false for the value of
the proxy-target-class attribute of the <aop:scoped-proxy/> element. Using JDK
interface-based proxies means that you do not need additional libraries in your
application classpath to effect such proxying. However, it also means that the class of
the scoped bean must implement at least one interface, and that all collaborators
into which the scoped bean is injected must reference the bean through one of its
interfaces.

<!-- DefaultUserPreferences implements the UserPreferences interface -->
<bean id="userPreferences" class="com.foo.DefaultUserPreferences" scope="session">
 <aop:scoped-proxy proxy-target-class="false"/>
</bean>

<bean id="userManager" class="com.foo.UserManager">
 <property name="userPreferences" ref="userPreferences"/>
</bean>

For more detailed information about choosing class-based or interface-based proxying,
see the section called “Proxying mechanisms”.

Custom scopes

The bean scoping mechanism is extensible; You can define your own
scopes, or even redefine existing scopes, although the latter is considered bad practice
and you cannot override the built-in singleton and prototype scopes.

Creating a custom scope

To integrate your custom scope(s) into the Spring container, you need to implement the
org.springframework.beans.factory.config.Scope interface, which is described in this
section. For an idea of how to implement your own scopes, see the Scope
implementations that are supplied with the Spring Framework itself and the
Scope javadocs,
which explains the methods you need to implement in more detail.

The Scope interface has four methods to get objects from the scope, remove them from
the scope, and allow them to be destroyed.

The following method returns the object from the underlying scope. The session scope
implementation, for example, returns the session-scoped bean (and if it does not exist,
the method returns a new instance of the bean, after having bound it to the session for
future reference).

Object get(String name, ObjectFactory objectFactory)

The following method removes the object from the underlying scope. The session scope
implementation for example, removes the session-scoped bean from the underlying session.
The object should be returned, but you can return null if the object with the specified
name is not found.

Object remove(String name)

The following method registers the callbacks the scope should execute when it is
destroyed or when the specified object in the scope is destroyed. Refer to the javadocs
or a Spring scope implementation for more information on destruction callbacks.

void registerDestructionCallback(String name, Runnable destructionCallback)

The following method obtains the conversation identifier for the underlying scope. This
identifier is different for each scope. For a session scoped implementation, this
identifier can be the session identifier.

String getConversationId()

Using a custom scope

After you write and test one or more custom Scope implementations, you need to make
the Spring container aware of your new scope(s). The following method is the central
method to register a new Scope with the Spring container:

void registerScope(String scopeName, Scope scope);

This method is declared on the ConfigurableBeanFactory interface, which is available
on most of the concrete ApplicationContext implementations that ship with Spring via
the BeanFactory property.

The first argument to the registerScope(..) method is the unique name associated with
a scope; examples of such names in the Spring container itself are singleton and
prototype. The second argument to the registerScope(..) method is an actual instance
of the custom Scope implementation that you wish to register and use.

Suppose that you write your custom Scope implementation, and then register it as below.

	[image: [Note]]	Note
	
The example below uses SimpleThreadScope which is included with Spring, but not
registered by default. The instructions would be the same for your own custom Scope
implementations.

Scope threadScope = new SimpleThreadScope();
beanFactory.registerScope("thread", threadScope);

You then create bean definitions that adhere to the scoping rules of your custom Scope:

<bean id="..." class="..." scope="thread">

With a custom Scope implementation, you are not limited to programmatic registration
of the scope. You can also do the Scope registration declaratively, using the
CustomScopeConfigurer class:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/aop
 http://www.springframework.org/schema/aop/spring-aop.xsd">

 <bean class="org.springframework.beans.factory.config.CustomScopeConfigurer">
 <property name="scopes">
 <map>
 <entry key="thread">
 <bean class="org.springframework.context.support.SimpleThreadScope"/>
 </entry>
 </map>
 </property>
 </bean>

 <bean id="bar" class="x.y.Bar" scope="thread">
 <property name="name" value="Rick"/>
 <aop:scoped-proxy/>
 </bean>

 <bean id="foo" class="x.y.Foo">
 <property name="bar" ref="bar"/>
 </bean>

</beans>

	[image: [Note]]	Note
	
When you place <aop:scoped-proxy/> in a FactoryBean implementation, it is the factory
bean itself that is scoped, not the object returned from getObject().

Customizing the nature of a bean

Lifecycle callbacks

To interact with the container’s management of the bean lifecycle, you can implement the
Spring InitializingBean and DisposableBean interfaces. The container calls
afterPropertiesSet() for the former and destroy() for the latter to allow the bean
to perform certain actions upon initialization and destruction of your beans.

	[image: [Tip]]	Tip
	
The JSR-250 @PostConstruct and @PreDestroy annotations are generally considered best
practice for receiving lifecycle callbacks in a modern Spring application. Using these
annotations means that your beans are not coupled to Spring specific interfaces. For
details see the section called “@PostConstruct and @PreDestroy”.

If you don’t want to use the JSR-250 annotations but you are still looking to remove
coupling consider the use of init-method and destroy-method object definition metadata.

Internally, the Spring Framework uses BeanPostProcessor implementations to process any
callback interfaces it can find and call the appropriate methods. If you need custom
features or other lifecycle behavior Spring does not offer out-of-the-box, you can
implement a BeanPostProcessor yourself. For more information, see
the section called “Container Extension Points”.

In addition to the initialization and destruction callbacks, Spring-managed objects may
also implement the Lifecycle interface so that those objects can participate in the
startup and shutdown process as driven by the container’s own lifecycle.

The lifecycle callback interfaces are described in this section.

Initialization callbacks

The org.springframework.beans.factory.InitializingBean interface allows a bean to
perform initialization work after all necessary properties on the bean have been set by
the container. The InitializingBean interface specifies a single method:

void afterPropertiesSet() throws Exception;

It is recommended that you do not use the InitializingBean interface because it
unnecessarily couples the code to Spring. Alternatively, use
the @PostConstruct annotation or
specify a POJO initialization method. In the case of XML-based configuration metadata,
you use the init-method attribute to specify the name of the method that has a void
no-argument signature. With Java config, you use the initMethod attribute of @Bean,
see the section called “Receiving lifecycle callbacks”. For example, the following:

<bean id="exampleInitBean" class="examples.ExampleBean" init-method="init"/>

public class ExampleBean {

 public void init() {
 // do some initialization work
 }
}

…​is exactly the same as…​

<bean id="exampleInitBean" class="examples.AnotherExampleBean"/>

public class AnotherExampleBean implements InitializingBean {

 public void afterPropertiesSet() {
 // do some initialization work
 }
}

but does not couple the code to Spring.

Destruction callbacks

Implementing the org.springframework.beans.factory.DisposableBean interface allows a
bean to get a callback when the container containing it is destroyed. The
DisposableBean interface specifies a single method:

void destroy() throws Exception;

It is recommended that you do not use the DisposableBean callback interface because it
unnecessarily couples the code to Spring. Alternatively, use
the @PreDestroy annotation or
specify a generic method that is supported by bean definitions. With XML-based
configuration metadata, you use the destroy-method attribute on the <bean/>.
With Java config, you use the destroyMethod attribute of @Bean, see
the section called “Receiving lifecycle callbacks”. For example, the following definition:

<bean id="exampleInitBean" class="examples.ExampleBean" destroy-method="cleanup"/>

public class ExampleBean {

 public void cleanup() {
 // do some destruction work (like releasing pooled connections)
 }
}

is exactly the same as:

<bean id="exampleInitBean" class="examples.AnotherExampleBean"/>

public class AnotherExampleBean implements DisposableBean {

 public void destroy() {
 // do some destruction work (like releasing pooled connections)
 }
}

but does not couple the code to Spring.

	[image: [Tip]]	Tip
	
The destroy-method attribute of a <bean> element can be assigned a special
(inferred) value which instructs Spring to automatically detect a public close or
shutdown method on the specific bean class (any class that implements
java.lang.AutoCloseable or java.io.Closeable would therefore match). This special
(inferred) value can also be set on the default-destroy-method attribute of a
<beans> element to apply this behavior to an entire set of beans (see
the section called “Default initialization and destroy methods”). Note that this is the
default behavior with Java config.

Default initialization and destroy methods

When you write initialization and destroy method callbacks that do not use the
Spring-specific InitializingBean and DisposableBean callback interfaces, you
typically write methods with names such as init(), initialize(), dispose(), and so
on. Ideally, the names of such lifecycle callback methods are standardized across a
project so that all developers use the same method names and ensure consistency.

You can configure the Spring container to look for named initialization and destroy
callback method names on every bean. This means that you, as an application
developer, can write your application classes and use an initialization callback called
init(), without having to configure an init-method="init" attribute with each bean
definition. The Spring IoC container calls that method when the bean is created (and in
accordance with the standard lifecycle callback contract described previously). This
feature also enforces a consistent naming convention for initialization and destroy
method callbacks.

Suppose that your initialization callback methods are named init() and destroy
callback methods are named destroy(). Your class will resemble the class in the
following example.

public class DefaultBlogService implements BlogService {

 private BlogDao blogDao;

 public void setBlogDao(BlogDao blogDao) {
 this.blogDao = blogDao;
 }

 // this is (unsurprisingly) the initialization callback method
 public void init() {
 if (this.blogDao == null) {
 throw new IllegalStateException("The [blogDao] property must be set.");
 }
 }
}

<beans default-init-method="init">

 <bean id="blogService" class="com.foo.DefaultBlogService">
 <property name="blogDao" ref="blogDao" />
 </bean>

</beans>

The presence of the default-init-method attribute on the top-level <beans/> element
attribute causes the Spring IoC container to recognize a method called init on beans
as the initialization method callback. When a bean is created and assembled, if the bean
class has such a method, it is invoked at the appropriate time.

You configure destroy method callbacks similarly (in XML, that is) by using the
default-destroy-method attribute on the top-level <beans/> element.

Where existing bean classes already have callback methods that are named at variance
with the convention, you can override the default by specifying (in XML, that is) the
method name using the init-method and destroy-method attributes of the <bean/>
itself.

The Spring container guarantees that a configured initialization callback is called
immediately after a bean is supplied with all dependencies. Thus the initialization
callback is called on the raw bean reference, which means that AOP interceptors and so
forth are not yet applied to the bean. A target bean is fully created first,
then an AOP proxy (for example) with its interceptor chain is applied. If the target
bean and the proxy are defined separately, your code can even interact with the raw
target bean, bypassing the proxy. Hence, it would be inconsistent to apply the
interceptors to the init method, because doing so would couple the lifecycle of the
target bean with its proxy/interceptors and leave strange semantics when your code
interacts directly to the raw target bean.

Combining lifecycle mechanisms

As of Spring 2.5, you have three options for controlling bean lifecycle behavior: the
InitializingBean and
DisposableBean callback interfaces; custom
init() and destroy() methods; and the
@PostConstruct and @PreDestroy
annotations. You can combine these mechanisms to control a given bean.

	[image: [Note]]	Note
	
If multiple lifecycle mechanisms are configured for a bean, and each mechanism is
configured with a different method name, then each configured method is executed in the
order listed below. However, if the same method name is configured - for example,
init() for an initialization method - for more than one of these lifecycle mechanisms,
that method is executed once, as explained in the preceding section.

Multiple lifecycle mechanisms configured for the same bean, with different
initialization methods, are called as follows:

	
Methods annotated with @PostConstruct

	
afterPropertiesSet() as defined by the InitializingBean callback interface

	
A custom configured init() method

Destroy methods are called in the same order:

	
Methods annotated with @PreDestroy

	
destroy() as defined by the DisposableBean callback interface

	
A custom configured destroy() method

Startup and shutdown callbacks

The Lifecycle interface defines the essential methods for any object that has its own
lifecycle requirements (e.g. starts and stops some background process):

public interface Lifecycle {

 void start();

 void stop();

 boolean isRunning();
}

Any Spring-managed object may implement that interface. Then, when the
ApplicationContext itself receives start and stop signals, e.g. for a stop/restart
scenario at runtime, it will cascade those calls to all Lifecycle implementations
defined within that context. It does this by delegating to a LifecycleProcessor:

public interface LifecycleProcessor extends Lifecycle {

 void onRefresh();

 void onClose();
}

Notice that the LifecycleProcessor is itself an extension of the Lifecycle
interface. It also adds two other methods for reacting to the context being refreshed
and closed.

	[image: [Tip]]	Tip
	
Note that the regular org.springframework.context.Lifecycle interface is just a plain
contract for explicit start/stop notifications and does NOT imply auto-startup at context
refresh time. Consider implementing org.springframework.context.SmartLifecycle instead
for fine-grained control over auto-startup of a specific bean (including startup phases).
Also, please note that stop notifications are not guaranteed to come before destruction:
On regular shutdown, all Lifecycle beans will first receive a stop notification before
the general destruction callbacks are being propagated; however, on hot refresh during a
context’s lifetime or on aborted refresh attempts, only destroy methods will be called.

The order of startup and shutdown invocations can be important. If a "depends-on"
relationship exists between any two objects, the dependent side will start after its
dependency, and it will stop before its dependency. However, at times the direct
dependencies are unknown. You may only know that objects of a certain type should start
prior to objects of another type. In those cases, the SmartLifecycle interface defines
another option, namely the getPhase() method as defined on its super-interface,
Phased.

public interface Phased {

 int getPhase();
}

public interface SmartLifecycle extends Lifecycle, Phased {

 boolean isAutoStartup();

 void stop(Runnable callback);
}

When starting, the objects with the lowest phase start first, and when stopping, the
reverse order is followed. Therefore, an object that implements SmartLifecycle and
whose getPhase() method returns Integer.MIN_VALUE would be among the first to start
and the last to stop. At the other end of the spectrum, a phase value of
Integer.MAX_VALUE would indicate that the object should be started last and stopped
first (likely because it depends on other processes to be running). When considering the
phase value, it’s also important to know that the default phase for any "normal"
Lifecycle object that does not implement SmartLifecycle would be 0. Therefore, any
negative phase value would indicate that an object should start before those standard
components (and stop after them), and vice versa for any positive phase value.

As you can see the stop method defined by SmartLifecycle accepts a callback. Any
implementation must invoke that callback’s run() method after that implementation’s
shutdown process is complete. That enables asynchronous shutdown where necessary since
the default implementation of the LifecycleProcessor interface,
DefaultLifecycleProcessor, will wait up to its timeout value for the group of objects
within each phase to invoke that callback. The default per-phase timeout is 30 seconds.
You can override the default lifecycle processor instance by defining a bean named
"lifecycleProcessor" within the context. If you only want to modify the timeout, then
defining the following would be sufficient:

<bean id="lifecycleProcessor" class="org.springframework.context.support.DefaultLifecycleProcessor">
 <!-- timeout value in milliseconds -->
 <property name="timeoutPerShutdownPhase" value="10000"/>
</bean>

As mentioned, the LifecycleProcessor interface defines callback methods for the
refreshing and closing of the context as well. The latter will simply drive the shutdown
process as if stop() had been called explicitly, but it will happen when the context is
closing. The 'refresh' callback on the other hand enables another feature of
SmartLifecycle beans. When the context is refreshed (after all objects have been
instantiated and initialized), that callback will be invoked, and at that point the
default lifecycle processor will check the boolean value returned by each
SmartLifecycle object’s isAutoStartup() method. If "true", then that object will be
started at that point rather than waiting for an explicit invocation of the context’s or
its own start() method (unlike the context refresh, the context start does not happen
automatically for a standard context implementation). The "phase" value as well as any
"depends-on" relationships will determine the startup order in the same way as described
above.

Shutting down the Spring IoC container gracefully in non-web applications

	[image: [Note]]	Note
	
This section applies only to non-web applications. Spring’s web-based
ApplicationContext implementations already have code in place to shut down the Spring
IoC container gracefully when the relevant web application is shut down.

If you are using Spring’s IoC container in a non-web application environment; for
example, in a rich client desktop environment; you register a shutdown hook with the
JVM. Doing so ensures a graceful shutdown and calls the relevant destroy methods on your
singleton beans so that all resources are released. Of course, you must still configure
and implement these destroy callbacks correctly.

To register a shutdown hook, you call the registerShutdownHook() method that is
declared on the ConfigurableApplicationContext interface:

import org.springframework.context.ConfigurableApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;

public final class Boot {

 public static void main(final String[] args) throws Exception {
 ConfigurableApplicationContext ctx = new ClassPathXmlApplicationContext("beans.xml");

 // add a shutdown hook for the above context...
 ctx.registerShutdownHook();

 // app runs here...

 // main method exits, hook is called prior to the app shutting down...
 }
}

ApplicationContextAware and BeanNameAware

When an ApplicationContext creates an object instance that implements the
org.springframework.context.ApplicationContextAware interface, the instance is provided
with a reference to that ApplicationContext.

public interface ApplicationContextAware {

 void setApplicationContext(ApplicationContext applicationContext) throws BeansException;
}

Thus beans can manipulate programmatically the ApplicationContext that created them,
through the ApplicationContext interface, or by casting the reference to a known
subclass of this interface, such as ConfigurableApplicationContext, which exposes
additional functionality. One use would be the programmatic retrieval of other beans.
Sometimes this capability is useful; however, in general you should avoid it, because it
couples the code to Spring and does not follow the Inversion of Control style, where
collaborators are provided to beans as properties. Other methods of the
ApplicationContext provide access to file resources, publishing application events, and
accessing a MessageSource. These additional features are described in
the section called “Additional capabilities of the ApplicationContext”

As of Spring 2.5, autowiring is another alternative to obtain reference to the
ApplicationContext. The "traditional" constructor and byType autowiring modes (as
described in the section called “Autowiring collaborators”) can provide a dependency of type
ApplicationContext for a constructor argument or setter method parameter,
respectively. For more flexibility, including the ability to autowire fields and
multiple parameter methods, use the new annotation-based autowiring features. If you do,
the ApplicationContext is autowired into a field, constructor argument, or method
parameter that is expecting the ApplicationContext type if the field, constructor, or
method in question carries the @Autowired annotation. For more information, see
the section called “@Autowired”.

When an ApplicationContext creates a class that implements the
org.springframework.beans.factory.BeanNameAware interface, the class is provided with
a reference to the name defined in its associated object definition.

public interface BeanNameAware {

 void setBeanName(String name) throws BeansException;
}

The callback is invoked after population of normal bean properties but before an
initialization callback such as InitializingBean afterPropertiesSet or a custom
init-method.

Other Aware interfaces

Besides ApplicationContextAware and BeanNameAware discussed above, Spring offers a
range of Aware interfaces that allow beans to indicate to the container that they
require a certain infrastructure dependency. The most important Aware interfaces
are summarized below - as a general rule, the name is a good indication of the
dependency type:

Table 7.4. Aware interfaces

	Name	Injected Dependency	Explained in…​
	ApplicationContextAware
	Declaring ApplicationContext
	the section called “ApplicationContextAware and BeanNameAware”

	ApplicationEventPublisherAware
	Event publisher of the enclosing ApplicationContext
	the section called “Additional capabilities of the ApplicationContext”

	BeanClassLoaderAware
	Class loader used to load the bean classes.
	the section called “Instantiating beans”

	BeanFactoryAware
	Declaring BeanFactory
	the section called “ApplicationContextAware and BeanNameAware”

	BeanNameAware
	Name of the declaring bean
	the section called “ApplicationContextAware and BeanNameAware”

	BootstrapContextAware
	Resource adapter BootstrapContext the container runs in. Typically available only in
 JCA aware ApplicationContexts
	Chapter 32, JCA CCI

	LoadTimeWeaverAware
	Defined weaver for processing class definition at load time
	the section called “Load-time weaving with AspectJ in the Spring Framework”

	MessageSourceAware
	Configured strategy for resolving messages (with support for parametrization and
 internationalization)
	the section called “Additional capabilities of the ApplicationContext”

	NotificationPublisherAware
	Spring JMX notification publisher
	the section called “Notifications”

	PortletConfigAware
	Current PortletConfig the container runs in. Valid only in a web-aware Spring
 ApplicationContext
	Chapter 25, Portlet MVC Framework

	PortletContextAware
	Current PortletContext the container runs in. Valid only in a web-aware Spring
 ApplicationContext
	Chapter 25, Portlet MVC Framework

	ResourceLoaderAware
	Configured loader for low-level access to resources
	Chapter 8, Resources

	ServletConfigAware
	Current ServletConfig the container runs in. Valid only in a web-aware Spring
 ApplicationContext
	Chapter 22, Web MVC framework

	ServletContextAware
	Current ServletContext the container runs in. Valid only in a web-aware Spring
 ApplicationContext
	Chapter 22, Web MVC framework

Note again that usage of these interfaces ties your code to the Spring API and does not
follow the Inversion of Control style. As such, they are recommended for infrastructure
beans that require programmatic access to the container.

Bean definition inheritance

A bean definition can contain a lot of configuration information, including constructor
arguments, property values, and container-specific information such as initialization
method, static factory method name, and so on. A child bean definition inherits
configuration data from a parent definition. The child definition can override some
values, or add others, as needed. Using parent and child bean definitions can save a lot
of typing. Effectively, this is a form of templating.

If you work with an ApplicationContext interface programmatically, child bean
definitions are represented by the ChildBeanDefinition class. Most users do not work
with them on this level, instead configuring bean definitions declaratively in something
like the ClassPathXmlApplicationContext. When you use XML-based configuration
metadata, you indicate a child bean definition by using the parent attribute,
specifying the parent bean as the value of this attribute.

<bean id="inheritedTestBean" abstract="true"
 class="org.springframework.beans.TestBean">
 <property name="name" value="parent"/>
 <property name="age" value="1"/>
</bean>

<bean id="inheritsWithDifferentClass"
 class="org.springframework.beans.DerivedTestBean"
 parent="inheritedTestBean" init-method="initialize">
 <property name="name" value="override"/>
 <!-- the age property value of 1 will be inherited from parent -->
</bean>

A child bean definition uses the bean class from the parent definition if none is
specified, but can also override it. In the latter case, the child bean class must be
compatible with the parent, that is, it must accept the parent’s property values.

A child bean definition inherits scope, constructor argument values, property values, and
method overrides from the parent, with the option to add new values. Any scope, initialization
method, destroy method, and/or static factory method settings that you specify will
override the corresponding parent settings.

The remaining settings are always taken from the child definition: depends on,
autowire mode, dependency check, singleton, lazy init.

The preceding example explicitly marks the parent bean definition as abstract by using
the abstract attribute. If the parent definition does not specify a class, explicitly
marking the parent bean definition as abstract is required, as follows:

<bean id="inheritedTestBeanWithoutClass" abstract="true">
 <property name="name" value="parent"/>
 <property name="age" value="1"/>
</bean>

<bean id="inheritsWithClass" class="org.springframework.beans.DerivedTestBean"
 parent="inheritedTestBeanWithoutClass" init-method="initialize">
 <property name="name" value="override"/>
 <!-- age will inherit the value of 1 from the parent bean definition-->
</bean>

The parent bean cannot be instantiated on its own because it is incomplete, and it is
also explicitly marked as abstract. When a definition is abstract like this, it is
usable only as a pure template bean definition that serves as a parent definition for
child definitions. Trying to use such an abstract parent bean on its own, by referring
to it as a ref property of another bean or doing an explicit getBean() call with the
parent bean id, returns an error. Similarly, the container’s internal
preInstantiateSingletons() method ignores bean definitions that are defined as
abstract.

	[image: [Note]]	Note
	
ApplicationContext pre-instantiates all singletons by default. Therefore, it is
important (at least for singleton beans) that if you have a (parent) bean definition
which you intend to use only as a template, and this definition specifies a class, you
must make sure to set the abstract attribute to true, otherwise the application
context will actually (attempt to) pre-instantiate the abstract bean.

Container Extension Points

Typically, an application developer does not need to subclass ApplicationContext
implementation classes. Instead, the Spring IoC container can be extended by plugging in
implementations of special integration interfaces. The next few sections describe these
integration interfaces.

Customizing beans using a BeanPostProcessor

The BeanPostProcessor interface defines callback methods that you can implement to
provide your own (or override the container’s default) instantiation logic,
dependency-resolution logic, and so forth. If you want to implement some custom logic
after the Spring container finishes instantiating, configuring, and initializing a bean,
you can plug in one or more BeanPostProcessor implementations.

You can configure multiple BeanPostProcessor instances, and you can control the order
in which these BeanPostProcessors execute by setting the order property. You can
set this property only if the BeanPostProcessor implements the Ordered interface; if
you write your own BeanPostProcessor you should consider implementing the Ordered
interface too. For further details, consult the javadocs of the BeanPostProcessor and
Ordered interfaces. See also the note below on
programmatic
registration of BeanPostProcessors.

	[image: [Note]]	Note
	
BeanPostProcessors operate on bean (or object) instances; that is to say, the
Spring IoC container instantiates a bean instance and then BeanPostProcessors do
their work.

BeanPostProcessors are scoped per-container. This is only relevant if you are
using container hierarchies. If you define a BeanPostProcessor in one container, it
will only post-process the beans in that container. In other words, beans that are
defined in one container are not post-processed by a BeanPostProcessor defined in
another container, even if both containers are part of the same hierarchy.

To change the actual bean definition (i.e., the blueprint that defines the bean),
you instead need to use a BeanFactoryPostProcessor as described in
the section called “Customizing configuration metadata with a BeanFactoryPostProcessor”.

The org.springframework.beans.factory.config.BeanPostProcessor interface consists of
exactly two callback methods. When such a class is registered as a post-processor with
the container, for each bean instance that is created by the container, the
post-processor gets a callback from the container both before container
initialization methods (such as InitializingBean’s afterPropertiesSet() and any
declared init method) are called as well as after any bean initialization callbacks.
The post-processor can take any action with the bean instance, including ignoring the
callback completely. A bean post-processor typically checks for callback interfaces or
may wrap a bean with a proxy. Some Spring AOP infrastructure classes are implemented as
bean post-processors in order to provide proxy-wrapping logic.

An ApplicationContext automatically detects any beans that are defined in the
configuration metadata which implement the BeanPostProcessor interface. The
ApplicationContext registers these beans as post-processors so that they can be called
later upon bean creation. Bean post-processors can be deployed in the container just
like any other beans.

Note that when declaring a BeanPostProcessor using an @Bean factory method on a
configuration class, the return type of the factory method should be the implementation
class itself or at least the org.springframework.beans.factory.config.BeanPostProcessor
interface, clearly indicating the post-processor nature of that bean. Otherwise, the
ApplicationContext won’t be able to autodetect it by type before fully creating it.
Since a BeanPostProcessor needs to be instantiated early in order to apply to the
initialization of other beans in the context, this early type detection is critical.

	[image: [Note]]	Programmatically registering BeanPostProcessors
	

While the recommended approach for BeanPostProcessor registration is through
ApplicationContext auto-detection (as described above), it is also possible to
register them programmatically against a ConfigurableBeanFactory using the
addBeanPostProcessor method. This can be useful when needing to evaluate conditional
logic before registration, or even for copying bean post processors across contexts in a
hierarchy. Note however that BeanPostProcessors added programmatically do not
respect the Ordered interface. Here it is the order of registration that
dictates the order of execution. Note also that BeanPostProcessors registered
programmatically are always processed before those registered through auto-detection,
regardless of any explicit ordering.

	[image: [Note]]	BeanPostProcessors and AOP auto-proxying
	

Classes that implement the BeanPostProcessor interface are special and are treated
differently by the container. All BeanPostProcessors and beans that they reference
directly are instantiated on startup, as part of the special startup phase of the
ApplicationContext. Next, all BeanPostProcessors are registered in a sorted fashion
and applied to all further beans in the container. Because AOP auto-proxying is
implemented as a BeanPostProcessor itself, neither BeanPostProcessors nor the beans
they reference directly are eligible for auto-proxying, and thus do not have aspects
woven into them.

For any such bean, you should see an informational log message: "Bean foo is not
eligible for getting processed by all BeanPostProcessor interfaces (for example: not
eligible for auto-proxying)".

Note that if you have beans wired into your BeanPostProcessor using autowiring or
@Resource (which may fall back to autowiring), Spring might access unexpected beans
when searching for type-matching dependency candidates, and therefore make them
ineligible for auto-proxying or other kinds of bean post-processing. For example, if you
have a dependency annotated with @Resource where the field/setter name does not
directly correspond to the declared name of a bean and no name attribute is used, then
Spring will access other beans for matching them by type.

The following examples show how to write, register, and use BeanPostProcessors in an
ApplicationContext.

Example: Hello World, BeanPostProcessor-style

This first example illustrates basic usage. The example shows a custom
BeanPostProcessor implementation that invokes the toString() method of each bean as
it is created by the container and prints the resulting string to the system console.

Find below the custom BeanPostProcessor implementation class definition:

package scripting;

import org.springframework.beans.factory.config.BeanPostProcessor;

public class InstantiationTracingBeanPostProcessor implements BeanPostProcessor {

 // simply return the instantiated bean as-is
 public Object postProcessBeforeInitialization(Object bean, String beanName) {
 return bean; // we could potentially return any object reference here...
 }

 public Object postProcessAfterInitialization(Object bean, String beanName) {
 System.out.println("Bean '" + beanName + "' created : " + bean.toString());
 return bean;
 }
}

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:lang="http://www.springframework.org/schema/lang"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/lang
 http://www.springframework.org/schema/lang/spring-lang.xsd">

 <lang:groovy id="messenger"
 script-source="classpath:org/springframework/scripting/groovy/Messenger.groovy">
 <lang:property name="message" value="Fiona Apple Is Just So Dreamy."/>
 </lang:groovy>

 <!--
 when the above bean (messenger) is instantiated, this custom
 BeanPostProcessor implementation will output the fact to the system console
 -->
 <bean class="scripting.InstantiationTracingBeanPostProcessor"/>

</beans>

Notice how the InstantiationTracingBeanPostProcessor is simply defined. It does not
even have a name, and because it is a bean it can be dependency-injected just like any
other bean. (The preceding configuration also defines a bean that is backed by a Groovy
script. The Spring dynamic language support is detailed in the chapter entitled
Chapter 35, Dynamic language support.)

The following simple Java application executes the preceding code and configuration:

import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;
import org.springframework.scripting.Messenger;

public final class Boot {

 public static void main(final String[] args) throws Exception {
 ApplicationContext ctx = new ClassPathXmlApplicationContext("scripting/beans.xml");
 Messenger messenger = (Messenger) ctx.getBean("messenger");
 System.out.println(messenger);
 }

}

The output of the preceding application resembles the following:

Bean 'messenger' created : org.springframework.scripting.groovy.GroovyMessenger@272961
org.springframework.scripting.groovy.GroovyMessenger@272961

Example: The RequiredAnnotationBeanPostProcessor

Using callback interfaces or annotations in conjunction with a custom
BeanPostProcessor implementation is a common means of extending the Spring IoC
container. An example is Spring’s RequiredAnnotationBeanPostProcessor - a
BeanPostProcessor implementation that ships with the Spring distribution which ensures
that JavaBean properties on beans that are marked with an (arbitrary) annotation are
actually (configured to be) dependency-injected with a value.

Customizing configuration metadata with a BeanFactoryPostProcessor

The next extension point that we will look at is the
org.springframework.beans.factory.config.BeanFactoryPostProcessor. The semantics of
this interface are similar to those of the BeanPostProcessor, with one major
difference: BeanFactoryPostProcessor operates on the bean configuration metadata;
that is, the Spring IoC container allows a BeanFactoryPostProcessor to read the
configuration metadata and potentially change it before the container instantiates
any beans other than BeanFactoryPostProcessors.

You can configure multiple BeanFactoryPostProcessors, and you can control the order in
which these BeanFactoryPostProcessors execute by setting the order property.
However, you can only set this property if the BeanFactoryPostProcessor implements the
Ordered interface. If you write your own BeanFactoryPostProcessor, you should
consider implementing the Ordered interface too. Consult the javadocs of the
BeanFactoryPostProcessor and Ordered interfaces for more details.

	[image: [Note]]	Note
	
If you want to change the actual bean instances (i.e., the objects that are created
from the configuration metadata), then you instead need to use a BeanPostProcessor
(described above in the section called “Customizing beans using a BeanPostProcessor”). While it is technically possible
to work with bean instances within a BeanFactoryPostProcessor (e.g., using
BeanFactory.getBean()), doing so causes premature bean instantiation, violating the
standard container lifecycle. This may cause negative side effects such as bypassing
bean post processing.

Also, BeanFactoryPostProcessors are scoped per-container. This is only relevant if
you are using container hierarchies. If you define a BeanFactoryPostProcessor in one
container, it will only be applied to the bean definitions in that container. Bean
definitions in one container will not be post-processed by BeanFactoryPostProcessors
in another container, even if both containers are part of the same hierarchy.

A bean factory post-processor is executed automatically when it is declared inside an
ApplicationContext, in order to apply changes to the configuration metadata that
define the container. Spring includes a number of predefined bean factory
post-processors, such as PropertyOverrideConfigurer and
PropertyPlaceholderConfigurer. A custom BeanFactoryPostProcessor can also be used,
for example, to register custom property editors.

An ApplicationContext automatically detects any beans that are deployed into it that
implement the BeanFactoryPostProcessor interface. It uses these beans as bean factory
post-processors, at the appropriate time. You can deploy these post-processor beans as
you would any other bean.

	[image: [Note]]	Note
	
As with BeanPostProcessors , you typically do not want to configure
BeanFactoryPostProcessors for lazy initialization. If no other bean references a
Bean(Factory)PostProcessor, that post-processor will not get instantiated at all.
Thus, marking it for lazy initialization will be ignored, and the
Bean(Factory)PostProcessor will be instantiated eagerly even if you set the
default-lazy-init attribute to true on the declaration of your <beans /> element.

Example: the Class name substitution PropertyPlaceholderConfigurer

You use the PropertyPlaceholderConfigurer to externalize property values from a bean
definition in a separate file using the standard Java Properties format. Doing so
enables the person deploying an application to customize environment-specific properties
such as database URLs and passwords, without the complexity or risk of modifying the
main XML definition file or files for the container.

Consider the following XML-based configuration metadata fragment, where a DataSource
with placeholder values is defined. The example shows properties configured from an
external Properties file. At runtime, a PropertyPlaceholderConfigurer is applied to
the metadata that will replace some properties of the DataSource. The values to replace
are specified as placeholders of the form ${property-name} which follows the Ant /
log4j / JSP EL style.

<bean class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">
 <property name="locations" value="classpath:com/foo/jdbc.properties"/>
</bean>

<bean id="dataSource" destroy-method="close"
 class="org.apache.commons.dbcp.BasicDataSource">
 <property name="driverClassName" value="${jdbc.driverClassName}"/>
 <property name="url" value="${jdbc.url}"/>
 <property name="username" value="${jdbc.username}"/>
 <property name="password" value="${jdbc.password}"/>
</bean>

The actual values come from another file in the standard Java Properties format:

jdbc.driverClassName=org.hsqldb.jdbcDriver
jdbc.url=jdbc:hsqldb:hsql://production:9002
jdbc.username=sa
jdbc.password=root

Therefore, the string ${jdbc.username} is replaced at runtime with the value 'sa', and
the same applies for other placeholder values that match keys in the properties file.
The PropertyPlaceholderConfigurer checks for placeholders in most properties and
attributes of a bean definition. Furthermore, the placeholder prefix and suffix can be
customized.

With the context namespace introduced in Spring 2.5, it is possible to configure
property placeholders with a dedicated configuration element. One or more locations can
be provided as a comma-separated list in the location attribute.

<context:property-placeholder location="classpath:com/foo/jdbc.properties"/>

The PropertyPlaceholderConfigurer not only looks for properties in the Properties
file you specify. By default it also checks against the Java System properties if it
cannot find a property in the specified properties files. You can customize this
behavior by setting the systemPropertiesMode property of the configurer with one of
the following three supported integer values:

	
never (0): Never check system properties

	
fallback (1): Check system properties if not resolvable in the specified
properties files. This is the default.

	
override (2): Check system properties first, before trying the specified
properties files. This allows system properties to override any other property source.

Consult the PropertyPlaceholderConfigurer javadocs for more information.

	[image: [Tip]]	Tip
	
You can use the PropertyPlaceholderConfigurer to substitute class names, which is
sometimes useful when you have to pick a particular implementation class at runtime. For
example:

<bean class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">
 <property name="locations">
 <value>classpath:com/foo/strategy.properties</value>
 </property>
 <property name="properties">
 <value>custom.strategy.class=com.foo.DefaultStrategy</value>
 </property>
</bean>

<bean id="serviceStrategy" class="${custom.strategy.class}"/>

If the class cannot be resolved at runtime to a valid class, resolution of the bean
fails when it is about to be created, which is during the preInstantiateSingletons()
phase of an ApplicationContext for a non-lazy-init bean.

Example: the PropertyOverrideConfigurer

The PropertyOverrideConfigurer, another bean factory post-processor, resembles the
PropertyPlaceholderConfigurer, but unlike the latter, the original definitions can
have default values or no values at all for bean properties. If an overriding
Properties file does not have an entry for a certain bean property, the default
context definition is used.

Note that the bean definition is not aware of being overridden, so it is not
immediately obvious from the XML definition file that the override configurer is being
used. In case of multiple PropertyOverrideConfigurer instances that define different
values for the same bean property, the last one wins, due to the overriding mechanism.

Properties file configuration lines take this format:

beanName.property=value

For example:

dataSource.driverClassName=com.mysql.jdbc.Driver
dataSource.url=jdbc:mysql:mydb

This example file can be used with a container definition that contains a bean called
dataSource, which has driver and url properties.

Compound property names are also supported, as long as every component of the path
except the final property being overridden is already non-null (presumably initialized
by the constructors). In this example…​

foo.fred.bob.sammy=123

	
the sammy property of the bob property of the fred property of the foo bean
is set to the scalar value 123.

	[image: [Note]]	Note
	
Specified override values are always literal values; they are not translated into
bean references. This convention also applies when the original value in the XML bean
definition specifies a bean reference.

With the context namespace introduced in Spring 2.5, it is possible to configure
property overriding with a dedicated configuration element:

<context:property-override location="classpath:override.properties"/>

Customizing instantiation logic with a FactoryBean

Implement the org.springframework.beans.factory.FactoryBean interface for objects that
are themselves factories.

The FactoryBean interface is a point of pluggability into the Spring IoC container’s
instantiation logic. If you have complex initialization code that is better expressed in
Java as opposed to a (potentially) verbose amount of XML, you can create your own
FactoryBean, write the complex initialization inside that class, and then plug your
custom FactoryBean into the container.

The FactoryBean interface provides three methods:

	
Object getObject(): returns an instance of the object this factory creates. The
instance can possibly be shared, depending on whether this factory returns singletons
or prototypes.

	
boolean isSingleton(): returns true if this FactoryBean returns singletons,
false otherwise.

	
Class getObjectType(): returns the object type returned by the getObject() method
or null if the type is not known in advance.

The FactoryBean concept and interface is used in a number of places within the Spring
Framework; more than 50 implementations of the FactoryBean interface ship with Spring
itself.

When you need to ask a container for an actual FactoryBean instance itself instead of
the bean it produces, preface the bean’s id with the ampersand symbol (&) when
calling the getBean() method of the ApplicationContext. So for a given FactoryBean
with an id of myBean, invoking getBean("myBean") on the container returns the
product of the FactoryBean; whereas, invoking getBean("&myBean") returns the
FactoryBean instance itself.

Annotation-based container configuration

Are annotations better than XML for configuring Spring?

The introduction of annotation-based configurations raised the question of whether this
approach is 'better' than XML. The short answer is it depends. The long answer is
that each approach has its pros and cons, and usually it is up to the developer to
decide which strategy suits them better. Due to the way they are defined, annotations
provide a lot of context in their declaration, leading to shorter and more concise
configuration. However, XML excels at wiring up components without touching their source
code or recompiling them. Some developers prefer having the wiring close to the source
while others argue that annotated classes are no longer POJOs and, furthermore, that the
configuration becomes decentralized and harder to control.

No matter the choice, Spring can accommodate both styles and even mix them together.
It’s worth pointing out that through its JavaConfig option, Spring allows
annotations to be used in a non-invasive way, without touching the target components
source code and that in terms of tooling, all configuration styles are supported by the
Spring Tool Suite.

An alternative to XML setups is provided by annotation-based configuration which rely on
the bytecode metadata for wiring up components instead of angle-bracket declarations.
Instead of using XML to describe a bean wiring, the developer moves the configuration
into the component class itself by using annotations on the relevant class, method, or
field declaration. As mentioned in the section called “Example: The RequiredAnnotationBeanPostProcessor”, using
a BeanPostProcessor in conjunction with annotations is a common means of extending the
Spring IoC container. For example, Spring 2.0 introduced the possibility of enforcing
required properties with the @Required annotation. Spring
2.5 made it possible to follow that same general approach to drive Spring’s dependency
injection. Essentially, the @Autowired annotation provides the same capabilities as
described in the section called “Autowiring collaborators” but with more fine-grained control and wider
applicability. Spring 2.5 also added support for JSR-250 annotations such as
@PostConstruct, and @PreDestroy. Spring 3.0 added support for JSR-330 (Dependency
Injection for Java) annotations contained in the javax.inject package such as @Inject
and @Named. Details about those annotations can be found in the
relevant section.

	[image: [Note]]	Note
	
Annotation injection is performed before XML injection, thus the latter
configuration will override the former for properties wired through both approaches.

As always, you can register them as individual bean definitions, but they can also be
implicitly registered by including the following tag in an XML-based Spring
configuration (notice the inclusion of the context namespace):

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context.xsd">

 <context:annotation-config/>

</beans>

(The implicitly registered post-processors include
AutowiredAnnotationBeanPostProcessor,
 CommonAnnotationBeanPostProcessor,
 PersistenceAnnotationBeanPostProcessor,
as well as the aforementioned
RequiredAnnotationBeanPostProcessor.)

	[image: [Note]]	Note
	
<context:annotation-config/> only looks for annotations on beans in the same
application context in which it is defined. This means that, if you put
<context:annotation-config/> in a WebApplicationContext for a DispatcherServlet,
it only checks for @Autowired beans in your controllers, and not your services. See
the section called “The DispatcherServlet” for more information.

@Required

The @Required annotation applies to bean property setter methods, as in the following
example:

public class SimpleMovieLister {

 private MovieFinder movieFinder;

 @Required
 public void setMovieFinder(MovieFinder movieFinder) {
 this.movieFinder = movieFinder;
 }

 // ...
}

This annotation simply indicates that the affected bean property must be populated at
configuration time, through an explicit property value in a bean definition or through
autowiring. The container throws an exception if the affected bean property has not been
populated; this allows for eager and explicit failure, avoiding NullPointerExceptions
or the like later on. It is still recommended that you put assertions into the bean
class itself, for example, into an init method. Doing so enforces those required
references and values even when you use the class outside of a container.

@Autowired

	[image: [Note]]	Note
	
JSR 330’s @Inject annotation can be used in place of Spring’s @Autowired annotation
in the examples below. See here for more details.

You can apply the @Autowired annotation to constructors:

public class MovieRecommender {

 private final CustomerPreferenceDao customerPreferenceDao;

 @Autowired
 public MovieRecommender(CustomerPreferenceDao customerPreferenceDao) {
 this.customerPreferenceDao = customerPreferenceDao;
 }

 // ...
}

	[image: [Note]]	Note
	
As of Spring Framework 4.3, an @Autowired annotation on such a constructor is
no longer necessary if the target bean only defines one constructor to begin with.
However, if several constructors are available, at least one must be annotated to
teach the container which one to use.

As expected, you can also apply the @Autowired annotation to "traditional" setter
methods:

public class SimpleMovieLister {

 private MovieFinder movieFinder;

 @Autowired
 public void setMovieFinder(MovieFinder movieFinder) {
 this.movieFinder = movieFinder;
 }

 // ...
}

You can also apply the annotation to methods with arbitrary names and/or multiple
arguments:

public class MovieRecommender {

 private MovieCatalog movieCatalog;

 private CustomerPreferenceDao customerPreferenceDao;

 @Autowired
 public void prepare(MovieCatalog movieCatalog,
 CustomerPreferenceDao customerPreferenceDao) {
 this.movieCatalog = movieCatalog;
 this.customerPreferenceDao = customerPreferenceDao;
 }

 // ...
}

You can apply @Autowired to fields as well and even mix it with constructors:

public class MovieRecommender {

 private final CustomerPreferenceDao customerPreferenceDao;

 @Autowired
 private MovieCatalog movieCatalog;

 @Autowired
 public MovieRecommender(CustomerPreferenceDao customerPreferenceDao) {
 this.customerPreferenceDao = customerPreferenceDao;
 }

 // ...
}

	[image: [Tip]]	Tip
	
Make sure that your target components (e.g. MovieCatalog, CustomerPreferenceDao)
are consistently declared by the type that you are using for your @Autowired-annotated
injection points. Otherwise injection may fail due to no type match found at runtime.

For XML-defined beans or component classes found through a classpath scan, the container
usually knows the concrete type upfront. However, for @Bean factory methods, you need
to make sure that the declared return type is sufficiently expressive. For components
implementing several interfaces or for components potentially referred to by their
implementation type, consider declaring the most specific return type on your factory
method (at least as specific as required by the injection points referring to your bean).

It is also possible to provide all beans of a particular type from the
ApplicationContext by adding the annotation to a field or method that expects an array
of that type:

public class MovieRecommender {

 @Autowired
 private MovieCatalog[] movieCatalogs;

 // ...
}

The same applies for typed collections:

public class MovieRecommender {

 private Set<MovieCatalog> movieCatalogs;

 @Autowired
 public void setMovieCatalogs(Set<MovieCatalog> movieCatalogs) {
 this.movieCatalogs = movieCatalogs;
 }

 // ...
}

	[image: [Tip]]	Tip
	
Your target beans can implement the org.springframework.core.Ordered interface or use
the @Order or standard @Priority annotation if you want items in the array or list
to be sorted in a specific order. Otherwise their order will follow the registration
order of the corresponding target bean definitions in the container.

The @Order annotation may be declared at target class level but also on @Bean methods,
potentially being very individual per bean definition (in case of multiple definitions
with the same bean class). @Order values may influence priorities at injection points,
but please be aware that they do not influence singleton startup order which is an
orthogonal concern determined by dependency relationships and @DependsOn declarations.

Note that the standard javax.annotation.Priority annotation is not available at the
@Bean level since it cannot be declared on methods. Its semantics can be modeled
through @Order values in combination with @Primary on a single bean per type.

Even typed Maps can be autowired as long as the expected key type is String. The Map
values will contain all beans of the expected type, and the keys will contain the
corresponding bean names:

public class MovieRecommender {

 private Map<String, MovieCatalog> movieCatalogs;

 @Autowired
 public void setMovieCatalogs(Map<String, MovieCatalog> movieCatalogs) {
 this.movieCatalogs = movieCatalogs;
 }

 // ...
}

By default, the autowiring fails whenever zero candidate beans are available; the
default behavior is to treat annotated methods, constructors, and fields as
indicating required dependencies. This behavior can be changed as demonstrated below.

public class SimpleMovieLister {

 private MovieFinder movieFinder;

 @Autowired(required = false)
 public void setMovieFinder(MovieFinder movieFinder) {
 this.movieFinder = movieFinder;
 }

 // ...
}

	[image: [Note]]	Note
	
Only one annotated constructor per-class can be marked as required, but multiple
non-required constructors can be annotated. In that case, each is considered among the
candidates and Spring uses the greediest constructor whose dependencies can be
satisfied, that is the constructor that has the largest number of arguments.

The required attribute of @Autowired is recommended over the @Required annotation.
The required attribute indicates that the property is not required for autowiring
purposes, the property is ignored if it cannot be autowired. @Required, on the other
hand, is stronger in that it enforces the property that was set by any means supported
by the container. If no value is injected, a corresponding exception is raised.

Alternatively, you may express the non-required nature of a particular dependency
through Java 8’s java.util.Optional:

public class SimpleMovieLister {

 @Autowired
 public void setMovieFinder(Optional<MovieFinder> movieFinder) {
 ...
 }
}

You can also use @Autowired for interfaces that are well-known resolvable
dependencies: BeanFactory, ApplicationContext, Environment, ResourceLoader,
ApplicationEventPublisher, and MessageSource. These interfaces and their extended
interfaces, such as ConfigurableApplicationContext or ResourcePatternResolver, are
automatically resolved, with no special setup necessary.

public class MovieRecommender {

 @Autowired
 private ApplicationContext context;

 public MovieRecommender() {
 }

 // ...
}

	[image: [Note]]	Note
	
@Autowired, @Inject, @Resource, and @Value annotations are handled by Spring
BeanPostProcessor implementations which in turn means that you cannot apply these
annotations within your own BeanPostProcessor or BeanFactoryPostProcessor types (if
any). These types must be 'wired up' explicitly via XML or using a Spring @Bean method.

Fine-tuning annotation-based autowiring with @Primary

Because autowiring by type may lead to multiple candidates, it is often necessary to have
more control over the selection process. One way to accomplish this is with Spring’s
@Primary annotation. @Primary indicates that a particular bean should be given
preference when multiple beans are candidates to be autowired to a single-valued
dependency. If exactly one 'primary' bean exists among the candidates, it will be the
autowired value.

Let’s assume we have the following configuration that defines firstMovieCatalog as the
primary MovieCatalog.

@Configuration
public class MovieConfiguration {

 @Bean
 @Primary
 public MovieCatalog firstMovieCatalog() { ... }

 @Bean
 public MovieCatalog secondMovieCatalog() { ... }

 // ...
}

With such configuration, the following MovieRecommender will be autowired with the
firstMovieCatalog.

public class MovieRecommender {

 @Autowired
 private MovieCatalog movieCatalog;

 // ...
}

The corresponding bean definitions appear as follows.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context.xsd">

 <context:annotation-config/>

 <bean class="example.SimpleMovieCatalog" primary="true">
 <!-- inject any dependencies required by this bean -->
 </bean>

 <bean class="example.SimpleMovieCatalog">
 <!-- inject any dependencies required by this bean -->
 </bean>

 <bean id="movieRecommender" class="example.MovieRecommender"/>

</beans>

Fine-tuning annotation-based autowiring with qualifiers

@Primary is an effective way to use autowiring by type with several instances when one
primary candidate can be determined. When more control over the selection process is
required, Spring’s @Qualifier annotation can be used. You can associate qualifier values
with specific arguments, narrowing the set of type matches so that a specific bean is
chosen for each argument. In the simplest case, this can be a plain descriptive value:

public class MovieRecommender {

 @Autowired
 @Qualifier("main")
 private MovieCatalog movieCatalog;

 // ...
}

The @Qualifier annotation can also be specified on individual constructor arguments or
method parameters:

public class MovieRecommender {

 private MovieCatalog movieCatalog;

 private CustomerPreferenceDao customerPreferenceDao;

 @Autowired
 public void prepare(@Qualifier("main")MovieCatalog movieCatalog,
 CustomerPreferenceDao customerPreferenceDao) {
 this.movieCatalog = movieCatalog;
 this.customerPreferenceDao = customerPreferenceDao;
 }

 // ...
}

The corresponding bean definitions appear as follows. The bean with qualifier value
"main" is wired with the constructor argument that is qualified with the same value.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context.xsd">

 <context:annotation-config/>

 <bean class="example.SimpleMovieCatalog">
 <qualifier value="main"/>

 <!-- inject any dependencies required by this bean -->
 </bean>

 <bean class="example.SimpleMovieCatalog">
 <qualifier value="action"/>

 <!-- inject any dependencies required by this bean -->
 </bean>

 <bean id="movieRecommender" class="example.MovieRecommender"/>

</beans>

For a fallback match, the bean name is considered a default qualifier value. Thus you
can define the bean with an id "main" instead of the nested qualifier element, leading
to the same matching result. However, although you can use this convention to refer to
specific beans by name, @Autowired is fundamentally about type-driven injection with
optional semantic qualifiers. This means that qualifier values, even with the bean name
fallback, always have narrowing semantics within the set of type matches; they do not
semantically express a reference to a unique bean id. Good qualifier values are "main"
or "EMEA" or "persistent", expressing characteristics of a specific component that are
independent from the bean id, which may be auto-generated in case of an anonymous bean
definition like the one in the preceding example.

Qualifiers also apply to typed collections, as discussed above, for example, to
Set<MovieCatalog>. In this case, all matching beans according to the declared
qualifiers are injected as a collection. This implies that qualifiers do not have to be
unique; they rather simply constitute filtering criteria. For example, you can define
multiple MovieCatalog beans with the same qualifier value "action", all of which would
be injected into a Set<MovieCatalog> annotated with @Qualifier("action").

	[image: [Tip]]	Tip
	
Letting qualifier values select against target bean names, within the type-matching
candidates, doesn’t even require a @Qualifier annotation at the injection point.
If there is no other resolution indicator (e.g. a qualifier or a primary marker),
for a non-unique dependency situation, Spring will match the injection point name
(i.e. field name or parameter name) against the target bean names and choose the
same-named candidate, if any.

That said, if you intend to express annotation-driven injection by name, do not
primarily use @Autowired, even if is capable of selecting by bean name among
type-matching candidates. Instead, use the JSR-250 @Resource annotation, which is
semantically defined to identify a specific target component by its unique name, with
the declared type being irrelevant for the matching process. @Autowired has rather
different semantics: After selecting candidate beans by type, the specified String
qualifier value will be considered within those type-selected candidates only, e.g.
matching an "account" qualifier against beans marked with the same qualifier label.

For beans that are themselves defined as a collection/map or array type, @Resource
is a fine solution, referring to the specific collection or array bean by unique name.
That said, as of 4.3, collection/map and array types can be matched through Spring’s
@Autowired type matching algorithm as well, as long as the element type information
is preserved in @Bean return type signatures or collection inheritance hierarchies.
In this case, qualifier values can be used to select among same-typed collections,
as outlined in the previous paragraph.

As of 4.3, @Autowired also considers self references for injection, i.e. references
back to the bean that is currently injected. Note that self injection is a fallback;
regular dependencies on other components always have precedence. In that sense, self
references do not participate in regular candidate selection and are therefore in
particular never primary; on the contrary, they always end up as lowest precedence.
In practice, use self references as a last resort only, e.g. for calling other methods
on the same instance through the bean’s transactional proxy: Consider factoring out
the affected methods to a separate delegate bean in such a scenario. Alternatively,
use @Resource which may obtain a proxy back to the current bean by its unique name.

@Autowired applies to fields, constructors, and multi-argument methods, allowing for
narrowing through qualifier annotations at the parameter level. By contrast, @Resource
is supported only for fields and bean property setter methods with a single argument.
As a consequence, stick with qualifiers if your injection target is a constructor or a
multi-argument method.

You can create your own custom qualifier annotations. Simply define an annotation and
provide the @Qualifier annotation within your definition:

@Target({ElementType.FIELD, ElementType.PARAMETER})
@Retention(RetentionPolicy.RUNTIME)
@Qualifier
public @interface Genre {

 String value();
}

Then you can provide the custom qualifier on autowired fields and parameters:

public class MovieRecommender {

 @Autowired
 @Genre("Action")
 private MovieCatalog actionCatalog;

 private MovieCatalog comedyCatalog;

 @Autowired
 public void setComedyCatalog(@Genre("Comedy") MovieCatalog comedyCatalog) {
 this.comedyCatalog = comedyCatalog;
 }

 // ...
}

Next, provide the information for the candidate bean definitions. You can add
<qualifier/> tags as sub-elements of the <bean/> tag and then specify the type and
value to match your custom qualifier annotations. The type is matched against the
fully-qualified class name of the annotation. Or, as a convenience if no risk of
conflicting names exists, you can use the short class name. Both approaches are
demonstrated in the following example.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context.xsd">

 <context:annotation-config/>

 <bean class="example.SimpleMovieCatalog">
 <qualifier type="Genre" value="Action"/>
 <!-- inject any dependencies required by this bean -->
 </bean>

 <bean class="example.SimpleMovieCatalog">
 <qualifier type="example.Genre" value="Comedy"/>
 <!-- inject any dependencies required by this bean -->
 </bean>

 <bean id="movieRecommender" class="example.MovieRecommender"/>

</beans>

In the section called “Classpath scanning and managed components”, you will see an annotation-based alternative to
providing the qualifier metadata in XML. Specifically, see the section called “Providing qualifier metadata with annotations”.

In some cases, it may be sufficient to use an annotation without a value. This may be
useful when the annotation serves a more generic purpose and can be applied across
several different types of dependencies. For example, you may provide an offline
catalog that would be searched when no Internet connection is available. First define
the simple annotation:

@Target({ElementType.FIELD, ElementType.PARAMETER})
@Retention(RetentionPolicy.RUNTIME)
@Qualifier
public @interface Offline {

}

Then add the annotation to the field or property to be autowired:

public class MovieRecommender {

 @Autowired
 @Offline
 private MovieCatalog offlineCatalog;

 // ...
}

Now the bean definition only needs a qualifier type:

<bean class="example.SimpleMovieCatalog">
 <qualifier type="Offline"/>
 <!-- inject any dependencies required by this bean -->
</bean>

You can also define custom qualifier annotations that accept named attributes in
addition to or instead of the simple value attribute. If multiple attribute values are
then specified on a field or parameter to be autowired, a bean definition must match
all such attribute values to be considered an autowire candidate. As an example,
consider the following annotation definition:

@Target({ElementType.FIELD, ElementType.PARAMETER})
@Retention(RetentionPolicy.RUNTIME)
@Qualifier
public @interface MovieQualifier {

 String genre();

 Format format();
}

In this case Format is an enum:

public enum Format {
 VHS, DVD, BLURAY
}

The fields to be autowired are annotated with the custom qualifier and include values
for both attributes: genre and format.

public class MovieRecommender {

 @Autowired
 @MovieQualifier(format=Format.VHS, genre="Action")
 private MovieCatalog actionVhsCatalog;

 @Autowired
 @MovieQualifier(format=Format.VHS, genre="Comedy")
 private MovieCatalog comedyVhsCatalog;

 @Autowired
 @MovieQualifier(format=Format.DVD, genre="Action")
 private MovieCatalog actionDvdCatalog;

 @Autowired
 @MovieQualifier(format=Format.BLURAY, genre="Comedy")
 private MovieCatalog comedyBluRayCatalog;

 // ...
}

Finally, the bean definitions should contain matching qualifier values. This example
also demonstrates that bean meta attributes may be used instead of the
<qualifier/> sub-elements. If available, the <qualifier/> and its attributes take
precedence, but the autowiring mechanism falls back on the values provided within the
<meta/> tags if no such qualifier is present, as in the last two bean definitions in
the following example.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context.xsd">

 <context:annotation-config/>

 <bean class="example.SimpleMovieCatalog">
 <qualifier type="MovieQualifier">
 <attribute key="format" value="VHS"/>
 <attribute key="genre" value="Action"/>
 </qualifier>
 <!-- inject any dependencies required by this bean -->
 </bean>

 <bean class="example.SimpleMovieCatalog">
 <qualifier type="MovieQualifier">
 <attribute key="format" value="VHS"/>
 <attribute key="genre" value="Comedy"/>
 </qualifier>
 <!-- inject any dependencies required by this bean -->
 </bean>

 <bean class="example.SimpleMovieCatalog">
 <meta key="format" value="DVD"/>
 <meta key="genre" value="Action"/>
 <!-- inject any dependencies required by this bean -->
 </bean>

 <bean class="example.SimpleMovieCatalog">
 <meta key="format" value="BLURAY"/>
 <meta key="genre" value="Comedy"/>
 <!-- inject any dependencies required by this bean -->
 </bean>

</beans>

Using generics as autowiring qualifiers

In addition to the @Qualifier annotation, it is also possible to use Java generic types
as an implicit form of qualification. For example, suppose you have the following
configuration:

@Configuration
public class MyConfiguration {

 @Bean
 public StringStore stringStore() {
 return new StringStore();
 }

 @Bean
 public IntegerStore integerStore() {
 return new IntegerStore();
 }
}

Assuming that beans above implement a generic interface, i.e. Store<String> and
Store<Integer>, you can @Autowire the Store interface and the generic will
be used as a qualifier:

@Autowired
private Store<String> s1; // <String> qualifier, injects the stringStore bean

@Autowired
private Store<Integer> s2; // <Integer> qualifier, injects the integerStore bean

Generic qualifiers also apply when autowiring Lists, Maps and Arrays:

// Inject all Store beans as long as they have an <Integer> generic
// Store<String> beans will not appear in this list
@Autowired
private List<Store<Integer>> s;

CustomAutowireConfigurer

The
CustomAutowireConfigurer
is a BeanFactoryPostProcessor that enables you to register your own custom qualifier
annotation types even if they are not annotated with Spring’s @Qualifier annotation.

<bean id="customAutowireConfigurer"
 class="org.springframework.beans.factory.annotation.CustomAutowireConfigurer">
 <property name="customQualifierTypes">
 <set>
 <value>example.CustomQualifier</value>
 </set>
 </property>
</bean>

The AutowireCandidateResolver determines autowire candidates by:

	
the autowire-candidate value of each bean definition

	
any default-autowire-candidates pattern(s) available on the <beans/> element

	
the presence of @Qualifier annotations and any custom annotations registered
with the CustomAutowireConfigurer

When multiple beans qualify as autowire candidates, the determination of a "primary" is
the following: if exactly one bean definition among the candidates has a primary
attribute set to true, it will be selected.

@Resource

Spring also supports injection using the JSR-250 @Resource annotation on fields or
bean property setter methods. This is a common pattern in Java EE 5 and 6, for example
in JSF 1.2 managed beans or JAX-WS 2.0 endpoints. Spring supports this pattern for
Spring-managed objects as well.

@Resource takes a name attribute, and by default Spring interprets that value as the
bean name to be injected. In other words, it follows by-name semantics, as
demonstrated in this example:

public class SimpleMovieLister {

 private MovieFinder movieFinder;

 @Resource(name="myMovieFinder")
 public void setMovieFinder(MovieFinder movieFinder) {
 this.movieFinder = movieFinder;
 }
}

If no name is specified explicitly, the default name is derived from the field name or
setter method. In case of a field, it takes the field name; in case of a setter method,
it takes the bean property name. So the following example is going to have the bean with
name "movieFinder" injected into its setter method:

public class SimpleMovieLister {

 private MovieFinder movieFinder;

 @Resource
 public void setMovieFinder(MovieFinder movieFinder) {
 this.movieFinder = movieFinder;
 }
}

	[image: [Note]]	Note
	
The name provided with the annotation is resolved as a bean name by the
ApplicationContext of which the CommonAnnotationBeanPostProcessor is aware. The
names can be resolved through JNDI if you configure Spring’s
SimpleJndiBeanFactory
explicitly. However, it is recommended that you rely on the default behavior and simply
use Spring’s JNDI lookup capabilities to preserve the level of indirection.

In the exclusive case of @Resource usage with no explicit name specified, and similar
to @Autowired, @Resource finds a primary type match instead of a specific named bean
and resolves well-known resolvable dependencies: the BeanFactory,
ApplicationContext, ResourceLoader, ApplicationEventPublisher, and MessageSource
interfaces.

Thus in the following example, the customerPreferenceDao field first looks for a bean
named customerPreferenceDao, then falls back to a primary type match for the type
CustomerPreferenceDao. The "context" field is injected based on the known resolvable
dependency type ApplicationContext.

public class MovieRecommender {

 @Resource
 private CustomerPreferenceDao customerPreferenceDao;

 @Resource
 private ApplicationContext context;

 public MovieRecommender() {
 }

 // ...
}

@PostConstruct and @PreDestroy

The CommonAnnotationBeanPostProcessor not only recognizes the @Resource annotation
but also the JSR-250 lifecycle annotations. Introduced in Spring 2.5, the support
for these annotations offers yet another alternative to those described in
initialization callbacks and
destruction callbacks. Provided that the
CommonAnnotationBeanPostProcessor is registered within the Spring
ApplicationContext, a method carrying one of these annotations is invoked at the same
point in the lifecycle as the corresponding Spring lifecycle interface method or
explicitly declared callback method. In the example below, the cache will be
pre-populated upon initialization and cleared upon destruction.

public class CachingMovieLister {

 @PostConstruct
 public void populateMovieCache() {
 // populates the movie cache upon initialization...
 }

 @PreDestroy
 public void clearMovieCache() {
 // clears the movie cache upon destruction...
 }
}

	[image: [Note]]	Note
	
For details about the effects of combining various lifecycle mechanisms, see
the section called “Combining lifecycle mechanisms”.

Classpath scanning and managed components

Most examples in this chapter use XML to specify the configuration metadata that produces
each BeanDefinition within the Spring container. The previous section
(the section called “Annotation-based container configuration”) demonstrates how to provide a lot of the configuration
metadata through source-level annotations. Even in those examples, however, the "base"
bean definitions are explicitly defined in the XML file, while the annotations only drive
the dependency injection. This section describes an option for implicitly detecting the
candidate components by scanning the classpath. Candidate components are classes that
match against a filter criteria and have a corresponding bean definition registered with
the container. This removes the need to use XML to perform bean registration; instead you
can use annotations (for example @Component), AspectJ type expressions, or your own
custom filter criteria to select which classes will have bean definitions registered with
the container.

	[image: [Note]]	Note
	
Starting with Spring 3.0, many features provided by the Spring JavaConfig project are
part of the core Spring Framework. This allows you to define beans using Java rather
than using the traditional XML files. Take a look at the @Configuration, @Bean,
@Import, and @DependsOn annotations for examples of how to use these new features.

@Component and further stereotype annotations

The @Repository annotation is a marker for any class that fulfills the role or
stereotype of a repository (also known as Data Access Object or DAO). Among the uses
of this marker is the automatic translation of exceptions as described in
the section called “Exception translation”.

Spring provides further stereotype annotations: @Component, @Service, and
@Controller. @Component is a generic stereotype for any Spring-managed component.
@Repository, @Service, and @Controller are specializations of @Component for
more specific use cases, for example, in the persistence, service, and presentation
layers, respectively. Therefore, you can annotate your component classes with
@Component, but by annotating them with @Repository, @Service, or @Controller
instead, your classes are more properly suited for processing by tools or associating
with aspects. For example, these stereotype annotations make ideal targets for
pointcuts. It is also possible that @Repository, @Service, and @Controller may
carry additional semantics in future releases of the Spring Framework. Thus, if you are
choosing between using @Component or @Service for your service layer, @Service is
clearly the better choice. Similarly, as stated above, @Repository is already
supported as a marker for automatic exception translation in your persistence layer.

Meta-annotations

Many of the annotations provided by Spring can be used as meta-annotations in your
own code. A meta-annotation is simply an annotation that can be applied to another
annotation. For example, the @Service annotation mentioned above is meta-annotated with
@Component:

@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
@Documented
@Component // Spring will see this and treat @Service in the same way as @Component
public @interface Service {

 //
}

Meta-annotations can also be combined to create composed annotations. For example,
the @RestController annotation from Spring MVC is composed of @Controller and
@ResponseBody.

In addition, composed annotations may optionally redeclare attributes from
meta-annotations to allow user customization. This can be particularly useful when you
want to only expose a subset of the meta-annotation’s attributes. For example, Spring’s
@SessionScope annotation hardcodes the scope name to session but still allows
customization of the proxyMode.

@Target({ElementType.TYPE, ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
@Documented
@Scope(WebApplicationContext.SCOPE_SESSION)
public @interface SessionScope {

 /**
 * Alias for {@link Scope#proxyMode}.
 * <p>Defaults to {@link ScopedProxyMode#TARGET_CLASS}.
 */
 @AliasFor(annotation = Scope.class)
 ScopedProxyMode proxyMode() default ScopedProxyMode.TARGET_CLASS;

}

@SessionScope can then be used without declaring the proxyMode as follows:

@Service
@SessionScope
public class SessionScopedService {
 // ...
}

Or with an overridden value for the proxyMode as follows:

@Service
@SessionScope(proxyMode = ScopedProxyMode.INTERFACES)
public class SessionScopedUserService implements UserService {
 // ...
}

For further details, consult the Spring Annotation Programming Model.

Automatically detecting classes and registering bean definitions

Spring can automatically detect stereotyped classes and register corresponding
BeanDefinitions with the ApplicationContext. For example, the following two classes
are eligible for such autodetection:

@Service
public class SimpleMovieLister {

 private MovieFinder movieFinder;

 @Autowired
 public SimpleMovieLister(MovieFinder movieFinder) {
 this.movieFinder = movieFinder;
 }
}

@Repository
public class JpaMovieFinder implements MovieFinder {
 // implementation elided for clarity
}

To autodetect these classes and register the corresponding beans, you need to add
@ComponentScan to your @Configuration class, where the basePackages attribute
is a common parent package for the two classes. (Alternatively, you can specify a
comma/semicolon/space-separated list that includes the parent package of each class.)

@Configuration
@ComponentScan(basePackages = "org.example")
public class AppConfig {
 ...
}

	[image: [Note]]	Note
	
For concision, the above may have used the value attribute of the
annotation, i.e. @ComponentScan("org.example")

The following is an alternative using XML

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context.xsd">

 <context:component-scan base-package="org.example"/>

</beans>

	[image: [Tip]]	Tip
	
The use of <context:component-scan> implicitly enables the functionality of
<context:annotation-config>. There is usually no need to include the
<context:annotation-config> element when using <context:component-scan>.

	[image: [Note]]	Note
	
The scanning of classpath packages requires the presence of corresponding directory
entries in the classpath. When you build JARs with Ant, make sure that you do not
activate the files-only switch of the JAR task. Also, classpath directories may not
get exposed based on security policies in some environments, e.g. standalone apps on
JDK 1.7.0_45 and higher (which requires 'Trusted-Library' setup in your manifests; see
http://stackoverflow.com/questions/19394570/java-jre-7u45-breaks-classloader-getresources).

Furthermore, the AutowiredAnnotationBeanPostProcessor and
CommonAnnotationBeanPostProcessor are both included implicitly when you use the
component-scan element. That means that the two components are autodetected and
wired together - all without any bean configuration metadata provided in XML.

	[image: [Note]]	Note
	
You can disable the registration of AutowiredAnnotationBeanPostProcessor and
CommonAnnotationBeanPostProcessor by including the annotation-config attribute
with a value of false.

Using filters to customize scanning

By default, classes annotated with @Component, @Repository, @Service,
@Controller, or a custom annotation that itself is annotated with @Component are the
only detected candidate components. However, you can modify and extend this behavior
simply by applying custom filters. Add them as includeFilters or excludeFilters
parameters of the @ComponentScan annotation (or as include-filter or exclude-filter
sub-elements of the component-scan element). Each filter element requires the type
and expression attributes. The following table describes the filtering options.

Table 7.5. Filter Types

	Filter Type	Example Expression	Description
	annotation (default)
	org.example.SomeAnnotation
	An annotation to be present at the type level in target components.

	assignable
	org.example.SomeClass
	A class (or interface) that the target components are assignable to (extend/implement).

	aspectj
	org.example..*Service+
	An AspectJ type expression to be matched by the target components.

	regex
	org\.example\.Default.*
	A regex expression to be matched by the target components class names.

	custom
	org.example.MyTypeFilter
	A custom implementation of the org.springframework.core.type .TypeFilter interface.

The following example shows the configuration ignoring all @Repository annotations
and using "stub" repositories instead.

@Configuration
@ComponentScan(basePackages = "org.example",
 includeFilters = @Filter(type = FilterType.REGEX, pattern = ".*Stub.*Repository"),
 excludeFilters = @Filter(Repository.class))
public class AppConfig {
 ...
}

and the equivalent using XML

<beans>
 <context:component-scan base-package="org.example">
 <context:include-filter type="regex"
 expression=".*Stub.*Repository"/>
 <context:exclude-filter type="annotation"
 expression="org.springframework.stereotype.Repository"/>
 </context:component-scan>
</beans>

	[image: [Note]]	Note
	
You can also disable the default filters by setting useDefaultFilters=false on the annotation or
providing use-default-filters="false" as an attribute of the <component-scan/> element. This
will in effect disable automatic detection of classes annotated with @Component, @Repository,
@Service, @Controller, or @Configuration.

Defining bean metadata within components

Spring components can also contribute bean definition metadata to the container. You do
this with the same @Bean annotation used to define bean metadata within @Configuration
annotated classes. Here is a simple example:

@Component
public class FactoryMethodComponent {

 @Bean
 @Qualifier("public")
 public TestBean publicInstance() {
 return new TestBean("publicInstance");
 }

 public void doWork() {
 // Component method implementation omitted
 }
}

This class is a Spring component that has application-specific code contained in its
doWork() method. However, it also contributes a bean definition that has a factory
method referring to the method publicInstance(). The @Bean annotation identifies the
factory method and other bean definition properties, such as a qualifier value through
the @Qualifier annotation. Other method level annotations that can be specified are
@Scope, @Lazy, and custom qualifier annotations.

	[image: [Tip]]	Tip
	
In addition to its role for component initialization, the @Lazy annotation may also be
placed on injection points marked with @Autowired or @Inject. In this context, it
leads to the injection of a lazy-resolution proxy.

Autowired fields and methods are supported as previously discussed, with additional
support for autowiring of @Bean methods:

@Component
public class FactoryMethodComponent {

 private static int i;

 @Bean
 @Qualifier("public")
 public TestBean publicInstance() {
 return new TestBean("publicInstance");
 }

 // use of a custom qualifier and autowiring of method parameters
 @Bean
 protected TestBean protectedInstance(
 @Qualifier("public") TestBean spouse,
 @Value("#{privateInstance.age}") String country) {
 TestBean tb = new TestBean("protectedInstance", 1);
 tb.setSpouse(spouse);
 tb.setCountry(country);
 return tb;
 }

 @Bean
 private TestBean privateInstance() {
 return new TestBean("privateInstance", i++);
 }

 @Bean
 @RequestScope
 public TestBean requestScopedInstance() {
 return new TestBean("requestScopedInstance", 3);
 }
}

The example autowires the String method parameter country to the value of the age
property on another bean named privateInstance. A Spring Expression Language element
defines the value of the property through the notation #{ <expression> }. For @Value
annotations, an expression resolver is preconfigured to look for bean names when
resolving expression text.

As of Spring Framework 4.3, you may also declare a factory method parameter of type
InjectionPoint (or its more specific subclass DependencyDescriptor) in order to
access the requesting injection point that triggers the creation of the current bean.
Note that this will only apply to the actual creation of bean instances, not to the
injection of existing instances. As a consequence, this feature makes most sense for
beans of prototype scope. For other scopes, the factory method will only ever see the
injection point which triggered the creation of a new bean instance in the given scope:
for example, the dependency that triggered the creation of a lazy singleton bean.
Use the provided injection point metadata with semantic care in such scenarios.

@Component
public class FactoryMethodComponent {

 @Bean @Scope("prototype")
 public TestBean prototypeInstance(InjectionPoint injectionPoint) {
 return new TestBean("prototypeInstance for " + injectionPoint.getMember());
 }
}

The @Bean methods in a regular Spring component are processed differently than their
counterparts inside a Spring @Configuration class. The difference is that @Component
classes are not enhanced with CGLIB to intercept the invocation of methods and fields.
CGLIB proxying is the means by which invoking methods or fields within @Bean methods
in @Configuration classes creates bean metadata references to collaborating objects;
such methods are not invoked with normal Java semantics but rather go through the
container in order to provide the usual lifecycle management and proxying of Spring
beans even when referring to other beans via programmatic calls to @Bean methods.
In contrast, invoking a method or field in an @Bean method within a plain @Component
class has standard Java semantics, with no special CGLIB processing or other
constraints applying.

	[image: [Note]]	Note
	
You may declare @Bean methods as static, allowing for them to be called without
creating their containing configuration class as an instance. This makes particular
sense when defining post-processor beans, e.g. of type BeanFactoryPostProcessor or
BeanPostProcessor, since such beans will get initialized early in the container
lifecycle and should avoid triggering other parts of the configuration at that point.

Note that calls to static @Bean methods will never get intercepted by the container,
not even within @Configuration classes (see above). This is due to technical
limitations: CGLIB subclassing can only override non-static methods. As a consequence,
a direct call to another @Bean method will have standard Java semantics, resulting
in an independent instance being returned straight from the factory method itself.

The Java language visibility of @Bean methods does not have an immediate impact on
the resulting bean definition in Spring’s container. You may freely declare your
factory methods as you see fit in non-@Configuration classes and also for static
methods anywhere. However, regular @Bean methods in @Configuration classes need
to be overridable, i.e. they must not be declared as private or final.

@Bean methods will also be discovered on base classes of a given component or
configuration class, as well as on Java 8 default methods declared in interfaces
implemented by the component or configuration class. This allows for a lot of
flexibility in composing complex configuration arrangements, with even multiple
inheritance being possible through Java 8 default methods as of Spring 4.2.

Finally, note that a single class may hold multiple @Bean methods for the same
bean, as an arrangement of multiple factory methods to use depending on available
dependencies at runtime. This is the same algorithm as for choosing the "greediest"
constructor or factory method in other configuration scenarios: The variant with
the largest number of satisfiable dependencies will be picked at construction time,
analogous to how the container selects between multiple @Autowired constructors.

Naming autodetected components

When a component is autodetected as part of the scanning process, its bean name is
generated by the BeanNameGenerator strategy known to that scanner. By default, any
Spring stereotype annotation (@Component, @Repository, @Service, and
@Controller) that contains a name value will thereby provide that name to the
corresponding bean definition.

If such an annotation contains no name value or for any other detected component
(such as those discovered by custom filters), the default bean name generator returns
the uncapitalized non-qualified class name. For example, if the following component
classes were detected, the names would be myMovieLister and movieFinderImpl:

@Service("myMovieLister")
public class SimpleMovieLister {
 // ...
}

@Repository
public class MovieFinderImpl implements MovieFinder {
 // ...
}

	[image: [Note]]	Note
	
If you do not want to rely on the default bean-naming strategy, you can provide a custom
bean-naming strategy. First, implement the
BeanNameGenerator
interface, and be sure to include a default no-arg constructor. Then, provide the
fully-qualified class name when configuring the scanner:

@Configuration
@ComponentScan(basePackages = "org.example", nameGenerator = MyNameGenerator.class)
public class AppConfig {
 ...
}

<beans>
 <context:component-scan base-package="org.example"
 name-generator="org.example.MyNameGenerator" />
</beans>

As a general rule, consider specifying the name with the annotation whenever other
components may be making explicit references to it. On the other hand, the
auto-generated names are adequate whenever the container is responsible for wiring.

Providing a scope for autodetected components

As with Spring-managed components in general, the default and most common scope for
autodetected components is singleton. However, sometimes you need a different scope
which can be specified via the @Scope annotation. Simply provide the name of the
scope within the annotation:

@Scope("prototype")
@Repository
public class MovieFinderImpl implements MovieFinder {
 // ...
}

	[image: [Note]]	Note
	
@Scope annotations are only introspected on the concrete bean class (for annotated
components) or the factory method (for @Bean methods). In contrast to XML bean
definitions, there is no notion of bean definition inheritance, and inheritance
hierarchies at the class level are irrelevant for metadata purposes.

For details on web-specific scopes such as "request"/"session" in a Spring context,
see the section called “Request, session, global session, application, and WebSocket scopes”. Like the pre-built annotations for those scopes,
you may also compose your own scoping annotations using Spring’s meta-annotation
approach: e.g. a custom annotation meta-annotated with @Scope("prototype"),
possibly also declaring a custom scoped-proxy mode.

	[image: [Note]]	Note
	
To provide a custom strategy for scope resolution rather than relying on the
annotation-based approach, implement the
ScopeMetadataResolver
interface, and be sure to include a default no-arg constructor. Then, provide the
fully-qualified class name when configuring the scanner:

@Configuration
@ComponentScan(basePackages = "org.example", scopeResolver = MyScopeResolver.class)
public class AppConfig {
 ...
}

<beans>
 <context:component-scan base-package="org.example" scope-resolver="org.example.MyScopeResolver"/>
</beans>

When using certain non-singleton scopes, it may be necessary to generate proxies for the
scoped objects. The reasoning is described in the section called “Scoped beans as dependencies”.
For this purpose, a scoped-proxy attribute is available on the component-scan
element. The three possible values are: no, interfaces, and targetClass. For example,
the following configuration will result in standard JDK dynamic proxies:

@Configuration
@ComponentScan(basePackages = "org.example", scopedProxy = ScopedProxyMode.INTERFACES)
public class AppConfig {
 ...
}

<beans>
 <context:component-scan base-package="org.example" scoped-proxy="interfaces"/>
</beans>

Providing qualifier metadata with annotations

The @Qualifier annotation is discussed in the section called “Fine-tuning annotation-based autowiring with qualifiers”.
The examples in that section demonstrate the use of the @Qualifier annotation and
custom qualifier annotations to provide fine-grained control when you resolve autowire
candidates. Because those examples were based on XML bean definitions, the qualifier
metadata was provided on the candidate bean definitions using the qualifier or meta
sub-elements of the bean element in the XML. When relying upon classpath scanning for
autodetection of components, you provide the qualifier metadata with type-level
annotations on the candidate class. The following three examples demonstrate this
technique:

@Component
@Qualifier("Action")
public class ActionMovieCatalog implements MovieCatalog {
 // ...
}

@Component
@Genre("Action")
public class ActionMovieCatalog implements MovieCatalog {
 // ...
}

@Component
@Offline
public class CachingMovieCatalog implements MovieCatalog {
 // ...
}

	[image: [Note]]	Note
	
As with most annotation-based alternatives, keep in mind that the annotation metadata is
bound to the class definition itself, while the use of XML allows for multiple beans
of the same type to provide variations in their qualifier metadata, because that
metadata is provided per-instance rather than per-class.

Using JSR 330 Standard Annotations

Starting with Spring 3.0, Spring offers support for JSR-330 standard annotations
(Dependency Injection). Those annotations are scanned in the same way as the Spring
annotations. You just need to have the relevant jars in your classpath.

	[image: [Note]]	Note
	
If you are using Maven, the javax.inject artifact is available in the standard Maven
repository (
http://repo1.maven.org/maven2/javax/inject/javax.inject/1/).
You can add the following dependency to your file pom.xml:

<dependency>
 <groupId>javax.inject</groupId>
 <artifactId>javax.inject</artifactId>
 <version>1</version>
</dependency>

Dependency Injection with @Inject and @Named

Instead of @Autowired, @javax.inject.Inject may be used as follows:

import javax.inject.Inject;

public class SimpleMovieLister {

 private MovieFinder movieFinder;

 @Inject
 public void setMovieFinder(MovieFinder movieFinder) {
 this.movieFinder = movieFinder;
 }

 public void listMovies() {
 this.movieFinder.findMovies(...);
 ...
 }
}

As with @Autowired, it is possible to use @Inject at the field level, method level
and constructor-argument level. Furthermore, you may declare your injection point as a
Provider, allowing for on-demand access to beans of shorter scopes or lazy access to
other beans through a Provider.get() call. As a variant of the example above:

import javax.inject.Inject;
import javax.inject.Provider;

public class SimpleMovieLister {

 private Provider<MovieFinder> movieFinder;

 @Inject
 public void setMovieFinder(Provider<MovieFinder> movieFinder) {
 this.movieFinder = movieFinder;
 }

 public void listMovies() {
 this.movieFinder.get().findMovies(...);
 ...
 }
}

If you would like to use a qualified name for the dependency that should be injected,
you should use the @Named annotation as follows:

import javax.inject.Inject;
import javax.inject.Named;

public class SimpleMovieLister {

 private MovieFinder movieFinder;

 @Inject
 public void setMovieFinder(@Named("main") MovieFinder movieFinder) {
 this.movieFinder = movieFinder;
 }

 // ...
}

Like @Autowired, @Inject can also be used with java.util.Optional or
@Nullable. This is even more applicable here since @Inject does not have
a required attribute.

public class SimpleMovieLister {

 @Inject
 public void setMovieFinder(Optional<MovieFinder> movieFinder) {
 ...
 }
}

public class SimpleMovieLister {

 @Inject
 public void setMovieFinder(@Nullable MovieFinder movieFinder) {
 ...
 }
}

@Named and @ManagedBean: standard equivalents to the @Component annotation

Instead of @Component, @javax.inject.Named or javax.annotation.ManagedBean may be
used as follows:

import javax.inject.Inject;
import javax.inject.Named;

@Named("movieListener") // @ManagedBean("movieListener") could be used as well
public class SimpleMovieLister {

 private MovieFinder movieFinder;

 @Inject
 public void setMovieFinder(MovieFinder movieFinder) {
 this.movieFinder = movieFinder;
 }

 // ...
}

It is very common to use @Component without specifying a name for the component.
@Named can be used in a similar fashion:

import javax.inject.Inject;
import javax.inject.Named;

@Named
public class SimpleMovieLister {

 private MovieFinder movieFinder;

 @Inject
 public void setMovieFinder(MovieFinder movieFinder) {
 this.movieFinder = movieFinder;
 }

 // ...
}

When using @Named or @ManagedBean, it is possible to use component scanning in the
exact same way as when using Spring annotations:

@Configuration
@ComponentScan(basePackages = "org.example")
public class AppConfig {
 ...
}

	[image: [Note]]	Note
	
In contrast to @Component, the JSR-330 @Named and the JSR-250 ManagedBean
annotations are not composable. Please use Spring’s stereotype model for building custom
component annotations.

Limitations of JSR-330 standard annotations

When working with standard annotations, it is important to know that some significant
features are not available as shown in the table below:

Table 7.6. Spring component model elements vs. JSR-330 variants

	Spring	javax.inject.*	javax.inject restrictions / comments
	@Autowired
	@Inject
	@Inject has no 'required' attribute; can be used with Java 8’s Optional instead.

	@Component
	@Named / @ManagedBean
	JSR-330 does not provide a composable model, just a way to identify named components.

	@Scope("singleton")
	@Singleton
	The JSR-330 default scope is like Spring’s prototype. However, in order to keep it
 consistent with Spring’s general defaults, a JSR-330 bean declared in the Spring
 container is a singleton by default. In order to use a scope other than singleton,
 you should use Spring’s @Scope annotation. javax.inject also provides a
 @Scope annotation.
 Nevertheless, this one is only intended to be used for creating your own annotations.

	@Qualifier
	@Qualifier / @Named
	javax.inject.Qualifier is just a meta-annotation for building custom qualifiers.
 Concrete String qualifiers (like Spring’s @Qualifier with a value) can be associated
 through javax.inject.Named.

	@Value
	-
	no equivalent

	@Required
	-
	no equivalent

	@Lazy
	-
	no equivalent

	ObjectFactory
	Provider
	javax.inject.Provider is a direct alternative to Spring’s ObjectFactory,
 just with a shorter get() method name. It can also be used in combination with
 Spring’s @Autowired or with non-annotated constructors and setter methods.

Java-based container configuration

Basic concepts: @Bean and @Configuration

The central artifacts in Spring’s new Java-configuration support are
@Configuration-annotated classes and @Bean-annotated methods.

The @Bean annotation is used to indicate that a method instantiates, configures and
initializes a new object to be managed by the Spring IoC container. For those familiar
with Spring’s <beans/> XML configuration the @Bean annotation plays the same role as
the <bean/> element. You can use @Bean annotated methods with any Spring
@Component, however, they are most often used with @Configuration beans.

Annotating a class with @Configuration indicates that its primary purpose is as a
source of bean definitions. Furthermore, @Configuration classes allow inter-bean
dependencies to be defined by simply calling other @Bean methods in the same class.
The simplest possible @Configuration class would read as follows:

@Configuration
public class AppConfig {

 @Bean
 public MyService myService() {
 return new MyServiceImpl();
 }
}

The AppConfig class above would be equivalent to the following Spring <beans/> XML:

<beans>
 <bean id="myService" class="com.acme.services.MyServiceImpl"/>
</beans>

Full @Configuration vs 'lite' @Bean mode?

When @Bean methods are declared within classes that are not annotated with
@Configuration they are referred to as being processed in a 'lite' mode. Bean methods
declared in a @Component or even in a plain old class will be considered 'lite',
with a different primary purpose of the containing class and an @Bean method just
being a sort of bonus there. For example, service components may expose management views
to the container through an additional @Bean method on each applicable component class.
In such scenarios, @Bean methods are a simple general-purpose factory method mechanism.

Unlike full @Configuration, lite @Bean methods cannot declare inter-bean dependencies.
Instead, they operate on their containing component’s internal state and optionally on
arguments that they may declare. Such an @Bean method should therefore not invoke other
@Bean methods; each such method is literally just a factory method for a particular
bean reference, without any special runtime semantics. The positive side-effect here is
that no CGLIB subclassing has to be applied at runtime, so there are no limitations in
terms of class design (i.e. the containing class may nevertheless be final etc).

In common scenarios, @Bean methods are to be declared within @Configuration classes,
ensuring that 'full' mode is always used and that cross-method references will therefore
get redirected to the container’s lifecycle management. This will prevent the same
@Bean method from accidentally being invoked through a regular Java call which helps
to reduce subtle bugs that can be hard to track down when operating in 'lite' mode.

The @Bean and @Configuration annotations will be discussed in depth in the sections
below. First, however, we’ll cover the various ways of creating a spring container using
Java-based configuration.

Instantiating the Spring container using AnnotationConfigApplicationContext

The sections below document Spring’s AnnotationConfigApplicationContext, new in Spring
3.0. This versatile ApplicationContext implementation is capable of accepting not only
@Configuration classes as input, but also plain @Component classes and classes
annotated with JSR-330 metadata.

When @Configuration classes are provided as input, the @Configuration class itself
is registered as a bean definition, and all declared @Bean methods within the class
are also registered as bean definitions.

When @Component and JSR-330 classes are provided, they are registered as bean
definitions, and it is assumed that DI metadata such as @Autowired or @Inject are
used within those classes where necessary.

Simple construction

In much the same way that Spring XML files are used as input when instantiating a
ClassPathXmlApplicationContext, @Configuration classes may be used as input when
instantiating an AnnotationConfigApplicationContext. This allows for completely
XML-free usage of the Spring container:

public static void main(String[] args) {
 ApplicationContext ctx = new AnnotationConfigApplicationContext(AppConfig.class);
 MyService myService = ctx.getBean(MyService.class);
 myService.doStuff();
}

As mentioned above, AnnotationConfigApplicationContext is not limited to working only
with @Configuration classes. Any @Component or JSR-330 annotated class may be supplied
as input to the constructor. For example:

public static void main(String[] args) {
 ApplicationContext ctx = new AnnotationConfigApplicationContext(MyServiceImpl.class, Dependency1.class, Dependency2.class);
 MyService myService = ctx.getBean(MyService.class);
 myService.doStuff();
}

The above assumes that MyServiceImpl, Dependency1 and Dependency2 use Spring
dependency injection annotations such as @Autowired.

Building the container programmatically using register(Class<?>…​)

An AnnotationConfigApplicationContext may be instantiated using a no-arg constructor
and then configured using the register() method. This approach is particularly useful
when programmatically building an AnnotationConfigApplicationContext.

public static void main(String[] args) {
 AnnotationConfigApplicationContext ctx = new AnnotationConfigApplicationContext();
 ctx.register(AppConfig.class, OtherConfig.class);
 ctx.register(AdditionalConfig.class);
 ctx.refresh();
 MyService myService = ctx.getBean(MyService.class);
 myService.doStuff();
}

Enabling component scanning with scan(String…​)

To enable component scanning, just annotate your @Configuration class as follows:

@Configuration
@ComponentScan(basePackages = "com.acme")
public class AppConfig {
 ...
}

	[image: [Tip]]	Tip
	
Experienced Spring users will be familiar with the XML declaration equivalent from
Spring’s context: namespace

<beans>
 <context:component-scan base-package="com.acme"/>
</beans>

In the example above, the com.acme package will be scanned, looking for any
@Component-annotated classes, and those classes will be registered as Spring bean
definitions within the container. AnnotationConfigApplicationContext exposes the
scan(String…​) method to allow for the same component-scanning functionality:

public static void main(String[] args) {
 AnnotationConfigApplicationContext ctx = new AnnotationConfigApplicationContext();
 ctx.scan("com.acme");
 ctx.refresh();
 MyService myService = ctx.getBean(MyService.class);
}

	[image: [Note]]	Note
	
Remember that @Configuration classes are meta-annotated
with @Component, so they are candidates for component-scanning! In the example above,
assuming that AppConfig is declared within the com.acme package (or any package
underneath), it will be picked up during the call to scan(), and upon refresh() all
its @Bean methods will be processed and registered as bean definitions within the
container.

Support for web applications with AnnotationConfigWebApplicationContext

A WebApplicationContext variant of AnnotationConfigApplicationContext is available
with AnnotationConfigWebApplicationContext. This implementation may be used when
configuring the Spring ContextLoaderListener servlet listener, Spring MVC
DispatcherServlet, etc. What follows is a web.xml snippet that configures a typical
Spring MVC web application. Note the use of the contextClass context-param and
init-param:

<web-app>
 <!-- Configure ContextLoaderListener to use AnnotationConfigWebApplicationContext
 instead of the default XmlWebApplicationContext -->
 <context-param>
 <param-name>contextClass</param-name>
 <param-value>
 org.springframework.web.context.support.AnnotationConfigWebApplicationContext
 </param-value>
 </context-param>

 <!-- Configuration locations must consist of one or more comma- or space-delimited
 fully-qualified @Configuration classes. Fully-qualified packages may also be
 specified for component-scanning -->
 <context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>com.acme.AppConfig</param-value>
 </context-param>

 <!-- Bootstrap the root application context as usual using ContextLoaderListener -->
 <listener>
 <listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>
 </listener>

 <!-- Declare a Spring MVC DispatcherServlet as usual -->
 <servlet>
 <servlet-name>dispatcher</servlet-name>
 <servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
 <!-- Configure DispatcherServlet to use AnnotationConfigWebApplicationContext
 instead of the default XmlWebApplicationContext -->
 <init-param>
 <param-name>contextClass</param-name>
 <param-value>
 org.springframework.web.context.support.AnnotationConfigWebApplicationContext
 </param-value>
 </init-param>
 <!-- Again, config locations must consist of one or more comma- or space-delimited
 and fully-qualified @Configuration classes -->
 <init-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>com.acme.web.MvcConfig</param-value>
 </init-param>
 </servlet>

 <!-- map all requests for /app/* to the dispatcher servlet -->
 <servlet-mapping>
 <servlet-name>dispatcher</servlet-name>
 <url-pattern>/app/*</url-pattern>
 </servlet-mapping>
</web-app>

Using the @Bean annotation

@Bean is a method-level annotation and a direct analog of the XML <bean/> element.
The annotation supports some of the attributes offered by <bean/>, such as:
init-method,
destroy-method,
autowiring and name.

You can use the @Bean annotation in a @Configuration-annotated or in a
@Component-annotated class.

Declaring a bean

To declare a bean, simply annotate a method with the @Bean annotation. You use this
method to register a bean definition within an ApplicationContext of the type
specified as the method’s return value. By default, the bean name will be the same as
the method name. The following is a simple example of a @Bean method declaration:

@Configuration
public class AppConfig {

 @Bean
 public TransferServiceImpl transferService() {
 return new TransferServiceImpl();
 }
}

The preceding configuration is exactly equivalent to the following Spring XML:

<beans>
 <bean id="transferService" class="com.acme.TransferServiceImpl"/>
</beans>

Both declarations make a bean named transferService available in the
ApplicationContext, bound to an object instance of type TransferServiceImpl:

transferService -> com.acme.TransferServiceImpl

You may also declare your @Bean method with an interface (or base class)
return type:

@Configuration
public class AppConfig {

 @Bean
 public TransferService transferService() {
 return new TransferServiceImpl();
 }
}

However, this limits the visibility for advance type prediction to the specified
interface type (TransferService) then, with the full type (TransferServiceImpl)
only known to the container once the affected singleton bean has been instantiated.
Non-lazy singleton beans get instantiated according to their declaration order,
so you may see different type matching results depending on when another component
tries to match by a non-declared type (such as @Autowired TransferServiceImpl
which will only resolve once the "transferService" bean has been instantiated).

	[image: [Tip]]	Tip
	
If you consistently refer to your types by a declared service interface, your
@Bean return types may safely join that design decision. However, for components
implementing several interfaces or for components potentially referred to by their
implementation type, it is safer to declare the most specific return type possible
(at least as specific as required by the injection points referring to your bean).

Bean dependencies

A @Bean annotated method can have an arbitrary number of parameters describing the
dependencies required to build that bean. For instance if our TransferService
requires an AccountRepository we can materialize that dependency via a method
parameter:

@Configuration
public class AppConfig {

 @Bean
 public TransferService transferService(AccountRepository accountRepository) {
 return new TransferServiceImpl(accountRepository);
 }
}

The resolution mechanism is pretty much identical to constructor-based dependency
injection, see the relevant section for more details.

Receiving lifecycle callbacks

Any classes defined with the @Bean annotation support the regular lifecycle callbacks
and can use the @PostConstruct and @PreDestroy annotations from JSR-250, see
JSR-250 annotations for further
details.

The regular Spring lifecycle callbacks are fully supported as
well. If a bean implements InitializingBean, DisposableBean, or Lifecycle, their
respective methods are called by the container.

The standard set of *Aware interfaces such as BeanFactoryAware,
BeanNameAware,
MessageSourceAware,
ApplicationContextAware, and so on are also fully supported.

The @Bean annotation supports specifying arbitrary initialization and destruction
callback methods, much like Spring XML’s init-method and destroy-method attributes
on the bean element:

public class Foo {

 public void init() {
 // initialization logic
 }
}

public class Bar {

 public void cleanup() {
 // destruction logic
 }
}

@Configuration
public class AppConfig {

 @Bean(initMethod = "init")
 public Foo foo() {
 return new Foo();
 }

 @Bean(destroyMethod = "cleanup")
 public Bar bar() {
 return new Bar();
 }
}

	[image: [Note]]	Note
	
By default, beans defined using Java config that have a public close or shutdown
method are automatically enlisted with a destruction callback. If you have a public
close or shutdown method and you do not wish for it to be called when the container
shuts down, simply add @Bean(destroyMethod="") to your bean definition to disable the
default (inferred) mode.

You may want to do that by default for a resource that you acquire via JNDI as its
lifecycle is managed outside the application. In particular, make sure to always do it
for a DataSource as it is known to be problematic on Java EE application servers.

@Bean(destroyMethod="")
public DataSource dataSource() throws NamingException {
 return (DataSource) jndiTemplate.lookup("MyDS");
}

Also, with @Bean methods, you will typically choose to use programmatic JNDI lookups:
either using Spring’s JndiTemplate/JndiLocatorDelegate helpers or straight JNDI
InitialContext usage, but not the JndiObjectFactoryBean variant which would force
you to declare the return type as the FactoryBean type instead of the actual target
type, making it harder to use for cross-reference calls in other @Bean methods that
intend to refer to the provided resource here.

Of course, in the case of Foo above, it would be equally as valid to call the init()
method directly during construction:

@Configuration
public class AppConfig {

 @Bean
 public Foo foo() {
 Foo foo = new Foo();
 foo.init();
 return foo;
 }

 // ...
}

	[image: [Tip]]	Tip
	
When you work directly in Java, you can do anything you like with your objects and do
not always need to rely on the container lifecycle!

Specifying bean scope

Using the @Scope annotation

You can specify that your beans defined with the @Bean annotation should have a
specific scope. You can use any of the standard scopes specified in the
Bean Scopes section.

The default scope is singleton, but you can override this with the @Scope annotation:

@Configuration
public class MyConfiguration {

 @Bean
 @Scope("prototype")
 public Encryptor encryptor() {
 // ...
 }
}

@Scope and scoped-proxy

Spring offers a convenient way of working with scoped dependencies through
scoped proxies. The easiest way to create such
a proxy when using the XML configuration is the <aop:scoped-proxy/> element.
Configuring your beans in Java with a @Scope annotation offers equivalent support with
the proxyMode attribute. The default is no proxy (ScopedProxyMode.NO), but you can
specify ScopedProxyMode.TARGET_CLASS or ScopedProxyMode.INTERFACES.

If you port the scoped proxy example from the XML reference documentation (see preceding
link) to our @Bean using Java, it would look like the following:

// an HTTP Session-scoped bean exposed as a proxy
@Bean
@SessionScope
public UserPreferences userPreferences() {
 return new UserPreferences();
}

@Bean
public Service userService() {
 UserService service = new SimpleUserService();
 // a reference to the proxied userPreferences bean
 service.setUserPreferences(userPreferences());
 return service;
}

Customizing bean naming

By default, configuration classes use a @Bean method’s name as the name of the
resulting bean. This functionality can be overridden, however, with the name attribute.

@Configuration
public class AppConfig {

 @Bean(name = "myFoo")
 public Foo foo() {
 return new Foo();
 }
}

Bean aliasing

As discussed in the section called “Naming beans”, it is sometimes desirable to give a single bean
multiple names, otherwise known as bean aliasing. The name attribute of the @Bean
annotation accepts a String array for this purpose.

@Configuration
public class AppConfig {

 @Bean(name = { "dataSource", "subsystemA-dataSource", "subsystemB-dataSource" })
 public DataSource dataSource() {
 // instantiate, configure and return DataSource bean...
 }
}

Bean description

Sometimes it is helpful to provide a more detailed textual description of a bean. This can
be particularly useful when beans are exposed (perhaps via JMX) for monitoring purposes.

To add a description to a @Bean the
@Description
annotation can be used:

@Configuration
public class AppConfig {

 @Bean
 @Description("Provides a basic example of a bean")
 public Foo foo() {
 return new Foo();
 }
}

Using the @Configuration annotation

@Configuration is a class-level annotation indicating that an object is a source of
bean definitions. @Configuration classes declare beans via public @Bean annotated
methods. Calls to @Bean methods on @Configuration classes can also be used to define
inter-bean dependencies. See the section called “Basic concepts: @Bean and @Configuration” for a general introduction.

Injecting inter-bean dependencies

When @Beans have dependencies on one another, expressing that dependency is as simple
as having one bean method call another:

@Configuration
public class AppConfig {

 @Bean
 public Foo foo() {
 return new Foo(bar());
 }

 @Bean
 public Bar bar() {
 return new Bar();
 }
}

In the example above, the foo bean receives a reference to bar via constructor
injection.

	[image: [Note]]	Note
	
This method of declaring inter-bean dependencies only works when the @Bean method is
declared within a @Configuration class. You cannot declare inter-bean dependencies
using plain @Component classes.

Lookup method injection

As noted earlier, lookup method injection is an
advanced feature that you should use rarely. It is useful in cases where a
singleton-scoped bean has a dependency on a prototype-scoped bean. Using Java for this
type of configuration provides a natural means for implementing this pattern.

public abstract class CommandManager {
 public Object process(Object commandState) {
 // grab a new instance of the appropriate Command interface
 Command command = createCommand();
 // set the state on the (hopefully brand new) Command instance
 command.setState(commandState);
 return command.execute();
 }

 // okay... but where is the implementation of this method?
 protected abstract Command createCommand();
}

Using Java-configuration support , you can create a subclass of CommandManager where
the abstract createCommand() method is overridden in such a way that it looks up a new
(prototype) command object:

@Bean
@Scope("prototype")
public AsyncCommand asyncCommand() {
 AsyncCommand command = new AsyncCommand();
 // inject dependencies here as required
 return command;
}

@Bean
public CommandManager commandManager() {
 // return new anonymous implementation of CommandManager with command() overridden
 // to return a new prototype Command object
 return new CommandManager() {
 protected Command createCommand() {
 return asyncCommand();
 }
 }
}

Further information about how Java-based configuration works internally

The following example shows a @Bean annotated method being called twice:

@Configuration
public class AppConfig {

 @Bean
 public ClientService clientService1() {
 ClientServiceImpl clientService = new ClientServiceImpl();
 clientService.setClientDao(clientDao());
 return clientService;
 }

 @Bean
 public ClientService clientService2() {
 ClientServiceImpl clientService = new ClientServiceImpl();
 clientService.setClientDao(clientDao());
 return clientService;
 }

 @Bean
 public ClientDao clientDao() {
 return new ClientDaoImpl();
 }
}

clientDao() has been called once in clientService1() and once in clientService2().
Since this method creates a new instance of ClientDaoImpl and returns it, you would
normally expect having 2 instances (one for each service). That definitely would be
problematic: in Spring, instantiated beans have a singleton scope by default. This is
where the magic comes in: All @Configuration classes are subclassed at startup-time
with CGLIB. In the subclass, the child method checks the container first for any
cached (scoped) beans before it calls the parent method and creates a new instance. Note
that as of Spring 3.2, it is no longer necessary to add CGLIB to your classpath because
CGLIB classes have been repackaged under org.springframework.cglib and included directly
within the spring-core JAR.

	[image: [Note]]	Note
	
The behavior could be different according to the scope of your bean. We are talking
about singletons here.

	[image: [Tip]]	Tip
	
There are a few restrictions due to the fact that CGLIB dynamically adds features at
startup-time, in particular that configuration classes must not be final. However, as
of 4.3, any constructors are allowed on configuration classes, including the use of
@Autowired or a single non-default constructor declaration for default injection.

If you prefer to avoid any CGLIB-imposed limitations, consider declaring your @Bean
methods on non-@Configuration classes, e.g. on plain @Component classes instead.
Cross-method calls between @Bean methods won’t get intercepted then, so you’ll have
to exclusively rely on dependency injection at the constructor or method level there.

Composing Java-based configurations

Using the @Import annotation

Much as the <import/> element is used within Spring XML files to aid in modularizing
configurations, the @Import annotation allows for loading @Bean definitions from
another configuration class:

@Configuration
public class ConfigA {

 @Bean
 public A a() {
 return new A();
 }
}

@Configuration
@Import(ConfigA.class)
public class ConfigB {

 @Bean
 public B b() {
 return new B();
 }
}

Now, rather than needing to specify both ConfigA.class and ConfigB.class when
instantiating the context, only ConfigB needs to be supplied explicitly:

public static void main(String[] args) {
 ApplicationContext ctx = new AnnotationConfigApplicationContext(ConfigB.class);

 // now both beans A and B will be available...
 A a = ctx.getBean(A.class);
 B b = ctx.getBean(B.class);
}

This approach simplifies container instantiation, as only one class needs to be dealt
with, rather than requiring the developer to remember a potentially large number of
@Configuration classes during construction.

	[image: [Tip]]	Tip
	
As of Spring Framework 4.2, @Import also supports references to regular component
classes, analogous to the AnnotationConfigApplicationContext.register method.
This is particularly useful if you’d like to avoid component scanning, using a few
configuration classes as entry points for explicitly defining all your components.

Injecting dependencies on imported @Bean definitions

The example above works, but is simplistic. In most practical scenarios, beans will have
dependencies on one another across configuration classes. When using XML, this is not an
issue, per se, because there is no compiler involved, and one can simply declare
ref="someBean" and trust that Spring will work it out during container initialization.
Of course, when using @Configuration classes, the Java compiler places constraints on
the configuration model, in that references to other beans must be valid Java syntax.

Fortunately, solving this problem is simple. As we already discussed,
@Bean method can have an arbitrary number of parameters describing the bean
dependencies. Let’s consider a more real-world scenario with several @Configuration
classes, each depending on beans declared in the others:

@Configuration
public class ServiceConfig {

 @Bean
 public TransferService transferService(AccountRepository accountRepository) {
 return new TransferServiceImpl(accountRepository);
 }
}

@Configuration
public class RepositoryConfig {

 @Bean
 public AccountRepository accountRepository(DataSource dataSource) {
 return new JdbcAccountRepository(dataSource);
 }
}

@Configuration
@Import({ServiceConfig.class, RepositoryConfig.class})
public class SystemTestConfig {

 @Bean
 public DataSource dataSource() {
 // return new DataSource
 }
}

public static void main(String[] args) {
 ApplicationContext ctx = new AnnotationConfigApplicationContext(SystemTestConfig.class);
 // everything wires up across configuration classes...
 TransferService transferService = ctx.getBean(TransferService.class);
 transferService.transfer(100.00, "A123", "C456");
}

There is another way to achieve the same result. Remember that @Configuration classes are
ultimately just another bean in the container: This means that they can take advantage of
@Autowired and @Value injection etc just like any other bean!

	[image: [Warning]]	Warning
	
Make sure that the dependencies you inject that way are of the simplest kind only. @Configuration
classes are processed quite early during the initialization of the context and forcing a dependency
to be injected this way may lead to unexpected early initialization. Whenever possible, resort to
parameter-based injection as in the example above.

Also, be particularly careful with BeanPostProcessor and BeanFactoryPostProcessor definitions
via @Bean. Those should usually be declared as static @Bean methods, not triggering the
instantiation of their containing configuration class. Otherwise, @Autowired and @Value won’t
work on the configuration class itself since it is being created as a bean instance too early.

@Configuration
public class ServiceConfig {

 @Autowired
 private AccountRepository accountRepository;

 @Bean
 public TransferService transferService() {
 return new TransferServiceImpl(accountRepository);
 }
}

@Configuration
public class RepositoryConfig {

 private final DataSource dataSource;

 @Autowired
 public RepositoryConfig(DataSource dataSource) {
 this.dataSource = dataSource;
 }

 @Bean
 public AccountRepository accountRepository() {
 return new JdbcAccountRepository(dataSource);
 }
}

@Configuration
@Import({ServiceConfig.class, RepositoryConfig.class})
public class SystemTestConfig {

 @Bean
 public DataSource dataSource() {
 // return new DataSource
 }
}

public static void main(String[] args) {
 ApplicationContext ctx = new AnnotationConfigApplicationContext(SystemTestConfig.class);
 // everything wires up across configuration classes...
 TransferService transferService = ctx.getBean(TransferService.class);
 transferService.transfer(100.00, "A123", "C456");
}

	[image: [Tip]]	Tip
	
Constructor injection in @Configuration classes is only supported as of Spring
Framework 4.3. Note also that there is no need to specify @Autowired if the target
bean defines only one constructor; in the example above, @Autowired is not necessary
on the RepositoryConfig constructor.

In the scenario above, using @Autowired works well and provides the desired
modularity, but determining exactly where the autowired bean definitions are declared is
still somewhat ambiguous. For example, as a developer looking at ServiceConfig, how do
you know exactly where the @Autowired AccountRepository bean is declared? It’s not
explicit in the code, and this may be just fine. Remember that the
Spring Tool Suite provides tooling that
can render graphs showing how everything is wired up - that may be all you need. Also,
your Java IDE can easily find all declarations and uses of the AccountRepository type,
and will quickly show you the location of @Bean methods that return that type.

In cases where this ambiguity is not acceptable and you wish to have direct navigation
from within your IDE from one @Configuration class to another, consider autowiring the
configuration classes themselves:

@Configuration
public class ServiceConfig {

 @Autowired
 private RepositoryConfig repositoryConfig;

 @Bean
 public TransferService transferService() {
 // navigate 'through' the config class to the @Bean method!
 return new TransferServiceImpl(repositoryConfig.accountRepository());
 }
}

In the situation above, it is completely explicit where AccountRepository is defined.
However, ServiceConfig is now tightly coupled to RepositoryConfig; that’s the
tradeoff. This tight coupling can be somewhat mitigated by using interface-based or
abstract class-based @Configuration classes. Consider the following:

@Configuration
public class ServiceConfig {

 @Autowired
 private RepositoryConfig repositoryConfig;

 @Bean
 public TransferService transferService() {
 return new TransferServiceImpl(repositoryConfig.accountRepository());
 }
}

@Configuration
public interface RepositoryConfig {

 @Bean
 AccountRepository accountRepository();
}

@Configuration
public class DefaultRepositoryConfig implements RepositoryConfig {

 @Bean
 public AccountRepository accountRepository() {
 return new JdbcAccountRepository(...);
 }
}

@Configuration
@Import({ServiceConfig.class, DefaultRepositoryConfig.class}) // import the concrete config!
public class SystemTestConfig {

 @Bean
 public DataSource dataSource() {
 // return DataSource
 }

}

public static void main(String[] args) {
 ApplicationContext ctx = new AnnotationConfigApplicationContext(SystemTestConfig.class);
 TransferService transferService = ctx.getBean(TransferService.class);
 transferService.transfer(100.00, "A123", "C456");
}

Now ServiceConfig is loosely coupled with respect to the concrete
DefaultRepositoryConfig, and built-in IDE tooling is still useful: it will be easy for
the developer to get a type hierarchy of RepositoryConfig implementations. In this
way, navigating @Configuration classes and their dependencies becomes no different
than the usual process of navigating interface-based code.

	[image: [Tip]]	Tip
	
If you would like to influence the startup creation order of certain beans, consider
declaring some of them as @Lazy (for creation on first access instead of on startup)
or as @DependsOn on certain other beans (making sure that specific other beans will
be created before the current bean, beyond what the latter’s direct dependencies imply).

Conditionally include @Configuration classes or @Bean methods

It is often useful to conditionally enable or disable a complete @Configuration class,
or even individual @Bean methods, based on some arbitrary system state. One common
example of this is to use the @Profile annotation to activate beans only when a specific
profile has been enabled in the Spring Environment (see the section called “Bean definition profiles”
for details).

The @Profile annotation is actually implemented using a much more flexible annotation
called @Conditional.
The @Conditional annotation indicates specific
org.springframework.context.annotation.Condition implementations that should be
consulted before a @Bean is registered.

Implementations of the Condition interface simply provide a matches(…​)
method that returns true or false. For example, here is the actual
Condition implementation used for @Profile:

@Override
public boolean matches(ConditionContext context, AnnotatedTypeMetadata metadata) {
 if (context.getEnvironment() != null) {
 // Read the @Profile annotation attributes
 MultiValueMap<String, Object> attrs = metadata.getAllAnnotationAttributes(Profile.class.getName());
 if (attrs != null) {
 for (Object value : attrs.get("value")) {
 if (context.getEnvironment().acceptsProfiles(((String[]) value))) {
 return true;
 }
 }
 return false;
 }
 }
 return true;
}

See the
@Conditional javadocs for more detail.

Combining Java and XML configuration

Spring’s @Configuration class support does not aim to be a 100% complete replacement
for Spring XML. Some facilities such as Spring XML namespaces remain an ideal way to
configure the container. In cases where XML is convenient or necessary, you have a
choice: either instantiate the container in an "XML-centric" way using, for example,
ClassPathXmlApplicationContext, or in a "Java-centric" fashion using
AnnotationConfigApplicationContext and the @ImportResource annotation to import XML
as needed.

XML-centric use of @Configuration classes

It may be preferable to bootstrap the Spring container from XML and include
@Configuration classes in an ad-hoc fashion. For example, in a large existing codebase
that uses Spring XML, it will be easier to create @Configuration classes on an
as-needed basis and include them from the existing XML files. Below you’ll find the
options for using @Configuration classes in this kind of "XML-centric" situation.

Remember that @Configuration classes are ultimately just bean definitions in the
container. In this example, we create a @Configuration class named AppConfig and
include it within system-test-config.xml as a <bean/> definition. Because
<context:annotation-config/> is switched on, the container will recognize the
@Configuration annotation and process the @Bean methods declared in AppConfig
properly.

@Configuration
public class AppConfig {

 @Autowired
 private DataSource dataSource;

 @Bean
 public AccountRepository accountRepository() {
 return new JdbcAccountRepository(dataSource);
 }

 @Bean
 public TransferService transferService() {
 return new TransferService(accountRepository());
 }
}

system-test-config.xml:

<beans>
 <!-- enable processing of annotations such as @Autowired and @Configuration -->
 <context:annotation-config/>
 <context:property-placeholder location="classpath:/com/acme/jdbc.properties"/>

 <bean class="com.acme.AppConfig"/>

 <bean class="org.springframework.jdbc.datasource.DriverManagerDataSource">
 <property name="url" value="${jdbc.url}"/>
 <property name="username" value="${jdbc.username}"/>
 <property name="password" value="${jdbc.password}"/>
 </bean>
</beans>

jdbc.properties:

jdbc.url=jdbc:hsqldb:hsql://localhost/xdb
jdbc.username=sa
jdbc.password=

public static void main(String[] args) {
 ApplicationContext ctx = new ClassPathXmlApplicationContext("classpath:/com/acme/system-test-config.xml");
 TransferService transferService = ctx.getBean(TransferService.class);
 // ...
}

	[image: [Note]]	Note
	
In system-test-config.xml above, the AppConfig <bean/> does not declare an id
element. While it would be acceptable to do so, it is unnecessary given that no other
bean will ever refer to it, and it is unlikely that it will be explicitly fetched from
the container by name. Likewise with the DataSource bean - it is only ever autowired
by type, so an explicit bean id is not strictly required.

Because @Configuration is meta-annotated with @Component, @Configuration-annotated
classes are automatically candidates for component scanning. Using the same scenario as
above, we can redefine system-test-config.xml to take advantage of component-scanning.
Note that in this case, we don’t need to explicitly declare
<context:annotation-config/>, because <context:component-scan/> enables the same
functionality.

system-test-config.xml:

<beans>
 <!-- picks up and registers AppConfig as a bean definition -->
 <context:component-scan base-package="com.acme"/>
 <context:property-placeholder location="classpath:/com/acme/jdbc.properties"/>

 <bean class="org.springframework.jdbc.datasource.DriverManagerDataSource">
 <property name="url" value="${jdbc.url}"/>
 <property name="username" value="${jdbc.username}"/>
 <property name="password" value="${jdbc.password}"/>
 </bean>
</beans>

@Configuration class-centric use of XML with @ImportResource

In applications where @Configuration classes are the primary mechanism for configuring
the container, it will still likely be necessary to use at least some XML. In these
scenarios, simply use @ImportResource and define only as much XML as is needed. Doing
so achieves a "Java-centric" approach to configuring the container and keeps XML to a
bare minimum.

@Configuration
@ImportResource("classpath:/com/acme/properties-config.xml")
public class AppConfig {

 @Value("${jdbc.url}")
 private String url;

 @Value("${jdbc.username}")
 private String username;

 @Value("${jdbc.password}")
 private String password;

 @Bean
 public DataSource dataSource() {
 return new DriverManagerDataSource(url, username, password);
 }
}

properties-config.xml
<beans>
 <context:property-placeholder location="classpath:/com/acme/jdbc.properties"/>
</beans>

jdbc.properties
jdbc.url=jdbc:hsqldb:hsql://localhost/xdb
jdbc.username=sa
jdbc.password=

public static void main(String[] args) {
 ApplicationContext ctx = new AnnotationConfigApplicationContext(AppConfig.class);
 TransferService transferService = ctx.getBean(TransferService.class);
 // ...
}

Environment abstraction

The Environment
is an abstraction integrated in the container that models two key
aspects of the application environment: profiles
and properties.

A profile is a named, logical group of bean definitions to be registered with the
container only if the given profile is active. Beans may be assigned to a profile
whether defined in XML or via annotations. The role of the Environment object with
relation to profiles is in determining which profiles (if any) are currently active,
and which profiles (if any) should be active by default.

Properties play an important role in almost all applications, and may originate from
a variety of sources: properties files, JVM system properties, system environment
variables, JNDI, servlet context parameters, ad-hoc Properties objects, Maps, and so
on. The role of the Environment object with relation to properties is to provide the
user with a convenient service interface for configuring property sources and resolving
properties from them.

Bean definition profiles

Bean definition profiles is a mechanism in the core container that allows for
registration of different beans in different environments. The word environment
can mean different things to different users and this feature can help with many
use cases, including:

	
working against an in-memory datasource in development vs looking up that same
datasource from JNDI when in QA or production

	
registering monitoring infrastructure only when deploying an application into a
performance environment

	
registering customized implementations of beans for customer A vs. customer
B deployments

Let’s consider the first use case in a practical application that requires a
DataSource. In a test environment, the configuration may look like this:

@Bean
public DataSource dataSource() {
 return new EmbeddedDatabaseBuilder()
 .setType(EmbeddedDatabaseType.HSQL)
 .addScript("my-schema.sql")
 .addScript("my-test-data.sql")
 .build();
}

Let’s now consider how this application will be deployed into a QA or production
environment, assuming that the datasource for the application will be registered
with the production application server’s JNDI directory. Our dataSource bean
now looks like this:

@Bean(destroyMethod="")
public DataSource dataSource() throws Exception {
 Context ctx = new InitialContext();
 return (DataSource) ctx.lookup("java:comp/env/jdbc/datasource");
}

The problem is how to switch between using these two variations based on the
current environment. Over time, Spring users have devised a number of ways to
get this done, usually relying on a combination of system environment variables
and XML <import/> statements containing ${placeholder} tokens that resolve
to the correct configuration file path depending on the value of an environment
variable. Bean definition profiles is a core container feature that provides a
solution to this problem.

If we generalize the example use case above of environment-specific bean
definitions, we end up with the need to register certain bean definitions in
certain contexts, while not in others. You could say that you want to register a
certain profile of bean definitions in situation A, and a different profile in
situation B. Let’s first see how we can update our configuration to reflect
this need.

@Profile

The @Profile
annotation allows you to indicate that a component is eligible for registration
when one or more specified profiles are active. Using our example above, we
can rewrite the dataSource configuration as follows:

@Configuration
@Profile("development")
public class StandaloneDataConfig {

 @Bean
 public DataSource dataSource() {
 return new EmbeddedDatabaseBuilder()
 .setType(EmbeddedDatabaseType.HSQL)
 .addScript("classpath:com/bank/config/sql/schema.sql")
 .addScript("classpath:com/bank/config/sql/test-data.sql")
 .build();
 }
}

@Configuration
@Profile("production")
public class JndiDataConfig {

 @Bean(destroyMethod="")
 public DataSource dataSource() throws Exception {
 Context ctx = new InitialContext();
 return (DataSource) ctx.lookup("java:comp/env/jdbc/datasource");
 }
}

	[image: [Note]]	Note
	
As mentioned before, with @Bean methods, you will typically choose to use programmatic
JNDI lookups: either using Spring’s JndiTemplate/JndiLocatorDelegate helpers or the
straight JNDI InitialContext usage shown above, but not the JndiObjectFactoryBean
variant which would force you to declare the return type as the FactoryBean type.

@Profile can be used as a meta-annotation for the purpose
of creating a custom composed annotation. The following example defines a custom
@Production annotation that can be used as a drop-in replacement for
@Profile("production"):

@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
@Profile("production")
public @interface Production {
}

	[image: [Tip]]	Tip
	
If a @Configuration class is marked with @Profile, all of the @Bean methods and
@Import annotations associated with that class will be bypassed unless one or more of
the specified profiles are active. If a @Component or @Configuration class is marked
with @Profile({"p1", "p2"}), that class will not be registered/processed unless
profiles 'p1' and/or 'p2' have been activated. If a given profile is prefixed with the
NOT operator (!), the annotated element will be registered if the profile is not
active. For example, given @Profile({"p1", "!p2"}), registration will occur if profile
'p1' is active or if profile 'p2' is not active.

@Profile can also be declared at the method level to include only one particular bean
of a configuration class, e.g. for alternative variants of a particular bean:

@Configuration
public class AppConfig {

 @Bean("dataSource")
 @Profile("development")
 public DataSource standaloneDataSource() {
 return new EmbeddedDatabaseBuilder()
 .setType(EmbeddedDatabaseType.HSQL)
 .addScript("classpath:com/bank/config/sql/schema.sql")
 .addScript("classpath:com/bank/config/sql/test-data.sql")
 .build();
 }

 @Bean("dataSource")
 @Profile("production")
 public DataSource jndiDataSource() throws Exception {
 Context ctx = new InitialContext();
 return (DataSource) ctx.lookup("java:comp/env/jdbc/datasource");
 }
}

	[image: [Note]]	Note
	
With @Profile on @Bean methods, a special scenario may apply: In the case of
overloaded @Bean methods of the same Java method name (analogous to constructor
overloading), an @Profile condition needs to be consistently declared on all
overloaded methods. If the conditions are inconsistent, only the condition on the
first declaration among the overloaded methods will matter. @Profile can therefore
not be used to select an overloaded method with a particular argument signature over
another; resolution between all factory methods for the same bean follows Spring’s
constructor resolution algorithm at creation time.

If you would like to define alternative beans with different profile conditions,
use distinct Java method names pointing to the same bean name via the @Bean name
attribute, as indicated in the example above. If the argument signatures are all
the same (e.g. all of the variants have no-arg factory methods), this is the only
way to represent such an arrangement in a valid Java class in the first place
(since there can only be one method of a particular name and argument signature).

XML bean definition profiles

The XML counterpart is the profile attribute of the <beans> element. Our sample
configuration above can be rewritten in two XML files as follows:

<beans profile="development"
 xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jdbc="http://www.springframework.org/schema/jdbc"
 xsi:schemaLocation="...">

 <jdbc:embedded-database id="dataSource">
 <jdbc:script location="classpath:com/bank/config/sql/schema.sql"/>
 <jdbc:script location="classpath:com/bank/config/sql/test-data.sql"/>
 </jdbc:embedded-database>
</beans>

<beans profile="production"
 xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jee="http://www.springframework.org/schema/jee"
 xsi:schemaLocation="...">

 <jee:jndi-lookup id="dataSource" jndi-name="java:comp/env/jdbc/datasource"/>
</beans>

It is also possible to avoid that split and nest <beans/> elements within the same file:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jdbc="http://www.springframework.org/schema/jdbc"
 xmlns:jee="http://www.springframework.org/schema/jee"
 xsi:schemaLocation="...">

 <!-- other bean definitions -->

 <beans profile="development">
 <jdbc:embedded-database id="dataSource">
 <jdbc:script location="classpath:com/bank/config/sql/schema.sql"/>
 <jdbc:script location="classpath:com/bank/config/sql/test-data.sql"/>
 </jdbc:embedded-database>
 </beans>

 <beans profile="production">
 <jee:jndi-lookup id="dataSource" jndi-name="java:comp/env/jdbc/datasource"/>
 </beans>
</beans>

The spring-bean.xsd has been constrained to allow such elements only as the
last ones in the file. This should help provide flexibility without incurring
clutter in the XML files.

Activating a profile

Now that we have updated our configuration, we still need to instruct Spring which
profile is active. If we started our sample application right now, we would see
a NoSuchBeanDefinitionException thrown, because the container could not find
the Spring bean named dataSource.

Activating a profile can be done in several ways, but the most straightforward is to do
it programmatically against the Environment API which is available via an
ApplicationContext:

AnnotationConfigApplicationContext ctx = new AnnotationConfigApplicationContext();
ctx.getEnvironment().setActiveProfiles("development");
ctx.register(SomeConfig.class, StandaloneDataConfig.class, JndiDataConfig.class);
ctx.refresh();

In addition, profiles may also be activated declaratively through the
spring.profiles.active property which may be specified through system environment
variables, JVM system properties, servlet context parameters in web.xml, or even as an
entry in JNDI (see the section called “PropertySource abstraction”). In integration tests, active
profiles can be declared via the @ActiveProfiles annotation in the spring-test module
(see the section called “Context configuration with environment profiles”).

Note that profiles are not an "either-or" proposition; it is possible to activate multiple
profiles at once. Programmatically, simply provide multiple profile names to the
setActiveProfiles() method, which accepts String…​ varargs:

ctx.getEnvironment().setActiveProfiles("profile1", "profile2");

Declaratively, spring.profiles.active may accept a comma-separated list of profile names:

-Dspring.profiles.active="profile1,profile2"

Default profile

The default profile represents the profile that is enabled by default. Consider the
following:

@Configuration
@Profile("default")
public class DefaultDataConfig {

 @Bean
 public DataSource dataSource() {
 return new EmbeddedDatabaseBuilder()
 .setType(EmbeddedDatabaseType.HSQL)
 .addScript("classpath:com/bank/config/sql/schema.sql")
 .build();
 }
}

If no profile is active, the dataSource above will be created; this can be
seen as a way to provide a default definition for one or more beans. If any
profile is enabled, the default profile will not apply.

The name of the default profile can be changed using setDefaultProfiles() on
the Environment or declaratively using the spring.profiles.default property.

PropertySource abstraction

Spring’s Environment abstraction provides search operations over a configurable
hierarchy of property sources. To explain fully, consider the following:

ApplicationContext ctx = new GenericApplicationContext();
Environment env = ctx.getEnvironment();
boolean containsFoo = env.containsProperty("foo");
System.out.println("Does my environment contain the 'foo' property? " + containsFoo);

In the snippet above, we see a high-level way of asking Spring whether the foo property is
defined for the current environment. To answer this question, the Environment object performs
a search over a set of PropertySource
objects. A PropertySource is a simple abstraction over any source of key-value pairs, and
Spring’s StandardEnvironment
is configured with two PropertySource objects — one representing the set of JVM system properties
(a la System.getProperties()) and one representing the set of system environment variables
(a la System.getenv()).

	[image: [Note]]	Note
	
These default property sources are present for StandardEnvironment, for use in standalone
applications. StandardServletEnvironment
is populated with additional default property sources including servlet config and servlet
context parameters. StandardPortletEnvironment
similarly has access to portlet config and portlet context parameters as property sources.
Both can optionally enable a JndiPropertySource.
See the javadocs for details.

Concretely, when using the StandardEnvironment, the call to env.containsProperty("foo")
will return true if a foo system property or foo environment variable is present at
runtime.

	[image: [Tip]]	Tip
	
The search performed is hierarchical. By default, system properties have precedence over
environment variables, so if the foo property happens to be set in both places during
a call to env.getProperty("foo"), the system property value will 'win' and be returned
preferentially over the environment variable. Note that property values will not get merged
but rather completely overridden by a preceding entry.

For a common StandardServletEnvironment, the full hierarchy looks as follows, with the
highest-precedence entries at the top:

	
ServletConfig parameters (if applicable, e.g. in case of a DispatcherServlet context)

	
ServletContext parameters (web.xml context-param entries)

	
JNDI environment variables ("java:comp/env/" entries)

	
JVM system properties ("-D" command-line arguments)

	
JVM system environment (operating system environment variables)

Most importantly, the entire mechanism is configurable. Perhaps you have a custom source
of properties that you’d like to integrate into this search. No problem — simply implement
and instantiate your own PropertySource and add it to the set of PropertySources for the
current Environment:

ConfigurableApplicationContext ctx = new GenericApplicationContext();
MutablePropertySources sources = ctx.getEnvironment().getPropertySources();
sources.addFirst(new MyPropertySource());

In the code above, MyPropertySource has been added with highest precedence in the
search. If it contains a foo property, it will be detected and returned ahead of
any foo property in any other PropertySource. The
MutablePropertySources
API exposes a number of methods that allow for precise manipulation of the set of
property sources.

@PropertySource

The @PropertySource
annotation provides a convenient and declarative mechanism for adding a PropertySource
to Spring’s Environment.

Given a file "app.properties" containing the key/value pair testbean.name=myTestBean,
the following @Configuration class uses @PropertySource in such a way that
a call to testBean.getName() will return "myTestBean".

@Configuration
@PropertySource("classpath:/com/myco/app.properties")
public class AppConfig {

 @Autowired
 Environment env;

 @Bean
 public TestBean testBean() {
 TestBean testBean = new TestBean();
 testBean.setName(env.getProperty("testbean.name"));
 return testBean;
 }
}

Any ${…​} placeholders present in a @PropertySource resource location will
be resolved against the set of property sources already registered against the
environment. For example:

@Configuration
@PropertySource("classpath:/com/${my.placeholder:default/path}/app.properties")
public class AppConfig {

 @Autowired
 Environment env;

 @Bean
 public TestBean testBean() {
 TestBean testBean = new TestBean();
 testBean.setName(env.getProperty("testbean.name"));
 return testBean;
 }
}

Assuming that "my.placeholder" is present in one of the property sources already
registered, e.g. system properties or environment variables, the placeholder will
be resolved to the corresponding value. If not, then "default/path" will be used
as a default. If no default is specified and a property cannot be resolved, an
IllegalArgumentException will be thrown.

	[image: [Note]]	Note
	
The @PropertySource annotation is repeatable according to Java 8 conventions.
However, all such @PropertySource annotations need to be declared at the same
level: either directly on the configuration class or as meta-annotations within the
same custom annotation. Mixing of direct annotations and meta-annotations is not
recommended since direct annotations will effectively override meta-annotations.

Placeholder resolution in statements

Historically, the value of placeholders in elements could be resolved only against
JVM system properties or environment variables. No longer is this the case. Because
the Environment abstraction is integrated throughout the container, it’s easy to
route resolution of placeholders through it. This means that you may configure the
resolution process in any way you like: change the precedence of searching through
system properties and environment variables, or remove them entirely; add your
own property sources to the mix as appropriate.

Concretely, the following statement works regardless of where the customer
property is defined, as long as it is available in the Environment:

<beans>
 <import resource="com/bank/service/${customer}-config.xml"/>
</beans>

Registering a LoadTimeWeaver

The LoadTimeWeaver is used by Spring to dynamically transform classes as they are
loaded into the Java virtual machine (JVM).

To enable load-time weaving add the @EnableLoadTimeWeaving to one of your
@Configuration classes:

@Configuration
@EnableLoadTimeWeaving
public class AppConfig {
}

Alternatively for XML configuration use the context:load-time-weaver element:

<beans>
 <context:load-time-weaver/>
</beans>

Once configured for the ApplicationContext. Any bean within that ApplicationContext
may implement LoadTimeWeaverAware, thereby receiving a reference to the load-time
weaver instance. This is particularly useful in combination with Spring’s JPA
support where load-time weaving may be necessary for JPA class transformation. Consult
the LocalContainerEntityManagerFactoryBean javadocs for more detail. For more on
AspectJ load-time weaving, see the section called “Load-time weaving with AspectJ in the Spring Framework”.

Additional capabilities of the ApplicationContext

As was discussed in the chapter introduction, the org.springframework.beans.factory
package provides basic functionality for managing and manipulating beans, including in a
programmatic way. The org.springframework.context package adds the
ApplicationContext
interface, which extends the BeanFactory interface, in addition to extending other
interfaces to provide additional functionality in a more application
framework-oriented style. Many people use the ApplicationContext in a completely
declarative fashion, not even creating it programmatically, but instead relying on
support classes such as ContextLoader to automatically instantiate an
ApplicationContext as part of the normal startup process of a Java EE web application.

To enhance BeanFactory functionality in a more framework-oriented style the context
package also provides the following functionality:

	
Access to messages in i18n-style, through the MessageSource interface.

	
Access to resources, such as URLs and files, through the ResourceLoader interface.

	
Event publication to namely beans implementing the ApplicationListener interface,
through the use of the ApplicationEventPublisher interface.

	
Loading of multiple (hierarchical) contexts, allowing each to be focused on one
particular layer, such as the web layer of an application, through the
HierarchicalBeanFactory interface.

Internationalization using MessageSource

The ApplicationContext interface extends an interface called MessageSource, and
therefore provides internationalization (i18n) functionality. Spring also provides the
interface HierarchicalMessageSource, which can resolve messages hierarchically.
Together these interfaces provide the foundation upon which Spring effects message
resolution. The methods defined on these interfaces include:

	
String getMessage(String code, Object[] args, String default, Locale loc): The basic
method used to retrieve a message from the MessageSource. When no message is found
for the specified locale, the default message is used. Any arguments passed in become
replacement values, using the MessageFormat functionality provided by the standard
library.

	
String getMessage(String code, Object[] args, Locale loc): Essentially the same as
the previous method, but with one difference: no default message can be specified; if
the message cannot be found, a NoSuchMessageException is thrown.

	
String getMessage(MessageSourceResolvable resolvable, Locale locale): All properties
used in the preceding methods are also wrapped in a class named
MessageSourceResolvable, which you can use with this method.

When an ApplicationContext is loaded, it automatically searches for a MessageSource
bean defined in the context. The bean must have the name messageSource. If such a bean
is found, all calls to the preceding methods are delegated to the message source. If no
message source is found, the ApplicationContext attempts to find a parent containing a
bean with the same name. If it does, it uses that bean as the MessageSource. If the
ApplicationContext cannot find any source for messages, an empty
DelegatingMessageSource is instantiated in order to be able to accept calls to the
methods defined above.

Spring provides two MessageSource implementations, ResourceBundleMessageSource and
StaticMessageSource. Both implement HierarchicalMessageSource in order to do nested
messaging. The StaticMessageSource is rarely used but provides programmatic ways to
add messages to the source. The ResourceBundleMessageSource is shown in the following
example:

<beans>
 <bean id="messageSource"
 class="org.springframework.context.support.ResourceBundleMessageSource">
 <property name="basenames">
 <list>
 <value>format</value>
 <value>exceptions</value>
 <value>windows</value>
 </list>
 </property>
 </bean>
</beans>

In the example it is assumed you have three resource bundles defined in your classpath
called format, exceptions and windows. Any request to resolve a message will be
handled in the JDK standard way of resolving messages through ResourceBundles. For the
purposes of the example, assume the contents of two of the above resource bundle files
are…​

in format.properties
message=Alligators rock!

in exceptions.properties
argument.required=The {0} argument is required.

A program to execute the MessageSource functionality is shown in the next example.
Remember that all ApplicationContext implementations are also MessageSource
implementations and so can be cast to the MessageSource interface.

public static void main(String[] args) {
 MessageSource resources = new ClassPathXmlApplicationContext("beans.xml");
 String message = resources.getMessage("message", null, "Default", null);
 System.out.println(message);
}

The resulting output from the above program will be…​

Alligators rock!

So to summarize, the MessageSource is defined in a file called beans.xml, which
exists at the root of your classpath. The messageSource bean definition refers to a
number of resource bundles through its basenames property. The three files that are
passed in the list to the basenames property exist as files at the root of your
classpath and are called format.properties, exceptions.properties, and
windows.properties respectively.

The next example shows arguments passed to the message lookup; these arguments will be
converted into Strings and inserted into placeholders in the lookup message.

<beans>

 <!-- this MessageSource is being used in a web application -->
 <bean id="messageSource" class="org.springframework.context.support.ResourceBundleMessageSource">
 <property name="basename" value="exceptions"/>
 </bean>

 <!-- lets inject the above MessageSource into this POJO -->
 <bean id="example" class="com.foo.Example">
 <property name="messages" ref="messageSource"/>
 </bean>

</beans>

public class Example {

 private MessageSource messages;

 public void setMessages(MessageSource messages) {
 this.messages = messages;
 }

 public void execute() {
 String message = this.messages.getMessage("argument.required",
 new Object [] {"userDao"}, "Required", null);
 System.out.println(message);
 }
}

The resulting output from the invocation of the execute() method will be…​

The userDao argument is required.

With regard to internationalization (i18n), Spring’s various MessageSource
implementations follow the same locale resolution and fallback rules as the standard JDK
ResourceBundle. In short, and continuing with the example messageSource defined
previously, if you want to resolve messages against the British (en-GB) locale, you
would create files called format_en_GB.properties, exceptions_en_GB.properties, and
windows_en_GB.properties respectively.

Typically, locale resolution is managed by the surrounding environment of the
application. In this example, the locale against which (British) messages will be
resolved is specified manually.

in exceptions_en_GB.properties
argument.required=Ebagum lad, the {0} argument is required, I say, required.

public static void main(final String[] args) {
 MessageSource resources = new ClassPathXmlApplicationContext("beans.xml");
 String message = resources.getMessage("argument.required",
 new Object [] {"userDao"}, "Required", Locale.UK);
 System.out.println(message);
}

The resulting output from the running of the above program will be…​

Ebagum lad, the 'userDao' argument is required, I say, required.

You can also use the MessageSourceAware interface to acquire a reference to any
MessageSource that has been defined. Any bean that is defined in an
ApplicationContext that implements the MessageSourceAware interface is injected with
the application context’s MessageSource when the bean is created and configured.

	[image: [Note]]	Note
	
As an alternative to ResourceBundleMessageSource, Spring provides a
ReloadableResourceBundleMessageSource class. This variant supports the same bundle
file format but is more flexible than the standard JDK based
ResourceBundleMessageSource implementation. In particular, it allows for reading
files from any Spring resource location (not just from the classpath) and supports hot
reloading of bundle property files (while efficiently caching them in between). Check
out the ReloadableResourceBundleMessageSource javadocs for details.

Standard and custom events

Event handling in the ApplicationContext is provided through the ApplicationEvent
class and ApplicationListener interface. If a bean that implements the
ApplicationListener interface is deployed into the context, every time an
ApplicationEvent gets published to the ApplicationContext, that bean is notified.
Essentially, this is the standard Observer design pattern.

	[image: [Tip]]	Tip
	
As of Spring 4.2, the event infrastructure has been significantly improved and offer
an annotation-based model as well as the
ability to publish any arbitrary event, that is an object that does not necessarily
extend from ApplicationEvent. When such an object is published we wrap it in an
event for you.

Spring provides the following standard events:

Table 7.7. Built-in Events

	Event	Explanation
	ContextRefreshedEvent
	Published when the ApplicationContext is initialized or refreshed, for example,
 using the refresh() method on the ConfigurableApplicationContext interface.
 "Initialized" here means that all beans are loaded, post-processor beans are detected
 and activated, singletons are pre-instantiated, and the ApplicationContext object is
 ready for use. As long as the context has not been closed, a refresh can be triggered
 multiple times, provided that the chosen ApplicationContext actually supports such
 "hot" refreshes. For example, XmlWebApplicationContext supports hot refreshes, but
 GenericApplicationContext does not.

	ContextStartedEvent
	Published when the ApplicationContext is started, using the start() method on the
 ConfigurableApplicationContext interface. "Started" here means that all Lifecycle
 beans receive an explicit start signal. Typically this signal is used to restart beans
 after an explicit stop, but it may also be used to start components that have not been
 configured for autostart , for example, components that have not already started on
 initialization.

	ContextStoppedEvent
	Published when the ApplicationContext is stopped, using the stop() method on the
 ConfigurableApplicationContext interface. "Stopped" here means that all Lifecycle
 beans receive an explicit stop signal. A stopped context may be restarted through a
 start() call.

	ContextClosedEvent
	Published when the ApplicationContext is closed, using the close() method on the
 ConfigurableApplicationContext interface. "Closed" here means that all singleton
 beans are destroyed. A closed context reaches its end of life; it cannot be refreshed
 or restarted.

	RequestHandledEvent
	A web-specific event telling all beans that an HTTP request has been serviced. This
 event is published after the request is complete. This event is only applicable to
 web applications using Spring’s DispatcherServlet.

You can also create and publish your own custom events. This example demonstrates a
simple class that extends Spring’s ApplicationEvent base class:

public class BlackListEvent extends ApplicationEvent {

 private final String address;
 private final String content;

 public BlackListEvent(Object source, String address, String content) {
 super(source);
 this.address = address;
 this.content = content;
 }

 // accessor and other methods...
}

To publish a custom ApplicationEvent, call the publishEvent() method on an
ApplicationEventPublisher. Typically this is done by creating a class that implements
ApplicationEventPublisherAware and registering it as a Spring bean. The following
example demonstrates such a class:

public class EmailService implements ApplicationEventPublisherAware {

 private List<String> blackList;
 private ApplicationEventPublisher publisher;

 public void setBlackList(List<String> blackList) {
 this.blackList = blackList;
 }

 public void setApplicationEventPublisher(ApplicationEventPublisher publisher) {
 this.publisher = publisher;
 }

 public void sendEmail(String address, String content) {
 if (blackList.contains(address)) {
 publisher.publishEvent(new BlackListEvent(this, address, content));
 return;
 }
 // send email...
 }
}

At configuration time, the Spring container will detect that EmailService implements
ApplicationEventPublisherAware and will automatically call
setApplicationEventPublisher(). In reality, the parameter passed in will be the Spring
container itself; you’re simply interacting with the application context via its
ApplicationEventPublisher interface.

To receive the custom ApplicationEvent, create a class that implements
ApplicationListener and register it as a Spring bean. The following example
demonstrates such a class:

public class BlackListNotifier implements ApplicationListener<BlackListEvent> {

 private String notificationAddress;

 public void setNotificationAddress(String notificationAddress) {
 this.notificationAddress = notificationAddress;
 }

 public void onApplicationEvent(BlackListEvent event) {
 // notify appropriate parties via notificationAddress...
 }
}

Notice that ApplicationListener is generically parameterized with the type of your
custom event, BlackListEvent. This means that the onApplicationEvent() method can
remain type-safe, avoiding any need for downcasting. You may register as many event
listeners as you wish, but note that by default event listeners receive events
synchronously. This means the publishEvent() method blocks until all listeners have
finished processing the event. One advantage of this synchronous and single-threaded
approach is that when a listener receives an event, it operates inside the transaction
context of the publisher if a transaction context is available. If another strategy for
event publication becomes necessary, refer to the javadoc for Spring’s
ApplicationEventMulticaster interface.

The following example shows the bean definitions used to register and configure each of
the classes above:

<bean id="emailService" class="example.EmailService">
 <property name="blackList">
 <list>
 <value>known.spammer@example.org</value>
 <value>known.hacker@example.org</value>
 <value>john.doe@example.org</value>
 </list>
 </property>
</bean>

<bean id="blackListNotifier" class="example.BlackListNotifier">
 <property name="notificationAddress" value="blacklist@example.org"/>
</bean>

Putting it all together, when the sendEmail() method of the emailService bean is
called, if there are any emails that should be blacklisted, a custom event of type
BlackListEvent is published. The blackListNotifier bean is registered as an
ApplicationListener and thus receives the BlackListEvent, at which point it can
notify appropriate parties.

	[image: [Note]]	Note
	
Spring’s eventing mechanism is designed for simple communication between Spring beans
within the same application context. However, for more sophisticated enterprise
integration needs, the separately-maintained
Spring Integration project provides
complete support for building lightweight,
pattern-oriented, event-driven
architectures that build upon the well-known Spring programming model.

Annotation-based event listeners

As of Spring 4.2, an event listener can be registered on any public method of a managed
bean via the EventListener annotation. The BlackListNotifier can be rewritten as
follows:

public class BlackListNotifier {

 private String notificationAddress;

 public void setNotificationAddress(String notificationAddress) {
 this.notificationAddress = notificationAddress;
 }

 @EventListener
 public void processBlackListEvent(BlackListEvent event) {
 // notify appropriate parties via notificationAddress...
 }
}

As you can see above, the method signature once again declares the event type it listens to,
but this time with a flexible name and without implementing a specific listener interface.
The event type can also be narrowed through generics as long as the actual event type
resolves your generic parameter in its implementation hierarchy.

If your method should listen to several events or if you want to define it with no
parameter at all, the event type(s) can also be specified on the annotation itself:

@EventListener({ContextStartedEvent.class, ContextRefreshedEvent.class})
public void handleContextStart() {
 ...
}

It is also possible to add additional runtime filtering via the condition attribute of the
annotation that defines a SpEL expression that should match to actually
invoke the method for a particular event.

For instance, our notifier can be rewritten to be only invoked if the content attribute
of the event is equal to foo:

@EventListener(condition = "#blEvent.content == 'foo'")
public void processBlackListEvent(BlackListEvent blEvent) {
 // notify appropriate parties via notificationAddress...
}

Each SpEL expression evaluates against a dedicated context. The next table lists the
items made available to the context so one can use them for conditional event processing:

Table 7.8. Event SpEL available metadata

	Name	Location	Description	Example
	Event
	root object
	The actual ApplicationEvent
	#root.event

	Arguments array
	root object
	The arguments (as array) used for invoking the target
	#root.args[0]

	Argument name
	evaluation context
	Name of any of the method arguments. If for some reason the names are not available
 (e.g. no debug information), the argument names are also available under the #a<#arg>
 where #arg stands for the argument index (starting from 0).
	#blEvent or #a0 (one can also use #p0 or #p<#arg> notation as an alias).

Note that #root.event allows you to access to the underlying event, even if your method
signature actually refers to an arbitrary object that was published.

If you need to publish an event as the result of processing another, just change the
method signature to return the event that should be published, something like:

@EventListener
public ListUpdateEvent handleBlackListEvent(BlackListEvent event) {
 // notify appropriate parties via notificationAddress and
 // then publish a ListUpdateEvent...
}

	[image: [Note]]	Note
	
This feature is not supported for asynchronous
listeners.

This new method will publish a new ListUpdateEvent for every BlackListEvent handled
by the method above. If you need to publish several events, just return a Collection of
events instead.

Asynchronous Listeners

If you want a particular listener to process events asynchronously, simply reuse the
regular @Async support:

@EventListener
@Async
public void processBlackListEvent(BlackListEvent event) {
 // BlackListEvent is processed in a separate thread
}

Be aware of the following limitations when using asynchronous events:

	
If the event listener throws an Exception it will not be propagated to the caller,
check AsyncUncaughtExceptionHandler for more details.

	
Such event listener cannot send replies. If you need to send another event as the
result of the processing, inject ApplicationEventPublisher to send the event
manually.

Ordering listeners

If you need the listener to be invoked before another one, just add the @Order
annotation to the method declaration:

@EventListener
@Order(42)
public void processBlackListEvent(BlackListEvent event) {
 // notify appropriate parties via notificationAddress...
}

Generic events

You may also use generics to further define the structure of your event. Consider an
EntityCreatedEvent<T> where T is the type of the actual entity that got created. You
can create the following listener definition to only receive EntityCreatedEvent for a
Person:

@EventListener
public void onPersonCreated(EntityCreatedEvent<Person> event) {
 ...
}

Due to type erasure, this will only work if the event that is fired resolves the generic
parameter(s) on which the event listener filters on (that is something like
class PersonCreatedEvent extends EntityCreatedEvent<Person> { …​ }).

In certain circumstances, this may become quite tedious if all events follow the same
structure (as it should be the case for the event above). In such a case, you can
implement ResolvableTypeProvider to guide the framework beyond what the runtime
environment provides:

public class EntityCreatedEvent<T> extends ApplicationEvent implements ResolvableTypeProvider {

 public EntityCreatedEvent(T entity) {
 super(entity);
 }

 @Override
 public ResolvableType getResolvableType() {
 return ResolvableType.forClassWithGenerics(getClass(),
 ResolvableType.forInstance(getSource()));
 }
}

	[image: [Tip]]	Tip
	
This works not only for ApplicationEvent but any arbitrary object that you’d send as
an event.

Convenient access to low-level resources

For optimal usage and understanding of application contexts, users should generally
familiarize themselves with Spring’s Resource abstraction, as described in the chapter
Chapter 8, Resources.

An application context is a ResourceLoader, which can be used to load Resources. A
Resource is essentially a more feature rich version of the JDK class java.net.URL,
in fact, the implementations of the Resource wrap an instance of java.net.URL where
appropriate. A Resource can obtain low-level resources from almost any location in a
transparent fashion, including from the classpath, a filesystem location, anywhere
describable with a standard URL, and some other variations. If the resource location
string is a simple path without any special prefixes, where those resources come from is
specific and appropriate to the actual application context type.

You can configure a bean deployed into the application context to implement the special
callback interface, ResourceLoaderAware, to be automatically called back at
initialization time with the application context itself passed in as the
ResourceLoader. You can also expose properties of type Resource, to be used to
access static resources; they will be injected into it like any other properties. You
can specify those Resource properties as simple String paths, and rely on a special
JavaBean PropertyEditor that is automatically registered by the context, to convert
those text strings to actual Resource objects when the bean is deployed.

The location path or paths supplied to an ApplicationContext constructor are actually
resource strings, and in simple form are treated appropriately to the specific context
implementation. ClassPathXmlApplicationContext treats a simple location path as a
classpath location. You can also use location paths (resource strings) with special
prefixes to force loading of definitions from the classpath or a URL, regardless of the
actual context type.

Convenient ApplicationContext instantiation for web applications

You can create ApplicationContext instances declaratively by using, for example, a
ContextLoader. Of course you can also create ApplicationContext instances
programmatically by using one of the ApplicationContext implementations.

You can register an ApplicationContext using the ContextLoaderListener as follows:

<context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>/WEB-INF/daoContext.xml /WEB-INF/applicationContext.xml</param-value>
</context-param>

<listener>
 <listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>
</listener>

The listener inspects the contextConfigLocation parameter. If the parameter does not
exist, the listener uses /WEB-INF/applicationContext.xml as a default. When the
parameter does exist, the listener separates the String by using predefined
delimiters (comma, semicolon and whitespace) and uses the values as locations where
application contexts will be searched. Ant-style path patterns are supported as well.
Examples are /WEB-INF/*Context.xml for all files with names ending with "Context.xml",
residing in the "WEB-INF" directory, and /WEB-INF/**/*Context.xml, for all such files
in any subdirectory of "WEB-INF".

Deploying a Spring ApplicationContext as a Java EE RAR file

It is possible to deploy a Spring ApplicationContext as a RAR file, encapsulating the
context and all of its required bean classes and library JARs in a Java EE RAR deployment
unit. This is the equivalent of bootstrapping a standalone ApplicationContext, just hosted
in Java EE environment, being able to access the Java EE servers facilities. RAR deployment
is more natural alternative to scenario of deploying a headless WAR file, in effect, a WAR
file without any HTTP entry points that is used only for bootstrapping a Spring
ApplicationContext in a Java EE environment.

RAR deployment is ideal for application contexts that do not need HTTP entry points but
rather consist only of message endpoints and scheduled jobs. Beans in such a context can
use application server resources such as the JTA transaction manager and JNDI-bound JDBC
DataSources and JMS ConnectionFactory instances, and may also register with the
platform’s JMX server - all through Spring’s standard transaction management and JNDI
and JMX support facilities. Application components can also interact with the
application server’s JCA WorkManager through Spring’s TaskExecutor abstraction.

Check out the javadoc of the
SpringContextResourceAdapter
class for the configuration details involved in RAR deployment.

For a simple deployment of a Spring ApplicationContext as a Java EE RAR file: package
all application classes into a RAR file, which is a standard JAR file with a different
file extension. Add all required library JARs into the root of the RAR archive. Add a
"META-INF/ra.xml" deployment descriptor (as shown in SpringContextResourceAdapters
javadoc) and the corresponding Spring XML bean definition file(s) (typically
"META-INF/applicationContext.xml"), and drop the resulting RAR file into your
application server’s deployment directory.

	[image: [Note]]	Note
	
Such RAR deployment units are usually self-contained; they do not expose components to
the outside world, not even to other modules of the same application. Interaction with a
RAR-based ApplicationContext usually occurs through JMS destinations that it shares with
other modules. A RAR-based ApplicationContext may also, for example, schedule some jobs,
reacting to new files in the file system (or the like). If it needs to allow synchronous
access from the outside, it could for example export RMI endpoints, which of course may
be used by other application modules on the same machine.

The BeanFactory

The BeanFactory API provides the underlying basis for Spring’s IoC functionality.
Its specific contracts are mostly used in integration with other parts of Spring and
related third-party frameworks, and its DefaultListableBeanFactory implementation
is a key delegate within the higher-level GenericApplicationContext container.

BeanFactory and related interfaces such as BeanFactoryAware, InitializingBean,
DisposableBean are important integration points for other framework components:
not requiring any annotations or even reflection, they allow for very efficient
interaction between the container and its components. Application-level beans may
use the same callback interfaces but will typically prefer declarative dependency
injection instead, either via annotations or through programmatic configuration.

Note that the core BeanFactory API level and its DefaultListableBeanFactory
implementation do not make assumptions about the configuration format or any
component annotations to be used. All of these flavors come in through extensions
such as XmlBeanDefinitionReader and AutowiredAnnotationBeanPostProcessor,
operating on shared BeanDefinition objects as a core metadata representation.
This is the essence of what makes Spring’s container so flexible and extensible.

The following section explains the differences between the BeanFactory and
ApplicationContext container levels and the implications on bootstrapping.

BeanFactory or ApplicationContext?

Use an ApplicationContext unless you have a good reason for not doing so, with
GenericApplicationContext and its subclass AnnotationConfigApplicationContext
as the common implementations for custom bootstrapping. These are the primary entry
points to Spring’s core container for all common purposes: loading of configuration
files, triggering a classpath scan, programmatically registering bean definitions
and annotated classes.

Because an ApplicationContext includes all functionality of a BeanFactory, it is
generally recommended over a plain BeanFactory, except for a scenarios where full
control over bean processing is needed. Within an ApplicationContext such as the
GenericApplicationContext implementation, several kinds of beans will be detected
by convention (i.e. by bean name or by bean type), in particular post-processors,
whereas a plain DefaultListableBeanFactory is agnostic about any special beans.

For many extended container features such as annotation processing and AOP proxying,
the BeanPostProcessor extension point is essential.
If you use only a plain DefaultListableBeanFactory, such post-processors will not
get detected and activated by default. This situation could be confusing because
nothing is actually wrong with your bean configuration; it is rather the container
which needs to be fully bootstrapped through additional setup in such a scenario.

The following table lists features provided by the BeanFactory and
ApplicationContext interfaces and implementations.

Table 7.9. Feature Matrix

	Feature	BeanFactory	ApplicationContext
	Bean instantiation/wiring
	Yes
	Yes

	Integrated lifecycle management
	No
	Yes

	Automatic BeanPostProcessor registration
	No
	Yes

	Automatic BeanFactoryPostProcessor registration
	No
	Yes

	Convenient MessageSource access (for internalization)
	No
	Yes

	Built-in ApplicationEvent publication mechanism
	No
	Yes

To explicitly register a bean post-processor with a DefaultListableBeanFactory,
you need to programmatically call addBeanPostProcessor:

DefaultListableBeanFactory factory = new DefaultListableBeanFactory();
// populate the factory with bean definitions

// now register any needed BeanPostProcessor instances
factory.addBeanPostProcessor(new AutowiredAnnotationBeanPostProcessor());
factory.addBeanPostProcessor(new MyBeanPostProcessor());

// now start using the factory

To apply a BeanFactoryPostProcessor to a plain DefaultListableBeanFactory,
you need to call its postProcessBeanFactory method:

DefaultListableBeanFactory factory = new DefaultListableBeanFactory();
XmlBeanDefinitionReader reader = new XmlBeanDefinitionReader(factory);
reader.loadBeanDefinitions(new FileSystemResource("beans.xml"));

// bring in some property values from a Properties file
PropertyPlaceholderConfigurer cfg = new PropertyPlaceholderConfigurer();
cfg.setLocation(new FileSystemResource("jdbc.properties"));

// now actually do the replacement
cfg.postProcessBeanFactory(factory);

In both cases, the explicit registration steps are inconvenient, which is
why the various ApplicationContext variants are preferred over a plain
DefaultListableBeanFactory in Spring-backed applications, especially when
relying on BeanFactoryPostProcessors and BeanPostProcessors for extended
container functionality in a typical enterprise setup.

	[image: [Note]]	Note
	
An AnnotationConfigApplicationContext has all common annotation post-processors
registered out of the box and may bring in additional processors underneath the
covers through configuration annotations such as @EnableTransactionManagement.
At the abstraction level of Spring’s annotation-based configuration model,
the notion of bean post-processors becomes a mere internal container detail.

Glue code and the evil singleton

It is best to write most application code in a dependency-injection (DI) style, where
that code is served out of a Spring IoC container, has its own dependencies supplied by
the container when it is created, and is completely unaware of the container. However,
for the small glue layers of code that are sometimes needed to tie other code together,
you sometimes need a singleton (or quasi-singleton) style access to a Spring IoC
container. For example, third-party code may try to construct new objects directly (
Class.forName() style), without the ability to get these objects out of a Spring IoC
container.If the object constructed by the third-party code is a small stub or proxy,
which then uses a singleton style access to a Spring IoC container to get a real object
to delegate to, then inversion of control has still been achieved for the majority of
the code (the object coming out of the container). Thus most code is still unaware of
the container or how it is accessed, and remains decoupled from other code, with all
ensuing benefits. EJBs may also use this stub/proxy approach to delegate to a plain Java
implementation object, retrieved from a Spring IoC container. While the Spring IoC
container itself ideally does not have to be a singleton, it may be unrealistic in terms
of memory usage or initialization times (when using beans in the Spring IoC container
such as a Hibernate SessionFactory) for each bean to use its own, non-singleton Spring
IoC container.

Looking up the application context in a service locator style is sometimes the only
option for accessing shared Spring-managed components, such as in an EJB 2.1
environment, or when you want to share a single ApplicationContext as a parent to
WebApplicationContexts across WAR files. In this case you should look into using the
utility class
ContextSingletonBeanFactoryLocator
locator that is described in this
Spring
team blog entry.

Chapter 8. Resources

Introduction

Java’s standard java.net.URL class and standard handlers for various URL prefixes
unfortunately are not quite adequate enough for all access to low-level resources. For
example, there is no standardized URL implementation that may be used to access a
resource that needs to be obtained from the classpath, or relative to a
ServletContext. While it is possible to register new handlers for specialized URL
prefixes (similar to existing handlers for prefixes such as http:), this is generally
quite complicated, and the URL interface still lacks some desirable functionality,
such as a method to check for the existence of the resource being pointed to.

The Resource interface

Spring’s Resource interface is meant to be a more capable interface for abstracting
access to low-level resources.

public interface Resource extends InputStreamSource {

 boolean exists();

 boolean isOpen();

 URL getURL() throws IOException;

 File getFile() throws IOException;

 Resource createRelative(String relativePath) throws IOException;

 String getFilename();

 String getDescription();

}

public interface InputStreamSource {

 InputStream getInputStream() throws IOException;

}

Some of the most important methods from the Resource interface are:

	
getInputStream(): locates and opens the resource, returning an InputStream for
reading from the resource. It is expected that each invocation returns a fresh
InputStream. It is the responsibility of the caller to close the stream.

	
exists(): returns a boolean indicating whether this resource actually exists in
physical form.

	
isOpen(): returns a boolean indicating whether this resource represents a handle
with an open stream. If true, the InputStream cannot be read multiple times, and
must be read once only and then closed to avoid resource leaks. Will be false for
all usual resource implementations, with the exception of InputStreamResource.

	
getDescription(): returns a description for this resource, to be used for error
output when working with the resource. This is often the fully qualified file name or
the actual URL of the resource.

Other methods allow you to obtain an actual URL or File object representing the
resource (if the underlying implementation is compatible, and supports that
functionality).

The Resource abstraction is used extensively in Spring itself, as an argument type in
many method signatures when a resource is needed. Other methods in some Spring APIs
(such as the constructors to various ApplicationContext implementations), take a
String which in unadorned or simple form is used to create a Resource appropriate to
that context implementation, or via special prefixes on the String path, allow the
caller to specify that a specific Resource implementation must be created and used.

While the Resource interface is used a lot with Spring and by Spring, it’s actually
very useful to use as a general utility class by itself in your own code, for access to
resources, even when your code doesn’t know or care about any other parts of Spring.
While this couples your code to Spring, it really only couples it to this small set of
utility classes, which are serving as a more capable replacement for URL, and can be
considered equivalent to any other library you would use for this purpose.

It is important to note that the Resource abstraction does not replace functionality:
it wraps it where possible. For example, a UrlResource wraps a URL, and uses the
wrapped URL to do its work.

Built-in Resource implementations

There are a number of Resource implementations that come supplied straight out of the
box in Spring:

UrlResource

The UrlResource wraps a java.net.URL, and may be used to access any object that is
normally accessible via a URL, such as files, an HTTP target, an FTP target, etc. All
URLs have a standardized String representation, such that appropriate standardized
prefixes are used to indicate one URL type from another. This includes file: for
accessing filesystem paths, http: for accessing resources via the HTTP protocol,
ftp: for accessing resources via FTP, etc.

A UrlResource is created by Java code explicitly using the UrlResource constructor,
but will often be created implicitly when you call an API method which takes a String
argument which is meant to represent a path. For the latter case, a JavaBeans
PropertyEditor will ultimately decide which type of Resource to create. If the path
string contains a few well-known (to it, that is) prefixes such as classpath:, it will
create an appropriate specialized Resource for that prefix. However, if it doesn’t
recognize the prefix, it will assume the this is just a standard URL string, and will
create a UrlResource.

ClassPathResource

This class represents a resource which should be obtained from the classpath. This uses
either the thread context class loader, a given class loader, or a given class for
loading resources.

This Resource implementation supports resolution as java.io.File if the class path
resource resides in the file system, but not for classpath resources which reside in a
jar and have not been expanded (by the servlet engine, or whatever the environment is)
to the filesystem. To address this the various Resource implementations always support
resolution as a java.net.URL.

A ClassPathResource is created by Java code explicitly using the ClassPathResource
constructor, but will often be created implicitly when you call an API method which
takes a String argument which is meant to represent a path. For the latter case, a
JavaBeans PropertyEditor will recognize the special prefix classpath: on the string
path, and create a ClassPathResource in that case.

FileSystemResource

This is a Resource implementation for java.io.File handles. It obviously supports
resolution as a File, and as a URL.

ServletContextResource

This is a Resource implementation for ServletContext resources, interpreting
relative paths within the relevant web application’s root directory.

This always supports stream access and URL access, but only allows java.io.File access
when the web application archive is expanded and the resource is physically on the
filesystem. Whether or not it’s expanded and on the filesystem like this, or accessed
directly from the JAR or somewhere else like a DB (it’s conceivable) is actually
dependent on the Servlet container.

InputStreamResource

A Resource implementation for a given InputStream. This should only be used if no
specific Resource implementation is applicable. In particular, prefer
ByteArrayResource or any of the file-based Resource implementations where possible.

In contrast to other Resource implementations, this is a descriptor for an already
opened resource - therefore returning true from isOpen(). Do not use it if you need
to keep the resource descriptor somewhere, or if you need to read a stream multiple
times.

ByteArrayResource

This is a Resource implementation for a given byte array. It creates a
ByteArrayInputStream for the given byte array.

It’s useful for loading content from any given byte array, without having to resort to a
single-use InputStreamResource.

The ResourceLoader

The ResourceLoader interface is meant to be implemented by objects that can return
(i.e. load) Resource instances.

public interface ResourceLoader {

 Resource getResource(String location);

}

All application contexts implement the ResourceLoader interface, and therefore all
application contexts may be used to obtain Resource instances.

When you call getResource() on a specific application context, and the location path
specified doesn’t have a specific prefix, you will get back a Resource type that is
appropriate to that particular application context. For example, assume the following
snippet of code was executed against a ClassPathXmlApplicationContext instance:

Resource template = ctx.getResource("some/resource/path/myTemplate.txt");

What would be returned would be a ClassPathResource; if the same method was executed
against a FileSystemXmlApplicationContext instance, you’d get back a
FileSystemResource. For a WebApplicationContext, you’d get back a
ServletContextResource, and so on.

As such, you can load resources in a fashion appropriate to the particular application
context.

On the other hand, you may also force ClassPathResource to be used, regardless of the
application context type, by specifying the special classpath: prefix:

Resource template = ctx.getResource("classpath:some/resource/path/myTemplate.txt");

Similarly, one can force a UrlResource to be used by specifying any of the standard
java.net.URL prefixes:

Resource template = ctx.getResource("file:///some/resource/path/myTemplate.txt");

Resource template = ctx.getResource("http://myhost.com/resource/path/myTemplate.txt");

The following table summarizes the strategy for converting Strings to Resources:

Table 8.1. Resource strings

	Prefix	Example	Explanation
	classpath:
	classpath:com/myapp/config.xml
	Loaded from the classpath.

	file:
	file:///data/config.xml
	Loaded as a URL, from the filesystem. [a]

	http:
	http://myserver/logo.png
	Loaded as a URL.

	(none)
	/data/config.xml
	Depends on the underlying ApplicationContext.

	[a] But see also the section called “FileSystemResource caveats”.

The ResourceLoaderAware interface

The ResourceLoaderAware interface is a special marker interface, identifying objects
that expect to be provided with a ResourceLoader reference.

public interface ResourceLoaderAware {

 void setResourceLoader(ResourceLoader resourceLoader);
}

When a class implements ResourceLoaderAware and is deployed into an application
context (as a Spring-managed bean), it is recognized as ResourceLoaderAware by the
application context. The application context will then invoke the
setResourceLoader(ResourceLoader), supplying itself as the argument (remember, all
application contexts in Spring implement the ResourceLoader interface).

Of course, since an ApplicationContext is a ResourceLoader, the bean could also
implement the ApplicationContextAware interface and use the supplied application
context directly to load resources, but in general, it’s better to use the specialized
ResourceLoader interface if that’s all that’s needed. The code would just be coupled
to the resource loading interface, which can be considered a utility interface, and not
the whole Spring ApplicationContext interface.

As of Spring 2.5, you can rely upon autowiring of the ResourceLoader as an alternative
to implementing the ResourceLoaderAware interface. The "traditional" constructor and
byType autowiring modes (as described in the section called “Autowiring collaborators”) are now capable
of providing a dependency of type ResourceLoader for either a constructor argument or
setter method parameter respectively. For more flexibility (including the ability to
autowire fields and multiple parameter methods), consider using the new annotation-based
autowiring features. In that case, the ResourceLoader will be autowired into a field,
constructor argument, or method parameter that is expecting the ResourceLoader type as
long as the field, constructor, or method in question carries the @Autowired
annotation. For more information, see the section called “@Autowired”.

Resources as dependencies

If the bean itself is going to determine and supply the resource path through some sort
of dynamic process, it probably makes sense for the bean to use the ResourceLoader
interface to load resources. Consider as an example the loading of a template of some
sort, where the specific resource that is needed depends on the role of the user. If the
resources are static, it makes sense to eliminate the use of the ResourceLoader
interface completely, and just have the bean expose the Resource properties it needs,
and expect that they will be injected into it.

What makes it trivial to then inject these properties, is that all application contexts
register and use a special JavaBeans PropertyEditor which can convert String paths
to Resource objects. So if myBean has a template property of type Resource, it can
be configured with a simple string for that resource, as follows:

<bean id="myBean" class="...">
 <property name="template" value="some/resource/path/myTemplate.txt"/>
</bean>

Note that the resource path has no prefix, so because the application context itself is
going to be used as the ResourceLoader, the resource itself will be loaded via a
ClassPathResource, FileSystemResource, or ServletContextResource (as appropriate)
depending on the exact type of the context.

If there is a need to force a specific Resource type to be used, then a prefix may be
used. The following two examples show how to force a ClassPathResource and a
UrlResource (the latter being used to access a filesystem file).

<property name="template" value="classpath:some/resource/path/myTemplate.txt">

<property name="template" value="file:///some/resource/path/myTemplate.txt"/>

Application contexts and Resource paths

Constructing application contexts

An application context constructor (for a specific application context type) generally
takes a string or array of strings as the location path(s) of the resource(s) such as
XML files that make up the definition of the context.

When such a location path doesn’t have a prefix, the specific Resource type built from
that path and used to load the bean definitions, depends on and is appropriate to the
specific application context. For example, if you create a
ClassPathXmlApplicationContext as follows:

ApplicationContext ctx = new ClassPathXmlApplicationContext("conf/appContext.xml");

The bean definitions will be loaded from the classpath, as a ClassPathResource will be
used. But if you create a FileSystemXmlApplicationContext as follows:

ApplicationContext ctx =
 new FileSystemXmlApplicationContext("conf/appContext.xml");

The bean definition will be loaded from a filesystem location, in this case relative to
the current working directory.

Note that the use of the special classpath prefix or a standard URL prefix on the
location path will override the default type of Resource created to load the
definition. So this FileSystemXmlApplicationContext…​

ApplicationContext ctx =
 new FileSystemXmlApplicationContext("classpath:conf/appContext.xml");

	
will actually load its bean definitions from the classpath. However, it is still a
FileSystemXmlApplicationContext. If it is subsequently used as a ResourceLoader, any
unprefixed paths will still be treated as filesystem paths.

Constructing ClassPathXmlApplicationContext instances - shortcuts

The ClassPathXmlApplicationContext exposes a number of constructors to enable
convenient instantiation. The basic idea is that one supplies merely a string array
containing just the filenames of the XML files themselves (without the leading path
information), and one also supplies a Class; the ClassPathXmlApplicationContext
will derive the path information from the supplied class.

An example will hopefully make this clear. Consider a directory layout that looks like
this:

com/
 foo/
 services.xml
 daos.xml
 MessengerService.class

A ClassPathXmlApplicationContext instance composed of the beans defined in the
'services.xml' and 'daos.xml' could be instantiated like so…​

ApplicationContext ctx = new ClassPathXmlApplicationContext(
 new String[] {"services.xml", "daos.xml"}, MessengerService.class);

Please do consult the ClassPathXmlApplicationContext javadocs for details
on the various constructors.

Wildcards in application context constructor resource paths

The resource paths in application context constructor values may be a simple path (as
shown above) which has a one-to-one mapping to a target Resource, or alternately may
contain the special "classpath*:" prefix and/or internal Ant-style regular expressions
(matched using Spring’s PathMatcher utility). Both of the latter are effectively
wildcards

One use for this mechanism is when doing component-style application assembly. All
components can 'publish' context definition fragments to a well-known location path, and
when the final application context is created using the same path prefixed via
classpath*:, all component fragments will be picked up automatically.

Note that this wildcarding is specific to use of resource paths in application context
constructors (or when using the PathMatcher utility class hierarchy directly), and is
resolved at construction time. It has nothing to do with the Resource type itself.
It’s not possible to use the classpath*: prefix to construct an actual Resource, as
a resource points to just one resource at a time.

Ant-style Patterns

When the path location contains an Ant-style pattern, for example:

/WEB-INF/*-context.xml
 com/mycompany/**/applicationContext.xml
 file:C:/some/path/*-context.xml
 classpath:com/mycompany/**/applicationContext.xml

The resolver follows a more complex but defined procedure to try to resolve the
wildcard. It produces a Resource for the path up to the last non-wildcard segment and
obtains a URL from it. If this URL is not a jar: URL or container-specific variant
(e.g. zip: in WebLogic, wsjar in WebSphere, etc.), then a java.io.File is
obtained from it and used to resolve the wildcard by traversing the filesystem. In the
case of a jar URL, the resolver either gets a java.net.JarURLConnection from it or
manually parses the jar URL and then traverses the contents of the jar file to resolve
the wildcards.

Implications on portability

If the specified path is already a file URL (either explicitly, or implicitly because
the base ResourceLoader is a filesystem one, then wildcarding is guaranteed to work in
a completely portable fashion.

If the specified path is a classpath location, then the resolver must obtain the last
non-wildcard path segment URL via a Classloader.getResource() call. Since this is just
a node of the path (not the file at the end) it is actually undefined (in the
ClassLoader javadocs) exactly what sort of a URL is returned in this case. In
practice, it is always a java.io.File representing the directory, where the classpath
resource resolves to a filesystem location, or a jar URL of some sort, where the
classpath resource resolves to a jar location. Still, there is a portability concern on
this operation.

If a jar URL is obtained for the last non-wildcard segment, the resolver must be able to
get a java.net.JarURLConnection from it, or manually parse the jar URL, to be able to
walk the contents of the jar, and resolve the wildcard. This will work in most
environments, but will fail in others, and it is strongly recommended that the wildcard
resolution of resources coming from jars be thoroughly tested in your specific
environment before you rely on it.

The classpath*: prefix

When constructing an XML-based application context, a location string may use the
special classpath*: prefix:

ApplicationContext ctx =
 new ClassPathXmlApplicationContext("classpath*:conf/appContext.xml");

This special prefix specifies that all classpath resources that match the given name
must be obtained (internally, this essentially happens via a
ClassLoader.getResources(…​) call), and then merged to form the final application
context definition.

	[image: [Note]]	Note
	
The wildcard classpath relies on the getResources() method of the underlying
classloader. As most application servers nowadays supply their own classloader
implementation, the behavior might differ especially when dealing with jar files. A
simple test to check if classpath* works is to use the classloader to load a file from
within a jar on the classpath:
getClass().getClassLoader().getResources("<someFileInsideTheJar>"). Try this test with
files that have the same name but are placed inside two different locations. In case an
inappropriate result is returned, check the application server documentation for
settings that might affect the classloader behavior.

The classpath*: prefix can also be combined with a PathMatcher pattern in the
rest of the location path, for example classpath*:META-INF/*-beans.xml. In this
case, the resolution strategy is fairly simple: a ClassLoader.getResources() call is
used on the last non-wildcard path segment to get all the matching resources in the
class loader hierarchy, and then off each resource the same PathMatcher resolution
strategy described above is used for the wildcard subpath.

Other notes relating to wildcards

Please note that classpath*: when combined with Ant-style patterns will only work
reliably with at least one root directory before the pattern starts, unless the actual
target files reside in the file system. This means that a pattern like
classpath*:*.xml might not retrieve files from the root of jar files but rather only
from the root of expanded directories.

Spring’s ability to retrieve classpath entries originates from the JDK’s
ClassLoader.getResources() method which only returns file system locations for a
passed-in empty string (indicating potential roots to search). Spring evaluates
URLClassLoader runtime configuration and the "java.class.path" manifest in jar files
as well but this is not guaranteed to lead to portable behavior.

	[image: [Note]]	Note
	
The scanning of classpath packages requires the presence of corresponding directory
entries in the classpath. When you build JARs with Ant, make sure that you do not
activate the files-only switch of the JAR task. Also, classpath directories may not
get exposed based on security policies in some environments, e.g. standalone apps on
JDK 1.7.0_45 and higher (which requires 'Trusted-Library' setup in your manifests; see
http://stackoverflow.com/questions/19394570/java-jre-7u45-breaks-classloader-getresources).

Ant-style patterns with classpath: resources are not guaranteed to find matching
resources if the root package to search is available in multiple class path locations.
This is because a resource such as

com/mycompany/package1/service-context.xml

may be in only one location, but when a path such as

classpath:com/mycompany/**/service-context.xml

is used to try to resolve it, the resolver will work off the (first) URL returned by
getResource("com/mycompany");. If this base package node exists in multiple
classloader locations, the actual end resource may not be underneath. Therefore,
preferably, use " `classpath*:`" with the same Ant-style pattern in such a case, which
will search all class path locations that contain the root package.

FileSystemResource caveats

A FileSystemResource that is not attached to a FileSystemApplicationContext (that
is, a FileSystemApplicationContext is not the actual ResourceLoader) will treat
absolute vs. relative paths as you would expect. Relative paths are relative to the
current working directory, while absolute paths are relative to the root of the
filesystem.

For backwards compatibility (historical) reasons however, this changes when the
FileSystemApplicationContext is the ResourceLoader. The
FileSystemApplicationContext simply forces all attached FileSystemResource instances
to treat all location paths as relative, whether they start with a leading slash or not.
In practice, this means the following are equivalent:

ApplicationContext ctx =
 new FileSystemXmlApplicationContext("conf/context.xml");

ApplicationContext ctx =
 new FileSystemXmlApplicationContext("/conf/context.xml");

As are the following: (Even though it would make sense for them to be different, as one
case is relative and the other absolute.)

FileSystemXmlApplicationContext ctx = ...;
ctx.getResource("some/resource/path/myTemplate.txt");

FileSystemXmlApplicationContext ctx = ...;
ctx.getResource("/some/resource/path/myTemplate.txt");

In practice, if true absolute filesystem paths are needed, it is better to forgo the use
of absolute paths with FileSystemResource / FileSystemXmlApplicationContext, and
just force the use of a UrlResource, by using the file: URL prefix.

// actual context type doesn't matter, the Resource will always be UrlResource
ctx.getResource("file:///some/resource/path/myTemplate.txt");

// force this FileSystemXmlApplicationContext to load its definition via a UrlResource
ApplicationContext ctx =
 new FileSystemXmlApplicationContext("file:///conf/context.xml");

Chapter 9. Validation, Data Binding, and Type Conversion

Introduction

JSR-303/JSR-349 Bean Validation

Spring Framework 4.0 supports Bean Validation 1.0 (JSR-303) and Bean Validation 1.1
(JSR-349) in terms of setup support, also adapting it to Spring’s Validator interface.

An application can choose to enable Bean Validation once globally, as described in
the section called “Spring Validation”, and use it exclusively for all validation needs.

An application can also register additional Spring Validator instances per
DataBinder instance, as described in the section called “Configuring a DataBinder”. This may be useful for
plugging in validation logic without the use of annotations.

There are pros and cons for considering validation as business logic, and Spring offers
a design for validation (and data binding) that does not exclude either one of them.
Specifically validation should not be tied to the web tier, should be easy to localize
and it should be possible to plug in any validator available. Considering the above,
Spring has come up with a Validator interface that is both basic and eminently usable
in every layer of an application.

Data binding is useful for allowing user input to be dynamically bound to the domain
model of an application (or whatever objects you use to process user input). Spring
provides the so-called DataBinder to do exactly that. The Validator and the
DataBinder make up the validation package, which is primarily used in but not
limited to the MVC framework.

The BeanWrapper is a fundamental concept in the Spring Framework and is used in a lot
of places. However, you probably will not have the need to use the BeanWrapper
directly. Because this is reference documentation however, we felt that some explanation
might be in order. We will explain the BeanWrapper in this chapter since, if you were
going to use it at all, you would most likely do so when trying to bind data to objects.

Spring’s DataBinder and the lower-level BeanWrapper both use PropertyEditors to parse
and format property values. The PropertyEditor concept is part of the JavaBeans
specification, and is also explained in this chapter. Spring 3 introduces a
"core.convert" package that provides a general type conversion facility, as well as a
higher-level "format" package for formatting UI field values. These new packages may be
used as simpler alternatives to PropertyEditors, and will also be discussed in this
chapter.

Validation using Spring’s Validator interface

Spring features a Validator interface that you can use to validate objects. The
Validator interface works using an Errors object so that while validating,
validators can report validation failures to the Errors object.

Let’s consider a small data object:

public class Person {

 private String name;
 private int age;

 // the usual getters and setters...
}

We’re going to provide validation behavior for the Person class by implementing the
following two methods of the org.springframework.validation.Validator interface:

	
supports(Class) - Can this Validator validate instances of the supplied Class?

	
validate(Object, org.springframework.validation.Errors) - validates the given object
and in case of validation errors, registers those with the given Errors object

Implementing a Validator is fairly straightforward, especially when you know of the
ValidationUtils helper class that the Spring Framework also provides.

public class PersonValidator implements Validator {

 /**
 * This Validator validates *just* Person instances
 */
 public boolean supports(Class clazz) {
 return Person.class.equals(clazz);
 }

 public void validate(Object obj, Errors e) {
 ValidationUtils.rejectIfEmpty(e, "name", "name.empty");
 Person p = (Person) obj;
 if (p.getAge() < 0) {
 e.rejectValue("age", "negativevalue");
 } else if (p.getAge() > 110) {
 e.rejectValue("age", "too.darn.old");
 }
 }
}

As you can see, the static rejectIfEmpty(..) method on the ValidationUtils class
is used to reject the 'name' property if it is null or the empty string. Have a look
at the ValidationUtils javadocs to see what functionality it provides besides the
example shown previously.

While it is certainly possible to implement a single Validator class to validate each
of the nested objects in a rich object, it may be better to encapsulate the validation
logic for each nested class of object in its own Validator implementation. A simple
example of a 'rich' object would be a Customer that is composed of two String
properties (a first and second name) and a complex Address object. Address objects
may be used independently of Customer objects, and so a distinct AddressValidator
has been implemented. If you want your CustomerValidator to reuse the logic contained
within the AddressValidator class without resorting to copy-and-paste, you can
dependency-inject or instantiate an AddressValidator within your CustomerValidator,
and use it like so:

public class CustomerValidator implements Validator {

 private final Validator addressValidator;

 public CustomerValidator(Validator addressValidator) {
 if (addressValidator == null) {
 throw new IllegalArgumentException("The supplied [Validator] is " +
 "required and must not be null.");
 }
 if (!addressValidator.supports(Address.class)) {
 throw new IllegalArgumentException("The supplied [Validator] must " +
 "support the validation of [Address] instances.");
 }
 this.addressValidator = addressValidator;
 }

 /**
 * This Validator validates Customer instances, and any subclasses of Customer too
 */
 public boolean supports(Class clazz) {
 return Customer.class.isAssignableFrom(clazz);
 }

 public void validate(Object target, Errors errors) {
 ValidationUtils.rejectIfEmptyOrWhitespace(errors, "firstName", "field.required");
 ValidationUtils.rejectIfEmptyOrWhitespace(errors, "surname", "field.required");
 Customer customer = (Customer) target;
 try {
 errors.pushNestedPath("address");
 ValidationUtils.invokeValidator(this.addressValidator, customer.getAddress(), errors);
 } finally {
 errors.popNestedPath();
 }
 }
}

Validation errors are reported to the Errors object passed to the validator. In case
of Spring Web MVC you can use <spring:bind/> tag to inspect the error messages, but of
course you can also inspect the errors object yourself. More information about the
methods it offers can be found in the javadocs.

Resolving codes to error messages

We’ve talked about databinding and validation. Outputting messages corresponding to
validation errors is the last thing we need to discuss. In the example we’ve shown
above, we rejected the name and the age field. If we’re going to output the error
messages by using a MessageSource, we will do so using the error code we’ve given when
rejecting the field ('name' and 'age' in this case). When you call (either directly, or
indirectly, using for example the ValidationUtils class) rejectValue or one of the
other reject methods from the Errors interface, the underlying implementation will
not only register the code you’ve passed in, but also a number of additional error
codes. What error codes it registers is determined by the MessageCodesResolver that is
used. By default, the DefaultMessageCodesResolver is used, which for example not only
registers a message with the code you gave, but also messages that include the field
name you passed to the reject method. So in case you reject a field using
rejectValue("age", "too.darn.old"), apart from the too.darn.old code, Spring will
also register too.darn.old.age and too.darn.old.age.int (so the first will include
the field name and the second will include the type of the field); this is done as a
convenience to aid developers in targeting error messages and suchlike.

More information on the MessageCodesResolver and the default strategy can be found
online in the javadocs of
MessageCodesResolver
and
DefaultMessageCodesResolver,
respectively.

Bean manipulation and the BeanWrapper

The org.springframework.beans package adheres to the JavaBeans standard provided by
Oracle. A JavaBean is simply a class with a default no-argument constructor, which follows
a naming convention where (by way of an example) a property named bingoMadness would
have a setter method setBingoMadness(..) and a getter method getBingoMadness(). For
more information about JavaBeans and the specification, please refer to Oracle’s website (
javabeans).

One quite important class in the beans package is the BeanWrapper interface and its
corresponding implementation (BeanWrapperImpl). As quoted from the javadocs, the
BeanWrapper offers functionality to set and get property values (individually or in
bulk), get property descriptors, and to query properties to determine if they are
readable or writable. Also, the BeanWrapper offers support for nested properties,
enabling the setting of properties on sub-properties to an unlimited depth. Then, the
BeanWrapper supports the ability to add standard JavaBeans PropertyChangeListeners
and VetoableChangeListeners, without the need for supporting code in the target class.
Last but not least, the BeanWrapper provides support for the setting of indexed
properties. The BeanWrapper usually isn’t used by application code directly, but by
the DataBinder and the BeanFactory.

The way the BeanWrapper works is partly indicated by its name: it wraps a bean to
perform actions on that bean, like setting and retrieving properties.

Setting and getting basic and nested properties

Setting and getting properties is done using the setPropertyValue(s) and
getPropertyValue(s) methods that both come with a couple of overloaded variants.
They’re all described in more detail in the javadocs Spring comes with. What’s important
to know is that there are a couple of conventions for indicating properties of an
object. A couple of examples:

Table 9.1. Examples of properties

	Expression	Explanation
	name
	Indicates the property name corresponding to the methods getName() or isName()
 and setName(..)

	account.name
	Indicates the nested property name of the property account corresponding e.g. to
 the methods getAccount().setName() or getAccount().getName()

	account[2]
	Indicates the third element of the indexed property account. Indexed properties
 can be of type array, list or other naturally ordered collection

	account[COMPANYNAME]
	Indicates the value of the map entry indexed by the key COMPANYNAME of the Map
 property account

Below you’ll find some examples of working with the BeanWrapper to get and set
properties.

(This next section is not vitally important to you if you’re not planning to work with
the BeanWrapper directly. If you’re just using the DataBinder and the BeanFactory
and their out-of-the-box implementation, you should skip ahead to the section about
PropertyEditors.)

Consider the following two classes:

public class Company {

 private String name;
 private Employee managingDirector;

 public String getName() {
 return this.name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public Employee getManagingDirector() {
 return this.managingDirector;
 }

 public void setManagingDirector(Employee managingDirector) {
 this.managingDirector = managingDirector;
 }
}

public class Employee {

 private String name;

 private float salary;

 public String getName() {
 return this.name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public float getSalary() {
 return salary;
 }

 public void setSalary(float salary) {
 this.salary = salary;
 }
}

The following code snippets show some examples of how to retrieve and manipulate some of
the properties of instantiated Companies and Employees:

BeanWrapper company = new BeanWrapperImpl(new Company());
// setting the company name..
company.setPropertyValue("name", "Some Company Inc.");
// ... can also be done like this:
PropertyValue value = new PropertyValue("name", "Some Company Inc.");
company.setPropertyValue(value);

// ok, let's create the director and tie it to the company:
BeanWrapper jim = new BeanWrapperImpl(new Employee());
jim.setPropertyValue("name", "Jim Stravinsky");
company.setPropertyValue("managingDirector", jim.getWrappedInstance());

// retrieving the salary of the managingDirector through the company
Float salary = (Float) company.getPropertyValue("managingDirector.salary");

Built-in PropertyEditor implementations

Spring uses the concept of PropertyEditors to effect the conversion between an
Object and a String. If you think about it, it sometimes might be handy to be able
to represent properties in a different way than the object itself. For example, a Date
can be represented in a human readable way (as the String '2007-14-09'), while
we’re still able to convert the human readable form back to the original date (or even
better: convert any date entered in a human readable form, back to Date objects). This
behavior can be achieved by registering custom editors, of type
java.beans.PropertyEditor. Registering custom editors on a BeanWrapper or
alternately in a specific IoC container as mentioned in the previous chapter, gives it
the knowledge of how to convert properties to the desired type. Read more about
PropertyEditors in the javadocs of the java.beans package provided by Oracle.

A couple of examples where property editing is used in Spring:

	
setting properties on beans is done using PropertyEditors. When mentioning
java.lang.String as the value of a property of some bean you’re declaring in XML
file, Spring will (if the setter of the corresponding property has a
Class-parameter) use the ClassEditor to try to resolve the parameter to a Class
object.

	
parsing HTTP request parameters in Spring’s MVC framework is done using all kinds
of PropertyEditors that you can manually bind in all subclasses of the
CommandController.

Spring has a number of built-in PropertyEditors to make life easy. Each of those is
listed below and they are all located in the org.springframework.beans.propertyeditors
package. Most, but not all (as indicated below), are registered by default by
BeanWrapperImpl. Where the property editor is configurable in some fashion, you can of
course still register your own variant to override the default one:

Table 9.2. Built-in PropertyEditors

	Class	Explanation
	ByteArrayPropertyEditor
	Editor for byte arrays. Strings will simply be converted to their corresponding byte
 representations. Registered by default by BeanWrapperImpl.

	ClassEditor
	Parses Strings representing classes to actual classes and the other way around. When a
 class is not found, an IllegalArgumentException is thrown. Registered by default by
 BeanWrapperImpl.

	CustomBooleanEditor
	Customizable property editor for Boolean properties. Registered by default by
 BeanWrapperImpl, but, can be overridden by registering custom instance of it as
 custom editor.

	CustomCollectionEditor
	Property editor for Collections, converting any source Collection to a given target
 Collection type.

	CustomDateEditor
	Customizable property editor for java.util.Date, supporting a custom DateFormat. NOT
 registered by default. Must be user registered as needed with appropriate format.

	CustomNumberEditor
	Customizable property editor for any Number subclass like Integer, Long, Float,
 Double. Registered by default by BeanWrapperImpl, but can be overridden by
 registering custom instance of it as a custom editor.

	FileEditor
	Capable of resolving Strings to java.io.File objects. Registered by default by
 BeanWrapperImpl.

	InputStreamEditor
	One-way property editor, capable of taking a text string and producing (via an
 intermediate ResourceEditor and Resource) an InputStream, so InputStream
 properties may be directly set as Strings. Note that the default usage will not close
 the InputStream for you! Registered by default by BeanWrapperImpl.

	LocaleEditor
	Capable of resolving Strings to Locale objects and vice versa (the String format is
 [country][variant], which is the same thing the toString() method of
 Locale provides). Registered by default by BeanWrapperImpl.

	PatternEditor
	Capable of resolving Strings to java.util.regex.Pattern objects and vice versa.

	PropertiesEditor
	Capable of converting Strings (formatted using the format as defined in the javadocs
 of the java.util.Properties class) to Properties objects. Registered by default
 by BeanWrapperImpl.

	StringTrimmerEditor
	Property editor that trims Strings. Optionally allows transforming an empty string
 into a null value. NOT registered by default; must be user registered as needed.

	URLEditor
	Capable of resolving a String representation of a URL to an actual URL object.
 Registered by default by BeanWrapperImpl.

Spring uses the java.beans.PropertyEditorManager to set the search path for property
editors that might be needed. The search path also includes sun.bean.editors, which
includes PropertyEditor implementations for types such as Font, Color, and most of
the primitive types. Note also that the standard JavaBeans infrastructure will
automatically discover PropertyEditor classes (without you having to register them
explicitly) if they are in the same package as the class they handle, and have the same
name as that class, with 'Editor' appended; for example, one could have the following
class and package structure, which would be sufficient for the FooEditor class to be
recognized and used as the PropertyEditor for Foo-typed properties.

com
 chank
 pop
 Foo
 FooEditor // the PropertyEditor for the Foo class

Note that you can also use the standard BeanInfo JavaBeans mechanism here as well
(described
in
not-amazing-detail here). Find below an example of using the BeanInfo mechanism for
explicitly registering one or more PropertyEditor instances with the properties of an
associated class.

com
 chank
 pop
 Foo
 FooBeanInfo // the BeanInfo for the Foo class

Here is the Java source code for the referenced FooBeanInfo class. This would
associate a CustomNumberEditor with the age property of the Foo class.

public class FooBeanInfo extends SimpleBeanInfo {

 public PropertyDescriptor[] getPropertyDescriptors() {
 try {
 final PropertyEditor numberPE = new CustomNumberEditor(Integer.class, true);
 PropertyDescriptor ageDescriptor = new PropertyDescriptor("age", Foo.class) {
 public PropertyEditor createPropertyEditor(Object bean) {
 return numberPE;
 };
 };
 return new PropertyDescriptor[] { ageDescriptor };
 }
 catch (IntrospectionException ex) {
 throw new Error(ex.toString());
 }
 }
}

Registering additional custom PropertyEditors

When setting bean properties as a string value, a Spring IoC container ultimately uses
standard JavaBeans PropertyEditors to convert these Strings to the complex type of the
property. Spring pre-registers a number of custom PropertyEditors (for example, to
convert a classname expressed as a string into a real Class object). Additionally,
Java’s standard JavaBeans PropertyEditor lookup mechanism allows a PropertyEditor
for a class simply to be named appropriately and placed in the same package as the class
it provides support for, to be found automatically.

If there is a need to register other custom PropertyEditors, there are several
mechanisms available. The most manual approach, which is not normally convenient or
recommended, is to simply use the registerCustomEditor() method of the
ConfigurableBeanFactory interface, assuming you have a BeanFactory reference.
Another, slightly more convenient, mechanism is to use a special bean factory
post-processor called CustomEditorConfigurer. Although bean factory post-processors
can be used with BeanFactory implementations, the CustomEditorConfigurer has a
nested property setup, so it is strongly recommended that it is used with the
ApplicationContext, where it may be deployed in similar fashion to any other bean, and
automatically detected and applied.

Note that all bean factories and application contexts automatically use a number of
built-in property editors, through their use of something called a BeanWrapper to
handle property conversions. The standard property editors that the BeanWrapper
registers are listed in the previous section. Additionally,
ApplicationContexts also override or add an additional number of editors to handle
resource lookups in a manner appropriate to the specific application context type.

Standard JavaBeans PropertyEditor instances are used to convert property values
expressed as strings to the actual complex type of the property.
CustomEditorConfigurer, a bean factory post-processor, may be used to conveniently add
support for additional PropertyEditor instances to an ApplicationContext.

Consider a user class ExoticType, and another class DependsOnExoticType which needs
ExoticType set as a property:

package example;

public class ExoticType {

 private String name;

 public ExoticType(String name) {
 this.name = name;
 }
}

public class DependsOnExoticType {

 private ExoticType type;

 public void setType(ExoticType type) {
 this.type = type;
 }
}

When things are properly set up, we want to be able to assign the type property as a
string, which a PropertyEditor will behind the scenes convert into an actual
ExoticType instance:

<bean id="sample" class="example.DependsOnExoticType">
 <property name="type" value="aNameForExoticType"/>
</bean>

The PropertyEditor implementation could look similar to this:

// converts string representation to ExoticType object
package example;

public class ExoticTypeEditor extends PropertyEditorSupport {

 public void setAsText(String text) {
 setValue(new ExoticType(text.toUpperCase()));
 }
}

Finally, we use CustomEditorConfigurer to register the new PropertyEditor with the
ApplicationContext, which will then be able to use it as needed:

<bean class="org.springframework.beans.factory.config.CustomEditorConfigurer">
 <property name="customEditors">
 <map>
 <entry key="example.ExoticType" value="example.ExoticTypeEditor"/>
 </map>
 </property>
</bean>

Using PropertyEditorRegistrars

Another mechanism for registering property editors with the Spring container is to
create and use a PropertyEditorRegistrar. This interface is particularly useful when
you need to use the same set of property editors in several different situations: write
a corresponding registrar and reuse that in each case. PropertyEditorRegistrars work
in conjunction with an interface called PropertyEditorRegistry, an interface that is
implemented by the Spring BeanWrapper (and DataBinder). PropertyEditorRegistrars
are particularly convenient when used in conjunction with the CustomEditorConfigurer
(introduced here), which exposes a
property called setPropertyEditorRegistrars(..): PropertyEditorRegistrars added to a
CustomEditorConfigurer in this fashion can easily be shared with DataBinder and
Spring MVC Controllers. Furthermore, it avoids the need for synchronization on custom
editors: a PropertyEditorRegistrar is expected to create fresh PropertyEditor
instances for each bean creation attempt.

Using a PropertyEditorRegistrar is perhaps best illustrated with an example. First
off, you need to create your own PropertyEditorRegistrar implementation:

package com.foo.editors.spring;

public final class CustomPropertyEditorRegistrar implements PropertyEditorRegistrar {

 public void registerCustomEditors(PropertyEditorRegistry registry) {

 // it is expected that new PropertyEditor instances are created
 registry.registerCustomEditor(ExoticType.class, new ExoticTypeEditor());

 // you could register as many custom property editors as are required here...
 }
}

See also the org.springframework.beans.support.ResourceEditorRegistrar for an example
PropertyEditorRegistrar implementation. Notice how in its implementation of the
registerCustomEditors(..) method it creates new instances of each property editor.

Next we configure a CustomEditorConfigurer and inject an instance of our
CustomPropertyEditorRegistrar into it:

<bean class="org.springframework.beans.factory.config.CustomEditorConfigurer">
 <property name="propertyEditorRegistrars">
 <list>
 <ref bean="customPropertyEditorRegistrar"/>
 </list>
 </property>
</bean>

<bean id="customPropertyEditorRegistrar"
 class="com.foo.editors.spring.CustomPropertyEditorRegistrar"/>

Finally, and in a bit of a departure from the focus of this chapter, for those of you
using Spring’s MVC web framework, using PropertyEditorRegistrars in
conjunction with data-binding Controllers (such as SimpleFormController) can be very
convenient. Find below an example of using a PropertyEditorRegistrar in the
implementation of an initBinder(..) method:

public final class RegisterUserController extends SimpleFormController {

 private final PropertyEditorRegistrar customPropertyEditorRegistrar;

 public RegisterUserController(PropertyEditorRegistrar propertyEditorRegistrar) {
 this.customPropertyEditorRegistrar = propertyEditorRegistrar;
 }

 protected void initBinder(HttpServletRequest request,
 ServletRequestDataBinder binder) throws Exception {
 this.customPropertyEditorRegistrar.registerCustomEditors(binder);
 }

 // other methods to do with registering a User
}

This style of PropertyEditor registration can lead to concise code (the implementation
of initBinder(..) is just one line long!), and allows common PropertyEditor
registration code to be encapsulated in a class and then shared amongst as many
Controllers as needed.

Spring Type Conversion

Spring 3 introduces a core.convert package that provides a general type conversion
system. The system defines an SPI to implement type conversion logic, as well as an API
to execute type conversions at runtime. Within a Spring container, this system can be
used as an alternative to PropertyEditors to convert externalized bean property value
strings to required property types. The public API may also be used anywhere in your
application where type conversion is needed.

Converter SPI

The SPI to implement type conversion logic is simple and strongly typed:

package org.springframework.core.convert.converter;

public interface Converter<S, T> {

 T convert(S source);
}

To create your own converter, simply implement the interface above. Parameterize S
as the type you are converting from, and T as the type you are converting to. Such a
converter can also be applied transparently if a collection or array of S needs to be
converted to an array or collection of T, provided that a delegating array/collection
converter has been registered as well (which DefaultConversionService does by default).

For each call to convert(S), the source argument is guaranteed to be NOT null. Your
Converter may throw any unchecked exception if conversion fails; specifically, an
IllegalArgumentException should be thrown to report an invalid source value.
Take care to ensure that your Converter implementation is thread-safe.

Several converter implementations are provided in the core.convert.support package as
a convenience. These include converters from Strings to Numbers and other common types.
Consider StringToInteger as an example for a typical Converter implementation:

package org.springframework.core.convert.support;

final class StringToInteger implements Converter<String, Integer> {

 public Integer convert(String source) {
 return Integer.valueOf(source);
 }
}

ConverterFactory

When you need to centralize the conversion logic for an entire class hierarchy, for
example, when converting from String to java.lang.Enum objects, implement
ConverterFactory:

package org.springframework.core.convert.converter;

public interface ConverterFactory<S, R> {

 <T extends R> Converter<S, T> getConverter(Class<T> targetType);
}

Parameterize S to be the type you are converting from and R to be the base type defining
the range of classes you can convert to. Then implement getConverter(Class<T>),
where T is a subclass of R.

Consider the StringToEnum ConverterFactory as an example:

package org.springframework.core.convert.support;

final class StringToEnumConverterFactory implements ConverterFactory<String, Enum> {

 public <T extends Enum> Converter<String, T> getConverter(Class<T> targetType) {
 return new StringToEnumConverter(targetType);
 }

 private final class StringToEnumConverter<T extends Enum> implements Converter<String, T> {

 private Class<T> enumType;

 public StringToEnumConverter(Class<T> enumType) {
 this.enumType = enumType;
 }

 public T convert(String source) {
 return (T) Enum.valueOf(this.enumType, source.trim());
 }
 }
}

GenericConverter

When you require a sophisticated Converter implementation, consider the GenericConverter
interface. With a more flexible but less strongly typed signature, a GenericConverter
supports converting between multiple source and target types. In addition, a
GenericConverter makes available source and target field context you can use when
implementing your conversion logic. Such context allows a type conversion to be driven
by a field annotation, or generic information declared on a field signature.

package org.springframework.core.convert.converter;

public interface GenericConverter {

 public Set<ConvertiblePair> getConvertibleTypes();

 Object convert(Object source, TypeDescriptor sourceType, TypeDescriptor targetType);
}

To implement a GenericConverter, have getConvertibleTypes() return the supported
source→target type pairs. Then implement convert(Object, TypeDescriptor,
TypeDescriptor) to implement your conversion logic. The source TypeDescriptor provides
access to the source field holding the value being converted. The target TypeDescriptor
provides access to the target field where the converted value will be set.

A good example of a GenericConverter is a converter that converts between a Java Array
and a Collection. Such an ArrayToCollectionConverter introspects the field that declares
the target Collection type to resolve the Collection’s element type. This allows each
element in the source array to be converted to the Collection element type before the
Collection is set on the target field.

	[image: [Note]]	Note
	
Because GenericConverter is a more complex SPI interface, only use it when you need it.
Favor Converter or ConverterFactory for basic type conversion needs.

ConditionalGenericConverter

Sometimes you only want a Converter to execute if a specific condition holds true. For
example, you might only want to execute a Converter if a specific annotation is present
on the target field. Or you might only want to execute a Converter if a specific method,
such as a static valueOf method, is defined on the target class.
ConditionalGenericConverter is the union of the GenericConverter and
ConditionalConverter interfaces that allows you to define such custom matching criteria:

public interface ConditionalConverter {

 boolean matches(TypeDescriptor sourceType, TypeDescriptor targetType);
}

public interface ConditionalGenericConverter extends GenericConverter, ConditionalConverter {
}

A good example of a ConditionalGenericConverter is an EntityConverter that converts
between an persistent entity identifier and an entity reference. Such a EntityConverter
might only match if the target entity type declares a static finder method e.g.
findAccount(Long). You would perform such a finder method check in the implementation of
matches(TypeDescriptor, TypeDescriptor).

ConversionService API

The ConversionService defines a unified API for executing type conversion logic at
runtime. Converters are often executed behind this facade interface:

package org.springframework.core.convert;

public interface ConversionService {

 boolean canConvert(Class<?> sourceType, Class<?> targetType);

 <T> T convert(Object source, Class<T> targetType);

 boolean canConvert(TypeDescriptor sourceType, TypeDescriptor targetType);

 Object convert(Object source, TypeDescriptor sourceType, TypeDescriptor targetType);

}

Most ConversionService implementations also implement ConverterRegistry, which
provides an SPI for registering converters. Internally, a ConversionService
implementation delegates to its registered converters to carry out type conversion logic.

A robust ConversionService implementation is provided in the core.convert.support
package. GenericConversionService is the general-purpose implementation suitable for
use in most environments. ConversionServiceFactory provides a convenient factory for
creating common ConversionService configurations.

Configuring a ConversionService

A ConversionService is a stateless object designed to be instantiated at application
startup, then shared between multiple threads. In a Spring application, you typically
configure a ConversionService instance per Spring container (or ApplicationContext).
That ConversionService will be picked up by Spring and then used whenever a type
conversion needs to be performed by the framework. You may also inject this
ConversionService into any of your beans and invoke it directly.

	[image: [Note]]	Note
	
If no ConversionService is registered with Spring, the original PropertyEditor-based
system is used.

To register a default ConversionService with Spring, add the following bean definition
with id conversionService:

<bean id="conversionService"
 class="org.springframework.context.support.ConversionServiceFactoryBean"/>

A default ConversionService can convert between strings, numbers, enums, collections,
maps, and other common types. To supplement or override the default converters with your
own custom converter(s), set the converters property. Property values may implement
either of the Converter, ConverterFactory, or GenericConverter interfaces.

<bean id="conversionService"
 class="org.springframework.context.support.ConversionServiceFactoryBean">
 <property name="converters">
 <set>
 <bean class="example.MyCustomConverter"/>
 </set>
 </property>
</bean>

It is also common to use a ConversionService within a Spring MVC application. See
the section called “Conversion and Formatting” in the Spring MVC chapter.

In certain situations you may wish to apply formatting during conversion. See
the section called “FormatterRegistry SPI” for details on using
FormattingConversionServiceFactoryBean.

Using a ConversionService programmatically

To work with a ConversionService instance programmatically, simply inject a reference to
it like you would for any other bean:

@Service
public class MyService {

 @Autowired
 public MyService(ConversionService conversionService) {
 this.conversionService = conversionService;
 }

 public void doIt() {
 this.conversionService.convert(...)
 }
}

For most use cases, the convert method specifying the targetType can be used but it
will not work with more complex types such as a collection of a parameterized element.
If you want to convert a List of Integer to a List of String programmatically,
for instance, you need to provide a formal definition of the source and target types.

Fortunately, TypeDescriptor provides various options to make that straightforward:

DefaultConversionService cs = new DefaultConversionService();

List<Integer> input =
cs.convert(input,
 TypeDescriptor.forObject(input), // List<Integer> type descriptor
 TypeDescriptor.collection(List.class, TypeDescriptor.valueOf(String.class)));

Note that DefaultConversionService registers converters automatically which are
appropriate for most environments. This includes collection converters, scalar
converters, and also basic Object to String converters. The same converters can
be registered with any ConverterRegistry using the static addDefaultConverters
method on the DefaultConversionService class.

Converters for value types will be reused for arrays and collections, so there is
no need to create a specific converter to convert from a Collection of S to a
Collection of T, assuming that standard collection handling is appropriate.

Spring Field Formatting

As discussed in the previous section, core.convert is a
general-purpose type conversion system. It provides a unified ConversionService API as
well as a strongly-typed Converter SPI for implementing conversion logic from one type
to another. A Spring Container uses this system to bind bean property values. In
addition, both the Spring Expression Language (SpEL) and DataBinder use this system to
bind field values. For example, when SpEL needs to coerce a Short to a Long to
complete an expression.setValue(Object bean, Object value) attempt, the core.convert
system performs the coercion.

Now consider the type conversion requirements of a typical client environment such as a
web or desktop application. In such environments, you typically convert from String
to support the client postback process, as well as back to String to support the
view rendering process. In addition, you often need to localize String values. The more
general core.convert Converter SPI does not address such formatting requirements
directly. To directly address them, Spring 3 introduces a convenient Formatter SPI that
provides a simple and robust alternative to PropertyEditors for client environments.

In general, use the Converter SPI when you need to implement general-purpose type
conversion logic; for example, for converting between a java.util.Date and and
java.lang.Long. Use the Formatter SPI when you’re working in a client environment, such
as a web application, and need to parse and print localized field values. The
ConversionService provides a unified type conversion API for both SPIs.

Formatter SPI

The Formatter SPI to implement field formatting logic is simple and strongly typed:

package org.springframework.format;

public interface Formatter<T> extends Printer<T>, Parser<T> {
}

Where Formatter extends from the Printer and Parser building-block interfaces:

public interface Printer<T> {

 String print(T fieldValue, Locale locale);
}

import java.text.ParseException;

public interface Parser<T> {

 T parse(String clientValue, Locale locale) throws ParseException;
}

To create your own Formatter, simply implement the Formatter interface above.
Parameterize T to be the type of object you wish to format, for example,
java.util.Date. Implement the print() operation to print an instance of T for
display in the client locale. Implement the parse() operation to parse an instance of
T from the formatted representation returned from the client locale. Your Formatter
should throw a ParseException or IllegalArgumentException if a parse attempt fails. Take
care to ensure your Formatter implementation is thread-safe.

Several Formatter implementations are provided in format subpackages as a convenience.
The number package provides a NumberStyleFormatter, CurrencyStyleFormatter, and
PercentStyleFormatter to format java.lang.Number objects using a java.text.NumberFormat.
The datetime package provides a DateFormatter to format java.util.Date objects with
a java.text.DateFormat. The datetime.joda package provides comprehensive datetime
formatting support based on the Joda-Time library.

Consider DateFormatter as an example Formatter implementation:

package org.springframework.format.datetime;

public final class DateFormatter implements Formatter<Date> {

 private String pattern;

 public DateFormatter(String pattern) {
 this.pattern = pattern;
 }

 public String print(Date date, Locale locale) {
 if (date == null) {
 return "";
 }
 return getDateFormat(locale).format(date);
 }

 public Date parse(String formatted, Locale locale) throws ParseException {
 if (formatted.length() == 0) {
 return null;
 }
 return getDateFormat(locale).parse(formatted);
 }

 protected DateFormat getDateFormat(Locale locale) {
 DateFormat dateFormat = new SimpleDateFormat(this.pattern, locale);
 dateFormat.setLenient(false);
 return dateFormat;
 }
}

The Spring team welcomes community-driven Formatter contributions; see
jira.spring.io to contribute.

Annotation-driven Formatting

As you will see, field formatting can be configured by field type or annotation. To bind
an Annotation to a formatter, implement AnnotationFormatterFactory:

package org.springframework.format;

public interface AnnotationFormatterFactory<A extends Annotation> {

 Set<Class<?>> getFieldTypes();

 Printer<?> getPrinter(A annotation, Class<?> fieldType);

 Parser<?> getParser(A annotation, Class<?> fieldType);
}

Parameterize A to be the field annotationType you wish to associate formatting logic
with, for example org.springframework.format.annotation.DateTimeFormat. Have
getFieldTypes() return the types of fields the annotation may be used on. Have
getPrinter() return a Printer to print the value of an annotated field. Have
getParser() return a Parser to parse a clientValue for an annotated field.

The example AnnotationFormatterFactory implementation below binds the @NumberFormat
Annotation to a formatter. This annotation allows either a number style or pattern to be
specified:

public final class NumberFormatAnnotationFormatterFactory
 implements AnnotationFormatterFactory<NumberFormat> {

 public Set<Class<?>> getFieldTypes() {
 return new HashSet<Class<?>>(asList(new Class<?>[] {
 Short.class, Integer.class, Long.class, Float.class,
 Double.class, BigDecimal.class, BigInteger.class }));
 }

 public Printer<Number> getPrinter(NumberFormat annotation, Class<?> fieldType) {
 return configureFormatterFrom(annotation, fieldType);
 }

 public Parser<Number> getParser(NumberFormat annotation, Class<?> fieldType) {
 return configureFormatterFrom(annotation, fieldType);
 }

 private Formatter<Number> configureFormatterFrom(NumberFormat annotation, Class<?> fieldType) {
 if (!annotation.pattern().isEmpty()) {
 return new NumberStyleFormatter(annotation.pattern());
 } else {
 Style style = annotation.style();
 if (style == Style.PERCENT) {
 return new PercentStyleFormatter();
 } else if (style == Style.CURRENCY) {
 return new CurrencyStyleFormatter();
 } else {
 return new NumberStyleFormatter();
 }
 }
 }
}

To trigger formatting, simply annotate fields with @NumberFormat:

public class MyModel {

 @NumberFormat(style=Style.CURRENCY)
 private BigDecimal decimal;
}

Format Annotation API

A portable format annotation API exists in the org.springframework.format.annotation
package. Use @NumberFormat to format java.lang.Number fields. Use @DateTimeFormat to
format java.util.Date, java.util.Calendar, java.util.Long, or Joda-Time fields.

The example below uses @DateTimeFormat to format a java.util.Date as a ISO Date
(yyyy-MM-dd):

public class MyModel {

 @DateTimeFormat(iso=ISO.DATE)
 private Date date;
}

FormatterRegistry SPI

The FormatterRegistry is an SPI for registering formatters and converters.
FormattingConversionService is an implementation of FormatterRegistry suitable for
most environments. This implementation may be configured programmatically or
declaratively as a Spring bean using FormattingConversionServiceFactoryBean. Because
this implementation also implements ConversionService, it can be directly configured
for use with Spring’s DataBinder and the Spring Expression Language (SpEL).

Review the FormatterRegistry SPI below:

package org.springframework.format;

public interface FormatterRegistry extends ConverterRegistry {

 void addFormatterForFieldType(Class<?> fieldType, Printer<?> printer, Parser<?> parser);

 void addFormatterForFieldType(Class<?> fieldType, Formatter<?> formatter);

 void addFormatterForFieldType(Formatter<?> formatter);

 void addFormatterForAnnotation(AnnotationFormatterFactory<?, ?> factory);
}

As shown above, Formatters can be registered by fieldType or annotation.

The FormatterRegistry SPI allows you to configure Formatting rules centrally, instead of
duplicating such configuration across your Controllers. For example, you might want to
enforce that all Date fields are formatted a certain way, or fields with a specific
annotation are formatted in a certain way. With a shared FormatterRegistry, you define
these rules once and they are applied whenever formatting is needed.

FormatterRegistrar SPI

The FormatterRegistrar is an SPI for registering formatters and converters through the
FormatterRegistry:

package org.springframework.format;

public interface FormatterRegistrar {

 void registerFormatters(FormatterRegistry registry);
}

A FormatterRegistrar is useful when registering multiple related converters and
formatters for a given formatting category, such as Date formatting. It can also be
useful where declarative registration is insufficient. For example when a formatter
needs to be indexed under a specific field type different from its own <T> or when
registering a Printer/Parser pair. The next section provides more information on
converter and formatter registration.

Configuring Formatting in Spring MVC

See the section called “Conversion and Formatting” in the Spring MVC chapter.

Configuring a global date & time format

By default, date and time fields that are not annotated with @DateTimeFormat are
converted from strings using the DateFormat.SHORT style. If you prefer, you can
change this by defining your own global format.

You will need to ensure that Spring does not register default formatters, and instead
you should register all formatters manually. Use the
org.springframework.format.datetime.joda.JodaTimeFormatterRegistrar or
org.springframework.format.datetime.DateFormatterRegistrar class depending on whether
you use the Joda-Time library.

For example, the following Java configuration will register a global ' `yyyyMMdd’
format. This example does not depend on the Joda-Time library:

@Configuration
public class AppConfig {

 @Bean
 public FormattingConversionService conversionService() {

 // Use the DefaultFormattingConversionService but do not register defaults
 DefaultFormattingConversionService conversionService = new DefaultFormattingConversionService(false);

 // Ensure @NumberFormat is still supported
 conversionService.addFormatterForFieldAnnotation(new NumberFormatAnnotationFormatterFactory());

 // Register date conversion with a specific global format
 DateFormatterRegistrar registrar = new DateFormatterRegistrar();
 registrar.setFormatter(new DateFormatter("yyyyMMdd"));
 registrar.registerFormatters(conversionService);

 return conversionService;
 }
}

If you prefer XML based configuration you can use a
FormattingConversionServiceFactoryBean. Here is the same example, this time using Joda
Time:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd>

 <bean id="conversionService" class="org.springframework.format.support.FormattingConversionServiceFactoryBean">
 <property name="registerDefaultFormatters" value="false" />
 <property name="formatters">
 <set>
 <bean class="org.springframework.format.number.NumberFormatAnnotationFormatterFactory" />
 </set>
 </property>
 <property name="formatterRegistrars">
 <set>
 <bean class="org.springframework.format.datetime.joda.JodaTimeFormatterRegistrar">
 <property name="dateFormatter">
 <bean class="org.springframework.format.datetime.joda.DateTimeFormatterFactoryBean">
 <property name="pattern" value="yyyyMMdd"/>
 </bean>
 </property>
 </bean>
 </set>
 </property>
 </bean>
</beans>

	[image: [Note]]	Note
	
Joda-Time provides separate distinct types to represent date, time and date-time
values. The dateFormatter, timeFormatter and dateTimeFormatter properties of the
JodaTimeFormatterRegistrar should be used to configure the different formats for each
type. The DateTimeFormatterFactoryBean provides a convenient way to create formatters.

If you are using Spring MVC remember to explicitly configure the conversion service that
is used. For Java based @Configuration this means extending the
WebMvcConfigurationSupport class and overriding the mvcConversionService() method.
For XML you should use the 'conversion-service' attribute of the
mvc:annotation-driven element. See the section called “Conversion and Formatting” for details.

Spring Validation

Spring 3 introduces several enhancements to its validation support. First, the JSR-303
Bean Validation API is now fully supported. Second, when used programmatically, Spring’s
DataBinder can now validate objects as well as bind to them. Third, Spring MVC now has
support for declaratively validating @Controller inputs.

Overview of the JSR-303 Bean Validation API

JSR-303 standardizes validation constraint declaration and metadata for the Java
platform. Using this API, you annotate domain model properties with declarative
validation constraints and the runtime enforces them. There are a number of built-in
constraints you can take advantage of. You may also define your own custom constraints.

To illustrate, consider a simple PersonForm model with two properties:

public class PersonForm {
 private String name;
 private int age;
}

JSR-303 allows you to define declarative validation constraints against such properties:

public class PersonForm {

 @NotNull
 @Size(max=64)
 private String name;

 @Min(0)
 private int age;
}

When an instance of this class is validated by a JSR-303 Validator, these constraints
will be enforced.

For general information on JSR-303/JSR-349, see the Bean
Validation website. For information on the specific capabilities of the default
reference implementation, see the Hibernate
Validator documentation. To learn how to setup a Bean Validation provider as a Spring
bean, keep reading.

Configuring a Bean Validation Provider

Spring provides full support for the Bean Validation API. This includes convenient
support for bootstrapping a JSR-303/JSR-349 Bean Validation provider as a Spring bean.
This allows for a javax.validation.ValidatorFactory or javax.validation.Validator to
be injected wherever validation is needed in your application.

Use the LocalValidatorFactoryBean to configure a default Validator as a Spring bean:

<bean id="validator"
 class="org.springframework.validation.beanvalidation.LocalValidatorFactoryBean"/>

The basic configuration above will trigger Bean Validation to initialize using its
default bootstrap mechanism. A JSR-303/JSR-349 provider, such as Hibernate Validator,
is expected to be present in the classpath and will be detected automatically.

Injecting a Validator

LocalValidatorFactoryBean implements both javax.validation.ValidatorFactory and
javax.validation.Validator, as well as Spring’s
org.springframework.validation.Validator. You may inject a reference to either of
these interfaces into beans that need to invoke validation logic.

Inject a reference to javax.validation.Validator if you prefer to work with the Bean
Validation API directly:

import javax.validation.Validator;

@Service
public class MyService {

 @Autowired
 private Validator validator;

Inject a reference to org.springframework.validation.Validator if your bean requires
the Spring Validation API:

import org.springframework.validation.Validator;

@Service
public class MyService {

 @Autowired
 private Validator validator;
}

Configuring Custom Constraints

Each Bean Validation constraint consists of two parts. First, a @Constraint annotation
that declares the constraint and its configurable properties. Second, an implementation
of the javax.validation.ConstraintValidator interface that implements the constraint’s
behavior. To associate a declaration with an implementation, each @Constraint annotation
references a corresponding ConstraintValidator implementation class. At runtime, a
ConstraintValidatorFactory instantiates the referenced implementation when the
constraint annotation is encountered in your domain model.

By default, the LocalValidatorFactoryBean configures a SpringConstraintValidatorFactory
that uses Spring to create ConstraintValidator instances. This allows your custom
ConstraintValidators to benefit from dependency injection like any other Spring bean.

Shown below is an example of a custom @Constraint declaration, followed by an associated
ConstraintValidator implementation that uses Spring for dependency injection:

@Target({ElementType.METHOD, ElementType.FIELD})
@Retention(RetentionPolicy.RUNTIME)
@Constraint(validatedBy=MyConstraintValidator.class)
public @interface MyConstraint {
}

import javax.validation.ConstraintValidator;

public class MyConstraintValidator implements ConstraintValidator {

 @Autowired;
 private Foo aDependency;

 ...
}

As you can see, a ConstraintValidator implementation may have its dependencies
@Autowired like any other Spring bean.

Spring-driven Method Validation

The method validation feature supported by Bean Validation 1.1, and as a custom
extension also by Hibernate Validator 4.3, can be integrated into a Spring context
through a MethodValidationPostProcessor bean definition:

<bean class="org.springframework.validation.beanvalidation.MethodValidationPostProcessor"/>

In order to be eligible for Spring-driven method validation, all target classes need
to be annotated with Spring’s @Validated annotation, optionally declaring the
validation groups to use. Check out the MethodValidationPostProcessor javadocs
for setup details with Hibernate Validator and Bean Validation 1.1 providers.

Additional Configuration Options

The default LocalValidatorFactoryBean configuration should prove sufficient for most
cases. There are a number of configuration options for various Bean Validation
constructs, from message interpolation to traversal resolution. See the
LocalValidatorFactoryBean javadocs for more information on these options.

Configuring a DataBinder

Since Spring 3, a DataBinder instance can be configured with a Validator. Once
configured, the Validator may be invoked by calling binder.validate(). Any validation
Errors are automatically added to the binder’s BindingResult.

When working with the DataBinder programmatically, this can be used to invoke validation
logic after binding to a target object:

Foo target = new Foo();
DataBinder binder = new DataBinder(target);
binder.setValidator(new FooValidator());

// bind to the target object
binder.bind(propertyValues);

// validate the target object
binder.validate();

// get BindingResult that includes any validation errors
BindingResult results = binder.getBindingResult();

A DataBinder can also be configured with multiple Validator instances via
dataBinder.addValidators and dataBinder.replaceValidators. This is useful when
combining globally configured Bean Validation with a Spring Validator configured
locally on a DataBinder instance. See ???.

Spring MVC 3 Validation

See the section called “Validation” in the Spring MVC chapter.

Chapter 10. Spring Expression Language (SpEL)

Introduction

The Spring Expression Language (SpEL for short) is a powerful expression language that
supports querying and manipulating an object graph at runtime. The language syntax is
similar to Unified EL but offers additional features, most notably method invocation and
basic string templating functionality.

While there are several other Java expression languages available, OGNL, MVEL, and JBoss
EL, to name a few, the Spring Expression Language was created to provide the Spring
community with a single well supported expression language that can be used across all
the products in the Spring portfolio. Its language features are driven by the
requirements of the projects in the Spring portfolio, including tooling requirements for
code completion support within the eclipse based Spring Tool Suite. That said,
SpEL is based on a technology agnostic API allowing other expression language
implementations to be integrated should the need arise.

While SpEL serves as the foundation for expression evaluation within the Spring
portfolio, it is not directly tied to Spring and can be used independently. In order to
be self contained, many of the examples in this chapter use SpEL as if it were an
independent expression language. This requires creating a few bootstrapping
infrastructure classes such as the parser. Most Spring users will not need to deal with
this infrastructure and will instead only author expression strings for evaluation. An
example of this typical use is the integration of SpEL into creating XML or annotated
based bean definitions as shown in the section Expression support
for defining bean definitions.

This chapter covers the features of the expression language, its API, and its language
syntax. In several places an Inventor and Inventor’s Society class are used as the
target objects for expression evaluation. These class declarations and the data used to
populate them are listed at the end of the chapter.

The expression language supports the following functionality:

	
Literal expressions

	
Boolean and relational operators

	
Regular expressions

	
Class expressions

	
Accessing properties, arrays, lists, maps

	
Method invocation

	
Relational operators

	
Assignment

	
Calling constructors

	
Bean references

	
Array construction

	
Inline lists

	
Inline maps

	
Ternary operator

	
Variables

	
User defined functions

	
Collection projection

	
Collection selection

	
Templated expressions

Evaluation

This section introduces the simple use of SpEL interfaces and its expression language.
The complete language reference can be found in the section
Language Reference.

The following code introduces the SpEL API to evaluate the literal string expression
'Hello World'.

ExpressionParser parser = new SpelExpressionParser();
Expression exp = parser.parseExpression("'Hello World'");
String message = (String) exp.getValue();

The value of the message variable is simply 'Hello World'.

The SpEL classes and interfaces you are most likely to use are located in the packages
org.springframework.expression and its sub packages and spel.support.

The interface ExpressionParser is responsible for parsing an expression string. In
this example the expression string is a string literal denoted by the surrounding single
quotes. The interface Expression is responsible for evaluating the previously defined
expression string. There are two exceptions that can be thrown, ParseException and
EvaluationException when calling parser.parseExpression and exp.getValue
respectively.

SpEL supports a wide range of features, such as calling methods, accessing properties,
and calling constructors.

As an example of method invocation, we call the concat method on the string literal.

ExpressionParser parser = new SpelExpressionParser();
Expression exp = parser.parseExpression("'Hello World'.concat('!')");
String message = (String) exp.getValue();

The value of message is now 'Hello World!'.

As an example of calling a JavaBean property, the String property Bytes can be called
as shown below.

ExpressionParser parser = new SpelExpressionParser();

// invokes 'getBytes()'
Expression exp = parser.parseExpression("'Hello World'.bytes");
byte[] bytes = (byte[]) exp.getValue();

SpEL also supports nested properties using standard dot notation, i.e.
prop1.prop2.prop3 and the setting of property values

Public fields may also be accessed.

ExpressionParser parser = new SpelExpressionParser();

// invokes 'getBytes().length'
Expression exp = parser.parseExpression("'Hello World'.bytes.length");
int length = (Integer) exp.getValue();

The String’s constructor can be called instead of using a string literal.

ExpressionParser parser = new SpelExpressionParser();
Expression exp = parser.parseExpression("new String('hello world').toUpperCase()");
String message = exp.getValue(String.class);

Note the use of the generic method public <T> T getValue(Class<T> desiredResultType).
Using this method removes the need to cast the value of the expression to the desired
result type. An EvaluationException will be thrown if the value cannot be cast to the
type T or converted using the registered type converter.

The more common usage of SpEL is to provide an expression string that is evaluated
against a specific object instance (called the root object). The example shows
how to retrieve the name property from an instance of the Inventor class or
create a boolean condition:

// Create and set a calendar
GregorianCalendar c = new GregorianCalendar();
c.set(1856, 7, 9);

// The constructor arguments are name, birthday, and nationality.
Inventor tesla = new Inventor("Nikola Tesla", c.getTime(), "Serbian");

ExpressionParser parser = new SpelExpressionParser();

Expression exp = parser.parseExpression("name");
String name = (String) exp.getValue(tesla);
// name == "Nikola Tesla"

exp = parser.parseExpression("name == 'Nikola Tesla'");
boolean result = exp.getValue(tesla, Boolean.class);
// result == true

EvaluationContext

The interface EvaluationContext is used when evaluating an expression to resolve
properties, methods, fields, and to help perform type conversion. There are two
out-of-the-box implementations.

	
SimpleEvaluationContext — exposes a subset of essential SpEL language features and
configuration options, for categories of expressions that do not require the full extent
of the SpEL language syntax and should be meaningfully restricted. Examples
include but are not limited to data binding expressions, property-based filters, and
others.

	
StandardEvaluationContext — exposes the full set of SpEL language features and
configuration options. You may use it to specify a default root object, and to configure
every available evaluation-related strategy.

SimpleEvaluationContext is designed to support only a subset of the SpEL language syntax.
It excludes Java type references, constructors, and bean references. It also requires
explicit choosing the level of support for properties and methods in expressions.
By default, the create() static factory method enables only read access to properties.
You can also obtain a builder to configure the exact level of support needed, targeting
one of, or some combination of the following:

	
Custom PropertyAccessor only (no reflection).

	
Data binding properties for read-only access.

	
Data binding properties for read and write.

Type conversion

By default SpEL uses the conversion service available in Spring core (
org.springframework.core.convert.ConversionService). This conversion service comes
with many converters built in for common conversions but is also fully extensible so
custom conversions between types can be added. Additionally it has the key capability
that it is generics aware. This means that when working with generic types in
expressions, SpEL will attempt conversions to maintain type correctness for any objects
it encounters.

What does this mean in practice? Suppose assignment, using setValue(), is being used
to set a List property. The type of the property is actually List<Boolean>. SpEL
will recognize that the elements of the list need to be converted to Boolean before
being placed in it. A simple example:

class Simple {
 public List<Boolean> booleanList = new ArrayList<Boolean>();
}

Simple simple = new Simple();
simple.booleanList.add(true);

SimpleEvaluationContext context = SimpleEvaluationContext().create();

// false is passed in here as a string. SpEL and the conversion service will
// correctly recognize that it needs to be a Boolean and convert it

parser.parseExpression("booleanList[0]").setValue(context, simple, "false");

// b will be false
Boolean b = simple.booleanList.get(0);

Parser configuration

It is possible to configure the SpEL expression parser using a parser configuration object
(org.springframework.expression.spel.SpelParserConfiguration). The configuration
object controls the behavior of some of the expression components. For example, if
indexing into an array or collection and the element at the specified index is null
it is possible to automatically create the element. This is useful when using expressions made up of a
chain of property references. If indexing into an array or list
and specifying an index that is beyond the end of the current size of the array or
list it is possible to automatically grow the array or list to accommodate that index.

class Demo {
 public List<String> list;
}

// Turn on:
// - auto null reference initialization
// - auto collection growing
SpelParserConfiguration config = new SpelParserConfiguration(true,true);

ExpressionParser parser = new SpelExpressionParser(config);

Expression expression = parser.parseExpression("list[3]");

Demo demo = new Demo();

Object o = expression.getValue(demo);

// demo.list will now be a real collection of 4 entries
// Each entry is a new empty String

It is also possible to configure the behaviour of the SpEL expression compiler.

SpEL compilation

Spring Framework 4.1 includes a basic expression compiler. Expressions are usually
interpreted which provides a lot of dynamic flexibility during evaluation but
does not provide the optimum performance. For occasional expression usage
this is fine, but when used by other components like Spring Integration,
performance can be very important and there is no real need for the dynamism.

The new SpEL compiler is intended to address this need. The
compiler will generate a real Java class on the fly during evaluation that embodies the
expression behavior and use that to achieve much faster expression
evaluation. Due to the lack of typing around expressions the compiler
uses information gathered during the interpreted evaluations of an
expression when performing compilation. For example, it does not know the type
of a property reference purely from the expression but during the first
interpreted evaluation it will find out what it is. Of course, basing the
compilation on this information could cause trouble later if the types of
the various expression elements change over time. For this reason compilation
is best suited to expressions whose type information is not going to change
on repeated evaluations.

For a basic expression like this:

someArray[0].someProperty.someOtherProperty < 0.1

which involves array access, some property derefencing and numeric operations, the performance
gain can be very noticeable. In an example micro benchmark run of 50000 iterations, it was
taking 75ms to evaluate using only the interpreter and just 3ms using the compiled version
of the expression.

Compiler configuration

The compiler is not turned on by default, but there are two ways to turn
it on. It can be turned on using the parser configuration process discussed earlier or
via a system property when SpEL usage is embedded inside another component. This section
discusses both of these options.

It is important to understand that there are a few modes the compiler can operate in, captured
in an enum (org.springframework.expression.spel.SpelCompilerMode). The modes are as follows:

	
OFF - The compiler is switched off; this is the default.

	
IMMEDIATE - In immediate mode the expressions are compiled as soon as possible. This
is typically after the first interpreted evaluation. If the compiled expression fails
(typically due to a type changing, as described above) then the caller of the expression
evaluation will receive an exception.

	
MIXED - In mixed mode the expressions silently switch between interpreted and compiled
mode over time. After some number of interpreted runs they will switch to compiled
form and if something goes wrong with the compiled form (like a type changing, as
described above) then the expression will automatically switch back to interpreted form
again. Sometime later it may generate another compiled form and switch to it. Basically
the exception that the user gets in IMMEDIATE mode is instead handled internally.

IMMEDIATE mode exists because MIXED mode could cause issues for expressions that
have side effects. If a compiled expression blows up after partially succeeding it
may have already done something that has affected the state of the system. If this
has happened the caller may not want it to silently re-run in interpreted mode
since part of the expression may be running twice.

After selecting a mode, use the SpelParserConfiguration to configure the parser:

SpelParserConfiguration config = new SpelParserConfiguration(SpelCompilerMode.IMMEDIATE,
 this.getClass().getClassLoader());

SpelExpressionParser parser = new SpelExpressionParser(config);

Expression expr = parser.parseExpression("payload");

MyMessage message = new MyMessage();

Object payload = expr.getValue(message);

When specifying the compiler mode it is also possible to specify a classloader (passing null is allowed).
Compiled expressions will be defined in a child classloader created under any that is supplied.
It is important to ensure if a classloader is specified it can see all the types involved in
the expression evaluation process.
If none is specified then a default classloader will be used (typically the context classloader for
the thread that is running during expression evaluation).

The second way to configure the compiler is for use when SpEL is embedded inside some other
component and it may not be possible to configure via a configuration object.
In these cases it is possible to use a system property. The property
spring.expression.compiler.mode can be set to one of the SpelCompilerMode
enum values (off, immediate, or mixed).

Compiler limitations

With Spring Framework 4.1 the basic compilation framework is in place. However, the framework does not
yet support compiling every kind of expression. The initial focus has been on the common expressions that are
likely to be used in performance critical contexts. These kinds of expression cannot be compiled
at the moment:

	
expressions involving assignment

	
expressions relying on the conversion service

	
expressions using custom resolvers or accessors

	
expressions using selection or projection

More and more types of expression will be compilable in the future.

Expressions in bean definitions

SpEL expressions can be used with XML or annotation-based configuration metadata for
defining BeanDefinitions. In both cases the syntax to define the expression is of the
form #{ <expression string> }.

XML configuration

A property or constructor-arg value can be set using expressions as shown below.

<bean id="numberGuess" class="org.spring.samples.NumberGuess">
 <property name="randomNumber" value="#{ T(java.lang.Math).random() * 100.0 }"/>

 <!-- other properties -->
</bean>

The variable systemProperties is predefined, so you can use it in your expressions as
shown below. Note that you do not have to prefix the predefined variable with the #
symbol in this context.

<bean id="taxCalculator" class="org.spring.samples.TaxCalculator">
 <property name="defaultLocale" value="#{ systemProperties['user.region'] }"/>

 <!-- other properties -->
</bean>

You can also refer to other bean properties by name, for example.

<bean id="numberGuess" class="org.spring.samples.NumberGuess">
 <property name="randomNumber" value="#{ T(java.lang.Math).random() * 100.0 }"/>

 <!-- other properties -->
</bean>

<bean id="shapeGuess" class="org.spring.samples.ShapeGuess">
 <property name="initialShapeSeed" value="#{ numberGuess.randomNumber }"/>

 <!-- other properties -->
</bean>

Annotation config

The @Value annotation can be placed on fields, methods and method/constructor
parameters to specify a default value.

Here is an example to set the default value of a field variable.

public static class FieldValueTestBean

 @Value("#{ systemProperties['user.region'] }")
 private String defaultLocale;

 public void setDefaultLocale(String defaultLocale) {
 this.defaultLocale = defaultLocale;
 }

 public String getDefaultLocale() {
 return this.defaultLocale;
 }

}

The equivalent but on a property setter method is shown below.

public static class PropertyValueTestBean

 private String defaultLocale;

 @Value("#{ systemProperties['user.region'] }")
 public void setDefaultLocale(String defaultLocale) {
 this.defaultLocale = defaultLocale;
 }

 public String getDefaultLocale() {
 return this.defaultLocale;
 }

}

Autowired methods and constructors can also use the @Value annotation.

public class SimpleMovieLister {

 private MovieFinder movieFinder;
 private String defaultLocale;

 @Autowired
 public void configure(MovieFinder movieFinder,
 @Value("#{ systemProperties['user.region'] }") String defaultLocale) {
 this.movieFinder = movieFinder;
 this.defaultLocale = defaultLocale;
 }

 // ...
}

public class MovieRecommender {

 private String defaultLocale;

 private CustomerPreferenceDao customerPreferenceDao;

 @Autowired
 public MovieRecommender(CustomerPreferenceDao customerPreferenceDao,
 @Value("#{systemProperties['user.country']}") String defaultLocale) {
 this.customerPreferenceDao = customerPreferenceDao;
 this.defaultLocale = defaultLocale;
 }

 // ...
}

Language Reference

Literal expressions

The types of literal expressions supported are strings, numeric values (int, real, hex),
boolean and null. Strings are delimited by single quotes. To put a single quote itself
in a string, use two single quote characters.

The following listing shows simple usage of literals. Typically they would not be used
in isolation like this but rather as part of a more complex expression, for example
using a literal on one side of a logical comparison operator.

ExpressionParser parser = new SpelExpressionParser();

// evals to "Hello World"
String helloWorld = (String) parser.parseExpression("'Hello World'").getValue();

double avogadrosNumber = (Double) parser.parseExpression("6.0221415E+23").getValue();

// evals to 2147483647
int maxValue = (Integer) parser.parseExpression("0x7FFFFFFF").getValue();

boolean trueValue = (Boolean) parser.parseExpression("true").getValue();

Object nullValue = parser.parseExpression("null").getValue();

Numbers support the use of the negative sign, exponential notation, and decimal points.
By default real numbers are parsed using Double.parseDouble().

Properties, Arrays, Lists, Maps, Indexers

Navigating with property references is easy: just use a period to indicate a nested
property value. The instances of the Inventor class, pupin, and tesla, were populated with
data listed in the section Classes used in the examples.
To navigate "down" and get Tesla’s year of birth and Pupin’s city of birth the following
expressions are used.

// evals to 1856
int year = (Integer) parser.parseExpression("Birthdate.Year + 1900").getValue(context);

String city = (String) parser.parseExpression("placeOfBirth.City").getValue(context);

Case insensitivity is allowed for the first letter of property names. The contents of
arrays and lists are obtained using square bracket notation.

ExpressionParser parser = new SpelExpressionParser();
SimpleEvaluationContext context = SimpleEvaluationContext.create();

// Inventions Array

// evaluates to "Induction motor"
String invention = parser.parseExpression("inventions[3]").getValue(
 context, tesla, String.class);

// Members List

// evaluates to "Nikola Tesla"
String name = parser.parseExpression("Members[0].Name").getValue(
 context, ieee, String.class);

// List and Array navigation
// evaluates to "Wireless communication"
String invention = parser.parseExpression("Members[0].Inventions[6]").getValue(
 context, ieee, String.class);

The contents of maps are obtained by specifying the literal key value within the
brackets. In this case, because keys for the Officers map are strings, we can specify
string literals.

// Officer's Dictionary

Inventor pupin = parser.parseExpression("Officers['president']").getValue(
 societyContext, Inventor.class);

// evaluates to "Idvor"
String city = parser.parseExpression("Officers['president'].PlaceOfBirth.City").getValue(
 societyContext, String.class);

// setting values
parser.parseExpression("Officers['advisors'][0].PlaceOfBirth.Country").setValue(
 societyContext, "Croatia");

Inline lists

Lists can be expressed directly in an expression using {} notation.

// evaluates to a Java list containing the four numbers
List numbers = (List) parser.parseExpression("{1,2,3,4}").getValue(context);

List listOfLists = (List) parser.parseExpression("{{'a','b'},{'x','y'}}").getValue(context);

{} by itself means an empty list. For performance reasons, if the list is itself
entirely composed of fixed literals then a constant list is created to represent the
expression, rather than building a new list on each evaluation.

Inline Maps

Maps can also be expressed directly in an expression using {key:value} notation.

// evaluates to a Java map containing the two entries
Map inventorInfo = (Map) parser.parseExpression("{name:'Nikola',dob:'10-July-1856'}").getValue(context);

Map mapOfMaps = (Map) parser.parseExpression("{name:{first:'Nikola',last:'Tesla'},dob:{day:10,month:'July',year:1856}}").getValue(context);

{:} by itself means an empty map. For performance reasons, if the map is itself composed
of fixed literals or other nested constant structures (lists or maps) then a constant map is created
to represent the expression, rather than building a new map on each evaluation. Quoting of the map keys
is optional, the examples above are not using quoted keys.

Array construction

Arrays can be built using the familiar Java syntax, optionally supplying an initializer
to have the array populated at construction time.

int[] numbers1 = (int[]) parser.parseExpression("new int[4]").getValue(context);

// Array with initializer
int[] numbers2 = (int[]) parser.parseExpression("new int[]{1,2,3}").getValue(context);

// Multi dimensional array
int[][] numbers3 = (int[][]) parser.parseExpression("new int[4][5]").getValue(context);

It is not currently allowed to supply an initializer when constructing a
multi-dimensional array.

Methods

Methods are invoked using typical Java programming syntax. You may also invoke methods
on literals. Varargs are also supported.

// string literal, evaluates to "bc"
String bc = parser.parseExpression("'abc'.substring(1, 3)").getValue(String.class);

// evaluates to true
boolean isMember = parser.parseExpression("isMember('Mihajlo Pupin')").getValue(
 societyContext, Boolean.class);

Operators

Relational operators

The relational operators; equal, not equal, less than, less than or equal, greater than,
and greater than or equal are supported using standard operator notation.

// evaluates to true
boolean trueValue = parser.parseExpression("2 == 2").getValue(Boolean.class);

// evaluates to false
boolean falseValue = parser.parseExpression("2 < -5.0").getValue(Boolean.class);

// evaluates to true
boolean trueValue = parser.parseExpression("'black' < 'block'").getValue(Boolean.class);

	[image: [Note]]	Note
	
Greater/less-than comparisons against null follow a simple rule: null is treated as
nothing here (i.e. NOT as zero). As a consequence, any other value is always greater
than null (X > null is always true) and no other value is ever less than nothing
(X < null is always false).

If you prefer numeric comparisons instead, please avoid number-based null comparisons
in favor of comparisons against zero (e.g. X > 0 or X < 0).

In addition to standard relational operators SpEL supports the instanceof and regular
expression based matches operator.

// evaluates to false
boolean falseValue = parser.parseExpression(
 "'xyz' instanceof T(Integer)").getValue(Boolean.class);

// evaluates to true
boolean trueValue = parser.parseExpression(
 "'5.00' matches '\^-?\\d+(\\.\\d{2})?$'").getValue(Boolean.class);

//evaluates to false
boolean falseValue = parser.parseExpression(
 "'5.0067' matches '\^-?\\d+(\\.\\d{2})?$'").getValue(Boolean.class);

	[image: [Note]]	Note
	
Be careful with primitive types as they are immediately boxed up to the wrapper type,
so 1 instanceof T(int) evaluates to false while 1 instanceof T(Integer)
evaluates to true, as expected.

Each symbolic operator can also be specified as a purely alphabetic equivalent. This
avoids problems where the symbols used have special meaning for the document type in
which the expression is embedded (eg. an XML document). The textual equivalents are
shown here: lt (<), gt (>), le (⇐), ge (>=), eq (==),
ne (!=), div (/), mod (%), not (!). These are case insensitive.

Logical operators

The logical operators that are supported are and, or, and not. Their use is demonstrated
below.

// -- AND --

// evaluates to false
boolean falseValue = parser.parseExpression("true and false").getValue(Boolean.class);

// evaluates to true
String expression = "isMember('Nikola Tesla') and isMember('Mihajlo Pupin')";
boolean trueValue = parser.parseExpression(expression).getValue(societyContext, Boolean.class);

// -- OR --

// evaluates to true
boolean trueValue = parser.parseExpression("true or false").getValue(Boolean.class);

// evaluates to true
String expression = "isMember('Nikola Tesla') or isMember('Albert Einstein')";
boolean trueValue = parser.parseExpression(expression).getValue(societyContext, Boolean.class);

// -- NOT --

// evaluates to false
boolean falseValue = parser.parseExpression("!true").getValue(Boolean.class);

// -- AND and NOT --
String expression = "isMember('Nikola Tesla') and !isMember('Mihajlo Pupin')";
boolean falseValue = parser.parseExpression(expression).getValue(societyContext, Boolean.class);

Mathematical operators

The addition operator can be used on both numbers and strings. Subtraction, multiplication
and division can be used only on numbers. Other mathematical operators supported are
modulus (%) and exponential power (^). Standard operator precedence is enforced. These
operators are demonstrated below.

// Addition
int two = parser.parseExpression("1 + 1").getValue(Integer.class); // 2

String testString = parser.parseExpression(
 "'test' + ' ' + 'string'").getValue(String.class); // 'test string'

// Subtraction
int four = parser.parseExpression("1 - -3").getValue(Integer.class); // 4

double d = parser.parseExpression("1000.00 - 1e4").getValue(Double.class); // -9000

// Multiplication
int six = parser.parseExpression("-2 * -3").getValue(Integer.class); // 6

double twentyFour = parser.parseExpression("2.0 * 3e0 * 4").getValue(Double.class); // 24.0

// Division
int minusTwo = parser.parseExpression("6 / -3").getValue(Integer.class); // -2

double one = parser.parseExpression("8.0 / 4e0 / 2").getValue(Double.class); // 1.0

// Modulus
int three = parser.parseExpression("7 % 4").getValue(Integer.class); // 3

int one = parser.parseExpression("8 / 5 % 2").getValue(Integer.class); // 1

// Operator precedence
int minusTwentyOne = parser.parseExpression("1+2-3*8").getValue(Integer.class); // -21

Assignment

Setting of a property is done by using the assignment operator. This would typically be
done within a call to setValue but can also be done inside a call to getValue.

Inventor inventor = new Inventor();
SimpleEvaluationContext context = SimpleEvaluationContext.create();

parser.parseExpression("Name").setValue(context, inventor, "Alexander Seovic2");

// alternatively

String aleks = parser.parseExpression(
 "Name = 'Alexandar Seovic'").getValue(context, inventor, String.class);

Types

The special T operator can be used to specify an instance of java.lang.Class (the
type). Static methods are invoked using this operator as well. The
StandardEvaluationContext uses a TypeLocator to find types and the
StandardTypeLocator (which can be replaced) is built with an understanding of the
java.lang package. This means T() references to types within java.lang do not need to be
fully qualified, but all other type references must be.

Class dateClass = parser.parseExpression("T(java.util.Date)").getValue(Class.class);

Class stringClass = parser.parseExpression("T(String)").getValue(Class.class);

boolean trueValue = parser.parseExpression(
 "T(java.math.RoundingMode).CEILING < T(java.math.RoundingMode).FLOOR")
 .getValue(Boolean.class);

Constructors

Constructors can be invoked using the new operator. The fully qualified class name
should be used for all but the primitive type and String (where int, float, etc, can be
used).

Inventor einstein = p.parseExpression(
 "new org.spring.samples.spel.inventor.Inventor('Albert Einstein', 'German')")
 .getValue(Inventor.class);

//create new inventor instance within add method of List
p.parseExpression(
 "Members.add(new org.spring.samples.spel.inventor.Inventor(
 'Albert Einstein', 'German'))").getValue(societyContext);

Variables

Variables can be referenced in the expression using the syntax #variableName. Variables
are set using the method setVariable on EvaluationContext implementations.

Inventor tesla = new Inventor("Nikola Tesla", "Serbian");
SimpleEvaluationContext context = SimpleEvaluationContext.create();
context.setVariable("newName", "Mike Tesla");

parser.parseExpression("Name = #newName").getValue(context, tesla);

System.out.println(tesla.getName()) // "Mike Tesla"

The #this and #root variables

The variable #this is always defined and refers to the current evaluation object
(against which unqualified references are resolved). The variable #root is always
defined and refers to the root context object. Although #this may vary as components of
an expression are evaluated, #root always refers to the root.

// create an array of integers
List<Integer> primes = new ArrayList<Integer>();
primes.addAll(Arrays.asList(2,3,5,7,11,13,17));

// create parser and set variable 'primes' as the array of integers
ExpressionParser parser = new SpelExpressionParser();
SimpleEvaluationContext context = SimpleEvaluationContext.create();
context.setVariable("primes",primes);

// all prime numbers > 10 from the list (using selection ?{...})
// evaluates to [11, 13, 17]
List<Integer> primesGreaterThanTen = (List<Integer>) parser.parseExpression(
 "#primes.?[#this>10]").getValue(context);

Functions

You can extend SpEL by registering user defined functions that can be called within the
expression string. The function is registered through the EvaluationContext.

Method method = ...;

SimpleEvaluationContext context = SimpleEvaluationContext.create();
context.setVariable("myFunction", method);

For example, given a utility method to reverse a string is shown below:

public abstract class StringUtils {

 public static String reverseString(String input) {
 StringBuilder backwards = new StringBuilder();
 for (int i = 0; i < input.length(); i++)
 backwards.append(input.charAt(input.length() - 1 - i));
 }
 return backwards.toString();
 }
}

The above method can then be registered and used as follows:

ExpressionParser parser = new SpelExpressionParser();
SimpleEvaluationContext context = SimpleEvaluationContext.create();

context.setVariable("reverseString",
 StringUtils.class.getDeclaredMethod("reverseString", String.class));

String helloWorldReversed = parser.parseExpression(
 "#reverseString('hello')").getValue(context, String.class);

Bean references

If the evaluation context has been configured with a bean resolver it is possible to
lookup beans from an expression using the (@) symbol.

ExpressionParser parser = new SpelExpressionParser();
StandardEvaluationContext context = StandardEvaluationContext.create();
context.setBeanResolver(new MyBeanResolver());

// This will end up calling resolve(context,"foo") on MyBeanResolver during evaluation
Object bean = parser.parseExpression("@foo").getValue(context);

To access a factory bean itself, the bean name should instead be prefixed with a (&) symbol.

ExpressionParser parser = new SpelExpressionParser();
StandardEvaluationContext context = StandardEvaluationContext.create();
context.setBeanResolver(new MyBeanResolver());

// This will end up calling resolve(context,"&foo") on MyBeanResolver during evaluation
Object bean = parser.parseExpression("&foo").getValue(context);

Ternary Operator (If-Then-Else)

You can use the ternary operator for performing if-then-else conditional logic inside
the expression. A minimal example is:

String falseString = parser.parseExpression(
 "false ? 'trueExp' : 'falseExp'").getValue(String.class);

In this case, the boolean false results in returning the string value 'falseExp'. A more
realistic example is shown below.

parser.parseExpression("Name").setValue(societyContext, "IEEE");
societyContext.setVariable("queryName", "Nikola Tesla");

expression = "isMember(#queryName)? #queryName + ' is a member of the ' " +
 "+ Name + ' Society' : #queryName + ' is not a member of the ' + Name + ' Society'";

String queryResultString = parser.parseExpression(expression)
 .getValue(societyContext, String.class);
// queryResultString = "Nikola Tesla is a member of the IEEE Society"

Also see the next section on the Elvis operator for an even shorter syntax for the
ternary operator.

The Elvis Operator

The Elvis operator is a shortening of the ternary operator syntax and is used in the
Groovy language.
With the ternary operator syntax you usually have to repeat a variable twice, for
example:

String name = "Elvis Presley";
String displayName = name != null ? name : "Unknown";

Instead you can use the Elvis operator, named for the resemblance to Elvis' hair style.

ExpressionParser parser = new SpelExpressionParser();

String name = parser.parseExpression("name?:'Unknown'").getValue(String.class);

System.out.println(name); // 'Unknown'

Here is a more complex example.

ExpressionParser parser = new SpelExpressionParser();

Inventor tesla = new Inventor("Nikola Tesla", "Serbian");
SimpleEvaluationContext context = SimpleEvaluationContext.create();

String name = parser.parseExpression("Name?:'Elvis Presley'").getValue(context, tesla, String.class);

System.out.println(name); // Nikola Tesla

tesla.setName(null);

name = parser.parseExpression("Name?:'Elvis Presley'").getValue(context, tesla, String.class);

System.out.println(name); // Elvis Presley

Safe Navigation operator

The Safe Navigation operator is used to avoid a NullPointerException and comes from
the Groovy
language. Typically when you have a reference to an object you might need to verify that
it is not null before accessing methods or properties of the object. To avoid this, the
safe navigation operator will simply return null instead of throwing an exception.

ExpressionParser parser = new SpelExpressionParser();

Inventor tesla = new Inventor("Nikola Tesla", "Serbian");
tesla.setPlaceOfBirth(new PlaceOfBirth("Smiljan"));

SimpleEvaluationContext context = SimpleEvaluationContext.create();

String city = parser.parseExpression("PlaceOfBirth?.City").getValue(context, tesla, String.class);
System.out.println(city); // Smiljan

tesla.setPlaceOfBirth(null);

city = parser.parseExpression("PlaceOfBirth?.City").getValue(context, tesla, String.class);

System.out.println(city); // null - does not throw NullPointerException!!!

	[image: [Note]]	Note
	
The Elvis operator can be used to apply default values in expressions, e.g. in an
@Value expression:

@Value("#{systemProperties['pop3.port'] ?: 25}")

This will inject a system property pop3.port if it is defined or 25 if not.

Collection Selection

Selection is a powerful expression language feature that allows you to transform some
source collection into another by selecting from its entries.

Selection uses the syntax .?[selectionExpression]. This will filter the collection and
return a new collection containing a subset of the original elements. For example,
selection would allow us to easily get a list of Serbian inventors:

List<Inventor> list = (List<Inventor>) parser.parseExpression(
 "Members.?[Nationality == 'Serbian']").getValue(societyContext);

Selection is possible upon both lists and maps. In the former case the selection
criteria is evaluated against each individual list element whilst against a map the
selection criteria is evaluated against each map entry (objects of the Java type
Map.Entry). Map entries have their key and value accessible as properties for use in
the selection.

This expression will return a new map consisting of those elements of the original map
where the entry value is less than 27.

Map newMap = parser.parseExpression("map.?[value<27]").getValue();

In addition to returning all the selected elements, it is possible to retrieve just the
first or the last value. To obtain the first entry matching the selection the syntax is
^[…​] whilst to obtain the last matching selection the syntax is $[…​].

Collection Projection

Projection allows a collection to drive the evaluation of a sub-expression and the
result is a new collection. The syntax for projection is ![projectionExpression]. Most
easily understood by example, suppose we have a list of inventors but want the list of
cities where they were born. Effectively we want to evaluate 'placeOfBirth.city' for
every entry in the inventor list. Using projection:

// returns ['Smiljan', 'Idvor']
List placesOfBirth = (List)parser.parseExpression("Members.![placeOfBirth.city]");

A map can also be used to drive projection and in this case the projection expression is
evaluated against each entry in the map (represented as a Java Map.Entry). The result
of a projection across a map is a list consisting of the evaluation of the projection
expression against each map entry.

Expression templating

Expression templates allow a mixing of literal text with one or more evaluation blocks.
Each evaluation block is delimited with prefix and suffix characters that you can
define, a common choice is to use #{ } as the delimiters. For example,

String randomPhrase = parser.parseExpression(
 "random number is #{T(java.lang.Math).random()}",
 new TemplateParserContext()).getValue(String.class);

// evaluates to "random number is 0.7038186818312008"

The string is evaluated by concatenating the literal text 'random number is ' with the
result of evaluating the expression inside the #{ } delimiter, in this case the result
of calling that random() method. The second argument to the method parseExpression()
is of the type ParserContext. The ParserContext interface is used to influence how
the expression is parsed in order to support the expression templating functionality.
The definition of TemplateParserContext is shown below.

public class TemplateParserContext implements ParserContext {

 public String getExpressionPrefix() {
 return "#{";
 }

 public String getExpressionSuffix() {
 return "}";
 }

 public boolean isTemplate() {
 return true;
 }
}

Classes used in the examples

Inventor.java

package org.spring.samples.spel.inventor;

import java.util.Date;
import java.util.GregorianCalendar;

public class Inventor {

 private String name;
 private String nationality;
 private String[] inventions;
 private Date birthdate;
 private PlaceOfBirth placeOfBirth;

 public Inventor(String name, String nationality) {
 GregorianCalendar c= new GregorianCalendar();
 this.name = name;
 this.nationality = nationality;
 this.birthdate = c.getTime();
 }

 public Inventor(String name, Date birthdate, String nationality) {
 this.name = name;
 this.nationality = nationality;
 this.birthdate = birthdate;
 }

 public Inventor() {
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public String getNationality() {
 return nationality;
 }

 public void setNationality(String nationality) {
 this.nationality = nationality;
 }

 public Date getBirthdate() {
 return birthdate;
 }

 public void setBirthdate(Date birthdate) {
 this.birthdate = birthdate;
 }

 public PlaceOfBirth getPlaceOfBirth() {
 return placeOfBirth;
 }

 public void setPlaceOfBirth(PlaceOfBirth placeOfBirth) {
 this.placeOfBirth = placeOfBirth;
 }

 public void setInventions(String[] inventions) {
 this.inventions = inventions;
 }

 public String[] getInventions() {
 return inventions;
 }
}

PlaceOfBirth.java

package org.spring.samples.spel.inventor;

public class PlaceOfBirth {

 private String city;
 private String country;

 public PlaceOfBirth(String city) {
 this.city=city;
 }

 public PlaceOfBirth(String city, String country) {
 this(city);
 this.country = country;
 }

 public String getCity() {
 return city;
 }

 public void setCity(String s) {
 this.city = s;
 }

 public String getCountry() {
 return country;
 }

 public void setCountry(String country) {
 this.country = country;
 }

}

Society.java

package org.spring.samples.spel.inventor;

import java.util.*;

public class Society {

 private String name;

 public static String Advisors = "advisors";
 public static String President = "president";

 private List<Inventor> members = new ArrayList<Inventor>();
 private Map officers = new HashMap();

 public List getMembers() {
 return members;
 }

 public Map getOfficers() {
 return officers;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public boolean isMember(String name) {
 for (Inventor inventor : members) {
 if (inventor.getName().equals(name)) {
 return true;
 }
 }
 return false;
 }

}

Chapter 11. Aspect Oriented Programming with Spring

Introduction

Aspect-Oriented Programming (AOP) complements Object-Oriented Programming (OOP) by
providing another way of thinking about program structure. The key unit of modularity in
OOP is the class, whereas in AOP the unit of modularity is the aspect. Aspects
enable the modularization of concerns such as transaction management that cut across
multiple types and objects. (Such concerns are often termed crosscutting concerns in
AOP literature.)

One of the key components of Spring is the AOP framework. While the Spring IoC
container does not depend on AOP, meaning you do not need to use AOP if you don’t want
to, AOP complements Spring IoC to provide a very capable middleware solution.

Spring 2.0+ AOP

Spring 2.0 introduced a simpler and more powerful way of writing custom aspects using
either a schema-based approach or the @AspectJ annotation
style. Both of these styles offer fully typed advice and use of the AspectJ pointcut
language, while still using Spring AOP for weaving.

The Spring 2.0+ schema- and @AspectJ-based AOP support is discussed in this chapter.
The lower-level AOP support, as commonly exposed in Spring 1.2 applications, is
discussed in the following chapter.

AOP is used in the Spring Framework to…​

	
…​ provide declarative enterprise services, especially as a replacement for EJB
declarative services. The most important such service is
declarative transaction management.

	
…​ allow users to implement custom aspects, complementing their use of OOP with AOP.

	[image: [Note]]	Note
	
If you are interested only in generic declarative services or other pre-packaged
declarative middleware services such as pooling, you do not need to work directly with
Spring AOP, and can skip most of this chapter.

AOP concepts

Let us begin by defining some central AOP concepts and terminology. These terms are not
Spring-specific…​ unfortunately, AOP terminology is not particularly intuitive;
however, it would be even more confusing if Spring used its own terminology.

	
Aspect: a modularization of a concern that cuts across multiple classes.
Transaction management is a good example of a crosscutting concern in enterprise Java
applications. In Spring AOP, aspects are implemented using regular classes
(the schema-based approach) or regular classes annotated with the
@Aspect annotation (the @AspectJ style).

	
Join point: a point during the execution of a program, such as the execution of a
method or the handling of an exception. In Spring AOP, a join point always
represents a method execution.

	
Advice: action taken by an aspect at a particular join point. Different types of
advice include "around", "before" and "after" advice. (Advice types are discussed
below.) Many AOP frameworks, including Spring, model an advice as an interceptor,
maintaining a chain of interceptors around the join point.

	
Pointcut: a predicate that matches join points. Advice is associated with a
pointcut expression and runs at any join point matched by the pointcut (for example,
the execution of a method with a certain name). The concept of join points as matched
by pointcut expressions is central to AOP, and Spring uses the AspectJ pointcut
expression language by default.

	
Introduction: declaring additional methods or fields on behalf of a type. Spring
AOP allows you to introduce new interfaces (and a corresponding implementation) to any
advised object. For example, you could use an introduction to make a bean implement an
IsModified interface, to simplify caching. (An introduction is known as an
inter-type declaration in the AspectJ community.)

	
Target object: object being advised by one or more aspects. Also referred to as
the advised object. Since Spring AOP is implemented using runtime proxies, this
object will always be a proxied object.

	
AOP proxy: an object created by the AOP framework in order to implement the aspect
contracts (advise method executions and so on). In the Spring Framework, an AOP proxy
will be a JDK dynamic proxy or a CGLIB proxy.

	
Weaving: linking aspects with other application types or objects to create an
advised object. This can be done at compile time (using the AspectJ compiler, for
example), load time, or at runtime. Spring AOP, like other pure Java AOP frameworks,
performs weaving at runtime.

Types of advice:

	
Before advice: Advice that executes before a join point, but which does not have
the ability to prevent execution flow proceeding to the join point (unless it throws
an exception).

	
After returning advice: Advice to be executed after a join point completes
normally: for example, if a method returns without throwing an exception.

	
After throwing advice: Advice to be executed if a method exits by throwing an
exception.

	
After (finally) advice: Advice to be executed regardless of the means by which a
join point exits (normal or exceptional return).

	
Around advice: Advice that surrounds a join point such as a method invocation.
This is the most powerful kind of advice. Around advice can perform custom behavior
before and after the method invocation. It is also responsible for choosing whether to
proceed to the join point or to shortcut the advised method execution by returning its
own return value or throwing an exception.

Around advice is the most general kind of advice. Since Spring AOP, like AspectJ,
provides a full range of advice types, we recommend that you use the least powerful
advice type that can implement the required behavior. For example, if you need only to
update a cache with the return value of a method, you are better off implementing an
after returning advice than an around advice, although an around advice can accomplish
the same thing. Using the most specific advice type provides a simpler programming model
with less potential for errors. For example, you do not need to invoke the proceed()
method on the JoinPoint used for around advice, and hence cannot fail to invoke it.

In Spring 2.0, all advice parameters are statically typed, so that you work with advice
parameters of the appropriate type (the type of the return value from a method execution
for example) rather than Object arrays.

The concept of join points, matched by pointcuts, is the key to AOP which distinguishes
it from older technologies offering only interception. Pointcuts enable advice to be
targeted independently of the Object-Oriented hierarchy. For example, an around advice
providing declarative transaction management can be applied to a set of methods spanning
multiple objects (such as all business operations in the service layer).

Spring AOP capabilities and goals

Spring AOP is implemented in pure Java. There is no need for a special compilation
process. Spring AOP does not need to control the class loader hierarchy, and is thus
suitable for use in a Servlet container or application server.

Spring AOP currently supports only method execution join points (advising the execution
of methods on Spring beans). Field interception is not implemented, although support for
field interception could be added without breaking the core Spring AOP APIs. If you need
to advise field access and update join points, consider a language such as AspectJ.

Spring AOP’s approach to AOP differs from that of most other AOP frameworks. The aim is
not to provide the most complete AOP implementation (although Spring AOP is quite
capable); it is rather to provide a close integration between AOP implementation and
Spring IoC to help solve common problems in enterprise applications.

Thus, for example, the Spring Framework’s AOP functionality is normally used in
conjunction with the Spring IoC container. Aspects are configured using normal bean
definition syntax (although this allows powerful "autoproxying" capabilities): this is a
crucial difference from other AOP implementations. There are some things you cannot do
easily or efficiently with Spring AOP, such as advise very fine-grained objects (such as
domain objects typically): AspectJ is the best choice in such cases. However, our
experience is that Spring AOP provides an excellent solution to most problems in
enterprise Java applications that are amenable to AOP.

Spring AOP will never strive to compete with AspectJ to provide a comprehensive AOP
solution. We believe that both proxy-based frameworks like Spring AOP and full-blown
frameworks such as AspectJ are valuable, and that they are complementary, rather than in
competition. Spring seamlessly integrates Spring AOP and IoC with AspectJ, to enable
all uses of AOP to be catered for within a consistent Spring-based application
architecture. This integration does not affect the Spring AOP API or the AOP Alliance
API: Spring AOP remains backward-compatible. See the following chapter for a
discussion of the Spring AOP APIs.

	[image: [Note]]	Note
	
One of the central tenets of the Spring Framework is that of non-invasiveness; this
is the idea that you should not be forced to introduce framework-specific classes and
interfaces into your business/domain model. However, in some places the Spring Framework
does give you the option to introduce Spring Framework-specific dependencies into your
codebase: the rationale in giving you such options is because in certain scenarios it
might be just plain easier to read or code some specific piece of functionality in such
a way. The Spring Framework (almost) always offers you the choice though: you have the
freedom to make an informed decision as to which option best suits your particular use
case or scenario.

One such choice that is relevant to this chapter is that of which AOP framework (and
which AOP style) to choose. You have the choice of AspectJ and/or Spring AOP, and you
also have the choice of either the @AspectJ annotation-style approach or the Spring XML
configuration-style approach. The fact that this chapter chooses to introduce the
@AspectJ-style approach first should not be taken as an indication that the Spring team
favors the @AspectJ annotation-style approach over the Spring XML configuration-style.

See the section called “Choosing which AOP declaration style to use” for a more complete discussion of the whys and wherefores of each
style.

AOP Proxies

Spring AOP defaults to using standard JDK dynamic proxies for AOP proxies. This
enables any interface (or set of interfaces) to be proxied.

Spring AOP can also use CGLIB proxies. This is necessary to proxy classes rather than
interfaces. CGLIB is used by default if a business object does not implement an
interface. As it is good practice to program to interfaces rather than classes; business
classes normally will implement one or more business interfaces. It is possible to
force the use of CGLIB, in those (hopefully rare) cases where you
need to advise a method that is not declared on an interface, or where you need to
pass a proxied object to a method as a concrete type.

It is important to grasp the fact that Spring AOP is proxy-based. See
the section called “Understanding AOP proxies” for a thorough examination of exactly what this
implementation detail actually means.

@AspectJ support

@AspectJ refers to a style of declaring aspects as regular Java classes annotated with
annotations. The @AspectJ style was introduced by the
AspectJ project as part of the AspectJ 5 release. Spring
interprets the same annotations as AspectJ 5, using a library supplied by AspectJ
for pointcut parsing and matching. The AOP runtime is still pure Spring AOP though, and
there is no dependency on the AspectJ compiler or weaver.

	[image: [Note]]	Note
	
Using the AspectJ compiler and weaver enables use of the full AspectJ language, and is
discussed in the section called “Using AspectJ with Spring applications”.

Enabling @AspectJ Support

To use @AspectJ aspects in a Spring configuration you need to enable Spring support for
configuring Spring AOP based on @AspectJ aspects, and autoproxying beans based on
whether or not they are advised by those aspects. By autoproxying we mean that if Spring
determines that a bean is advised by one or more aspects, it will automatically generate
a proxy for that bean to intercept method invocations and ensure that advice is executed
as needed.

The @AspectJ support can be enabled with XML or Java style configuration. In either
case you will also need to ensure that AspectJ’s aspectjweaver.jar library is on the
classpath of your application (version 1.6.8 or later). This library is available in the
'lib' directory of an AspectJ distribution or via the Maven Central repository.

Enabling @AspectJ Support with Java configuration

To enable @AspectJ support with Java @Configuration add the @EnableAspectJAutoProxy
annotation:

@Configuration
@EnableAspectJAutoProxy
public class AppConfig {

}

Enabling @AspectJ Support with XML configuration

To enable @AspectJ support with XML based configuration use the aop:aspectj-autoproxy
element:

<aop:aspectj-autoproxy/>

This assumes that you are using schema support as described in Chapter 41, XML Schema-based configuration.
See the section called “the aop schema” for how to import the tags in the aop namespace.

Declaring an aspect

With the @AspectJ support enabled, any bean defined in your application context with a
class that is an @AspectJ aspect (has the @Aspect annotation) will be automatically
detected by Spring and used to configure Spring AOP. The following example shows the
minimal definition required for a not-very-useful aspect:

A regular bean definition in the application context, pointing to a bean class that has
the @Aspect annotation:

<bean id="myAspect" class="org.xyz.NotVeryUsefulAspect">
 <!-- configure properties of aspect here as normal -->
</bean>

And the NotVeryUsefulAspect class definition, annotated with
org.aspectj.lang.annotation.Aspect annotation;

package org.xyz;
import org.aspectj.lang.annotation.Aspect;

@Aspect
public class NotVeryUsefulAspect {

}

Aspects (classes annotated with @Aspect) may have methods and fields just like any
other class. They may also contain pointcut, advice, and introduction (inter-type)
declarations.

	[image: [Note]]	Autodetecting aspects through component scanning
	

You may register aspect classes as regular beans in your Spring XML configuration, or
autodetect them through classpath scanning - just like any other Spring-managed bean.
However, note that the @Aspect annotation is not sufficient for autodetection in
the classpath: For that purpose, you need to add a separate @Component annotation
(or alternatively a custom stereotype annotation that qualifies, as per the rules of
Spring’s component scanner).

	[image: [Note]]	Advising aspects with other aspects?
	

In Spring AOP, it is not possible to have aspects themselves be the target of advice
from other aspects. The @Aspect annotation on a class marks it as an aspect, and
hence excludes it from auto-proxying.

Declaring a pointcut

Recall that pointcuts determine join points of interest, and thus enable us to control
when advice executes. Spring AOP only supports method execution join points for Spring
beans, so you can think of a pointcut as matching the execution of methods on Spring
beans. A pointcut declaration has two parts: a signature comprising a name and any
parameters, and a pointcut expression that determines exactly which method
executions we are interested in. In the @AspectJ annotation-style of AOP, a pointcut
signature is provided by a regular method definition, and the pointcut expression is
indicated using the @Pointcut annotation (the method serving as the pointcut signature
must have a void return type).

An example will help make this distinction between a pointcut signature and a pointcut
expression clear. The following example defines a pointcut named 'anyOldTransfer' that
will match the execution of any method named 'transfer':

@Pointcut("execution(* transfer(..))")// the pointcut expression
private void anyOldTransfer() {}// the pointcut signature

The pointcut expression that forms the value of the @Pointcut annotation is a regular
AspectJ 5 pointcut expression. For a full discussion of AspectJ’s pointcut language, see
the AspectJ
Programming Guide (and for extensions, the
AspectJ 5
Developers Notebook) or one of the books on AspectJ such as "Eclipse AspectJ" by Colyer
et. al. or "AspectJ in Action" by Ramnivas Laddad.

Supported Pointcut Designators

Spring AOP supports the following AspectJ pointcut designators (PCD) for use in pointcut
expressions:

Other pointcut types

The full AspectJ pointcut language supports additional pointcut designators that are not
supported in Spring. These are: call, get, set, preinitialization,
staticinitialization, initialization, handler, adviceexecution, withincode, cflow,
cflowbelow, if, @this, and @withincode. Use of these pointcut designators in pointcut
expressions interpreted by Spring AOP will result in an IllegalArgumentException being
thrown.

The set of pointcut designators supported by Spring AOP may be extended in future
releases to support more of the AspectJ pointcut designators.

	
execution - for matching method execution join points, this is the primary
pointcut designator you will use when working with Spring AOP

	
within - limits matching to join points within certain types (simply the execution
of a method declared within a matching type when using Spring AOP)

	
this - limits matching to join points (the execution of methods when using Spring
AOP) where the bean reference (Spring AOP proxy) is an instance of the given type

	
target - limits matching to join points (the execution of methods when using
Spring AOP) where the target object (application object being proxied) is an instance
of the given type

	
args - limits matching to join points (the execution of methods when using Spring
AOP) where the arguments are instances of the given types

	
@target - limits matching to join points (the execution of methods when using
Spring AOP) where the class of the executing object has an annotation of the given type

	
@args - limits matching to join points (the execution of methods when using Spring
AOP) where the runtime type of the actual arguments passed have annotations of the
given type(s)

	
@within - limits matching to join points within types that have the given
annotation (the execution of methods declared in types with the given annotation when
using Spring AOP)

	
@annotation - limits matching to join points where the subject of the join point
(method being executed in Spring AOP) has the given annotation

Because Spring AOP limits matching to only method execution join points, the discussion
of the pointcut designators above gives a narrower definition than you will find in the
AspectJ programming guide. In addition, AspectJ itself has type-based semantics and at
an execution join point both this and target refer to the same object - the
object executing the method. Spring AOP is a proxy-based system and differentiates
between the proxy object itself (bound to this) and the target object behind the
proxy (bound to target).

	[image: [Note]]	Note
	
Due to the proxy-based nature of Spring’s AOP framework, calls within the target object
are by definition not intercepted. For JDK proxies, only public interface method
calls on the proxy can be intercepted. With CGLIB, public and protected method calls on
the proxy will be intercepted, and even package-visible methods if necessary. However,
common interactions through proxies should always be designed through public signatures.

Note that pointcut definitions are generally matched against any intercepted method.
If a pointcut is strictly meant to be public-only, even in a CGLIB proxy scenario with
potential non-public interactions through proxies, it needs to be defined accordingly.

If your interception needs include method calls or even constructors within the target
class, consider the use of Spring-driven native AspectJ weaving instead
of Spring’s proxy-based AOP framework. This constitutes a different mode of AOP usage
with different characteristics, so be sure to make yourself familiar with weaving first
before making a decision.

Spring AOP also supports an additional PCD named bean. This PCD allows you to limit
the matching of join points to a particular named Spring bean, or to a set of named
Spring beans (when using wildcards). The bean PCD has the following form:

bean(idOrNameOfBean)

The idOrNameOfBean token can be the name of any Spring bean: limited wildcard
support using the * character is provided, so if you establish some naming
conventions for your Spring beans you can quite easily write a bean PCD expression
to pick them out. As is the case with other pointcut designators, the bean PCD can
be &&'ed, ||'ed, and ! (negated) too.

	[image: [Note]]	Note
	
Please note that the bean PCD is only supported in Spring AOP - and not in
native AspectJ weaving. It is a Spring-specific extension to the standard PCDs that
AspectJ defines and therefore not available for aspects declared in the @Aspect model.

The bean PCD operates at the instance level (building on the Spring bean name
concept) rather than at the type level only (which is what weaving-based AOP is limited
to). Instance-based pointcut designators are a special capability of Spring’s
proxy-based AOP framework and its close integration with the Spring bean factory, where
it is natural and straightforward to identify specific beans by name.

Combining pointcut expressions

Pointcut expressions can be combined using '&&', '||' and '!'. It is also possible to
refer to pointcut expressions by name. The following example shows three pointcut
expressions: anyPublicOperation (which matches if a method execution join point
represents the execution of any public method); inTrading (which matches if a method
execution is in the trading module), and tradingOperation (which matches if a method
execution represents any public method in the trading module).

@Pointcut("execution(public * *(..))")
private void anyPublicOperation() {}

@Pointcut("within(com.xyz.someapp.trading..*)")
private void inTrading() {}

@Pointcut("anyPublicOperation() && inTrading()")
private void tradingOperation() {}

It is a best practice to build more complex pointcut expressions out of smaller named
components as shown above. When referring to pointcuts by name, normal Java visibility
rules apply (you can see private pointcuts in the same type, protected pointcuts in the
hierarchy, public pointcuts anywhere and so on). Visibility does not affect pointcut
matching.

Sharing common pointcut definitions

When working with enterprise applications, you often want to refer to modules of the
application and particular sets of operations from within several aspects. We recommend
defining a "SystemArchitecture" aspect that captures common pointcut expressions for
this purpose. A typical such aspect would look as follows:

package com.xyz.someapp;

import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Pointcut;

@Aspect
public class SystemArchitecture {

 /**
 * A join point is in the web layer if the method is defined
 * in a type in the com.xyz.someapp.web package or any sub-package
 * under that.
 */
 @Pointcut("within(com.xyz.someapp.web..*)")
 public void inWebLayer() {}

 /**
 * A join point is in the service layer if the method is defined
 * in a type in the com.xyz.someapp.service package or any sub-package
 * under that.
 */
 @Pointcut("within(com.xyz.someapp.service..*)")
 public void inServiceLayer() {}

 /**
 * A join point is in the data access layer if the method is defined
 * in a type in the com.xyz.someapp.dao package or any sub-package
 * under that.
 */
 @Pointcut("within(com.xyz.someapp.dao..*)")
 public void inDataAccessLayer() {}

 /**
 * A business service is the execution of any method defined on a service
 * interface. This definition assumes that interfaces are placed in the
 * "service" package, and that implementation types are in sub-packages.
 *
 * If you group service interfaces by functional area (for example,
 * in packages com.xyz.someapp.abc.service and com.xyz.someapp.def.service) then
 * the pointcut expression "execution(* com.xyz.someapp..service.*.*(..))"
 * could be used instead.
 *
 * Alternatively, you can write the expression using the 'bean'
 * PCD, like so "bean(*Service)". (This assumes that you have
 * named your Spring service beans in a consistent fashion.)
 */
 @Pointcut("execution(* com.xyz.someapp..service.*.*(..))")
 public void businessService() {}

 /**
 * A data access operation is the execution of any method defined on a
 * dao interface. This definition assumes that interfaces are placed in the
 * "dao" package, and that implementation types are in sub-packages.
 */
 @Pointcut("execution(* com.xyz.someapp.dao.*.*(..))")
 public void dataAccessOperation() {}

}

The pointcuts defined in such an aspect can be referred to anywhere that you need a
pointcut expression. For example, to make the service layer transactional, you could
write:

<aop:config>
 <aop:advisor
 pointcut="com.xyz.someapp.SystemArchitecture.businessService()"
 advice-ref="tx-advice"/>
</aop:config>

<tx:advice id="tx-advice">
 <tx:attributes>
 <tx:method name="*" propagation="REQUIRED"/>
 </tx:attributes>
</tx:advice>

The <aop:config> and <aop:advisor> elements are discussed in the section called “Schema-based AOP support”. The
transaction elements are discussed in Chapter 17, Transaction Management.

Examples

Spring AOP users are likely to use the execution pointcut designator the most often.
The format of an execution expression is:

execution(modifiers-pattern? ret-type-pattern declaring-type-pattern?name-pattern(param-pattern)
 throws-pattern?)

All parts except the returning type pattern (ret-type-pattern in the snippet above),
name pattern, and parameters pattern are optional. The returning type pattern determines
what the return type of the method must be in order for a join point to be matched. Most
frequently you will use * as the returning type pattern, which matches any return
type. A fully-qualified type name will match only when the method returns the given
type. The name pattern matches the method name. You can use the * wildcard as all or
part of a name pattern. If specifying a declaring type pattern
then include a trailing . to join it to the name pattern component.
The parameters pattern is slightly more complex: () matches a
method that takes no parameters, whereas (..) matches any number of parameters (zero
or more). The pattern (*) matches a method taking one parameter of any type,
(*,String) matches a method taking two parameters, the first can be of any type, the
second must be a String. Consult the
Language
Semantics section of the AspectJ Programming Guide for more information.

Some examples of common pointcut expressions are given below.

	
the execution of any public method:

execution(public * *(..))

	
the execution of any method with a name beginning with "set":

execution(* set*(..))

	
the execution of any method defined by the AccountService interface:

execution(* com.xyz.service.AccountService.*(..))

	
the execution of any method defined in the service package:

execution(* com.xyz.service.*.*(..))

	
the execution of any method defined in the service package or a sub-package:

execution(* com.xyz.service..*.*(..))

	
any join point (method execution only in Spring AOP) within the service package:

within(com.xyz.service.*)

	
any join point (method execution only in Spring AOP) within the service package or a
sub-package:

within(com.xyz.service..*)

	
any join point (method execution only in Spring AOP) where the proxy implements the
AccountService interface:

this(com.xyz.service.AccountService)

	[image: [Note]]	Note
	
'this' is more commonly used in a binding form :- see the following section on advice
for how to make the proxy object available in the advice body.

	
any join point (method execution only in Spring AOP) where the target object
implements the AccountService interface:

target(com.xyz.service.AccountService)

	[image: [Note]]	Note
	
'target' is more commonly used in a binding form :- see the following section on advice
for how to make the target object available in the advice body.

	
any join point (method execution only in Spring AOP) which takes a single parameter,
and where the argument passed at runtime is Serializable:

args(java.io.Serializable)

	[image: [Note]]	Note
	
'args' is more commonly used in a binding form :- see the following section on advice
for how to make the method arguments available in the advice body.

Note that the pointcut given in this example is different to execution(*
*(java.io.Serializable)): the args version matches if the argument passed at runtime is
Serializable, the execution version matches if the method signature declares a single
parameter of type Serializable.

	
any join point (method execution only in Spring AOP) where the target object has an
@Transactional annotation:

@target(org.springframework.transaction.annotation.Transactional)

	[image: [Note]]	Note
	
'@target' can also be used in a binding form :- see the following section on advice for
how to make the annotation object available in the advice body.

	
any join point (method execution only in Spring AOP) where the declared type of the
target object has an @Transactional annotation:

@within(org.springframework.transaction.annotation.Transactional)

	[image: [Note]]	Note
	
'@within' can also be used in a binding form :- see the following section on advice for
how to make the annotation object available in the advice body.

	
any join point (method execution only in Spring AOP) where the executing method has an
@Transactional annotation:

@annotation(org.springframework.transaction.annotation.Transactional)

	[image: [Note]]	Note
	
'@annotation' can also be used in a binding form :- see the following section on advice
for how to make the annotation object available in the advice body.

	
any join point (method execution only in Spring AOP) which takes a single parameter,
and where the runtime type of the argument passed has the @Classified annotation:

@args(com.xyz.security.Classified)

	[image: [Note]]	Note
	
'@args' can also be used in a binding form :- see the following section on advice for
how to make the annotation object(s) available in the advice body.

	
any join point (method execution only in Spring AOP) on a Spring bean named
tradeService:

bean(tradeService)

	
any join point (method execution only in Spring AOP) on Spring beans having names that
match the wildcard expression *Service:

bean(*Service)

Writing good pointcuts

During compilation, AspectJ processes pointcuts in order to try and optimize matching
performance. Examining code and determining if each join point matches (statically or
dynamically) a given pointcut is a costly process. (A dynamic match means the match
cannot be fully determined from static analysis and a test will be placed in the code to
determine if there is an actual match when the code is running). On first encountering a
pointcut declaration, AspectJ will rewrite it into an optimal form for the matching
process. What does this mean? Basically pointcuts are rewritten in DNF (Disjunctive
Normal Form) and the components of the pointcut are sorted such that those components
that are cheaper to evaluate are checked first. This means you do not have to worry
about understanding the performance of various pointcut designators and may supply them
in any order in a pointcut declaration.

However, AspectJ can only work with what it is told, and for optimal performance of
matching you should think about what they are trying to achieve and narrow the search
space for matches as much as possible in the definition. The existing designators
naturally fall into one of three groups: kinded, scoping and context:

	
Kinded designators are those which select a particular kind of join point. For
example: execution, get, set, call, handler

	
Scoping designators are those which select a group of join points of interest (of
probably many kinds). For example: within, withincode

	
Contextual designators are those that match (and optionally bind) based on context.
For example: this, target, @annotation

A well written pointcut should try and include at least the first two types (kinded and
scoping), whilst the contextual designators may be included if wishing to match based on
join point context, or bind that context for use in the advice. Supplying either just a
kinded designator or just a contextual designator will work but could affect weaving
performance (time and memory used) due to all the extra processing and analysis. Scoping
designators are very fast to match and their usage means AspectJ can very quickly
dismiss groups of join points that should not be further processed - that is why a good
pointcut should always include one if possible.

Declaring advice

Advice is associated with a pointcut expression, and runs before, after, or around
method executions matched by the pointcut. The pointcut expression may be either a
simple reference to a named pointcut, or a pointcut expression declared in place.

Before advice

Before advice is declared in an aspect using the @Before annotation:

import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Before;

@Aspect
public class BeforeExample {

 @Before("com.xyz.myapp.SystemArchitecture.dataAccessOperation()")
 public void doAccessCheck() {
 // ...
 }

}

If using an in-place pointcut expression we could rewrite the above example as:

import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Before;

@Aspect
public class BeforeExample {

 @Before("execution(* com.xyz.myapp.dao.*.*(..))")
 public void doAccessCheck() {
 // ...
 }

}

After returning advice

After returning advice runs when a matched method execution returns normally. It is
declared using the @AfterReturning annotation:

import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.AfterReturning;

@Aspect
public class AfterReturningExample {

 @AfterReturning("com.xyz.myapp.SystemArchitecture.dataAccessOperation()")
 public void doAccessCheck() {
 // ...
 }

}

	[image: [Note]]	Note
	
Note: it is of course possible to have multiple advice declarations, and other members
as well, all inside the same aspect. We’re just showing a single advice declaration in
these examples to focus on the issue under discussion at the time.

Sometimes you need access in the advice body to the actual value that was returned. You
can use the form of @AfterReturning that binds the return value for this:

import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.AfterReturning;

@Aspect
public class AfterReturningExample {

 @AfterReturning(
 pointcut="com.xyz.myapp.SystemArchitecture.dataAccessOperation()",
 returning="retVal")
 public void doAccessCheck(Object retVal) {
 // ...
 }

}

The name used in the returning attribute must correspond to the name of a parameter in
the advice method. When a method execution returns, the return value will be passed to
the advice method as the corresponding argument value. A returning clause also
restricts matching to only those method executions that return a value of the specified
type (Object in this case, which will match any return value).

Please note that it is not possible to return a totally different reference when
using after-returning advice.

After throwing advice

After throwing advice runs when a matched method execution exits by throwing an
exception. It is declared using the @AfterThrowing annotation:

import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.AfterThrowing;

@Aspect
public class AfterThrowingExample {

 @AfterThrowing("com.xyz.myapp.SystemArchitecture.dataAccessOperation()")
 public void doRecoveryActions() {
 // ...
 }

}

Often you want the advice to run only when exceptions of a given type are thrown, and
you also often need access to the thrown exception in the advice body. Use the
throwing attribute to both restrict matching (if desired, use Throwable as the
exception type otherwise) and bind the thrown exception to an advice parameter.

import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.AfterThrowing;

@Aspect
public class AfterThrowingExample {

 @AfterThrowing(
 pointcut="com.xyz.myapp.SystemArchitecture.dataAccessOperation()",
 throwing="ex")
 public void doRecoveryActions(DataAccessException ex) {
 // ...
 }

}

The name used in the throwing attribute must correspond to the name of a parameter in
the advice method. When a method execution exits by throwing an exception, the exception
will be passed to the advice method as the corresponding argument value. A throwing
clause also restricts matching to only those method executions that throw an exception
of the specified type (DataAccessException in this case).

After (finally) advice

After (finally) advice runs however a matched method execution exits. It is declared
using the @After annotation. After advice must be prepared to handle both normal and
exception return conditions. It is typically used for releasing resources, etc.

import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.After;

@Aspect
public class AfterFinallyExample {

 @After("com.xyz.myapp.SystemArchitecture.dataAccessOperation()")
 public void doReleaseLock() {
 // ...
 }

}

Around advice

The final kind of advice is around advice. Around advice runs "around" a matched method
execution. It has the opportunity to do work both before and after the method executes,
and to determine when, how, and even if, the method actually gets to execute at all.
Around advice is often used if you need to share state before and after a method
execution in a thread-safe manner (starting and stopping a timer for example). Always
use the least powerful form of advice that meets your requirements (i.e. don’t use
around advice if simple before advice would do).

Around advice is declared using the @Around annotation. The first parameter of the
advice method must be of type ProceedingJoinPoint. Within the body of the advice,
calling proceed() on the ProceedingJoinPoint causes the underlying method to
execute. The proceed method may also be called passing in an Object[] - the values
in the array will be used as the arguments to the method execution when it proceeds.

	[image: [Note]]	Note
	
The behavior of proceed when called with an Object[] is a little different than the
behavior of proceed for around advice compiled by the AspectJ compiler. For around
advice written using the traditional AspectJ language, the number of arguments passed to
proceed must match the number of arguments passed to the around advice (not the number
of arguments taken by the underlying join point), and the value passed to proceed in a
given argument position supplants the original value at the join point for the entity
the value was bound to (Don’t worry if this doesn’t make sense right now!). The approach
taken by Spring is simpler and a better match to its proxy-based, execution only
semantics. You only need to be aware of this difference if you are compiling @AspectJ
aspects written for Spring and using proceed with arguments with the AspectJ compiler
and weaver. There is a way to write such aspects that is 100% compatible across both
Spring AOP and AspectJ, and this is discussed in the following section on advice
parameters.

import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Around;
import org.aspectj.lang.ProceedingJoinPoint;

@Aspect
public class AroundExample {

 @Around("com.xyz.myapp.SystemArchitecture.businessService()")
 public Object doBasicProfiling(ProceedingJoinPoint pjp) throws Throwable {
 // start stopwatch
 Object retVal = pjp.proceed();
 // stop stopwatch
 return retVal;
 }

}

The value returned by the around advice will be the return value seen by the caller of
the method. A simple caching aspect for example could return a value from a cache if it
has one, and invoke proceed() if it does not. Note that proceed may be invoked once,
many times, or not at all within the body of the around advice, all of these are quite
legal.

Advice parameters

Spring offers fully typed advice - meaning that you declare the parameters you need
in the advice signature (as we saw for the returning and throwing examples above) rather
than work with Object[] arrays all the time. We’ll see how to make argument and other
contextual values available to the advice body in a moment. First let’s take a look at
how to write generic advice that can find out about the method the advice is currently
advising.

Access to the current JoinPoint

Any advice method may declare as its first parameter, a parameter of type
org.aspectj.lang.JoinPoint (please note that around advice is required to declare
a first parameter of type ProceedingJoinPoint, which is a subclass of JoinPoint. The
JoinPoint interface provides a number of useful methods such as getArgs() (returns
the method arguments), getThis() (returns the proxy object), getTarget() (returns
the target object), getSignature() (returns a description of the method that is being
advised) and toString() (prints a useful description of the method being advised).
Please do consult the javadocs for full details.

Passing parameters to advice

We’ve already seen how to bind the returned value or exception value (using after
returning and after throwing advice). To make argument values available to the advice
body, you can use the binding form of args. If a parameter name is used in place of a
type name in an args expression, then the value of the corresponding argument will be
passed as the parameter value when the advice is invoked. An example should make this
clearer. Suppose you want to advise the execution of dao operations that take an Account
object as the first parameter, and you need access to the account in the advice body.
You could write the following:

@Before("com.xyz.myapp.SystemArchitecture.dataAccessOperation() && args(account,..)")
public void validateAccount(Account account) {
 // ...
}

The args(account,..) part of the pointcut expression serves two purposes: firstly, it
restricts matching to only those method executions where the method takes at least one
parameter, and the argument passed to that parameter is an instance of Account;
secondly, it makes the actual Account object available to the advice via the account
parameter.

Another way of writing this is to declare a pointcut that "provides" the Account
object value when it matches a join point, and then just refer to the named pointcut
from the advice. This would look as follows:

@Pointcut("com.xyz.myapp.SystemArchitecture.dataAccessOperation() && args(account,..)")
private void accountDataAccessOperation(Account account) {}

@Before("accountDataAccessOperation(account)")
public void validateAccount(Account account) {
 // ...
}

The interested reader is once more referred to the AspectJ programming guide for more
details.

The proxy object (this), target object (target), and annotations (@within,
@target, @annotation, @args) can all be bound in a similar fashion. The following
example shows how you could match the execution of methods annotated with an
@Auditable annotation, and extract the audit code.

First the definition of the @Auditable annotation:

@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.METHOD)
public @interface Auditable {
 AuditCode value();
}

And then the advice that matches the execution of @Auditable methods:

@Before("com.xyz.lib.Pointcuts.anyPublicMethod() && @annotation(auditable)")
public void audit(Auditable auditable) {
 AuditCode code = auditable.value();
 // ...
}

Advice parameters and generics

Spring AOP can handle generics used in class declarations and method parameters. Suppose
you have a generic type like this:

public interface Sample<T> {
 void sampleGenericMethod(T param);
 void sampleGenericCollectionMethod(Collection<T> param);
}

You can restrict interception of method types to certain parameter types by simply
typing the advice parameter to the parameter type you want to intercept the method for:

@Before("execution(* ..Sample+.sampleGenericMethod(*)) && args(param)")
public void beforeSampleMethod(MyType param) {
 // Advice implementation
}

That this works is pretty obvious as we already discussed above. However, it’s worth
pointing out that this won’t work for generic collections. So you cannot define a
pointcut like this:

@Before("execution(* ..Sample+.sampleGenericCollectionMethod(*)) && args(param)")
public void beforeSampleMethod(Collection<MyType> param) {
 // Advice implementation
}

To make this work we would have to inspect every element of the collection, which is not
reasonable as we also cannot decide how to treat null values in general. To achieve
something similar to this you have to type the parameter to Collection<?> and manually
check the type of the elements.

Determining argument names

The parameter binding in advice invocations relies on matching names used in pointcut
expressions to declared parameter names in (advice and pointcut) method signatures.
Parameter names are not available through Java reflection, so Spring AOP uses the
following strategies to determine parameter names:

	
If the parameter names have been specified by the user explicitly, then the specified
parameter names are used: both the advice and the pointcut annotations have
an optional "argNames" attribute which can be used to specify the argument names of
the annotated method - these argument names are available at runtime. For example:

@Before(value="com.xyz.lib.Pointcuts.anyPublicMethod() && target(bean) && @annotation(auditable)",
 argNames="bean,auditable")
public void audit(Object bean, Auditable auditable) {
 AuditCode code = auditable.value();
 // ... use code and bean
}

If the first parameter is of the JoinPoint, ProceedingJoinPoint, or
JoinPoint.StaticPart type, you may leave out the name of the parameter from the value
of the "argNames" attribute. For example, if you modify the preceding advice to receive
the join point object, the "argNames" attribute need not include it:

@Before(value="com.xyz.lib.Pointcuts.anyPublicMethod() && target(bean) && @annotation(auditable)",
 argNames="bean,auditable")
public void audit(JoinPoint jp, Object bean, Auditable auditable) {
 AuditCode code = auditable.value();
 // ... use code, bean, and jp
}

The special treatment given to the first parameter of the JoinPoint,
ProceedingJoinPoint, and JoinPoint.StaticPart types is particularly convenient for
advice that do not collect any other join point context. In such situations, you may
simply omit the "argNames" attribute. For example, the following advice need not declare
the "argNames" attribute:

@Before("com.xyz.lib.Pointcuts.anyPublicMethod()")
public void audit(JoinPoint jp) {
 // ... use jp
}

	
Using the 'argNames' attribute is a little clumsy, so if the 'argNames' attribute
has not been specified, then Spring AOP will look at the debug information for the
class and try to determine the parameter names from the local variable table. This
information will be present as long as the classes have been compiled with debug
information ('-g:vars' at a minimum). The consequences of compiling with this flag
on are: (1) your code will be slightly easier to understand (reverse engineer), (2)
the class file sizes will be very slightly bigger (typically inconsequential), (3) the
optimization to remove unused local variables will not be applied by your compiler. In
other words, you should encounter no difficulties building with this flag on.

	[image: [Note]]	Note
	
If an @AspectJ aspect has been compiled by the AspectJ compiler (ajc) even without the
debug information then there is no need to add the argNames attribute as the compiler
will retain the needed information.

	
If the code has been compiled without the necessary debug information, then Spring AOP
will attempt to deduce the pairing of binding variables to parameters (for example, if
only one variable is bound in the pointcut expression, and the advice method only
takes one parameter, the pairing is obvious!). If the binding of variables is
ambiguous given the available information, then an AmbiguousBindingException will be
thrown.

	
If all of the above strategies fail then an IllegalArgumentException will be thrown.

Proceeding with arguments

We remarked earlier that we would describe how to write a proceed call with
arguments that works consistently across Spring AOP and AspectJ. The solution is
simply to ensure that the advice signature binds each of the method parameters in order.
For example:

@Around("execution(List<Account> find*(..)) && " +
 "com.xyz.myapp.SystemArchitecture.inDataAccessLayer() && " +
 "args(accountHolderNamePattern)")
public Object preProcessQueryPattern(ProceedingJoinPoint pjp,
 String accountHolderNamePattern) throws Throwable {
 String newPattern = preProcess(accountHolderNamePattern);
 return pjp.proceed(new Object[] {newPattern});
}

In many cases you will be doing this binding anyway (as in the example above).

Advice ordering

What happens when multiple pieces of advice all want to run at the same join point?
Spring AOP follows the same precedence rules as AspectJ to determine the order of advice
execution. The highest precedence advice runs first "on the way in" (so given two pieces
of before advice, the one with highest precedence runs first). "On the way out" from a
join point, the highest precedence advice runs last (so given two pieces of after
advice, the one with the highest precedence will run second).

When two pieces of advice defined in different aspects both need to run at the same
join point, unless you specify otherwise the order of execution is undefined. You can
control the order of execution by specifying precedence. This is done in the normal
Spring way by either implementing the org.springframework.core.Ordered interface in
the aspect class or annotating it with the Order annotation. Given two aspects, the
aspect returning the lower value from Ordered.getValue() (or the annotation value) has
the higher precedence.

When two pieces of advice defined in the same aspect both need to run at the same
join point, the ordering is undefined (since there is no way to retrieve the declaration
order via reflection for javac-compiled classes). Consider collapsing such advice
methods into one advice method per join point in each aspect class, or refactor the
pieces of advice into separate aspect classes - which can be ordered at the aspect level.

Introductions

Introductions (known as inter-type declarations in AspectJ) enable an aspect to declare
that advised objects implement a given interface, and to provide an implementation of
that interface on behalf of those objects.

An introduction is made using the @DeclareParents annotation. This annotation is used
to declare that matching types have a new parent (hence the name). For example, given an
interface UsageTracked, and an implementation of that interface DefaultUsageTracked,
the following aspect declares that all implementors of service interfaces also implement
the UsageTracked interface. (In order to expose statistics via JMX for example.)

@Aspect
public class UsageTracking {

 @DeclareParents(value="com.xzy.myapp.service.*+", defaultImpl=DefaultUsageTracked.class)
 public static UsageTracked mixin;

 @Before("com.xyz.myapp.SystemArchitecture.businessService() && this(usageTracked)")
 public void recordUsage(UsageTracked usageTracked) {
 usageTracked.incrementUseCount();
 }

}

The interface to be implemented is determined by the type of the annotated field. The
value attribute of the @DeclareParents annotation is an AspectJ type pattern :- any
bean of a matching type will implement the UsageTracked interface. Note that in the
before advice of the above example, service beans can be directly used as
implementations of the UsageTracked interface. If accessing a bean programmatically
you would write the following:

UsageTracked usageTracked = (UsageTracked) context.getBean("myService");

Aspect instantiation models

	[image: [Note]]	Note
	
(This is an advanced topic, so if you are just starting out with AOP you can safely skip
it until later.)

By default there will be a single instance of each aspect within the application
context. AspectJ calls this the singleton instantiation model. It is possible to define
aspects with alternate lifecycles :- Spring supports AspectJ’s perthis and pertarget
instantiation models (percflow, percflowbelow, and pertypewithin are not currently
supported).

A "perthis" aspect is declared by specifying a perthis clause in the @Aspect
annotation. Let’s look at an example, and then we’ll explain how it works.

@Aspect("perthis(com.xyz.myapp.SystemArchitecture.businessService())")
public class MyAspect {

 private int someState;

 @Before(com.xyz.myapp.SystemArchitecture.businessService())
 public void recordServiceUsage() {
 // ...
 }

}

The effect of the 'perthis' clause is that one aspect instance will be created for
each unique service object executing a business service (each unique object bound to
'this' at join points matched by the pointcut expression). The aspect instance is
created the first time that a method is invoked on the service object. The aspect goes
out of scope when the service object goes out of scope. Before the aspect instance is
created, none of the advice within it executes. As soon as the aspect instance has been
created, the advice declared within it will execute at matched join points, but only
when the service object is the one this aspect is associated with. See the AspectJ
programming guide for more information on per-clauses.

The 'pertarget' instantiation model works in exactly the same way as perthis, but
creates one aspect instance for each unique target object at matched join points.

Example

Now that you have seen how all the constituent parts work, let’s put them together to do
something useful!

The execution of business services can sometimes fail due to concurrency issues (for
example, deadlock loser). If the operation is retried, it is quite likely to succeed
next time round. For business services where it is appropriate to retry in such
conditions (idempotent operations that don’t need to go back to the user for conflict
resolution), we’d like to transparently retry the operation to avoid the client seeing a
PessimisticLockingFailureException. This is a requirement that clearly cuts across
multiple services in the service layer, and hence is ideal for implementing via an
aspect.

Because we want to retry the operation, we will need to use around advice so that we can
call proceed multiple times. Here’s how the basic aspect implementation looks:

@Aspect
public class ConcurrentOperationExecutor implements Ordered {

 private static final int DEFAULT_MAX_RETRIES = 2;

 private int maxRetries = DEFAULT_MAX_RETRIES;
 private int order = 1;

 public void setMaxRetries(int maxRetries) {
 this.maxRetries = maxRetries;
 }

 public int getOrder() {
 return this.order;
 }

 public void setOrder(int order) {
 this.order = order;
 }

 @Around("com.xyz.myapp.SystemArchitecture.businessService()")
 public Object doConcurrentOperation(ProceedingJoinPoint pjp) throws Throwable {
 int numAttempts = 0;
 PessimisticLockingFailureException lockFailureException;
 do {
 numAttempts++;
 try {
 return pjp.proceed();
 }
 catch(PessimisticLockingFailureException ex) {
 lockFailureException = ex;
 }
 } while(numAttempts <= this.maxRetries);
 throw lockFailureException;
 }

}

Note that the aspect implements the Ordered interface so we can set the precedence of
the aspect higher than the transaction advice (we want a fresh transaction each time we
retry). The maxRetries and order properties will both be configured by Spring. The
main action happens in the doConcurrentOperation around advice. Notice that for the
moment we’re applying the retry logic to all businessService()s. We try to proceed,
and if we fail with an PessimisticLockingFailureException we simply try again unless
we have exhausted all of our retry attempts.

The corresponding Spring configuration is:

<aop:aspectj-autoproxy/>

<bean id="concurrentOperationExecutor" class="com.xyz.myapp.service.impl.ConcurrentOperationExecutor">
 <property name="maxRetries" value="3"/>
 <property name="order" value="100"/>
</bean>

To refine the aspect so that it only retries idempotent operations, we might define an
Idempotent annotation:

@Retention(RetentionPolicy.RUNTIME)
public @interface Idempotent {
 // marker annotation
}

and use the annotation to annotate the implementation of service operations. The change
to the aspect to only retry idempotent operations simply involves refining the pointcut
expression so that only @Idempotent operations match:

@Around("com.xyz.myapp.SystemArchitecture.businessService() && " +
 "@annotation(com.xyz.myapp.service.Idempotent)")
public Object doConcurrentOperation(ProceedingJoinPoint pjp) throws Throwable {
 ...
}

Schema-based AOP support

If you prefer an XML-based format, then Spring also offers support for defining aspects
using the new "aop" namespace tags. The exact same pointcut expressions and advice kinds
are supported as when using the @AspectJ style, hence in this section we will focus on
the new syntax and refer the reader to the discussion in the previous section
(the section called “@AspectJ support”) for an understanding of writing pointcut expressions and the binding
of advice parameters.

To use the aop namespace tags described in this section, you need to import the
spring-aop schema as described in Chapter 41, XML Schema-based configuration.
See the section called “the aop schema” for how to import the tags in the aop namespace.

Within your Spring configurations, all aspect and advisor elements must be placed within
an <aop:config> element (you can have more than one <aop:config> element in an
application context configuration). An <aop:config> element can contain pointcut,
advisor, and aspect elements (note these must be declared in that order).

	[image: [Warning]]	Warning
	
The <aop:config> style of configuration makes heavy use of Spring’s
auto-proxying mechanism. This can cause issues (such as advice not
being woven) if you are already using explicit auto-proxying via the use of
BeanNameAutoProxyCreator or suchlike. The recommended usage pattern is to use either
just the <aop:config> style, or just the AutoProxyCreator style.

Declaring an aspect

Using the schema support, an aspect is simply a regular Java object defined as a bean in
your Spring application context. The state and behavior is captured in the fields and
methods of the object, and the pointcut and advice information is captured in the XML.

An aspect is declared using the <aop:aspect> element, and the backing bean is referenced
using the ref attribute:

<aop:config>
 <aop:aspect id="myAspect" ref="aBean">
 ...
 </aop:aspect>
</aop:config>

<bean id="aBean" class="...">
 ...
</bean>

The bean backing the aspect ("aBean" in this case) can of course be configured and
dependency injected just like any other Spring bean.

Declaring a pointcut

A named pointcut can be declared inside an <aop:config> element, enabling the pointcut
definition to be shared across several aspects and advisors.

A pointcut representing the execution of any business service in the service layer could
be defined as follows:

<aop:config>

 <aop:pointcut id="businessService"
 expression="execution(* com.xyz.myapp.service.*.*(..))"/>

</aop:config>

Note that the pointcut expression itself is using the same AspectJ pointcut expression
language as described in the section called “@AspectJ support”. If you are using the schema based
declaration style, you can refer to named pointcuts defined in types
(@Aspects) within the pointcut expression. Another way of defining the above pointcut
would be:

<aop:config>

 <aop:pointcut id="businessService"
 expression="com.xyz.myapp.SystemArchitecture.businessService()"/>

</aop:config>

Assuming you have a SystemArchitecture aspect as described in the section called “Sharing common pointcut definitions”.

Declaring a pointcut inside an aspect is very similar to declaring a top-level pointcut:

<aop:config>

 <aop:aspect id="myAspect" ref="aBean">

 <aop:pointcut id="businessService"
 expression="execution(* com.xyz.myapp.service.*.*(..))"/>

 ...

 </aop:aspect>

</aop:config>

Much the same way in an @AspectJ aspect, pointcuts declared using the schema based
definition style may collect join point context. For example, the following pointcut
collects the 'this' object as the join point context and passes it to advice:

<aop:config>

 <aop:aspect id="myAspect" ref="aBean">

 <aop:pointcut id="businessService"
 expression="execution(* com.xyz.myapp.service.*.*(..)) && this(service)"/>

 <aop:before pointcut-ref="businessService" method="monitor"/>

 ...

 </aop:aspect>

</aop:config>

The advice must be declared to receive the collected join point context by including
parameters of the matching names:

public void monitor(Object service) {
 ...
}

When combining pointcut sub-expressions, && is awkward within an XML document, and so
the keywords and, or, and not can be used in place of &&, ||, and !
respectively. For example, the previous pointcut may be better written as:

<aop:config>

 <aop:aspect id="myAspect" ref="aBean">

 <aop:pointcut id="businessService"
 expression="execution(* com.xyz.myapp.service..(..)) and this(service)"/>

 <aop:before pointcut-ref="businessService" method="monitor"/>

 ...
 </aop:aspect>
</aop:config>

Note that pointcuts defined in this way are referred to by their XML id and cannot be
used as named pointcuts to form composite pointcuts. The named pointcut support in the
schema based definition style is thus more limited than that offered by the @AspectJ
style.

Declaring advice

The same five advice kinds are supported as for the @AspectJ style, and they have
exactly the same semantics.

Before advice

Before advice runs before a matched method execution. It is declared inside an
<aop:aspect> using the <aop:before> element.

<aop:aspect id="beforeExample" ref="aBean">

 <aop:before
 pointcut-ref="dataAccessOperation"
 method="doAccessCheck"/>

 ...

</aop:aspect>

Here dataAccessOperation is the id of a pointcut defined at the top (<aop:config>)
level. To define the pointcut inline instead, replace the pointcut-ref attribute with
a pointcut attribute:

<aop:aspect id="beforeExample" ref="aBean">

 <aop:before
 pointcut="execution(* com.xyz.myapp.dao.*.*(..))"
 method="doAccessCheck"/>

 ...

</aop:aspect>

As we noted in the discussion of the @AspectJ style, using named pointcuts can
significantly improve the readability of your code.

The method attribute identifies a method (doAccessCheck) that provides the body of
the advice. This method must be defined for the bean referenced by the aspect element
containing the advice. Before a data access operation is executed (a method execution
join point matched by the pointcut expression), the "doAccessCheck" method on the aspect
bean will be invoked.

After returning advice

After returning advice runs when a matched method execution completes normally. It is
declared inside an <aop:aspect> in the same way as before advice. For example:

<aop:aspect id="afterReturningExample" ref="aBean">

 <aop:after-returning
 pointcut-ref="dataAccessOperation"
 method="doAccessCheck"/>

 ...

</aop:aspect>

Just as in the @AspectJ style, it is possible to get hold of the return value within the
advice body. Use the returning attribute to specify the name of the parameter to which
the return value should be passed:

<aop:aspect id="afterReturningExample" ref="aBean">

 <aop:after-returning
 pointcut-ref="dataAccessOperation"
 returning="retVal"
 method="doAccessCheck"/>

 ...

</aop:aspect>

The doAccessCheck method must declare a parameter named retVal. The type of this
parameter constrains matching in the same way as described for @AfterReturning. For
example, the method signature may be declared as:

public void doAccessCheck(Object retVal) {...

After throwing advice

After throwing advice executes when a matched method execution exits by throwing an
exception. It is declared inside an <aop:aspect> using the after-throwing element:

<aop:aspect id="afterThrowingExample" ref="aBean">

 <aop:after-throwing
 pointcut-ref="dataAccessOperation"
 method="doRecoveryActions"/>

 ...

</aop:aspect>

Just as in the @AspectJ style, it is possible to get hold of the thrown exception within
the advice body. Use the throwing attribute to specify the name of the parameter to
which the exception should be passed:

<aop:aspect id="afterThrowingExample" ref="aBean">

 <aop:after-throwing
 pointcut-ref="dataAccessOperation"
 throwing="dataAccessEx"
 method="doRecoveryActions"/>

 ...

</aop:aspect>

The doRecoveryActions method must declare a parameter named dataAccessEx. The type of
this parameter constrains matching in the same way as described for @AfterThrowing. For
example, the method signature may be declared as:

public void doRecoveryActions(DataAccessException dataAccessEx) {...

After (finally) advice

After (finally) advice runs however a matched method execution exits. It is declared
using the after element:

<aop:aspect id="afterFinallyExample" ref="aBean">

 <aop:after
 pointcut-ref="dataAccessOperation"
 method="doReleaseLock"/>

 ...

</aop:aspect>

Around advice

The final kind of advice is around advice. Around advice runs "around" a matched method
execution. It has the opportunity to do work both before and after the method executes,
and to determine when, how, and even if, the method actually gets to execute at all.
Around advice is often used if you need to share state before and after a method
execution in a thread-safe manner (starting and stopping a timer for example). Always
use the least powerful form of advice that meets your requirements; don’t use around
advice if simple before advice would do.

Around advice is declared using the aop:around element. The first parameter of the
advice method must be of type ProceedingJoinPoint. Within the body of the advice,
calling proceed() on the ProceedingJoinPoint causes the underlying method to
execute. The proceed method may also be calling passing in an Object[] - the values
in the array will be used as the arguments to the method execution when it proceeds. See
the section called “Around advice” for notes on calling proceed with an Object[].

<aop:aspect id="aroundExample" ref="aBean">

 <aop:around
 pointcut-ref="businessService"
 method="doBasicProfiling"/>

 ...

</aop:aspect>

The implementation of the doBasicProfiling advice would be exactly the same as in the
@AspectJ example (minus the annotation of course):

public Object doBasicProfiling(ProceedingJoinPoint pjp) throws Throwable {
 // start stopwatch
 Object retVal = pjp.proceed();
 // stop stopwatch
 return retVal;
}

Advice parameters

The schema based declaration style supports fully typed advice in the same way as
described for the @AspectJ support - by matching pointcut parameters by name against
advice method parameters. See the section called “Advice parameters” for details. If you wish
to explicitly specify argument names for the advice methods (not relying on the
detection strategies previously described) then this is done using the arg-names
attribute of the advice element, which is treated in the same manner to the "argNames"
attribute in an advice annotation as described in the section called “Determining argument names”.
For example:

<aop:before
 pointcut="com.xyz.lib.Pointcuts.anyPublicMethod() and @annotation(auditable)"
 method="audit"
 arg-names="auditable"/>

The arg-names attribute accepts a comma-delimited list of parameter names.

Find below a slightly more involved example of the XSD-based approach that illustrates
some around advice used in conjunction with a number of strongly typed parameters.

package x.y.service;

public interface FooService {

 Foo getFoo(String fooName, int age);
}

public class DefaultFooService implements FooService {

 public Foo getFoo(String name, int age) {
 return new Foo(name, age);
 }
}

Next up is the aspect. Notice the fact that the profile(..) method accepts a number of
strongly-typed parameters, the first of which happens to be the join point used to
proceed with the method call: the presence of this parameter is an indication that the
profile(..) is to be used as around advice:

package x.y;

import org.aspectj.lang.ProceedingJoinPoint;
import org.springframework.util.StopWatch;

public class SimpleProfiler {

 public Object profile(ProceedingJoinPoint call, String name, int age) throws Throwable {
 StopWatch clock = new StopWatch("Profiling for '" + name + "' and '" + age + "'");
 try {
 clock.start(call.toShortString());
 return call.proceed();
 } finally {
 clock.stop();
 System.out.println(clock.prettyPrint());
 }
 }
}

Finally, here is the XML configuration that is required to effect the execution of the
above advice for a particular join point:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop.xsd">

 <!-- this is the object that will be proxied by Spring's AOP infrastructure -->
 <bean id="fooService" class="x.y.service.DefaultFooService"/>

 <!-- this is the actual advice itself -->
 <bean id="profiler" class="x.y.SimpleProfiler"/>

 <aop:config>
 <aop:aspect ref="profiler">

 <aop:pointcut id="theExecutionOfSomeFooServiceMethod"
 expression="execution(* x.y.service.FooService.getFoo(String,int))
 and args(name, age)"/>

 <aop:around pointcut-ref="theExecutionOfSomeFooServiceMethod"
 method="profile"/>

 </aop:aspect>
 </aop:config>

</beans>

If we had the following driver script, we would get output something like this on
standard output:

import org.springframework.beans.factory.BeanFactory;
import org.springframework.context.support.ClassPathXmlApplicationContext;
import x.y.service.FooService;

public final class Boot {

 public static void main(final String[] args) throws Exception {
 BeanFactory ctx = new ClassPathXmlApplicationContext("x/y/plain.xml");
 FooService foo = (FooService) ctx.getBean("fooService");
 foo.getFoo("Pengo", 12);
 }
}

StopWatch 'Profiling for 'Pengo' and '12'': running time (millis) = 0

ms % Task name

00000 ? execution(getFoo)

Advice ordering

When multiple advice needs to execute at the same join point (executing method) the
ordering rules are as described in the section called “Advice ordering”. The precedence
between aspects is determined by either adding the Order annotation to the bean
backing the aspect or by having the bean implement the Ordered interface.

Introductions

Introductions (known as inter-type declarations in AspectJ) enable an aspect to declare
that advised objects implement a given interface, and to provide an implementation of
that interface on behalf of those objects.

An introduction is made using the aop:declare-parents element inside an aop:aspect
This element is used to declare that matching types have a new parent (hence the name).
For example, given an interface UsageTracked, and an implementation of that interface
DefaultUsageTracked, the following aspect declares that all implementors of service
interfaces also implement the UsageTracked interface. (In order to expose statistics
via JMX for example.)

<aop:aspect id="usageTrackerAspect" ref="usageTracking">

 <aop:declare-parents
 types-matching="com.xzy.myapp.service.*+"
 implement-interface="com.xyz.myapp.service.tracking.UsageTracked"
 default-impl="com.xyz.myapp.service.tracking.DefaultUsageTracked"/>

 <aop:before
 pointcut="com.xyz.myapp.SystemArchitecture.businessService()
 and this(usageTracked)"
 method="recordUsage"/>

</aop:aspect>

The class backing the usageTracking bean would contain the method:

public void recordUsage(UsageTracked usageTracked) {
 usageTracked.incrementUseCount();
}

The interface to be implemented is determined by implement-interface attribute. The
value of the types-matching attribute is an AspectJ type pattern :- any bean of a
matching type will implement the UsageTracked interface. Note that in the before
advice of the above example, service beans can be directly used as implementations of
the UsageTracked interface. If accessing a bean programmatically you would write the
following:

UsageTracked usageTracked = (UsageTracked) context.getBean("myService");

Aspect instantiation models

The only supported instantiation model for schema-defined aspects is the singleton
model. Other instantiation models may be supported in future releases.

Advisors

The concept of "advisors" is brought forward from the AOP support defined in Spring
and does not have a direct equivalent in AspectJ. An advisor is like a small
self-contained aspect that has a single piece of advice. The advice itself is
represented by a bean, and must implement one of the advice interfaces described in
the section called “Advice types in Spring”. Advisors can take advantage of AspectJ pointcut expressions
though.

Spring supports the advisor concept with the <aop:advisor> element. You will most
commonly see it used in conjunction with transactional advice, which also has its own
namespace support in Spring. Here’s how it looks:

<aop:config>

 <aop:pointcut id="businessService"
 expression="execution(* com.xyz.myapp.service.*.*(..))"/>

 <aop:advisor
 pointcut-ref="businessService"
 advice-ref="tx-advice"/>

</aop:config>

<tx:advice id="tx-advice">
 <tx:attributes>
 <tx:method name="*" propagation="REQUIRED"/>
 </tx:attributes>
</tx:advice>

As well as the pointcut-ref attribute used in the above example, you can also use the
pointcut attribute to define a pointcut expression inline.

To define the precedence of an advisor so that the advice can participate in ordering,
use the order attribute to define the Ordered value of the advisor.

Example

Let’s see how the concurrent locking failure retry example from
the section called “Example” looks when rewritten using the schema support.

The execution of business services can sometimes fail due to concurrency issues (for
example, deadlock loser). If the operation is retried, it is quite likely it will
succeed next time round. For business services where it is appropriate to retry in such
conditions (idempotent operations that don’t need to go back to the user for conflict
resolution), we’d like to transparently retry the operation to avoid the client seeing a
PessimisticLockingFailureException. This is a requirement that clearly cuts across
multiple services in the service layer, and hence is ideal for implementing via an
aspect.

Because we want to retry the operation, we’ll need to use around advice so that we can
call proceed multiple times. Here’s how the basic aspect implementation looks (it’s just
a regular Java class using the schema support):

public class ConcurrentOperationExecutor implements Ordered {

 private static final int DEFAULT_MAX_RETRIES = 2;

 private int maxRetries = DEFAULT_MAX_RETRIES;
 private int order = 1;

 public void setMaxRetries(int maxRetries) {
 this.maxRetries = maxRetries;
 }

 public int getOrder() {
 return this.order;
 }

 public void setOrder(int order) {
 this.order = order;
 }

 public Object doConcurrentOperation(ProceedingJoinPoint pjp) throws Throwable {
 int numAttempts = 0;
 PessimisticLockingFailureException lockFailureException;
 do {
 numAttempts++;
 try {
 return pjp.proceed();
 }
 catch(PessimisticLockingFailureException ex) {
 lockFailureException = ex;
 }
 } while(numAttempts <= this.maxRetries);
 throw lockFailureException;
 }

}

Note that the aspect implements the Ordered interface so we can set the precedence of
the aspect higher than the transaction advice (we want a fresh transaction each time we
retry). The maxRetries and order properties will both be configured by Spring. The
main action happens in the doConcurrentOperation around advice method. We try to
proceed, and if we fail with a PessimisticLockingFailureException we simply try again
unless we have exhausted all of our retry attempts.

	[image: [Note]]	Note
	
This class is identical to the one used in the @AspectJ example, but with the
annotations removed.

The corresponding Spring configuration is:

<aop:config>

 <aop:aspect id="concurrentOperationRetry" ref="concurrentOperationExecutor">

 <aop:pointcut id="idempotentOperation"
 expression="execution(* com.xyz.myapp.service.*.*(..))"/>

 <aop:around
 pointcut-ref="idempotentOperation"
 method="doConcurrentOperation"/>

 </aop:aspect>

</aop:config>

<bean id="concurrentOperationExecutor"
 class="com.xyz.myapp.service.impl.ConcurrentOperationExecutor">
 <property name="maxRetries" value="3"/>
 <property name="order" value="100"/>
</bean>

Notice that for the time being we assume that all business services are idempotent. If
this is not the case we can refine the aspect so that it only retries genuinely
idempotent operations, by introducing an Idempotent annotation:

@Retention(RetentionPolicy.RUNTIME)
public @interface Idempotent {
 // marker annotation
}

and using the annotation to annotate the implementation of service operations. The
change to the aspect to retry only idempotent operations simply involves refining the
pointcut expression so that only @Idempotent operations match:

<aop:pointcut id="idempotentOperation"
 expression="execution(* com.xyz.myapp.service.*.*(..)) and
 @annotation(com.xyz.myapp.service.Idempotent)"/>

Choosing which AOP declaration style to use

Once you have decided that an aspect is the best approach for implementing a given
requirement, how do you decide between using Spring AOP or AspectJ, and between the
Aspect language (code) style, @AspectJ annotation style, or the Spring XML style? These
decisions are influenced by a number of factors including application requirements,
development tools, and team familiarity with AOP.

Spring AOP or full AspectJ?

Use the simplest thing that can work. Spring AOP is simpler than using full AspectJ as
there is no requirement to introduce the AspectJ compiler / weaver into your development
and build processes. If you only need to advise the execution of operations on Spring
beans, then Spring AOP is the right choice. If you need to advise objects not managed by
the Spring container (such as domain objects typically), then you will need to use
AspectJ. You will also need to use AspectJ if you wish to advise join points other than
simple method executions (for example, field get or set join points, and so on).

When using AspectJ, you have the choice of the AspectJ language syntax (also known as
the "code style") or the @AspectJ annotation style. Clearly, if you are not using Java
5+ then the choice has been made for you…​ use the code style. If aspects play a large
role in your design, and you are able to use the AspectJ
Development Tools (AJDT) plugin for Eclipse, then the AspectJ language syntax is the
preferred option: it is cleaner and simpler because the language was purposefully
designed for writing aspects. If you are not using Eclipse, or have only a few aspects
that do not play a major role in your application, then you may want to consider using
the @AspectJ style and sticking with a regular Java compilation in your IDE, and adding
an aspect weaving phase to your build script.

@AspectJ or XML for Spring AOP?

If you have chosen to use Spring AOP, then you have a choice of @AspectJ or XML style.
There are various tradeoffs to consider.

The XML style will be most familiar to existing Spring users and it is backed by genuine
POJOs. When using AOP as a tool to configure enterprise services then XML can be a good
choice (a good test is whether you consider the pointcut expression to be a part of your
configuration you might want to change independently). With the XML style arguably it is
clearer from your configuration what aspects are present in the system.

The XML style has two disadvantages. Firstly it does not fully encapsulate the
implementation of the requirement it addresses in a single place. The DRY principle says
that there should be a single, unambiguous, authoritative representation of any piece of
knowledge within a system. When using the XML style, the knowledge of how a
requirement is implemented is split across the declaration of the backing bean class,
and the XML in the configuration file. When using the @AspectJ style there is a single
module - the aspect - in which this information is encapsulated. Secondly, the XML style
is slightly more limited in what it can express than the @AspectJ style: only the
"singleton" aspect instantiation model is supported, and it is not possible to combine
named pointcuts declared in XML. For example, in the @AspectJ style you can write
something like:

@Pointcut(execution(* get*()))
public void propertyAccess() {}

@Pointcut(execution(org.xyz.Account+ *(..))
public void operationReturningAnAccount() {}

@Pointcut(propertyAccess() && operationReturningAnAccount())
public void accountPropertyAccess() {}

In the XML style I can declare the first two pointcuts:

<aop:pointcut id="propertyAccess"
 expression="execution(* get*())"/>

<aop:pointcut id="operationReturningAnAccount"
 expression="execution(org.xyz.Account+ *(..))"/>

The downside of the XML approach is that you cannot define the
accountPropertyAccess pointcut by combining these definitions.

The @AspectJ style supports additional instantiation models, and richer pointcut
composition. It has the advantage of keeping the aspect as a modular unit. It also has
the advantage the @AspectJ aspects can be understood (and thus consumed) both by Spring
AOP and by AspectJ - so if you later decide you need the capabilities of AspectJ to
implement additional requirements then it is very easy to migrate to an AspectJ-based
approach. On balance the Spring team prefer the @AspectJ style whenever you have aspects
that do more than simple "configuration" of enterprise services.

Mixing aspect types

It is perfectly possible to mix @AspectJ style aspects using the autoproxying support,
schema-defined <aop:aspect> aspects, <aop:advisor> declared advisors and even
proxies and interceptors defined using the Spring 1.2 style in the same configuration.
All of these are implemented using the same underlying support mechanism and will
co-exist without any difficulty.

Proxying mechanisms

Spring AOP uses either JDK dynamic proxies or CGLIB to create the proxy for a given
target object. (JDK dynamic proxies are preferred whenever you have a choice).

If the target object to be proxied implements at least one interface then a JDK dynamic
proxy will be used. All of the interfaces implemented by the target type will be
proxied. If the target object does not implement any interfaces then a CGLIB proxy will
be created.

If you want to force the use of CGLIB proxying (for example, to proxy every method
defined for the target object, not just those implemented by its interfaces) you can do
so. However, there are some issues to consider:

	
final methods cannot be advised, as they cannot be overridden.

	
As of Spring 3.2, it is no longer necessary to add CGLIB to your project classpath, as
CGLIB classes are repackaged under org.springframework and included directly in the
spring-core JAR. This means that CGLIB-based proxy support 'just works' in the same
way that JDK dynamic proxies always have.

	
As of Spring 4.0, the constructor of your proxied object will NOT be called twice
anymore since the CGLIB proxy instance will be created via Objenesis. Only if your
JVM does not allow for constructor bypassing, you might see double invocations and
corresponding debug log entries from Spring’s AOP support.

To force the use of CGLIB proxies set the value of the proxy-target-class attribute of
the <aop:config> element to true:

<aop:config proxy-target-class="true">
 <!-- other beans defined here... -->
</aop:config>

To force CGLIB proxying when using the @AspectJ autoproxy support, set the
'proxy-target-class' attribute of the <aop:aspectj-autoproxy> element to true:

<aop:aspectj-autoproxy proxy-target-class="true"/>

	[image: [Note]]	Note
	
Multiple <aop:config/> sections are collapsed into a single unified auto-proxy creator
at runtime, which applies the strongest proxy settings that any of the
<aop:config/> sections (typically from different XML bean definition files) specified.
This also applies to the <tx:annotation-driven/> and <aop:aspectj-autoproxy/>
elements.

To be clear: using proxy-target-class="true" on <tx:annotation-driven/>,
<aop:aspectj-autoproxy/> or <aop:config/> elements will force the use of CGLIB
proxies for all three of them.

Understanding AOP proxies

Spring AOP is proxy-based. It is vitally important that you grasp the semantics of
what that last statement actually means before you write your own aspects or use any of
the Spring AOP-based aspects supplied with the Spring Framework.

Consider first the scenario where you have a plain-vanilla, un-proxied,
nothing-special-about-it, straight object reference, as illustrated by the following
code snippet.

public class SimplePojo implements Pojo {

 public void foo() {
 // this next method invocation is a direct call on the 'this' reference
 this.bar();
 }

 public void bar() {
 // some logic...
 }
}

If you invoke a method on an object reference, the method is invoked directly on
that object reference, as can be seen below.

[image: aop proxy plain pojo call]

public class Main {

 public static void main(String[] args) {

 Pojo pojo = new SimplePojo();

 // this is a direct method call on the 'pojo' reference
 pojo.foo();
 }
}

Things change slightly when the reference that client code has is a proxy. Consider the
following diagram and code snippet.

[image: aop proxy call]

public class Main {

 public static void main(String[] args) {

 ProxyFactory factory = new ProxyFactory(new SimplePojo());
 factory.addInterface(Pojo.class);
 factory.addAdvice(new RetryAdvice());

 Pojo pojo = (Pojo) factory.getProxy();

 // this is a method call on the proxy!
 pojo.foo();
 }
}

The key thing to understand here is that the client code inside the main(..) of the
Main class has a reference to the proxy. This means that method calls on that
object reference will be calls on the proxy, and as such the proxy will be able to
delegate to all of the interceptors (advice) that are relevant to that particular method
call. However, once the call has finally reached the target object, the SimplePojo
reference in this case, any method calls that it may make on itself, such as
this.bar() or this.foo(), are going to be invoked against the this reference,
and not the proxy. This has important implications. It means that self-invocation is
not going to result in the advice associated with a method invocation getting a
chance to execute.

Okay, so what is to be done about this? The best approach (the term best is used loosely
here) is to refactor your code such that the self-invocation does not happen. For sure,
this does entail some work on your part, but it is the best, least-invasive approach.
The next approach is absolutely horrendous, and I am almost reticent to point it out
precisely because it is so horrendous. You can (choke!) totally tie the logic within
your class to Spring AOP by doing this:

public class SimplePojo implements Pojo {

 public void foo() {
 // this works, but... gah!
 ((Pojo) AopContext.currentProxy()).bar();
 }

 public void bar() {
 // some logic...
 }
}

This totally couples your code to Spring AOP, and it makes the class itself aware of
the fact that it is being used in an AOP context, which flies in the face of AOP. It
also requires some additional configuration when the proxy is being created:

public class Main {

 public static void main(String[] args) {

 ProxyFactory factory = new ProxyFactory(new SimplePojo());
 factory.adddInterface(Pojo.class);
 factory.addAdvice(new RetryAdvice());
 factory.setExposeProxy(true);

 Pojo pojo = (Pojo) factory.getProxy();

 // this is a method call on the proxy!
 pojo.foo();
 }
}

Finally, it must be noted that AspectJ does not have this self-invocation issue because
it is not a proxy-based AOP framework.

Programmatic creation of @AspectJ Proxies

In addition to declaring aspects in your configuration using either <aop:config> or
<aop:aspectj-autoproxy>, it is also possible programmatically to create proxies that
advise target objects. For the full details of Spring’s AOP API, see the next chapter.
Here we want to focus on the ability to automatically create proxies using @AspectJ
aspects.

The class org.springframework.aop.aspectj.annotation.AspectJProxyFactory can be used
to create a proxy for a target object that is advised by one or more @AspectJ aspects.
Basic usage for this class is very simple, as illustrated below. See the javadocs for
full information.

// create a factory that can generate a proxy for the given target object
AspectJProxyFactory factory = new AspectJProxyFactory(targetObject);

// add an aspect, the class must be an @AspectJ aspect
// you can call this as many times as you need with different aspects
factory.addAspect(SecurityManager.class);

// you can also add existing aspect instances, the type of the object supplied must be an @AspectJ aspect
factory.addAspect(usageTracker);

// now get the proxy object...
MyInterfaceType proxy = factory.getProxy();

Using AspectJ with Spring applications

Everything we’ve covered so far in this chapter is pure Spring AOP. In this section,
we’re going to look at how you can use the AspectJ compiler/weaver instead of, or in
addition to, Spring AOP if your needs go beyond the facilities offered by Spring AOP
alone.

Spring ships with a small AspectJ aspect library, which is available standalone in your
distribution as spring-aspects.jar; you’ll need to add this to your classpath in order
to use the aspects in it. the section called “Using AspectJ to dependency inject domain objects with Spring” and the section called “Other Spring aspects for AspectJ” discuss the
content of this library and how you can use it. the section called “Configuring AspectJ aspects using Spring IoC” discusses how to
dependency inject AspectJ aspects that are woven using the AspectJ compiler. Finally,
the section called “Load-time weaving with AspectJ in the Spring Framework” provides an introduction to load-time weaving for Spring applications
using AspectJ.

Using AspectJ to dependency inject domain objects with Spring

The Spring container instantiates and configures beans defined in your application
context. It is also possible to ask a bean factory to configure a pre-existing
object given the name of a bean definition containing the configuration to be applied.
The spring-aspects.jar contains an annotation-driven aspect that exploits this
capability to allow dependency injection of any object. The support is intended to
be used for objects created outside of the control of any container. Domain objects
often fall into this category because they are often created programmatically using the
new operator, or by an ORM tool as a result of a database query.

The @Configurable annotation marks a class as eligible for Spring-driven
configuration. In the simplest case it can be used just as a marker annotation:

package com.xyz.myapp.domain;

import org.springframework.beans.factory.annotation.Configurable;

@Configurable
public class Account {
 // ...
}

When used as a marker interface in this way, Spring will configure new instances of the
annotated type (Account in this case) using a bean definition (typically
prototype-scoped) with the same name as the fully-qualified type name (
com.xyz.myapp.domain.Account). Since the default name for a bean is the
fully-qualified name of its type, a convenient way to declare the prototype definition
is simply to omit the id attribute:

<bean class="com.xyz.myapp.domain.Account" scope="prototype">
 <property name="fundsTransferService" ref="fundsTransferService"/>
</bean>

If you want to explicitly specify the name of the prototype bean definition to use, you
can do so directly in the annotation:

package com.xyz.myapp.domain;

import org.springframework.beans.factory.annotation.Configurable;

@Configurable("account")
public class Account {
 // ...
}

Spring will now look for a bean definition named "account" and use that as the
definition to configure new Account instances.

You can also use autowiring to avoid having to specify a dedicated bean definition at
all. To have Spring apply autowiring use the autowire property of the
@Configurable annotation: specify either @Configurable(autowire=Autowire.BY_TYPE) or
@Configurable(autowire=Autowire.BY_NAME for autowiring by type or by name
respectively. As an alternative, as of Spring 2.5 it is preferable to specify explicit,
annotation-driven dependency injection for your @Configurable beans by using
@Autowired or @Inject at the field or method level (see the section called “Annotation-based container configuration”
for further details).

Finally you can enable Spring dependency checking for the object references in the newly
created and configured object by using the dependencyCheck attribute (for example:
@Configurable(autowire=Autowire.BY_NAME,dependencyCheck=true)). If this attribute is
set to true, then Spring will validate after configuration that all properties (which
are not primitives or collections) have been set.

Using the annotation on its own does nothing of course. It is the
AnnotationBeanConfigurerAspect in spring-aspects.jar that acts on the presence of
the annotation. In essence the aspect says "after returning from the initialization of a
new object of a type annotated with @Configurable, configure the newly created object
using Spring in accordance with the properties of the annotation". In this context,
initialization refers to newly instantiated objects (e.g., objects instantiated with
the new operator) as well as to Serializable objects that are undergoing
deserialization (e.g., via
readResolve()).

	[image: [Note]]	Note
	
One of the key phrases in the above paragraph is 'in essence'. For most cases, the
exact semantics of 'after returning from the initialization of a new object' will be
fine…​ in this context, 'after initialization' means that the dependencies will be
injected after the object has been constructed - this means that the dependencies
will not be available for use in the constructor bodies of the class. If you want the
dependencies to be injected before the constructor bodies execute, and thus be
available for use in the body of the constructors, then you need to define this on the
@Configurable declaration like so:

@Configurable(preConstruction=true)

You can find out more information about the language semantics of the various pointcut
types in AspectJ
in this
appendix of the AspectJ
Programming Guide.

For this to work the annotated types must be woven with the AspectJ weaver - you can
either use a build-time Ant or Maven task to do this (see for example the
AspectJ Development
Environment Guide) or load-time weaving (see the section called “Load-time weaving with AspectJ in the Spring Framework”). The
AnnotationBeanConfigurerAspect itself needs configuring by Spring (in order to obtain
a reference to the bean factory that is to be used to configure new objects). If you are
using Java based configuration simply add @EnableSpringConfigured to any
@Configuration class.

@Configuration
@EnableSpringConfigured
public class AppConfig {

}

If you prefer XML based configuration, the Spring context namespace defines a convenient context:spring-configured element:

<context:spring-configured/>

Instances of @Configurable objects created before the aspect has been configured
will result in a message being issued to the debug log and no configuration of the
object taking place. An example might be a bean in the Spring configuration that creates
domain objects when it is initialized by Spring. In this case you can use the
"depends-on" bean attribute to manually specify that the bean depends on the
configuration aspect.

<bean id="myService"
 class="com.xzy.myapp.service.MyService"
 depends-on="org.springframework.beans.factory.aspectj.AnnotationBeanConfigurerAspect">

 <!-- ... -->

</bean>

	[image: [Note]]	Note
	
Do not activate @Configurable processing through the bean configurer aspect unless you
really mean to rely on its semantics at runtime. In particular, make sure that you do
not use @Configurable on bean classes which are registered as regular Spring beans
with the container: You would get double initialization otherwise, once through the
container and once through the aspect.

Unit testing @Configurable objects

One of the goals of the @Configurable support is to enable independent unit testing of
domain objects without the difficulties associated with hard-coded lookups. If
@Configurable types have not been woven by AspectJ then the annotation has no affect
during unit testing, and you can simply set mock or stub property references in the
object under test and proceed as normal. If @Configurable types have been woven by
AspectJ then you can still unit test outside of the container as normal, but you will
see a warning message each time that you construct an @Configurable object indicating
that it has not been configured by Spring.

Working with multiple application contexts

The AnnotationBeanConfigurerAspect used to implement the @Configurable support is an
AspectJ singleton aspect. The scope of a singleton aspect is the same as the scope of
static members, that is to say there is one aspect instance per classloader that
defines the type. This means that if you define multiple application contexts within the
same classloader hierarchy you need to consider where to define the
@EnableSpringConfigured bean and where to place spring-aspects.jar on the classpath.

Consider a typical Spring web-app configuration with a shared parent application context
defining common business services and everything needed to support them, and one child
application context per servlet containing definitions particular to that servlet. All
of these contexts will co-exist within the same classloader hierarchy, and so the
AnnotationBeanConfigurerAspect can only hold a reference to one of them. In this case
we recommend defining the @EnableSpringConfigured bean in the shared (parent)
application context: this defines the services that you are likely to want to inject
into domain objects. A consequence is that you cannot configure domain objects with
references to beans defined in the child (servlet-specific) contexts using the
@Configurable mechanism (probably not something you want to do anyway!).

When deploying multiple web-apps within the same container, ensure that each
web-application loads the types in spring-aspects.jar using its own classloader (for
example, by placing spring-aspects.jar in 'WEB-INF/lib'). If spring-aspects.jar is
only added to the container wide classpath (and hence loaded by the shared parent
classloader), all web applications will share the same aspect instance which is probably
not what you want.

Other Spring aspects for AspectJ

In addition to the @Configurable aspect, spring-aspects.jar contains an AspectJ
aspect that can be used to drive Spring’s transaction management for types and methods
annotated with the @Transactional annotation. This is primarily intended for users who
want to use the Spring Framework’s transaction support outside of the Spring container.

The aspect that interprets @Transactional annotations is the
AnnotationTransactionAspect. When using this aspect, you must annotate the
implementation class (and/or methods within that class), not the interface (if
any) that the class implements. AspectJ follows Java’s rule that annotations on
interfaces are not inherited.

A @Transactional annotation on a class specifies the default transaction semantics for
the execution of any public operation in the class.

A @Transactional annotation on a method within the class overrides the default
transaction semantics given by the class annotation (if present). Methods of any
visibility may be annotated, including private methods. Annotating non-public methods
directly is the only way to get transaction demarcation for the execution of such methods.

	[image: [Tip]]	Tip
	
Since Spring Framework 4.2, spring-aspects provides a similar aspect that offers the
exact same features for the standard javax.transaction.Transactional annotation. Check
JtaAnnotationTransactionAspect for more details.

For AspectJ programmers that want to use the Spring configuration and transaction
management support but don’t want to (or cannot) use annotations, spring-aspects.jar
also contains abstract aspects you can extend to provide your own pointcut
definitions. See the sources for the AbstractBeanConfigurerAspect and
AbstractTransactionAspect aspects for more information. As an example, the following
excerpt shows how you could write an aspect to configure all instances of objects
defined in the domain model using prototype bean definitions that match the
fully-qualified class names:

public aspect DomainObjectConfiguration extends AbstractBeanConfigurerAspect {

 public DomainObjectConfiguration() {
 setBeanWiringInfoResolver(new ClassNameBeanWiringInfoResolver());
 }

 // the creation of a new bean (any object in the domain model)
 protected pointcut beanCreation(Object beanInstance) :
 initialization(new(..)) &&
 SystemArchitecture.inDomainModel() &&
 this(beanInstance);

}

Configuring AspectJ aspects using Spring IoC

When using AspectJ aspects with Spring applications, it is natural to both want and
expect to be able to configure such aspects using Spring. The AspectJ runtime itself is
responsible for aspect creation, and the means of configuring the AspectJ created
aspects via Spring depends on the AspectJ instantiation model (the per-xxx clause)
used by the aspect.

The majority of AspectJ aspects are singleton aspects. Configuration of these
aspects is very easy: simply create a bean definition referencing the aspect type as
normal, and include the bean attribute 'factory-method="aspectOf"'. This ensures that
Spring obtains the aspect instance by asking AspectJ for it rather than trying to create
an instance itself. For example:

<bean id="profiler" class="com.xyz.profiler.Profiler"
 factory-method="aspectOf">

 <property name="profilingStrategy" ref="jamonProfilingStrategy"/>
</bean>

Non-singleton aspects are harder to configure: however it is possible to do so by
creating prototype bean definitions and using the @Configurable support from
spring-aspects.jar to configure the aspect instances once they have bean created by
the AspectJ runtime.

If you have some @AspectJ aspects that you want to weave with AspectJ (for example,
using load-time weaving for domain model types) and other @AspectJ aspects that you want
to use with Spring AOP, and these aspects are all configured using Spring, then you will
need to tell the Spring AOP @AspectJ autoproxying support which exact subset of the
@AspectJ aspects defined in the configuration should be used for autoproxying. You can
do this by using one or more <include/> elements inside the <aop:aspectj-autoproxy/>
declaration. Each <include/> element specifies a name pattern, and only beans with
names matched by at least one of the patterns will be used for Spring AOP autoproxy
configuration:

<aop:aspectj-autoproxy>
 <aop:include name="thisBean"/>
 <aop:include name="thatBean"/>
</aop:aspectj-autoproxy>

	[image: [Note]]	Note
	
Do not be misled by the name of the <aop:aspectj-autoproxy/> element: using it will
result in the creation of Spring AOP proxies. The @AspectJ style of aspect
declaration is just being used here, but the AspectJ runtime is not involved.

Load-time weaving with AspectJ in the Spring Framework

Load-time weaving (LTW) refers to the process of weaving AspectJ aspects into an
application’s class files as they are being loaded into the Java virtual machine (JVM).
The focus of this section is on configuring and using LTW in the specific context of the
Spring Framework: this section is not an introduction to LTW though. For full details on
the specifics of LTW and configuring LTW with just AspectJ (with Spring not being
involved at all), see the
LTW section of the AspectJ
Development Environment Guide.

The value-add that the Spring Framework brings to AspectJ LTW is in enabling much
finer-grained control over the weaving process. 'Vanilla' AspectJ LTW is effected using
a Java (5+) agent, which is switched on by specifying a VM argument when starting up a
JVM. It is thus a JVM-wide setting, which may be fine in some situations, but often is a
little too coarse. Spring-enabled LTW enables you to switch on LTW on a
per-ClassLoader basis, which obviously is more fine-grained and which can make more
sense in a 'single-JVM-multiple-application' environment (such as is found in a typical
application server environment).

Further, in certain environments, this support enables
load-time weaving without making any modifications to the application server’s launch
script that will be needed to add -javaagent:path/to/aspectjweaver.jar or (as we
describe later in this section)
-javaagent:path/to/org.springframework.instrument-{version}.jar (previously named
spring-agent.jar). Developers simply modify one or more files that form the
application context to enable load-time weaving instead of relying on administrators who
typically are in charge of the deployment configuration such as the launch script.

Now that the sales pitch is over, let us first walk through a quick example of AspectJ
LTW using Spring, followed by detailed specifics about elements introduced in the
following example. For a complete example, please see the
Petclinic sample application.

A first example

Let us assume that you are an application developer who has been tasked with diagnosing
the cause of some performance problems in a system. Rather than break out a profiling
tool, what we are going to do is switch on a simple profiling aspect that will enable us
to very quickly get some performance metrics, so that we can then apply a finer-grained
profiling tool to that specific area immediately afterwards.

	[image: [Note]]	Note
	
The example presented here uses XML style configuration, it is also possible to
configure and use @AspectJ with Java Configuration.
Specifically the @EnableLoadTimeWeaving annotation can be used as an alternative to
<context:load-time-weaver/> (see below for details).

Here is the profiling aspect. Nothing too fancy, just a quick-and-dirty time-based
profiler, using the @AspectJ-style of aspect declaration.

package foo;

import org.aspectj.lang.ProceedingJoinPoint;
import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Around;
import org.aspectj.lang.annotation.Pointcut;
import org.springframework.util.StopWatch;
import org.springframework.core.annotation.Order;

@Aspect
public class ProfilingAspect {

 @Around("methodsToBeProfiled()")
 public Object profile(ProceedingJoinPoint pjp) throws Throwable {
 StopWatch sw = new StopWatch(getClass().getSimpleName());
 try {
 sw.start(pjp.getSignature().getName());
 return pjp.proceed();
 } finally {
 sw.stop();
 System.out.println(sw.prettyPrint());
 }
 }

 @Pointcut("execution(public * foo..*.*(..))")
 public void methodsToBeProfiled(){}
}

We will also need to create an META-INF/aop.xml file, to inform the AspectJ weaver
that we want to weave our ProfilingAspect into our classes. This file convention,
namely the presence of a file (or files) on the Java classpath called
META-INF/aop.xml is standard AspectJ.

<!DOCTYPE aspectj PUBLIC "-//AspectJ//DTD//EN" "http://www.eclipse.org/aspectj/dtd/aspectj.dtd">
<aspectj>

 <weaver>
 <!-- only weave classes in our application-specific packages -->
 <include within="foo.*"/>
 </weaver>

 <aspects>
 <!-- weave in just this aspect -->
 <aspect name="foo.ProfilingAspect"/>
 </aspects>

</aspectj>

Now to the Spring-specific portion of the configuration. We need to configure a
LoadTimeWeaver (all explained later, just take it on trust for now). This load-time
weaver is the essential component responsible for weaving the aspect configuration in
one or more META-INF/aop.xml files into the classes in your application. The good
thing is that it does not require a lot of configuration, as can be seen below (there
are some more options that you can specify, but these are detailed later).

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context.xsd">

 <!-- a service object; we will be profiling its methods -->
 <bean id="entitlementCalculationService"
 class="foo.StubEntitlementCalculationService"/>

 <!-- this switches on the load-time weaving -->
 <context:load-time-weaver/>
</beans>

Now that all the required artifacts are in place - the aspect, the META-INF/aop.xml
file, and the Spring configuration -, let us create a simple driver class with a
main(..) method to demonstrate the LTW in action.

package foo;

import org.springframework.context.support.ClassPathXmlApplicationContext;

public final class Main {

 public static void main(String[] args) {

 ApplicationContext ctx = new ClassPathXmlApplicationContext("beans.xml", Main.class);

 EntitlementCalculationService entitlementCalculationService
 = (EntitlementCalculationService) ctx.getBean("entitlementCalculationService");

 // the profiling aspect is 'woven' around this method execution
 entitlementCalculationService.calculateEntitlement();
 }
}

There is one last thing to do. The introduction to this section did say that one could
switch on LTW selectively on a per- ClassLoader basis with Spring, and this is true.
However, just for this example, we are going to use a Java agent (supplied with Spring)
to switch on the LTW. This is the command line we will use to run the above Main class:

java -javaagent:C:/projects/foo/lib/global/spring-instrument.jar foo.Main

The -javaagent is a flag for specifying and enabling
agents
to instrument programs running on the JVM. The Spring Framework ships with such an
agent, the InstrumentationSavingAgent, which is packaged in the
spring-instrument.jar that was supplied as the value of the -javaagent argument in
the above example.

The output from the execution of the Main program will look something like that below.
(I have introduced a Thread.sleep(..) statement into the calculateEntitlement()
implementation so that the profiler actually captures something other than 0
milliseconds - the 01234 milliseconds is not an overhead introduced by the AOP :))

Calculating entitlement

StopWatch 'ProfilingAspect': running time (millis) = 1234
------ ----- ----------------------------
ms % Task name
------ ----- ----------------------------
01234 100% calculateEntitlement

Since this LTW is effected using full-blown AspectJ, we are not just limited to advising
Spring beans; the following slight variation on the Main program will yield the same
result.

package foo;

import org.springframework.context.support.ClassPathXmlApplicationContext;

public final class Main {

 public static void main(String[] args) {

 new ClassPathXmlApplicationContext("beans.xml", Main.class);

 EntitlementCalculationService entitlementCalculationService =
 new StubEntitlementCalculationService();

 // the profiling aspect will be 'woven' around this method execution
 entitlementCalculationService.calculateEntitlement();
 }
}

Notice how in the above program we are simply bootstrapping the Spring container, and
then creating a new instance of the StubEntitlementCalculationService totally outside
the context of Spring…​ the profiling advice still gets woven in.

The example admittedly is simplistic…​ however the basics of the LTW support in Spring
have all been introduced in the above example, and the rest of this section will explain
the 'why' behind each bit of configuration and usage in detail.

	[image: [Note]]	Note
	
The ProfilingAspect used in this example may be basic, but it is quite useful. It is a
nice example of a development-time aspect that developers can use during development (of
course), and then quite easily exclude from builds of the application being deployed
into UAT or production.

Aspects

The aspects that you use in LTW have to be AspectJ aspects. They can be written in
either the AspectJ language itself or you can write your aspects in the @AspectJ-style.
It means that your aspects are then both valid AspectJ and Spring AOP aspects.
Furthermore, the compiled aspect classes need to be available on the classpath.

'META-INF/aop.xml'

The AspectJ LTW infrastructure is configured using one or more META-INF/aop.xml
files, that are on the Java classpath (either directly, or more typically in jar files).

The structure and contents of this file is detailed in the main AspectJ reference
documentation, and the interested reader is
referred to
that resource. (I appreciate that this section is brief, but the aop.xml file is
100% AspectJ - there is no Spring-specific information or semantics that apply to it,
and so there is no extra value that I can contribute either as a result), so rather than
rehash the quite satisfactory section that the AspectJ developers wrote, I am just
directing you there.)

Required libraries (JARS)

At a minimum you will need the following libraries to use the Spring Framework’s support
for AspectJ LTW:

	
spring-aop.jar (version 2.5 or later, plus all mandatory dependencies)

	
aspectjweaver.jar (version 1.6.8 or later)

If you are using the Spring-provided agent to enable
instrumentation, you will also need:

	
spring-instrument.jar

Spring configuration

The key component in Spring’s LTW support is the LoadTimeWeaver interface (in the
org.springframework.instrument.classloading package), and the numerous implementations
of it that ship with the Spring distribution. A LoadTimeWeaver is responsible for
adding one or more java.lang.instrument.ClassFileTransformers to a ClassLoader at
runtime, which opens the door to all manner of interesting applications, one of which
happens to be the LTW of aspects.

	[image: [Tip]]	Tip
	
If you are unfamiliar with the idea of runtime class file transformation, you are
encouraged to read the javadoc API documentation for the java.lang.instrument package
before continuing. This is not a huge chore because there is - rather annoyingly -
precious little documentation there…​ the key interfaces and classes will at least be
laid out in front of you for reference as you read through this section.

Configuring a LoadTimeWeaver for a particular ApplicationContext can be as easy as
adding one line. (Please note that you almost certainly will need to be using an
ApplicationContext as your Spring container - typically a BeanFactory will not be
enough because the LTW support makes use of BeanFactoryPostProcessors.)

To enable the Spring Framework’s LTW support, you need to configure a LoadTimeWeaver,
which typically is done using the @EnableLoadTimeWeaving annotation.

@Configuration
@EnableLoadTimeWeaving
public class AppConfig {

}

Alternatively, if you prefer XML based configuration, use the
<context:load-time-weaver/> element. Note that the element is defined in the
context namespace.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context.xsd">

 <context:load-time-weaver/>

</beans>

The above configuration will define and register a number of LTW-specific infrastructure
beans for you automatically, such as a LoadTimeWeaver and an AspectJWeavingEnabler.
The default LoadTimeWeaver is the DefaultContextLoadTimeWeaver class, which attempts
to decorate an automatically detected LoadTimeWeaver: the exact type of
LoadTimeWeaver that will be 'automatically detected' is dependent upon your runtime
environment (summarized in the following table).

Table 11.1. DefaultContextLoadTimeWeaver LoadTimeWeavers

	Runtime Environment	LoadTimeWeaver implementation
	Running in Oracle’s
 WebLogic
	WebLogicLoadTimeWeaver

	Running in Oracle’s GlassFish
	GlassFishLoadTimeWeaver

	Running in Apache Tomcat
	TomcatLoadTimeWeaver

	Running in Red Hat’s JBoss AS or WildFly
	JBossLoadTimeWeaver

	Running in IBM’s WebSphere
	WebSphereLoadTimeWeaver

	JVM started with Spring InstrumentationSavingAgent (java
 -javaagent:path/to/spring-instrument.jar)
	InstrumentationLoadTimeWeaver

	Fallback, expecting the underlying ClassLoader to follow common conventions (e.g.
 applicable to TomcatInstrumentableClassLoader and Resin)
	ReflectiveLoadTimeWeaver

Note that these are just the LoadTimeWeavers that are autodetected when using the
DefaultContextLoadTimeWeaver: it is of course possible to specify exactly which
LoadTimeWeaver implementation that you wish to use.

To specify a specific LoadTimeWeaver with Java configuration implement the
LoadTimeWeavingConfigurer interface and override the getLoadTimeWeaver() method:

@Configuration
@EnableLoadTimeWeaving
public class AppConfig implements LoadTimeWeavingConfigurer {

 @Override
 public LoadTimeWeaver getLoadTimeWeaver() {
 return new ReflectiveLoadTimeWeaver();
 }
}

If you are using XML based configuration you can specify the fully-qualified classname
as the value of the weaver-class attribute on the <context:load-time-weaver/>
element:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context.xsd">

 <context:load-time-weaver
 weaver-class="org.springframework.instrument.classloading.ReflectiveLoadTimeWeaver"/>

</beans>

The LoadTimeWeaver that is defined and registered by the configuration can be later
retrieved from the Spring container using the well-known name loadTimeWeaver.
Remember that the LoadTimeWeaver exists just as a mechanism for Spring’s LTW
infrastructure to add one or more ClassFileTransformers. The actual
ClassFileTransformer that does the LTW is the ClassPreProcessorAgentAdapter (from
the org.aspectj.weaver.loadtime package) class. See the class-level javadocs of the
ClassPreProcessorAgentAdapter class for further details, because the specifics of how
the weaving is actually effected is beyond the scope of this section.

There is one final attribute of the configuration left to discuss: the
aspectjWeaving attribute (or aspectj-weaving if you are using XML). This is a
simple attribute that controls whether LTW is enabled or not; it is as simple as that.
It accepts one of three possible values, summarized below, with the default value being
autodetect if the attribute is not present.

Table 11.2. AspectJ weaving attribute values

	Annotation Value	XML Value	Explanation
	ENABLED
	on
	AspectJ weaving is on, and aspects will be woven at load-time as appropriate.

	DISABLED
	off
	LTW is off…​ no aspect will be woven at load-time.

	AUTODETECT
	autodetect
	If the Spring LTW infrastructure can find at least one META-INF/aop.xml file,
 then AspectJ weaving is on, else it is off. This is the default value.

Environment-specific configuration

This last section contains any additional settings and configuration that you will need
when using Spring’s LTW support in environments such as application servers and web
containers.

Tomcat

Historically, Apache Tomcat's default class loader did not
support class transformation which is why Spring provides an enhanced implementation
that addresses this need. Named TomcatInstrumentableClassLoader, the loader works on
Tomcat 6.0 and above.

	[image: [Tip]]	Tip
	
Do not define TomcatInstrumentableClassLoader anymore on Tomcat 8.0 and higher.
Instead, let Spring automatically use Tomcat’s new native InstrumentableClassLoader
facility through the TomcatLoadTimeWeaver strategy.

If you still need to use TomcatInstrumentableClassLoader, it can be registered
individually for each web application as follows:

	
Copy org.springframework.instrument.tomcat.jar into $CATALINA_HOME/lib, where
$CATALINA_HOME represents the root of the Tomcat installation)

	
Instruct Tomcat to use the custom class loader (instead of the default) by editing the
web application context file:

<Context path="/myWebApp" docBase="/my/webApp/location">
 <Loader
 loaderClass="org.springframework.instrument.classloading.tomcat.TomcatInstrumentableClassLoader"/>
</Context>

Apache Tomcat (6.0+) supports several context locations:

	
server configuration file - $CATALINA_HOME/conf/server.xml

	
default context configuration - $CATALINA_HOME/conf/context.xml - that affects all
deployed web applications

	
per-web application configuration which can be deployed either on the server-side at
$CATALINA_HOME/conf/[enginename]/[hostname]/[webapp]-context.xml or embedded
inside the web-app archive at META-INF/context.xml

For efficiency, the embedded per-web-app configuration style is recommended because it
will impact only applications that use the custom class loader and does not require any
changes to the server configuration. See the Tomcat 6.0.x
documentation for more
details about available context locations.

Alternatively, consider the use of the Spring-provided generic VM agent, to be specified
in Tomcat’s launch script (see above). This will make instrumentation available to all
deployed web applications, no matter what ClassLoader they happen to run on.

WebLogic, WebSphere, Resin, GlassFish, JBoss

Recent versions of WebLogic Server (version 10 and above), IBM WebSphere Application
Server (version 7 and above), Resin (3.1 and above) and JBoss (6.x or above) provide a
ClassLoader that is capable of local instrumentation. Spring’s native LTW leverages such
ClassLoaders to enable AspectJ weaving. You can enable LTW by simply activating
load-time weaving as described earlier. Specifically, you do not need to modify the
launch script to add -javaagent:path/to/spring-instrument.jar.

Note that GlassFish instrumentation-capable ClassLoader is available only in its EAR
environment. For GlassFish web applications, follow the Tomcat setup instructions as
outlined above.

Note that on JBoss 6.x, the app server scanning needs to be disabled to prevent it from
loading the classes before the application actually starts. A quick workaround is to add
to your artifact a file named WEB-INF/jboss-scanning.xml with the following content:

<scanning xmlns="urn:jboss:scanning:1.0"/>

Generic Java applications

When class instrumentation is required in environments that do not support or are not
supported by the existing LoadTimeWeaver implementations, a JDK agent can be the only
solution. For such cases, Spring provides InstrumentationLoadTimeWeaver, which
requires a Spring-specific (but very general) VM agent,
org.springframework.instrument-{version}.jar (previously named spring-agent.jar).

To use it, you must start the virtual machine with the Spring agent, by supplying the
following JVM options:

-javaagent:/path/to/org.springframework.instrument-{version}.jar

Note that this requires modification of the VM launch script which may prevent you from
using this in application server environments (depending on your operation policies).
Additionally, the JDK agent will instrument the entire VM which can prove expensive.

For performance reasons, it is recommended to use this configuration only if your target
environment (such as Jetty) does not have (or does not
support) a dedicated LTW.

Further Resources

More information on AspectJ can be found on the AspectJ
website.

The book Eclipse AspectJ by Adrian Colyer et. al. (Addison-Wesley, 2005) provides a
comprehensive introduction and reference for the AspectJ language.

The book AspectJ in Action, Second Edition by Ramnivas Laddad (Manning, 2009) comes highly
recommended; the focus of the book is on AspectJ, but a lot of general AOP themes are
explored (in some depth).

Chapter 12. Spring AOP APIs

Introduction

The previous chapter described the Spring’s support for AOP using
@AspectJ and schema-based aspect definitions. In this chapter we discuss the lower-level
Spring AOP APIs and the AOP support used in Spring 1.2 applications. For new
applications, we recommend the use of the Spring 2.0 and later AOP support described in
the previous chapter, but when working with existing applications, or when reading books
and articles, you may come across Spring 1.2 style examples. Spring 4.0 is backwards
compatible with Spring 1.2 and everything described in this chapter is fully supported
in Spring 4.0.

Pointcut API in Spring

Let’s look at how Spring handles the crucial pointcut concept.

Concepts

Spring’s pointcut model enables pointcut reuse independent of advice types. It’s
possible to target different advice using the same pointcut.

The org.springframework.aop.Pointcut interface is the central interface, used to
target advices to particular classes and methods. The complete interface is shown below:

public interface Pointcut {

 ClassFilter getClassFilter();

 MethodMatcher getMethodMatcher();

}

Splitting the Pointcut interface into two parts allows reuse of class and method
matching parts, and fine-grained composition operations (such as performing a "union"
with another method matcher).

The ClassFilter interface is used to restrict the pointcut to a given set of target
classes. If the matches() method always returns true, all target classes will be
matched:

public interface ClassFilter {

 boolean matches(Class clazz);
}

The MethodMatcher interface is normally more important. The complete interface is
shown below:

public interface MethodMatcher {

 boolean matches(Method m, Class targetClass);

 boolean isRuntime();

 boolean matches(Method m, Class targetClass, Object[] args);
}

The matches(Method, Class) method is used to test whether this pointcut will ever
match a given method on a target class. This evaluation can be performed when an AOP
proxy is created, to avoid the need for a test on every method invocation. If the
2-argument matches method returns true for a given method, and the isRuntime() method
for the MethodMatcher returns true, the 3-argument matches method will be invoked on
every method invocation. This enables a pointcut to look at the arguments passed to the
method invocation immediately before the target advice is to execute.

Most MethodMatchers are static, meaning that their isRuntime() method returns false.
In this case, the 3-argument matches method will never be invoked.

	[image: [Tip]]	Tip
	
If possible, try to make pointcuts static, allowing the AOP framework to cache the
results of pointcut evaluation when an AOP proxy is created.

Operations on pointcuts

Spring supports operations on pointcuts: notably, union and intersection.

	
Union means the methods that either pointcut matches.

	
Intersection means the methods that both pointcuts match.

	
Union is usually more useful.

	
Pointcuts can be composed using the static methods in the
org.springframework.aop.support.Pointcuts class, or using the
ComposablePointcut class in the same package. However, using AspectJ pointcut
expressions is usually a simpler approach.

AspectJ expression pointcuts

Since 2.0, the most important type of pointcut used by Spring is
org.springframework.aop.aspectj.AspectJExpressionPointcut. This is a pointcut that
uses an AspectJ supplied library to parse an AspectJ pointcut expression string.

See the previous chapter for a discussion of supported AspectJ pointcut primitives.

Convenience pointcut implementations

Spring provides several convenient pointcut implementations. Some can be used out of the
box; others are intended to be subclassed in application-specific pointcuts.

Static pointcuts

Static pointcuts are based on method and target class, and cannot take into account the
method’s arguments. Static pointcuts are sufficient - and best - for most usages.
It’s possible for Spring to evaluate a static pointcut only once, when a method is first
invoked: after that, there is no need to evaluate the pointcut again with each method
invocation.

Let’s consider some static pointcut implementations included with Spring.

Regular expression pointcuts

One obvious way to specify static pointcuts is regular expressions. Several AOP
frameworks besides Spring make this possible.
org.springframework.aop.support.JdkRegexpMethodPointcut is a generic regular
expression pointcut, using the regular expression support in JDK 1.4+.

Using the JdkRegexpMethodPointcut class, you can provide a list of pattern Strings. If
any of these is a match, the pointcut will evaluate to true. (So the result is
effectively the union of these pointcuts.)

The usage is shown below:

<bean id="settersAndAbsquatulatePointcut"
 class="org.springframework.aop.support.JdkRegexpMethodPointcut">
 <property name="patterns">
 <list>
 <value>.*set.*</value>
 <value>.*absquatulate</value>
 </list>
 </property>
</bean>

Spring provides a convenience class, RegexpMethodPointcutAdvisor, that allows us to
also reference an Advice (remember that an Advice can be an interceptor, before advice,
throws advice etc.). Behind the scenes, Spring will use a JdkRegexpMethodPointcut.
Using RegexpMethodPointcutAdvisor simplifies wiring, as the one bean encapsulates both
pointcut and advice, as shown below:

<bean id="settersAndAbsquatulateAdvisor"
 class="org.springframework.aop.support.RegexpMethodPointcutAdvisor">
 <property name="advice">
 <ref bean="beanNameOfAopAllianceInterceptor"/>
 </property>
 <property name="patterns">
 <list>
 <value>.*set.*</value>
 <value>.*absquatulate</value>
 </list>
 </property>
</bean>

RegexpMethodPointcutAdvisor can be used with any Advice type.

Attribute-driven pointcuts

An important type of static pointcut is a metadata-driven pointcut. This uses the
values of metadata attributes: typically, source-level metadata.

Dynamic pointcuts

Dynamic pointcuts are costlier to evaluate than static pointcuts. They take into account
method arguments, as well as static information. This means that they must be
evaluated with every method invocation; the result cannot be cached, as arguments will
vary.

The main example is the control flow pointcut.

Control flow pointcuts

Spring control flow pointcuts are conceptually similar to AspectJ cflow pointcuts,
although less powerful. (There is currently no way to specify that a pointcut executes
below a join point matched by another pointcut.) A control flow pointcut matches the
current call stack. For example, it might fire if the join point was invoked by a method
in the com.mycompany.web package, or by the SomeCaller class. Control flow pointcuts
are specified using the org.springframework.aop.support.ControlFlowPointcut class.

	[image: [Note]]	Note
	
Control flow pointcuts are significantly more expensive to evaluate at runtime than even
other dynamic pointcuts. In Java 1.4, the cost is about 5 times that of other dynamic
pointcuts.

Pointcut superclasses

Spring provides useful pointcut superclasses to help you to implement your own pointcuts.

Because static pointcuts are most useful, you’ll probably subclass
StaticMethodMatcherPointcut, as shown below. This requires implementing just one
abstract method (although it’s possible to override other methods to customize behavior):

class TestStaticPointcut extends StaticMethodMatcherPointcut {

 public boolean matches(Method m, Class targetClass) {
 // return true if custom criteria match
 }
}

There are also superclasses for dynamic pointcuts.

You can use custom pointcuts with any advice type in Spring 1.0 RC2 and above.

Custom pointcuts

Because pointcuts in Spring AOP are Java classes, rather than language features (as in
AspectJ) it’s possible to declare custom pointcuts, whether static or dynamic. Custom
pointcuts in Spring can be arbitrarily complex. However, using the AspectJ pointcut
expression language is recommended if possible.

	[image: [Note]]	Note
	
Later versions of Spring may offer support for "semantic pointcuts" as offered by JAC:
for example, "all methods that change instance variables in the target object."

Advice API in Spring

Let’s now look at how Spring AOP handles advice.

Advice lifecycles

Each advice is a Spring bean. An advice instance can be shared across all advised
objects, or unique to each advised object. This corresponds to per-class or
per-instance advice.

Per-class advice is used most often. It is appropriate for generic advice such as
transaction advisors. These do not depend on the state of the proxied object or add new
state; they merely act on the method and arguments.

Per-instance advice is appropriate for introductions, to support mixins. In this case,
the advice adds state to the proxied object.

It’s possible to use a mix of shared and per-instance advice in the same AOP proxy.

Advice types in Spring

Spring provides several advice types out of the box, and is extensible to support
arbitrary advice types. Let us look at the basic concepts and standard advice types.

Interception around advice

The most fundamental advice type in Spring is interception around advice.

Spring is compliant with the AOP Alliance interface for around advice using method
interception. MethodInterceptors implementing around advice should implement the
following interface:

public interface MethodInterceptor extends Interceptor {

 Object invoke(MethodInvocation invocation) throws Throwable;
}

The MethodInvocation argument to the invoke() method exposes the method being
invoked; the target join point; the AOP proxy; and the arguments to the method. The
invoke() method should return the invocation’s result: the return value of the join
point.

A simple MethodInterceptor implementation looks as follows:

public class DebugInterceptor implements MethodInterceptor {

 public Object invoke(MethodInvocation invocation) throws Throwable {
 System.out.println("Before: invocation=[" + invocation + "]");
 Object rval = invocation.proceed();
 System.out.println("Invocation returned");
 return rval;
 }
}

Note the call to the MethodInvocation’s proceed() method. This proceeds down the
interceptor chain towards the join point. Most interceptors will invoke this method, and
return its return value. However, a MethodInterceptor, like any around advice, can
return a different value or throw an exception rather than invoke the proceed method.
However, you don’t want to do this without good reason!

	[image: [Note]]	Note
	
MethodInterceptors offer interoperability with other AOP Alliance-compliant AOP
implementations. The other advice types discussed in the remainder of this section
implement common AOP concepts, but in a Spring-specific way. While there is an advantage
in using the most specific advice type, stick with MethodInterceptor around advice if
you are likely to want to run the aspect in another AOP framework. Note that pointcuts
are not currently interoperable between frameworks, and the AOP Alliance does not
currently define pointcut interfaces.

Before advice

A simpler advice type is a before advice. This does not need a MethodInvocation
object, since it will only be called before entering the method.

The main advantage of a before advice is that there is no need to invoke the proceed()
method, and therefore no possibility of inadvertently failing to proceed down the
interceptor chain.

The MethodBeforeAdvice interface is shown below. (Spring’s API design would allow for
field before advice, although the usual objects apply to field interception and it’s
unlikely that Spring will ever implement it).

public interface MethodBeforeAdvice extends BeforeAdvice {

 void before(Method m, Object[] args, Object target) throws Throwable;
}

Note the return type is void. Before advice can insert custom behavior before the join
point executes, but cannot change the return value. If a before advice throws an
exception, this will abort further execution of the interceptor chain. The exception
will propagate back up the interceptor chain. If it is unchecked, or on the signature of
the invoked method, it will be passed directly to the client; otherwise it will be
wrapped in an unchecked exception by the AOP proxy.

An example of a before advice in Spring, which counts all method invocations:

public class CountingBeforeAdvice implements MethodBeforeAdvice {

 private int count;

 public void before(Method m, Object[] args, Object target) throws Throwable {
 ++count;
 }

 public int getCount() {
 return count;
 }
}

	[image: [Tip]]	Tip
	
Before advice can be used with any pointcut.

Throws advice

Throws advice is invoked after the return of the join point if the join point threw
an exception. Spring offers typed throws advice. Note that this means that the
org.springframework.aop.ThrowsAdvice interface does not contain any methods: It is a
tag interface identifying that the given object implements one or more typed throws
advice methods. These should be in the form of:

afterThrowing([Method, args, target], subclassOfThrowable)

Only the last argument is required. The method signatures may have either one or four
arguments, depending on whether the advice method is interested in the method and
arguments. The following classes are examples of throws advice.

The advice below is invoked if a RemoteException is thrown (including subclasses):

public class RemoteThrowsAdvice implements ThrowsAdvice {

 public void afterThrowing(RemoteException ex) throws Throwable {
 // Do something with remote exception
 }
}

The following advice is invoked if a ServletException is thrown. Unlike the above
advice, it declares 4 arguments, so that it has access to the invoked method, method
arguments and target object:

public class ServletThrowsAdviceWithArguments implements ThrowsAdvice {

 public void afterThrowing(Method m, Object[] args, Object target, ServletException ex) {
 // Do something with all arguments
 }
}

The final example illustrates how these two methods could be used in a single class,
which handles both RemoteException and ServletException. Any number of throws advice
methods can be combined in a single class.

public static class CombinedThrowsAdvice implements ThrowsAdvice {

 public void afterThrowing(RemoteException ex) throws Throwable {
 // Do something with remote exception
 }

 public void afterThrowing(Method m, Object[] args, Object target, ServletException ex) {
 // Do something with all arguments
 }
}

	[image: [Note]]	Note
	
If a throws-advice method throws an exception itself, it will override the
original exception (i.e. change the exception thrown to the user). The overriding
exception will typically be a RuntimeException; this is compatible with any method
signature. However, if a throws-advice method throws a checked exception, it will have
to match the declared exceptions of the target method and is hence to some degree
coupled to specific target method signatures. Do not throw an undeclared checked
exception that is incompatible with the target method’s signature!

	[image: [Tip]]	Tip
	
Throws advice can be used with any pointcut.

After Returning advice

An after returning advice in Spring must implement the
org.springframework.aop.AfterReturningAdvice interface, shown below:

public interface AfterReturningAdvice extends Advice {

 void afterReturning(Object returnValue, Method m, Object[] args, Object target)
 throws Throwable;
}

An after returning advice has access to the return value (which it cannot modify),
invoked method, methods arguments and target.

The following after returning advice counts all successful method invocations that have
not thrown exceptions:

public class CountingAfterReturningAdvice implements AfterReturningAdvice {

 private int count;

 public void afterReturning(Object returnValue, Method m, Object[] args, Object target)
 throws Throwable {
 ++count;
 }

 public int getCount() {
 return count;
 }
}

This advice doesn’t change the execution path. If it throws an exception, this will be
thrown up the interceptor chain instead of the return value.

	[image: [Tip]]	Tip
	
After returning advice can be used with any pointcut.

Introduction advice

Spring treats introduction advice as a special kind of interception advice.

Introduction requires an IntroductionAdvisor, and an IntroductionInterceptor,
implementing the following interface:

public interface IntroductionInterceptor extends MethodInterceptor {

 boolean implementsInterface(Class intf);
}

The invoke() method inherited from the AOP Alliance MethodInterceptor interface must
implement the introduction: that is, if the invoked method is on an introduced
interface, the introduction interceptor is responsible for handling the method call - it
cannot invoke proceed().

Introduction advice cannot be used with any pointcut, as it applies only at class,
rather than method, level. You can only use introduction advice with the
IntroductionAdvisor, which has the following methods:

public interface IntroductionAdvisor extends Advisor, IntroductionInfo {

 ClassFilter getClassFilter();

 void validateInterfaces() throws IllegalArgumentException;
}

public interface IntroductionInfo {

 Class[] getInterfaces();
}

There is no MethodMatcher, and hence no Pointcut, associated with introduction
advice. Only class filtering is logical.

The getInterfaces() method returns the interfaces introduced by this advisor.

The validateInterfaces() method is used internally to see whether or not the
introduced interfaces can be implemented by the configured IntroductionInterceptor.

Let’s look at a simple example from the Spring test suite. Let’s suppose we want to
introduce the following interface to one or more objects:

public interface Lockable {
 void lock();
 void unlock();
 boolean locked();
}

This illustrates a mixin. We want to be able to cast advised objects to Lockable,
whatever their type, and call lock and unlock methods. If we call the lock() method, we
want all setter methods to throw a LockedException. Thus we can add an aspect that
provides the ability to make objects immutable, without them having any knowledge of it:
a good example of AOP.

Firstly, we’ll need an IntroductionInterceptor that does the heavy lifting. In this
case, we extend the org.springframework.aop.support.DelegatingIntroductionInterceptor
convenience class. We could implement IntroductionInterceptor directly, but using
DelegatingIntroductionInterceptor is best for most cases.

The DelegatingIntroductionInterceptor is designed to delegate an introduction to an
actual implementation of the introduced interface(s), concealing the use of interception
to do so. The delegate can be set to any object using a constructor argument; the
default delegate (when the no-arg constructor is used) is this. Thus in the example
below, the delegate is the LockMixin subclass of DelegatingIntroductionInterceptor.
Given a delegate (by default itself), a DelegatingIntroductionInterceptor instance
looks for all interfaces implemented by the delegate (other than
IntroductionInterceptor), and will support introductions against any of them. It’s
possible for subclasses such as LockMixin to call the suppressInterface(Class intf)
method to suppress interfaces that should not be exposed. However, no matter how many
interfaces an IntroductionInterceptor is prepared to support, the
IntroductionAdvisor used will control which interfaces are actually exposed. An
introduced interface will conceal any implementation of the same interface by the target.

Thus LockMixin extends DelegatingIntroductionInterceptor and implements Lockable
itself. The superclass automatically picks up that Lockable can be supported for
introduction, so we don’t need to specify that. We could introduce any number of
interfaces in this way.

Note the use of the locked instance variable. This effectively adds additional state
to that held in the target object.

public class LockMixin extends DelegatingIntroductionInterceptor implements Lockable {

 private boolean locked;

 public void lock() {
 this.locked = true;
 }

 public void unlock() {
 this.locked = false;
 }

 public boolean locked() {
 return this.locked;
 }

 public Object invoke(MethodInvocation invocation) throws Throwable {
 if (locked() && invocation.getMethod().getName().indexOf("set") == 0) {
 throw new LockedException();
 }
 return super.invoke(invocation);
 }

}

Often it isn’t necessary to override the invoke() method: the
DelegatingIntroductionInterceptor implementation - which calls the delegate method if
the method is introduced, otherwise proceeds towards the join point - is usually
sufficient. In the present case, we need to add a check: no setter method can be invoked
if in locked mode.

The introduction advisor required is simple. All it needs to do is hold a distinct
LockMixin instance, and specify the introduced interfaces - in this case, just
Lockable. A more complex example might take a reference to the introduction
interceptor (which would be defined as a prototype): in this case, there’s no
configuration relevant for a LockMixin, so we simply create it using new.

public class LockMixinAdvisor extends DefaultIntroductionAdvisor {

 public LockMixinAdvisor() {
 super(new LockMixin(), Lockable.class);
 }
}

We can apply this advisor very simply: it requires no configuration. (However, it is
necessary: It’s impossible to use an IntroductionInterceptor without an
IntroductionAdvisor.) As usual with introductions, the advisor must be per-instance,
as it is stateful. We need a different instance of LockMixinAdvisor, and hence
LockMixin, for each advised object. The advisor comprises part of the advised object’s
state.

We can apply this advisor programmatically, using the Advised.addAdvisor() method, or
(the recommended way) in XML configuration, like any other advisor. All proxy creation
choices discussed below, including "auto proxy creators," correctly handle introductions
and stateful mixins.

Advisor API in Spring

In Spring, an Advisor is an aspect that contains just a single advice object associated
with a pointcut expression.

Apart from the special case of introductions, any advisor can be used with any advice.
org.springframework.aop.support.DefaultPointcutAdvisor is the most commonly used
advisor class. For example, it can be used with a MethodInterceptor, BeforeAdvice or
ThrowsAdvice.

It is possible to mix advisor and advice types in Spring in the same AOP proxy. For
example, you could use a interception around advice, throws advice and before advice in
one proxy configuration: Spring will automatically create the necessary interceptor
chain.

Using the ProxyFactoryBean to create AOP proxies

If you’re using the Spring IoC container (an ApplicationContext or BeanFactory) for your
business objects - and you should be! - you will want to use one of Spring’s AOP
FactoryBeans. (Remember that a factory bean introduces a layer of indirection, enabling
it to create objects of a different type.)

	[image: [Note]]	Note
	
The Spring AOP support also uses factory beans under the covers.

The basic way to create an AOP proxy in Spring is to use the
org.springframework.aop.framework.ProxyFactoryBean. This gives complete control over
the pointcuts and advice that will apply, and their ordering. However, there are simpler
options that are preferable if you don’t need such control.

Basics

The ProxyFactoryBean, like other Spring FactoryBean implementations, introduces a
level of indirection. If you define a ProxyFactoryBean with name foo, what objects
referencing foo see is not the ProxyFactoryBean instance itself, but an object
created by the ProxyFactoryBean's implementation of the getObject() method. This
method will create an AOP proxy wrapping a target object.

One of the most important benefits of using a ProxyFactoryBean or another IoC-aware
class to create AOP proxies, is that it means that advices and pointcuts can also be
managed by IoC. This is a powerful feature, enabling certain approaches that are hard to
achieve with other AOP frameworks. For example, an advice may itself reference
application objects (besides the target, which should be available in any AOP
framework), benefiting from all the pluggability provided by Dependency Injection.

JavaBean properties

In common with most FactoryBean implementations provided with Spring, the
ProxyFactoryBean class is itself a JavaBean. Its properties are used to:

	
Specify the target you want to proxy.

	
Specify whether to use CGLIB (see below and also the section called “JDK- and CGLIB-based proxies”).

Some key properties are inherited from org.springframework.aop.framework.ProxyConfig
(the superclass for all AOP proxy factories in Spring). These key properties include:

	
proxyTargetClass: true if the target class is to be proxied, rather than the
target class' interfaces. If this property value is set to true, then CGLIB proxies
will be created (but see also the section called “JDK- and CGLIB-based proxies”).

	
optimize: controls whether or not aggressive optimizations are applied to proxies
created via CGLIB. One should not blithely use this setting unless one fully
understands how the relevant AOP proxy handles optimization. This is currently used
only for CGLIB proxies; it has no effect with JDK dynamic proxies.

	
frozen: if a proxy configuration is frozen, then changes to the configuration are
no longer allowed. This is useful both as a slight optimization and for those cases
when you don’t want callers to be able to manipulate the proxy (via the Advised
interface) after the proxy has been created. The default value of this property is
false, so changes such as adding additional advice are allowed.

	
exposeProxy: determines whether or not the current proxy should be exposed in a
ThreadLocal so that it can be accessed by the target. If a target needs to obtain
the proxy and the exposeProxy property is set to true, the target can use the
AopContext.currentProxy() method.

Other properties specific to ProxyFactoryBean include:

	
proxyInterfaces: array of String interface names. If this isn’t supplied, a CGLIB
proxy for the target class will be used (but see also the section called “JDK- and CGLIB-based proxies”).

	
interceptorNames: String array of Advisor, interceptor or other advice names to
apply. Ordering is significant, on a first come-first served basis. That is to say
that the first interceptor in the list will be the first to be able to intercept the
invocation.

The names are bean names in the current factory, including bean names from ancestor
factories. You can’t mention bean references here since doing so would result in the
ProxyFactoryBean ignoring the singleton setting of the advice.

You can append an interceptor name with an asterisk (*). This will result in the
application of all advisor beans with names starting with the part before the asterisk
to be applied. An example of using this feature can be found in the section called “Using 'global' advisors”.

	
singleton: whether or not the factory should return a single object, no matter how
often the getObject() method is called. Several FactoryBean implementations offer
such a method. The default value is true. If you want to use stateful advice - for
example, for stateful mixins - use prototype advices along with a singleton value of
false.

JDK- and CGLIB-based proxies

This section serves as the definitive documentation on how the ProxyFactoryBean
chooses to create one of either a JDK- and CGLIB-based proxy for a particular target
object (that is to be proxied).

	[image: [Note]]	Note
	
The behavior of the ProxyFactoryBean with regard to creating JDK- or CGLIB-based
proxies changed between versions 1.2.x and 2.0 of Spring. The ProxyFactoryBean now
exhibits similar semantics with regard to auto-detecting interfaces as those of the
TransactionProxyFactoryBean class.

If the class of a target object that is to be proxied (hereafter simply referred to as
the target class) doesn’t implement any interfaces, then a CGLIB-based proxy will be
created. This is the easiest scenario, because JDK proxies are interface based, and no
interfaces means JDK proxying isn’t even possible. One simply plugs in the target bean,
and specifies the list of interceptors via the interceptorNames property. Note that a
CGLIB-based proxy will be created even if the proxyTargetClass property of the
ProxyFactoryBean has been set to false. (Obviously this makes no sense, and is best
removed from the bean definition because it is at best redundant, and at worst
confusing.)

If the target class implements one (or more) interfaces, then the type of proxy that is
created depends on the configuration of the ProxyFactoryBean.

If the proxyTargetClass property of the ProxyFactoryBean has been set to true,
then a CGLIB-based proxy will be created. This makes sense, and is in keeping with the
principle of least surprise. Even if the proxyInterfaces property of the
ProxyFactoryBean has been set to one or more fully qualified interface names, the fact
that the proxyTargetClass property is set to true will cause CGLIB-based
proxying to be in effect.

If the proxyInterfaces property of the ProxyFactoryBean has been set to one or more
fully qualified interface names, then a JDK-based proxy will be created. The created
proxy will implement all of the interfaces that were specified in the proxyInterfaces
property; if the target class happens to implement a whole lot more interfaces than
those specified in the proxyInterfaces property, that is all well and good but those
additional interfaces will not be implemented by the returned proxy.

If the proxyInterfaces property of the ProxyFactoryBean has not been set, but
the target class does implement one (or more) interfaces, then the
ProxyFactoryBean will auto-detect the fact that the target class does actually
implement at least one interface, and a JDK-based proxy will be created. The interfaces
that are actually proxied will be all of the interfaces that the target class
implements; in effect, this is the same as simply supplying a list of each and every
interface that the target class implements to the proxyInterfaces property. However,
it is significantly less work, and less prone to typos.

Proxying interfaces

Let’s look at a simple example of ProxyFactoryBean in action. This example involves:

	
A target bean that will be proxied. This is the "personTarget" bean definition in
the example below.

	
An Advisor and an Interceptor used to provide advice.

	
An AOP proxy bean definition specifying the target object (the personTarget bean) and
the interfaces to proxy, along with the advices to apply.

<bean id="personTarget" class="com.mycompany.PersonImpl">
 <property name="name" value="Tony"/>
 <property name="age" value="51"/>
</bean>

<bean id="myAdvisor" class="com.mycompany.MyAdvisor">
 <property name="someProperty" value="Custom string property value"/>
</bean>

<bean id="debugInterceptor" class="org.springframework.aop.interceptor.DebugInterceptor">
</bean>

<bean id="person"
 class="org.springframework.aop.framework.ProxyFactoryBean">
 <property name="proxyInterfaces" value="com.mycompany.Person"/>

 <property name="target" ref="personTarget"/>
 <property name="interceptorNames">
 <list>
 <value>myAdvisor</value>
 <value>debugInterceptor</value>
 </list>
 </property>
</bean>

Note that the interceptorNames property takes a list of String: the bean names of the
interceptor or advisors in the current factory. Advisors, interceptors, before, after
returning and throws advice objects can be used. The ordering of advisors is significant.

	[image: [Note]]	Note
	
You might be wondering why the list doesn’t hold bean references. The reason for this is
that if the ProxyFactoryBean’s singleton property is set to false, it must be able to
return independent proxy instances. If any of the advisors is itself a prototype, an
independent instance would need to be returned, so it’s necessary to be able to obtain
an instance of the prototype from the factory; holding a reference isn’t sufficient.

The "person" bean definition above can be used in place of a Person implementation, as
follows:

Person person = (Person) factory.getBean("person");

Other beans in the same IoC context can express a strongly typed dependency on it, as
with an ordinary Java object:

<bean id="personUser" class="com.mycompany.PersonUser">
 <property name="person"><ref bean="person"/></property>
</bean>

The PersonUser class in this example would expose a property of type Person. As far as
it’s concerned, the AOP proxy can be used transparently in place of a "real" person
implementation. However, its class would be a dynamic proxy class. It would be possible
to cast it to the Advised interface (discussed below).

It’s possible to conceal the distinction between target and proxy using an anonymous
inner bean, as follows. Only the ProxyFactoryBean definition is different; the
advice is included only for completeness:

<bean id="myAdvisor" class="com.mycompany.MyAdvisor">
 <property name="someProperty" value="Custom string property value"/>
</bean>

<bean id="debugInterceptor" class="org.springframework.aop.interceptor.DebugInterceptor"/>

<bean id="person" class="org.springframework.aop.framework.ProxyFactoryBean">
 <property name="proxyInterfaces" value="com.mycompany.Person"/>
 <!-- Use inner bean, not local reference to target -->
 <property name="target">
 <bean class="com.mycompany.PersonImpl">
 <property name="name" value="Tony"/>
 <property name="age" value="51"/>
 </bean>
 </property>
 <property name="interceptorNames">
 <list>
 <value>myAdvisor</value>
 <value>debugInterceptor</value>
 </list>
 </property>
</bean>

This has the advantage that there’s only one object of type Person: useful if we want
to prevent users of the application context from obtaining a reference to the un-advised
object, or need to avoid any ambiguity with Spring IoC autowiring. There’s also
arguably an advantage in that the ProxyFactoryBean definition is self-contained.
However, there are times when being able to obtain the un-advised target from the
factory might actually be an advantage: for example, in certain test scenarios.

Proxying classes

What if you need to proxy a class, rather than one or more interfaces?

Imagine that in our example above, there was no Person interface: we needed to advise
a class called Person that didn’t implement any business interface. In this case, you
can configure Spring to use CGLIB proxying, rather than dynamic proxies. Simply set the
proxyTargetClass property on the ProxyFactoryBean above to true. While it’s best to
program to interfaces, rather than classes, the ability to advise classes that don’t
implement interfaces can be useful when working with legacy code. (In general, Spring
isn’t prescriptive. While it makes it easy to apply good practices, it avoids forcing a
particular approach.)

If you want to, you can force the use of CGLIB in any case, even if you do have
interfaces.

CGLIB proxying works by generating a subclass of the target class at runtime. Spring
configures this generated subclass to delegate method calls to the original target: the
subclass is used to implement the Decorator pattern, weaving in the advice.

CGLIB proxying should generally be transparent to users. However, there are some issues
to consider:

	
Final methods can’t be advised, as they can’t be overridden.

	
There is no need to add CGLIB to your classpath. As of Spring 3.2, CGLIB is repackaged
and included in the spring-core JAR. In other words, CGLIB-based AOP will work "out of
the box" just as do JDK dynamic proxies.

There’s little performance difference between CGLIB proxying and dynamic proxies. As of
Spring 1.0, dynamic proxies are slightly faster. However, this may change in the future.
Performance should not be a decisive consideration in this case.

Using 'global' advisors

By appending an asterisk to an interceptor name, all advisors with bean names matching
the part before the asterisk, will be added to the advisor chain. This can come in handy
if you need to add a standard set of 'global' advisors:

<bean id="proxy" class="org.springframework.aop.framework.ProxyFactoryBean">
 <property name="target" ref="service"/>
 <property name="interceptorNames">
 <list>
 <value>global*</value>
 </list>
 </property>
</bean>

<bean id="global_debug" class="org.springframework.aop.interceptor.DebugInterceptor"/>
<bean id="global_performance" class="org.springframework.aop.interceptor.PerformanceMonitorInterceptor"/>

Concise proxy definitions

Especially when defining transactional proxies, you may end up with many similar proxy
definitions. The use of parent and child bean definitions, along with inner bean
definitions, can result in much cleaner and more concise proxy definitions.

First a parent, template, bean definition is created for the proxy:

<bean id="txProxyTemplate" abstract="true"
 class="org.springframework.transaction.interceptor.TransactionProxyFactoryBean">
 <property name="transactionManager" ref="transactionManager"/>
 <property name="transactionAttributes">
 <props>
 <prop key="*">PROPAGATION_REQUIRED</prop>
 </props>
 </property>
</bean>

This will never be instantiated itself, so may actually be incomplete. Then each proxy
which needs to be created is just a child bean definition, which wraps the target of the
proxy as an inner bean definition, since the target will never be used on its own anyway.

<bean id="myService" parent="txProxyTemplate">
 <property name="target">
 <bean class="org.springframework.samples.MyServiceImpl">
 </bean>
 </property>
</bean>

It is of course possible to override properties from the parent template, such as in
this case, the transaction propagation settings:

<bean id="mySpecialService" parent="txProxyTemplate">
 <property name="target">
 <bean class="org.springframework.samples.MySpecialServiceImpl">
 </bean>
 </property>
 <property name="transactionAttributes">
 <props>
 <prop key="get*">PROPAGATION_REQUIRED,readOnly</prop>
 <prop key="find*">PROPAGATION_REQUIRED,readOnly</prop>
 <prop key="load*">PROPAGATION_REQUIRED,readOnly</prop>
 <prop key="store*">PROPAGATION_REQUIRED</prop>
 </props>
 </property>
</bean>

Note that in the example above, we have explicitly marked the parent bean definition as
abstract by using the abstract attribute, as described
previously, so that it may not actually ever be
instantiated. Application contexts (but not simple bean factories) will by default
pre-instantiate all singletons. It is therefore important (at least for singleton beans)
that if you have a (parent) bean definition which you intend to use only as a template,
and this definition specifies a class, you must make sure to set the abstract
attribute to true, otherwise the application context will actually try to
pre-instantiate it.

Creating AOP proxies programmatically with the ProxyFactory

It’s easy to create AOP proxies programmatically using Spring. This enables you to use
Spring AOP without dependency on Spring IoC.

The following listing shows creation of a proxy for a target object, with one
interceptor and one advisor. The interfaces implemented by the target object will
automatically be proxied:

ProxyFactory factory = new ProxyFactory(myBusinessInterfaceImpl);
factory.addAdvice(myMethodInterceptor);
factory.addAdvisor(myAdvisor);
MyBusinessInterface tb = (MyBusinessInterface) factory.getProxy();

The first step is to construct an object of type
org.springframework.aop.framework.ProxyFactory. You can create this with a target
object, as in the above example, or specify the interfaces to be proxied in an alternate
constructor.

You can add advices (with interceptors as a specialized kind of advice) and/or advisors,
and manipulate them for the life of the ProxyFactory. If you add an
IntroductionInterceptionAroundAdvisor, you can cause the proxy to implement additional
interfaces.

There are also convenience methods on ProxyFactory (inherited from AdvisedSupport)
which allow you to add other advice types such as before and throws advice.
AdvisedSupport is the superclass of both ProxyFactory and ProxyFactoryBean.

	[image: [Tip]]	Tip
	
Integrating AOP proxy creation with the IoC framework is best practice in most
applications. We recommend that you externalize configuration from Java code with AOP,
as in general.

Manipulating advised objects

However you create AOP proxies, you can manipulate them using the
org.springframework.aop.framework.Advised interface. Any AOP proxy can be cast to this
interface, whichever other interfaces it implements. This interface includes the
following methods:

Advisor[] getAdvisors();

void addAdvice(Advice advice) throws AopConfigException;

void addAdvice(int pos, Advice advice) throws AopConfigException;

void addAdvisor(Advisor advisor) throws AopConfigException;

void addAdvisor(int pos, Advisor advisor) throws AopConfigException;

int indexOf(Advisor advisor);

boolean removeAdvisor(Advisor advisor) throws AopConfigException;

void removeAdvisor(int index) throws AopConfigException;

boolean replaceAdvisor(Advisor a, Advisor b) throws AopConfigException;

boolean isFrozen();

The getAdvisors() method will return an Advisor for every advisor, interceptor or
other advice type that has been added to the factory. If you added an Advisor, the
returned advisor at this index will be the object that you added. If you added an
interceptor or other advice type, Spring will have wrapped this in an advisor with a
pointcut that always returns true. Thus if you added a MethodInterceptor, the advisor
returned for this index will be an DefaultPointcutAdvisor returning your
MethodInterceptor and a pointcut that matches all classes and methods.

The addAdvisor() methods can be used to add any Advisor. Usually the advisor holding
pointcut and advice will be the generic DefaultPointcutAdvisor, which can be used with
any advice or pointcut (but not for introductions).

By default, it’s possible to add or remove advisors or interceptors even once a proxy
has been created. The only restriction is that it’s impossible to add or remove an
introduction advisor, as existing proxies from the factory will not show the interface
change. (You can obtain a new proxy from the factory to avoid this problem.)

A simple example of casting an AOP proxy to the Advised interface and examining and
manipulating its advice:

Advised advised = (Advised) myObject;
Advisor[] advisors = advised.getAdvisors();
int oldAdvisorCount = advisors.length;
System.out.println(oldAdvisorCount + " advisors");

// Add an advice like an interceptor without a pointcut
// Will match all proxied methods
// Can use for interceptors, before, after returning or throws advice
advised.addAdvice(new DebugInterceptor());

// Add selective advice using a pointcut
advised.addAdvisor(new DefaultPointcutAdvisor(mySpecialPointcut, myAdvice));

assertEquals("Added two advisors", oldAdvisorCount + 2, advised.getAdvisors().length);

	[image: [Note]]	Note
	
It’s questionable whether it’s advisable (no pun intended) to modify advice on a
business object in production, although there are no doubt legitimate usage cases.
However, it can be very useful in development: for example, in tests. I have sometimes
found it very useful to be able to add test code in the form of an interceptor or other
advice, getting inside a method invocation I want to test. (For example, the advice can
get inside a transaction created for that method: for example, to run SQL to check that
a database was correctly updated, before marking the transaction for roll back.)

Depending on how you created the proxy, you can usually set a frozen flag, in which
case the Advised isFrozen() method will return true, and any attempts to modify
advice through addition or removal will result in an AopConfigException. The ability
to freeze the state of an advised object is useful in some cases, for example, to
prevent calling code removing a security interceptor. It may also be used in Spring 1.1
to allow aggressive optimization if runtime advice modification is known not to be
required.

Using the "auto-proxy" facility

So far we’ve considered explicit creation of AOP proxies using a ProxyFactoryBean or
similar factory bean.

Spring also allows us to use "auto-proxy" bean definitions, which can automatically
proxy selected bean definitions. This is built on Spring "bean post processor"
infrastructure, which enables modification of any bean definition as the container loads.

In this model, you set up some special bean definitions in your XML bean definition file
to configure the auto proxy infrastructure. This allows you just to declare the targets
eligible for auto-proxying: you don’t need to use ProxyFactoryBean.

There are two ways to do this:

	
Using an auto-proxy creator that refers to specific beans in the current context.

	
A special case of auto-proxy creation that deserves to be considered separately;
auto-proxy creation driven by source-level metadata attributes.

Autoproxy bean definitions

The org.springframework.aop.framework.autoproxy package provides the following
standard auto-proxy creators.

BeanNameAutoProxyCreator

The BeanNameAutoProxyCreator class is a BeanPostProcessor that automatically creates
AOP proxies for beans with names matching literal values or wildcards.

<bean class="org.springframework.aop.framework.autoproxy.BeanNameAutoProxyCreator">
 <property name="beanNames" value="jdk*,onlyJdk"/>
 <property name="interceptorNames">
 <list>
 <value>myInterceptor</value>
 </list>
 </property>
</bean>

As with ProxyFactoryBean, there is an interceptorNames property rather than a list
of interceptors, to allow correct behavior for prototype advisors. Named "interceptors"
can be advisors or any advice type.

As with auto proxying in general, the main point of using BeanNameAutoProxyCreator is
to apply the same configuration consistently to multiple objects, with minimal volume of
configuration. It is a popular choice for applying declarative transactions to multiple
objects.

Bean definitions whose names match, such as "jdkMyBean" and "onlyJdk" in the above
example, are plain old bean definitions with the target class. An AOP proxy will be
created automatically by the BeanNameAutoProxyCreator. The same advice will be applied
to all matching beans. Note that if advisors are used (rather than the interceptor in
the above example), the pointcuts may apply differently to different beans.

DefaultAdvisorAutoProxyCreator

A more general and extremely powerful auto proxy creator is
DefaultAdvisorAutoProxyCreator. This will automagically apply eligible advisors in the
current context, without the need to include specific bean names in the auto-proxy
advisor’s bean definition. It offers the same merit of consistent configuration and
avoidance of duplication as BeanNameAutoProxyCreator.

Using this mechanism involves:

	
Specifying a DefaultAdvisorAutoProxyCreator bean definition.

	
Specifying any number of Advisors in the same or related contexts. Note that these
must be Advisors, not just interceptors or other advices. This is necessary
because there must be a pointcut to evaluate, to check the eligibility of each advice
to candidate bean definitions.

The DefaultAdvisorAutoProxyCreator will automatically evaluate the pointcut contained
in each advisor, to see what (if any) advice it should apply to each business object
(such as "businessObject1" and "businessObject2" in the example).

This means that any number of advisors can be applied automatically to each business
object. If no pointcut in any of the advisors matches any method in a business object,
the object will not be proxied. As bean definitions are added for new business objects,
they will automatically be proxied if necessary.

Autoproxying in general has the advantage of making it impossible for callers or
dependencies to obtain an un-advised object. Calling getBean("businessObject1") on this
ApplicationContext will return an AOP proxy, not the target business object. (The "inner
bean" idiom shown earlier also offers this benefit.)

<bean class="org.springframework.aop.framework.autoproxy.DefaultAdvisorAutoProxyCreator"/>

<bean class="org.springframework.transaction.interceptor.TransactionAttributeSourceAdvisor">
 <property name="transactionInterceptor" ref="transactionInterceptor"/>
</bean>

<bean id="customAdvisor" class="com.mycompany.MyAdvisor"/>

<bean id="businessObject1" class="com.mycompany.BusinessObject1">
 <!-- Properties omitted -->
</bean>

<bean id="businessObject2" class="com.mycompany.BusinessObject2"/>

The DefaultAdvisorAutoProxyCreator is very useful if you want to apply the same advice
consistently to many business objects. Once the infrastructure definitions are in place,
you can simply add new business objects without including specific proxy configuration.
You can also drop in additional aspects very easily - for example, tracing or
performance monitoring aspects - with minimal change to configuration.

The DefaultAdvisorAutoProxyCreator offers support for filtering (using a naming
convention so that only certain advisors are evaluated, allowing use of multiple,
differently configured, AdvisorAutoProxyCreators in the same factory) and ordering.
Advisors can implement the org.springframework.core.Ordered interface to ensure
correct ordering if this is an issue. The TransactionAttributeSourceAdvisor used in the
above example has a configurable order value; the default setting is unordered.

AbstractAdvisorAutoProxyCreator

This is the superclass of DefaultAdvisorAutoProxyCreator. You can create your own
auto-proxy creators by subclassing this class, in the unlikely event that advisor
definitions offer insufficient customization to the behavior of the framework
DefaultAdvisorAutoProxyCreator.

Using metadata-driven auto-proxying

A particularly important type of auto-proxying is driven by metadata. This produces a
similar programming model to .NET ServicedComponents. Instead of defining metadata in
XML descriptors, configuration for transaction management and other enterprise services
is held in source-level attributes.

In this case, you use the DefaultAdvisorAutoProxyCreator, in combination with Advisors
that understand metadata attributes. The metadata specifics are held in the pointcut
part of the candidate advisors, rather than in the auto-proxy creation class itself.

This is really a special case of the DefaultAdvisorAutoProxyCreator, but deserves
consideration on its own. (The metadata-aware code is in the pointcuts contained in the
advisors, not the AOP framework itself.)

The /attributes directory of the JPetStore sample application shows the use of
attribute-driven auto-proxying. In this case, there’s no need to use the
TransactionProxyFactoryBean. Simply defining transactional attributes on business
objects is sufficient, because of the use of metadata-aware pointcuts. The bean
definitions include the following code, in /WEB-INF/declarativeServices.xml. Note that
this is generic, and can be used outside the JPetStore:

<bean class="org.springframework.aop.framework.autoproxy.DefaultAdvisorAutoProxyCreator"/>

<bean class="org.springframework.transaction.interceptor.TransactionAttributeSourceAdvisor">
 <property name="transactionInterceptor" ref="transactionInterceptor"/>
</bean>

<bean id="transactionInterceptor"
 class="org.springframework.transaction.interceptor.TransactionInterceptor">
 <property name="transactionManager" ref="transactionManager"/>
 <property name="transactionAttributeSource">
 <bean class="org.springframework.transaction.interceptor.AttributesTransactionAttributeSource">
 <property name="attributes" ref="attributes"/>
 </bean>
 </property>
</bean>

<bean id="attributes" class="org.springframework.metadata.commons.CommonsAttributes"/>

The DefaultAdvisorAutoProxyCreator bean definition (the name is not significant, hence
it can even be omitted) will pick up all eligible pointcuts in the current application
context. In this case, the "transactionAdvisor" bean definition, of type
TransactionAttributeSourceAdvisor, will apply to classes or methods carrying a
transaction attribute. The TransactionAttributeSourceAdvisor depends on a
TransactionInterceptor, via constructor dependency. The example resolves this via
autowiring. The AttributesTransactionAttributeSource depends on an implementation of
the org.springframework.metadata.Attributes interface. In this fragment, the
"attributes" bean satisfies this, using the Jakarta Commons Attributes API to obtain
attribute information. (The application code must have been compiled using the Commons
Attributes compilation task.)

The /annotation directory of the JPetStore sample application contains an analogous
example for auto-proxying driven by JDK 1.5+ annotations. The following configuration
enables automatic detection of Spring’s Transactional annotation, leading to implicit
proxies for beans containing that annotation:

<bean class="org.springframework.aop.framework.autoproxy.DefaultAdvisorAutoProxyCreator"/>

<bean class="org.springframework.transaction.interceptor.TransactionAttributeSourceAdvisor">
 <property name="transactionInterceptor" ref="transactionInterceptor"/>
</bean>

<bean id="transactionInterceptor"
 class="org.springframework.transaction.interceptor.TransactionInterceptor">
 <property name="transactionManager" ref="transactionManager"/>
 <property name="transactionAttributeSource">
 <bean class="org.springframework.transaction.annotation.AnnotationTransactionAttributeSource"/>
 </property>
</bean>

The TransactionInterceptor defined here depends on a PlatformTransactionManager
definition, which is not included in this generic file (although it could be) because it
will be specific to the application’s transaction requirements (typically JTA, as in
this example, or Hibernate, JDO or JDBC):

<bean id="transactionManager"
 class="org.springframework.transaction.jta.JtaTransactionManager"/>

	[image: [Tip]]	Tip
	
If you require only declarative transaction management, using these generic XML
definitions will result in Spring automatically proxying all classes or methods with
transaction attributes. You won’t need to work directly with AOP, and the programming
model is similar to that of .NET ServicedComponents.

This mechanism is extensible. It’s possible to do auto-proxying based on custom
attributes. You need to:

	
Define your custom attribute.

	
Specify an Advisor with the necessary advice, including a pointcut that is triggered
by the presence of the custom attribute on a class or method. You may be able to use
an existing advice, merely implementing a static pointcut that picks up the custom
attribute.

It’s possible for such advisors to be unique to each advised class (for example, mixins):
they simply need to be defined as prototype, rather than singleton, bean definitions.
For example, the LockMixin introduction interceptor from the Spring test suite,
shown above, could be used in conjunction with a generic DefaultIntroductionAdvisor:

<bean id="lockMixin" class="test.mixin.LockMixin" scope="prototype"/>

<bean id="lockableAdvisor" class="org.springframework.aop.support.DefaultIntroductionAdvisor"
 scope="prototype">
 <constructor-arg ref="lockMixin"/>
</bean>

Note that both lockMixin and lockableAdvisor are defined as prototypes.

Using TargetSources

Spring offers the concept of a TargetSource, expressed in the
org.springframework.aop.TargetSource interface. This interface is responsible for
returning the "target object" implementing the join point. The TargetSource
implementation is asked for a target instance each time the AOP proxy handles a method
invocation.

Developers using Spring AOP don’t normally need to work directly with TargetSources, but
this provides a powerful means of supporting pooling, hot swappable and other
sophisticated targets. For example, a pooling TargetSource can return a different target
instance for each invocation, using a pool to manage instances.

If you do not specify a TargetSource, a default implementation is used that wraps a
local object. The same target is returned for each invocation (as you would expect).

Let’s look at the standard target sources provided with Spring, and how you can use them.

	[image: [Tip]]	Tip
	
When using a custom target source, your target will usually need to be a prototype
rather than a singleton bean definition. This allows Spring to create a new target
instance when required.

Hot swappable target sources

The org.springframework.aop.target.HotSwappableTargetSource exists to allow the target
of an AOP proxy to be switched while allowing callers to keep their references to it.

Changing the target source’s target takes effect immediately. The
HotSwappableTargetSource is threadsafe.

You can change the target via the swap() method on HotSwappableTargetSource as follows:

HotSwappableTargetSource swapper = (HotSwappableTargetSource) beanFactory.getBean("swapper");
Object oldTarget = swapper.swap(newTarget);

The XML definitions required look as follows:

<bean id="initialTarget" class="mycompany.OldTarget"/>

<bean id="swapper" class="org.springframework.aop.target.HotSwappableTargetSource">
 <constructor-arg ref="initialTarget"/>
</bean>

<bean id="swappable" class="org.springframework.aop.framework.ProxyFactoryBean">
 <property name="targetSource" ref="swapper"/>
</bean>

The above swap() call changes the target of the swappable bean. Clients who hold a
reference to that bean will be unaware of the change, but will immediately start hitting
the new target.

Although this example doesn’t add any advice - and it’s not necessary to add advice to
use a TargetSource - of course any TargetSource can be used in conjunction with
arbitrary advice.

Pooling target sources

Using a pooling target source provides a similar programming model to stateless session
EJBs, in which a pool of identical instances is maintained, with method invocations
going to free objects in the pool.

A crucial difference between Spring pooling and SLSB pooling is that Spring pooling can
be applied to any POJO. As with Spring in general, this service can be applied in a
non-invasive way.

Spring provides out-of-the-box support for Commons Pool 2.2, which provides a
fairly efficient pooling implementation. You’ll need the commons-pool Jar on your
application’s classpath to use this feature. It’s also possible to subclass
org.springframework.aop.target.AbstractPoolingTargetSource to support any other
pooling API.

	[image: [Note]]	Note
	
Commons Pool 1.5+ is also supported but deprecated as of Spring Framework 4.2.

Sample configuration is shown below:

<bean id="businessObjectTarget" class="com.mycompany.MyBusinessObject"
 scope="prototype">
 ... properties omitted
</bean>

<bean id="poolTargetSource" class="org.springframework.aop.target.CommonsPool2TargetSource">
 <property name="targetBeanName" value="businessObjectTarget"/>
 <property name="maxSize" value="25"/>
</bean>

<bean id="businessObject" class="org.springframework.aop.framework.ProxyFactoryBean">
 <property name="targetSource" ref="poolTargetSource"/>
 <property name="interceptorNames" value="myInterceptor"/>
</bean>

Note that the target object - "businessObjectTarget" in the example - must be a
prototype. This allows the PoolingTargetSource implementation to create new instances
of the target to grow the pool as necessary. See the javadocs of
AbstractPoolingTargetSource and the concrete subclass you wish to use for information
about its properties: "maxSize" is the most basic, and always guaranteed to be present.

In this case, "myInterceptor" is the name of an interceptor that would need to be
defined in the same IoC context. However, it isn’t necessary to specify interceptors to
use pooling. If you want only pooling, and no other advice, don’t set the
interceptorNames property at all.

It’s possible to configure Spring so as to be able to cast any pooled object to the
org.springframework.aop.target.PoolingConfig interface, which exposes information
about the configuration and current size of the pool through an introduction. You’ll
need to define an advisor like this:

<bean id="poolConfigAdvisor" class="org.springframework.beans.factory.config.MethodInvokingFactoryBean">
 <property name="targetObject" ref="poolTargetSource"/>
 <property name="targetMethod" value="getPoolingConfigMixin"/>
</bean>

This advisor is obtained by calling a convenience method on the
AbstractPoolingTargetSource class, hence the use of MethodInvokingFactoryBean. This
advisor’s name ("poolConfigAdvisor" here) must be in the list of interceptors names in
the ProxyFactoryBean exposing the pooled object.

The cast will look as follows:

PoolingConfig conf = (PoolingConfig) beanFactory.getBean("businessObject");
System.out.println("Max pool size is " + conf.getMaxSize());

	[image: [Note]]	Note
	
Pooling stateless service objects is not usually necessary. We don’t believe it should
be the default choice, as most stateless objects are naturally thread safe, and instance
pooling is problematic if resources are cached.

Simpler pooling is available using auto-proxying. It’s possible to set the TargetSources
used by any auto-proxy creator.

Prototype target sources

Setting up a "prototype" target source is similar to a pooling TargetSource. In this
case, a new instance of the target will be created on every method invocation. Although
the cost of creating a new object isn’t high in a modern JVM, the cost of wiring up the
new object (satisfying its IoC dependencies) may be more expensive. Thus you shouldn’t
use this approach without very good reason.

To do this, you could modify the poolTargetSource definition shown above as follows.
(I’ve also changed the name, for clarity.)

<bean id="prototypeTargetSource" class="org.springframework.aop.target.PrototypeTargetSource">
 <property name="targetBeanName" ref="businessObjectTarget"/>
</bean>

There’s only one property: the name of the target bean. Inheritance is used in the
TargetSource implementations to ensure consistent naming. As with the pooling target
source, the target bean must be a prototype bean definition.

ThreadLocal target sources

ThreadLocal target sources are useful if you need an object to be created for each
incoming request (per thread that is). The concept of a ThreadLocal provide a JDK-wide
facility to transparently store resource alongside a thread. Setting up a
ThreadLocalTargetSource is pretty much the same as was explained for the other types
of target source:

<bean id="threadlocalTargetSource" class="org.springframework.aop.target.ThreadLocalTargetSource">
 <property name="targetBeanName" value="businessObjectTarget"/>
</bean>

	[image: [Note]]	Note
	
ThreadLocals come with serious issues (potentially resulting in memory leaks) when
incorrectly using them in a multi-threaded and multi-classloader environments. One
should always consider wrapping a threadlocal in some other class and never directly use
the ThreadLocal itself (except of course in the wrapper class). Also, one should
always remember to correctly set and unset (where the latter simply involved a call to
ThreadLocal.set(null)) the resource local to the thread. Unsetting should be done in
any case since not unsetting it might result in problematic behavior. Spring’s
ThreadLocal support does this for you and should always be considered in favor of using
ThreadLocals without other proper handling code.

Defining new Advice types

Spring AOP is designed to be extensible. While the interception implementation strategy
is presently used internally, it is possible to support arbitrary advice types in
addition to the out-of-the-box interception around advice, before, throws advice and
after returning advice.

The org.springframework.aop.framework.adapter package is an SPI package allowing
support for new custom advice types to be added without changing the core framework.
The only constraint on a custom Advice type is that it must implement the
org.aopalliance.aop.Advice marker interface.

Please refer to the org.springframework.aop.framework.adapter javadocs for further
information.

Further resources

Please refer to the Spring sample applications for further examples of Spring AOP:

	
The JPetStore’s default configuration illustrates the use of the
TransactionProxyFactoryBean for declarative transaction management.

	
The /attributes directory of the JPetStore illustrates the use of attribute-driven
declarative transaction management.

Part IV. Testing

The adoption of the test-driven-development (TDD) approach to software
development is certainly advocated by the Spring team, and so coverage of Spring’s
support for integration testing is covered (alongside best practices for unit testing).
The Spring team has found that the correct use of IoC certainly does make both unit and
integration testing easier (in that the presence of setter methods and appropriate
constructors on classes makes them easier to wire together in a test without having to
set up service locator registries and suchlike)…​ the chapter dedicated solely to
testing will hopefully convince you of this as well.

Chapter 13. Introduction to Spring Testing

Testing is an integral part of enterprise software development. This chapter focuses on
the value-add of the IoC principle to unit testing and on the benefits
of the Spring Framework’s support for integration testing. (A
thorough treatment of testing in the enterprise is beyond the scope of this reference
manual.)

Chapter 14. Unit Testing

Dependency Injection should make your code less dependent on the container than it would
be with traditional Java EE development. The POJOs that make up your application should
be testable in JUnit or TestNG tests, with objects simply instantiated using the new
operator, without Spring or any other container. You can use mock
objects (in conjunction with other valuable testing techniques) to test your code in
isolation. If you follow the architecture recommendations for Spring, the resulting
clean layering and componentization of your codebase will facilitate easier unit
testing. For example, you can test service layer objects by stubbing or mocking DAO or
Repository interfaces, without needing to access persistent data while running unit
tests.

True unit tests typically run extremely quickly, as there is no runtime infrastructure
to set up. Emphasizing true unit tests as part of your development methodology will
boost your productivity. You may not need this section of the testing chapter to help
you write effective unit tests for your IoC-based applications. For certain unit testing
scenarios, however, the Spring Framework provides the following mock objects and testing
support classes.

Mock Objects

Environment

The org.springframework.mock.env package contains mock implementations of the
Environment and PropertySource abstractions (see the section called “Bean definition profiles”
and the section called “PropertySource abstraction”). MockEnvironment and
MockPropertySource are useful for developing out-of-container tests for code that
depends on environment-specific properties.

JNDI

The org.springframework.mock.jndi package contains an implementation of the JNDI SPI,
which you can use to set up a simple JNDI environment for test suites or stand-alone
applications. If, for example, JDBC DataSources get bound to the same JNDI names in
test code as within a Java EE container, you can reuse both application code and
configuration in testing scenarios without modification.

Servlet API

The org.springframework.mock.web package contains a comprehensive set of Servlet API
mock objects that are useful for testing web contexts, controllers, and filters. These
mock objects are targeted at usage with Spring’s Web MVC framework and are generally more
convenient to use than dynamic mock objects such as EasyMock or
alternative Servlet API mock objects such as MockObjects. Since
Spring Framework 4.0, the set of mocks in the org.springframework.mock.web package is
based on the Servlet 3.0 API.

For thorough integration testing of your Spring MVC and REST Controllers in
conjunction with your WebApplicationContext configuration for Spring MVC, see the
Spring MVC Test Framework.

Portlet API

The org.springframework.mock.web.portlet package contains a set of Portlet API mock
objects, targeted at usage with Spring’s Portlet MVC framework.

Unit Testing support Classes

General testing utilities

The org.springframework.test.util package contains several general purpose utilities
for use in unit and integration testing.

ReflectionTestUtils is a collection of reflection-based utility methods. Developers use
these methods in testing scenarios where they need to change the value of a constant, set
a non-public field, invoke a non-public setter method, or invoke a non-public
configuration or lifecycle callback method when testing application code involving
use cases such as the following.

	
ORM frameworks such as JPA and Hibernate that condone private or protected field
access as opposed to public setter methods for properties in a domain entity.

	
Spring’s support for annotations such as @Autowired, @Inject, and @Resource,
which provides dependency injection for private or protected fields, setter
methods, and configuration methods.

	
Use of annotations such as @PostConstruct and @PreDestroy for lifecycle callback
methods.

AopTestUtils is a collection of AOP-related utility methods. These methods can be used
to obtain a reference to the underlying target object hidden behind one or more Spring
proxies. For example, if you have configured a bean as a dynamic mock using a library
like EasyMock or Mockito and the mock is wrapped in a Spring proxy, you may need direct
access to the underlying mock in order to configure expectations on it and perform
verifications. For Spring’s core AOP utilities, see AopUtils and AopProxyUtils.

Spring MVC

The org.springframework.test.web package contains ModelAndViewAssert, which you can
use in combination with JUnit, TestNG, or any other testing framework for unit tests
dealing with Spring MVC ModelAndView objects.

	[image: [Tip]]	Unit testing Spring MVC Controllers
	

To unit test your Spring MVC Controllers as POJOs, use ModelAndViewAssert combined
with MockHttpServletRequest, MockHttpSession, and so on from Spring’s
Servlet API mocks. For thorough integration testing of your
Spring MVC and REST Controllers in conjunction with your WebApplicationContext
configuration for Spring MVC, use the Spring MVC Test
Framework instead.

Chapter 15. Integration Testing

Overview

It is important to be able to perform some integration testing without requiring
deployment to your application server or connecting to other enterprise infrastructure.
This will enable you to test things such as:

	
The correct wiring of your Spring IoC container contexts.

	
Data access using JDBC or an ORM tool. This would include such things as the
correctness of SQL statements, Hibernate queries, JPA entity mappings, etc.

The Spring Framework provides first-class support for integration testing in the
spring-test module. The name of the actual JAR file might include the release version
and might also be in the long org.springframework.test form, depending on where you
get it from (see the section on Dependency Management for an
explanation). This library includes the org.springframework.test package, which
contains valuable classes for integration testing with a Spring container. This testing
does not rely on an application server or other deployment environment. Such tests are
slower to run than unit tests but much faster than the equivalent Selenium tests or remote
tests that rely on deployment to an application server.

In Spring 2.5 and later, unit and integration testing support is provided in the form of
the annotation-driven Spring TestContext Framework. The
TestContext framework is agnostic of the actual testing framework in use, thus allowing
instrumentation of tests in various environments including JUnit, TestNG, and so on.

Goals of Integration Testing

Spring’s integration testing support has the following primary goals:

	
To manage Spring IoC container caching between test
execution.

	
To provide Dependency Injection of test fixture instances.

	
To provide transaction management appropriate to integration testing.

	
To supply Spring-specific base classes that assist
developers in writing integration tests.

The next few sections describe each goal and provide links to implementation and
configuration details.

Context management and caching

The Spring TestContext Framework provides consistent loading of Spring
ApplicationContexts and WebApplicationContexts as well as caching of those
contexts. Support for the caching of loaded contexts is important, because startup time
can become an issue — not because of the overhead of Spring itself, but because the
objects instantiated by the Spring container take time to instantiate. For example, a
project with 50 to 100 Hibernate mapping files might take 10 to 20 seconds to load the
mapping files, and incurring that cost before running every test in every test fixture
leads to slower overall test runs that reduce developer productivity.

Test classes typically declare either an array of resource locations for XML or Groovy
configuration metadata — often in the classpath — or an array of annotated classes
that is used to configure the application. These locations or classes are the same as or
similar to those specified in web.xml or other configuration files for production
deployments.

By default, once loaded, the configured ApplicationContext is reused for each test.
Thus the setup cost is incurred only once per test suite, and subsequent test execution
is much faster. In this context, the term test suite means all tests run in the same
JVM — for example, all tests run from an Ant, Maven, or Gradle build for a given
project or module. In the unlikely case that a test corrupts the application context and
requires reloading — for example, by modifying a bean definition or the state of an
application object — the TestContext framework can be configured to reload the
configuration and rebuild the application context before executing the next test.

See the section called “Context management” and the section called “Context caching” with the
TestContext framework.

Dependency Injection of test fixtures

When the TestContext framework loads your application context, it can optionally
configure instances of your test classes via Dependency Injection. This provides a
convenient mechanism for setting up test fixtures using preconfigured beans from your
application context. A strong benefit here is that you can reuse application contexts
across various testing scenarios (e.g., for configuring Spring-managed object graphs,
transactional proxies, DataSources, etc.), thus avoiding the need to duplicate
complex test fixture setup for individual test cases.

As an example, consider the scenario where we have a class, HibernateTitleRepository,
that implements data access logic for a Title domain entity. We want to write
integration tests that test the following areas:

	
The Spring configuration: basically, is everything related to the configuration of the
HibernateTitleRepository bean correct and present?

	
The Hibernate mapping file configuration: is everything mapped correctly, and are the
correct lazy-loading settings in place?

	
The logic of the HibernateTitleRepository: does the configured instance of this
class perform as anticipated?

See dependency injection of test fixtures with the TestContext
framework.

Transaction management

One common issue in tests that access a real database is their effect on the state of
the persistence store. Even when you’re using a development database, changes to the
state may affect future tests. Also, many operations — such as inserting or modifying
persistent data — cannot be performed (or verified) outside a transaction.

The TestContext framework addresses this issue. By default, the framework will create
and roll back a transaction for each test. You simply write code that can assume the
existence of a transaction. If you call transactionally proxied objects in your tests,
they will behave correctly, according to their configured transactional semantics. In
addition, if a test method deletes the contents of selected tables while running within
the transaction managed for the test, the transaction will roll back by default, and the
database will return to its state prior to execution of the test. Transactional support
is provided to a test via a PlatformTransactionManager bean defined in the test’s
application context.

If you want a transaction to commit — unusual, but occasionally useful when you want a
particular test to populate or modify the database — the TestContext framework can be
instructed to cause the transaction to commit instead of roll back via the
@Commit annotation.

See transaction management with the TestContext framework.

Support classes for integration testing

The Spring TestContext Framework provides several abstract support classes that
simplify the writing of integration tests. These base test classes provide well-defined
hooks into the testing framework as well as convenient instance variables and methods,
which enable you to access:

	
The ApplicationContext, for performing explicit bean lookups or testing the state of
the context as a whole.

	
A JdbcTemplate, for executing SQL statements to query the database. Such queries can
be used to confirm database state both prior to and after execution of
database-related application code, and Spring ensures that such queries run in the
scope of the same transaction as the application code. When used in conjunction with
an ORM tool, be sure to avoid false positives.

In addition, you may want to create your own custom, application-wide superclass with
instance variables and methods specific to your project.

See support classes for the TestContext framework.

JDBC Testing Support

The org.springframework.test.jdbc package contains JdbcTestUtils, which is a
collection of JDBC related utility functions intended to simplify standard database
testing scenarios. Specifically, JdbcTestUtils provides the following static utility
methods.

	
countRowsInTable(..): counts the number of rows in the given table

	
countRowsInTableWhere(..): counts the number of rows in the given table, using
the provided WHERE clause

	
deleteFromTables(..): deletes all rows from the specified tables

	
deleteFromTableWhere(..): deletes rows from the given table, using the provided
WHERE clause

	
dropTables(..): drops the specified tables

Note that AbstractTransactionalJUnit4SpringContextTests and
AbstractTransactionalTestNGSpringContextTests
provide convenience methods which delegate to the aforementioned methods in
JdbcTestUtils.

The spring-jdbc module provides support for configuring and launching an embedded
database which can be used in integration tests that interact with a database. For
details, see the section called “Embedded database support” and
the section called “Testing data access logic with an embedded database”.

Annotations

Spring Testing Annotations

The Spring Framework provides the following set of Spring-specific annotations that
you can use in your unit and integration tests in conjunction with the TestContext
framework. Refer to the corresponding javadocs for further information, including
default attribute values, attribute aliases, and so on.

@BootstrapWith

@BootstrapWith is a class-level annotation that is used to configure how the Spring
TestContext Framework is bootstrapped. Specifically, @BootstrapWith is used to specify
a custom TestContextBootstrapper. Consult the Bootstrapping
the TestContext framework section for further details.

@ContextConfiguration

@ContextConfiguration defines class-level metadata that is used to determine how to
load and configure an ApplicationContext for integration tests. Specifically,
@ContextConfiguration declares the application context resource locations or the
annotated classes that will be used to load the context.

Resource locations are typically XML configuration files or Groovy scripts located in
the classpath; whereas, annotated classes are typically @Configuration classes. However,
resource locations can also refer to files and scripts in the file system, and annotated
classes can be component classes, etc.

@ContextConfiguration("/test-config.xml")
public class XmlApplicationContextTests {
 // class body...
}

@ContextConfiguration(classes = TestConfig.class)
public class ConfigClassApplicationContextTests {
 // class body...
}

As an alternative or in addition to declaring resource locations or annotated classes,
@ContextConfiguration may be used to declare ApplicationContextInitializer classes.

@ContextConfiguration(initializers = CustomContextIntializer.class)
public class ContextInitializerTests {
 // class body...
}

@ContextConfiguration may optionally be used to declare the ContextLoader strategy
as well. Note, however, that you typically do not need to explicitly configure the
loader since the default loader supports either resource locations or annotated
classes as well as initializers.

@ContextConfiguration(locations = "/test-context.xml", loader = CustomContextLoader.class)
public class CustomLoaderXmlApplicationContextTests {
 // class body...
}

	[image: [Note]]	Note
	
@ContextConfiguration provides support for inheriting resource locations or
configuration classes as well as context initializers declared by superclasses by
default.

See the section called “Context management” and the @ContextConfiguration javadocs for
further details.

@WebAppConfiguration

@WebAppConfiguration is a class-level annotation that is used to declare that the
ApplicationContext loaded for an integration test should be a WebApplicationContext.
The mere presence of @WebAppConfiguration on a test class ensures that a
WebApplicationContext will be loaded for the test, using the default value of
"file:src/main/webapp" for the path to the root of the web application (i.e., the
resource base path). The resource base path is used behind the scenes to create a
MockServletContext which serves as the ServletContext for the test’s
WebApplicationContext.

@ContextConfiguration
@WebAppConfiguration
public class WebAppTests {
 // class body...
}

To override the default, specify a different base resource path via the implicit
value attribute. Both classpath: and file: resource prefixes are supported. If no
resource prefix is supplied the path is assumed to be a file system resource.

@ContextConfiguration
@WebAppConfiguration("classpath:test-web-resources")
public class WebAppTests {
 // class body...
}

Note that @WebAppConfiguration must be used in conjunction with
@ContextConfiguration, either within a single test class or within a test class
hierarchy. See the @WebAppConfiguration javadocs for further details.

@ContextHierarchy

@ContextHierarchy is a class-level annotation that is used to define a hierarchy of
ApplicationContexts for integration tests. @ContextHierarchy should be declared
with a list of one or more @ContextConfiguration instances, each of which defines a
level in the context hierarchy. The following examples demonstrate the use of
@ContextHierarchy within a single test class; however, @ContextHierarchy can also be
used within a test class hierarchy.

@ContextHierarchy({
 @ContextConfiguration("/parent-config.xml"),
 @ContextConfiguration("/child-config.xml")
})
public class ContextHierarchyTests {
 // class body...
}

@WebAppConfiguration
@ContextHierarchy({
 @ContextConfiguration(classes = AppConfig.class),
 @ContextConfiguration(classes = WebConfig.class)
})
public class WebIntegrationTests {
 // class body...
}

If you need to merge or override the configuration for a given level of the context
hierarchy within a test class hierarchy, you must explicitly name that level by
supplying the same value to the name attribute in @ContextConfiguration at each
corresponding level in the class hierarchy. See
the section called “Context hierarchies” and the @ContextHierarchy javadocs
for further examples.

@ActiveProfiles

@ActiveProfiles is a class-level annotation that is used to declare which bean
definition profiles should be active when loading an ApplicationContext for an
integration test.

@ContextConfiguration
@ActiveProfiles("dev")
public class DeveloperTests {
 // class body...
}

@ContextConfiguration
@ActiveProfiles({"dev", "integration"})
public class DeveloperIntegrationTests {
 // class body...
}

	[image: [Note]]	Note
	
@ActiveProfiles provides support for inheriting active bean definition profiles
declared by superclasses by default. It is also possible to resolve active bean
definition profiles programmatically by implementing a custom
ActiveProfilesResolver
and registering it via the resolver attribute of @ActiveProfiles.

See the section called “Context configuration with environment profiles” and the @ActiveProfiles javadocs
for examples and further details.

@TestPropertySource

@TestPropertySource is a class-level annotation that is used to configure the locations
of properties files and inlined properties to be added to the set of PropertySources in
the Environment for an ApplicationContext loaded for an integration test.

Test property sources have higher precedence than those loaded from the operating
system’s environment or Java system properties as well as property sources added by the
application declaratively via @PropertySource or programmatically. Thus, test property
sources can be used to selectively override properties defined in system and application
property sources. Furthermore, inlined properties have higher precedence than properties
loaded from resource locations.

The following example demonstrates how to declare a properties file from the classpath.

@ContextConfiguration
@TestPropertySource("/test.properties")
public class MyIntegrationTests {
 // class body...
}

The following example demonstrates how to declare inlined properties.

@ContextConfiguration
@TestPropertySource(properties = { "timezone = GMT", "port: 4242" })
public class MyIntegrationTests {
 // class body...
}

@DirtiesContext

@DirtiesContext indicates that the underlying Spring ApplicationContext has been
dirtied during the execution of a test (i.e., modified or corrupted in some manner — for example, by changing the state of a singleton bean) and should be closed. When an
application context is marked dirty, it is removed from the testing framework’s cache
and closed. As a consequence, the underlying Spring container will be rebuilt for any
subsequent test that requires a context with the same configuration metadata.

@DirtiesContext can be used as both a class-level and method-level annotation within
the same class or class hierarchy. In such scenarios, the ApplicationContext is marked
as dirty before or after any such annotated method as well as before or after the
current test class, depending on the configured methodMode and classMode.

The following examples explain when the context would be dirtied for various
configuration scenarios:

	
Before the current test class, when declared on a class with class mode set to
BEFORE_CLASS.

@DirtiesContext(classMode = BEFORE_CLASS)
public class FreshContextTests {
 // some tests that require a new Spring container
}

	
After the current test class, when declared on a class with class mode set to
AFTER_CLASS (i.e., the default class mode).

@DirtiesContext
public class ContextDirtyingTests {
 // some tests that result in the Spring container being dirtied
}

	
Before each test method in the current test class, when declared on a class with class
mode set to BEFORE_EACH_TEST_METHOD.

@DirtiesContext(classMode = BEFORE_EACH_TEST_METHOD)
public class FreshContextTests {
 // some tests that require a new Spring container
}

	
After each test method in the current test class, when declared on a class with class
mode set to AFTER_EACH_TEST_METHOD.

@DirtiesContext(classMode = AFTER_EACH_TEST_METHOD)
public class ContextDirtyingTests {
 // some tests that result in the Spring container being dirtied
}

	
Before the current test, when declared on a method with the method mode set to
BEFORE_METHOD.

@DirtiesContext(methodMode = BEFORE_METHOD)
@Test
public void testProcessWhichRequiresFreshAppCtx() {
 // some logic that requires a new Spring container
}

	
After the current test, when declared on a method with the method mode set to
AFTER_METHOD (i.e., the default method mode).

@DirtiesContext
@Test
public void testProcessWhichDirtiesAppCtx() {
 // some logic that results in the Spring container being dirtied
}

If @DirtiesContext is used in a test whose context is configured as part of a context
hierarchy via @ContextHierarchy, the hierarchyMode flag can be used to control how
the context cache is cleared. By default an exhaustive algorithm will be used that
clears the context cache including not only the current level but also all other context
hierarchies that share an ancestor context common to the current test; all
ApplicationContexts that reside in a sub-hierarchy of the common ancestor context
will be removed from the context cache and closed. If the exhaustive algorithm is
overkill for a particular use case, the simpler current level algorithm can be
specified instead, as seen below.

@ContextHierarchy({
 @ContextConfiguration("/parent-config.xml"),
 @ContextConfiguration("/child-config.xml")
})
public class BaseTests {
 // class body...
}

public class ExtendedTests extends BaseTests {

 @Test
 @DirtiesContext(hierarchyMode = CURRENT_LEVEL)
 public void test() {
 // some logic that results in the child context being dirtied
 }
}

For further details regarding the EXHAUSTIVE and CURRENT_LEVEL algorithms see the
DirtiesContext.HierarchyMode javadocs.

@TestExecutionListeners

@TestExecutionListeners defines class-level metadata for configuring the
TestExecutionListener implementations that should be registered with the
TestContextManager. Typically, @TestExecutionListeners is used in conjunction with
@ContextConfiguration.

@ContextConfiguration
@TestExecutionListeners({CustomTestExecutionListener.class, AnotherTestExecutionListener.class})
public class CustomTestExecutionListenerTests {
 // class body...
}

@TestExecutionListeners supports inherited listeners by default. See the javadocs
for an example and further details.

@Commit

@Commit indicates that the transaction for a transactional test method should be
committed after the test method has completed. @Commit can be used as a direct
replacement for @Rollback(false) in order to more explicitly convey the intent of the
code. Analogous to @Rollback, @Commit may also be declared as a class-level or
method-level annotation.

@Commit
@Test
public void testProcessWithoutRollback() {
 // ...
}

@Rollback

@Rollback indicates whether the transaction for a transactional test method should be
rolled back after the test method has completed. If true, the transaction is rolled
back; otherwise, the transaction is committed (see also @Commit). Rollback semantics
for integration tests in the Spring TestContext Framework default to true even if
@Rollback is not explicitly declared.

When declared as a class-level annotation, @Rollback defines the default rollback
semantics for all test methods within the test class hierarchy. When declared as a
method-level annotation, @Rollback defines rollback semantics for the specific test
method, potentially overriding class-level @Rollback or @Commit semantics.

@Rollback(false)
@Test
public void testProcessWithoutRollback() {
 // ...
}

@BeforeTransaction

@BeforeTransaction indicates that the annotated void method should be executed
before a transaction is started for test methods configured to run within a
transaction via Spring’s @Transactional annotation. As of Spring Framework 4.3,
@BeforeTransaction methods are not required to be public and may be declared on Java
8 based interface default methods.

@BeforeTransaction
void beforeTransaction() {
 // logic to be executed before a transaction is started
}

@AfterTransaction

@AfterTransaction indicates that the annotated void method should be executed
after a transaction is ended for test methods configured to run within a transaction
via Spring’s @Transactional annotation. As of Spring Framework 4.3, @AfterTransaction
methods are not required to be public and may be declared on Java 8 based interface
default methods.

@AfterTransaction
void afterTransaction() {
 // logic to be executed after a transaction has ended
}

@Sql

@Sql is used to annotate a test class or test method to configure SQL scripts to be
executed against a given database during integration tests.

@Test
@Sql({"/test-schema.sql", "/test-user-data.sql"})
public void userTest {
 // execute code that relies on the test schema and test data
}

See the section called “Executing SQL scripts declaratively with @Sql” for further details.

@SqlConfig

@SqlConfig defines metadata that is used to determine how to parse and execute SQL
scripts configured via the @Sql annotation.

@Test
@Sql(
 scripts = "/test-user-data.sql",
 config = @SqlConfig(commentPrefix = "`", separator = "@@")
)
public void userTest {
 // execute code that relies on the test data
}

@SqlGroup

@SqlGroup is a container annotation that aggregates several @Sql annotations.
@SqlGroup can be used natively, declaring several nested @Sql annotations, or it can
be used in conjunction with Java 8’s support for repeatable annotations, where @Sql can
simply be declared several times on the same class or method, implicitly generating this
container annotation.

@Test
@SqlGroup({
 @Sql(scripts = "/test-schema.sql", config = @SqlConfig(commentPrefix = "`")),
 @Sql("/test-user-data.sql")
)}
public void userTest {
 // execute code that uses the test schema and test data
}

Standard Annotation Support

The following annotations are supported with standard semantics for all configurations
of the Spring TestContext Framework. Note that these annotations are not specific to
tests and can be used anywhere in the Spring Framework.

	
@Autowired

	
@Qualifier

	
@Resource (javax.annotation) if JSR-250 is present

	
@ManagedBean (javax.annotation) if JSR-250 is present

	
@Inject (javax.inject) if JSR-330 is present

	
@Named (javax.inject) if JSR-330 is present

	
@PersistenceContext (javax.persistence) if JPA is present

	
@PersistenceUnit (javax.persistence) if JPA is present

	
@Required

	
@Transactional

	[image: [Note]]	JSR-250 Lifecycle Annotations
	

In the Spring TestContext Framework @PostConstruct and @PreDestroy may be used with
standard semantics on any application components configured in the ApplicationContext;
however, these lifecycle annotations have limited usage within an actual test class.

If a method within a test class is annotated with @PostConstruct, that method will be
executed before any before methods of the underlying test framework (e.g., methods
annotated with JUnit 4’s @Before), and that will apply for every test method in the test
class. On the other hand, if a method within a test class is annotated with
@PreDestroy, that method will never be executed. Within a test class it is
therefore recommended to use test lifecycle callbacks from the underlying test framework
instead of @PostConstruct and @PreDestroy.

Spring JUnit 4 Testing Annotations

The following annotations are only supported when used in conjunction with the
SpringRunner, Spring’s JUnit
rules, or Spring’s JUnit 4 support classes.

@IfProfileValue

@IfProfileValue indicates that the annotated test is enabled for a specific testing
environment. If the configured ProfileValueSource returns a matching value for the
provided name, the test is enabled. Otherwise, the test will be disabled and
effectively ignored.

@IfProfileValue can be applied at the class level, the method level, or both.
Class-level usage of @IfProfileValue takes precedence over method-level usage for any
methods within that class or its subclasses. Specifically, a test is enabled if it is
enabled both at the class level and at the method level; the absence of
@IfProfileValue means the test is implicitly enabled. This is analogous to the
semantics of JUnit 4’s @Ignore annotation, except that the presence of @Ignore always
disables a test.

@IfProfileValue(name="java.vendor", value="Oracle Corporation")
@Test
public void testProcessWhichRunsOnlyOnOracleJvm() {
 // some logic that should run only on Java VMs from Oracle Corporation
}

Alternatively, you can configure @IfProfileValue with a list of values (with OR
semantics) to achieve TestNG-like support for test groups in a JUnit 4 environment.
Consider the following example:

@IfProfileValue(name="test-groups", values={"unit-tests", "integration-tests"})
@Test
public void testProcessWhichRunsForUnitOrIntegrationTestGroups() {
 // some logic that should run only for unit and integration test groups
}

@ProfileValueSourceConfiguration

@ProfileValueSourceConfiguration is a class-level annotation that specifies what type
of ProfileValueSource to use when retrieving profile values configured through the
@IfProfileValue annotation. If @ProfileValueSourceConfiguration is not declared for a
test, SystemProfileValueSource is used by default.

@ProfileValueSourceConfiguration(CustomProfileValueSource.class)
public class CustomProfileValueSourceTests {
 // class body...
}

@Timed

@Timed indicates that the annotated test method must finish execution in a specified
time period (in milliseconds). If the text execution time exceeds the specified time
period, the test fails.

The time period includes execution of the test method itself, any repetitions of the
test (see @Repeat), as well as any set up or tear down of the test fixture.

@Timed(millis=1000)
public void testProcessWithOneSecondTimeout() {
 // some logic that should not take longer than 1 second to execute
}

Spring’s @Timed annotation has different semantics than JUnit 4’s @Test(timeout=…​)
support. Specifically, due to the manner in which JUnit 4 handles test execution timeouts
(that is, by executing the test method in a separate Thread), @Test(timeout=…​)
preemptively fails the test if the test takes too long. Spring’s @Timed, on the other
hand, does not preemptively fail the test but rather waits for the test to complete
before failing.

@Repeat

@Repeat indicates that the annotated test method must be executed repeatedly. The
number of times that the test method is to be executed is specified in the annotation.

The scope of execution to be repeated includes execution of the test method itself as
well as any set up or tear down of the test fixture.

@Repeat(10)
@Test
public void testProcessRepeatedly() {
 // ...
}

Meta-Annotation Support for Testing

It is possible to use most test-related annotations as
meta-annotations in order to create custom composed
annotations and reduce configuration duplication across a test suite.

Each of the following may be used as meta-annotations in conjunction with the
TestContext framework.

	
@BootstrapWith

	
@ContextConfiguration

	
@ContextHierarchy

	
@ActiveProfiles

	
@TestPropertySource

	
@DirtiesContext

	
@WebAppConfiguration

	
@TestExecutionListeners

	
@Transactional

	
@BeforeTransaction

	
@AfterTransaction

	
@Commit

	
@Rollback

	
@Sql

	
@SqlConfig

	
@SqlGroup

	
@Repeat

	
@Timed

	
@IfProfileValue

	
@ProfileValueSourceConfiguration

For example, if we discover that we are repeating the following configuration
across our JUnit 4 based test suite…​

@RunWith(SpringRunner.class)
@ContextConfiguration({"/app-config.xml", "/test-data-access-config.xml"})
@ActiveProfiles("dev")
@Transactional
public class OrderRepositoryTests { }

@RunWith(SpringRunner.class)
@ContextConfiguration({"/app-config.xml", "/test-data-access-config.xml"})
@ActiveProfiles("dev")
@Transactional
public class UserRepositoryTests { }

We can reduce the above duplication by introducing a custom composed annotation
that centralizes the common test configuration like this:

@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
@ContextConfiguration({"/app-config.xml", "/test-data-access-config.xml"})
@ActiveProfiles("dev")
@Transactional
public @interface TransactionalDevTest { }

Then we can use our custom @TransactionalDevTest annotation to simplify the
configuration of individual test classes as follows:

@RunWith(SpringRunner.class)
@TransactionalDevTest
public class OrderRepositoryTests { }

@RunWith(SpringRunner.class)
@TransactionalDevTest
public class UserRepositoryTests { }

For further details, consult the Spring Annotation Programming Model.

Spring TestContext Framework

The Spring TestContext Framework (located in the
org.springframework.test.context package) provides generic, annotation-driven unit and
integration testing support that is agnostic of the testing framework in use. The
TestContext framework also places a great deal of importance on convention over
configuration with reasonable defaults that can be overridden through annotation-based
configuration.

In addition to generic testing infrastructure, the TestContext framework provides
explicit support for JUnit 4 and TestNG in the form of abstract support classes. For
JUnit 4, Spring also provides a custom JUnit Runner and custom JUnit Rules that allow
one to write so-called POJO test classes. POJO test classes are not required to
extend a particular class hierarchy.

The following section provides an overview of the internals of the TestContext
framework. If you are only interested in using the framework and not necessarily
interested in extending it with your own custom listeners or custom loaders, feel free
to go directly to the configuration (context management,
dependency injection, transaction
management), support classes, and
annotation support sections.

Key abstractions

The core of the framework consists of the TestContextManager class and the
TestContext, TestExecutionListener, and SmartContextLoader interfaces. A
TestContextManager is created per test class (e.g., for the execution of all test
methods within a single test class in JUnit 4). The TestContextManager in turn manages a
TestContext that holds the context of the current test. The TestContextManager also
updates the state of the TestContext as the test progresses and delegates to
TestExecutionListener implementations, which instrument the actual test execution by
providing dependency injection, managing transactions, and so on. A SmartContextLoader
is responsible for loading an ApplicationContext for a given test class. Consult the
javadocs and the Spring test suite for further information and examples of various
implementations.

TestContext

TestContext encapsulates the context in which a test is executed, agnostic of the
actual testing framework in use, and provides context management and caching support for
the test instance for which it is responsible. The TestContext also delegates to a
SmartContextLoader to load an ApplicationContext if requested.

TestContextManager

TestContextManager is the main entry point into the Spring TestContext Framework,
which manages a single TestContext and signals events to each registered
TestExecutionListener at well-defined test execution points:

	
prior to any before class or before all methods of a particular testing framework

	
test instance post-processing

	
prior to any before or before each methods of a particular testing framework

	
after any after or after each methods of a particular testing framework

	
after any after class or after all methods of a particular testing framework

TestExecutionListener

TestExecutionListener defines the API for reacting to test execution events published
by the TestContextManager with which the listener is registered. See
the section called “TestExecutionListener configuration”.

Context Loaders

ContextLoader is a strategy interface that was introduced in Spring 2.5 for loading an
ApplicationContext for an integration test managed by the Spring TestContext Framework.
Implement SmartContextLoader instead of this interface in order to provide support for
annotated classes, active bean definition profiles, test property sources, context
hierarchies, and WebApplicationContext support.

SmartContextLoader is an extension of the ContextLoader interface introduced in
Spring 3.1. The SmartContextLoader SPI supersedes the ContextLoader SPI that was
introduced in Spring 2.5. Specifically, a SmartContextLoader can choose to process
resource locations, annotated classes, or context initializers. Furthermore, a
SmartContextLoader can set active bean definition profiles and test property sources in
the context that it loads.

Spring provides the following implementations:

	
DelegatingSmartContextLoader: one of two default loaders which delegates internally
to an AnnotationConfigContextLoader, a GenericXmlContextLoader, or a
GenericGroovyXmlContextLoader depending either on the configuration declared for the
test class or on the presence of default locations or default configuration classes.
Groovy support is only enabled if Groovy is on the classpath.

	
WebDelegatingSmartContextLoader: one of two default loaders which delegates
internally to an AnnotationConfigWebContextLoader, a GenericXmlWebContextLoader, or a
GenericGroovyXmlWebContextLoader depending either on the configuration declared for the
test class or on the presence of default locations or default configuration classes. A
web ContextLoader will only be used if @WebAppConfiguration is present on the test
class. Groovy support is only enabled if Groovy is on the classpath.

	
AnnotationConfigContextLoader: loads a standard ApplicationContext from
annotated classes.

	
AnnotationConfigWebContextLoader: loads a WebApplicationContext from annotated
classes.

	
GenericGroovyXmlContextLoader: loads a standard ApplicationContext from resource
locations that are either Groovy scripts or XML configuration files.

	
GenericGroovyXmlWebContextLoader: loads a WebApplicationContext from resource
locations that are either Groovy scripts or XML configuration files.

	
GenericXmlContextLoader: loads a standard ApplicationContext from XML resource
locations.

	
GenericXmlWebContextLoader: loads a WebApplicationContext from XML resource
locations.

	
GenericPropertiesContextLoader: loads a standard ApplicationContext from Java
Properties files.

Bootstrapping the TestContext framework

The default configuration for the internals of the Spring TestContext Framework is
sufficient for all common use cases. However, there are times when a development team or
third party framework would like to change the default ContextLoader, implement a
custom TestContext or ContextCache, augment the default sets of
ContextCustomizerFactory and TestExecutionListener implementations, etc. For such low
level control over how the TestContext framework operates, Spring provides a
bootstrapping strategy.

TestContextBootstrapper defines the SPI for bootstrapping the TestContext framework.
A TestContextBootstrapper is used by the TestContextManager to load the
TestExecutionListener implementations for the current test and to build the
TestContext that it manages. A custom bootstrapping strategy can be configured for a
test class (or test class hierarchy) via @BootstrapWith, either directly or as a
meta-annotation. If a bootstrapper is not explicitly configured via @BootstrapWith,
either the DefaultTestContextBootstrapper or the WebTestContextBootstrapper will be
used, depending on the presence of @WebAppConfiguration.

Since the TestContextBootstrapper SPI is likely to change in the future in order to
accommodate new requirements, implementers are strongly encouraged not to implement this
interface directly but rather to extend AbstractTestContextBootstrapper or one of its
concrete subclasses instead.

TestExecutionListener configuration

Spring provides the following TestExecutionListener implementations that are registered
by default, exactly in this order.

	
ServletTestExecutionListener: configures Servlet API mocks for a
WebApplicationContext

	
DirtiesContextBeforeModesTestExecutionListener: handles the @DirtiesContext annotation for
before modes

	
DependencyInjectionTestExecutionListener: provides dependency injection for the test
instance

	
DirtiesContextTestExecutionListener: handles the @DirtiesContext annotation for
after modes

	
TransactionalTestExecutionListener: provides transactional test execution with
default rollback semantics

	
SqlScriptsTestExecutionListener: executes SQL scripts configured via the @Sql
annotation

Registering custom TestExecutionListeners

Custom TestExecutionListeners can be registered for a test class and its subclasses
via the @TestExecutionListeners annotation. See
annotation support and the javadocs for
@TestExecutionListeners for details and examples.

Automatic discovery of default TestExecutionListeners

Registering custom TestExecutionListeners via @TestExecutionListeners is suitable
for custom listeners that are used in limited testing scenarios; however, it can become
cumbersome if a custom listener needs to be used across a test suite. Since Spring
Framework 4.1, this issue is addressed via support for automatic discovery of default
TestExecutionListener implementations via the SpringFactoriesLoader mechanism.

Specifically, the spring-test module declares all core default
TestExecutionListeners under the
org.springframework.test.context.TestExecutionListener key in its
META-INF/spring.factories properties file. Third-party frameworks and developers can
contribute their own TestExecutionListeners to the list of default listeners in the
same manner via their own META-INF/spring.factories properties file.

Ordering TestExecutionListeners

When the TestContext framework discovers default TestExecutionListeners via the
aforementioned SpringFactoriesLoader mechanism, the instantiated listeners are sorted
using Spring’s AnnotationAwareOrderComparator which honors Spring’s Ordered interface
and @Order annotation for ordering. AbstractTestExecutionListener and all default
TestExecutionListeners provided by Spring implement Ordered with appropriate
values. Third-party frameworks and developers should therefore make sure that their
default TestExecutionListeners are registered in the proper order by implementing
Ordered or declaring @Order. Consult the javadocs for the getOrder() methods of the
core default TestExecutionListeners for details on what values are assigned to each
core listener.

Merging TestExecutionListeners

If a custom TestExecutionListener is registered via @TestExecutionListeners, the
default listeners will not be registered. In most common testing scenarios, this
effectively forces the developer to manually declare all default listeners in addition to
any custom listeners. The following listing demonstrates this style of configuration.

@ContextConfiguration
@TestExecutionListeners({
 MyCustomTestExecutionListener.class,
 ServletTestExecutionListener.class,
 DirtiesContextBeforeModesTestExecutionListener.class,
 DependencyInjectionTestExecutionListener.class,
 DirtiesContextTestExecutionListener.class,
 TransactionalTestExecutionListener.class,
 SqlScriptsTestExecutionListener.class
})
public class MyTest {
 // class body...
}

The challenge with this approach is that it requires that the developer know exactly
which listeners are registered by default. Moreover, the set of default listeners can
change from release to release — for example, SqlScriptsTestExecutionListener was
introduced in Spring Framework 4.1, and DirtiesContextBeforeModesTestExecutionListener
was introduced in Spring Framework 4.2. Furthermore, third-party frameworks like Spring
Security register their own default TestExecutionListeners via the aforementioned
automatic discovery mechanism.

To avoid having to be aware of and re-declare all default listeners, the
mergeMode attribute of @TestExecutionListeners can be set to
MergeMode.MERGE_WITH_DEFAULTS. MERGE_WITH_DEFAULTS indicates that locally declared
listeners should be merged with the default listeners. The merging algorithm ensures that
duplicates are removed from the list and that the resulting set of merged listeners is
sorted according to the semantics of AnnotationAwareOrderComparator as described in
the section called “Ordering TestExecutionListeners”. If a listener implements Ordered or is annotated
with @Order it can influence the position in which it is merged with the defaults;
otherwise, locally declared listeners will simply be appended to the list of default
listeners when merged.

For example, if the MyCustomTestExecutionListener class in the previous example
configures its order value (for example, 500) to be less than the order of the
ServletTestExecutionListener (which happens to be 1000), the
MyCustomTestExecutionListener can then be automatically merged with the list of
defaults in front of the ServletTestExecutionListener, and the previous example could
be replaced with the following.

@ContextConfiguration
@TestExecutionListeners(
 listeners = MyCustomTestExecutionListener.class,
 mergeMode = MERGE_WITH_DEFAULTS
)
public class MyTest {
 // class body...
}

Context management

Each TestContext provides context management and caching support for the test instance
it is responsible for. Test instances do not automatically receive access to the
configured ApplicationContext. However, if a test class implements the
ApplicationContextAware interface, a reference to the ApplicationContext is supplied
to the test instance. Note that AbstractJUnit4SpringContextTests and
AbstractTestNGSpringContextTests implement ApplicationContextAware and therefore
provide access to the ApplicationContext automatically.

	[image: [Tip]]	@Autowired ApplicationContext
	

As an alternative to implementing the ApplicationContextAware interface, you can
inject the application context for your test class through the @Autowired annotation
on either a field or setter method. For example:

@RunWith(SpringRunner.class)
@ContextConfiguration
public class MyTest {

 @Autowired
 private ApplicationContext applicationContext;

 // class body...
}

Similarly, if your test is configured to load a WebApplicationContext, you can inject
the web application context into your test as follows:

@RunWith(SpringRunner.class)
@WebAppConfiguration
@ContextConfiguration
public class MyWebAppTest {
 @Autowired
 private WebApplicationContext wac;

 // class body...
}

Dependency injection via @Autowired is provided by the
DependencyInjectionTestExecutionListener which is configured by default (see
the section called “Dependency injection of test fixtures”).

Test classes that use the TestContext framework do not need to extend any particular
class or implement a specific interface to configure their application context. Instead,
configuration is achieved simply by declaring the @ContextConfiguration annotation at
the class level. If your test class does not explicitly declare application context
resource locations or annotated classes, the configured ContextLoader determines
how to load a context from a default location or default configuration classes. In
addition to context resource locations and annotated classes, an application context
can also be configured via application context initializers.

The following sections explain how to configure an ApplicationContext via XML
configuration files, Groovy scripts, annotated classes (typically @Configuration
classes), or context initializers using Spring’s @ContextConfiguration annotation.
Alternatively, you can implement and configure your own custom SmartContextLoader for
advanced use cases.

Context configuration with XML resources

To load an ApplicationContext for your tests using XML configuration files, annotate
your test class with @ContextConfiguration and configure the locations attribute with
an array that contains the resource locations of XML configuration metadata. A plain or
relative path — for example "context.xml" — will be treated as a classpath resource
that is relative to the package in which the test class is defined. A path starting with
a slash is treated as an absolute classpath location, for example
"/org/example/config.xml". A path which represents a resource URL (i.e., a path
prefixed with classpath:, file:, http:, etc.) will be used as is.

@RunWith(SpringRunner.class)
// ApplicationContext will be loaded from "/app-config.xml" and
// "/test-config.xml" in the root of the classpath
@ContextConfiguration(locations={"/app-config.xml", "/test-config.xml"})
public class MyTest {
 // class body...
}

@ContextConfiguration supports an alias for the locations attribute through the
standard Java value attribute. Thus, if you do not need to declare additional
attributes in @ContextConfiguration, you can omit the declaration of the locations
attribute name and declare the resource locations by using the shorthand format
demonstrated in the following example.

@RunWith(SpringRunner.class)
@ContextConfiguration({"/app-config.xml", "/test-config.xml"})
public class MyTest {
 // class body...
}

If you omit both the locations and value attributes from the @ContextConfiguration
annotation, the TestContext framework will attempt to detect a default XML resource
location. Specifically, GenericXmlContextLoader and GenericXmlWebContextLoader detect
a default location based on the name of the test class. If your class is named
com.example.MyTest, GenericXmlContextLoader loads your application context from
"classpath:com/example/MyTest-context.xml".

package com.example;

@RunWith(SpringRunner.class)
// ApplicationContext will be loaded from
// "classpath:com/example/MyTest-context.xml"
@ContextConfiguration
public class MyTest {
 // class body...
}

Context configuration with Groovy scripts

To load an ApplicationContext for your tests using Groovy scripts that utilize the
Groovy Bean Definition DSL, annotate your test class with
@ContextConfiguration and configure the locations or value attribute with an array
that contains the resource locations of Groovy scripts. Resource lookup semantics for
Groovy scripts are the same as those described for XML
configuration files.

	[image: [Tip]]	Enabling Groovy script support
	

Support for using Groovy scripts to load an ApplicationContext in the Spring
TestContext Framework is enabled automatically if Groovy is on the classpath.

@RunWith(SpringRunner.class)
// ApplicationContext will be loaded from "/AppConfig.groovy" and
// "/TestConfig.groovy" in the root of the classpath
@ContextConfiguration({"/AppConfig.groovy", "/TestConfig.Groovy"})
public class MyTest {
 // class body...
}

If you omit both the locations and value attributes from the @ContextConfiguration
annotation, the TestContext framework will attempt to detect a default Groovy script.
Specifically, GenericGroovyXmlContextLoader and GenericGroovyXmlWebContextLoader
detect a default location based on the name of the test class. If your class is named
com.example.MyTest, the Groovy context loader will load your application context from
"classpath:com/example/MyTestContext.groovy".

package com.example;

@RunWith(SpringRunner.class)
// ApplicationContext will be loaded from
// "classpath:com/example/MyTestContext.groovy"
@ContextConfiguration
public class MyTest {
 // class body...
}

	[image: [Tip]]	Declaring XML config and Groovy scripts simultaneously
	

Both XML configuration files and Groovy scripts can be declared simultaneously via the
locations or value attribute of @ContextConfiguration. If the path to a configured
resource location ends with .xml it will be loaded using an XmlBeanDefinitionReader;
otherwise it will be loaded using a GroovyBeanDefinitionReader.

The following listing demonstrates how to combine both in an integration test.

@RunWith(SpringRunner.class)
// ApplicationContext will be loaded from
// "/app-config.xml" and "/TestConfig.groovy"
@ContextConfiguration({ "/app-config.xml", "/TestConfig.groovy" })
public class MyTest {
 // class body...
}

Context configuration with annotated classes

To load an ApplicationContext for your tests using annotated classes (see
the section called “Java-based container configuration”), annotate your test class with @ContextConfiguration and configure the
classes attribute with an array that contains references to annotated classes.

@RunWith(SpringRunner.class)
// ApplicationContext will be loaded from AppConfig and TestConfig
@ContextConfiguration(classes = {AppConfig.class, TestConfig.class})
public class MyTest {
 // class body...
}

	[image: [Tip]]	Annotated Classes
	

The term annotated class can refer to any of the following.

	
A class annotated with @Configuration

	
A component (i.e., a class annotated with @Component, @Service, @Repository, etc.)

	
A JSR-330 compliant class that is annotated with javax.inject annotations

	
Any other class that contains @Bean-methods

Consult the javadocs of @Configuration and @Bean for further information regarding
the configuration and semantics of annotated classes, paying special attention to
the discussion of `@Bean` Lite Mode.

If you omit the classes attribute from the @ContextConfiguration annotation, the
TestContext framework will attempt to detect the presence of default configuration
classes. Specifically, AnnotationConfigContextLoader and
AnnotationConfigWebContextLoader will detect all static nested classes of the test class
that meet the requirements for configuration class implementations as specified in the
@Configuration javadocs. In the following example, the OrderServiceTest class
declares a static nested configuration class named Config that will be automatically
used to load the ApplicationContext for the test class. Note that the name of the
configuration class is arbitrary. In addition, a test class can contain more than one
static nested configuration class if desired.

@RunWith(SpringRunner.class)
// ApplicationContext will be loaded from the
// static nested Config class
@ContextConfiguration
public class OrderServiceTest {

 @Configuration
 static class Config {

 // this bean will be injected into the OrderServiceTest class
 @Bean
 public OrderService orderService() {
 OrderService orderService = new OrderServiceImpl();
 // set properties, etc.
 return orderService;
 }
 }

 @Autowired
 private OrderService orderService;

 @Test
 public void testOrderService() {
 // test the orderService
 }

}

Mixing XML, Groovy scripts, and annotated classes

It may sometimes be desirable to mix XML configuration files, Groovy scripts, and
annotated classes (i.e., typically @Configuration classes) to configure an
ApplicationContext for your tests. For example, if you use XML configuration in
production, you may decide that you want to use @Configuration classes to configure
specific Spring-managed components for your tests, or vice versa.

Furthermore, some third-party frameworks (like Spring Boot) provide first-class support
for loading an ApplicationContext from different types of resources simultaneously
(e.g., XML configuration files, Groovy scripts, and @Configuration classes). The Spring
Framework historically has not supported this for standard deployments. Consequently,
most of the SmartContextLoader implementations that the Spring Framework delivers in
the spring-test module support only one resource type per test context; however, this
does not mean that you cannot use both. One exception to the general rule is that the
GenericGroovyXmlContextLoader and GenericGroovyXmlWebContextLoader support both XML
configuration files and Groovy scripts simultaneously. Furthermore, third-party
frameworks may choose to support the declaration of both locations and classes via
@ContextConfiguration, and with the standard testing support in the TestContext
framework, you have the following options.

If you want to use resource locations (e.g., XML or Groovy) and @Configuration
classes to configure your tests, you will have to pick one as the entry point, and
that one will have to include or import the other. For example, in XML or Groovy scripts
you can include @Configuration classes via component scanning or define them as normal
Spring beans; whereas, in a @Configuration class you can use @ImportResource to
import XML configuration files or Groovy scripts. Note that this behavior is semantically
equivalent to how you configure your application in production: in production
configuration you will define either a set of XML or Groovy resource locations or a set
of @Configuration classes that your production ApplicationContext will be loaded
from, but you still have the freedom to include or import the other type of configuration.

Context configuration with context initializers

To configure an ApplicationContext for your tests using context initializers, annotate
your test class with @ContextConfiguration and configure the initializers attribute
with an array that contains references to classes that implement
ApplicationContextInitializer. The declared context initializers will then be used to
initialize the ConfigurableApplicationContext that is loaded for your tests. Note that
the concrete ConfigurableApplicationContext type supported by each declared
initializer must be compatible with the type of ApplicationContext created by the
SmartContextLoader in use (i.e., typically a GenericApplicationContext).
Furthermore, the order in which the initializers are invoked depends on whether they
implement Spring’s Ordered interface or are annotated with Spring’s @Order annotation
or the standard @Priority annotation.

@RunWith(SpringRunner.class)
// ApplicationContext will be loaded from TestConfig
// and initialized by TestAppCtxInitializer
@ContextConfiguration(
 classes = TestConfig.class,
 initializers = TestAppCtxInitializer.class)
public class MyTest {
 // class body...
}

It is also possible to omit the declaration of XML configuration files, Groovy scripts,
or annotated classes in @ContextConfiguration entirely and instead declare only
ApplicationContextInitializer classes which are then responsible for registering beans
in the context — for example, by programmatically loading bean definitions from XML
files or configuration classes.

@RunWith(SpringRunner.class)
// ApplicationContext will be initialized by EntireAppInitializer
// which presumably registers beans in the context
@ContextConfiguration(initializers = EntireAppInitializer.class)
public class MyTest {
 // class body...
}

Context configuration inheritance

@ContextConfiguration supports boolean inheritLocations and inheritInitializers
attributes that denote whether resource locations or annotated classes and context
initializers declared by superclasses should be inherited. The default value for
both flags is true. This means that a test class inherits the resource locations or
annotated classes as well as the context initializers declared by any superclasses.
Specifically, the resource locations or annotated classes for a test class are appended
to the list of resource locations or annotated classes declared by superclasses.
Similarly, the initializers for a given test class will be added to the set of
initializers defined by test superclasses. Thus, subclasses have the option
of extending the resource locations, annotated classes, or context initializers.

If the inheritLocations or inheritInitializers attribute in @ContextConfiguration
is set to false, the resource locations or annotated classes and the context
initializers, respectively, for the test class shadow and effectively replace the
configuration defined by superclasses.

In the following example that uses XML resource locations, the ApplicationContext for
ExtendedTest will be loaded from "base-config.xml" and
"extended-config.xml", in that order. Beans defined in "extended-config.xml" may
therefore override (i.e., replace) those defined in "base-config.xml".

@RunWith(SpringRunner.class)
// ApplicationContext will be loaded from "/base-config.xml"
// in the root of the classpath
@ContextConfiguration("/base-config.xml")
public class BaseTest {
 // class body...
}

// ApplicationContext will be loaded from "/base-config.xml" and
// "/extended-config.xml" in the root of the classpath
@ContextConfiguration("/extended-config.xml")
public class ExtendedTest extends BaseTest {
 // class body...
}

Similarly, in the following example that uses annotated classes, the
ApplicationContext for ExtendedTest will be loaded from the BaseConfig and
ExtendedConfig classes, in that order. Beans defined in ExtendedConfig may therefore
override (i.e., replace) those defined in BaseConfig.

@RunWith(SpringRunner.class)
// ApplicationContext will be loaded from BaseConfig
@ContextConfiguration(classes = BaseConfig.class)
public class BaseTest {
 // class body...
}

// ApplicationContext will be loaded from BaseConfig and ExtendedConfig
@ContextConfiguration(classes = ExtendedConfig.class)
public class ExtendedTest extends BaseTest {
 // class body...
}

In the following example that uses context initializers, the ApplicationContext for
ExtendedTest will be initialized using BaseInitializer and
ExtendedInitializer. Note, however, that the order in which the initializers are
invoked depends on whether they implement Spring’s Ordered interface or are annotated
with Spring’s @Order annotation or the standard @Priority annotation.

@RunWith(SpringRunner.class)
// ApplicationContext will be initialized by BaseInitializer
@ContextConfiguration(initializers = BaseInitializer.class)
public class BaseTest {
 // class body...
}

// ApplicationContext will be initialized by BaseInitializer
// and ExtendedInitializer
@ContextConfiguration(initializers = ExtendedInitializer.class)
public class ExtendedTest extends BaseTest {
 // class body...
}

Context configuration with environment profiles

Spring 3.1 introduced first-class support in the framework for the notion of
environments and profiles (a.k.a., bean definition profiles), and integration tests
can be configured to activate particular bean definition profiles for various testing
scenarios. This is achieved by annotating a test class with the @ActiveProfiles
annotation and supplying a list of profiles that should be activated when loading the
ApplicationContext for the test.

	[image: [Note]]	Note
	
@ActiveProfiles may be used with any implementation of the new SmartContextLoader
SPI, but @ActiveProfiles is not supported with implementations of the older
ContextLoader SPI.

Let’s take a look at some examples with XML configuration and @Configuration classes.

<!-- app-config.xml -->
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jdbc="http://www.springframework.org/schema/jdbc"
 xmlns:jee="http://www.springframework.org/schema/jee"
 xsi:schemaLocation="...">

 <bean id="transferService"
 class="com.bank.service.internal.DefaultTransferService">
 <constructor-arg ref="accountRepository"/>
 <constructor-arg ref="feePolicy"/>
 </bean>

 <bean id="accountRepository"
 class="com.bank.repository.internal.JdbcAccountRepository">
 <constructor-arg ref="dataSource"/>
 </bean>

 <bean id="feePolicy"
 class="com.bank.service.internal.ZeroFeePolicy"/>

 <beans profile="dev">
 <jdbc:embedded-database id="dataSource">
 <jdbc:script
 location="classpath:com/bank/config/sql/schema.sql"/>
 <jdbc:script
 location="classpath:com/bank/config/sql/test-data.sql"/>
 </jdbc:embedded-database>
 </beans>

 <beans profile="production">
 <jee:jndi-lookup id="dataSource" jndi-name="java:comp/env/jdbc/datasource"/>
 </beans>

 <beans profile="default">
 <jdbc:embedded-database id="dataSource">
 <jdbc:script
 location="classpath:com/bank/config/sql/schema.sql"/>
 </jdbc:embedded-database>
 </beans>

</beans>

package com.bank.service;

@RunWith(SpringRunner.class)
// ApplicationContext will be loaded from "classpath:/app-config.xml"
@ContextConfiguration("/app-config.xml")
@ActiveProfiles("dev")
public class TransferServiceTest {

 @Autowired
 private TransferService transferService;

 @Test
 public void testTransferService() {
 // test the transferService
 }
}

When TransferServiceTest is run, its ApplicationContext will be loaded from the
app-config.xml configuration file in the root of the classpath. If you inspect
app-config.xml you’ll notice that the accountRepository bean has a dependency on a
dataSource bean; however, dataSource is not defined as a top-level bean. Instead,
dataSource is defined three times: in the production profile, the
dev profile, and the default profile.

By annotating TransferServiceTest with @ActiveProfiles("dev") we instruct the Spring
TestContext Framework to load the ApplicationContext with the active profiles set to
{"dev"}. As a result, an embedded database will be created and populated with test data,
and the accountRepository bean will be wired with a reference to the development
DataSource. And that’s likely what we want in an integration test.

It is sometimes useful to assign beans to a default profile. Beans within the default profile
are only included when no other profile is specifically activated. This can be used to define
fallback beans to be used in the application’s default state. For example, you may
explicitly provide a data source for dev and production profiles, but define an in-memory
data source as a default when neither of these is active.

The following code listings demonstrate how to implement the same configuration and
integration test but using @Configuration classes instead of XML.

@Configuration
@Profile("dev")
public class StandaloneDataConfig {

 @Bean
 public DataSource dataSource() {
 return new EmbeddedDatabaseBuilder()
 .setType(EmbeddedDatabaseType.HSQL)
 .addScript("classpath:com/bank/config/sql/schema.sql")
 .addScript("classpath:com/bank/config/sql/test-data.sql")
 .build();
 }
}

@Configuration
@Profile("production")
public class JndiDataConfig {

 @Bean(destroyMethod="")
 public DataSource dataSource() throws Exception {
 Context ctx = new InitialContext();
 return (DataSource) ctx.lookup("java:comp/env/jdbc/datasource");
 }
}

@Configuration
@Profile("default")
public class DefaultDataConfig {

 @Bean
 public DataSource dataSource() {
 return new EmbeddedDatabaseBuilder()
 .setType(EmbeddedDatabaseType.HSQL)
 .addScript("classpath:com/bank/config/sql/schema.sql")
 .build();
 }
}

@Configuration
public class TransferServiceConfig {

 @Autowired DataSource dataSource;

 @Bean
 public TransferService transferService() {
 return new DefaultTransferService(accountRepository(), feePolicy());
 }

 @Bean
 public AccountRepository accountRepository() {
 return new JdbcAccountRepository(dataSource);
 }

 @Bean
 public FeePolicy feePolicy() {
 return new ZeroFeePolicy();
 }

}

package com.bank.service;

@RunWith(SpringRunner.class)
@ContextConfiguration(classes = {
 TransferServiceConfig.class,
 StandaloneDataConfig.class,
 JndiDataConfig.class,
 DefaultDataConfig.class})
@ActiveProfiles("dev")
public class TransferServiceTest {

 @Autowired
 private TransferService transferService;

 @Test
 public void testTransferService() {
 // test the transferService
 }
}

In this variation, we have split the XML configuration into four independent
@Configuration classes:

	
TransferServiceConfig: acquires a dataSource via dependency injection using
@Autowired

	
StandaloneDataConfig: defines a dataSource for an embedded database suitable for
developer tests

	
JndiDataConfig: defines a dataSource that is retrieved from JNDI in a production
environment

	
DefaultDataConfig: defines a dataSource for a default embedded database in case
no profile is active

As with the XML-based configuration example, we still annotate TransferServiceTest
with @ActiveProfiles("dev"), but this time we specify all four configuration classes
via the @ContextConfiguration annotation. The body of the test class itself remains
completely unchanged.

It is often the case that a single set of profiles is used across multiple test classes
within a given project. Thus, to avoid duplicate declarations of the @ActiveProfiles
annotation it is possible to declare @ActiveProfiles once on a base class, and
subclasses will automatically inherit the @ActiveProfiles configuration from the base
class. In the following example, the declaration of @ActiveProfiles (as well as other
annotations) has been moved to an abstract superclass, AbstractIntegrationTest.

package com.bank.service;

@RunWith(SpringRunner.class)
@ContextConfiguration(classes = {
 TransferServiceConfig.class,
 StandaloneDataConfig.class,
 JndiDataConfig.class,
 DefaultDataConfig.class})
@ActiveProfiles("dev")
public abstract class AbstractIntegrationTest {
}

package com.bank.service;

// "dev" profile inherited from superclass
public class TransferServiceTest extends AbstractIntegrationTest {

 @Autowired
 private TransferService transferService;

 @Test
 public void testTransferService() {
 // test the transferService
 }
}

@ActiveProfiles also supports an inheritProfiles attribute that can be used to
disable the inheritance of active profiles.

package com.bank.service;

// "dev" profile overridden with "production"
@ActiveProfiles(profiles = "production", inheritProfiles = false)
public class ProductionTransferServiceTest extends AbstractIntegrationTest {
 // test body
}

Furthermore, it is sometimes necessary to resolve active profiles for tests
programmatically instead of declaratively — for example, based on:

	
the current operating system

	
whether tests are being executed on a continuous integration build server

	
the presence of certain environment variables

	
the presence of custom class-level annotations

	
etc.

To resolve active bean definition profiles programmatically, simply implement a custom
ActiveProfilesResolver and register it via the resolver attribute of
@ActiveProfiles. The following example demonstrates how to implement and register a
custom OperatingSystemActiveProfilesResolver. For further information, refer to the
corresponding javadocs.

package com.bank.service;

// "dev" profile overridden programmatically via a custom resolver
@ActiveProfiles(
 resolver = OperatingSystemActiveProfilesResolver.class,
 inheritProfiles = false)
public class TransferServiceTest extends AbstractIntegrationTest {
 // test body
}

package com.bank.service.test;

public class OperatingSystemActiveProfilesResolver implements ActiveProfilesResolver {

 @Override
 String[] resolve(Class<?> testClass) {
 String profile = ...;
 // determine the value of profile based on the operating system
 return new String[] {profile};
 }
}

Context configuration with test property sources

Spring 3.1 introduced first-class support in the framework for the notion of an
environment with a hierarchy of property sources, and since Spring 4.1 integration
tests can be configured with test-specific property sources. In contrast to the
@PropertySource annotation used on @Configuration classes, the @TestPropertySource
annotation can be declared on a test class to declare resource locations for test
properties files or inlined properties. These test property sources will be added to
the set of PropertySources in the Environment for the ApplicationContext loaded
for the annotated integration test.

	[image: [Note]]	Note
	
@TestPropertySource may be used with any implementation of the SmartContextLoader
SPI, but @TestPropertySource is not supported with implementations of the older
ContextLoader SPI.

Implementations of SmartContextLoader gain access to merged test property source values
via the getPropertySourceLocations() and getPropertySourceProperties() methods in
MergedContextConfiguration.

Declaring test property sources

Test properties files can be configured via the locations or value attribute of
@TestPropertySource as shown in the following example.

Both traditional and XML-based properties file formats are supported — for example,
"classpath:/com/example/test.properties" or "file:///path/to/file.xml".

Each path will be interpreted as a Spring Resource. A plain path — for example,
"test.properties" — will be treated as a classpath resource that is relative to the
package in which the test class is defined. A path starting with a slash will be treated
as an absolute classpath resource, for example: "/org/example/test.xml". A path which
references a URL (e.g., a path prefixed with classpath:, file:, http:, etc.) will
be loaded using the specified resource protocol. Resource location wildcards (e.g.
*/.properties) are not permitted: each location must evaluate to exactly one
.properties or .xml resource.

@ContextConfiguration
@TestPropertySource("/test.properties")
public class MyIntegrationTests {
 // class body...
}

Inlined properties in the form of key-value pairs can be configured via the
properties attribute of @TestPropertySource as shown in the following example. All
key-value pairs will be added to the enclosing Environment as a single test
PropertySource with the highest precedence.

The supported syntax for key-value pairs is the same as the syntax defined for entries in
a Java properties file:

	
"key=value"

	
"key:value"

	
"key value"

@ContextConfiguration
@TestPropertySource(properties = {"timezone = GMT", "port: 4242"})
public class MyIntegrationTests {
 // class body...
}

Default properties file detection

If @TestPropertySource is declared as an empty annotation (i.e., without explicit
values for the locations or properties attributes), an attempt will be made to detect
a default properties file relative to the class that declared the annotation. For
example, if the annotated test class is com.example.MyTest, the corresponding default
properties file is "classpath:com/example/MyTest.properties". If the default cannot be
detected, an IllegalStateException will be thrown.

Precedence

Test property sources have higher precedence than those loaded from the operating
system’s environment or Java system properties as well as property sources added by the
application declaratively via @PropertySource or programmatically. Thus, test property
sources can be used to selectively override properties defined in system and application
property sources. Furthermore, inlined properties have higher precedence than properties
loaded from resource locations.

In the following example, the timezone and port properties as well as any properties
defined in "/test.properties" will override any properties of the same name that are
defined in system and application property sources. Furthermore, if the
"/test.properties" file defines entries for the timezone and port properties those
will be overridden by the inlined properties declared via the properties attribute.

@ContextConfiguration
@TestPropertySource(
 locations = "/test.properties",
 properties = {"timezone = GMT", "port: 4242"}
)
public class MyIntegrationTests {
 // class body...
}

Inheriting and overriding test property sources

@TestPropertySource supports boolean inheritLocations and inheritProperties
attributes that denote whether resource locations for properties files and inlined
properties declared by superclasses should be inherited. The default value for both
flags is true. This means that a test class inherits the locations and inlined
properties declared by any superclasses. Specifically, the locations and inlined
properties for a test class are appended to the locations and inlined properties declared
by superclasses. Thus, subclasses have the option of extending the locations and
inlined properties. Note that properties that appear later will shadow (i.e..,
override) properties of the same name that appear earlier. In addition, the
aforementioned precedence rules apply for inherited test property sources as well.

If the inheritLocations or inheritProperties attribute in @TestPropertySource is set
to false, the locations or inlined properties, respectively, for the test class shadow
and effectively replace the configuration defined by superclasses.

In the following example, the ApplicationContext for BaseTest will be loaded using
only the "base.properties" file as a test property source. In contrast, the
ApplicationContext for ExtendedTest will be loaded using the "base.properties"
and "extended.properties" files as test property source locations.

@TestPropertySource("base.properties")
@ContextConfiguration
public class BaseTest {
 // ...
}

@TestPropertySource("extended.properties")
@ContextConfiguration
public class ExtendedTest extends BaseTest {
 // ...
}

In the following example, the ApplicationContext for BaseTest will be loaded using only
the inlined key1 property. In contrast, the ApplicationContext for ExtendedTest will be
loaded using the inlined key1 and key2 properties.

@TestPropertySource(properties = "key1 = value1")
@ContextConfiguration
public class BaseTest {
 // ...
}

@TestPropertySource(properties = "key2 = value2")
@ContextConfiguration
public class ExtendedTest extends BaseTest {
 // ...
}

Loading a WebApplicationContext

Spring 3.2 introduced support for loading a WebApplicationContext in integration
tests. To instruct the TestContext framework to load a WebApplicationContext instead
of a standard ApplicationContext, simply annotate the respective test class with
@WebAppConfiguration.

The presence of @WebAppConfiguration on your test class instructs the TestContext
framework (TCF) that a WebApplicationContext (WAC) should be loaded for your
integration tests. In the background the TCF makes sure that a MockServletContext is
created and supplied to your test’s WAC. By default the base resource path for your
MockServletContext will be set to "src/main/webapp". This is interpreted as a path
relative to the root of your JVM (i.e., normally the path to your project). If you’re
familiar with the directory structure of a web application in a Maven project, you’ll
know that "src/main/webapp" is the default location for the root of your WAR. If you
need to override this default, simply provide an alternate path to the
@WebAppConfiguration annotation (e.g., @WebAppConfiguration("src/test/webapp")). If
you wish to reference a base resource path from the classpath instead of the file
system, just use Spring’s classpath: prefix.

Please note that Spring’s testing support for WebApplicationContexts is on par with its
support for standard ApplicationContexts. When testing with a WebApplicationContext
you are free to declare XML configuration files, Groovy scripts, or @Configuration
classes via @ContextConfiguration. You are of course also free to use any other test
annotations such as @ActiveProfiles, @TestExecutionListeners, @Sql, @Rollback,
etc.

The following examples demonstrate some of the various configuration options for loading
a WebApplicationContext.

Conventions.

@RunWith(SpringRunner.class)

// defaults to "file:src/main/webapp"
@WebAppConfiguration

// detects "WacTests-context.xml" in same package
// or static nested @Configuration class
@ContextConfiguration

public class WacTests {
 //...
}

The above example demonstrates the TestContext framework’s support for convention over
configuration. If you annotate a test class with @WebAppConfiguration without
specifying a resource base path, the resource path will effectively default
to "file:src/main/webapp". Similarly, if you declare @ContextConfiguration without
specifying resource locations, annotated classes, or context initializers, Spring
will attempt to detect the presence of your configuration using conventions
(i.e., "WacTests-context.xml" in the same package as the WacTests class or static
nested @Configuration classes).

Default resource semantics.

@RunWith(SpringRunner.class)

// file system resource
@WebAppConfiguration("webapp")

// classpath resource
@ContextConfiguration("/spring/test-servlet-config.xml")

public class WacTests {
 //...
}

This example demonstrates how to explicitly declare a resource base path with
@WebAppConfiguration and an XML resource location with @ContextConfiguration. The
important thing to note here is the different semantics for paths with these two
annotations. By default, @WebAppConfiguration resource paths are file system based;
whereas, @ContextConfiguration resource locations are classpath based.

Explicit resource semantics.

@RunWith(SpringRunner.class)

// classpath resource
@WebAppConfiguration("classpath:test-web-resources")

// file system resource
@ContextConfiguration("file:src/main/webapp/WEB-INF/servlet-config.xml")

public class WacTests {
 //...
}

In this third example, we see that we can override the default resource semantics for
both annotations by specifying a Spring resource prefix. Contrast the comments in this
example with the previous example.

To provide comprehensive web testing support, Spring 3.2 introduced a
ServletTestExecutionListener that is enabled by default. When testing against a
WebApplicationContext this TestExecutionListener sets
up default thread-local state via Spring Web’s RequestContextHolder before each test
method and creates a MockHttpServletRequest, MockHttpServletResponse, and
ServletWebRequest based on the base resource path configured via
@WebAppConfiguration. ServletTestExecutionListener also ensures that the
MockHttpServletResponse and ServletWebRequest can be injected into the test
instance, and once the test is complete it cleans up thread-local state.

Once you have a WebApplicationContext loaded for your test you might find that you
need to interact with the web mocks — for example, to set up your test fixture or to
perform assertions after invoking your web component. The following example demonstrates
which mocks can be autowired into your test instance. Note that the
WebApplicationContext and MockServletContext are both cached across the test suite;
whereas, the other mocks are managed per test method by the
ServletTestExecutionListener.

Injecting mocks.

@WebAppConfiguration
@ContextConfiguration
public class WacTests {

 @Autowired
 WebApplicationContext wac; // cached

 @Autowired
 MockServletContext servletContext; // cached

 @Autowired
 MockHttpSession session;

 @Autowired
 MockHttpServletRequest request;

 @Autowired
 MockHttpServletResponse response;

 @Autowired
 ServletWebRequest webRequest;

 //...
}

Context caching

Once the TestContext framework loads an ApplicationContext (or WebApplicationContext)
for a test, that context will be cached and reused for all subsequent tests that
declare the same unique context configuration within the same test suite. To understand
how caching works, it is important to understand what is meant by unique and test
suite.

An ApplicationContext can be uniquely identified by the combination of
configuration parameters that are used to load it. Consequently, the unique combination
of configuration parameters are used to generate a key under which the context is
cached. The TestContext framework uses the following configuration parameters to build
the context cache key:

	
locations (from @ContextConfiguration)

	
classes (from @ContextConfiguration)

	
contextInitializerClasses (from @ContextConfiguration)

	
contextCustomizers (from ContextCustomizerFactory)

	
contextLoader (from @ContextConfiguration)

	
parent (from @ContextHierarchy)

	
activeProfiles (from @ActiveProfiles)

	
propertySourceLocations (from @TestPropertySource)

	
propertySourceProperties (from @TestPropertySource)

	
resourceBasePath (from @WebAppConfiguration)

For example, if TestClassA specifies {"app-config.xml", "test-config.xml"} for the
locations (or value) attribute of @ContextConfiguration, the TestContext framework
will load the corresponding ApplicationContext and store it in a static context cache
under a key that is based solely on those locations. So if TestClassB also defines
{"app-config.xml", "test-config.xml"} for its locations (either explicitly or
implicitly through inheritance) but does not define @WebAppConfiguration, a different
ContextLoader, different active profiles, different context initializers, different
test property sources, or a different parent context, then the same ApplicationContext
will be shared by both test classes. This means that the setup cost for loading an
application context is incurred only once (per test suite), and subsequent test execution
is much faster.

	[image: [Note]]	Test suites and forked processes
	

The Spring TestContext framework stores application contexts in a static cache. This
means that the context is literally stored in a static variable. In other words, if
tests execute in separate processes the static cache will be cleared between each test
execution, and this will effectively disable the caching mechanism.

To benefit from the caching mechanism, all tests must run within the same process or
test suite. This can be achieved by executing all tests as a group within an IDE.
Similarly, when executing tests with a build framework such as Ant, Maven, or Gradle it
is important to make sure that the build framework does not fork between tests. For
example, if the
forkMode
for the Maven Surefire plug-in is set to always or pertest, the TestContext
framework will not be able to cache application contexts between test classes and the
build process will run significantly slower as a result.

Since Spring Framework 4.3, the size of the context cache is bounded with a default
maximum size of 32. Whenever the maximum size is reached, a least recently used (LRU)
eviction policy is used to evict and close stale contexts. The maximum size can be
configured from the command line or a build script by setting a JVM system property named
spring.test.context.cache.maxSize. As an alternative, the same property can be set
programmatically via the SpringProperties API.

Since having a large number of application contexts loaded within a given test suite can
cause the suite to take an unnecessarily long time to execute, it is often beneficial to
know exactly how many contexts have been loaded and cached. To view the statistics for
the underlying context cache, simply set the log level for the
org.springframework.test.context.cache logging category to DEBUG.

In the unlikely case that a test corrupts the application context and requires reloading — for example, by modifying a bean definition or the state of an application object — you can annotate your test class or test method with @DirtiesContext (see the
discussion of @DirtiesContext in the section called “Spring Testing Annotations”). This
instructs Spring to remove the context from the cache and rebuild the application
context before executing the next test. Note that support for the @DirtiesContext
annotation is provided by the DirtiesContextBeforeModesTestExecutionListener and the
DirtiesContextTestExecutionListener which are enabled by default.

Context hierarchies

When writing integration tests that rely on a loaded Spring ApplicationContext, it is
often sufficient to test against a single context; however, there are times when it is
beneficial or even necessary to test against a hierarchy of ApplicationContexts. For
example, if you are developing a Spring MVC web application you will typically have a
root WebApplicationContext loaded via Spring’s ContextLoaderListener and a child
WebApplicationContext loaded via Spring’s DispatcherServlet. This results in a
parent-child context hierarchy where shared components and infrastructure configuration
are declared in the root context and consumed in the child context by web-specific
components. Another use case can be found in Spring Batch applications where you often
have a parent context that provides configuration for shared batch infrastructure and a
child context for the configuration of a specific batch job.

Since Spring Framework 3.2.2, it is possible to write integration tests that use context
hierarchies by declaring context configuration via the @ContextHierarchy annotation,
either on an individual test class or within a test class hierarchy. If a context
hierarchy is declared on multiple classes within a test class hierarchy it is also
possible to merge or override the context configuration for a specific, named level in
the context hierarchy. When merging configuration for a given level in the hierarchy the
configuration resource type (i.e., XML configuration files or annotated classes) must be
consistent; otherwise, it is perfectly acceptable to have different levels in a context
hierarchy configured using different resource types.

The following JUnit 4 based examples demonstrate common configuration scenarios for
integration tests that require the use of context hierarchies.

ControllerIntegrationTests represents a typical integration testing scenario for a
Spring MVC web application by declaring a context hierarchy consisting of two levels,
one for the root WebApplicationContext (loaded using the TestAppConfig
@Configuration class) and one for the dispatcher servlet WebApplicationContext
(loaded using the WebConfig @Configuration class). The WebApplicationContext that
is autowired into the test instance is the one for the child context (i.e., the
lowest context in the hierarchy).

@RunWith(SpringRunner.class)
@WebAppConfiguration
@ContextHierarchy({
 @ContextConfiguration(classes = TestAppConfig.class),
 @ContextConfiguration(classes = WebConfig.class)
})
public class ControllerIntegrationTests {

 @Autowired
 private WebApplicationContext wac;

 // ...
}

The following test classes define a context hierarchy within a test class hierarchy.
AbstractWebTests declares the configuration for a root WebApplicationContext in a
Spring-powered web application. Note, however, that AbstractWebTests does not declare
@ContextHierarchy; consequently, subclasses of AbstractWebTests can optionally
participate in a context hierarchy or simply follow the standard semantics for
@ContextConfiguration. SoapWebServiceTests and RestWebServiceTests both extend
AbstractWebTests and define a context hierarchy via @ContextHierarchy. The result is
that three application contexts will be loaded (one for each declaration of
@ContextConfiguration), and the application context loaded based on the configuration
in AbstractWebTests will be set as the parent context for each of the contexts loaded
for the concrete subclasses.

@RunWith(SpringRunner.class)
@WebAppConfiguration
@ContextConfiguration("file:src/main/webapp/WEB-INF/applicationContext.xml")
public abstract class AbstractWebTests {}

@ContextHierarchy(@ContextConfiguration("/spring/soap-ws-config.xml")
public class SoapWebServiceTests extends AbstractWebTests {}

@ContextHierarchy(@ContextConfiguration("/spring/rest-ws-config.xml")
public class RestWebServiceTests extends AbstractWebTests {}

The following classes demonstrate the use of named hierarchy levels in order to
merge the configuration for specific levels in a context hierarchy. BaseTests
defines two levels in the hierarchy, parent and child. ExtendedTests extends
BaseTests and instructs the Spring TestContext Framework to merge the context
configuration for the child hierarchy level, simply by ensuring that the names
declared via the name attribute in @ContextConfiguration are both "child". The
result is that three application contexts will be loaded: one for "/app-config.xml",
one for "/user-config.xml", and one for {"/user-config.xml", "/order-config.xml"}.
As with the previous example, the application context loaded from "/app-config.xml"
will be set as the parent context for the contexts loaded from "/user-config.xml"
and {"/user-config.xml", "/order-config.xml"}.

@RunWith(SpringRunner.class)
@ContextHierarchy({
 @ContextConfiguration(name = "parent", locations = "/app-config.xml"),
 @ContextConfiguration(name = "child", locations = "/user-config.xml")
})
public class BaseTests {}

@ContextHierarchy(
 @ContextConfiguration(name = "child", locations = "/order-config.xml")
)
public class ExtendedTests extends BaseTests {}

In contrast to the previous example, this example demonstrates how to override the
configuration for a given named level in a context hierarchy by setting the
inheritLocations flag in @ContextConfiguration to false. Consequently, the
application context for ExtendedTests will be loaded only from
"/test-user-config.xml" and will have its parent set to the context loaded from
"/app-config.xml".

@RunWith(SpringRunner.class)
@ContextHierarchy({
 @ContextConfiguration(name = "parent", locations = "/app-config.xml"),
 @ContextConfiguration(name = "child", locations = "/user-config.xml")
})
public class BaseTests {}

@ContextHierarchy(
 @ContextConfiguration(
 name = "child",
 locations = "/test-user-config.xml",
 inheritLocations = false
))
public class ExtendedTests extends BaseTests {}

	[image: [Note]]	Dirtying a context within a context hierarchy
	

If @DirtiesContext is used in a test whose context is configured as part of a context
hierarchy, the hierarchyMode flag can be used to control how the context cache is
cleared. For further details consult the discussion of @DirtiesContext in
Spring Testing Annotations and the
@DirtiesContext javadocs.

Dependency injection of test fixtures

When you use the DependencyInjectionTestExecutionListener — which is configured by
default — the dependencies of your test instances are injected from beans in the
application context that you configured with @ContextConfiguration. You may use setter
injection, field injection, or both, depending on which annotations you choose and
whether you place them on setter methods or fields. For consistency with the annotation
support introduced in Spring 2.5 and 3.0, you can use Spring’s @Autowired annotation
or the @Inject annotation from JSR 330.

	[image: [Tip]]	Tip
	
The TestContext framework does not instrument the manner in which a test instance is
instantiated. Thus the use of @Autowired or @Inject for constructors has no effect
for test classes.

Because @Autowired is used to perform autowiring by type, if you have multiple bean definitions of the same type, you cannot rely on this
approach for those particular beans. In that case, you can use @Autowired in
conjunction with @Qualifier. As of Spring 3.0 you may also choose to use @Inject in
conjunction with @Named. Alternatively, if your test class has access to its
ApplicationContext, you can perform an explicit lookup by using (for example) a call
to applicationContext.getBean("titleRepository").

If you do not want dependency injection applied to your test instances, simply do not
annotate fields or setter methods with @Autowired or @Inject. Alternatively, you can
disable dependency injection altogether by explicitly configuring your class with
@TestExecutionListeners and omitting DependencyInjectionTestExecutionListener.class
from the list of listeners.

Consider the scenario of testing a HibernateTitleRepository class, as outlined in the
Goals section. The next two code listings demonstrate the
use of @Autowired on fields and setter methods. The application context configuration
is presented after all sample code listings.

	[image: [Note]]	Note
	
The dependency injection behavior in the following code listings is not specific to
JUnit 4. The same DI techniques can be used in conjunction with any testing framework.

The following examples make calls to static assertion methods such as assertNotNull()
but without prepending the call with Assert. In such cases, assume that the method was
properly imported through an import static declaration that is not shown in the
example.

The first code listing shows a JUnit 4 based implementation of the test class that uses
@Autowired for field injection.

@RunWith(SpringRunner.class)
// specifies the Spring configuration to load for this test fixture
@ContextConfiguration("repository-config.xml")
public class HibernateTitleRepositoryTests {

 // this instance will be dependency injected by type
 @Autowired
 private HibernateTitleRepository titleRepository;

 @Test
 public void findById() {
 Title title = titleRepository.findById(new Long(10));
 assertNotNull(title);
 }
}

Alternatively, you can configure the class to use @Autowired for setter injection as
seen below.

@RunWith(SpringRunner.class)
// specifies the Spring configuration to load for this test fixture
@ContextConfiguration("repository-config.xml")
public class HibernateTitleRepositoryTests {

 // this instance will be dependency injected by type
 private HibernateTitleRepository titleRepository;

 @Autowired
 public void setTitleRepository(HibernateTitleRepository titleRepository) {
 this.titleRepository = titleRepository;
 }

 @Test
 public void findById() {
 Title title = titleRepository.findById(new Long(10));
 assertNotNull(title);
 }
}

The preceding code listings use the same XML context file referenced by the
@ContextConfiguration annotation (that is, repository-config.xml), which looks like
this:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <!-- this bean will be injected into the HibernateTitleRepositoryTests class -->
 <bean id="titleRepository" class="com.foo.repository.hibernate.HibernateTitleRepository">
 <property name="sessionFactory" ref="sessionFactory"/>
 </bean>

 <bean id="sessionFactory" class="org.springframework.orm.hibernate5.LocalSessionFactoryBean">
 <!-- configuration elided for brevity -->
 </bean>

</beans>

	[image: [Note]]	Note
	
If you are extending from a Spring-provided test base class that happens to use
@Autowired on one of its setter methods, you might have multiple beans of the affected
type defined in your application context: for example, multiple DataSource beans. In
such a case, you can override the setter method and use the @Qualifier annotation to
indicate a specific target bean as follows, but make sure to delegate to the overridden
method in the superclass as well.

// ...

 @Autowired
 @Override
 public void setDataSource(@Qualifier("myDataSource") DataSource dataSource) {
 super.setDataSource(dataSource);
 }

// ...

The specified qualifier value indicates the specific DataSource bean to inject,
narrowing the set of type matches to a specific bean. Its value is matched against
<qualifier> declarations within the corresponding <bean> definitions. The bean name
is used as a fallback qualifier value, so you may effectively also point to a specific
bean by name there (as shown above, assuming that "myDataSource" is the bean id).

Testing request and session scoped beans

Request and session scoped beans have been supported by
Spring since the early years, and since Spring 3.2 it’s a breeze to test your
request-scoped and session-scoped beans by following these steps.

	
Ensure that a WebApplicationContext is loaded for your test by annotating your test
class with @WebAppConfiguration.

	
Inject the mock request or session into your test instance and prepare your test
fixture as appropriate.

	
Invoke your web component that you retrieved from the configured
WebApplicationContext (i.e., via dependency injection).

	
Perform assertions against the mocks.

The following code snippet displays the XML configuration for a login use case. Note
that the userService bean has a dependency on a request-scoped loginAction bean.
Also, the LoginAction is instantiated using SpEL expressions that
retrieve the username and password from the current HTTP request. In our test, we will
want to configure these request parameters via the mock managed by the TestContext
framework.

Request-scoped bean configuration.

<beans>

 <bean id="userService"
 class="com.example.SimpleUserService"
 c:loginAction-ref="loginAction" />

 <bean id="loginAction" class="com.example.LoginAction"
 c:username="#{request.getParameter('user')}"
 c:password="#{request.getParameter('pswd')}"
 scope="request">
 <aop:scoped-proxy />
 </bean>

</beans>

In RequestScopedBeanTests we inject both the UserService (i.e., the subject under
test) and the MockHttpServletRequest into our test instance. Within our
requestScope() test method we set up our test fixture by setting request parameters in
the provided MockHttpServletRequest. When the loginUser() method is invoked on our
userService we are assured that the user service has access to the request-scoped
loginAction for the current MockHttpServletRequest (i.e., the one we just set
parameters in). We can then perform assertions against the results based on the known
inputs for the username and password.

Request-scoped bean test.

@RunWith(SpringRunner.class)
@ContextConfiguration
@WebAppConfiguration
public class RequestScopedBeanTests {

 @Autowired UserService userService;
 @Autowired MockHttpServletRequest request;

 @Test
 public void requestScope() {

 request.setParameter("user", "enigma");
 request.setParameter("pswd", "$pr!ng");

 LoginResults results = userService.loginUser();

 // assert results
 }
}

The following code snippet is similar to the one we saw above for a request-scoped bean;
however, this time the userService bean has a dependency on a session-scoped
userPreferences bean. Note that the UserPreferences bean is instantiated using a
SpEL expression that retrieves the theme from the current HTTP session. In our test,
we will need to configure a theme in the mock session managed by the TestContext
framework.

Session-scoped bean configuration.

<beans>

 <bean id="userService"
 class="com.example.SimpleUserService"
 c:userPreferences-ref="userPreferences" />

 <bean id="userPreferences"
 class="com.example.UserPreferences"
 c:theme="#{session.getAttribute('theme')}"
 scope="session">
 <aop:scoped-proxy />
 </bean>

</beans>

In SessionScopedBeanTests we inject the UserService and the MockHttpSession into
our test instance. Within our sessionScope() test method we set up our test fixture by
setting the expected "theme" attribute in the provided MockHttpSession. When the
processUserPreferences() method is invoked on our userService we are assured that
the user service has access to the session-scoped userPreferences for the current
MockHttpSession, and we can perform assertions against the results based on the
configured theme.

Session-scoped bean test.

@RunWith(SpringRunner.class)
@ContextConfiguration
@WebAppConfiguration
public class SessionScopedBeanTests {

 @Autowired UserService userService;
 @Autowired MockHttpSession session;

 @Test
 public void sessionScope() throws Exception {

 session.setAttribute("theme", "blue");

 Results results = userService.processUserPreferences();

 // assert results
 }
}

Transaction management

In the TestContext framework, transactions are managed by the
TransactionalTestExecutionListener which is configured by default, even if you do not
explicitly declare @TestExecutionListeners on your test class. To enable support for
transactions, however, you must configure a PlatformTransactionManager bean in the
ApplicationContext that is loaded via @ContextConfiguration semantics (further
details are provided below). In addition, you must declare Spring’s @Transactional
annotation either at the class or method level for your tests.

Test-managed transactions

Test-managed transactions are transactions that are managed declaratively via the
TransactionalTestExecutionListener or programmatically via TestTransaction (see
below). Such transactions should not be confused with Spring-managed transactions
(i.e., those managed directly by Spring within the ApplicationContext loaded for tests)
or application-managed transactions (i.e., those managed programmatically within
application code that is invoked via tests). Spring-managed and application-managed
transactions will typically participate in test-managed transactions; however, caution
should be taken if Spring-managed or application-managed transactions are configured with
any propagation type other than REQUIRED or SUPPORTS (see the discussion on
transaction propagation for details).

Enabling and disabling transactions

Annotating a test method with @Transactional causes the test to be run within a
transaction that will, by default, be automatically rolled back after completion of the
test. If a test class is annotated with @Transactional, each test method within that
class hierarchy will be run within a transaction. Test methods that are not annotated
with @Transactional (at the class or method level) will not be run within a
transaction. Furthermore, tests that are annotated with @Transactional but have the
propagation type set to NOT_SUPPORTED will not be run within a transaction.

Note that AbstractTransactionalJUnit4SpringContextTests and
AbstractTransactionalTestNGSpringContextTests
are preconfigured for transactional support at the class level.

The following example demonstrates a common scenario for writing an integration test for
a Hibernate-based UserRepository. As explained in
the section called “Transaction rollback and commit behavior”, there is no need to clean up the
database after the createUser() method is executed since any changes made to the
database will be automatically rolled back by the TransactionalTestExecutionListener.
See the section called “PetClinic Example” for an additional example.

@RunWith(SpringRunner.class)
@ContextConfiguration(classes = TestConfig.class)
@Transactional
public class HibernateUserRepositoryTests {

 @Autowired
 HibernateUserRepository repository;

 @Autowired
 SessionFactory sessionFactory;

 JdbcTemplate jdbcTemplate;

 @Autowired
 public void setDataSource(DataSource dataSource) {
 this.jdbcTemplate = new JdbcTemplate(dataSource);
 }

 @Test
 public void createUser() {
 // track initial state in test database:
 final int count = countRowsInTable("user");

 User user = new User(...);
 repository.save(user);

 // Manual flush is required to avoid false positive in test
 sessionFactory.getCurrentSession().flush();
 assertNumUsers(count + 1);
 }

 protected int countRowsInTable(String tableName) {
 return JdbcTestUtils.countRowsInTable(this.jdbcTemplate, tableName);
 }

 protected void assertNumUsers(int expected) {
 assertEquals("Number of rows in the [user] table.", expected, countRowsInTable("user"));
 }
}

Transaction rollback and commit behavior

By default, test transactions will be automatically rolled back after completion of the
test; however, transactional commit and rollback behavior can be configured declaratively
via the @Commit and @Rollback annotations. See the corresponding entries in the
annotation support section for further details.

Programmatic transaction management

Since Spring Framework 4.1, it is possible to interact with test-managed transactions
programmatically via the static methods in TestTransaction. For example,
TestTransaction may be used within test methods, before methods, and after
methods to start or end the current test-managed transaction or to configure the current
test-managed transaction for rollback or commit. Support for TestTransaction is
automatically available whenever the TransactionalTestExecutionListener is enabled.

The following example demonstrates some of the features of TestTransaction. Consult the
javadocs for TestTransaction for further details.

@ContextConfiguration(classes = TestConfig.class)
public class ProgrammaticTransactionManagementTests extends
 AbstractTransactionalJUnit4SpringContextTests {

 @Test
 public void transactionalTest() {
 // assert initial state in test database:
 assertNumUsers(2);

 deleteFromTables("user");

 // changes to the database will be committed!
 TestTransaction.flagForCommit();
 TestTransaction.end();
 assertFalse(TestTransaction.isActive());
 assertNumUsers(0);

 TestTransaction.start();
 // perform other actions against the database that will
 // be automatically rolled back after the test completes...
 }

 protected void assertNumUsers(int expected) {
 assertEquals("Number of rows in the [user] table.", expected, countRowsInTable("user"));
 }
}

Executing code outside of a transaction

Occasionally you need to execute certain code before or after a transactional test method
but outside the transactional context — for example, to verify the initial database state
prior to execution of your test or to verify expected transactional commit behavior after
test execution (if the test was configured to commit the transaction).
TransactionalTestExecutionListener supports the @BeforeTransaction and
@AfterTransaction annotations exactly for such scenarios. Simply annotate any void
method in a test class or any void default method in a test interface with one of these
annotations, and the TransactionalTestExecutionListener ensures that your before
transaction method or after transaction method is executed at the appropriate time.

	[image: [Tip]]	Tip
	
Any before methods (such as methods annotated with JUnit 4’s @Before) and any after
methods (such as methods annotated with JUnit 4’s @After) are executed within a
transaction. In addition, methods annotated with @BeforeTransaction or
@AfterTransaction are naturally not executed for test methods that are not configured
to run within a transaction.

Configuring a transaction manager

TransactionalTestExecutionListener expects a PlatformTransactionManager bean to be
defined in the Spring ApplicationContext for the test. In case there are multiple
instances of PlatformTransactionManager within the test’s ApplicationContext, a
qualifier may be declared via @Transactional("myTxMgr") or
@Transactional(transactionManager = "myTxMgr"), or TransactionManagementConfigurer
can be implemented by an @Configuration class. Consult the javadocs for
TestContextTransactionUtils.retrieveTransactionManager() for details on the algorithm
used to look up a transaction manager in the test’s ApplicationContext.

Demonstration of all transaction-related annotations

The following JUnit 4 based example displays a fictitious integration testing scenario
highlighting all transaction-related annotations. The example is not intended to
demonstrate best practices but rather to demonstrate how these annotations can be used.
Consult the annotation support section for further
information and configuration examples. Transaction management for @Sql contains an additional example using @Sql for
declarative SQL script execution with default transaction rollback semantics.

@RunWith(SpringRunner.class)
@ContextConfiguration
@Transactional(transactionManager = "txMgr")
@Commit
public class FictitiousTransactionalTest {

 @BeforeTransaction
 void verifyInitialDatabaseState() {
 // logic to verify the initial state before a transaction is started
 }

 @Before
 public void setUpTestDataWithinTransaction() {
 // set up test data within the transaction
 }

 @Test
 // overrides the class-level @Commit setting
 @Rollback
 public void modifyDatabaseWithinTransaction() {
 // logic which uses the test data and modifies database state
 }

 @After
 public void tearDownWithinTransaction() {
 // execute "tear down" logic within the transaction
 }

 @AfterTransaction
 void verifyFinalDatabaseState() {
 // logic to verify the final state after transaction has rolled back
 }

}

	[image: [Note]]	Avoid false positives when testing ORM code
	

When you test application code that manipulates the state of a Hibernate session or JPA
persistence context, make sure to flush the underlying unit of work within test
methods that execute that code. Failing to flush the underlying unit of work can produce
false positives: your test may pass, but the same code throws an exception in a live,
production environment. In the following Hibernate-based example test case, one method
demonstrates a false positive, and the other method correctly exposes the results of
flushing the session. Note that this applies to any ORM frameworks that maintain an
in-memory unit of work.

// ...

@Autowired
SessionFactory sessionFactory;

@Transactional
@Test // no expected exception!
public void falsePositive() {
 updateEntityInHibernateSession();
 // False positive: an exception will be thrown once the Hibernate
 // Session is finally flushed (i.e., in production code)
}

@Transactional
@Test(expected = ...)
public void updateWithSessionFlush() {
 updateEntityInHibernateSession();
 // Manual flush is required to avoid false positive in test
 sessionFactory.getCurrentSession().flush();
}

// ...

Or for JPA:

// ...

@PersistenceContext
EntityManager entityManager;

@Transactional
@Test // no expected exception!
public void falsePositive() {
 updateEntityInJpaPersistenceContext();
 // False positive: an exception will be thrown once the JPA
 // EntityManager is finally flushed (i.e., in production code)
}

@Transactional
@Test(expected = ...)
public void updateWithEntityManagerFlush() {
 updateEntityInJpaPersistenceContext();
 // Manual flush is required to avoid false positive in test
 entityManager.flush();
}

// ...

Executing SQL scripts

When writing integration tests against a relational database, it is often beneficial
to execute SQL scripts to modify the database schema or insert test data into tables.
The spring-jdbc module provides support for initializing an embedded or existing
database by executing SQL scripts when the Spring ApplicationContext is loaded. See
the section called “Embedded database support” and the section called “Testing data access logic with an embedded database” for
details.

Although it is very useful to initialize a database for testing once when the
ApplicationContext is loaded, sometimes it is essential to be able to modify the
database during integration tests. The following sections explain how to execute SQL
scripts programmatically and declaratively during integration tests.

Executing SQL scripts programmatically

Spring provides the following options for executing SQL scripts programmatically within
integration test methods.

	
org.springframework.jdbc.datasource.init.ScriptUtils

	
org.springframework.jdbc.datasource.init.ResourceDatabasePopulator

	
org.springframework.test.context.junit4.AbstractTransactionalJUnit4SpringContextTests

	
org.springframework.test.context.testng.AbstractTransactionalTestNGSpringContextTests

ScriptUtils provides a collection of static utility methods for working with SQL scripts
and is mainly intended for internal use within the framework. However, if you require
full control over how SQL scripts are parsed and executed, ScriptUtils may suit your
needs better than some of the other alternatives described below. Consult the javadocs for
individual methods in ScriptUtils for further details.

ResourceDatabasePopulator provides a simple object-based API for programmatically
populating, initializing, or cleaning up a database using SQL scripts defined in
external resources. ResourceDatabasePopulator provides options for configuring the
character encoding, statement separator, comment delimiters, and error handling flags
used when parsing and executing the scripts, and each of the configuration options has
a reasonable default value. Consult the javadocs for details on default values. To
execute the scripts configured in a ResourceDatabasePopulator, you can invoke either
the populate(Connection) method to execute the populator against a
java.sql.Connection or the execute(DataSource) method to execute the populator
against a javax.sql.DataSource. The following example specifies SQL scripts for a test
schema and test data, sets the statement separator to "@@", and then executes the
scripts against a DataSource.

@Test
public void databaseTest {
 ResourceDatabasePopulator populator = new ResourceDatabasePopulator();
 populator.addScripts(
 new ClassPathResource("test-schema.sql"),
 new ClassPathResource("test-data.sql"));
 populator.setSeparator("@@");
 populator.execute(this.dataSource);
 // execute code that uses the test schema and data
}

Note that ResourceDatabasePopulator internally delegates to ScriptUtils for parsing
and executing SQL scripts. Similarly, the executeSqlScript(..) methods in
AbstractTransactionalJUnit4SpringContextTests and
AbstractTransactionalTestNGSpringContextTests
internally use a ResourceDatabasePopulator for executing SQL scripts. Consult the javadocs
for the various executeSqlScript(..) methods for further details.

Executing SQL scripts declaratively with @Sql

In addition to the aforementioned mechanisms for executing SQL scripts
programmatically, SQL scripts can also be configured declaratively in the Spring
TestContext Framework. Specifically, the @Sql annotation can be declared on a test
class or test method to configure the resource paths to SQL scripts that should be
executed against a given database either before or after an integration test method. Note
that method-level declarations override class-level declarations and that support for
@Sql is provided by the SqlScriptsTestExecutionListener which is enabled by default.

Path resource semantics

Each path will be interpreted as a Spring Resource. A plain path — for example,
"schema.sql" — will be treated as a classpath resource that is relative to the
package in which the test class is defined. A path starting with a slash will be treated
as an absolute classpath resource, for example: "/org/example/schema.sql". A path
which references a URL (e.g., a path prefixed with classpath:, file:, http:, etc.)
will be loaded using the specified resource protocol.

The following example demonstrates how to use @Sql at the class level and at the method
level within a JUnit 4 based integration test class.

@RunWith(SpringRunner.class)
@ContextConfiguration
@Sql("/test-schema.sql")
public class DatabaseTests {

 @Test
 public void emptySchemaTest {
 // execute code that uses the test schema without any test data
 }

 @Test
 @Sql({"/test-schema.sql", "/test-user-data.sql"})
 public void userTest {
 // execute code that uses the test schema and test data
 }
}

Default script detection

If no SQL scripts are specified, an attempt will be made to detect a default script
depending on where @Sql is declared. If a default cannot be detected, an
IllegalStateException will be thrown.

	
class-level declaration: if the annotated test class is com.example.MyTest, the
corresponding default script is "classpath:com/example/MyTest.sql".

	
method-level declaration: if the annotated test method is named testMethod() and is
defined in the class com.example.MyTest, the corresponding default script is
"classpath:com/example/MyTest.testMethod.sql".

Declaring multiple @Sql sets

If multiple sets of SQL scripts need to be configured for a given test class or test
method but with different syntax configuration, different error handling rules, or
different execution phases per set, it is possible to declare multiple instances of
@Sql. With Java 8, @Sql can be used as a repeatable annotation. Otherwise, the
@SqlGroup annotation can be used as an explicit container for declaring multiple
instances of @Sql.

The following example demonstrates the use of @Sql as a repeatable annotation using
Java 8. In this scenario the test-schema.sql script uses a different syntax for
single-line comments.

@Test
@Sql(scripts = "/test-schema.sql", config = @SqlConfig(commentPrefix = "`"))
@Sql("/test-user-data.sql")
public void userTest {
 // execute code that uses the test schema and test data
}

The following example is identical to the above except that the @Sql declarations are
grouped together within @SqlGroup for compatibility with Java 6 and Java 7.

@Test
@SqlGroup({
 @Sql(scripts = "/test-schema.sql", config = @SqlConfig(commentPrefix = "`")),
 @Sql("/test-user-data.sql")
)}
public void userTest {
 // execute code that uses the test schema and test data
}

Script execution phases

By default, SQL scripts will be executed before the corresponding test method. However,
if a particular set of scripts needs to be executed after the test method — for
example, to clean up database state — the executionPhase attribute in @Sql can be
used as seen in the following example. Note that ISOLATED and AFTER_TEST_METHOD are
statically imported from Sql.TransactionMode and Sql.ExecutionPhase respectively.

@Test
@Sql(
 scripts = "create-test-data.sql",
 config = @SqlConfig(transactionMode = ISOLATED)
)
@Sql(
 scripts = "delete-test-data.sql",
 config = @SqlConfig(transactionMode = ISOLATED),
 executionPhase = AFTER_TEST_METHOD
)
public void userTest {
 // execute code that needs the test data to be committed
 // to the database outside of the test's transaction
}

Script configuration with @SqlConfig

Configuration for script parsing and error handling can be configured via the
@SqlConfig annotation. When declared as a class-level annotation on an integration test
class, @SqlConfig serves as global configuration for all SQL scripts within the test
class hierarchy. When declared directly via the config attribute of the @Sql
annotation, @SqlConfig serves as local configuration for the SQL scripts declared
within the enclosing @Sql annotation. Every attribute in @SqlConfig has an implicit
default value which is documented in the javadocs of the corresponding attribute. Due to
the rules defined for annotation attributes in the Java Language Specification, it is
unfortunately not possible to assign a value of null to an annotation attribute. Thus,
in order to support overrides of inherited global configuration, @SqlConfig attributes
have an explicit default value of either "" for Strings or DEFAULT for Enums. This
approach allows local declarations of @SqlConfig to selectively override individual
attributes from global declarations of @SqlConfig by providing a value other than ""
or DEFAULT. Global @SqlConfig attributes are inherited whenever local @SqlConfig
attributes do not supply an explicit value other than "" or DEFAULT. Explicit local
configuration therefore overrides global configuration.

The configuration options provided by @Sql and @SqlConfig are equivalent to those
supported by ScriptUtils and ResourceDatabasePopulator but are a superset of those
provided by the <jdbc:initialize-database/> XML namespace element. Consult the javadocs
of individual attributes in @Sql and @SqlConfig for details.

Transaction management for @Sql

By default, the SqlScriptsTestExecutionListener will infer the desired transaction
semantics for scripts configured via @Sql. Specifically, SQL scripts will be executed
without a transaction, within an existing Spring-managed transaction — for example, a
transaction managed by the TransactionalTestExecutionListener for a test annotated with
@Transactional — or within an isolated transaction, depending on the configured value
of the transactionMode attribute in @SqlConfig and the presence of a
PlatformTransactionManager in the test’s ApplicationContext. As a bare minimum
however, a javax.sql.DataSource must be present in the test’s ApplicationContext.

If the algorithms used by SqlScriptsTestExecutionListener to detect a DataSource and
PlatformTransactionManager and infer the transaction semantics do not suit your needs,
you may specify explicit names via the dataSource and transactionManager attributes
of @SqlConfig. Furthermore, the transaction propagation behavior can be controlled via
the transactionMode attribute of @SqlConfig — for example, if scripts should be
executed in an isolated transaction. Although a thorough discussion of all supported
options for transaction management with @Sql is beyond the scope of this reference
manual, the javadocs for @SqlConfig and SqlScriptsTestExecutionListener provide
detailed information, and the following example demonstrates a typical testing scenario
using JUnit 4 and transactional tests with @Sql. Note that there is no need to clean up
the database after the usersTest() method is executed since any changes made to the
database (either within the test method or within the /test-data.sql script) will
be automatically rolled back by the TransactionalTestExecutionListener (see
transaction management for details).

@RunWith(SpringRunner.class)
@ContextConfiguration(classes = TestDatabaseConfig.class)
@Transactional
public class TransactionalSqlScriptsTests {

 protected JdbcTemplate jdbcTemplate;

 @Autowired
 public void setDataSource(DataSource dataSource) {
 this.jdbcTemplate = new JdbcTemplate(dataSource);
 }

 @Test
 @Sql("/test-data.sql")
 public void usersTest() {
 // verify state in test database:
 assertNumUsers(2);
 // execute code that uses the test data...
 }

 protected int countRowsInTable(String tableName) {
 return JdbcTestUtils.countRowsInTable(this.jdbcTemplate, tableName);
 }

 protected void assertNumUsers(int expected) {
 assertEquals("Number of rows in the [user] table.", expected, countRowsInTable("user"));
 }
}

TestContext Framework support classes

Spring JUnit 4 Runner

The Spring TestContext Framework offers full integration with JUnit 4 through a
custom runner (supported on JUnit 4.12 or higher). By annotating test classes with
@RunWith(SpringJUnit4ClassRunner.class) or the shorter @RunWith(SpringRunner.class)
variant, developers can implement standard JUnit 4 based unit and integration tests and
simultaneously reap the benefits of the TestContext framework such as support for loading
application contexts, dependency injection of test instances, transactional test method
execution, and so on. If you would like to use the Spring TestContext Framework with an
alternative runner such as JUnit 4’s Parameterized or third-party runners such as the
MockitoJUnitRunner, you may optionally use Spring’s support
for JUnit rules instead.

The following code listing displays the minimal requirements for configuring a test class
to run with the custom Spring Runner. @TestExecutionListeners is configured with an
empty list in order to disable the default listeners, which otherwise would require an
ApplicationContext to be configured through @ContextConfiguration.

@RunWith(SpringRunner.class)
@TestExecutionListeners({})
public class SimpleTest {

 @Test
 public void testMethod() {
 // execute test logic...
 }
}

Spring JUnit 4 Rules

The org.springframework.test.context.junit4.rules package provides the following JUnit
4 rules (supported on JUnit 4.12 or higher).

	
SpringClassRule

	
SpringMethodRule

SpringClassRule is a JUnit TestRule that supports class-level features of the
Spring TestContext Framework; whereas, SpringMethodRule is a JUnit MethodRule that
supports instance-level and method-level features of the Spring TestContext Framework.

In contrast to the SpringRunner, Spring’s rule-based JUnit support has the advantage
that it is independent of any org.junit.runner.Runner implementation and can therefore
be combined with existing alternative runners like JUnit 4’s Parameterized or third-party
runners such as the MockitoJUnitRunner.

In order to support the full functionality of the TestContext framework, a
SpringClassRule must be combined with a SpringMethodRule. The following example
demonstrates the proper way to declare these rules in an integration test.

// Optionally specify a non-Spring Runner via @RunWith(...)
@ContextConfiguration
public class IntegrationTest {

 @ClassRule
 public static final SpringClassRule springClassRule = new SpringClassRule();

 @Rule
 public final SpringMethodRule springMethodRule = new SpringMethodRule();

 @Test
 public void testMethod() {
 // execute test logic...
 }
}

JUnit 4 support classes

The org.springframework.test.context.junit4 package provides the following support
classes for JUnit 4 based test cases (supported on JUnit 4.12 or higher).

	
AbstractJUnit4SpringContextTests

	
AbstractTransactionalJUnit4SpringContextTests

AbstractJUnit4SpringContextTests is an abstract base test class that integrates the
Spring TestContext Framework with explicit ApplicationContext testing support in
a JUnit 4 environment. When you extend AbstractJUnit4SpringContextTests, you can
access a protected applicationContext instance variable that can be used to perform
explicit bean lookups or to test the state of the context as a whole.

AbstractTransactionalJUnit4SpringContextTests is an abstract transactional extension
of AbstractJUnit4SpringContextTests that adds some convenience functionality for JDBC
access. This class expects a javax.sql.DataSource bean and a PlatformTransactionManager
bean to be defined in the ApplicationContext. When you extend
AbstractTransactionalJUnit4SpringContextTests you can access a protected jdbcTemplate
instance variable that can be used to execute SQL statements to query the database. Such
queries can be used to confirm database state both prior to and after execution of
database-related application code, and Spring ensures that such queries run in the scope of
the same transaction as the application code. When used in conjunction with an ORM tool,
be sure to avoid false positives. As mentioned in
the section called “JDBC Testing Support”, AbstractTransactionalJUnit4SpringContextTests
also provides convenience methods which delegate to methods in JdbcTestUtils using the
aforementioned jdbcTemplate. Furthermore, AbstractTransactionalJUnit4SpringContextTests
provides an executeSqlScript(..) method for executing SQL scripts against the configured
DataSource.

	[image: [Tip]]	Tip
	
These classes are a convenience for extension. If you do not want your test classes to be
tied to a Spring-specific class hierarchy, you can configure your own custom test classes
by using @RunWith(SpringRunner.class) or Spring’s
JUnit rules.

JUnit 5 Support

Spring Framework 5.0 offers full integration with the JUnit Jupiter testing framework
introduced in JUnit 5. Developers are therefore encouraged to upgrade to Spring 5.x to
benefit fully from Spring’s support for JUnit 5. However, if your project for some reason
cannot yet upgrade to Spring 5.x, you may be interested in using the
spring-test-junit5 project as a temporary
solution to assist you in upgrading to JUnit 5 while still using Spring Framework 4.3.x.

TestNG support classes

The org.springframework.test.context.testng package provides the following support
classes for TestNG based test cases.

	
AbstractTestNGSpringContextTests

	
AbstractTransactionalTestNGSpringContextTests

AbstractTestNGSpringContextTests is an abstract base test class that integrates the
Spring TestContext Framework with explicit ApplicationContext testing support in
a TestNG environment. When you extend AbstractTestNGSpringContextTests, you can
access a protected applicationContext instance variable that can be used to perform
explicit bean lookups or to test the state of the context as a whole.

AbstractTransactionalTestNGSpringContextTests is an abstract transactional extension
of AbstractTestNGSpringContextTests that adds some convenience functionality for JDBC
access. This class expects a javax.sql.DataSource bean and a PlatformTransactionManager
bean to be defined in the ApplicationContext. When you extend
AbstractTransactionalTestNGSpringContextTests you can access a protected jdbcTemplate
instance variable that can be used to execute SQL statements to query the database. Such
queries can be used to confirm database state both prior to and after execution of
database-related application code, and Spring ensures that such queries run in the scope of
the same transaction as the application code. When used in conjunction with an ORM tool,
be sure to avoid false positives. As mentioned in
the section called “JDBC Testing Support”, AbstractTransactionalTestNGSpringContextTests
also provides convenience methods which delegate to methods in JdbcTestUtils using the
aforementioned jdbcTemplate. Furthermore, AbstractTransactionalTestNGSpringContextTests
provides an executeSqlScript(..) method for executing SQL scripts against the configured
DataSource.

	[image: [Tip]]	Tip
	
These classes are a convenience for extension. If you do not want your test classes to be
tied to a Spring-specific class hierarchy, you can configure your own custom test classes
by using @ContextConfiguration, @TestExecutionListeners, and so on, and by manually
instrumenting your test class with a TestContextManager. See the source code of
AbstractTestNGSpringContextTests for an example of how to instrument your test class.

Spring MVC Test Framework

The Spring MVC Test framework provides first class support for testing Spring MVC
code using a fluent API that can be used with JUnit, TestNG, or any other testing
framework. It’s built on the
Servlet API mock objects
from the spring-test module and hence does not use a running Servlet container. It
uses the DispatcherServlet to provide full Spring MVC runtime behavior and provides support
for loading actual Spring configuration with the TestContext framework in addition to a
standalone mode in which controllers may be instantiated manually and tested one at a time.

Spring MVC Test also provides client-side support for testing code that uses
the RestTemplate. Client-side tests mock the server responses and also do not
use a running server.

	[image: [Tip]]	Tip
	
Spring Boot provides an option to write full, end-to-end integration tests that include
a running server. If this is your goal please have a look at the
Spring Boot reference page.
For more information on the differences between out-of-container and end-to-end
integration tests, see the section called “Differences between Out-of-Container and End-to-End Integration Tests”.

Server-Side Tests

It’s easy to write a plain unit test for a Spring MVC controller using JUnit or TestNG:
simply instantiate the controller, inject it with mocked or stubbed dependencies, and call
its methods passing MockHttpServletRequest, MockHttpServletResponse, etc., as necessary.
However, when writing such a unit test, much remains untested: for example, request
mappings, data binding, type conversion, validation, and much more. Furthermore, other
controller methods such as @InitBinder, @ModelAttribute, and @ExceptionHandler may
also be invoked as part of the request processing lifecycle.

The goal of Spring MVC Test is to provide an effective way for testing controllers
by performing requests and generating responses through the actual DispatcherServlet.

Spring MVC Test builds on the familiar "mock" implementations
of the Servlet API available in the spring-test module. This allows performing
requests and generating responses without the need for running in a Servlet container.
For the most part everything should work as it does at runtime with a few notable
exceptions as explained in the section called “Differences between Out-of-Container and End-to-End Integration Tests”. Here is a
JUnit 4 based example of using Spring MVC Test:

import static org.springframework.test.web.servlet.request.MockMvcRequestBuilders.*;
import static org.springframework.test.web.servlet.result.MockMvcResultMatchers.*;

@RunWith(SpringRunner.class)
@WebAppConfiguration
@ContextConfiguration("test-servlet-context.xml")
public class ExampleTests {

 @Autowired
 private WebApplicationContext wac;

 private MockMvc mockMvc;

 @Before
 public void setup() {
 this.mockMvc = MockMvcBuilders.webAppContextSetup(this.wac).build();
 }

 @Test
 public void getAccount() throws Exception {
 this.mockMvc.perform(get("/accounts/1").accept(MediaType.parseMediaType("application/json;charset=UTF-8")))
 .andExpect(status().isOk())
 .andExpect(content().contentType("application/json"))
 .andExpect(jsonPath("$.name").value("Lee"));
 }
}

The above test relies on the WebApplicationContext support of the TestContext framework
for loading Spring configuration from an XML configuration file located in the same package
as the test class, but Java-based and Groovy-based configuration are also supported. See these
sample tests.

The MockMvc instance is used to perform a GET request to "/accounts/1" and verify
that the resulting response has status 200, the content type is "application/json", and the
response body has a JSON property called "name" with the value "Lee". The jsonPath
syntax is supported through the Jayway JsonPath
project. There are lots of other options for verifying the result of the performed
request that will be discussed below.

Static Imports

The fluent API in the example above requires a few static imports such as
MockMvcRequestBuilders.*, MockMvcResultMatchers.*,
and MockMvcBuilders.*. An easy way to find these classes is to search for
types matching "MockMvc*". If using Eclipse, be sure to add them as
"favorite static members" in the Eclipse preferences under
Java → Editor → Content Assist → Favorites. That will allow use of content
assist after typing the first character of the static method name. Other IDEs (e.g.
IntelliJ) may not require any additional configuration. Just check the support for code
completion on static members.

Setup Choices

There are two main options for creating an instance of MockMvc.
The first is to load Spring MVC configuration through the TestContext
framework, which loads the Spring configuration and injects a WebApplicationContext
into the test to use to build a MockMvc instance:

@RunWith(SpringRunner.class)
@WebAppConfiguration
@ContextConfiguration("my-servlet-context.xml")
public class MyWebTests {

 @Autowired
 private WebApplicationContext wac;

 private MockMvc mockMvc;

 @Before
 public void setup() {
 this.mockMvc = MockMvcBuilders.webAppContextSetup(this.wac).build();
 }

 // ...

}

The second is to simply create a controller instance manually without loading Spring
configuration. Instead basic default configuration, roughly comparable to that of
the MVC JavaConfig or the MVC namespace, is automatically created and can be customized
to a degree:

public class MyWebTests {

 private MockMvc mockMvc;

 @Before
 public void setup() {
 this.mockMvc = MockMvcBuilders.standaloneSetup(new AccountController()).build();
 }

 // ...

}

Which setup option should you use?

The "webAppContextSetup" loads your actual Spring MVC configuration resulting in a
more complete integration test. Since the TestContext framework caches the loaded
Spring configuration, it helps keep tests running fast, even as you introduce more tests
in your test suite. Furthermore, you can inject mock services into controllers through
Spring configuration in order to remain focused on testing the web layer. Here is an
example of declaring a mock service with Mockito:

<bean id="accountService" class="org.mockito.Mockito" factory-method="mock">
 <constructor-arg value="org.example.AccountService"/>
</bean>

You can then inject the mock service into the test in order set up and verify
expectations:

@RunWith(SpringRunner.class)
@WebAppConfiguration
@ContextConfiguration("test-servlet-context.xml")
public class AccountTests {

 @Autowired
 private WebApplicationContext wac;

 private MockMvc mockMvc;

 @Autowired
 private AccountService accountService;

 // ...

}

The "standaloneSetup" on the other hand is a little closer to a unit test. It tests
one controller at a time: the controller can be injected with mock dependencies manually,
and it doesn’t involve loading Spring configuration. Such tests are more focused on style
and make it easier to see which controller is being tested, whether any specific Spring
MVC configuration is required to work, and so on. The "standaloneSetup" is also a very
convenient way to write ad-hoc tests to verify specific behavior or to debug an issue.

Just like with any "integration vs. unit testing" debate, there is no right or wrong
answer. However, using the "standaloneSetup" does imply the need for additional
"webAppContextSetup" tests in order to verify your Spring MVC configuration.
Alternatively, you may choose to write all tests with "webAppContextSetup" in order to
always test against your actual Spring MVC configuration.

Performing Requests

It’s easy to perform requests using any HTTP method:

mockMvc.perform(post("/hotels/{id}", 42).accept(MediaType.APPLICATION_JSON));

You can also perform file upload requests that internally use
MockMultipartHttpServletRequest so that there is no actual parsing of a multipart
request but rather you have to set it up:

mockMvc.perform(fileUpload("/doc").file("a1", "ABC".getBytes("UTF-8")));

You can specify query parameters in URI template style:

mockMvc.perform(get("/hotels?foo={foo}", "bar"));

Or you can add Servlet request parameters representing either query of form parameters:

mockMvc.perform(get("/hotels").param("foo", "bar"));

If application code relies on Servlet request parameters and doesn’t check the query
string explicitly (as is most often the case) then it doesn’t matter which option you use.
Keep in mind however that query params provided with the URI template will be decoded while
request parameters provided through the param(…​) method are expected to already be decoded.

In most cases it’s preferable to leave out the context path and the Servlet path from
the request URI. If you must test with the full request URI, be sure to set the
contextPath and servletPath accordingly so that request mappings will work:

mockMvc.perform(get("/app/main/hotels/{id}").contextPath("/app").servletPath("/main"))

Looking at the above example, it would be cumbersome to set the contextPath and
servletPath with every performed request. Instead you can set up default request
properties:

public class MyWebTests {

 private MockMvc mockMvc;

 @Before
 public void setup() {
 mockMvc = standaloneSetup(new AccountController())
 .defaultRequest(get("/")
 .contextPath("/app").servletPath("/main")
 .accept(MediaType.APPLICATION_JSON).build();
 }

The above properties will affect every request performed through the MockMvc instance.
If the same property is also specified on a given request, it overrides the default value.
That is why the HTTP method and URI in the default request don’t matter since they must be
specified on every request.

Defining Expectations

Expectations can be defined by appending one or more .andExpect(..) calls after
performing a request:

mockMvc.perform(get("/accounts/1")).andExpect(status().isOk());

MockMvcResultMatchers.* provides a number of expectations, some of which are further
nested with more detailed expectations.

Expectations fall in two general categories. The first category of assertions verifies
properties of the response: for example, the response status, headers, and content. These
are the most important results to assert.

The second category of assertions goes beyond the response. These assertions allow
one to inspect Spring MVC specific aspects such as which controller method processed
the request, whether an exception was raised and handled, what the content of the model
is, what view was selected, what flash attributes were added, and so on. They also allow
one to inspect Servlet specific aspects such as request and session attributes.

The following test asserts that binding or validation failed:

mockMvc.perform(post("/persons"))
 .andExpect(status().isOk())
 .andExpect(model().attributeHasErrors("person"));

Many times when writing tests, it’s useful to dump the results of the performed request.
This can be done as follows, where print() is a static import from
MockMvcResultHandlers:

mockMvc.perform(post("/persons"))
 .andDo(print())
 .andExpect(status().isOk())
 .andExpect(model().attributeHasErrors("person"));

As long as request processing does not cause an unhandled exception, the print() method
will print all the available result data to System.out. Spring Framework 4.2 introduced
a log() method and two additional variants of the print() method, one that accepts
an OutputStream and one that accepts a Writer. For example, invoking
print(System.err) will print the result data to System.err; while invoking
print(myWriter) will print the result data to a custom writer. If you would like to
have the result data logged instead of printed, simply invoke the log() method which
will log the result data as a single DEBUG message under the
org.springframework.test.web.servlet.result logging category.

In some cases, you may want to get direct access to the result and verify something that
cannot be verified otherwise. This can be achieved by appending .andReturn() after all
other expectations:

MvcResult mvcResult = mockMvc.perform(post("/persons")).andExpect(status().isOk()).andReturn();
// ...

If all tests repeat the same expectations you can set up common expectations once
when building the MockMvc instance:

standaloneSetup(new SimpleController())
 .alwaysExpect(status().isOk())
 .alwaysExpect(content().contentType("application/json;charset=UTF-8"))
 .build()

Note that common expectations are always applied and cannot be overridden without
creating a separate MockMvc instance.

When JSON response content contains hypermedia links created with
Spring HATEOAS, the resulting links can
be verified using JsonPath expressions:

mockMvc.perform(get("/people").accept(MediaType.APPLICATION_JSON))
 .andExpect(jsonPath("$.links[?(@.rel == 'self')].href").value("http://localhost:8080/people"));

When XML response content contains hypermedia links created with
Spring HATEOAS, the resulting links can
be verified using XPath expressions:

Map<String, String> ns = Collections.singletonMap("ns", "http://www.w3.org/2005/Atom");
mockMvc.perform(get("/handle").accept(MediaType.APPLICATION_XML))
 .andExpect(xpath("/person/ns:link[@rel='self']/@href", ns).string("http://localhost:8080/people"));

Filter Registrations

When setting up a MockMvc instance, you can register one or more Servlet Filter instances:

mockMvc = standaloneSetup(new PersonController()).addFilters(new CharacterEncodingFilter()).build();

Registered filters will be invoked through via the MockFilterChain from spring-test, and the
last filter will delegate to the DispatcherServlet.

Differences between Out-of-Container and End-to-End Integration Tests

As mentioned earlier Spring MVC Test is built on the Servlet API mock objects from
the spring-test module and does not use a running Servlet container. Therefore
there are some important differences compared to full end-to-end integration tests
with an actual client and server running.

The easiest way to think about this is starting with a blank MockHttpServletRequest.
Whatever you add to it is what the request will be. Things that may catch you by surprise
are that there is no context path by default, no jsessionid cookie, no forwarding, error,
or async dispatches, and therefore no actual JSP rendering. Instead, "forwarded" and
"redirected" URLs are saved in the MockHttpServletResponse and can be asserted with
expectations.

This means if you are using JSPs you can verify the JSP page to which the request was
forwarded, but there won’t be any HTML rendered. In other words, the JSP will not be
invoked. Note however that all other rendering technologies which don’t rely on
forwarding such as Thymeleaf, Freemarker, and Velocity will render HTML to the response
body as expected. The same is true for rendering JSON, XML, and other formats via
@ResponseBody methods.

Alternatively you may consider the full end-to-end integration testing support from
Spring Boot via @WebIntegrationTest. See the
Spring Boot reference.

There are pros and cons for each approach. The options provided in Spring MVC Test
are different stops on the scale from classic unit testing to full integration testing.
To be certain, none of the options in Spring MVC Test fall under the category of classic
unit testing, but they are a little closer to it. For example, you can isolate the web
layer by injecting mocked services into controllers, in which case you’re testing the web
layer only through the DispatcherServlet but with actual Spring configuration, just
like you might test the data access layer in isolation from the layers above. Or you
can use the standalone setup focusing on one controller at a time and manually providing
the configuration required to make it work.

Another important distinction when using Spring MVC Test is that conceptually such
tests are on the inside of the server-side so you can check what handler was used,
if an exception was handled with a HandlerExceptionResolver, what the content of the
model is, what binding errors there were, etc. That means it’s easier to write
expectations since the server is not a black box as it is when testing it through
an actual HTTP client. This is generally an advantage of classic unit testing, that it’s
easier to write, reason about, and debug but does not replace the need for full
integration tests. At the same time it’s important not to lose sight of the fact that
the response is the most important thing to check. In short, there is room here for
multiple styles and strategies of testing even within the same project.

Further Server-Side Test Examples

The framework’s own tests include
many
sample tests intended to demonstrate how to use Spring MVC Test. Browse these examples
for further ideas. Also the
spring-mvc-showcase has full test
coverage based on Spring MVC Test.

HtmlUnit Integration

Spring provides integration between MockMvc and
HtmlUnit. This simplifies performing end-to-end testing
when using HTML based views. This integration enables developers to:

	
Easily test HTML pages using tools such as HtmlUnit,
WebDriver, &
Geb without the
need to deploy to a Servlet container

	
Test JavaScript within pages

	
Optionally test using mock services to speed up testing

	
Share logic between in-container end-to-end tests and out-of-container integration tests

	[image: [Note]]	Note
	
MockMvc works with templating technologies that do not rely on a Servlet Container (e.g.,
Thymeleaf, Freemarker, Velocity, etc.), but it does not work with JSPs since they rely on
the Servlet Container.

Why HtmlUnit Integration?

The most obvious question that comes to mind is, "Why do I need this?". The answer is best
found by exploring a very basic sample application. Assume you have a Spring MVC web
application that supports CRUD operations on a Message object. The application also supports
paging through all messages. How would you go about testing it?

With Spring MVC Test, we can easily test if we are able to create a Message.

MockHttpServletRequestBuilder createMessage = post("/messages/")
 .param("summary", "Spring Rocks")
 .param("text", "In case you didn't know, Spring Rocks!");

mockMvc.perform(createMessage)
 .andExpect(status().is3xxRedirection())
 .andExpect(redirectedUrl("/messages/123"));

What if we want to test our form view that allows us to create the message? For example,
assume our form looks like the following snippet:

<form id="messageForm" action="/messages/" method="post">
 <div class="pull-right">Messages</div>

 <label for="summary">Summary</label>
 <input type="text" class="required" id="summary" name="summary" value="" />

 <label for="text">Message</label>
 <textarea id="text" name="text"></textarea>

 <div class="form-actions">
 <input type="submit" value="Create" />
 </div>
</form>

How do we ensure that our form will produce the correct request to create a new message? A
naive attempt would look like this:

mockMvc.perform(get("/messages/form"))
 .andExpect(xpath("//input[@name='summary']").exists())
 .andExpect(xpath("//textarea[@name='text']").exists());

This test has some obvious drawbacks. If we update our controller to use the parameter
message instead of text, our form test would continue to pass even though the HTML
form is out of synch with the controller. To resolve this we can combine our two tests.

String summaryParamName = "summary";
String textParamName = "text";
mockMvc.perform(get("/messages/form"))
 .andExpect(xpath("//input[@name='" + summaryParamName + "']").exists())
 .andExpect(xpath("//textarea[@name='" + textParamName + "']").exists());

MockHttpServletRequestBuilder createMessage = post("/messages/")
 .param(summaryParamName, "Spring Rocks")
 .param(textParamName, "In case you didn't know, Spring Rocks!");

mockMvc.perform(createMessage)
 .andExpect(status().is3xxRedirection())
 .andExpect(redirectedUrl("/messages/123"));

This would reduce the risk of our test incorrectly passing, but there are still some
problems.

	
What if we have multiple forms on our page? Admittedly we could update our xpath
expressions, but they get more complicated the more factors we take into account (Are the
fields the correct type? Are the fields enabled? etc.).

	
Another issue is that we are doing double the work we would expect.
We must first verify the view, and then we submit the view with the same parameters we just
verified. Ideally this could be done all at once.

	
Finally, there are some things that we still cannot account for. For example, what if the
form has JavaScript validation that we wish to test as well?

The overall problem is that testing a web page does not involve a single interaction.
Instead, it is a combination of how the user interacts with a web page and how that web
page interacts with other resources. For example, the result of a form view is used as
the input to a user for creating a message. In addition, our form view may potentially
utilize additional resources which impact the behavior of the page, such as JavaScript
validation.

Integration testing to the rescue?

To resolve the issues above we could perform end-to-end integration testing, but this has
some obvious drawbacks. Consider testing the view that allows us to page through the messages.
We might need the following tests.

	
Does our page display a notification to the user indicating that no results are available
when the messages are empty?

	
Does our page properly display a single message?

	
Does our page properly support paging?

To set up these tests, we would need to ensure our database contained the proper messages
in it. This leads to a number of additional challenges.

	
Ensuring the proper messages are in the database can be tedious; consider foreign key
constraints.

	
Testing can become slow since each test would need to ensure that the database is in the
correct state.

	
Since our database needs to be in a specific state, we cannot run tests in parallel.

	
Performing assertions on things like auto-generated ids, timestamps, etc. can be difficult.

These challenges do not mean that we should abandon end-to-end integration testing
altogether. Instead, we can reduce the number of end-to-end integration tests by
refactoring our detailed tests to use mock services which will execute much faster, more
reliably, and without side effects. We can then implement a small number of true
end-to-end integration tests that validate simple workflows to ensure that everything
works together properly.

Enter HtmlUnit Integration

So how can we achieve a balance between testing the interactions of our pages and still
retain good performance within our test suite? The answer is: "By integrating MockMvc
with HtmlUnit."

HtmlUnit Integration Options

There are a number of ways to integrate MockMvc with HtmlUnit.

	
MockMvc and HtmlUnit: Use this option if you
want to use the raw HtmlUnit libraries.

	
MockMvc and WebDriver: Use this option to
ease development and reuse code between integration and end-to-end testing.

	
MockMvc and Geb: Use this option if you would
like to use Groovy for testing, ease development, and reuse code between integration and
end-to-end testing.

MockMvc and HtmlUnit

This section describes how to integrate MockMvc and HtmlUnit. Use this option if you
want to use the raw HtmlUnit libraries.

MockMvc and HtmlUnit Setup

First, make sure that you have included a test dependency on net.sourceforge.htmlunit:htmlunit.
In order to use HtmlUnit with Apache HttpComponents 4.5+, you will need to use HtmlUnit
2.18 or higher.

We can easily create an HtmlUnit WebClient that integrates with MockMvc using the
MockMvcWebClientBuilder as follows.

@Autowired
WebApplicationContext context;

WebClient webClient;

@Before
public void setup() {
 webClient = MockMvcWebClientBuilder
 .webAppContextSetup(context)
 .build();
}

	[image: [Note]]	Note
	
This is a simple example of using MockMvcWebClientBuilder. For advanced usage see
the section called “Advanced MockMvcWebClientBuilder”

This will ensure that any URL referencing localhost as the server will be directed to
our MockMvc instance without the need for a real HTTP connection. Any other URL will be
requested using a network connection as normal. This allows us to easily test the use of
CDNs.

MockMvc and HtmlUnit Usage

Now we can use HtmlUnit as we normally would, but without the need to deploy our
application to a Servlet container. For example, we can request the view to create
a message with the following.

HtmlPage createMsgFormPage = webClient.getPage("http://localhost/messages/form");

	[image: [Note]]	Note
	
The default context path is "". Alternatively, we can specify the context path as
illustrated in the section called “Advanced MockMvcWebClientBuilder”.

Once we have a reference to the HtmlPage, we can then fill out the form and submit
it to create a message.

HtmlForm form = createMsgFormPage.getHtmlElementById("messageForm");
HtmlTextInput summaryInput = createMsgFormPage.getHtmlElementById("summary");
summaryInput.setValueAttribute("Spring Rocks");
HtmlTextArea textInput = createMsgFormPage.getHtmlElementById("text");
textInput.setText("In case you didn't know, Spring Rocks!");
HtmlSubmitInput submit = form.getOneHtmlElementByAttribute("input", "type", "submit");
HtmlPage newMessagePage = submit.click();

Finally, we can verify that a new message was created successfully. The following
assertions use the AssertJ library.

assertThat(newMessagePage.getUrl().toString()).endsWith("/messages/123");
String id = newMessagePage.getHtmlElementById("id").getTextContent();
assertThat(id).isEqualTo("123");
String summary = newMessagePage.getHtmlElementById("summary").getTextContent();
assertThat(summary).isEqualTo("Spring Rocks");
String text = newMessagePage.getHtmlElementById("text").getTextContent();
assertThat(text).isEqualTo("In case you didn't know, Spring Rocks!");

This improves on our MockMvc test in a
number of ways. First we no longer have to explicitly verify our form and then create a
request that looks like the form. Instead, we request the form, fill it out, and submit
it, thereby significantly reducing the overhead.

Another important factor is that HtmlUnit
uses the Mozilla Rhino engine to evaluate JavaScript. This means that we can test the
behavior of JavaScript within our pages as well!

Refer to the HtmlUnit documentation
for additional information about using HtmlUnit.

Advanced MockMvcWebClientBuilder

In the examples so far, we have used MockMvcWebClientBuilder in the simplest way possible,
by building a WebClient based on the WebApplicationContext loaded for us by the Spring
TestContext Framework. This approach is repeated here.

@Autowired
WebApplicationContext context;

WebClient webClient;

@Before
public void setup() {
 webClient = MockMvcWebClientBuilder
 .webAppContextSetup(context)
 .build();
}

We can also specify additional configuration options.

WebClient webClient;

@Before
public void setup() {
 webClient = MockMvcWebClientBuilder
 // demonstrates applying a MockMvcConfigurer (Spring Security)
 .webAppContextSetup(context, springSecurity())
 // for illustration only - defaults to ""
 .contextPath("")
 // By default MockMvc is used for localhost only;
 // the following will use MockMvc for example.com and example.org as well
 .useMockMvcForHosts("example.com","example.org")
 .build();
}

As an alternative, we can perform the exact same setup by configuring the MockMvc
instance separately and supplying it to the MockMvcWebClientBuilder as follows.

MockMvc mockMvc = MockMvcBuilders
 .webAppContextSetup(context)
 .apply(springSecurity())
 .build();

webClient = MockMvcWebClientBuilder
 .mockMvcSetup(mockMvc)
 // for illustration only - defaults to ""
 .contextPath("")
 // By default MockMvc is used for localhost only;
 // the following will use MockMvc for example.com and example.org as well
 .useMockMvcForHosts("example.com","example.org")
 .build();

This is more verbose, but by building the WebClient with a MockMvc instance we have
the full power of MockMvc at our fingertips.

	[image: [Tip]]	Tip
	
For additional information on creating a MockMvc instance refer to
the section called “Setup Choices”.

MockMvc and WebDriver

In the previous sections, we have seen how to use MockMvc in conjunction with the raw
HtmlUnit APIs. In this section, we will leverage additional abstractions within the Selenium
WebDriver to make things even easier.

Why WebDriver and MockMvc?

We can already use HtmlUnit and MockMvc, so why would we want to use WebDriver? The
Selenium WebDriver provides a very elegant API that allows us to easily organize our code.
To better understand, let’s explore an example.

	[image: [Note]]	Note
	
Despite being a part of Selenium, WebDriver does not require
a Selenium Server to run your tests.

Suppose we need to ensure that a message is created properly. The tests involve finding
the HTML form input elements, filling them out, and making various assertions.

This approach results in numerous, separate tests because we want to test error
conditions as well. For example, we want to ensure that we get an error if we fill out
only part of the form. If we fill out the entire form, the newly created message should
be displayed afterwards.

If one of the fields were named "summary", then we might have something like the
following repeated in multiple places within our tests.

HtmlTextInput summaryInput = currentPage.getHtmlElementById("summary");
summaryInput.setValueAttribute(summary);

So what happens if we change the id to "smmry"? Doing so would force us to update all
of our tests to incorporate this change! Of course, this violates the DRY Principle; so
we should ideally extract this code into its own method as follows.

public HtmlPage createMessage(HtmlPage currentPage, String summary, String text) {
 setSummary(currentPage, summary);
 // ...
}

public void setSummary(HtmlPage currentPage, String summary) {
 HtmlTextInput summaryInput = currentPage.getHtmlElementById("summary");
 summaryInput.setValueAttribute(summary);
}

This ensures that we do not have to update all of our tests if we change the UI.

We might even take this a step further and place this logic within an Object that
represents the HtmlPage we are currently on.

public class CreateMessagePage {

 final HtmlPage currentPage;

 final HtmlTextInput summaryInput;

 final HtmlSubmitInput submit;

 public CreateMessagePage(HtmlPage currentPage) {
 this.currentPage = currentPage;
 this.summaryInput = currentPage.getHtmlElementById("summary");
 this.submit = currentPage.getHtmlElementById("submit");
 }

 public <T> T createMessage(String summary, String text) throws Exception {
 setSummary(summary);

 HtmlPage result = submit.click();
 boolean error = CreateMessagePage.at(result);

 return (T) (error ? new CreateMessagePage(result) : new ViewMessagePage(result));
 }

 public void setSummary(String summary) throws Exception {
 summaryInput.setValueAttribute(summary);
 }

 public static boolean at(HtmlPage page) {
 return "Create Message".equals(page.getTitleText());
 }
}

Formerly, this pattern is known as the
Page Object Pattern. While we can
certainly do this with HtmlUnit, WebDriver provides some tools that we will explore in the
following sections to make this pattern much easier to implement.

MockMvc and WebDriver Setup

To use Selenium WebDriver with the Spring MVC Test framework, make sure that your project
includes a test dependency on org.seleniumhq.selenium:selenium-htmlunit-driver.

We can easily create a Selenium WebDriver that integrates with MockMvc using the
MockMvcHtmlUnitDriverBuilder as follows.

	@Autowired
	WebApplicationContext context;

	WebDriver driver;

	@Before
	public void setup() {
		driver = MockMvcHtmlUnitDriverBuilder
				.webAppContextSetup(context)
				.build();
}

	[image: [Note]]	Note
	
This is a simple example of using MockMvcHtmlUnitDriverBuilder.
For more advanced usage, refer to the section called “Advanced MockMvcHtmlUnitDriverBuilder”

This will ensure that any URL referencing localhost as the server will be directed to
our MockMvc instance without the need for a real HTTP connection. Any other URL will be
requested using a network connection as normal. This allows us to easily test the use of
CDNs.

MockMvc and WebDriver Usage

Now we can use WebDriver as we normally would, but without the need to deploy our
application to a Servlet container. For example, we can request the view to create
a message with the following.

CreateMessagePage page = CreateMessagePage.to(driver);

We can then fill out the form and submit it to create a message.

ViewMessagePage viewMessagePage =
 page.createMessage(ViewMessagePage.class, expectedSummary, expectedText);

This improves on the design of our
HtmlUnit test by leveraging the Page Object
Pattern. As we mentioned in the section called “Why WebDriver and MockMvc?”, we can
use the Page Object Pattern with HtmlUnit, but it is much easier with WebDriver. Let’s
take a look at our new CreateMessagePage implementation.

public class CreateMessagePage
 extends AbstractPage { [image: 1]

 [image: 2]
 private WebElement summary;
 private WebElement text;

 [image: 3]
 @FindBy(css = "input[type=submit]")
 private WebElement submit;

 public CreateMessagePage(WebDriver driver) {
 super(driver);
 }

 public <T> T createMessage(Class<T> resultPage, String summary, String details) {
 this.summary.sendKeys(summary);
 this.text.sendKeys(details);
 this.submit.click();
 return PageFactory.initElements(driver, resultPage);
 }

 public static CreateMessagePage to(WebDriver driver) {
 driver.get("http://localhost:9990/mail/messages/form");
 return PageFactory.initElements(driver, CreateMessagePage.class);
 }
}

	[image: 1]
	
The first thing you will notice is that CreateMessagePage extends the
AbstractPage. We won’t go over the details of AbstractPage, but in summary it
contains common functionality for all of our pages. For example, if our application has
a navigational bar, global error messages, etc., this logic can be placed in a shared
location.

	[image: 2]
	
The next thing you will notice is that we have a member variable for each of the
parts of the HTML page that we are interested in. These are of type WebElement.
WebDriver's PageFactory allows
us to remove a lot of code from the HtmlUnit version of CreateMessagePage by
automatically resolving each WebElement. The
PageFactory#initElements(WebDriver,Class<T>)
method will automatically resolve each WebElement by using the field name and looking it
up by the id or name of the element within the HTML page.

	[image: 3]
	
We can use the
@FindBy annotation
to override the default lookup behavior. Our example demonstrates how to use the @FindBy
annotation to look up our submit button using a css selector, input[type=submit].

Finally, we can verify that a new message was created successfully. The following
assertions use the FEST assertion library.

assertThat(viewMessagePage.getMessage()).isEqualTo(expectedMessage);
assertThat(viewMessagePage.getSuccess()).isEqualTo("Successfully created a new message");

We can see that our ViewMessagePage allows us to interact with our custom domain
model. For example, it exposes a method that returns a Message object.

public Message getMessage() throws ParseException {
 Message message = new Message();
 message.setId(getId());
 message.setCreated(getCreated());
 message.setSummary(getSummary());
 message.setText(getText());
 return message;
}

We can then leverage the rich domain objects in our assertions.

Lastly, don’t forget to close the WebDriver instance when the test is complete.

@After
public void destroy() {
 if (driver != null) {
 driver.close();
 }
}

For additional information on using WebDriver, refer to the Selenium
WebDriver documentation.

Advanced MockMvcHtmlUnitDriverBuilder

In the examples so far, we have used MockMvcHtmlUnitDriverBuilder in the simplest way
possible, by building a WebDriver based on the WebApplicationContext loaded for us by
the Spring TestContext Framework. This approach is repeated here.

@Autowired
WebApplicationContext context;

WebDriver driver;

@Before
public void setup() {
 driver = MockMvcHtmlUnitDriverBuilder
 .webAppContextSetup(context)
 .build();
}

We can also specify additional configuration options.

	WebDriver driver;

	@Before
	public void setup() {
		driver = MockMvcHtmlUnitDriverBuilder
				// demonstrates applying a MockMvcConfigurer (Spring Security)
				.webAppContextSetup(context, springSecurity())
				// for illustration only - defaults to ""
				.contextPath("")
				// By default MockMvc is used for localhost only;
				// the following will use MockMvc for example.com and example.org as well
				.useMockMvcForHosts("example.com","example.org")
				.build();
}

As an alternative, we can perform the exact same setup by configuring the MockMvc
instance separately and supplying it to the MockMvcHtmlUnitDriverBuilder as follows.

MockMvc mockMvc = MockMvcBuilders
 .webAppContextSetup(context)
 .apply(springSecurity())
 .build();

driver = MockMvcHtmlUnitDriverBuilder
 .mockMvcSetup(mockMvc)
 // for illustration only - defaults to ""
 .contextPath("")
 // By default MockMvc is used for localhost only;
 // the following will use MockMvc for example.com and example.org as well
 .useMockMvcForHosts("example.com","example.org")
 .build();

This is more verbose, but by building the WebDriver with a MockMvc instance we have
the full power of MockMvc at our fingertips.

	[image: [Tip]]	Tip
	
For additional information on creating a MockMvc instance refer to
the section called “Setup Choices”.

MockMvc and Geb

In the previous section, we saw how to use MockMvc with WebDriver. In this section,
we will use Geb to make our tests even Groovy-er.

Why Geb and MockMvc?

Geb is backed by WebDriver, so it offers many of the
same benefits that we get from
WebDriver. However, Geb makes things even easier by taking care of some of the
boilerplate code for us.

MockMvc and Geb Setup

We can easily initialize a Geb Browser with a Selenium WebDriver that uses MockMvc
as follows.

def setup() {
	browser.driver = MockMvcHtmlUnitDriverBuilder
		.webAppContextSetup(context)
		.build()
}

	[image: [Note]]	Note
	
This is a simple example of using MockMvcHtmlUnitDriverBuilder.
For more advanced usage, refer to the section called “Advanced MockMvcHtmlUnitDriverBuilder”

This will ensure that any URL referencing localhost as the server will be directed to
our MockMvc instance without the need for a real HTTP connection. Any other URL will be
requested using a network connection as normal. This allows us to easily test the use of
CDNs.

MockMvc and Geb Usage

Now we can use Geb as we normally would, but without the need to deploy our
application to a Servlet container. For example, we can request the view to create
a message with the following:

to CreateMessagePage

We can then fill out the form and submit it to create a message.

when:
form.summary = expectedSummary
form.text = expectedMessage
submit.click(ViewMessagePage)

Any unrecognized method calls or property accesses/references that are not found will be
forwarded to the current page object. This removes a lot of the boilerplate code we needed
when using WebDriver directly.

As with direct WebDriver usage, this improves on the design of our
HtmlUnit test by leveraging the Page Object
Pattern. As mentioned previously, we can use the Page Object Pattern with HtmlUnit and
WebDriver, but it is even easier with Geb. Let’s take a look at our new Groovy-based
CreateMessagePage implementation.

class CreateMessagePage extends Page {
	static url = 'messages/form'
	static at = { assert title == 'Messages : Create'; true }
	static content = {
		submit { $('input[type=submit]') }
		form { $('form') }
		errors(required:false) { $('label.error, .alert-error')?.text() }
	}
}

The first thing you will notice is that our CreateMessagePage extends Page. We won’t
go over the details of Page, but in summary it contains common functionality for all of
our pages. The next thing you will notice is that we define a URL in which this page can
be found. This allows us to navigate to the page as follows.

to CreateMessagePage

We also have an at closure that determines if we are at the specified page. It should return
true if we are on the correct page. This is why we can assert that we are on the correct
page as follows.

then:
at CreateMessagePage
errors.contains('This field is required.')

	[image: [Note]]	Note
	
We use an assertion in the closure, so that we can determine where things went wrong if
we were at the wrong page.

Next we create a content closure that specifies all the areas of interest within the page.
We can use a
jQuery-ish Navigator API
to select the content we are interested in.

Finally, we can verify that a new message was created successfully.

then:
at ViewMessagePage
success == 'Successfully created a new message'
id
date
summary == expectedSummary
message == expectedMessage

For further details on how to get the most out of Geb, consult
The Book of Geb user’s manual.

Client-Side REST Tests

Client-side tests can be used to test code that internally uses the RestTemplate.
The idea is to declare expected requests and to provide "stub" responses so that
you can focus on testing the code in isolation, i.e. without running a server.
Here is an example:

RestTemplate restTemplate = new RestTemplate();

MockRestServiceServer mockServer = MockRestServiceServer.bindTo(restTemplate).build();
mockServer.expect(requestTo("/greeting")).andRespond(withSuccess());

// Test code that uses the above RestTemplate ...

mockServer.verify();

In the above example, MockRestServiceServer, the central class for client-side REST
tests, configures the RestTemplate with a custom ClientHttpRequestFactory that
asserts actual requests against expectations and returns "stub" responses. In this case
we expect a request to "/greeting" and want to return a 200 response with
"text/plain" content. We could define as additional expected requests and stub responses as
needed. When expected requests and stub responses are defined, the RestTemplate can be
used in client-side code as usual. At the end of testing mockServer.verify() can be
used to verify that all expectations have been satisfied.

By default requests are expected in the order in which expectations were declared.
You can set the ignoreExpectOrder option when building the server in which case
all expectations are checked (in order) to find a match for a given request. That
means requests are allowed to come in any order. Here is an example:

server = MockRestServiceServer.bindTo(restTemplate).ignoreExpectOrder(true).build();

Even with unordered requests by default each request is allowed to execute once only.
The expect method provides an overloaded variant that accepts an ExpectedCount
argument that specifies a count range, e.g. once, manyTimes, max, min,
between, and so on. Here is an example:

RestTemplate restTemplate = new RestTemplate();

MockRestServiceServer mockServer = MockRestServiceServer.bindTo(restTemplate).build();
mockServer.expect(times(2), requestTo("/foo")).andRespond(withSuccess());
mockServer.expect(times(3), requestTo("/bar")).andRespond(withSuccess());

// ...

mockServer.verify();

Note that when ignoreExpectOrder is not set (the default), and therefore requests
are expected in order of declaration, then that order only applies to the first of
any expected request. For example if "/foo" is expected 2 times followed by "/bar"
3 times, then there should be a request to "/foo" before there is a request to "/bar"
but aside from that subsequent "/foo" and "/bar" requests can come at any time.

As an alternative to all of the above the client-side test support also provides a
ClientHttpRequestFactory implementation that can be configured into a RestTemplate
to bind it to a MockMvc instance. That allows processing requests using actual
server-side logic but without running a server. Here is an example:

MockMvc mockMvc = MockMvcBuilders.webAppContextSetup(this.wac).build();
this.restTemplate = new RestTemplate(new MockMvcClientHttpRequestFactory(mockMvc));

// Test code that uses the above RestTemplate ...

mockServer.verify();

Static Imports

Just like with server-side tests, the fluent API for client-side tests requires a few
static imports. Those are easy to find by searching "MockRest*". Eclipse users
should add "MockRestRequestMatchers.*" and "MockRestResponseCreators.*"
as "favorite static members" in the Eclipse preferences under
Java → Editor → Content Assist → Favorites.
That allows using content assist after typing the first character of the
static method name. Other IDEs (e.g. IntelliJ) may not require any additional
configuration. Just check the support for code completion on static members.

Further Examples of Client-side REST Tests

Spring MVC Test’s own tests include
example
tests of client-side REST tests.

PetClinic Example

The PetClinic application, available on
GitHub, illustrates several features
of the Spring TestContext Framework in a JUnit 4 environment. Most test functionality
is included in the AbstractClinicTests, for which a partial listing is shown below:

import static org.junit.Assert.assertEquals;
// import ...

@ContextConfiguration
public abstract class AbstractClinicTests extends AbstractTransactionalJUnit4SpringContextTests {

 @Autowired
 protected Clinic clinic;

 @Test
 public void getVets() {
 Collection<Vet> vets = this.clinic.getVets();
 assertEquals("JDBC query must show the same number of vets",
 super.countRowsInTable("VETS"), vets.size());
 Vet v1 = EntityUtils.getById(vets, Vet.class, 2);
 assertEquals("Leary", v1.getLastName());
 assertEquals(1, v1.getNrOfSpecialties());
 assertEquals("radiology", (v1.getSpecialties().get(0)).getName());
 // ...
 }

 // ...
}

Notes:

	
This test case extends the AbstractTransactionalJUnit4SpringContextTests class, from
which it inherits configuration for Dependency Injection (through the
DependencyInjectionTestExecutionListener) and transactional behavior (through the
TransactionalTestExecutionListener).

	
The clinic instance variable — the application object being tested — is set by
Dependency Injection through @Autowired semantics.

	
The getVets() method illustrates how you can use the inherited countRowsInTable()
method to easily verify the number of rows in a given table, thus verifying correct
behavior of the application code being tested. This allows for stronger tests and
lessens dependency on the exact test data. For example, you can add additional rows in
the database without breaking tests.

	
Like many integration tests that use a database, most of the tests in
AbstractClinicTests depend on a minimum amount of data already in the database before
the test cases run. Alternatively, you might choose to populate the database within the
test fixture set up of your test cases — again, within the same transaction as the
tests.

The PetClinic application supports three data access technologies: JDBC, Hibernate, and
JPA. By declaring @ContextConfiguration without any specific resource locations, the
AbstractClinicTests class will have its application context loaded from the default
location, AbstractClinicTests-context.xml, which declares a common DataSource.
Subclasses specify additional context locations that must declare a
PlatformTransactionManager and a concrete implementation of Clinic.

For example, the Hibernate implementation of the PetClinic tests contains the following
implementation. For this example, HibernateClinicTests does not contain a single line
of code: we only need to declare @ContextConfiguration, and the tests are inherited
from AbstractClinicTests. Because @ContextConfiguration is declared without any
specific resource locations, the Spring TestContext Framework loads an application
context from all the beans defined in AbstractClinicTests-context.xml (i.e., the
inherited locations) and HibernateClinicTests-context.xml, with
HibernateClinicTests-context.xml possibly overriding beans defined in
AbstractClinicTests-context.xml.

@ContextConfiguration
public class HibernateClinicTests extends AbstractClinicTests { }

In a large-scale application, the Spring configuration is often split across multiple
files. Consequently, configuration locations are typically specified in a common base
class for all application-specific integration tests. Such a base class may also add
useful instance variables — populated by Dependency Injection, naturally — such as a
SessionFactory in the case of an application using Hibernate.

As far as possible, you should have exactly the same Spring configuration files in your
integration tests as in the deployed environment. One likely point of difference
concerns database connection pooling and transaction infrastructure. If you are
deploying to a full-blown application server, you will probably use its connection pool
(available through JNDI) and JTA implementation. Thus in production you will use a
JndiObjectFactoryBean or <jee:jndi-lookup> for the DataSource and
JtaTransactionManager. JNDI and JTA will not be available in out-of-container
integration tests, so you should use a combination like the Commons DBCP
BasicDataSource and DataSourceTransactionManager or HibernateTransactionManager
for them. You can factor out this variant behavior into a single XML file, having the
choice between application server and a 'local' configuration separated from all other
configuration, which will not vary between the test and production environments. In
addition, it is advisable to use properties files for connection settings. See the
PetClinic application for an example.

Chapter 16. Further Resources

Consult the following resources for more information about testing:

	
JUnit: "A programmer-oriented testing framework for Java".
Used by the Spring Framework in its test suite.

	
TestNG: A testing framework inspired by JUnit with added support
for annotations, test groups, data-driven testing, distributed testing, etc.

	
AssertJ: "Fluent assertions for Java"
including support for Java 8 lambdas, streams, etc.

	
Mock Objects: Article in Wikipedia.

	
MockObjects.com: Web site dedicated to mock objects, a
technique for improving the design of code within test-driven development.

	
Mockito: Java mock library based on the
test spy pattern.

	
EasyMock: Java library "that provides Mock Objects for
interfaces (and objects through the class extension) by generating them on the fly
using Java’s proxy mechanism." Used by the Spring Framework in its test suite.

	
JMock: Library that supports test-driven development of Java
code with mock objects.

	
DbUnit: JUnit extension (also usable with Ant and
Maven) targeted for database-driven projects that, among other things, puts your
database into a known state between test runs.

	
The Grinder: Java load testing framework.

Part V. Data Access

This part of the reference documentation is concerned with data access and the
interaction between the data access layer and the business or service layer.

Spring’s comprehensive transaction management support is covered in some detail,
followed by thorough coverage of the various data access frameworks and technologies
that the Spring Framework integrates with.

	
Chapter 17, Transaction Management

	
Chapter 18, DAO support

	
Chapter 19, Data access with JDBC

	
Chapter 20, Object Relational Mapping (ORM) Data Access

	
Chapter 21, Marshalling XML using O/X Mappers

Chapter 17. Transaction Management

Introduction to Spring Framework transaction management

Comprehensive transaction support is among the most compelling reasons to use the Spring
Framework. The Spring Framework provides a consistent abstraction for transaction
management that delivers the following benefits:

	
Consistent programming model across different transaction APIs such as Java
Transaction API (JTA), JDBC, Hibernate, Java Persistence API (JPA), and Java Data
Objects (JDO).

	
Support for declarative transaction management.

	
Simpler API for programmatic transaction management than
complex transaction APIs such as JTA.

	
Excellent integration with Spring’s data access abstractions.

The following sections describe the Spring Framework’s transaction value-adds and
technologies. (The chapter also includes discussions of best practices, application
server integration, and solutions to common problems.)

	
Advantages of the Spring Framework’s transaction support
model describes why you would use the Spring Framework’s transaction abstraction
instead of EJB Container-Managed Transactions (CMT) or choosing to drive local
transactions through a proprietary API such as Hibernate.

	
Understanding the Spring Framework transaction abstraction
outlines the core classes and describes how to configure and obtain DataSource
instances from a variety of sources.

	
Synchronizing resources with transactionsdescribes
how the application code ensures that resources are created, reused, and cleaned up
properly.

	
Declarative transaction management describes support for
declarative transaction management.

	
Programmatic transaction management covers support for
programmatic (that is, explicitly coded) transaction management.

	
Transaction bound event describes how you could use application
events within a transaction.

Advantages of the Spring Framework’s transaction support model

Traditionally, Java EE developers have had two choices for transaction management:
global or local transactions, both of which have profound limitations. Global
and local transaction management is reviewed in the next two sections, followed by a
discussion of how the Spring Framework’s transaction management support addresses the
limitations of the global and local transaction models.

Global transactions

Global transactions enable you to work with multiple transactional resources, typically
relational databases and message queues. The application server manages global
transactions through the JTA, which is a cumbersome API to use (partly due to its
exception model). Furthermore, a JTA UserTransaction normally needs to be sourced from
JNDI, meaning that you also need to use JNDI in order to use JTA. Obviously the use
of global transactions would limit any potential reuse of application code, as JTA is
normally only available in an application server environment.

Previously, the preferred way to use global transactions was via EJB CMT
(Container Managed Transaction): CMT is a form of declarative transaction
management (as distinguished from programmatic transaction management). EJB CMT
removes the need for transaction-related JNDI lookups, although of course the use of EJB
itself necessitates the use of JNDI. It removes most but not all of the need to write
Java code to control transactions. The significant downside is that CMT is tied to JTA
and an application server environment. Also, it is only available if one chooses to
implement business logic in EJBs, or at least behind a transactional EJB facade. The
negatives of EJB in general are so great that this is not an attractive proposition,
especially in the face of compelling alternatives for declarative transaction management.

Local transactions

Local transactions are resource-specific, such as a transaction associated with a JDBC
connection. Local transactions may be easier to use, but have significant disadvantages:
they cannot work across multiple transactional resources. For example, code that manages
transactions using a JDBC connection cannot run within a global JTA transaction. Because
the application server is not involved in transaction management, it cannot help ensure
correctness across multiple resources. (It is worth noting that most applications use a
single transaction resource.) Another downside is that local transactions are invasive
to the programming model.

Spring Framework’s consistent programming model

Spring resolves the disadvantages of global and local transactions. It enables
application developers to use a consistent programming model in any environment.
You write your code once, and it can benefit from different transaction management
strategies in different environments. The Spring Framework provides both declarative and
programmatic transaction management. Most users prefer declarative transaction
management, which is recommended in most cases.

With programmatic transaction management, developers work with the Spring Framework
transaction abstraction, which can run over any underlying transaction infrastructure.
With the preferred declarative model, developers typically write little or no code
related to transaction management, and hence do not depend on the Spring Framework
transaction API, or any other transaction API.

Do you need an application server for transaction management?

The Spring Framework’s transaction management support changes traditional rules as to
when an enterprise Java application requires an application server.

In particular, you do not need an application server simply for declarative transactions
through EJBs. In fact, even if your application server has powerful JTA capabilities,
you may decide that the Spring Framework’s declarative transactions offer more power and
a more productive programming model than EJB CMT.

Typically you need an application server’s JTA capability only if your application needs
to handle transactions across multiple resources, which is not a requirement for many
applications. Many high-end applications use a single, highly scalable database (such as
Oracle RAC) instead. Standalone transaction managers such as
Atomikos Transactions and JOTM
are other options. Of course, you may need other application server capabilities such as
Java Message Service (JMS) and Java EE Connector Architecture (JCA).

The Spring Framework gives you the choice of when to scale your application to a fully
loaded application server. Gone are the days when the only alternative to using EJB
CMT or JTA was to write code with local transactions such as those on JDBC connections,
and face a hefty rework if you need that code to run within global, container-managed
transactions. With the Spring Framework, only some of the bean definitions in your
configuration file, rather than your code, need to change.

Understanding the Spring Framework transaction abstraction

The key to the Spring transaction abstraction is the notion of a transaction
strategy. A transaction strategy is defined by the
org.springframework.transaction.PlatformTransactionManager interface:

public interface PlatformTransactionManager {

 TransactionStatus getTransaction(TransactionDefinition definition) throws TransactionException;

 void commit(TransactionStatus status) throws TransactionException;

 void rollback(TransactionStatus status) throws TransactionException;
}

This is primarily a service provider interface (SPI), although it can be used
programmatically from your application code. Because
PlatformTransactionManager is an interface, it can be easily mocked or stubbed as
necessary. It is not tied to a lookup strategy such as JNDI.
PlatformTransactionManager implementations are defined like any other object (or bean)
in the Spring Framework IoC container. This benefit alone makes Spring Framework
transactions a worthwhile abstraction even when you work with JTA. Transactional code
can be tested much more easily than if it used JTA directly.

Again in keeping with Spring’s philosophy, the TransactionException that can be thrown
by any of the PlatformTransactionManager interface’s methods is unchecked (that
is, it extends the java.lang.RuntimeException class). Transaction infrastructure
failures are almost invariably fatal. In rare cases where application code can actually
recover from a transaction failure, the application developer can still choose to catch
and handle TransactionException. The salient point is that developers are not
forced to do so.

The getTransaction(..) method returns a TransactionStatus object, depending on a
TransactionDefinition parameter. The returned TransactionStatus might represent a
new transaction, or can represent an existing transaction if a matching transaction
exists in the current call stack. The implication in this latter case is that, as with
Java EE transaction contexts, a TransactionStatus is associated with a thread of
execution.

The TransactionDefinition interface specifies:

	
Propagation: Typically, all code executed within a transaction scope will run in
that transaction. However, you have the option of specifying the behavior in the event
that a transactional method is executed when a transaction context already exists. For
example, code can continue running in the existing transaction (the common case); or
the existing transaction can be suspended and a new transaction created. Spring
offers all of the transaction propagation options familiar from EJB CMT. To read
about the semantics of transaction propagation in Spring, see the section called “Transaction propagation”.

	
Isolation: The degree to which this transaction is isolated from the work of other
transactions. For example, can this transaction see uncommitted writes from other
transactions?

	
Timeout: How long this transaction runs before timing out and being rolled back
automatically by the underlying transaction infrastructure.

	
Read-only status: A read-only transaction can be used when your code reads but
does not modify data. Read-only transactions can be a useful optimization in some
cases, such as when you are using Hibernate.

These settings reflect standard transactional concepts. If necessary, refer to resources
that discuss transaction isolation levels and other core transaction concepts.
Understanding these concepts is essential to using the Spring Framework or any
transaction management solution.

The TransactionStatus interface provides a simple way for transactional code to
control transaction execution and query transaction status. The concepts should be
familiar, as they are common to all transaction APIs:

public interface TransactionStatus extends SavepointManager {

 boolean isNewTransaction();

 boolean hasSavepoint();

 void setRollbackOnly();

 boolean isRollbackOnly();

 void flush();

 boolean isCompleted();

}

Regardless of whether you opt for declarative or programmatic transaction management in
Spring, defining the correct PlatformTransactionManager implementation is absolutely
essential. You typically define this implementation through dependency injection.

PlatformTransactionManager implementations normally require knowledge of the
environment in which they work: JDBC, JTA, Hibernate, and so on. The following examples
show how you can define a local PlatformTransactionManager implementation. (This
example works with plain JDBC.)

You define a JDBC DataSource

<bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close">
 <property name="driverClassName" value="${jdbc.driverClassName}" />
 <property name="url" value="${jdbc.url}" />
 <property name="username" value="${jdbc.username}" />
 <property name="password" value="${jdbc.password}" />
</bean>

The related PlatformTransactionManager bean definition will then have a reference to
the DataSource definition. It will look like this:

<bean id="txManager" class="org.springframework.jdbc.datasource.DataSourceTransactionManager">
 <property name="dataSource" ref="dataSource"/>
</bean>

If you use JTA in a Java EE container then you use a container DataSource, obtained
through JNDI, in conjunction with Spring’s JtaTransactionManager. This is what the JTA
and JNDI lookup version would look like:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jee="http://www.springframework.org/schema/jee"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/jee
 http://www.springframework.org/schema/jee/spring-jee.xsd">

 <jee:jndi-lookup id="dataSource" jndi-name="jdbc/jpetstore"/>

 <bean id="txManager" class="org.springframework.transaction.jta.JtaTransactionManager" />

 <!-- other <bean/> definitions here -->

</beans>

The JtaTransactionManager does not need to know about the DataSource, or any other
specific resources, because it uses the container’s global transaction management
infrastructure.

	[image: [Note]]	Note
	
The above definition of the dataSource bean uses the <jndi-lookup/> tag from the
jee namespace. For more information on schema-based configuration, see Chapter 41, XML Schema-based configuration,
and for more information on the <jee/> tags see the section entitled
the section called “the jee schema”.

You can also use Hibernate local transactions easily, as shown in the following
examples. In this case, you need to define a Hibernate LocalSessionFactoryBean, which
your application code will use to obtain Hibernate Session instances.

The DataSource bean definition will be similar to the local JDBC example shown
previously and thus is not shown in the following example.

	[image: [Note]]	Note
	
If the DataSource, used by any non-JTA transaction manager, is looked up via JNDI and
managed by a Java EE container, then it should be non-transactional because the Spring
Framework, rather than the Java EE container, will manage the transactions.

The txManager bean in this case is of the HibernateTransactionManager type. In the
same way as the DataSourceTransactionManager needs a reference to the DataSource,
the HibernateTransactionManager needs a reference to the SessionFactory.

<bean id="sessionFactory" class="org.springframework.orm.hibernate5.LocalSessionFactoryBean">
 <property name="dataSource" ref="dataSource"/>
 <property name="mappingResources">
 <list>
 <value>org/springframework/samples/petclinic/hibernate/petclinic.hbm.xml</value>
 </list>
 </property>
 <property name="hibernateProperties">
 <value>
 hibernate.dialect=${hibernate.dialect}
 </value>
 </property>
</bean>

<bean id="txManager" class="org.springframework.orm.hibernate5.HibernateTransactionManager">
 <property name="sessionFactory" ref="sessionFactory"/>
</bean>

If you are using Hibernate and Java EE container-managed JTA transactions, then you
should simply use the same JtaTransactionManager as in the previous JTA example for
JDBC.

<bean id="txManager" class="org.springframework.transaction.jta.JtaTransactionManager"/>

	[image: [Note]]	Note
	
If you use JTA , then your transaction manager definition will look the same regardless
of what data access technology you use, be it JDBC, Hibernate JPA or any other supported
technology. This is due to the fact that JTA transactions are global transactions, which
can enlist any transactional resource.

In all these cases, application code does not need to change. You can change how
transactions are managed merely by changing configuration, even if that change means
moving from local to global transactions or vice versa.

Synchronizing resources with transactions

It should now be clear how you create different transaction managers, and how they are
linked to related resources that need to be synchronized to transactions (for example
DataSourceTransactionManager to a JDBC DataSource, HibernateTransactionManager to
a Hibernate SessionFactory, and so forth). This section describes how the application
code, directly or indirectly using a persistence API such as JDBC, Hibernate, or JDO,
ensures that these resources are created, reused, and cleaned up properly. The section
also discusses how transaction synchronization is triggered (optionally) through the
relevant PlatformTransactionManager.

High-level synchronization approach

The preferred approach is to use Spring’s highest level template based persistence
integration APIs or to use native ORM APIs with transaction- aware factory beans or
proxies for managing the native resource factories. These transaction-aware solutions
internally handle resource creation and reuse, cleanup, optional transaction
synchronization of the resources, and exception mapping. Thus user data access code does
not have to address these tasks, but can be focused purely on non-boilerplate
persistence logic. Generally, you use the native ORM API or take a template approach
for JDBC access by using the JdbcTemplate. These solutions are detailed in subsequent
chapters of this reference documentation.

Low-level synchronization approach

Classes such as DataSourceUtils (for JDBC), EntityManagerFactoryUtils (for JPA),
SessionFactoryUtils (for Hibernate), PersistenceManagerFactoryUtils (for JDO), and
so on exist at a lower level. When you want the application code to deal directly with
the resource types of the native persistence APIs, you use these classes to ensure that
proper Spring Framework-managed instances are obtained, transactions are (optionally)
synchronized, and exceptions that occur in the process are properly mapped to a
consistent API.

For example, in the case of JDBC, instead of the traditional JDBC approach of calling
the getConnection() method on the DataSource, you instead use Spring’s
org.springframework.jdbc.datasource.DataSourceUtils class as follows:

Connection conn = DataSourceUtils.getConnection(dataSource);

If an existing transaction already has a connection synchronized (linked) to it, that
instance is returned. Otherwise, the method call triggers the creation of a new
connection, which is (optionally) synchronized to any existing transaction, and made
available for subsequent reuse in that same transaction. As mentioned, any
SQLException is wrapped in a Spring Framework CannotGetJdbcConnectionException, one
of the Spring Framework’s hierarchy of unchecked DataAccessExceptions. This approach
gives you more information than can be obtained easily from the SQLException, and
ensures portability across databases, even across different persistence technologies.

This approach also works without Spring transaction management (transaction
synchronization is optional), so you can use it whether or not you are using Spring for
transaction management.

Of course, once you have used Spring’s JDBC support, JPA support or Hibernate support,
you will generally prefer not to use DataSourceUtils or the other helper classes,
because you will be much happier working through the Spring abstraction than directly
with the relevant APIs. For example, if you use the Spring JdbcTemplate or
jdbc.object package to simplify your use of JDBC, correct connection retrieval occurs
behind the scenes and you won’t need to write any special code.

TransactionAwareDataSourceProxy

At the very lowest level exists the TransactionAwareDataSourceProxy class. This is a
proxy for a target DataSource, which wraps the target DataSource to add awareness of
Spring-managed transactions. In this respect, it is similar to a transactional JNDI
DataSource as provided by a Java EE server.

It should almost never be necessary or desirable to use this class, except when existing
code must be called and passed a standard JDBC DataSource interface implementation. In
that case, it is possible that this code is usable, but participating in Spring managed
transactions. It is preferable to write your new code by using the higher level
abstractions mentioned above.

Declarative transaction management

	[image: [Note]]	Note
	
Most Spring Framework users choose declarative transaction management. This option has
the least impact on application code, and hence is most consistent with the ideals of a
non-invasive lightweight container.

The Spring Framework’s declarative transaction management is made possible with Spring
aspect-oriented programming (AOP), although, as the transactional aspects code comes
with the Spring Framework distribution and may be used in a boilerplate fashion, AOP
concepts do not generally have to be understood to make effective use of this code.

The Spring Framework’s declarative transaction management is similar to EJB CMT in that
you can specify transaction behavior (or lack of it) down to individual method level. It
is possible to make a setRollbackOnly() call within a transaction context if
necessary. The differences between the two types of transaction management are:

	
Unlike EJB CMT, which is tied to JTA, the Spring Framework’s declarative transaction
management works in any environment. It can work with JTA transactions or local
transactions using JDBC, JPA, Hibernate or JDO by simply adjusting the configuration
files.

	
You can apply the Spring Framework declarative transaction management to any class,
not merely special classes such as EJBs.

	
The Spring Framework offers declarative
rollback rules,a feature with no EJB
equivalent. Both programmatic and declarative support for rollback rules is provided.

	
The Spring Framework enables you to customize transactional behavior, by using AOP.
For example, you can insert custom behavior in the case of transaction rollback. You
can also add arbitrary advice, along with the transactional advice. With EJB CMT, you
cannot influence the container’s transaction management except with
setRollbackOnly().

	
The Spring Framework does not support propagation of transaction contexts across
remote calls, as do high-end application servers. If you need this feature, we
recommend that you use EJB. However, consider carefully before using such a feature,
because normally, one does not want transactions to span remote calls.

Where is TransactionProxyFactoryBean?

Declarative transaction configuration in versions of Spring 2.0 and above differs
considerably from previous versions of Spring. The main difference is that there is no
longer any need to configure TransactionProxyFactoryBean beans.

The pre-Spring 2.0 configuration style is still 100% valid configuration; think of the
new <tx:tags/> as simply defining TransactionProxyFactoryBean beans on your behalf.

The concept of rollback rules is important: they enable you to specify which exceptions
(and throwables) should cause automatic rollback. You specify this declaratively, in
configuration, not in Java code. So, although you can still call setRollbackOnly() on
the TransactionStatus object to roll back the current transaction back, most often you
can specify a rule that MyApplicationException must always result in rollback. The
significant advantage to this option is that business objects do not depend on the
transaction infrastructure. For example, they typically do not need to import Spring
transaction APIs or other Spring APIs.

Although EJB container default behavior automatically rolls back the transaction on a
system exception (usually a runtime exception), EJB CMT does not roll back the
transaction automatically on anapplication exception (that is, a checked exception
other than java.rmi.RemoteException). While the Spring default behavior for
declarative transaction management follows EJB convention (roll back is automatic only
on unchecked exceptions), it is often useful to customize this behavior.

Understanding the Spring Framework’s declarative transaction implementation

It is not sufficient to tell you simply to annotate your classes with the
@Transactional annotation, add @EnableTransactionManagement to your configuration,
and then expect you to understand how it all works. This section explains the inner
workings of the Spring Framework’s declarative transaction infrastructure in the event
of transaction-related issues.

The most important concepts to grasp with regard to the Spring Framework’s declarative
transaction support are that this support is enabled
via AOP proxies, and that the transactional advice
is driven by metadata (currently XML- or annotation-based). The combination of AOP
with transactional metadata yields an AOP proxy that uses a TransactionInterceptor in
conjunction with an appropriate PlatformTransactionManager implementation to drive
transactions around method invocations.

	[image: [Note]]	Note
	
Spring AOP is covered in Chapter 11, Aspect Oriented Programming with Spring.

Conceptually, calling a method on a transactional proxy looks like this…​

[image: tx]

Example of declarative transaction implementation

Consider the following interface, and its attendant implementation. This example uses
Foo and Bar classes as placeholders so that you can concentrate on the transaction
usage without focusing on a particular domain model. For the purposes of this example,
the fact that the DefaultFooService class throws UnsupportedOperationException
instances in the body of each implemented method is good; it allows you to see
transactions created and then rolled back in response to the
UnsupportedOperationException instance.

// the service interface that we want to make transactional

package x.y.service;

public interface FooService {

 Foo getFoo(String fooName);

 Foo getFoo(String fooName, String barName);

 void insertFoo(Foo foo);

 void updateFoo(Foo foo);

}

// an implementation of the above interface

package x.y.service;

public class DefaultFooService implements FooService {

 public Foo getFoo(String fooName) {
 throw new UnsupportedOperationException();
 }

 public Foo getFoo(String fooName, String barName) {
 throw new UnsupportedOperationException();
 }

 public void insertFoo(Foo foo) {
 throw new UnsupportedOperationException();
 }

 public void updateFoo(Foo foo) {
 throw new UnsupportedOperationException();
 }

}

Assume that the first two methods of the FooService interface, getFoo(String) and
getFoo(String, String), must execute in the context of a transaction with read-only
semantics, and that the other methods, insertFoo(Foo) and updateFoo(Foo), must
execute in the context of a transaction with read-write semantics. The following
configuration is explained in detail in the next few paragraphs.

<!-- from the file 'context.xml' -->
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xmlns:tx="http://www.springframework.org/schema/tx"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/tx
 http://www.springframework.org/schema/tx/spring-tx.xsd
 http://www.springframework.org/schema/aop
 http://www.springframework.org/schema/aop/spring-aop.xsd">

 <!-- this is the service object that we want to make transactional -->
 <bean id="fooService" class="x.y.service.DefaultFooService"/>

 <!-- the transactional advice (what 'happens'; see the <aop:advisor/> bean below) -->
 <tx:advice id="txAdvice" transaction-manager="txManager">
 <!-- the transactional semantics... -->
 <tx:attributes>
 <!-- all methods starting with 'get' are read-only -->
 <tx:method name="get*" read-only="true"/>
 <!-- other methods use the default transaction settings (see below) -->
 <tx:method name="*"/>
 </tx:attributes>
 </tx:advice>

 <!-- ensure that the above transactional advice runs for any execution
 of an operation defined by the FooService interface -->
 <aop:config>
 <aop:pointcut id="fooServiceOperation" expression="execution(* x.y.service.FooService.*(..))"/>
 <aop:advisor advice-ref="txAdvice" pointcut-ref="fooServiceOperation"/>
 </aop:config>

 <!-- don't forget the DataSource -->
 <bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close">
 <property name="driverClassName" value="oracle.jdbc.driver.OracleDriver"/>
 <property name="url" value="jdbc:oracle:thin:@rj-t42:1521:elvis"/>
 <property name="username" value="scott"/>
 <property name="password" value="tiger"/>
 </bean>

 <!-- similarly, don't forget the PlatformTransactionManager -->
 <bean id="txManager" class="org.springframework.jdbc.datasource.DataSourceTransactionManager">
 <property name="dataSource" ref="dataSource"/>
 </bean>

 <!-- other <bean/> definitions here -->

</beans>

Examine the preceding configuration. You want to make a service object, the fooService
bean, transactional. The transaction semantics to apply are encapsulated in the
<tx:advice/> definition. The <tx:advice/> definition reads as "…​ all methods on
starting with 'get' are to execute in the context of a read-only transaction, and all
other methods are to execute with the default transaction semantics". The
transaction-manager attribute of the <tx:advice/> tag is set to the name of the
PlatformTransactionManager bean that is going to drive the transactions, in this
case, the txManager bean.

	[image: [Tip]]	Tip
	
You can omit the transaction-manager attribute in the transactional advice
(<tx:advice/>) if the bean name of the PlatformTransactionManager that you want to
wire in has the name transactionManager. If the PlatformTransactionManager bean that
you want to wire in has any other name, then you must use the transaction-manager
attribute explicitly, as in the preceding example.

The <aop:config/> definition ensures that the transactional advice defined by the
txAdvice bean executes at the appropriate points in the program. First you define a
pointcut that matches the execution of any operation defined in the FooService
interface (fooServiceOperation). Then you associate the pointcut with the txAdvice
using an advisor. The result indicates that at the execution of a fooServiceOperation,
the advice defined by txAdvice will be run.

The expression defined within the <aop:pointcut/> element is an AspectJ pointcut
expression; see Chapter 11, Aspect Oriented Programming with Spring for more details on pointcut expressions in Spring.

A common requirement is to make an entire service layer transactional. The best way to
do this is simply to change the pointcut expression to match any operation in your
service layer. For example:

<aop:config>
 <aop:pointcut id="fooServiceMethods" expression="execution(* x.y.service.*.*(..))"/>
 <aop:advisor advice-ref="txAdvice" pointcut-ref="fooServiceMethods"/>
</aop:config>

	[image: [Note]]	Note
	
In this example it is assumed that all your service interfaces are defined in the
x.y.service package; see Chapter 11, Aspect Oriented Programming with Spring for more details.

Now that we’ve analyzed the configuration, you may be asking yourself, "Okay…​ but
what does all this configuration actually do?".

The above configuration will be used to create a transactional proxy around the object
that is created from the fooService bean definition. The proxy will be configured with
the transactional advice, so that when an appropriate method is invoked on the
proxy, a transaction is started, suspended, marked as read-only, and so on, depending
on the transaction configuration associated with that method. Consider the following
program that test drives the above configuration:

public final class Boot {

 public static void main(final String[] args) throws Exception {
 ApplicationContext ctx = new ClassPathXmlApplicationContext("context.xml", Boot.class);
 FooService fooService = (FooService) ctx.getBean("fooService");
 fooService.insertFoo (new Foo());
 }
}

The output from running the preceding program will resemble the following. (The Log4J
output and the stack trace from the UnsupportedOperationException thrown by the
insertFoo(..) method of the DefaultFooService class have been truncated for clarity.)

<!-- the Spring container is starting up... -->
[AspectJInvocationContextExposingAdvisorAutoProxyCreator] - Creating implicit proxy for bean 'fooService' with 0 common interceptors and 1 specific interceptors

<!-- the DefaultFooService is actually proxied -->
[JdkDynamicAopProxy] - Creating JDK dynamic proxy for [x.y.service.DefaultFooService]

<!-- ... the insertFoo(..) method is now being invoked on the proxy -->
[TransactionInterceptor] - Getting transaction for x.y.service.FooService.insertFoo

<!-- the transactional advice kicks in here... -->
[DataSourceTransactionManager] - Creating new transaction with name [x.y.service.FooService.insertFoo]
[DataSourceTransactionManager] - Acquired Connection [org.apache.commons.dbcp.PoolableConnection@a53de4] for JDBC transaction

<!-- the insertFoo(..) method from DefaultFooService throws an exception... -->
[RuleBasedTransactionAttribute] - Applying rules to determine whether transaction should rollback on java.lang.UnsupportedOperationException
[TransactionInterceptor] - Invoking rollback for transaction on x.y.service.FooService.insertFoo due to throwable [java.lang.UnsupportedOperationException]

<!-- and the transaction is rolled back (by default, RuntimeException instances cause rollback) -->
[DataSourceTransactionManager] - Rolling back JDBC transaction on Connection [org.apache.commons.dbcp.PoolableConnection@a53de4]
[DataSourceTransactionManager] - Releasing JDBC Connection after transaction
[DataSourceUtils] - Returning JDBC Connection to DataSource

Exception in thread "main" java.lang.UnsupportedOperationException at x.y.service.DefaultFooService.insertFoo(DefaultFooService.java:14)
<!-- AOP infrastructure stack trace elements removed for clarity -->
at $Proxy0.insertFoo(Unknown Source)
at Boot.main(Boot.java:11)

Rolling back a declarative transaction

The previous section outlined the basics of how to specify transactional settings for
classes, typically service layer classes, declaratively in your application. This
section describes how you can control the rollback of transactions in a simple
declarative fashion.

The recommended way to indicate to the Spring Framework’s transaction infrastructure
that a transaction’s work is to be rolled back is to throw an Exception from code that
is currently executing in the context of a transaction. The Spring Framework’s
transaction infrastructure code will catch any unhandled Exception as it bubbles up
the call stack, and make a determination whether to mark the transaction for rollback.

In its default configuration, the Spring Framework’s transaction infrastructure code
only marks a transaction for rollback in the case of runtime, unchecked exceptions;
that is, when the thrown exception is an instance or subclass of RuntimeException. (
Errors will also - by default - result in a rollback). Checked exceptions that are
thrown from a transactional method do not result in rollback in the default
configuration.

You can configure exactly which Exception types mark a transaction for rollback,
including checked exceptions. The following XML snippet demonstrates how you configure
rollback for a checked, application-specific Exception type.

<tx:advice id="txAdvice" transaction-manager="txManager">
 <tx:attributes>
 <tx:method name="get*" read-only="true" rollback-for="NoProductInStockException"/>
 <tx:method name="*"/>
 </tx:attributes>
</tx:advice>

You can also specify 'no rollback rules', if you do not want a transaction rolled
back when an exception is thrown. The following example tells the Spring Framework’s
transaction infrastructure to commit the attendant transaction even in the face of an
unhandled InstrumentNotFoundException.

<tx:advice id="txAdvice">
 <tx:attributes>
 <tx:method name="updateStock" no-rollback-for="InstrumentNotFoundException"/>
 <tx:method name="*"/>
 </tx:attributes>
</tx:advice>

When the Spring Framework’s transaction infrastructure catches an exception and it
consults configured rollback rules to determine whether to mark the transaction for
rollback, the strongest matching rule wins. So in the case of the following
configuration, any exception other than an InstrumentNotFoundException results in a
rollback of the attendant transaction.

<tx:advice id="txAdvice">
 <tx:attributes>
 <tx:method name="*" rollback-for="Throwable" no-rollback-for="InstrumentNotFoundException"/>
 </tx:attributes>
</tx:advice>

You can also indicate a required rollback programmatically. Although very simple,
this process is quite invasive, and tightly couples your code to the Spring Framework’s
transaction infrastructure:

public void resolvePosition() {
 try {
 // some business logic...
 } catch (NoProductInStockException ex) {
 // trigger rollback programmatically
 TransactionAspectSupport.currentTransactionStatus().setRollbackOnly();
 }
}

You are strongly encouraged to use the declarative approach to rollback if at all
possible. Programmatic rollback is available should you absolutely need it, but its
usage flies in the face of achieving a clean POJO-based architecture.

Configuring different transactional semantics for different beans

Consider the scenario where you have a number of service layer objects, and you want to
apply a totally different transactional configuration to each of them. You do this
by defining distinct <aop:advisor/> elements with differing pointcut and
advice-ref attribute values.

As a point of comparison, first assume that all of your service layer classes are
defined in a root x.y.service package. To make all beans that are instances of classes
defined in that package (or in subpackages) and that have names ending in Service have
the default transactional configuration, you would write the following:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xmlns:tx="http://www.springframework.org/schema/tx"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/tx
 http://www.springframework.org/schema/tx/spring-tx.xsd
 http://www.springframework.org/schema/aop
 http://www.springframework.org/schema/aop/spring-aop.xsd">

 <aop:config>

 <aop:pointcut id="serviceOperation"
 expression="execution(* x.y.service..*Service.*(..))"/>

 <aop:advisor pointcut-ref="serviceOperation" advice-ref="txAdvice"/>

 </aop:config>

 <!-- these two beans will be transactional... -->
 <bean id="fooService" class="x.y.service.DefaultFooService"/>
 <bean id="barService" class="x.y.service.extras.SimpleBarService"/>

 <!-- ... and these two beans won't -->
 <bean id="anotherService" class="org.xyz.SomeService"/> <!-- (not in the right package) -->
 <bean id="barManager" class="x.y.service.SimpleBarManager"/> <!-- (doesn't end in 'Service') -->

 <tx:advice id="txAdvice">
 <tx:attributes>
 <tx:method name="get*" read-only="true"/>
 <tx:method name="*"/>
 </tx:attributes>
 </tx:advice>

 <!-- other transaction infrastructure beans such as a PlatformTransactionManager omitted... -->

</beans>

The following example shows how to configure two distinct beans with totally different
transactional settings.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xmlns:tx="http://www.springframework.org/schema/tx"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/tx
 http://www.springframework.org/schema/tx/spring-tx.xsd
 http://www.springframework.org/schema/aop
 http://www.springframework.org/schema/aop/spring-aop.xsd">

 <aop:config>

 <aop:pointcut id="defaultServiceOperation"
 expression="execution(* x.y.service.*Service.*(..))"/>

 <aop:pointcut id="noTxServiceOperation"
 expression="execution(* x.y.service.ddl.DefaultDdlManager.*(..))"/>

 <aop:advisor pointcut-ref="defaultServiceOperation" advice-ref="defaultTxAdvice"/>

 <aop:advisor pointcut-ref="noTxServiceOperation" advice-ref="noTxAdvice"/>

 </aop:config>

 <!-- this bean will be transactional (see the 'defaultServiceOperation' pointcut) -->
 <bean id="fooService" class="x.y.service.DefaultFooService"/>

 <!-- this bean will also be transactional, but with totally different transactional settings -->
 <bean id="anotherFooService" class="x.y.service.ddl.DefaultDdlManager"/>

 <tx:advice id="defaultTxAdvice">
 <tx:attributes>
 <tx:method name="get*" read-only="true"/>
 <tx:method name="*"/>
 </tx:attributes>
 </tx:advice>

 <tx:advice id="noTxAdvice">
 <tx:attributes>
 <tx:method name="*" propagation="NEVER"/>
 </tx:attributes>
 </tx:advice>

 <!-- other transaction infrastructure beans such as a PlatformTransactionManager omitted... -->

</beans>

<tx:advice/> settings

This section summarizes the various transactional settings that can be specified using
the <tx:advice/> tag. The default <tx:advice/> settings are:

	
Propagation setting is REQUIRED.

	
Isolation level is DEFAULT.

	
Transaction is read/write.

	
Transaction timeout defaults to the default timeout of the underlying transaction
system, or none if timeouts are not supported.

	
Any RuntimeException triggers rollback, and any checked Exception does not.

You can change these default settings; the various attributes of the <tx:method/> tags
that are nested within <tx:advice/> and <tx:attributes/> tags are summarized below:

Table 17.1. <tx:method/> settings

	Attribute	Required?	Default	Description
	name
	Yes
	 	Method name(s) with which the transaction attributes are to be associated. The
 wildcard (*) character can be used to associate the same transaction attribute
 settings with a number of methods; for example, get*, handle*, on*Event, and so
 forth.

	propagation
	No
	REQUIRED
	Transaction propagation behavior.

	isolation
	No
	DEFAULT
	Transaction isolation level. Only applicable to propagation REQUIRED or REQUIRES_NEW.

	timeout
	No
	-1
	Transaction timeout (seconds). Only applicable to propagation REQUIRED or REQUIRES_NEW.

	read-only
	No
	false
	Read/write vs. read-only transaction. Only applicable to REQUIRED or REQUIRES_NEW.

	rollback-for
	No
	 	Exception(s) that trigger rollback; comma-delimited. For example,
 com.foo.MyBusinessException,ServletException.

	no-rollback-for
	No
	 	Exception(s) that do not trigger rollback; comma-delimited. For example,
 com.foo.MyBusinessException,ServletException.

Using @Transactional

In addition to the XML-based declarative approach to transaction configuration, you can
use an annotation-based approach. Declaring transaction semantics directly in the Java
source code puts the declarations much closer to the affected code. There is not much
danger of undue coupling, because code that is meant to be used transactionally is
almost always deployed that way anyway.

	[image: [Note]]	Note
	
The standard javax.transaction.Transactional annotation is also supported as a drop-in
replacement to Spring’s own annotation. Please refer to JTA 1.2 documentation for more
details.

The ease-of-use afforded by the use of the @Transactional annotation is best
illustrated with an example, which is explained in the text that follows. Consider the
following class definition:

// the service class that we want to make transactional
@Transactional
public class DefaultFooService implements FooService {

 Foo getFoo(String fooName);

 Foo getFoo(String fooName, String barName);

 void insertFoo(Foo foo);

 void updateFoo(Foo foo);
}

When the above POJO is defined as a bean in a Spring IoC container, the bean instance
can be made transactional by adding merely one line of XML configuration:

<!-- from the file 'context.xml' -->
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xmlns:tx="http://www.springframework.org/schema/tx"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/tx
 http://www.springframework.org/schema/tx/spring-tx.xsd
 http://www.springframework.org/schema/aop
 http://www.springframework.org/schema/aop/spring-aop.xsd">

 <!-- this is the service object that we want to make transactional -->
 <bean id="fooService" class="x.y.service.DefaultFooService"/>

 <!-- enable the configuration of transactional behavior based on annotations -->
 <tx:annotation-driven transaction-manager="txManager"/><!-- a PlatformTransactionManager is still required -->
 <bean id="txManager" class="org.springframework.jdbc.datasource.DataSourceTransactionManager">
 <!-- (this dependency is defined somewhere else) -->
 <property name="dataSource" ref="dataSource"/>
 </bean>

 <!-- other <bean/> definitions here -->

</beans>

	[image: [Tip]]	Tip
	
You can omit the transaction-manager attribute in the <tx:annotation-driven/> tag if
the bean name of the PlatformTransactionManager that you want to wire in has the name
transactionManager. If the PlatformTransactionManager bean that you want to
dependency-inject has any other name, then you have to use the transaction-manager
attribute explicitly, as in the preceding example.

	[image: [Note]]	Note
	
The @EnableTransactionManagement annotation provides equivalent support if you are
using Java based configuration. Simply add the annotation to a @Configuration class.
See the javadocs for full details.

Method visibility and @Transactional

When using proxies, you should apply the @Transactional annotation only to methods
with public visibility. If you do annotate protected, private or package-visible
methods with the @Transactional annotation, no error is raised, but the annotated
method does not exhibit the configured transactional settings. Consider the use of
AspectJ (see below) if you need to annotate non-public methods.

You can place the @Transactional annotation before an interface definition, a method
on an interface, a class definition, or a public method on a class. However, the
mere presence of the @Transactional annotation is not enough to activate the
transactional behavior. The @Transactional annotation is simply metadata that can be
consumed by some runtime infrastructure that is @Transactional-aware and that can use
the metadata to configure the appropriate beans with transactional behavior. In the
preceding example, the <tx:annotation-driven/> element switches on the
transactional behavior.

	[image: [Tip]]	Tip
	
Spring recommends that you only annotate concrete classes (and methods of concrete
classes) with the @Transactional annotation, as opposed to annotating interfaces. You
certainly can place the @Transactional annotation on an interface (or an interface
method), but this works only as you would expect it to if you are using interface-based
proxies. The fact that Java annotations are not inherited from interfaces means that
if you are using class-based proxies (proxy-target-class="true") or the weaving-based
aspect (mode="aspectj"), then the transaction settings are not recognized by the
proxying and weaving infrastructure, and the object will not be wrapped in a
transactional proxy, which would be decidedly bad.

	[image: [Note]]	Note
	
In proxy mode (which is the default), only external method calls coming in through the
proxy are intercepted. This means that self-invocation, in effect, a method within the
target object calling another method of the target object, will not lead to an actual
transaction at runtime even if the invoked method is marked with @Transactional. Also,
the proxy must be fully initialized to provide the expected behaviour so you should not
rely on this feature in your initialization code, i.e. @PostConstruct.

Consider the use of AspectJ mode (see mode attribute in table below) if you expect
self-invocations to be wrapped with transactions as well. In this case, there will not
be a proxy in the first place; instead, the target class will be weaved (that is, its
byte code will be modified) in order to turn @Transactional into runtime behavior on
any kind of method.

Table 17.2. Annotation driven transaction settings

	XML Attribute	Annotation Attribute	Default	Description
	transaction-manager
	N/A (See TransactionManagementConfigurer javadocs)
	transactionManager
	Name of transaction manager to use. Only required if the name of the transaction
 manager is not transactionManager, as in the example above.

	mode
	mode
	proxy
	The default mode "proxy" processes annotated beans to be proxied using Spring’s AOP
 framework (following proxy semantics, as discussed above, applying to method calls
 coming in through the proxy only). The alternative mode "aspectj" instead weaves the
 affected classes with Spring’s AspectJ transaction aspect, modifying the target class
 byte code to apply to any kind of method call. AspectJ weaving requires
 spring-aspects.jar in the classpath as well as load-time weaving (or compile-time
 weaving) enabled. (See the section called “Spring configuration” for details on how to set up load-time
 weaving.)

	proxy-target-class
	proxyTargetClass
	false
	Applies to proxy mode only. Controls what type of transactional proxies are created
 for classes annotated with the @Transactional annotation. If the
 proxy-target-class attribute is set to true, then class-based proxies are created.
 If proxy-target-class is false or if the attribute is omitted, then standard JDK
 interface-based proxies are created. (See the section called “Proxying mechanisms” for a detailed examination
 of the different proxy types.)

	order
	order
	Ordered.LOWEST_PRECEDENCE
	Defines the order of the transaction advice that is applied to beans annotated with
 @Transactional. (For more information about the rules related to ordering of AOP
 advice, see the section called “Advice ordering”.) No specified ordering means that the
 AOP subsystem determines the order of the advice.

	[image: [Note]]	Note
	
The default advice mode for processing @Transactional annotations is "proxy" which
allows for interception of calls through the proxy only; local calls within the same
class cannot get intercepted that way. For a more advanced mode of interception,
consider switching to "aspectj" mode in combination with compile/load-time weaving.

	[image: [Note]]	Note
	
The proxy-target-class attribute controls what type of transactional proxies are
created for classes annotated with the @Transactional annotation. If
proxy-target-class is set to true, class-based proxies are created. If
proxy-target-class is false or if the attribute is omitted, standard JDK
interface-based proxies are created. (See the section called “Proxying mechanisms” for a discussion of the
different proxy types.)

	[image: [Note]]	Note
	
@EnableTransactionManagement and <tx:annotation-driven/> only looks for
@Transactional on beans in the same application context they are defined in. This
means that, if you put annotation driven configuration in a WebApplicationContext for
a DispatcherServlet, it only checks for @Transactional beans in your controllers,
and not your services. See the section called “The DispatcherServlet” for more information.

The most derived location takes precedence when evaluating the transactional settings
for a method. In the case of the following example, the DefaultFooService class is
annotated at the class level with the settings for a read-only transaction, but the
@Transactional annotation on the updateFoo(Foo) method in the same class takes
precedence over the transactional settings defined at the class level.

@Transactional(readOnly = true)
public class DefaultFooService implements FooService {

 public Foo getFoo(String fooName) {
 // do something
 }

 // these settings have precedence for this method
 @Transactional(readOnly = false, propagation = Propagation.REQUIRES_NEW)
 public void updateFoo(Foo foo) {
 // do something
 }
}

@Transactional settings

The @Transactional annotation is metadata that specifies that an interface, class, or
method must have transactional semantics; for example, "start a brand new read-only
transaction when this method is invoked, suspending any existing transaction". The
default @Transactional settings are as follows:

	
Propagation setting is PROPAGATION_REQUIRED.

	
Isolation level is ISOLATION_DEFAULT.

	
Transaction is read/write.

	
Transaction timeout defaults to the default timeout of the underlying transaction
system, or to none if timeouts are not supported.

	
Any RuntimeException triggers rollback, and any checked Exception does not.

These default settings can be changed; the various properties of the @Transactional
annotation are summarized in the following table:

Table 17.3. @Transactional Settings

	Property	Type	Description
	value
	String
	Optional qualifier specifying the transaction manager to be used.

	propagation
	enum: Propagation
	Optional propagation setting.

	isolation
	enum: Isolation
	Optional isolation level. Only applicable to propagation REQUIRED or REQUIRES_NEW.

	timeout
	int (in seconds granularity)
	Optional transaction timeout. Only applicable to propagation REQUIRED or REQUIRES_NEW.

	readOnly
	boolean
	Read/write vs. read-only transaction. Only applicable to REQUIRED or REQUIRES_NEW.

	rollbackFor
	Array of Class objects, which must be derived from Throwable.
	Optional array of exception classes that must cause rollback.

	rollbackForClassName
	Array of class names. Classes must be derived from Throwable.
	Optional array of names of exception classes that must cause rollback.

	noRollbackFor
	Array of Class objects, which must be derived from Throwable.
	Optional array of exception classes that must not cause rollback.

	noRollbackForClassName
	Array of String class names, which must be derived from Throwable.
	Optional array of names of exception classes that must not cause rollback.

Currently you cannot have explicit control over the name of a transaction, where 'name'
means the transaction name that will be shown in a transaction monitor, if applicable
(for example, WebLogic’s transaction monitor), and in logging output. For declarative
transactions, the transaction name is always the fully-qualified class name + "."
+ method name of the transactionally-advised class. For example, if the
handlePayment(..) method of the BusinessService class started a transaction, the
name of the transaction would be: com.foo.BusinessService.handlePayment.

Multiple Transaction Managers with @Transactional

Most Spring applications only need a single transaction manager, but there may be
situations where you want multiple independent transaction managers in a single
application. The value attribute of the @Transactional annotation can be used to
optionally specify the identity of the PlatformTransactionManager to be used. This can
either be the bean name or the qualifier value of the transaction manager bean. For
example, using the qualifier notation, the following Java code

public class TransactionalService {

 @Transactional("order")
 public void setSomething(String name) { ... }

 @Transactional("account")
 public void doSomething() { ... }
}

could be combined with the following transaction manager bean declarations in the
application context.

<tx:annotation-driven/>

 <bean id="transactionManager1" class="org.springframework.jdbc.datasource.DataSourceTransactionManager">
 ...
 <qualifier value="order"/>
 </bean>

 <bean id="transactionManager2" class="org.springframework.jdbc.datasource.DataSourceTransactionManager">
 ...
 <qualifier value="account"/>
 </bean>

In this case, the two methods on TransactionalService will run under separate
transaction managers, differentiated by the "order" and "account" qualifiers. The
default <tx:annotation-driven> target bean name transactionManager will still be
used if no specifically qualified PlatformTransactionManager bean is found.

Custom shortcut annotations

If you find you are repeatedly using the same attributes with @Transactional on many
different methods, then Spring’s meta-annotation support allows
you to define custom shortcut annotations for your specific use cases. For example,
defining the following annotations

@Target({ElementType.METHOD, ElementType.TYPE})
@Retention(RetentionPolicy.RUNTIME)
@Transactional("order")
public @interface OrderTx {
}

@Target({ElementType.METHOD, ElementType.TYPE})
@Retention(RetentionPolicy.RUNTIME)
@Transactional("account")
public @interface AccountTx {
}

allows us to write the example from the previous section as

public class TransactionalService {

 @OrderTx
 public void setSomething(String name) { ... }

 @AccountTx
 public void doSomething() { ... }
}

Here we have used the syntax to define the transaction manager qualifier, but could also
have included propagation behavior, rollback rules, timeouts etc.

Transaction propagation

This section describes some semantics of transaction propagation in Spring. Please note
that this section is not an introduction to transaction propagation proper; rather it
details some of the semantics regarding transaction propagation in Spring.

In Spring-managed transactions, be aware of the difference between physical and
logical transactions, and how the propagation setting applies to this difference.

Required

[image: tx prop required]

PROPAGATION_REQUIRED

When the propagation setting is PROPAGATION_REQUIRED, a logical transaction scope
is created for each method upon which the setting is applied. Each such logical
transaction scope can determine rollback-only status individually, with an outer
transaction scope being logically independent from the inner transaction scope.
Of course, in case of standard PROPAGATION_REQUIRED behavior, all these scopes will be
mapped to the same physical transaction. So a rollback-only marker set in the inner
transaction scope does affect the outer transaction’s chance to actually commit (as you
would expect it to).

However, in the case where an inner transaction scope sets the rollback-only marker, the
outer transaction has not decided on the rollback itself, and so the rollback (silently
triggered by the inner transaction scope) is unexpected. A corresponding
UnexpectedRollbackException is thrown at that point. This is expected behavior so
that the caller of a transaction can never be misled to assume that a commit was
performed when it really was not. So if an inner transaction (of which the outer caller
is not aware) silently marks a transaction as rollback-only, the outer caller still
calls commit. The outer caller needs to receive an UnexpectedRollbackException to
indicate clearly that a rollback was performed instead.

RequiresNew

[image: tx prop requires new]

PROPAGATION_REQUIRES_NEW

PROPAGATION_REQUIRES_NEW, in contrast to PROPAGATION_REQUIRED, always uses an
independent physical transaction for each affected transaction scope, never
participating in an existing transaction for an outer scope. In such an arrangement,
the underlying resource transactions are different and hence can commit or roll back
independently, with an outer transaction not affected by an inner transaction’s rollback
status, and with an inner transaction’s locks released immediately after its completion.
Such an independent inner transaction may also declare its own isolation level, timeout
and read-only settings, never inheriting an outer transaction’s characteristics.

Nested

PROPAGATION_NESTED uses a single physical transaction with multiple savepoints
that it can roll back to. Such partial rollbacks allow an inner transaction scope to
trigger a rollback for its scope, with the outer transaction being able to continue
the physical transaction despite some operations having been rolled back. This setting
is typically mapped onto JDBC savepoints, so will only work with JDBC resource
transactions. See Spring’s DataSourceTransactionManager.

Advising transactional operations

Suppose you want to execute both transactional and some basic profiling advice.
How do you effect this in the context of <tx:annotation-driven/>?

When you invoke the updateFoo(Foo) method, you want to see the following actions:

	
Configured profiling aspect starts up.

	
Transactional advice executes.

	
Method on the advised object executes.

	
Transaction commits.

	
Profiling aspect reports exact duration of the whole transactional method invocation.

	[image: [Note]]	Note
	
This chapter is not concerned with explaining AOP in any great detail (except as it
applies to transactions). See Chapter 11, Aspect Oriented Programming with Spring for detailed coverage of the following AOP
configuration and AOP in general.

Here is the code for a simple profiling aspect discussed above. The ordering of advice
is controlled through the Ordered interface. For full details on advice ordering, see
the section called “Advice ordering”.
.

package x.y;

import org.aspectj.lang.ProceedingJoinPoint;
import org.springframework.util.StopWatch;
import org.springframework.core.Ordered;

public class SimpleProfiler implements Ordered {

 private int order;

 // allows us to control the ordering of advice
 public int getOrder() {
 return this.order;
 }

 public void setOrder(int order) {
 this.order = order;
 }

 // this method is the around advice
 public Object profile(ProceedingJoinPoint call) throws Throwable {
 Object returnValue;
 StopWatch clock = new StopWatch(getClass().getName());
 try {
 clock.start(call.toShortString());
 returnValue = call.proceed();
 } finally {
 clock.stop();
 System.out.println(clock.prettyPrint());
 }
 return returnValue;
 }
}

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xmlns:tx="http://www.springframework.org/schema/tx"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/tx
 http://www.springframework.org/schema/tx/spring-tx.xsd
 http://www.springframework.org/schema/aop
 http://www.springframework.org/schema/aop/spring-aop.xsd">

 <bean id="fooService" class="x.y.service.DefaultFooService"/>

 <!-- this is the aspect -->
 <bean id="profiler" class="x.y.SimpleProfiler">
 <!-- execute before the transactional advice (hence the lower order number) -->
 <property name="order" value="1"/>
 </bean>

 <tx:annotation-driven transaction-manager="txManager" order="200"/>

 <aop:config>
 <!-- this advice will execute around the transactional advice -->
 <aop:aspect id="profilingAspect" ref="profiler">
 <aop:pointcut id="serviceMethodWithReturnValue"
 expression="execution(!void x.y..*Service.*(..))"/>
 <aop:around method="profile" pointcut-ref="serviceMethodWithReturnValue"/>
 </aop:aspect>
 </aop:config>

 <bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close">
 <property name="driverClassName" value="oracle.jdbc.driver.OracleDriver"/>
 <property name="url" value="jdbc:oracle:thin:@rj-t42:1521:elvis"/>
 <property name="username" value="scott"/>
 <property name="password" value="tiger"/>
 </bean>

 <bean id="txManager" class="org.springframework.jdbc.datasource.DataSourceTransactionManager">
 <property name="dataSource" ref="dataSource"/>
 </bean>

</beans>

The result of the above configuration is a fooService bean that has profiling and
transactional aspects applied to it in the desired order. You configure any number
of additional aspects in similar fashion.

The following example effects the same setup as above, but uses the purely XML
declarative approach.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xmlns:tx="http://www.springframework.org/schema/tx"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/tx
 http://www.springframework.org/schema/tx/spring-tx.xsd
 http://www.springframework.org/schema/aop
 http://www.springframework.org/schema/aop/spring-aop.xsd">

 <bean id="fooService" class="x.y.service.DefaultFooService"/>

 <!-- the profiling advice -->
 <bean id="profiler" class="x.y.SimpleProfiler">
 <!-- execute before the transactional advice (hence the lower order number) -->
 <property name="order" value="1"/>
 </bean>

 <aop:config>
 <aop:pointcut id="entryPointMethod" expression="execution(* x.y..*Service.*(..))"/>
 <!-- will execute after the profiling advice (c.f. the order attribute) -->

 <aop:advisor advice-ref="txAdvice" pointcut-ref="entryPointMethod" order="2"/>
 <!-- order value is higher than the profiling aspect -->

 <aop:aspect id="profilingAspect" ref="profiler">
 <aop:pointcut id="serviceMethodWithReturnValue"
 expression="execution(!void x.y..*Service.*(..))"/>
 <aop:around method="profile" pointcut-ref="serviceMethodWithReturnValue"/>
 </aop:aspect>

 </aop:config>

 <tx:advice id="txAdvice" transaction-manager="txManager">
 <tx:attributes>
 <tx:method name="get*" read-only="true"/>
 <tx:method name="*"/>
 </tx:attributes>
 </tx:advice>

 <!-- other <bean/> definitions such as a DataSource and a PlatformTransactionManager here -->

</beans>

The result of the above configuration will be a fooService bean that has profiling and
transactional aspects applied to it in that order. If you want the profiling advice
to execute after the transactional advice on the way in, and before the
transactional advice on the way out, then you simply swap the value of the profiling
aspect bean’s order property so that it is higher than the transactional advice’s
order value.

You configure additional aspects in similar fashion.

Using @Transactional with AspectJ

It is also possible to use the Spring Framework’s @Transactional support outside of a
Spring container by means of an AspectJ aspect. To do so, you first annotate your
classes (and optionally your classes' methods) with the @Transactional annotation, and
then you link (weave) your application with the
org.springframework.transaction.aspectj.AnnotationTransactionAspect defined in the
spring-aspects.jar file. The aspect must also be configured with a transaction
manager. You can of course use the Spring Framework’s IoC container to take care of
dependency-injecting the aspect. The simplest way to configure the transaction
management aspect is to use the <tx:annotation-driven/> element and specify the mode
attribute to aspectj as described in the section called “Using @Transactional”. Because
we’re focusing here on applications running outside of a Spring container, we’ll show
you how to do it programmatically.

	[image: [Note]]	Note
	
Prior to continuing, you may want to read the section called “Using @Transactional” and
Chapter 11, Aspect Oriented Programming with Spring respectively.

// construct an appropriate transaction manager
DataSourceTransactionManager txManager = new DataSourceTransactionManager(getDataSource());

// configure the AnnotationTransactionAspect to use it; this must be done before executing any transactional methods
AnnotationTransactionAspect.aspectOf().setTransactionManager(txManager);

	[image: [Note]]	Note
	
When using this aspect, you must annotate the implementation class (and/or methods
within that class), not the interface (if any) that the class implements. AspectJ
follows Java’s rule that annotations on interfaces are not inherited.

The @Transactional annotation on a class specifies the default transaction semantics
for the execution of any public method in the class.

The @Transactional annotation on a method within the class overrides the default
transaction semantics given by the class annotation (if present). Any method may be
annotated, regardless of visibility.

To weave your applications with the AnnotationTransactionAspect you must either build
your application with AspectJ (see the
AspectJ Development
Guide) or use load-time weaving. See the section called “Load-time weaving with AspectJ in the Spring Framework” for a discussion of load-time
weaving with AspectJ.

Programmatic transaction management

The Spring Framework provides two means of programmatic transaction management:

	
Using the TransactionTemplate.

	
Using a PlatformTransactionManager implementation directly.

The Spring team generally recommends the TransactionTemplate for programmatic
transaction management. The second approach is similar to using the JTA
UserTransaction API, although exception handling is less cumbersome.

Using the TransactionTemplate

The TransactionTemplate adopts the same approach as other Spring templates such as
the JdbcTemplate. It uses a callback approach, to free application code from having to
do the boilerplate acquisition and release of transactional resources, and results in
code that is intention driven, in that the code that is written focuses solely on what
the developer wants to do.

	[image: [Note]]	Note
	
As you will see in the examples that follow, using the TransactionTemplate absolutely
couples you to Spring’s transaction infrastructure and APIs. Whether or not programmatic
transaction management is suitable for your development needs is a decision that you
will have to make yourself.

Application code that must execute in a transactional context, and that will use the
TransactionTemplate explicitly, looks like the following. You, as an application
developer, write a TransactionCallback implementation (typically expressed as an
anonymous inner class) that contains the code that you need to execute in the context of
a transaction. You then pass an instance of your custom TransactionCallback to the
execute(..) method exposed on the TransactionTemplate.

public class SimpleService implements Service {

 // single TransactionTemplate shared amongst all methods in this instance
 private final TransactionTemplate transactionTemplate;

 // use constructor-injection to supply the PlatformTransactionManager
 public SimpleService(PlatformTransactionManager transactionManager) {
 this.transactionTemplate = new TransactionTemplate(transactionManager);
 }

 public Object someServiceMethod() {
 return transactionTemplate.execute(new TransactionCallback() {
 // the code in this method executes in a transactional context
 public Object doInTransaction(TransactionStatus status) {
 updateOperation1();
 return resultOfUpdateOperation2();
 }
 });
 }
}

If there is no return value, use the convenient TransactionCallbackWithoutResult class
with an anonymous class as follows:

transactionTemplate.execute(new TransactionCallbackWithoutResult() {
 protected void doInTransactionWithoutResult(TransactionStatus status) {
 updateOperation1();
 updateOperation2();
 }
});

Code within the callback can roll the transaction back by calling the
setRollbackOnly() method on the supplied TransactionStatus object:

transactionTemplate.execute(new TransactionCallbackWithoutResult() {

 protected void doInTransactionWithoutResult(TransactionStatus status) {
 try {
 updateOperation1();
 updateOperation2();
 } catch (SomeBusinessExeption ex) {
 status.setRollbackOnly();
 }
 }
});

Specifying transaction settings

You can specify transaction settings such as the propagation mode, the isolation level,
the timeout, and so forth on the TransactionTemplate either programmatically or in
configuration. TransactionTemplate instances by default have the
default transactional settings. The
following example shows the programmatic customization of the transactional settings for
a specific TransactionTemplate:

public class SimpleService implements Service {

 private final TransactionTemplate transactionTemplate;

 public SimpleService(PlatformTransactionManager transactionManager) {
 this.transactionTemplate = new TransactionTemplate(transactionManager);

 // the transaction settings can be set here explicitly if so desired
 this.transactionTemplate.setIsolationLevel(TransactionDefinition.ISOLATION_READ_UNCOMMITTED);
 this.transactionTemplate.setTimeout(30); // 30 seconds
 // and so forth...
 }
}

The following example defines a TransactionTemplate with some custom transactional
settings, using Spring XML configuration. The sharedTransactionTemplate can then be
injected into as many services as are required.

<bean id="sharedTransactionTemplate"
 class="org.springframework.transaction.support.TransactionTemplate">
 <property name="isolationLevelName" value="ISOLATION_READ_UNCOMMITTED"/>
 <property name="timeout" value="30"/>
</bean>"

Finally, instances of the TransactionTemplate class are threadsafe, in that instances
do not maintain any conversational state. TransactionTemplate instances do however
maintain configuration state, so while a number of classes may share a single instance
of a TransactionTemplate, if a class needs to use a TransactionTemplate with
different settings (for example, a different isolation level), then you need to create
two distinct TransactionTemplate instances.

Using the PlatformTransactionManager

You can also use the org.springframework.transaction.PlatformTransactionManager
directly to manage your transaction. Simply pass the implementation of the
PlatformTransactionManager you are using to your bean through a bean reference. Then,
using the TransactionDefinition and TransactionStatus objects you can initiate
transactions, roll back, and commit.

DefaultTransactionDefinition def = new DefaultTransactionDefinition();
// explicitly setting the transaction name is something that can only be done programmatically
def.setName("SomeTxName");
def.setPropagationBehavior(TransactionDefinition.PROPAGATION_REQUIRED);

TransactionStatus status = txManager.getTransaction(def);
try {
 // execute your business logic here
}
catch (MyException ex) {
 txManager.rollback(status);
 throw ex;
}
txManager.commit(status);

Choosing between programmatic and declarative transaction management

Programmatic transaction management is usually a good idea only if you have a small
number of transactional operations. For example, if you have a web application that
require transactions only for certain update operations, you may not want to set up
transactional proxies using Spring or any other technology. In this case, using the
TransactionTemplate may be a good approach. Being able to set the transaction name
explicitly is also something that can only be done using the programmatic approach to
transaction management.

On the other hand, if your application has numerous transactional operations,
declarative transaction management is usually worthwhile. It keeps transaction
management out of business logic, and is not difficult to configure. When using the
Spring Framework, rather than EJB CMT, the configuration cost of declarative transaction
management is greatly reduced.

Transaction bound event

As of Spring 4.2, the listener of an event can be bound to a phase of the transaction. The
typical example is to handle the event when the transaction has completed successfully: this
allows events to be used with more flexibility when the outcome of the current transaction
actually matters to the listener.

Registering a regular event listener is done via the @EventListener annotation. If you need
to bind it to the transaction use @TransactionalEventListener. When you do so, the listener
will be bound to the commit phase of the transaction by default.

Let’s take an example to illustrate this concept. Assume that a component publishes an order
created event and we want to define a listener that should only handle that event once the
transaction in which it has been published has committed successfully:

@Component
public class MyComponent {

 @TransactionalEventListener
 public void handleOrderCreatedEvent(CreationEvent<Order> creationEvent) {
 ...
 }
}

The TransactionalEventListener annotation exposes a phase attribute that allows us to customize
which phase of the transaction the listener should be bound to. The valid phases are BEFORE_COMMIT,
AFTER_COMMIT (default), AFTER_ROLLBACK and AFTER_COMPLETION that aggregates the transaction
completion (be it a commit or a rollback).

If no transaction is running, the listener is not invoked at all since we can’t honor the required
semantics. It is however possible to override that behaviour by setting the fallbackExecution attribute
of the annotation to true.

Application server-specific integration

Spring’s transaction abstraction generally is application server agnostic. Additionally,
Spring’s JtaTransactionManager class, which can optionally perform a JNDI lookup for
the JTA UserTransaction and TransactionManager objects, autodetects the location for
the latter object, which varies by application server. Having access to the JTA
TransactionManager allows for enhanced transaction semantics, in particular supporting
transaction suspension. See the JtaTransactionManager javadocs for details.

Spring’s JtaTransactionManager is the standard choice to run on Java EE application
servers, and is known to work on all common servers. Advanced functionality such as
transaction suspension works on many servers as well — including GlassFish, JBoss and
Geronimo — without any special configuration required. However, for fully supported
transaction suspension and further advanced integration, Spring ships special adapters
for WebLogic Server and WebSphere. These adapters are discussed in the following
sections.

For standard scenarios, including WebLogic Server and WebSphere, consider using the
convenient <tx:jta-transaction-manager/> configuration element. When configured,
this element automatically detects the underlying server and chooses the best
transaction manager available for the platform. This means that you won’t have to
configure server-specific adapter classes (as discussed in the following sections)
explicitly; rather, they are chosen automatically, with the standard
JtaTransactionManager as default fallback.

IBM WebSphere

On WebSphere 6.1.0.9 and above, the recommended Spring JTA transaction manager to use is
WebSphereUowTransactionManager. This special adapter leverages IBM’s UOWManager API,
which is available in WebSphere Application Server 6.1.0.9 and later. With this adapter,
Spring-driven transaction suspension (suspend/resume as initiated by
PROPAGATION_REQUIRES_NEW) is officially supported by IBM.

Oracle WebLogic Server

On WebLogic Server 9.0 or above, you typically would use the
WebLogicJtaTransactionManager instead of the stock JtaTransactionManager class. This
special WebLogic-specific subclass of the normal JtaTransactionManager supports the
full power of Spring’s transaction definitions in a WebLogic-managed transaction
environment, beyond standard JTA semantics: Features include transaction names,
per-transaction isolation levels, and proper resuming of transactions in all cases.

Solutions to common problems

Use of the wrong transaction manager for a specific DataSource

Use the correct PlatformTransactionManager implementation based on your choice of
transactional technologies and requirements. Used properly, the Spring Framework merely
provides a straightforward and portable abstraction. If you are using global
transactions, you must use the
org.springframework.transaction.jta.JtaTransactionManager class (or an
application server-specific subclass of
it) for all your transactional operations. Otherwise the transaction infrastructure
attempts to perform local transactions on resources such as container DataSource
instances. Such local transactions do not make sense, and a good application server
treats them as errors.

Further resources

For more information about the Spring Framework’s transaction support:

	
Distributed
transactions in Spring, with and without XA is a JavaWorld presentation in which
Spring’s David Syer guides you through seven patterns for distributed
transactions in Spring applications, three of them with XA and four without.

	
Java Transaction Design Strategies is a book
available from InfoQ that provides a well-paced introduction
to transactions in Java. It also includes side-by-side examples of how to configure
and use transactions with both the Spring Framework and EJB3.

Chapter 18. DAO support

Introduction

The Data Access Object (DAO) support in Spring is aimed at making it easy to work with
data access technologies like JDBC, Hibernate, JPA or JDO in a consistent way. This
allows one to switch between the aforementioned persistence technologies fairly easily
and it also allows one to code without worrying about catching exceptions that are
specific to each technology.

Consistent exception hierarchy

Spring provides a convenient translation from technology-specific exceptions like
SQLException to its own exception class hierarchy with the DataAccessException as
the root exception. These exceptions wrap the original exception so there is never any
risk that one might lose any information as to what might have gone wrong.

In addition to JDBC exceptions, Spring can also wrap Hibernate-specific exceptions,
converting them to a set of focused runtime exceptions (the same is true for JDO and
JPA exceptions). This allows one to handle most persistence exceptions, which are
non-recoverable, only in the appropriate layers, without having annoying boilerplate
catch-and-throw blocks and exception declarations in one’s DAOs. (One can still trap
and handle exceptions anywhere one needs to though.) As mentioned above, JDBC
exceptions (including database-specific dialects) are also converted to the same
hierarchy, meaning that one can perform some operations with JDBC within a consistent
programming model.

The above holds true for the various template classes in Springs support for various ORM
frameworks. If one uses the interceptor-based classes then the application must care
about handling HibernateExceptions and JDOExceptions itself, preferably via
delegating to SessionFactoryUtils’ `convertHibernateAccessException(..) or
convertJdoAccessException() methods respectively. These methods convert the exceptions
to ones that are compatible with the exceptions in the org.springframework.dao
exception hierarchy. As JDOExceptions are unchecked, they can simply get thrown too,
sacrificing generic DAO abstraction in terms of exceptions though.

The exception hierarchy that Spring provides can be seen below. (Please note that the
class hierarchy detailed in the image shows only a subset of the entire
DataAccessException hierarchy.)

[image: DataAccessException]

Annotations used for configuring DAO or Repository classes

The best way to guarantee that your Data Access Objects (DAOs) or repositories provide
exception translation is to use the @Repository annotation. This annotation also
allows the component scanning support to find and configure your DAOs and repositories
without having to provide XML configuration entries for them.

@Repository
public class SomeMovieFinder implements MovieFinder {
 // ...
}

Any DAO or repository implementation will need to access to a persistence resource,
depending on the persistence technology used; for example, a JDBC-based repository will
need access to a JDBC DataSource; a JPA-based repository will need access to an
EntityManager. The easiest way to accomplish this is to have this resource dependency
injected using one of the @Autowired,, @Inject, @Resource or @PersistenceContext
annotations. Here is an example for a JPA repository:

@Repository
public class JpaMovieFinder implements MovieFinder {

 @PersistenceContext
 private EntityManager entityManager;

 // ...

}

If you are using the classic Hibernate APIs than you can inject the SessionFactory:

@Repository
public class HibernateMovieFinder implements MovieFinder {

 private SessionFactory sessionFactory;

 @Autowired
 public void setSessionFactory(SessionFactory sessionFactory) {
 this.sessionFactory = sessionFactory;
 }

 // ...

}

Last example we will show here is for typical JDBC support. You would have the
DataSource injected into an initialization method where you would create a
JdbcTemplate and other data access support classes like SimpleJdbcCall etc using
this DataSource.

@Repository
public class JdbcMovieFinder implements MovieFinder {

 private JdbcTemplate jdbcTemplate;

 @Autowired
 public void init(DataSource dataSource) {
 this.jdbcTemplate = new JdbcTemplate(dataSource);
 }

 // ...

}

	[image: [Note]]	Note
	
Please see the specific coverage of each persistence technology for details on how to
configure the application context to take advantage of these annotations.

Chapter 19. Data access with JDBC

Introduction to Spring Framework JDBC

The value-add provided by the Spring Framework JDBC abstraction is perhaps best shown by
the sequence of actions outlined in the table below. The table shows what actions Spring
will take care of and which actions are the responsibility of you, the application
developer.

Table 19.1. Spring JDBC - who does what?

	Action	Spring	You
	Define connection parameters.
	 	X

	Open the connection.
	X
	
	Specify the SQL statement.
	 	X

	Declare parameters and provide parameter values
	 	X

	Prepare and execute the statement.
	X
	
	Set up the loop to iterate through the results (if any).
	X
	
	Do the work for each iteration.
	 	X

	Process any exception.
	X
	
	Handle transactions.
	X
	
	Close the connection, statement and resultset.
	X
	

The Spring Framework takes care of all the low-level details that can make JDBC such a
tedious API to develop with.

Choosing an approach for JDBC database access

You can choose among several approaches to form the basis for your JDBC database access.
In addition to three flavors of the JdbcTemplate, a new SimpleJdbcInsert and
SimplejdbcCall approach optimizes database metadata, and the RDBMS Object style takes a
more object-oriented approach similar to that of JDO Query design. Once you start using
one of these approaches, you can still mix and match to include a feature from a
different approach. All approaches require a JDBC 2.0-compliant driver, and some
advanced features require a JDBC 3.0 driver.

	
JdbcTemplate is the classic Spring JDBC approach and the most popular. This
"lowest level" approach and all others use a JdbcTemplate under the covers.

	
NamedParameterJdbcTemplate wraps a JdbcTemplate to provide named parameters
instead of the traditional JDBC "?" placeholders. This approach provides better
documentation and ease of use when you have multiple parameters for an SQL statement.

	
SimpleJdbcInsert and SimpleJdbcCall optimize database metadata to limit the amount
of necessary configuration. This approach simplifies coding so that you only need to
provide the name of the table or procedure and provide a map of parameters matching
the column names. This only works if the database provides adequate metadata. If the
database doesn’t provide this metadata, you will have to provide explicit
configuration of the parameters.

	
RDBMS Objects including MappingSqlQuery, SqlUpdate and StoredProcedure requires
you to create reusable and thread-safe objects during initialization of your data
access layer. This approach is modeled after JDO Query wherein you define your query
string, declare parameters, and compile the query. Once you do that, execute methods
can be called multiple times with various parameter values passed in.

Package hierarchy

The Spring Framework’s JDBC abstraction framework consists of four different packages,
namely core, datasource, object, and support.

The org.springframework.jdbc.core package contains the JdbcTemplate class and its
various callback interfaces, plus a variety of related classes. A subpackage named
org.springframework.jdbc.core.simple contains the SimpleJdbcInsert and
SimpleJdbcCall classes. Another subpackage named
org.springframework.jdbc.core.namedparam contains the NamedParameterJdbcTemplate
class and the related support classes. See the section called “Using the JDBC core classes to control basic JDBC processing and error handling”, the section called “JDBC batch operations”, and
the section called “Simplifying JDBC operations with the SimpleJdbc classes”.

The org.springframework.jdbc.datasource package contains a utility class for easy
DataSource access, and various simple DataSource implementations that can be used for
testing and running unmodified JDBC code outside of a Java EE container. A subpackage
named org.springfamework.jdbc.datasource.embedded provides support for creating
embedded databases using Java database engines such as HSQL, H2, and Derby. See
the section called “Controlling database connections” and the section called “Embedded database support”.

The org.springframework.jdbc.object package contains classes that represent RDBMS
queries, updates, and stored procedures as thread-safe, reusable objects. See
the section called “Modeling JDBC operations as Java objects”. This approach is modeled by JDO, although objects returned by queries
are naturally disconnected from the database. This higher level of JDBC abstraction
depends on the lower-level abstraction in the org.springframework.jdbc.core package.

The org.springframework.jdbc.support package provides SQLException translation
functionality and some utility classes. Exceptions thrown during JDBC processing are
translated to exceptions defined in the org.springframework.dao package. This means
that code using the Spring JDBC abstraction layer does not need to implement JDBC or
RDBMS-specific error handling. All translated exceptions are unchecked, which gives you
the option of catching the exceptions from which you can recover while allowing other
exceptions to be propagated to the caller. See the section called “SQLExceptionTranslator”.

Using the JDBC core classes to control basic JDBC processing and error handling

JdbcTemplate

The JdbcTemplate class is the central class in the JDBC core package. It handles the
creation and release of resources, which helps you avoid common errors such as
forgetting to close the connection. It performs the basic tasks of the core JDBC
workflow such as statement creation and execution, leaving application code to provide
SQL and extract results. The JdbcTemplate class executes SQL queries, update
statements and stored procedure calls, performs iteration over ResultSets and
extraction of returned parameter values. It also catches JDBC exceptions and translates
them to the generic, more informative, exception hierarchy defined in the
org.springframework.dao package.

When you use the JdbcTemplate for your code, you only need to implement callback
interfaces, giving them a clearly defined contract. The PreparedStatementCreator
callback interface creates a prepared statement given a Connection provided by this
class, providing SQL and any necessary parameters. The same is true for the
CallableStatementCreator interface, which creates callable statements. The
RowCallbackHandler interface extracts values from each row of a ResultSet.

The JdbcTemplate can be used within a DAO implementation through direct instantiation
with a DataSource reference, or be configured in a Spring IoC container and given to
DAOs as a bean reference.

	[image: [Note]]	Note
	
The DataSource should always be configured as a bean in the Spring IoC container. In
the first case the bean is given to the service directly; in the second case it is given
to the prepared template.

All SQL issued by this class is logged at the DEBUG level under the category
corresponding to the fully qualified class name of the template instance (typically
JdbcTemplate, but it may be different if you are using a custom subclass of the
JdbcTemplate class).

Examples of JdbcTemplate class usage

This section provides some examples of JdbcTemplate class usage. These examples are
not an exhaustive list of all of the functionality exposed by the JdbcTemplate; see
the attendant javadocs for that.

Querying (SELECT)

Here is a simple query for getting the number of rows in a relation:

int rowCount = this.jdbcTemplate.queryForObject("select count(*) from t_actor", Integer.class);

A simple query using a bind variable:

int countOfActorsNamedJoe = this.jdbcTemplate.queryForObject(
 "select count(*) from t_actor where first_name = ?", Integer.class, "Joe");

Querying for a String:

String lastName = this.jdbcTemplate.queryForObject(
 "select last_name from t_actor where id = ?",
 new Object[]{1212L}, String.class);

Querying and populating a single domain object:

Actor actor = this.jdbcTemplate.queryForObject(
 "select first_name, last_name from t_actor where id = ?",
 new Object[]{1212L},
 new RowMapper<Actor>() {
 public Actor mapRow(ResultSet rs, int rowNum) throws SQLException {
 Actor actor = new Actor();
 actor.setFirstName(rs.getString("first_name"));
 actor.setLastName(rs.getString("last_name"));
 return actor;
 }
 });

Querying and populating a number of domain objects:

List<Actor> actors = this.jdbcTemplate.query(
 "select first_name, last_name from t_actor",
 new RowMapper<Actor>() {
 public Actor mapRow(ResultSet rs, int rowNum) throws SQLException {
 Actor actor = new Actor();
 actor.setFirstName(rs.getString("first_name"));
 actor.setLastName(rs.getString("last_name"));
 return actor;
 }
 });

If the last two snippets of code actually existed in the same application, it would make
sense to remove the duplication present in the two RowMapper anonymous inner classes,
and extract them out into a single class (typically a static nested class) that can
then be referenced by DAO methods as needed. For example, it may be better to write the
last code snippet as follows:

public List<Actor> findAllActors() {
 return this.jdbcTemplate.query("select first_name, last_name from t_actor", new ActorMapper());
}

private static final class ActorMapper implements RowMapper<Actor> {

 public Actor mapRow(ResultSet rs, int rowNum) throws SQLException {
 Actor actor = new Actor();
 actor.setFirstName(rs.getString("first_name"));
 actor.setLastName(rs.getString("last_name"));
 return actor;
 }
}

Updating (INSERT/UPDATE/DELETE) with JdbcTemplate

You use the update(..) method to perform insert, update and delete operations.
Parameter values are usually provided as var args or alternatively as an object array.

this.jdbcTemplate.update(
 "insert into t_actor (first_name, last_name) values (?, ?)",
 "Leonor", "Watling");

this.jdbcTemplate.update(
 "update t_actor set last_name = ? where id = ?",
 "Banjo", 5276L);

this.jdbcTemplate.update(
 "delete from actor where id = ?",
 Long.valueOf(actorId));

Other JdbcTemplate operations

You can use the execute(..) method to execute any arbitrary SQL, and as such the
method is often used for DDL statements. It is heavily overloaded with variants taking
callback interfaces, binding variable arrays, and so on.

this.jdbcTemplate.execute("create table mytable (id integer, name varchar(100))");

The following example invokes a simple stored procedure. More sophisticated stored
procedure support is covered later.

this.jdbcTemplate.update(
 "call SUPPORT.REFRESH_ACTORS_SUMMARY(?)",
 Long.valueOf(unionId));

JdbcTemplate best practices

Instances of the JdbcTemplate class are threadsafe once configured. This is
important because it means that you can configure a single instance of a JdbcTemplate
and then safely inject this shared reference into multiple DAOs (or repositories).
The JdbcTemplate is stateful, in that it maintains a reference to a DataSource, but
this state is not conversational state.

A common practice when using the JdbcTemplate class (and the associated
NamedParameterJdbcTemplate classes) is to
configure a DataSource in your Spring configuration file, and then dependency-inject
that shared DataSource bean into your DAO classes; the JdbcTemplate is created in
the setter for the DataSource. This leads to DAOs that look in part like the following:

public class JdbcCorporateEventDao implements CorporateEventDao {

 private JdbcTemplate jdbcTemplate;

 public void setDataSource(DataSource dataSource) {
 this.jdbcTemplate = new JdbcTemplate(dataSource);
 }

 // JDBC-backed implementations of the methods on the CorporateEventDao follow...
}

The corresponding configuration might look like this.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context.xsd">

 <bean id="corporateEventDao" class="com.example.JdbcCorporateEventDao">
 <property name="dataSource" ref="dataSource"/>
 </bean>

 <bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close">
 <property name="driverClassName" value="${jdbc.driverClassName}"/>
 <property name="url" value="${jdbc.url}"/>
 <property name="username" value="${jdbc.username}"/>
 <property name="password" value="${jdbc.password}"/>
 </bean>

 <context:property-placeholder location="jdbc.properties"/>

</beans>

An alternative to explicit configuration is to use component-scanning and annotation
support for dependency injection. In this case you annotate the class with @Repository
(which makes it a candidate for component-scanning) and annotate the DataSource setter
method with @Autowired.

@Repository
public class JdbcCorporateEventDao implements CorporateEventDao {

 private JdbcTemplate jdbcTemplate;

 @Autowired
 public void setDataSource(DataSource dataSource) {
 this.jdbcTemplate = new JdbcTemplate(dataSource);
 }

 // JDBC-backed implementations of the methods on the CorporateEventDao follow...
}

The corresponding XML configuration file would look like the following:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context.xsd">

 <!-- Scans within the base package of the application for @Component classes to configure as beans -->
 <context:component-scan base-package="org.springframework.docs.test" />

 <bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close">
 <property name="driverClassName" value="${jdbc.driverClassName}"/>
 <property name="url" value="${jdbc.url}"/>
 <property name="username" value="${jdbc.username}"/>
 <property name="password" value="${jdbc.password}"/>
 </bean>

 <context:property-placeholder location="jdbc.properties"/>

</beans>

If you are using Spring’s JdbcDaoSupport class, and your various JDBC-backed DAO classes
extend from it, then your sub-class inherits a setDataSource(..) method from the
JdbcDaoSupport class. You can choose whether to inherit from this class. The
JdbcDaoSupport class is provided as a convenience only.

Regardless of which of the above template initialization styles you choose to use (or
not), it is seldom necessary to create a new instance of a JdbcTemplate class each
time you want to execute SQL. Once configured, a JdbcTemplate instance is threadsafe.
You may want multiple JdbcTemplate instances if your application accesses multiple
databases, which requires multiple DataSources, and subsequently multiple differently
configured JdbcTemplates.

NamedParameterJdbcTemplate

The NamedParameterJdbcTemplate class adds support for programming JDBC statements
using named parameters, as opposed to programming JDBC statements using only classic
placeholder ('?') arguments. The NamedParameterJdbcTemplate class wraps a
JdbcTemplate, and delegates to the wrapped JdbcTemplate to do much of its work. This
section describes only those areas of the NamedParameterJdbcTemplate class that differ
from the JdbcTemplate itself; namely, programming JDBC statements using named
parameters.

// some JDBC-backed DAO class...
private NamedParameterJdbcTemplate namedParameterJdbcTemplate;

public void setDataSource(DataSource dataSource) {
 this.namedParameterJdbcTemplate = new NamedParameterJdbcTemplate(dataSource);
}

public int countOfActorsByFirstName(String firstName) {

 String sql = "select count(*) from T_ACTOR where first_name = :first_name";

 SqlParameterSource namedParameters = new MapSqlParameterSource("first_name", firstName);

 return this.namedParameterJdbcTemplate.queryForObject(sql, namedParameters, Integer.class);
}

Notice the use of the named parameter notation in the value assigned to the sql
variable, and the corresponding value that is plugged into the namedParameters
variable (of type MapSqlParameterSource).

Alternatively, you can pass along named parameters and their corresponding values to a
NamedParameterJdbcTemplate instance by using the Map-based style.The remaining
methods exposed by the NamedParameterJdbcOperations and implemented by the
NamedParameterJdbcTemplate class follow a similar pattern and are not covered here.

The following example shows the use of the Map-based style.

// some JDBC-backed DAO class...
private NamedParameterJdbcTemplate namedParameterJdbcTemplate;

public void setDataSource(DataSource dataSource) {
 this.namedParameterJdbcTemplate = new NamedParameterJdbcTemplate(dataSource);
}

public int countOfActorsByFirstName(String firstName) {

 String sql = "select count(*) from T_ACTOR where first_name = :first_name";

 Map<String, String> namedParameters = Collections.singletonMap("first_name", firstName);

 return this.namedParameterJdbcTemplate.queryForObject(sql, namedParameters, Integer.class);
}

One nice feature related to the NamedParameterJdbcTemplate (and existing in the same
Java package) is the SqlParameterSource interface. You have already seen an example of
an implementation of this interface in one of the previous code snippet (the
MapSqlParameterSource class). An SqlParameterSource is a source of named parameter
values to a NamedParameterJdbcTemplate. The MapSqlParameterSource class is a very
simple implementation that is simply an adapter around a java.util.Map, where the keys
are the parameter names and the values are the parameter values.

Another SqlParameterSource implementation is the BeanPropertySqlParameterSource
class. This class wraps an arbitrary JavaBean (that is, an instance of a class that
adheres to the
JavaBean conventions), and uses the properties of the wrapped JavaBean as the source
of named parameter values.

public class Actor {

 private Long id;
 private String firstName;
 private String lastName;

 public String getFirstName() {
 return this.firstName;
 }

 public String getLastName() {
 return this.lastName;
 }

 public Long getId() {
 return this.id;
 }

 // setters omitted...

}

// some JDBC-backed DAO class...
private NamedParameterJdbcTemplate namedParameterJdbcTemplate;

public void setDataSource(DataSource dataSource) {
 this.namedParameterJdbcTemplate = new NamedParameterJdbcTemplate(dataSource);
}

public int countOfActors(Actor exampleActor) {

 // notice how the named parameters match the properties of the above 'Actor' class
 String sql = "select count(*) from T_ACTOR where first_name = :firstName and last_name = :lastName";

 SqlParameterSource namedParameters = new BeanPropertySqlParameterSource(exampleActor);

 return this.namedParameterJdbcTemplate.queryForObject(sql, namedParameters, Integer.class);
}

Remember that the NamedParameterJdbcTemplate class wraps a classic JdbcTemplate
template; if you need access to the wrapped JdbcTemplate instance to access
functionality only present in the JdbcTemplate class, you can use the
getJdbcOperations() method to access the wrapped JdbcTemplate through the
JdbcOperations interface.

See also the section called “JdbcTemplate best practices” for guidelines on using the
NamedParameterJdbcTemplate class in the context of an application.

SQLExceptionTranslator

SQLExceptionTranslator is an interface to be implemented by classes that can translate
between SQLExceptions and Spring’s own org.springframework.dao.DataAccessException,
which is agnostic in regard to data access strategy. Implementations can be generic (for
example, using SQLState codes for JDBC) or proprietary (for example, using Oracle error
codes) for greater precision.

SQLErrorCodeSQLExceptionTranslator is the implementation of SQLExceptionTranslator
that is used by default. This implementation uses specific vendor codes. It is more
precise than the SQLState implementation. The error code translations are based on
codes held in a JavaBean type class called SQLErrorCodes. This class is created and
populated by an SQLErrorCodesFactory which as the name suggests is a factory for
creating SQLErrorCodes based on the contents of a configuration file named
sql-error-codes.xml. This file is populated with vendor codes and based on the
DatabaseProductName taken from the DatabaseMetaData. The codes for the actual
database you are using are used.

The SQLErrorCodeSQLExceptionTranslator applies matching rules in the following sequence:

	[image: [Note]]	Note
	
The SQLErrorCodesFactory is used by default to define Error codes and custom exception
translations. They are looked up in a file named sql-error-codes.xml from the
classpath and the matching SQLErrorCodes instance is located based on the database
name from the database metadata of the database in use.

	
Any custom translation implemented by a subclass. Normally the provided concrete
SQLErrorCodeSQLExceptionTranslator is used so this rule does not apply. It only
applies if you have actually provided a subclass implementation.

	
Any custom implementation of the SQLExceptionTranslator interface that is provided
as the customSqlExceptionTranslator property of the SQLErrorCodes class.

	
The list of instances of the CustomSQLErrorCodesTranslation class, provided for the
customTranslations property of the SQLErrorCodes class, are searched for a match.

	
Error code matching is applied.

	
Use the fallback translator. SQLExceptionSubclassTranslator is the default fallback
translator. If this translation is not available then the next fallback translator is
the SQLStateSQLExceptionTranslator.

You can extend SQLErrorCodeSQLExceptionTranslator:

public class CustomSQLErrorCodesTranslator extends SQLErrorCodeSQLExceptionTranslator {

 protected DataAccessException customTranslate(String task, String sql, SQLException sqlex) {
 if (sqlex.getErrorCode() == -12345) {
 return new DeadlockLoserDataAccessException(task, sqlex);
 }
 return null;
 }
}

In this example, the specific error code -12345 is translated and other errors are
left to be translated by the default translator implementation. To use this custom
translator, it is necessary to pass it to the JdbcTemplate through the method
setExceptionTranslator and to use this JdbcTemplate for all of the data access
processing where this translator is needed. Here is an example of how this custom
translator can be used:

private JdbcTemplate jdbcTemplate;

public void setDataSource(DataSource dataSource) {

 // create a JdbcTemplate and set data source
 this.jdbcTemplate = new JdbcTemplate();
 this.jdbcTemplate.setDataSource(dataSource);

 // create a custom translator and set the DataSource for the default translation lookup
 CustomSQLErrorCodesTranslator tr = new CustomSQLErrorCodesTranslator();
 tr.setDataSource(dataSource);
 this.jdbcTemplate.setExceptionTranslator(tr);

}

public void updateShippingCharge(long orderId, long pct) {
 // use the prepared JdbcTemplate for this update
 this.jdbcTemplate.update("update orders" +
 " set shipping_charge = shipping_charge * ? / 100" +
 " where id = ?", pct, orderId);
}

The custom translator is passed a data source in order to look up the error codes in
sql-error-codes.xml.

Executing statements

Executing an SQL statement requires very little code. You need a DataSource and a
JdbcTemplate, including the convenience methods that are provided with the
JdbcTemplate. The following example shows what you need to include for a minimal but
fully functional class that creates a new table:

import javax.sql.DataSource;
import org.springframework.jdbc.core.JdbcTemplate;

public class ExecuteAStatement {

 private JdbcTemplate jdbcTemplate;

 public void setDataSource(DataSource dataSource) {
 this.jdbcTemplate = new JdbcTemplate(dataSource);
 }

 public void doExecute() {
 this.jdbcTemplate.execute("create table mytable (id integer, name varchar(100))");
 }
}

Running queries

Some query methods return a single value. To retrieve a count or a specific value from
one row, use queryForObject(..). The latter converts the returned JDBC Type to the
Java class that is passed in as an argument. If the type conversion is invalid, then an
InvalidDataAccessApiUsageException is thrown. Here is an example that contains two
query methods, one for an int and one that queries for a String.

import javax.sql.DataSource;
import org.springframework.jdbc.core.JdbcTemplate;

public class RunAQuery {

 private JdbcTemplate jdbcTemplate;

 public void setDataSource(DataSource dataSource) {
 this.jdbcTemplate = new JdbcTemplate(dataSource);
 }

 public int getCount() {
 return this.jdbcTemplate.queryForObject("select count(*) from mytable", Integer.class);
 }

 public String getName() {
 return this.jdbcTemplate.queryForObject("select name from mytable", String.class);
 }
}

In addition to the single result query methods, several methods return a list with an
entry for each row that the query returned. The most generic method is
queryForList(..) which returns a List where each entry is a Map with each entry in
the map representing the column value for that row. If you add a method to the above
example to retrieve a list of all the rows, it would look like this:

private JdbcTemplate jdbcTemplate;

public void setDataSource(DataSource dataSource) {
 this.jdbcTemplate = new JdbcTemplate(dataSource);
}

public List<Map<String, Object>> getList() {
 return this.jdbcTemplate.queryForList("select * from mytable");
}

The list returned would look something like this:

[{name=Bob, id=1}, {name=Mary, id=2}]

Updating the database

The following example shows a column updated for a certain primary key. In this example,
an SQL statement has placeholders for row parameters. The parameter values can be passed
in as varargs or alternatively as an array of objects. Thus primitives should be wrapped
in the primitive wrapper classes explicitly or using auto-boxing.

import javax.sql.DataSource;
import org.springframework.jdbc.core.JdbcTemplate;

public class ExecuteAnUpdate {

 private JdbcTemplate jdbcTemplate;

 public void setDataSource(DataSource dataSource) {
 this.jdbcTemplate = new JdbcTemplate(dataSource);
 }

 public void setName(int id, String name) {
 this.jdbcTemplate.update("update mytable set name = ? where id = ?", name, id);
 }
}

Retrieving auto-generated keys

An update() convenience method supports the retrieval of primary keys generated by the
database. This support is part of the JDBC 3.0 standard; see Chapter 13.6 of the
specification for details. The method takes a PreparedStatementCreator as its first
argument, and this is the way the required insert statement is specified. The other
argument is a KeyHolder, which contains the generated key on successful return from the
update. There is not a standard single way to create an appropriate PreparedStatement
(which explains why the method signature is the way it is). The following example works
on Oracle but may not work on other platforms:

final String INSERT_SQL = "insert into my_test (name) values(?)";
final String name = "Rob";

KeyHolder keyHolder = new GeneratedKeyHolder();
jdbcTemplate.update(
 new PreparedStatementCreator() {
 public PreparedStatement createPreparedStatement(Connection connection) throws SQLException {
 PreparedStatement ps = connection.prepareStatement(INSERT_SQL, new String[] {"id"});
 ps.setString(1, name);
 return ps;
 }
 },
 keyHolder);

// keyHolder.getKey() now contains the generated key

Controlling database connections

DataSource

Spring obtains a connection to the database through a DataSource. A DataSource is
part of the JDBC specification and is a generalized connection factory. It allows a
container or a framework to hide connection pooling and transaction management issues
from the application code. As a developer, you need not know details about how to
connect to the database; that is the responsibility of the administrator that sets up
the datasource. You most likely fill both roles as you develop and test code, but you do
not necessarily have to know how the production data source is configured.

When using Spring’s JDBC layer, you obtain a data source from JNDI or you configure your
own with a connection pool implementation provided by a third party. Popular
implementations are Apache Jakarta Commons DBCP and C3P0. Implementations in the Spring
distribution are meant only for testing purposes and do not provide pooling.

This section uses Spring’s DriverManagerDataSource implementation, and several
additional implementations are covered later.

	[image: [Note]]	Note
	
Only use the DriverManagerDataSource class should only be used for testing purposes
since it does not provide pooling and will perform poorly when multiple requests for a
connection are made.

You obtain a connection with DriverManagerDataSource as you typically obtain a JDBC
connection. Specify the fully qualified classname of the JDBC driver so that the
DriverManager can load the driver class. Next, provide a URL that varies between JDBC
drivers. (Consult the documentation for your driver for the correct value.) Then provide
a username and a password to connect to the database. Here is an example of how to
configure a DriverManagerDataSource in Java code:

DriverManagerDataSource dataSource = new DriverManagerDataSource();
dataSource.setDriverClassName("org.hsqldb.jdbcDriver");
dataSource.setUrl("jdbc:hsqldb:hsql://localhost:");
dataSource.setUsername("sa");
dataSource.setPassword("");

Here is the corresponding XML configuration:

<bean id="dataSource" class="org.springframework.jdbc.datasource.DriverManagerDataSource">
 <property name="driverClassName" value="${jdbc.driverClassName}"/>
 <property name="url" value="${jdbc.url}"/>
 <property name="username" value="${jdbc.username}"/>
 <property name="password" value="${jdbc.password}"/>
</bean>

<context:property-placeholder location="jdbc.properties"/>

The following examples show the basic connectivity and configuration for DBCP and C3P0.
To learn about more options that help control the pooling features, see the product
documentation for the respective connection pooling implementations.

DBCP configuration:

<bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close">
 <property name="driverClassName" value="${jdbc.driverClassName}"/>
 <property name="url" value="${jdbc.url}"/>
 <property name="username" value="${jdbc.username}"/>
 <property name="password" value="${jdbc.password}"/>
</bean>

<context:property-placeholder location="jdbc.properties"/>

C3P0 configuration:

<bean id="dataSource" class="com.mchange.v2.c3p0.ComboPooledDataSource" destroy-method="close">
 <property name="driverClass" value="${jdbc.driverClassName}"/>
 <property name="jdbcUrl" value="${jdbc.url}"/>
 <property name="user" value="${jdbc.username}"/>
 <property name="password" value="${jdbc.password}"/>
</bean>

<context:property-placeholder location="jdbc.properties"/>

DataSourceUtils

The DataSourceUtils class is a convenient and powerful helper class that provides
static methods to obtain connections from JNDI and close connections if necessary. It
supports thread-bound connections with, for example, DataSourceTransactionManager.

SmartDataSource

The SmartDataSource interface should be implemented by classes that can provide a
connection to a relational database. It extends the DataSource interface to allow
classes using it to query whether the connection should be closed after a given
operation. This usage is efficient when you know that you will reuse a connection.

AbstractDataSource

AbstractDataSource is an abstract base class for Spring’s DataSource
implementations that implements code that is common to all DataSource implementations.
You extend the AbstractDataSource class if you are writing your own DataSource
implementation.

SingleConnectionDataSource

The SingleConnectionDataSource class is an implementation of the SmartDataSource
interface that wraps a single Connection that is not closed after each use.
Obviously, this is not multi-threading capable.

If any client code calls close in the assumption of a pooled connection, as when using
persistence tools, set the suppressClose property to true. This setting returns a
close-suppressing proxy wrapping the physical connection. Be aware that you will not be
able to cast this to a native Oracle Connection or the like anymore.

This is primarily a test class. For example, it enables easy testing of code outside an
application server, in conjunction with a simple JNDI environment. In contrast to
DriverManagerDataSource, it reuses the same connection all the time, avoiding
excessive creation of physical connections.

DriverManagerDataSource

The DriverManagerDataSource class is an implementation of the standard DataSource
interface that configures a plain JDBC driver through bean properties, and returns a new
Connection every time.

This implementation is useful for test and stand-alone environments outside of a Java EE
container, either as a DataSource bean in a Spring IoC container, or in conjunction
with a simple JNDI environment. Pool-assuming Connection.close() calls will simply
close the connection, so any DataSource-aware persistence code should work. However,
using JavaBean-style connection pools such as commons-dbcp is so easy, even in a test
environment, that it is almost always preferable to use such a connection pool over
DriverManagerDataSource.

TransactionAwareDataSourceProxy

TransactionAwareDataSourceProxy is a proxy for a target DataSource, which wraps that
target DataSource to add awareness of Spring-managed transactions. In this respect, it
is similar to a transactional JNDI DataSource as provided by a Java EE server.

	[image: [Note]]	Note
	
It is rarely desirable to use this class, except when already existing code that must be
called and passed a standard JDBC DataSource interface implementation. In this case,
it’s possible to still have this code be usable, and at the same time have this code
participating in Spring managed transactions. It is generally preferable to write your
own new code using the higher level abstractions for resource management, such as
JdbcTemplate or DataSourceUtils.

(See the TransactionAwareDataSourceProxy javadocs for more details.)

DataSourceTransactionManager

The DataSourceTransactionManager class is a PlatformTransactionManager
implementation for single JDBC datasources. It binds a JDBC connection from the
specified data source to the currently executing thread, potentially allowing for one
thread connection per data source.

Application code is required to retrieve the JDBC connection through
DataSourceUtils.getConnection(DataSource) instead of Java EE’s standard
DataSource.getConnection. It throws unchecked org.springframework.dao exceptions
instead of checked SQLExceptions. All framework classes like JdbcTemplate use this
strategy implicitly. If not used with this transaction manager, the lookup strategy
behaves exactly like the common one - it can thus be used in any case.

The DataSourceTransactionManager class supports custom isolation levels, and timeouts
that get applied as appropriate JDBC statement query timeouts. To support the latter,
application code must either use JdbcTemplate or call the
DataSourceUtils.applyTransactionTimeout(..) method for each created statement.

This implementation can be used instead of JtaTransactionManager in the single
resource case, as it does not require the container to support JTA. Switching between
both is just a matter of configuration, if you stick to the required connection lookup
pattern. JTA does not support custom isolation levels!

NativeJdbcExtractor

Sometimes you need to access vendor specific JDBC methods that differ from the standard
JDBC API. This can be problematic if you are running in an application server or with a
DataSource that wraps the Connection, Statement and ResultSet objects with its
own wrapper objects. To gain access to the native objects you can configure your
JdbcTemplate or OracleLobHandler with a NativeJdbcExtractor.

The NativeJdbcExtractor comes in a variety of flavors to match your execution
environment:

	
SimpleNativeJdbcExtractor

	
C3P0NativeJdbcExtractor

	
CommonsDbcpNativeJdbcExtractor

	
JBossNativeJdbcExtractor

	
WebLogicNativeJdbcExtractor

	
WebSphereNativeJdbcExtractor

	
XAPoolNativeJdbcExtractor

Usually the SimpleNativeJdbcExtractor is sufficient for unwrapping a Connection
object in most environments. See the javadocs for more details.

JDBC batch operations

Most JDBC drivers provide improved performance if you batch multiple calls to the same
prepared statement. By grouping updates into batches you limit the number of round trips
to the database.

Basic batch operations with the JdbcTemplate

You accomplish JdbcTemplate batch processing by implementing two methods of a special
interface, BatchPreparedStatementSetter, and passing that in as the second parameter
in your batchUpdate method call. Use the getBatchSize method to provide the size of
the current batch. Use the setValues method to set the values for the parameters of
the prepared statement. This method will be called the number of times that you
specified in the getBatchSize call. The following example updates the actor table
based on entries in a list. The entire list is used as the batch in this example:

public class JdbcActorDao implements ActorDao {

 private JdbcTemplate jdbcTemplate;

 public void setDataSource(DataSource dataSource) {
 this.jdbcTemplate = new JdbcTemplate(dataSource);
 }

 public int[] batchUpdate(final List<Actor> actors) {
 return this.jdbcTemplate.batchUpdate(
 "update t_actor set first_name = ?, last_name = ? where id = ?",
 new BatchPreparedStatementSetter() {
 public void setValues(PreparedStatement ps, int i) throws SQLException {
 ps.setString(1, actors.get(i).getFirstName());
 ps.setString(2, actors.get(i).getLastName());
 ps.setLong(3, actors.get(i).getId().longValue());
 }
 public int getBatchSize() {
 return actors.size();
 }
 });
 }

 // ... additional methods
}

If you are processing a stream of updates or reading from a file, then you might have a
preferred batch size, but the last batch might not have that number of entries. In this
case you can use the InterruptibleBatchPreparedStatementSetter interface, which allows
you to interrupt a batch once the input source is exhausted. The isBatchExhausted method
allows you to signal the end of the batch.

Batch operations with a List of objects

Both the JdbcTemplate and the NamedParameterJdbcTemplate provides an alternate way
of providing the batch update. Instead of implementing a special batch interface, you
provide all parameter values in the call as a list. The framework loops over these
values and uses an internal prepared statement setter. The API varies depending on
whether you use named parameters. For the named parameters you provide an array of
SqlParameterSource, one entry for each member of the batch. You can use the
SqlParameterSourceUtils.createBatch convenience methods to create this array, passing
in an array of bean-style objects (with getter methods corresponding to parameters)
and/or String-keyed Maps (containing the corresponding parameters as values).

This example shows a batch update using named parameters:

public class JdbcActorDao implements ActorDao {

 private NamedParameterTemplate namedParameterJdbcTemplate;

 public void setDataSource(DataSource dataSource) {
 this.namedParameterJdbcTemplate = new NamedParameterJdbcTemplate(dataSource);
 }

 public int[] batchUpdate(List<Actor> actors) {
 return this.namedParameterJdbcTemplate.batchUpdate(
 "update t_actor set first_name = :firstName, last_name = :lastName where id = :id",
 SqlParameterSourceUtils.createBatch(actors.toArray()));
 }

 // ... additional methods
}

For an SQL statement using the classic "?" placeholders, you pass in a list containing an
object array with the update values. This object array must have one entry for each
placeholder in the SQL statement, and they must be in the same order as they are defined
in the SQL statement.

The same example using classic JDBC "?" placeholders:

public class JdbcActorDao implements ActorDao {

 private JdbcTemplate jdbcTemplate;

 public void setDataSource(DataSource dataSource) {
 this.jdbcTemplate = new JdbcTemplate(dataSource);
 }

 public int[] batchUpdate(final List<Actor> actors) {
 List<Object[]> batch = new ArrayList<Object[]>();
 for (Actor actor : actors) {
 Object[] values = new Object[] {
 actor.getFirstName(), actor.getLastName(), actor.getId()};
 batch.add(values);
 }
 return this.jdbcTemplate.batchUpdate(
 "update t_actor set first_name = ?, last_name = ? where id = ?",
 batch);
 }

 // ... additional methods
}

All of the above batch update methods return an int array containing the number of
affected rows for each batch entry. This count is reported by the JDBC driver. If the
count is not available, the JDBC driver returns a -2 value.

Batch operations with multiple batches

The last example of a batch update deals with batches that are so large that you want to
break them up into several smaller batches. You can of course do this with the methods
mentioned above by making multiple calls to the batchUpdate method, but there is now a
more convenient method. This method takes, in addition to the SQL statement, a
Collection of objects containing the parameters, the number of updates to make for each
batch and a ParameterizedPreparedStatementSetter to set the values for the parameters
of the prepared statement. The framework loops over the provided values and breaks the
update calls into batches of the size specified.

This example shows a batch update using a batch size of 100:

public class JdbcActorDao implements ActorDao {

 private JdbcTemplate jdbcTemplate;

 public void setDataSource(DataSource dataSource) {
 this.jdbcTemplate = new JdbcTemplate(dataSource);
 }

 public int[][] batchUpdate(final Collection<Actor> actors) {
 int[][] updateCounts = jdbcTemplate.batchUpdate(
 "update t_actor set first_name = ?, last_name = ? where id = ?",
 actors,
 100,
 new ParameterizedPreparedStatementSetter<Actor>() {
 public void setValues(PreparedStatement ps, Actor argument) throws SQLException {
 ps.setString(1, argument.getFirstName());
 ps.setString(2, argument.getLastName());
 ps.setLong(3, argument.getId().longValue());
 }
 });
 return updateCounts;
 }

 // ... additional methods
}

The batch update methods for this call returns an array of int arrays containing an array
entry for each batch with an array of the number of affected rows for each update. The top
level array’s length indicates the number of batches executed and the second level array’s
length indicates the number of updates in that batch. The number of updates in each batch
should be the batch size provided for all batches except for the last one that might
be less, depending on the total number of update objects provided. The update count for
each update statement is the one reported by the JDBC driver. If the count is not
available, the JDBC driver returns a -2 value.

Simplifying JDBC operations with the SimpleJdbc classes

The SimpleJdbcInsert and SimpleJdbcCall classes provide a simplified configuration
by taking advantage of database metadata that can be retrieved through the JDBC driver.
This means there is less to configure up front, although you can override or turn off
the metadata processing if you prefer to provide all the details in your code.

Inserting data using SimpleJdbcInsert

Let’s start by looking at the SimpleJdbcInsert class with the minimal amount of
configuration options. You should instantiate the SimpleJdbcInsert in the data access
layer’s initialization method. For this example, the initializing method is the
setDataSource method. You do not need to subclass the SimpleJdbcInsert class; simply
create a new instance and set the table name using the withTableName method.
Configuration methods for this class follow the "fluid" style that returns the instance
of the SimpleJdbcInsert, which allows you to chain all configuration methods. This
example uses only one configuration method; you will see examples of multiple ones later.

public class JdbcActorDao implements ActorDao {

 private JdbcTemplate jdbcTemplate;
 private SimpleJdbcInsert insertActor;

 public void setDataSource(DataSource dataSource) {
 this.jdbcTemplate = new JdbcTemplate(dataSource);
 this.insertActor = new SimpleJdbcInsert(dataSource).withTableName("t_actor");
 }

 public void add(Actor actor) {
 Map<String, Object> parameters = new HashMap<String, Object>(3);
 parameters.put("id", actor.getId());
 parameters.put("first_name", actor.getFirstName());
 parameters.put("last_name", actor.getLastName());
 insertActor.execute(parameters);
 }

 // ... additional methods
}

The execute method used here takes a plain java.utils.Map as its only parameter. The
important thing to note here is that the keys used for the Map must match the column
names of the table as defined in the database. This is because we read the metadata in
order to construct the actual insert statement.

Retrieving auto-generated keys using SimpleJdbcInsert

This example uses the same insert as the preceding, but instead of passing in the id it
retrieves the auto-generated key and sets it on the new Actor object. When you create
the SimpleJdbcInsert, in addition to specifying the table name, you specify the name
of the generated key column with the usingGeneratedKeyColumns method.

public class JdbcActorDao implements ActorDao {

 private JdbcTemplate jdbcTemplate;
 private SimpleJdbcInsert insertActor;

 public void setDataSource(DataSource dataSource) {
 this.jdbcTemplate = new JdbcTemplate(dataSource);
 this.insertActor = new SimpleJdbcInsert(dataSource)
 .withTableName("t_actor")
 .usingGeneratedKeyColumns("id");
 }

 public void add(Actor actor) {
 Map<String, Object> parameters = new HashMap<String, Object>(2);
 parameters.put("first_name", actor.getFirstName());
 parameters.put("last_name", actor.getLastName());
 Number newId = insertActor.executeAndReturnKey(parameters);
 actor.setId(newId.longValue());
 }

 // ... additional methods
}

The main difference when executing the insert by this second approach is that you do not
add the id to the Map and you call the executeAndReturnKey method. This returns a
java.lang.Number object with which you can create an instance of the numerical type that
is used in our domain class. You cannot rely on all databases to return a specific Java
class here; java.lang.Number is the base class that you can rely on. If you have
multiple auto-generated columns, or the generated values are non-numeric, then you can
use a KeyHolder that is returned from the executeAndReturnKeyHolder method.

Specifying columns for a SimpleJdbcInsert

You can limit the columns for an insert by specifying a list of column names with the
usingColumns method:

public class JdbcActorDao implements ActorDao {

 private JdbcTemplate jdbcTemplate;
 private SimpleJdbcInsert insertActor;

 public void setDataSource(DataSource dataSource) {
 this.jdbcTemplate = new JdbcTemplate(dataSource);
 this.insertActor = new SimpleJdbcInsert(dataSource)
 .withTableName("t_actor")
 .usingColumns("first_name", "last_name")
 .usingGeneratedKeyColumns("id");
 }

 public void add(Actor actor) {
 Map<String, Object> parameters = new HashMap<String, Object>(2);
 parameters.put("first_name", actor.getFirstName());
 parameters.put("last_name", actor.getLastName());
 Number newId = insertActor.executeAndReturnKey(parameters);
 actor.setId(newId.longValue());
 }

 // ... additional methods
}

The execution of the insert is the same as if you had relied on the metadata to determine
which columns to use.

Using SqlParameterSource to provide parameter values

Using a Map to provide parameter values works fine, but it’s not the most convenient
class to use. Spring provides a couple of implementations of the SqlParameterSource
interface that can be used instead.The first one is BeanPropertySqlParameterSource,
which is a very convenient class if you have a JavaBean-compliant class that contains
your values. It will use the corresponding getter method to extract the parameter
values. Here is an example:

public class JdbcActorDao implements ActorDao {

 private JdbcTemplate jdbcTemplate;
 private SimpleJdbcInsert insertActor;

 public void setDataSource(DataSource dataSource) {
 this.jdbcTemplate = new JdbcTemplate(dataSource);
 this.insertActor = new SimpleJdbcInsert(dataSource)
 .withTableName("t_actor")
 .usingGeneratedKeyColumns("id");
 }

 public void add(Actor actor) {
 SqlParameterSource parameters = new BeanPropertySqlParameterSource(actor);
 Number newId = insertActor.executeAndReturnKey(parameters);
 actor.setId(newId.longValue());
 }

 // ... additional methods
}

Another option is the MapSqlParameterSource that resembles a Map but provides a more
convenient addValue method that can be chained.

public class JdbcActorDao implements ActorDao {

 private JdbcTemplate jdbcTemplate;
 private SimpleJdbcInsert insertActor;

 public void setDataSource(DataSource dataSource) {
 this.jdbcTemplate = new JdbcTemplate(dataSource);
 this.insertActor = new SimpleJdbcInsert(dataSource)
 .withTableName("t_actor")
 .usingGeneratedKeyColumns("id");
 }

 public void add(Actor actor) {
 SqlParameterSource parameters = new MapSqlParameterSource()
 .addValue("first_name", actor.getFirstName())
 .addValue("last_name", actor.getLastName());
 Number newId = insertActor.executeAndReturnKey(parameters);
 actor.setId(newId.longValue());
 }

 // ... additional methods
}

As you can see, the configuration is the same; only the executing code has to change to
use these alternative input classes.

Calling a stored procedure with SimpleJdbcCall

The SimpleJdbcCall class leverages metadata in the database to look up names of in
and out parameters, so that you do not have to declare them explicitly. You can
declare parameters if you prefer to do that, or if you have parameters such as ARRAY
or STRUCT that do not have an automatic mapping to a Java class. The first example
shows a simple procedure that returns only scalar values in VARCHAR and DATE format
from a MySQL database. The example procedure reads a specified actor entry and returns
first_name, last_name, and birth_date columns in the form of out parameters.

CREATE PROCEDURE read_actor (
 IN in_id INTEGER,
 OUT out_first_name VARCHAR(100),
 OUT out_last_name VARCHAR(100),
 OUT out_birth_date DATE)
BEGIN
 SELECT first_name, last_name, birth_date
 INTO out_first_name, out_last_name, out_birth_date
 FROM t_actor where id = in_id;
END;

The in_id parameter contains the id of the actor you are looking up. The out
parameters return the data read from the table.

The SimpleJdbcCall is declared in a similar manner to the SimpleJdbcInsert. You
should instantiate and configure the class in the initialization method of your data
access layer. Compared to the StoredProcedure class, you don’t have to create a subclass
and you don’t have to declare parameters that can be looked up in the database metadata.
Following is an example of a SimpleJdbcCall configuration using the above stored
procedure. The only configuration option, in addition to the DataSource, is the name
of the stored procedure.

public class JdbcActorDao implements ActorDao {

 private JdbcTemplate jdbcTemplate;
 private SimpleJdbcCall procReadActor;

 public void setDataSource(DataSource dataSource) {
 this.jdbcTemplate = new JdbcTemplate(dataSource);
 this.procReadActor = new SimpleJdbcCall(dataSource)
 .withProcedureName("read_actor");
 }

 public Actor readActor(Long id) {
 SqlParameterSource in = new MapSqlParameterSource()
 .addValue("in_id", id);
 Map out = procReadActor.execute(in);
 Actor actor = new Actor();
 actor.setId(id);
 actor.setFirstName((String) out.get("out_first_name"));
 actor.setLastName((String) out.get("out_last_name"));
 actor.setBirthDate((Date) out.get("out_birth_date"));
 return actor;
 }

 // ... additional methods
}

The code you write for the execution of the call involves creating an SqlParameterSource
containing the IN parameter. It’s important to match the name provided for the input value
with that of the parameter name declared in the stored procedure. The case does not have
to match because you use metadata to determine how database objects should be referred to
in a stored procedure. What is specified in the source for the stored procedure is not
necessarily the way it is stored in the database. Some databases transform names to all
upper case while others use lower case or use the case as specified.

The execute method takes the IN parameters and returns a Map containing any out
parameters keyed by the name as specified in the stored procedure. In this case they are
out_first_name, out_last_name and out_birth_date.

The last part of the execute method creates an Actor instance to use to return the
data retrieved. Again, it is important to use the names of the out parameters as they
are declared in the stored procedure. Also, the case in the names of the out
parameters stored in the results map matches that of the out parameter names in the
database, which could vary between databases. To make your code more portable you should
do a case-insensitive lookup or instruct Spring to use a LinkedCaseInsensitiveMap.
To do the latter, you create your own JdbcTemplate and set the setResultsMapCaseInsensitive
property to true. Then you pass this customized JdbcTemplate instance into
the constructor of your SimpleJdbcCall. Here is an example of this configuration:

public class JdbcActorDao implements ActorDao {

 private SimpleJdbcCall procReadActor;

 public void setDataSource(DataSource dataSource) {
 JdbcTemplate jdbcTemplate = new JdbcTemplate(dataSource);
 jdbcTemplate.setResultsMapCaseInsensitive(true);
 this.procReadActor = new SimpleJdbcCall(jdbcTemplate)
 .withProcedureName("read_actor");
 }

 // ... additional methods
}

By taking this action, you avoid conflicts in the case used for the names of your
returned out parameters.

Explicitly declaring parameters to use for a SimpleJdbcCall

You have seen how the parameters are deduced based on metadata, but you can declare then
explicitly if you wish. You do this by creating and configuring SimpleJdbcCall with
the declareParameters method, which takes a variable number of SqlParameter objects
as input. See the next section for details on how to define an SqlParameter.

	[image: [Note]]	Note
	
Explicit declarations are necessary if the database you use is not a Spring-supported
database. Currently Spring supports metadata lookup of stored procedure calls for the
following databases: Apache Derby, DB2, MySQL, Microsoft SQL Server, Oracle, and Sybase.
We also support metadata lookup of stored functions for MySQL, Microsoft SQL Server,
and Oracle.

You can opt to declare one, some, or all the parameters explicitly. The parameter
metadata is still used where you do not declare parameters explicitly. To bypass all
processing of metadata lookups for potential parameters and only use the declared
parameters, you call the method withoutProcedureColumnMetaDataAccess as part of the
declaration. Suppose that you have two or more different call signatures declared for a
database function. In this case you call the useInParameterNames to specify the list
of IN parameter names to include for a given signature.

The following example shows a fully declared procedure call, using the information from
the preceding example.

public class JdbcActorDao implements ActorDao {

 private SimpleJdbcCall procReadActor;

 public void setDataSource(DataSource dataSource) {
 JdbcTemplate jdbcTemplate = new JdbcTemplate(dataSource);
 jdbcTemplate.setResultsMapCaseInsensitive(true);
 this.procReadActor = new SimpleJdbcCall(jdbcTemplate)
 .withProcedureName("read_actor")
 .withoutProcedureColumnMetaDataAccess()
 .useInParameterNames("in_id")
 .declareParameters(
 new SqlParameter("in_id", Types.NUMERIC),
 new SqlOutParameter("out_first_name", Types.VARCHAR),
 new SqlOutParameter("out_last_name", Types.VARCHAR),
 new SqlOutParameter("out_birth_date", Types.DATE)
);
 }

 // ... additional methods
}

The execution and end results of the two examples are the same; this one specifies all
details explicitly rather than relying on metadata.

How to define SqlParameters

To define a parameter for the SimpleJdbc classes and also for the RDBMS operations
classes, covered in the section called “Modeling JDBC operations as Java objects”, you use an SqlParameter or one of its subclasses.
You typically specify the parameter name and SQL type in the constructor. The SQL type
is specified using the java.sql.Types constants. We have already seen declarations
like:

new SqlParameter("in_id", Types.NUMERIC),
 new SqlOutParameter("out_first_name", Types.VARCHAR),

The first line with the SqlParameter declares an IN parameter. IN parameters can be
used for both stored procedure calls and for queries using the SqlQuery and its
subclasses covered in the following section.

The second line with the SqlOutParameter declares an out parameter to be used in a
stored procedure call. There is also an SqlInOutParameter for InOut parameters,
parameters that provide an IN value to the procedure and that also return a value.

	[image: [Note]]	Note
	
Only parameters declared as SqlParameter and SqlInOutParameter will be used to
provide input values. This is different from the StoredProcedure class, which for
backwards compatibility reasons allows input values to be provided for parameters
declared as SqlOutParameter.

For IN parameters, in addition to the name and the SQL type, you can specify a scale for
numeric data or a type name for custom database types. For out parameters, you can
provide a RowMapper to handle mapping of rows returned from a REF cursor. Another
option is to specify an SqlReturnType that provides an opportunity to define
customized handling of the return values.

Calling a stored function using SimpleJdbcCall

You call a stored function in almost the same way as you call a stored procedure, except
that you provide a function name rather than a procedure name. You use the
withFunctionName method as part of the configuration to indicate that we want to make
a call to a function, and the corresponding string for a function call is generated. A
specialized execute call, executeFunction, is used to execute the function and it
returns the function return value as an object of a specified type, which means you do
not have to retrieve the return value from the results map. A similar convenience method
named executeObject is also available for stored procedures that only have one out
parameter. The following example is based on a stored function named get_actor_name
that returns an actor’s full name. Here is the MySQL source for this function:

CREATE FUNCTION get_actor_name (in_id INTEGER)
RETURNS VARCHAR(200) READS SQL DATA
BEGIN
 DECLARE out_name VARCHAR(200);
 SELECT concat(first_name, ' ', last_name)
 INTO out_name
 FROM t_actor where id = in_id;
 RETURN out_name;
END;

To call this function we again create a SimpleJdbcCall in the initialization method.

public class JdbcActorDao implements ActorDao {

 private JdbcTemplate jdbcTemplate;
 private SimpleJdbcCall funcGetActorName;

 public void setDataSource(DataSource dataSource) {
 this.jdbcTemplate = new JdbcTemplate(dataSource);
 JdbcTemplate jdbcTemplate = new JdbcTemplate(dataSource);
 jdbcTemplate.setResultsMapCaseInsensitive(true);
 this.funcGetActorName = new SimpleJdbcCall(jdbcTemplate)
 .withFunctionName("get_actor_name");
 }

 public String getActorName(Long id) {
 SqlParameterSource in = new MapSqlParameterSource()
 .addValue("in_id", id);
 String name = funcGetActorName.executeFunction(String.class, in);
 return name;
 }

 // ... additional methods
}

The execute method used returns a String containing the return value from the function
call.

Returning ResultSet/REF Cursor from a SimpleJdbcCall

Calling a stored procedure or function that returns a result set is a bit tricky. Some
databases return result sets during the JDBC results processing while others require an
explicitly registered out parameter of a specific type. Both approaches need
additional processing to loop over the result set and process the returned rows. With
the SimpleJdbcCall you use the returningResultSet method and declare a RowMapper
implementation to be used for a specific parameter. In the case where the result set is
returned during the results processing, there are no names defined, so the returned
results will have to match the order in which you declare the RowMapper
implementations. The name specified is still used to store the processed list of results
in the results map that is returned from the execute statement.

The next example uses a stored procedure that takes no IN parameters and returns all
rows from the t_actor table. Here is the MySQL source for this procedure:

CREATE PROCEDURE read_all_actors()
BEGIN
 SELECT a.id, a.first_name, a.last_name, a.birth_date FROM t_actor a;
END;

To call this procedure you declare the RowMapper. Because the class you want to map to
follows the JavaBean rules, you can use a BeanPropertyRowMapper that is
created by passing in the required class to map to in the newInstance method.

public class JdbcActorDao implements ActorDao {

 private SimpleJdbcCall procReadAllActors;

 public void setDataSource(DataSource dataSource) {
 JdbcTemplate jdbcTemplate = new JdbcTemplate(dataSource);
 jdbcTemplate.setResultsMapCaseInsensitive(true);
 this.procReadAllActors = new SimpleJdbcCall(jdbcTemplate)
 .withProcedureName("read_all_actors")
 .returningResultSet("actors",
 BeanPropertyRowMapper.newInstance(Actor.class));
 }

 public List getActorsList() {
 Map m = procReadAllActors.execute(new HashMap<String, Object>(0));
 return (List) m.get("actors");
 }

 // ... additional methods
}

The execute call passes in an empty Map because this call does not take any parameters.
The list of Actors is then retrieved from the results map and returned to the caller.

Modeling JDBC operations as Java objects

The org.springframework.jdbc.object package contains classes that allow you to access
the database in a more object-oriented manner. As an example, you can execute queries
and get the results back as a list containing business objects with the relational
column data mapped to the properties of the business object. You can also execute stored
procedures and run update, delete, and insert statements.

	[image: [Note]]	Note
	
Many Spring developers believe that the various RDBMS operation classes described below
(with the exception of the StoredProcedure class) can often
be replaced with straight JdbcTemplate calls. Often it is simpler to write a DAO
method that simply calls a method on a JdbcTemplate directly (as opposed to
encapsulating a query as a full-blown class).

However, if you are getting measurable value from using the RDBMS operation classes,
continue using these classes.

SqlQuery

SqlQuery is a reusable, threadsafe class that encapsulates an SQL query. Subclasses
must implement the newRowMapper(..) method to provide a RowMapper instance that can
create one object per row obtained from iterating over the ResultSet that is created
during the execution of the query. The SqlQuery class is rarely used directly because
the MappingSqlQuery subclass provides a much more convenient implementation for
mapping rows to Java classes. Other implementations that extend SqlQuery are
MappingSqlQueryWithParameters and UpdatableSqlQuery.

MappingSqlQuery

MappingSqlQuery is a reusable query in which concrete subclasses must implement the
abstract mapRow(..) method to convert each row of the supplied ResultSet into an
object of the type specified. The following example shows a custom query that maps the
data from the t_actor relation to an instance of the Actor class.

public class ActorMappingQuery extends MappingSqlQuery<Actor> {

 public ActorMappingQuery(DataSource ds) {
 super(ds, "select id, first_name, last_name from t_actor where id = ?");
 declareParameter(new SqlParameter("id", Types.INTEGER));
 compile();
 }

 @Override
 protected Actor mapRow(ResultSet rs, int rowNumber) throws SQLException {
 Actor actor = new Actor();
 actor.setId(rs.getLong("id"));
 actor.setFirstName(rs.getString("first_name"));
 actor.setLastName(rs.getString("last_name"));
 return actor;
 }

}

The class extends MappingSqlQuery parameterized with the Actor type. The constructor
for this customer query takes the DataSource as the only parameter. In this
constructor you call the constructor on the superclass with the DataSource and the SQL
that should be executed to retrieve the rows for this query. This SQL will be used to
create a PreparedStatement so it may contain place holders for any parameters to be
passed in during execution. You must declare each parameter using the declareParameter
method passing in an SqlParameter. The SqlParameter takes a name and the JDBC type
as defined in java.sql.Types. After you define all parameters, you call the
compile() method so the statement can be prepared and later executed. This class is
thread-safe after it is compiled, so as long as these instances are created when the DAO
is initialized they can be kept as instance variables and be reused.

private ActorMappingQuery actorMappingQuery;

@Autowired
public void setDataSource(DataSource dataSource) {
 this.actorMappingQuery = new ActorMappingQuery(dataSource);
}

public Customer getCustomer(Long id) {
 return actorMappingQuery.findObject(id);
}

The method in this example retrieves the customer with the id that is passed in as the
only parameter. Since we only want one object returned we simply call the convenience
method findObject with the id as parameter. If we had instead a query that returned a
list of objects and took additional parameters then we would use one of the execute
methods that takes an array of parameter values passed in as varargs.

public List<Actor> searchForActors(int age, String namePattern) {
 List<Actor> actors = actorSearchMappingQuery.execute(age, namePattern);
 return actors;
}

SqlUpdate

The SqlUpdate class encapsulates an SQL update. Like a query, an update object is
reusable, and like all RdbmsOperation classes, an update can have parameters and is
defined in SQL. This class provides a number of update(..) methods analogous to the
execute(..) methods of query objects. The SQLUpdate class is concrete. It can be
subclassed, for example, to add a custom update method, as in the following snippet
where it’s simply called execute. However, you don’t have to subclass the SqlUpdate
class since it can easily be parameterized by setting SQL and declaring parameters.

import java.sql.Types;
import javax.sql.DataSource;
import org.springframework.jdbc.core.SqlParameter;
import org.springframework.jdbc.object.SqlUpdate;

public class UpdateCreditRating extends SqlUpdate {

 public UpdateCreditRating(DataSource ds) {
 setDataSource(ds);
 setSql("update customer set credit_rating = ? where id = ?");
 declareParameter(new SqlParameter("creditRating", Types.NUMERIC));
 declareParameter(new SqlParameter("id", Types.NUMERIC));
 compile();
 }

 /**
 * @param id for the Customer to be updated
 * @param rating the new value for credit rating
 * @return number of rows updated
 */
 public int execute(int id, int rating) {
 return update(rating, id);
 }
}

StoredProcedure

The StoredProcedure class is a superclass for object abstractions of RDBMS stored
procedures. This class is abstract, and its various execute(..) methods have
protected access, preventing use other than through a subclass that offers tighter
typing.

The inherited sql property will be the name of the stored procedure in the RDBMS.

To define a parameter for the StoredProcedure class, you use an SqlParameter or one
of its subclasses. You must specify the parameter name and SQL type in the constructor
like in the following code snippet. The SQL type is specified using the java.sql.Types
constants.

new SqlParameter("in_id", Types.NUMERIC),
 new SqlOutParameter("out_first_name", Types.VARCHAR),

The first line with the SqlParameter declares an IN parameter. IN parameters can be
used for both stored procedure calls and for queries using the SqlQuery and its
subclasses covered in the following section.

The second line with the SqlOutParameter declares an out parameter to be used in the
stored procedure call. There is also an SqlInOutParameter for I nOut parameters,
parameters that provide an in value to the procedure and that also return a value.

For i n parameters, in addition to the name and the SQL type, you can specify a
scale for numeric data or a type name for custom database types. For out parameters
you can provide a RowMapper to handle mapping of rows returned from a REF cursor.
Another option is to specify an SqlReturnType that enables you to define customized
handling of the return values.

Here is an example of a simple DAO that uses a StoredProcedure to call a function,
sysdate(),which comes with any Oracle database. To use the stored procedure
functionality you have to create a class that extends StoredProcedure. In this
example, the StoredProcedure class is an inner class, but if you need to reuse the
StoredProcedure you declare it as a top-level class. This example has no input
parameters, but an output parameter is declared as a date type using the class
SqlOutParameter. The execute() method executes the procedure and extracts the
returned date from the results Map. The results Map has an entry for each declared
output parameter, in this case only one, using the parameter name as the key.

import java.sql.Types;
import java.util.Date;
import java.util.HashMap;
import java.util.Map;
import javax.sql.DataSource;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.jdbc.core.SqlOutParameter;
import org.springframework.jdbc.object.StoredProcedure;

public class StoredProcedureDao {

 private GetSysdateProcedure getSysdate;

 @Autowired
 public void init(DataSource dataSource) {
 this.getSysdate = new GetSysdateProcedure(dataSource);
 }

 public Date getSysdate() {
 return getSysdate.execute();
 }

 private class GetSysdateProcedure extends StoredProcedure {

 private static final String SQL = "sysdate";

 public GetSysdateProcedure(DataSource dataSource) {
 setDataSource(dataSource);
 setFunction(true);
 setSql(SQL);
 declareParameter(new SqlOutParameter("date", Types.DATE));
 compile();
 }

 public Date execute() {
 // the 'sysdate' sproc has no input parameters, so an empty Map is supplied...
 Map<String, Object> results = execute(new HashMap<String, Object>());
 Date sysdate = (Date) results.get("date");
 return sysdate;
 }
 }

}

The following example of a StoredProcedure has two output parameters (in this case,
Oracle REF cursors).

import java.util.HashMap;
import java.util.Map;
import javax.sql.DataSource;
import oracle.jdbc.OracleTypes;
import org.springframework.jdbc.core.SqlOutParameter;
import org.springframework.jdbc.object.StoredProcedure;

public class TitlesAndGenresStoredProcedure extends StoredProcedure {

 private static final String SPROC_NAME = "AllTitlesAndGenres";

 public TitlesAndGenresStoredProcedure(DataSource dataSource) {
 super(dataSource, SPROC_NAME);
 declareParameter(new SqlOutParameter("titles", OracleTypes.CURSOR, new TitleMapper()));
 declareParameter(new SqlOutParameter("genres", OracleTypes.CURSOR, new GenreMapper()));
 compile();
 }

 public Map<String, Object> execute() {
 // again, this sproc has no input parameters, so an empty Map is supplied
 return super.execute(new HashMap<String, Object>());
 }
}

Notice how the overloaded variants of the declareParameter(..) method that have been
used in the TitlesAndGenresStoredProcedure constructor are passed RowMapper
implementation instances; this is a very convenient and powerful way to reuse existing
functionality. The code for the two RowMapper implementations is provided below.

The TitleMapper class maps a ResultSet to a Title domain object for each row in
the supplied ResultSet:

import java.sql.ResultSet;
import java.sql.SQLException;
import com.foo.domain.Title;
import org.springframework.jdbc.core.RowMapper;

public final class TitleMapper implements RowMapper<Title> {

 public Title mapRow(ResultSet rs, int rowNum) throws SQLException {
 Title title = new Title();
 title.setId(rs.getLong("id"));
 title.setName(rs.getString("name"));
 return title;
 }
}

The GenreMapper class maps a ResultSet to a Genre domain object for each row in
the supplied ResultSet.

import java.sql.ResultSet;
import java.sql.SQLException;
import com.foo.domain.Genre;
import org.springframework.jdbc.core.RowMapper;

public final class GenreMapper implements RowMapper<Genre> {

 public Genre mapRow(ResultSet rs, int rowNum) throws SQLException {
 return new Genre(rs.getString("name"));
 }
}

To pass parameters to a stored procedure that has one or more input parameters in its
definition in the RDBMS, you can code a strongly typed execute(..) method that would
delegate to the superclass' untyped execute(Map parameters) method (which has
protected access); for example:

import java.sql.Types;
import java.util.Date;
import java.util.HashMap;
import java.util.Map;
import javax.sql.DataSource;
import oracle.jdbc.OracleTypes;
import org.springframework.jdbc.core.SqlOutParameter;
import org.springframework.jdbc.core.SqlParameter;
import org.springframework.jdbc.object.StoredProcedure;

public class TitlesAfterDateStoredProcedure extends StoredProcedure {

 private static final String SPROC_NAME = "TitlesAfterDate";
 private static final String CUTOFF_DATE_PARAM = "cutoffDate";

 public TitlesAfterDateStoredProcedure(DataSource dataSource) {
 super(dataSource, SPROC_NAME);
 declareParameter(new SqlParameter(CUTOFF_DATE_PARAM, Types.DATE);
 declareParameter(new SqlOutParameter("titles", OracleTypes.CURSOR, new TitleMapper()));
 compile();
 }

 public Map<String, Object> execute(Date cutoffDate) {
 Map<String, Object> inputs = new HashMap<String, Object>();
 inputs.put(CUTOFF_DATE_PARAM, cutoffDate);
 return super.execute(inputs);
 }
}

Common problems with parameter and data value handling

Common problems with parameters and data values exist in the different approaches
provided by the Spring Framework JDBC.

Providing SQL type information for parameters

Usually Spring determines the SQL type of the parameters based on the type of parameter
passed in. It is possible to explicitly provide the SQL type to be used when setting
parameter values. This is sometimes necessary to correctly set NULL values.

You can provide SQL type information in several ways:

	
Many update and query methods of the JdbcTemplate take an additional parameter in
the form of an int array. This array is used to indicate the SQL type of the
corresponding parameter using constant values from the java.sql.Types class. Provide
one entry for each parameter.

	
You can use the SqlParameterValue class to wrap the parameter value that needs this
additional information.Create a new instance for each value and pass in the SQL type
and parameter value in the constructor. You can also provide an optional scale
parameter for numeric values.

	
For methods working with named parameters, use the SqlParameterSource classes
BeanPropertySqlParameterSource or MapSqlParameterSource. They both have methods
for registering the SQL type for any of the named parameter values.

Handling BLOB and CLOB objects

You can store images, other binary data, and large chunks of text in the database. These
large objects are called BLOBs (Binary Large OBject) for binary data and CLOBs (Character
Large OBject) for character data. In Spring you can handle these large objects by using
the JdbcTemplate directly and also when using the higher abstractions provided by RDBMS
Objects and the SimpleJdbc classes. All of these approaches use an implementation of
the LobHandler interface for the actual management of the LOB (Large OBject) data. The
LobHandler provides access to a LobCreator class, through the getLobCreator method,
used for creating new LOB objects to be inserted.

The LobCreator/LobHandler provides the following support for LOB input and output:

	
BLOB

	
byte[] — getBlobAsBytes and setBlobAsBytes

	
InputStream — getBlobAsBinaryStream and setBlobAsBinaryStream

	
CLOB

	
String — getClobAsString and setClobAsString

	
InputStream — getClobAsAsciiStream and setClobAsAsciiStream

	
Reader — getClobAsCharacterStream and setClobAsCharacterStream

The next example shows how to create and insert a BLOB. Later you will see how to read
it back from the database.

This example uses a JdbcTemplate and an implementation of the
AbstractLobCreatingPreparedStatementCallback. It implements one method,
setValues. This method provides a LobCreator that you use to set the values for the
LOB columns in your SQL insert statement.

For this example we assume that there is a variable, lobHandler, that already is
set to an instance of a DefaultLobHandler. You typically set this value through
dependency injection.

final File blobIn = new File("spring2004.jpg");
final InputStream blobIs = new FileInputStream(blobIn);
final File clobIn = new File("large.txt");
final InputStream clobIs = new FileInputStream(clobIn);
final InputStreamReader clobReader = new InputStreamReader(clobIs);

jdbcTemplate.execute(
 "INSERT INTO lob_table (id, a_clob, a_blob) VALUES (?, ?, ?)",
 new AbstractLobCreatingPreparedStatementCallback(lobHandler) { [image: 1]
 protected void setValues(PreparedStatement ps, LobCreator lobCreator) throws SQLException {
 ps.setLong(1, 1L);
 lobCreator.setClobAsCharacterStream(ps, 2, clobReader, (int)clobIn.length()); [image: 2]
 lobCreator.setBlobAsBinaryStream(ps, 3, blobIs, (int)blobIn.length()); [image: 3]
 }
 }
);

blobIs.close();
clobReader.close();

	[image: 1]
	
Pass in the lobHandler that in this example is a plain DefaultLobHandler.

	[image: 2]
	
Using the method setClobAsCharacterStream, pass in the contents of the CLOB.

	[image: 3]
	
Using the method setBlobAsBinaryStream, pass in the contents of the BLOB.

	[image: [Note]]	Note
	
If you invoke the setBlobAsBinaryStream, setClobAsAsciiStream, or
setClobAsCharacterStream method on the LobCreator returned from
DefaultLobHandler.getLobCreator(), you can optionally specify a negative value for the
contentLength argument. If the specified content length is negative, the
DefaultLobHandler will use the JDBC 4.0 variants of the set-stream methods without a
length parameter; otherwise, it will pass the specified length on to the driver.

Consult the documentation for the JDBC driver in use to verify support for streaming a
LOB without providing the content length.

Now it’s time to read the LOB data from the database. Again, you use a JdbcTemplate
with the same instance variable lobHandler and a reference to a DefaultLobHandler.

List<Map<String, Object>> l = jdbcTemplate.query("select id, a_clob, a_blob from lob_table",
 new RowMapper<Map<String, Object>>() {
 public Map<String, Object> mapRow(ResultSet rs, int i) throws SQLException {
 Map<String, Object> results = new HashMap<String, Object>();
 String clobText = lobHandler.getClobAsString(rs, "a_clob"); [image: 1]
results.put("CLOB", clobText); byte[] blobBytes = lobHandler.getBlobAsBytes(rs, "a_blob"); [image: 2]
results.put("BLOB", blobBytes); return results; } });

	[image: 1]
	
Using the method getClobAsString, retrieve the contents of the CLOB.

	[image: 2]
	
Using the method getBlobAsBytes, retrieve the contents of the BLOB.

Passing in lists of values for IN clause

The SQL standard allows for selecting rows based on an expression that includes a
variable list of values. A typical example would be select * from T_ACTOR where id in
(1, 2, 3). This variable list is not directly supported for prepared statements by the
JDBC standard; you cannot declare a variable number of placeholders. You need a number
of variations with the desired number of placeholders prepared, or you need to generate
the SQL string dynamically once you know how many placeholders are required. The named
parameter support provided in the NamedParameterJdbcTemplate and JdbcTemplate takes
the latter approach. Pass in the values as a java.util.List of primitive objects. This
list will be used to insert the required placeholders and pass in the values during the
statement execution.

	[image: [Note]]	Note
	
Be careful when passing in many values. The JDBC standard does not guarantee that you
can use more than 100 values for an in expression list. Various databases exceed this
number, but they usually have a hard limit for how many values are allowed. Oracle’s
limit is 1000.

In addition to the primitive values in the value list, you can create a java.util.List
of object arrays. This list would support multiple expressions defined for the in
clause such as select * from T_ACTOR where (id, last_name) in ((1, 'Johnson'), (2,
'Harrop'\)). This of course requires that your database supports this syntax.

Handling complex types for stored procedure calls

When you call stored procedures you can sometimes use complex types specific to the
database. To accommodate these types, Spring provides a SqlReturnType for handling
them when they are returned from the stored procedure call and SqlTypeValue when they
are passed in as a parameter to the stored procedure.

Here is an example of returning the value of an Oracle STRUCT object of the user
declared type ITEM_TYPE. The SqlReturnType interface has a single method named
getTypeValue that must be implemented. This interface is used as part of the
declaration of an SqlOutParameter.

public class TestItemStoredProcedure extends StoredProcedure {

 public TestItemStoredProcedure(DataSource dataSource) {
 ...
 declareParameter(new SqlOutParameter("item", OracleTypes.STRUCT, "ITEM_TYPE",
 new SqlReturnType() {
 public Object getTypeValue(CallableStatement cs, int colIndx, int sqlType, String typeName) throws SQLException {
 STRUCT struct = (STRUCT) cs.getObject(colIndx);
 Object[] attr = struct.getAttributes();
 TestItem item = new TestItem();
 item.setId(((Number) attr[0]).longValue());
 item.setDescription((String) attr[1]);
 item.setExpirationDate((java.util.Date) attr[2]);
 return item;
 }
 }));
 ...
 }

You use the SqlTypeValue to pass in the value of a Java object like TestItem into a
stored procedure. The SqlTypeValue interface has a single method named
createTypeValue that you must implement. The active connection is passed in, and you
can use it to create database-specific objects such as StructDescriptors, as shown in
the following example, or ArrayDescriptors.

final TestItem testItem = new TestItem(123L, "A test item",
 new SimpleDateFormat("yyyy-M-d").parse("2010-12-31"));

SqlTypeValue value = new AbstractSqlTypeValue() {
 protected Object createTypeValue(Connection conn, int sqlType, String typeName) throws SQLException {
 StructDescriptor itemDescriptor = new StructDescriptor(typeName, conn);
 Struct item = new STRUCT(itemDescriptor, conn,
 new Object[] {
 testItem.getId(),
 testItem.getDescription(),
 new java.sql.Date(testItem.getExpirationDate().getTime())
 });
 return item;
 }
};

This SqlTypeValue can now be added to the Map containing the input parameters for the
execute call of the stored procedure.

Another use for the SqlTypeValue is passing in an array of values to an Oracle stored
procedure. Oracle has its own internal ARRAY class that must be used in this case, and
you can use the SqlTypeValue to create an instance of the Oracle ARRAY and populate
it with values from the Java ARRAY.

final Long[] ids = new Long[] {1L, 2L};

SqlTypeValue value = new AbstractSqlTypeValue() {
 protected Object createTypeValue(Connection conn, int sqlType, String typeName) throws SQLException {
 ArrayDescriptor arrayDescriptor = new ArrayDescriptor(typeName, conn);
 ARRAY idArray = new ARRAY(arrayDescriptor, conn, ids);
 return idArray;
 }
};

Embedded database support

The org.springframework.jdbc.datasource.embedded package provides support for embedded
Java database engines. Support for HSQL,
H2, and Derby is provided
natively. You can also use an extensible API to plug in new embedded database types and
DataSource implementations.

Why use an embedded database?

An embedded database is useful during the development phase of a project because of its
lightweight nature. Benefits include ease of configuration, quick startup time,
testability, and the ability to rapidly evolve SQL during development.

Creating an embedded database using Spring XML

If you want to expose an embedded database instance as a bean in a Spring
ApplicationContext, use the embedded-database tag in the spring-jdbc namespace:

<jdbc:embedded-database id="dataSource" generate-name="true">
 <jdbc:script location="classpath:schema.sql"/>
 <jdbc:script location="classpath:test-data.sql"/>
</jdbc:embedded-database>

The preceding configuration creates an embedded HSQL database populated with SQL from
schema.sql and test-data.sql resources in the root of the classpath. In addition, as
a best practice, the embedded database will be assigned a uniquely generated name. The
embedded database is made available to the Spring container as a bean of type
javax.sql.DataSource which can then be injected into data access objects as needed.

Creating an embedded database programmatically

The EmbeddedDatabaseBuilder class provides a fluent API for constructing an embedded
database programmatically. Use this when you need to create an embedded database in a
standalone environment or in a standalone integration test like in the following example.

EmbeddedDatabase db = new EmbeddedDatabaseBuilder()
		.generateUniqueName(true)
		.setType(H2)
		.setScriptEncoding("UTF-8")
		.ignoreFailedDrops(true)
		.addScript("schema.sql")
		.addScripts("user_data.sql", "country_data.sql")
		.build();

// perform actions against the db (EmbeddedDatabase extends javax.sql.DataSource)

db.shutdown()

Consult the Javadoc for EmbeddedDatabaseBuilder for further details on all supported
options.

The EmbeddedDatabaseBuilder can also be used to create an embedded database using Java
Config like in the following example.

@Configuration
public class DataSourceConfig {

	@Bean
	public DataSource dataSource() {
		return new EmbeddedDatabaseBuilder()
				.generateUniqueName(true)
				.setType(H2)
				.setScriptEncoding("UTF-8")
				.ignoreFailedDrops(true)
				.addScript("schema.sql")
				.addScripts("user_data.sql", "country_data.sql")
				.build();
	}
}

Selecting the embedded database type

Using HSQL

Spring supports HSQL 1.8.0 and above. HSQL is the default embedded database if no type is
specified explicitly. To specify HSQL explicitly, set the type attribute of the
embedded-database tag to HSQL. If you are using the builder API, call the
setType(EmbeddedDatabaseType) method with EmbeddedDatabaseType.HSQL.

Using H2

Spring supports the H2 database as well. To enable H2, set the type attribute of the
embedded-database tag to H2. If you are using the builder API, call the
setType(EmbeddedDatabaseType) method with EmbeddedDatabaseType.H2.

Using Derby

Spring also supports Apache Derby 10.5 and above. To enable Derby, set the type
attribute of the embedded-database tag to DERBY. If you are using the builder API,
call the setType(EmbeddedDatabaseType) method with EmbeddedDatabaseType.DERBY.

Testing data access logic with an embedded database

Embedded databases provide a lightweight way to test data access code. The following is a
data access integration test template that uses an embedded database. Using a template
like this can be useful for one-offs when the embedded database does not need to be
reused across test classes. However, if you wish to create an embedded database that is
shared within a test suite, consider using the Spring TestContext
Framework and configuring the embedded database as a bean in the Spring
ApplicationContext as described in the section called “Creating an embedded database using Spring XML” and
the section called “Creating an embedded database programmatically”.

public class DataAccessIntegrationTestTemplate {

 private EmbeddedDatabase db;

 @Before
 public void setUp() {
 // creates an HSQL in-memory database populated from default scripts
 // classpath:schema.sql and classpath:data.sql
 db = new EmbeddedDatabaseBuilder()
 .generateUniqueName(true)
 .addDefaultScripts()
 .build();
 }

 @Test
 public void testDataAccess() {
 JdbcTemplate template = new JdbcTemplate(db);
 template.query(/* ... */);
 }

 @After
 public void tearDown() {
 db.shutdown();
 }

}

Generating unique names for embedded databases

Development teams often encounter errors with embedded databases if their test suite
inadvertently attempts to recreate additional instances of the same database. This can
happen quite easily if an XML configuration file or @Configuration class is responsible
for creating an embedded database and the corresponding configuration is then reused
across multiple testing scenarios within the same test suite (i.e., within the same JVM
process) –- for example, integration tests against embedded databases whose
ApplicationContext configuration only differs with regard to which bean definition
profiles are active.

The root cause of such errors is the fact that Spring’s EmbeddedDatabaseFactory (used
internally by both the <jdbc:embedded-database> XML namespace element and the
EmbeddedDatabaseBuilder for Java Config) will set the name of the embedded database to
"testdb" if not otherwise specified. For the case of <jdbc:embedded-database>, the
embedded database is typically assigned a name equal to the bean’s id (i.e., often
something like "dataSource"). Thus, subsequent attempts to create an embedded database
will not result in a new database. Instead, the same JDBC connection URL will be reused,
and attempts to create a new embedded database will actually point to an existing
embedded database created from the same configuration.

To address this common issue Spring Framework 4.2 provides support for generating
unique names for embedded databases. To enable the use of generated names, use one of
the following options.

	
EmbeddedDatabaseFactory.setGenerateUniqueDatabaseName()

	
EmbeddedDatabaseBuilder.generateUniqueName()

	
<jdbc:embedded-database generate-name="true" …​ >

Extending the embedded database support

Spring JDBC embedded database support can be extended in two ways:

	
Implement EmbeddedDatabaseConfigurer to support a new embedded database type.

	
Implement DataSourceFactory to support a new DataSource implementation, such as a
connection pool to manage embedded database connections.

You are encouraged to contribute back extensions to the Spring community at
jira.spring.io.

Initializing a DataSource

The org.springframework.jdbc.datasource.init package provides support for initializing
an existing DataSource. The embedded database support provides one option for creating
and initializing a DataSource for an application, but sometimes you need to initialize
an instance running on a server somewhere.

Initializing a database using Spring XML

If you want to initialize a database and you can provide a reference to a DataSource
bean, use the initialize-database tag in the spring-jdbc namespace:

<jdbc:initialize-database data-source="dataSource">
 <jdbc:script location="classpath:com/foo/sql/db-schema.sql"/>
 <jdbc:script location="classpath:com/foo/sql/db-test-data.sql"/>
</jdbc:initialize-database>

The example above executes the two scripts specified against the database: the first
script creates a schema, and the second populates tables with a test data set. The script
locations can also be patterns with wildcards in the usual ant style used for resources
in Spring (e.g.
classpath*:/com/foo/**/sql/*-data.sql). If a
pattern is used, the scripts are executed in lexical order of their URL or filename.

The default behavior of the database initializer is to unconditionally execute the
scripts provided. This will not always be what you want, for instance, if you are
executing the scripts against a database that already has test data in it. The likelihood
of accidentally deleting data is reduced by following the common pattern (as shown above)
of creating the tables first and then inserting the data — the first step will fail if
the tables already exist.

However, to gain more control over the creation and deletion of existing data, the XML
namespace provides a few additional options. The first is a flag to switch the
initialization on and off. This can be set according to the environment (e.g. to pull a
boolean value from system properties or an environment bean), for example:

<jdbc:initialize-database data-source="dataSource"
 enabled="#{systemProperties.INITIALIZE_DATABASE}">
 <jdbc:script location="..."/>
</jdbc:initialize-database>

The second option to control what happens with existing data is to be more tolerant of
failures. To this end you can control the ability of the initializer to ignore certain
errors in the SQL it executes from the scripts, for example:

<jdbc:initialize-database data-source="dataSource" ignore-failures="DROPS">
 <jdbc:script location="..."/>
</jdbc:initialize-database>

In this example we are saying we expect that sometimes the scripts will be executed
against an empty database, and there are some DROP statements in the scripts which
would therefore fail. So failed SQL DROP statements will be ignored, but other failures
will cause an exception. This is useful if your SQL dialect doesn’t support DROP …​ IF
EXISTS (or similar) but you want to unconditionally remove all test data before
re-creating it. In that case the first script is usually a set of DROP statements,
followed by a set of CREATE statements.

The ignore-failures option can be set to NONE (the default), DROPS (ignore failed
drops), or ALL (ignore all failures).

Each statement should be separated by ; or a new line if the ; character is not
present at all in the script. You can control that globally or script by script, for
example:

<jdbc:initialize-database data-source="dataSource" separator="@@">
 <jdbc:script location="classpath:com/foo/sql/db-schema.sql" separator=";"/>
 <jdbc:script location="classpath:com/foo/sql/db-test-data-1.sql"/>
 <jdbc:script location="classpath:com/foo/sql/db-test-data-2.sql"/>
</jdbc:initialize-database>

In this example, the two test-data scripts use @@ as statement separator and only
the db-schema.sql uses ;. This configuration specifies that the default separator
is @@ and override that default for the db-schema script.

If you need more control than you get from the XML namespace, you can simply use the
DataSourceInitializer directly and define it as a component in your application.

Initialization of other components that depend on the database

A large class of applications can just use the database initializer with no further
complications: those that do not use the database until after the Spring context has
started. If your application is not one of those then you might need to read the rest
of this section.

The database initializer depends on a DataSource instance and executes the scripts
provided in its initialization callback (analogous to an init-method in an XML bean
definition, a @PostConstruct method in a component, or the afterPropertiesSet()
method in a component that implements InitializingBean). If other beans depend on the
same data source and also use the data source in an initialization callback, then there
might be a problem because the data has not yet been initialized. A common example of
this is a cache that initializes eagerly and loads data from the database on application
startup.

To get around this issue you have two options: change your cache initialization strategy
to a later phase, or ensure that the database initializer is initialized first.

The first option might be easy if the application is in your control, and not otherwise.
Some suggestions for how to implement this include:

	
Make the cache initialize lazily on first usage, which improves application startup
time.

	
Have your cache or a separate component that initializes the cache implement
Lifecycle or SmartLifecycle. When the application context starts up a
SmartLifecycle can be automatically started if its autoStartup flag is set, and a
Lifecycle can be started manually by calling ConfigurableApplicationContext.start()
on the enclosing context.

	
Use a Spring ApplicationEvent or similar custom observer mechanism to trigger the
cache initialization. ContextRefreshedEvent is always published by the context when
it is ready for use (after all beans have been initialized), so that is often a useful
hook (this is how the SmartLifecycle works by default).

The second option can also be easy. Some suggestions on how to implement this include:

	
Rely on the default behavior of the Spring BeanFactory, which is that beans are
initialized in registration order. You can easily arrange that by adopting the common
practice of a set of <import/> elements in XML configuration that order your
application modules, and ensure that the database and database initialization are
listed first.

	
Separate the DataSource and the business components that use it, and control their
startup order by putting them in separate ApplicationContext instances (e.g. the
parent context contains the DataSource, and child context contains the business
components). This structure is common in Spring web applications but can be more
generally applied.

Chapter 20. Object Relational Mapping (ORM) Data Access

Introduction to ORM with Spring

The Spring Framework supports integration with Hibernate, Java Persistence API (JPA)
and Java Data Objects (JDO) for resource management, data access object
(DAO) implementations, and transaction strategies. For example, for Hibernate there is
first-class support with several convenient IoC features that address many typical
Hibernate integration issues. You can configure all of the supported features for O/R
(object relational) mapping tools through Dependency Injection. They can participate in
Spring’s resource and transaction management, and they comply with Spring’s generic
transaction and DAO exception hierarchies. The recommended integration style is to code
DAOs against plain Hibernate, JPA, and JDO APIs. The older style of using Spring’s DAO
templates is no longer recommended; however, coverage of this style can be found in the
the section called “Classic ORM usage” in the appendices.

Spring adds significant enhancements to the ORM layer of your choice when you create
data access applications. You can leverage as much of the integration support as you
wish, and you should compare this integration effort with the cost and risk of building
a similar infrastructure in-house. You can use much of the ORM support as you would a
library, regardless of technology, because everything is designed as a set of reusable
JavaBeans. ORM in a Spring IoC container facilitates configuration and deployment. Thus
most examples in this section show configuration inside a Spring container.

Benefits of using the Spring Framework to create your ORM DAOs include:

	
Easier testing. Spring’s IoC approach makes it easy to swap the implementations
and configuration locations of Hibernate SessionFactory instances, JDBC DataSource
instances, transaction managers, and mapped object implementations (if needed). This
in turn makes it much easier to test each piece of persistence-related code in
isolation.

	
Common data access exceptions. Spring can wrap exceptions from your ORM tool,
converting them from proprietary (potentially checked) exceptions to a common runtime
DataAccessException hierarchy. This feature allows you to handle most persistence
exceptions, which are non-recoverable, only in the appropriate layers, without
annoying boilerplate catches, throws, and exception declarations. You can still trap
and handle exceptions as necessary. Remember that JDBC exceptions (including
DB-specific dialects) are also converted to the same hierarchy, meaning that you can
perform some operations with JDBC within a consistent programming model.

	
General resource management. Spring application contexts can handle the location
and configuration of Hibernate SessionFactory instances, JPA EntityManagerFactory
instances, JDBC DataSource instances, and other related resources. This makes these
values easy to manage and change. Spring offers efficient, easy, and safe handling of
persistence resources. For example, related code that uses Hibernate generally needs to
use the same Hibernate Session to ensure efficiency and proper transaction handling.
Spring makes it easy to create and bind a Session to the current thread transparently,
by exposing a current Session through the Hibernate SessionFactory. Thus Spring
solves many chronic problems of typical Hibernate usage, for any local or JTA
transaction environment.

	
Integrated transaction management. You can wrap your ORM code with a declarative,
aspect-oriented programming (AOP) style method interceptor either through the
@Transactional annotation or by explicitly configuring the transaction AOP advice in
an XML configuration file. In both cases, transaction semantics and exception handling
(rollback, and so on) are handled for you. As discussed below, in
Resource and transaction management, you can also swap various
transaction managers, without affecting your ORM-related code. For example, you can
swap between local transactions and JTA, with the same full services (such as
declarative transactions) available in both scenarios. Additionally, JDBC-related code
can fully integrate transactionally with the code you use to do ORM. This is useful
for data access that is not suitable for ORM, such as batch processing and BLOB
streaming, which still need to share common transactions with ORM operations.

	[image: [Tip]]	Tip
	
For more comprehensive ORM support, including support for alternative database
technologies such as MongoDB, you might want to check out the
Spring Data suite of projects. If you are
a JPA user, the Getting Started Accessing
Data with JPA guide from https://spring.io provides a great introduction.

General ORM integration considerations

This section highlights considerations that apply to all ORM technologies. The
the section called “Hibernate” section provides more details and also show these features and
configurations in a concrete context.

The major goal of Spring’s ORM integration is clear application layering, with any data
access and transaction technology, and for loose coupling of application objects. No
more business service dependencies on the data access or transaction strategy, no more
hard-coded resource lookups, no more hard-to-replace singletons, no more custom service
registries. One simple and consistent approach to wiring up application objects, keeping
them as reusable and free from container dependencies as possible. All the individual
data access features are usable on their own but integrate nicely with Spring’s
application context concept, providing XML-based configuration and cross-referencing of
plain JavaBean instances that need not be Spring-aware. In a typical Spring application,
many important objects are JavaBeans: data access templates, data access objects,
transaction managers, business services that use the data access objects and transaction
managers, web view resolvers, web controllers that use the business services,and so on.

Resource and transaction management

Typical business applications are cluttered with repetitive resource management code.
Many projects try to invent their own solutions, sometimes sacrificing proper handling
of failures for programming convenience. Spring advocates simple solutions for proper
resource handling, namely IoC through templating in the case of JDBC and applying AOP
interceptors for the ORM technologies.

The infrastructure provides proper resource handling and appropriate conversion of
specific API exceptions to an unchecked infrastructure exception hierarchy. Spring
introduces a DAO exception hierarchy, applicable to any data access strategy. For direct
JDBC, the JdbcTemplate class mentioned in a previous section provides connection
handling and proper conversion of SQLException to the DataAccessException hierarchy,
including translation of database-specific SQL error codes to meaningful exception
classes. For ORM technologies, see the next section for how to get the same exception
translation benefits.

When it comes to transaction management, the JdbcTemplate class hooks in to the Spring
transaction support and supports both JTA and JDBC transactions, through respective
Spring transaction managers. For the supported ORM technologies Spring offers Hibernate,
JPA and JDO support through the Hibernate, JPA, and JDO transaction managers as well as
JTA support. For details on transaction support, see the Chapter 17, Transaction Management chapter.

Exception translation

When you use Hibernate, JPA, or JDO in a DAO, you must decide how to handle the
persistence technology’s native exception classes. The DAO throws a subclass of a
HibernateException, PersistenceException or JDOException depending on the
technology. These exceptions are all run-time exceptions and do not have to be declared
or caught. You may also have to deal with IllegalArgumentException and
IllegalStateException. This means that callers can only treat exceptions as generally
fatal, unless they want to depend on the persistence technology’s own exception
structure. Catching specific causes such as an optimistic locking failure is not
possible without tying the caller to the implementation strategy. This trade off might
be acceptable to applications that are strongly ORM-based and/or do not need any special
exception treatment. However, Spring enables exception translation to be applied
transparently through the @Repository annotation:

@Repository
public class ProductDaoImpl implements ProductDao {

 // class body here...

}

<beans>

 <!-- Exception translation bean post processor -->
 <bean class="org.springframework.dao.annotation.PersistenceExceptionTranslationPostProcessor"/>

 <bean id="myProductDao" class="product.ProductDaoImpl"/>

</beans>

The postprocessor automatically looks for all exception translators (implementations of
the PersistenceExceptionTranslator interface) and advises all beans marked with the
@Repository annotation so that the discovered translators can intercept and apply the
appropriate translation on the thrown exceptions.

In summary: you can implement DAOs based on the plain persistence technology’s API and
annotations, while still benefiting from Spring-managed transactions, dependency
injection, and transparent exception conversion (if desired) to Spring’s custom
exception hierarchies.

Hibernate

We will start with a coverage of Hibernate 5 in a Spring
environment, using it to demonstrate the approach that Spring takes towards integrating
O/R mappers. This section will cover many issues in detail and show different variations
of DAO implementations and transaction demarcation. Most of these patterns can be
directly translated to all other supported ORM tools. The following sections in this
chapter will then cover the other ORM technologies, showing briefer examples there.

	[image: [Note]]	Note
	
As of Spring 4.0, Spring requires Hibernate 3.6 or later. Note that the Hibernate team
stopped supporting Hibernate 3 years ago and even phased out support for Hibernate 4.x
in late 2015. We therefore recommend Hibernate 5.0 and higher from a 2016+ perspective.

SessionFactory setup in a Spring container

To avoid tying application objects to hard-coded resource lookups, you can define
resources such as a JDBC DataSource or a Hibernate SessionFactory as beans in the
Spring container. Application objects that need to access resources receive references
to such predefined instances through bean references, as illustrated in the DAO
definition in the next section.

The following excerpt from an XML application context definition shows how to set up a
JDBC DataSource and a Hibernate SessionFactory on top of it:

<beans>

 <bean id="myDataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close">
 <property name="driverClassName" value="org.hsqldb.jdbcDriver"/>
 <property name="url" value="jdbc:hsqldb:hsql://localhost:9001"/>
 <property name="username" value="sa"/>
 <property name="password" value=""/>
 </bean>

 <bean id="mySessionFactory" class="org.springframework.orm.hibernate5.LocalSessionFactoryBean">
 <property name="dataSource" ref="myDataSource"/>
 <property name="mappingResources">
 <list>
 <value>product.hbm.xml</value>
 </list>
 </property>
 <property name="hibernateProperties">
 <value>
 hibernate.dialect=org.hibernate.dialect.HSQLDialect
 </value>
 </property>
 </bean>

</beans>

Switching from a local Jakarta Commons DBCP BasicDataSource to a JNDI-located
DataSource (usually managed by an application server) is just a matter of
configuration:

<beans>
 <jee:jndi-lookup id="myDataSource" jndi-name="java:comp/env/jdbc/myds"/>
</beans>

You can also access a JNDI-located SessionFactory, using Spring’s
JndiObjectFactoryBean / <jee:jndi-lookup> to retrieve and expose it. However, that
is typically not common outside of an EJB context.

Implementing DAOs based on plain Hibernate API

Hibernate has a feature called contextual sessions, wherein Hibernate itself manages
one current Session per transaction. This is roughly equivalent to Spring’s
synchronization of one Hibernate Session per transaction. A corresponding DAO
implementation resembles the following example, based on the plain Hibernate API:

public class ProductDaoImpl implements ProductDao {

 private SessionFactory sessionFactory;

 public void setSessionFactory(SessionFactory sessionFactory) {
 this.sessionFactory = sessionFactory;
 }

 public Collection loadProductsByCategory(String category) {
 return this.sessionFactory.getCurrentSession()
 .createQuery("from test.Product product where product.category=?")
 .setParameter(0, category)
 .list();
 }
}

This style is similar to that of the Hibernate reference documentation and examples,
except for holding the SessionFactory in an instance variable. We strongly recommend
such an instance-based setup over the old-school static HibernateUtil class from
Hibernate’s CaveatEmptor sample application. (In general, do not keep any resources in
static variables unless absolutely necessary.)

The above DAO follows the dependency injection pattern: it fits nicely into a Spring IoC
container, just as it would if coded against Spring’s HibernateTemplate. Of course,
such a DAO can also be set up in plain Java (for example, in unit tests). Simply
instantiate it and call setSessionFactory(..) with the desired factory reference. As a
Spring bean definition, the DAO would resemble the following:

<beans>

 <bean id="myProductDao" class="product.ProductDaoImpl">
 <property name="sessionFactory" ref="mySessionFactory"/>
 </bean>

</beans>

The main advantage of this DAO style is that it depends on Hibernate API only; no import
of any Spring class is required. This is of course appealing from a non-invasiveness
perspective, and will no doubt feel more natural to Hibernate developers.

However, the DAO throws plain HibernateException (which is unchecked, so does not have
to be declared or caught), which means that callers can only treat exceptions as
generally fatal - unless they want to depend on Hibernate’s own exception hierarchy.
Catching specific causes such as an optimistic locking failure is not possible without
tying the caller to the implementation strategy. This trade off might be acceptable to
applications that are strongly Hibernate-based and/or do not need any special exception
treatment.

Fortunately, Spring’s LocalSessionFactoryBean supports Hibernate’s
SessionFactory.getCurrentSession() method for any Spring transaction strategy,
returning the current Spring-managed transactional Session even with
HibernateTransactionManager. Of course, the standard behavior of that method remains
the return of the current Session associated with the ongoing JTA transaction, if any.
This behavior applies regardless of whether you are using Spring’s
JtaTransactionManager, EJB container managed transactions (CMTs), or JTA.

In summary: you can implement DAOs based on the plain Hibernate API, while still being
able to participate in Spring-managed transactions.

Declarative transaction demarcation

We recommend that you use Spring’s declarative transaction support, which enables you to
replace explicit transaction demarcation API calls in your Java code with an AOP
transaction interceptor. This transaction interceptor can be configured in a Spring
container using either Java annotations or XML. This declarative transaction capability
allows you to keep business services free of repetitive transaction demarcation code and
to focus on adding business logic, which is the real value of your application.

	[image: [Note]]	Note
	
Prior to continuing, you are strongly encouraged to read the section called “Declarative transaction management”
if you have not done so.

You may annotate the service layer with @Transactional annotations and instruct the
Spring container to find these annotations and provide transactional semantics for
these annotated methods.

public class ProductServiceImpl implements ProductService {

 private ProductDao productDao;

 public void setProductDao(ProductDao productDao) {
 this.productDao = productDao;
 }

 @Transactional
 public void increasePriceOfAllProductsInCategory(final String category) {
 List productsToChange = this.productDao.loadProductsByCategory(category);
 // ...
 }

 @Transactional(readOnly = true)
 public List<Product> findAllProducts() {
 return this.productDao.findAllProducts();
 }

}

All you need to set up in the container is the PlatformTransactionManager
implementation as a bean as well as a "<tx:annotation-driven/>" entry,
opting into @Transactional processing at runtime.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xmlns:tx="http://www.springframework.org/schema/tx"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/tx
 http://www.springframework.org/schema/tx/spring-tx.xsd
 http://www.springframework.org/schema/aop
 http://www.springframework.org/schema/aop/spring-aop.xsd">

 <!-- SessionFactory, DataSource, etc. omitted -->

 <bean id="transactionManager"
 class="org.springframework.orm.hibernate5.HibernateTransactionManager">
 <property name="sessionFactory" ref="sessionFactory"/>
 </bean>

 <tx:annotation-driven/>

 <bean id="myProductService" class="product.SimpleProductService">
 <property name="productDao" ref="myProductDao"/>
 </bean>

</beans>

Programmatic transaction demarcation

You can demarcate transactions in a higher level of the application, on top of such
lower-level data access services spanning any number of operations. Nor do restrictions
exist on the implementation of the surrounding business service; it just needs a Spring
PlatformTransactionManager. Again, the latter can come from anywhere, but preferably
as a bean reference through a setTransactionManager(..) method, just as the
productDAO should be set by a setProductDao(..) method. The following snippets show
a transaction manager and a business service definition in a Spring application context,
and an example for a business method implementation:

<beans>

 <bean id="myTxManager" class="org.springframework.orm.hibernate5.HibernateTransactionManager">
 <property name="sessionFactory" ref="mySessionFactory"/>
 </bean>

 <bean id="myProductService" class="product.ProductServiceImpl">
 <property name="transactionManager" ref="myTxManager"/>
 <property name="productDao" ref="myProductDao"/>
 </bean>

</beans>

public class ProductServiceImpl implements ProductService {

 private TransactionTemplate transactionTemplate;
 private ProductDao productDao;

 public void setTransactionManager(PlatformTransactionManager transactionManager) {
 this.transactionTemplate = new TransactionTemplate(transactionManager);
 }

 public void setProductDao(ProductDao productDao) {
 this.productDao = productDao;
 }

 public void increasePriceOfAllProductsInCategory(final String category) {
 this.transactionTemplate.execute(new TransactionCallbackWithoutResult() {
 public void doInTransactionWithoutResult(TransactionStatus status) {
 List productsToChange = this.productDao.loadProductsByCategory(category);
 // do the price increase...
 }
 });
 }
}

Spring’s TransactionInterceptor allows any checked application exception to be thrown
with the callback code, while TransactionTemplate is restricted to unchecked
exceptions within the callback. TransactionTemplate triggers a rollback in case of an
unchecked application exception, or if the transaction is marked rollback-only by the
application (via TransactionStatus). TransactionInterceptor behaves the same way by
default but allows configurable rollback policies per method.

Transaction management strategies

Both TransactionTemplate and TransactionInterceptor delegate the actual transaction
handling to a PlatformTransactionManager instance, which can be a
HibernateTransactionManager (for a single Hibernate SessionFactory, using a
ThreadLocal Session under the hood) or a JtaTransactionManager (delegating to the
JTA subsystem of the container) for Hibernate applications. You can even use a custom
PlatformTransactionManager implementation. Switching from native Hibernate transaction
management to JTA, such as when facing distributed transaction requirements for certain
deployments of your application, is just a matter of configuration. Simply replace
the Hibernate transaction manager with Spring’s JTA transaction implementation. Both
transaction demarcation and data access code will work without changes, because they
just use the generic transaction management APIs.

For distributed transactions across multiple Hibernate session factories, simply combine
JtaTransactionManager as a transaction strategy with multiple
LocalSessionFactoryBean definitions. Each DAO then gets one specific SessionFactory
reference passed into its corresponding bean property. If all underlying JDBC data
sources are transactional container ones, a business service can demarcate transactions
across any number of DAOs and any number of session factories without special regard, as
long as it is using JtaTransactionManager as the strategy.

Both HibernateTransactionManager and JtaTransactionManager allow for proper
JVM-level cache handling with Hibernate, without container-specific transaction manager
lookup or a JCA connector (if you are not using EJB to initiate transactions).

HibernateTransactionManager can export the Hibernate JDBC Connection to plain JDBC
access code, for a specific DataSource. This capability allows for high-level
transaction demarcation with mixed Hibernate and JDBC data access completely without
JTA, if you are accessing only one database. HibernateTransactionManager automatically
exposes the Hibernate transaction as a JDBC transaction if you have set up the passed-in
SessionFactory with a DataSource through the dataSource property of the
LocalSessionFactoryBean class. Alternatively, you can specify explicitly the
DataSource for which the transactions are supposed to be exposed through the
dataSource property of the HibernateTransactionManager class.

Comparing container-managed and locally defined resources

You can switch between a container-managed JNDI SessionFactory and a locally defined
one, without having to change a single line of application code. Whether to keep
resource definitions in the container or locally within the application is mainly a
matter of the transaction strategy that you use. Compared to a Spring-defined local
SessionFactory, a manually registered JNDI SessionFactory does not provide any
benefits. Deploying a SessionFactory through Hibernate’s JCA connector provides the
added value of participating in the Java EE server’s management infrastructure, but does
not add actual value beyond that.

Spring’s transaction support is not bound to a container. Configured with any strategy
other than JTA, transaction support also works in a stand-alone or test environment.
Especially in the typical case of single-database transactions, Spring’s single-resource
local transaction support is a lightweight and powerful alternative to JTA. When you use
local EJB stateless session beans to drive transactions, you depend both on an EJB
container and JTA, even if you access only a single database, and only use stateless
session beans to provide declarative transactions through container-managed
transactions. Also, direct use of JTA programmatically requires a Java EE environment as
well. JTA does not involve only container dependencies in terms of JTA itself and of
JNDI DataSource instances. For non-Spring, JTA-driven Hibernate transactions, you have
to use the Hibernate JCA connector, or extra Hibernate transaction code with the
TransactionManagerLookup configured for proper JVM-level caching.

Spring-driven transactions can work as well with a locally defined Hibernate
SessionFactory as they do with a local JDBC DataSource if they are accessing a
single database. Thus you only have to use Spring’s JTA transaction strategy when you
have distributed transaction requirements. A JCA connector requires container-specific
deployment steps, and obviously JCA support in the first place. This configuration
requires more work than deploying a simple web application with local resource
definitions and Spring-driven transactions. Also, you often need the Enterprise Edition
of your container if you are using, for example, WebLogic Express, which does not
provide JCA. A Spring application with local resources and transactions spanning one
single database works in any Java EE web container (without JTA, JCA, or EJB) such as
Tomcat, Resin, or even plain Jetty. Additionally, you can easily reuse such a middle
tier in desktop applications or test suites.

All things considered, if you do not use EJBs, stick with local SessionFactory setup
and Spring’s HibernateTransactionManager or JtaTransactionManager. You get all of
the benefits, including proper transactional JVM-level caching and distributed
transactions, without the inconvenience of container deployment. JNDI registration of a
Hibernate SessionFactory through the JCA connector only adds value when used in
conjunction with EJBs.

Spurious application server warnings with Hibernate

In some JTA environments with very strict XADataSource implementations — currently
only some WebLogic Server and WebSphere versions — when Hibernate is configured without
regard to the JTA PlatformTransactionManager object for that environment, it is
possible for spurious warning or exceptions to show up in the application server log.
These warnings or exceptions indicate that the connection being accessed is no longer
valid, or JDBC access is no longer valid, possibly because the transaction is no longer
active. As an example, here is an actual exception from WebLogic:

java.sql.SQLException: The transaction is no longer active - status: 'Committed'. No
further JDBC access is allowed within this transaction.

You resolve this warning by simply making Hibernate aware of the JTA
PlatformTransactionManager instance, to which it will synchronize (along with Spring).
You have two options for doing this:

	
If in your application context you are already directly obtaining the JTA
PlatformTransactionManager object (presumably from JNDI through
JndiObjectFactoryBean or <jee:jndi-lookup>) and feeding it, for example, to
Spring’s JtaTransactionManager, then the easiest way is to specify a reference to
the bean defining this JTA PlatformTransactionManager instance as the value of the
jtaTransactionManager property for LocalSessionFactoryBean. Spring then makes the
object available to Hibernate.

	
More likely you do not already have the JTA PlatformTransactionManager instance,
because Spring’s JtaTransactionManager can find it itself. Thus you need to
configure Hibernate to look up JTA PlatformTransactionManager directly. You do this
by configuring an application server- specific TransactionManagerLookup class in the
Hibernate configuration, as described in the Hibernate manual.

The remainder of this section describes the sequence of events that occur with and
without Hibernate’s awareness of the JTA PlatformTransactionManager.

When Hibernate is not configured with any awareness of the JTA
PlatformTransactionManager, the following events occur when a JTA transaction commits:

	
The JTA transaction commits.

	
Spring’s JtaTransactionManager is synchronized to the JTA transaction, so it is
called back through an afterCompletion callback by the JTA transaction manager.

	
Among other activities, this synchronization can trigger a callback by Spring to
Hibernate, through Hibernate’s afterTransactionCompletion callback (used to clear
the Hibernate cache), followed by an explicit close() call on the Hibernate Session,
which causes Hibernate to attempt to close() the JDBC Connection.

	
In some environments, this Connection.close() call then triggers the warning or
error, as the application server no longer considers the Connection usable at all,
because the transaction has already been committed.

When Hibernate is configured with awareness of the JTA PlatformTransactionManager, the
following events occur when a JTA transaction commits:

	
the JTA transaction is ready to commit.

	
Spring’s JtaTransactionManager is synchronized to the JTA transaction, so the
transaction is called back through a beforeCompletion callback by the JTA
transaction manager.

	
Spring is aware that Hibernate itself is synchronized to the JTA transaction, and
behaves differently than in the previous scenario. Assuming the Hibernate Session
needs to be closed at all, Spring will close it now.

	
The JTA transaction commits.

	
Hibernate is synchronized to the JTA transaction, so the transaction is called back
through an afterCompletion callback by the JTA transaction manager, and can
properly clear its cache.

JDO

Spring supports the standard JDO 2.0 and 2.1 APIs as data access strategy, following the
same style as the Hibernate support. The corresponding integration classes reside in the
org.springframework.orm.jdo package.

PersistenceManagerFactory setup

Spring provides a LocalPersistenceManagerFactoryBean class that allows you to define a
local JDO PersistenceManagerFactory within a Spring application context:

<beans>

 <bean id="myPmf" class="org.springframework.orm.jdo.LocalPersistenceManagerFactoryBean">
 <property name="configLocation" value="classpath:kodo.properties"/>
 </bean>

</beans>

Alternatively, you can set up a PersistenceManagerFactory through direct instantiation
of a PersistenceManagerFactory implementation class. A JDO PersistenceManagerFactory
implementation class follows the JavaBeans pattern, just like a JDBC DataSource
implementation class, which is a natural fit for a configuration that uses Spring. This
setup style usually supports a Spring-defined JDBC DataSource, passed into the
connectionFactory property. For example, for the open source JDO implementation
DataNucleus (formerly JPOX) (http://www.datanucleus.org/),
this is the XML configuration of the PersistenceManagerFactory implementation:

<beans>

 <bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close">
 <property name="driverClassName" value="${jdbc.driverClassName}"/>
 <property name="url" value="${jdbc.url}"/>
 <property name="username" value="${jdbc.username}"/>
 <property name="password" value="${jdbc.password}"/>
 </bean>

 <bean id="myPmf" class="org.datanucleus.jdo.JDOPersistenceManagerFactory" destroy-method="close">
 <property name="connectionFactory" ref="dataSource"/>
 <property name="nontransactionalRead" value="true"/>
 </bean>

</beans>

You can also set up JDO PersistenceManagerFactory in the JNDI environment of a Java EE
application server, usually through the JCA connector provided by the particular JDO
implementation. Spring’s standard JndiObjectFactoryBean or <jee:jndi-lookup> can be
used to retrieve and expose such a PersistenceManagerFactory. However, outside an EJB
context, no real benefit exists in holding the PersistenceManagerFactory in JNDI: only
choose such a setup for a good reason. See the section called “Comparing container-managed and locally defined resources” for a discussion;
the arguments there apply to JDO as well.

Implementing DAOs based on the plain JDO API

DAOs can also be written directly against plain JDO API, without any Spring
dependencies, by using an injected PersistenceManagerFactory. The following is an
example of a corresponding DAO implementation:

public class ProductDaoImpl implements ProductDao {

 private PersistenceManagerFactory persistenceManagerFactory;

 public void setPersistenceManagerFactory(PersistenceManagerFactory pmf) {
 this.persistenceManagerFactory = pmf;
 }

 public Collection loadProductsByCategory(String category) {
 PersistenceManager pm = this.persistenceManagerFactory.getPersistenceManager();
 try {
 Query query = pm.newQuery(Product.class, "category = pCategory");
 query.declareParameters("String pCategory");
 return query.execute(category);
 }
 finally {
 pm.close();
 }
 }
}

<beans>

 <bean id="myProductDao" class="product.ProductDaoImpl">
 <property name="persistenceManagerFactory" ref="myPmf"/>
 </bean>

</beans>

The main problem with such DAOs is that they always get a new PersistenceManager from
the factory. To access a Spring-managed transactional PersistenceManager, define a
TransactionAwarePersistenceManagerFactoryProxy (as included in Spring) in front of
your target PersistenceManagerFactory, then passing a reference to that proxy into
your DAOs as in the following example:

<beans>

 <bean id="myPmfProxy"
 class="org.springframework.orm.jdo.TransactionAwarePersistenceManagerFactoryProxy">
 <property name="targetPersistenceManagerFactory" ref="myPmf"/>
 </bean>

 <bean id="myProductDao" class="product.ProductDaoImpl">
 <property name="persistenceManagerFactory" ref="myPmfProxy"/>
 </bean>

</beans>

Your data access code will receive a transactional PersistenceManager (if any) from
the PersistenceManagerFactory.getPersistenceManager() method that it calls. The latter
method call goes through the proxy, which first checks for a current transactional
PersistenceManager before getting a new one from the factory. Any close() calls on
the PersistenceManager are ignored in case of a transactional PersistenceManager.

If your data access code always runs within an active transaction (or at least within
active transaction synchronization), it is safe to omit the PersistenceManager.close()
call and thus the entire finally block, which you might do to keep your DAO
implementations concise:

public class ProductDaoImpl implements ProductDao {

 private PersistenceManagerFactory persistenceManagerFactory;

 public void setPersistenceManagerFactory(PersistenceManagerFactory pmf) {
 this.persistenceManagerFactory = pmf;
 }

 public Collection loadProductsByCategory(String category) {
 PersistenceManager pm = this.persistenceManagerFactory.getPersistenceManager();
 Query query = pm.newQuery(Product.class, "category = pCategory");
 query.declareParameters("String pCategory");
 return query.execute(category);
 }
}

With such DAOs that rely on active transactions, it is recommended that you enforce
active transactions through turning off
TransactionAwarePersistenceManagerFactoryProxy’s `allowCreate flag:

<beans>

 <bean id="myPmfProxy"
 class="org.springframework.orm.jdo.TransactionAwarePersistenceManagerFactoryProxy">
 <property name="targetPersistenceManagerFactory" ref="myPmf"/>
 <property name="allowCreate" value="false"/>
 </bean>

 <bean id="myProductDao" class="product.ProductDaoImpl">
 <property name="persistenceManagerFactory" ref="myPmfProxy"/>
 </bean>

</beans>

The main advantage of this DAO style is that it depends on JDO API only; no import of
any Spring class is required. This is of course appealing from a non-invasiveness
perspective, and might feel more natural to JDO developers.

However, the DAO throws plain JDOException (which is unchecked, so does not have to be
declared or caught), which means that callers can only treat exceptions as fatal, unless
you want to depend on JDO’s own exception structure. Catching specific causes such as an
optimistic locking failure is not possible without tying the caller to the
implementation strategy. This trade off might be acceptable to applications that are
strongly JDO-based and/or do not need any special exception treatment.

In summary, you can DAOs based on the plain JDO API, and they can still participate in
Spring-managed transactions. This strategy might appeal to you if you are already
familiar with JDO. However, such DAOs throw plain JDOException, and you would have to
convert explicitly to Spring’s DataAccessException (if desired).

Transaction management

	[image: [Note]]	Note
	
You are strongly encouraged to read the section called “Declarative transaction management” if you have not done
so, to get a more detailed coverage of Spring’s declarative transaction support.

To execute service operations within transactions, you can use Spring’s common
declarative transaction facilities. For example:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xmlns:tx="http://www.springframework.org/schema/tx"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/tx
 http://www.springframework.org/schema/tx/spring-tx.xsd
 http://www.springframework.org/schema/aop
 http://www.springframework.org/schema/aop/spring-aop.xsd">

 <bean id="myTxManager" class="org.springframework.orm.jdo.JdoTransactionManager">
 <property name="persistenceManagerFactory" ref="myPmf"/>
 </bean>

 <bean id="myProductService" class="product.ProductServiceImpl">
 <property name="productDao" ref="myProductDao"/>
 </bean>

 <tx:advice id="txAdvice" transaction-manager="txManager">
 <tx:attributes>
 <tx:method name="increasePrice*" propagation="REQUIRED"/>
 <tx:method name="someOtherBusinessMethod" propagation="REQUIRES_NEW"/>
 <tx:method name="*" propagation="SUPPORTS" read-only="true"/>
 </tx:attributes>
 </tx:advice>

 <aop:config>
 <aop:pointcut id="productServiceMethods"
 expression="execution(* product.ProductService.*(..))"/>
 <aop:advisor advice-ref="txAdvice" pointcut-ref="productServiceMethods"/>
 </aop:config>

</beans>

JDO requires an active transaction to modify a persistent object. The non-transactional
flush concept does not exist in JDO, in contrast to Hibernate. For this reason, you need
to set up the chosen JDO implementation for a specific environment. Specifically, you
need to set it up explicitly for JTA synchronization, to detect an active JTA
transaction itself. This is not necessary for local transactions as performed by
Spring’s JdoTransactionManager, but it is necessary to participate in JTA
transactions, whether driven by Spring’s JtaTransactionManager or by EJB CMT and plain
JTA.

JdoTransactionManager is capable of exposing a JDO transaction to JDBC access code
that accesses the same JDBC DataSource, provided that the registered JdoDialect
supports retrieval of the underlying JDBC Connection. This is the case for JDBC-based
JDO 2.0 implementations by default.

JdoDialect

As an advanced feature, both LocalPersistenceManagerFactoryBean and JdoTransactionManager
support a custom JdoDialect that can be passed into the jdoDialect bean property.
Using a JdoDialect implementation, you can enable advanced features supported by Spring,
usually in a vendor-specific manner:

	
Applying specific transaction semantics such as custom isolation level or transaction
timeout

	
Retrieving the transactional JDBC Connection for exposure to JDBC-based DAOs

	
Applying query timeouts, which are automatically calculated from Spring-managed
transaction timeouts

	
Eagerly flushing a PersistenceManager, to make transactional changes visible to
JDBC-based data access code

	
Advanced translation of JDOExceptions to Spring DataAccessExceptions

See the JdoDialect javadocs for more details on its operations and how to use them
within Spring’s JDO support.

JPA

The Spring JPA, available under the org.springframework.orm.jpa package, offers
comprehensive support for the
Java Persistence
API in a similar manner to the integration with Hibernate or JDO, while being aware of
the underlying implementation in order to provide additional features.

Three options for JPA setup in a Spring environment

The Spring JPA support offers three ways of setting up the JPA EntityManagerFactory
that will be used by the application to obtain an entity manager.

LocalEntityManagerFactoryBean

	[image: [Note]]	Note
	
Only use this option in simple deployment environments such as stand-alone applications
and integration tests.

The LocalEntityManagerFactoryBean creates an EntityManagerFactory suitable for
simple deployment environments where the application uses only JPA for data access. The
factory bean uses the JPA PersistenceProvider autodetection mechanism (according to
JPA’s Java SE bootstrapping) and, in most cases, requires you to specify only the
persistence unit name:

<beans>
 <bean id="myEmf" class="org.springframework.orm.jpa.LocalEntityManagerFactoryBean">
 <property name="persistenceUnitName" value="myPersistenceUnit"/>
 </bean>
</beans>

This form of JPA deployment is the simplest and the most limited. You cannot refer to an
existing JDBC DataSource bean definition and no support for global transactions
exists. Furthermore, weaving (byte-code transformation) of persistent classes is
provider-specific, often requiring a specific JVM agent to specified on startup. This
option is sufficient only for stand-alone applications and test environments, for which
the JPA specification is designed.

Obtaining an EntityManagerFactory from JNDI

	[image: [Note]]	Note
	
Use this option when deploying to a Java EE server. Check your server’s documentation
on how to deploy a custom JPA provider into your server, allowing for a different
provider than the server’s default.

Obtaining an EntityManagerFactory from JNDI (for example in a Java EE environment),
is simply a matter of changing the XML configuration:

<beans>
 <jee:jndi-lookup id="myEmf" jndi-name="persistence/myPersistenceUnit"/>
</beans>

This action assumes standard Java EE bootstrapping: the Java EE server autodetects
persistence units (in effect, META-INF/persistence.xml files in application jars) and
persistence-unit-ref entries in the Java EE deployment descriptor (for example,
web.xml) and defines environment naming context locations for those persistence units.

In such a scenario, the entire persistence unit deployment, including the weaving
(byte-code transformation) of persistent classes, is up to the Java EE server. The JDBC
DataSource is defined through a JNDI location in the META-INF/persistence.xml file;
EntityManager transactions are integrated with the server’s JTA subsystem. Spring merely
uses the obtained EntityManagerFactory, passing it on to application objects through
dependency injection, and managing transactions for the persistence unit, typically
through JtaTransactionManager.

If multiple persistence units are used in the same application, the bean names of such
JNDI-retrieved persistence units should match the persistence unit names that the
application uses to refer to them, for example, in @PersistenceUnit and
@PersistenceContext annotations.

LocalContainerEntityManagerFactoryBean

	[image: [Note]]	Note
	
Use this option for full JPA capabilities in a Spring-based application environment.
This includes web containers such as Tomcat as well as stand-alone applications and
integration tests with sophisticated persistence requirements.

The LocalContainerEntityManagerFactoryBean gives full control over
EntityManagerFactory configuration and is appropriate for environments where
fine-grained customization is required. The LocalContainerEntityManagerFactoryBean
creates a PersistenceUnitInfo instance based on the persistence.xml file, the
supplied dataSourceLookup strategy, and the specified loadTimeWeaver. It is thus
possible to work with custom data sources outside of JNDI and to control the weaving
process. The following example shows a typical bean definition for a
LocalContainerEntityManagerFactoryBean:

<beans>
 <bean id="myEmf" class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean">
 <property name="dataSource" ref="someDataSource"/>
 <property name="loadTimeWeaver">
 <bean class="org.springframework.instrument.classloading.InstrumentationLoadTimeWeaver"/>
 </property>
 </bean>
</beans>

The following example shows a typical persistence.xml file:

<persistence xmlns="http://java.sun.com/xml/ns/persistence" version="1.0">
 <persistence-unit name="myUnit" transaction-type="RESOURCE_LOCAL">
 <mapping-file>META-INF/orm.xml</mapping-file>
 <exclude-unlisted-classes/>
 </persistence-unit>
</persistence>

	[image: [Note]]	Note
	
The <exclude-unlisted-classes/> shortcut indicates that no scanning for
annotated entity classes is supposed to occur. An explicit 'true' value specified -
<exclude-unlisted-classes>true</exclude-unlisted-classes/> - also means no scan.
<exclude-unlisted-classes>false</exclude-unlisted-classes/> does trigger a scan;
however, it is recommended to simply omit the exclude-unlisted-classes element
if you want entity class scanning to occur.

Using the LocalContainerEntityManagerFactoryBean is the most powerful JPA setup
option, allowing for flexible local configuration within the application. It supports
links to an existing JDBC DataSource, supports both local and global transactions, and
so on. However, it also imposes requirements on the runtime environment, such as the
availability of a weaving-capable class loader if the persistence provider demands
byte-code transformation.

This option may conflict with the built-in JPA capabilities of a Java EE server. In a
full Java EE environment, consider obtaining your EntityManagerFactory from JNDI.
Alternatively, specify a custom persistenceXmlLocation on your
LocalContainerEntityManagerFactoryBean definition, for example,
META-INF/my-persistence.xml, and only include a descriptor with that name in your
application jar files. Because the Java EE server only looks for default
META-INF/persistence.xml files, it ignores such custom persistence units and hence
avoid conflicts with a Spring-driven JPA setup upfront. (This applies to Resin 3.1, for
example.)

When is load-time weaving required?

Not all JPA providers require a JVM agent. Hibernate is an example of one that does not.
If your provider does not require an agent or you have other alternatives, such as
applying enhancements at build time through a custom compiler or an ant task, the
load-time weaver should not be used.

The LoadTimeWeaver interface is a Spring-provided class that allows JPA
ClassTransformer instances to be plugged in a specific manner, depending whether the
environment is a web container or application server. Hooking ClassTransformers
through an
agent
typically is not efficient. The agents work against the entire virtual machine and
inspect every class that is loaded, which is usually undesirable in a production
server environment.

Spring provides a number of LoadTimeWeaver implementations for various environments,
allowing ClassTransformer instances to be applied only per class loader and not
per VM.

Refer to the section called “Spring configuration” in the AOP chapter for more insight regarding the
LoadTimeWeaver implementations and their setup, either generic or customized to
various platforms (such as Tomcat, WebLogic, GlassFish, Resin and JBoss).

As described in the aforementioned section, you can configure a context-wide
LoadTimeWeaver using the @EnableLoadTimeWeaving annotation of
context:load-time-weaver XML element. Such a global weaver is picked up by all JPA
LocalContainerEntityManagerFactoryBeans automatically. This is the preferred way of
setting up a load-time weaver, delivering autodetection of the platform (WebLogic,
GlassFish, Tomcat, Resin, JBoss or VM agent) and automatic propagation of the weaver to
all weaver-aware beans:

<context:load-time-weaver/>
<bean id="emf" class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean">
 ...
</bean>

However, if needed, one can manually specify a dedicated weaver through the
loadTimeWeaver property:

<bean id="emf" class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean">
 <property name="loadTimeWeaver">
 <bean class="org.springframework.instrument.classloading.ReflectiveLoadTimeWeaver"/>
 </property>
</bean>

No matter how the LTW is configured, using this technique, JPA applications relying on
instrumentation can run in the target platform (ex: Tomcat) without needing an agent.
This is important especially when the hosting applications rely on different JPA
implementations because the JPA transformers are applied only at class loader level and
thus are isolated from each other.

Dealing with multiple persistence units

For applications that rely on multiple persistence units locations, stored in various
JARS in the classpath, for example, Spring offers the PersistenceUnitManager to act as
a central repository and to avoid the persistence units discovery process, which can be
expensive. The default implementation allows multiple locations to be specified that are
parsed and later retrieved through the persistence unit name. (By default, the classpath
is searched for META-INF/persistence.xml files.)

<bean id="pum" class="org.springframework.orm.jpa.persistenceunit.DefaultPersistenceUnitManager">
 <property name="persistenceXmlLocations">
 <list>
 <value>org/springframework/orm/jpa/domain/persistence-multi.xml</value>
 <value>classpath:/my/package/**/custom-persistence.xml</value>
 <value>classpath*:META-INF/persistence.xml</value>
 </list>
 </property>
 <property name="dataSources">
 <map>
 <entry key="localDataSource" value-ref="local-db"/>
 <entry key="remoteDataSource" value-ref="remote-db"/>
 </map>
 </property>
 <!-- if no datasource is specified, use this one -->
 <property name="defaultDataSource" ref="remoteDataSource"/>
</bean>

<bean id="emf" class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean">
 <property name="persistenceUnitManager" ref="pum"/>
 <property name="persistenceUnitName" value="myCustomUnit"/>
</bean>

The default implementation allows customization of the PersistenceUnitInfo instances,
before they are fed to the JPA provider, declaratively through its properties, which
affect all hosted units, or programmatically, through the
PersistenceUnitPostProcessor, which allows persistence unit selection. If no
PersistenceUnitManager is specified, one is created and used internally by
LocalContainerEntityManagerFactoryBean.

Implementing DAOs based on JPA: EntityManagerFactory and EntityManager

	[image: [Note]]	Note
	
Although EntityManagerFactory instances are thread-safe, EntityManager instances are
not. The injected JPA EntityManager behaves like an EntityManager fetched from an
application server’s JNDI environment, as defined by the JPA specification. It delegates
all calls to the current transactional EntityManager, if any; otherwise, it falls back
to a newly created EntityManager per operation, in effect making its usage thread-safe.

It is possible to write code against the plain JPA without any Spring dependencies, by
using an injected EntityManagerFactory or EntityManager. Spring can understand
@PersistenceUnit and @PersistenceContext annotations both at field and method level
if a PersistenceAnnotationBeanPostProcessor is enabled. A plain JPA DAO implementation
using the @PersistenceUnit annotation might look like this:

public class ProductDaoImpl implements ProductDao {

 private EntityManagerFactory emf;

 @PersistenceUnit
 public void setEntityManagerFactory(EntityManagerFactory emf) {
 this.emf = emf;
 }

 public Collection loadProductsByCategory(String category) {
 EntityManager em = this.emf.createEntityManager();
 try {
 Query query = em.createQuery("from Product as p where p.category = ?1");
 query.setParameter(1, category);
 return query.getResultList();
 }
 finally {
 if (em != null) {
 em.close();
 }
 }
 }
}

The DAO above has no dependency on Spring and still fits nicely into a Spring
application context. Moreover, the DAO takes advantage of annotations to require the
injection of the default EntityManagerFactory:

<beans>

 <!-- bean post-processor for JPA annotations -->
 <bean class="org.springframework.orm.jpa.support.PersistenceAnnotationBeanPostProcessor"/>

 <bean id="myProductDao" class="product.ProductDaoImpl"/>

</beans>

As an alternative to defining a PersistenceAnnotationBeanPostProcessor explicitly,
consider using the Spring context:annotation-config XML element in your application
context configuration. Doing so automatically registers all Spring standard
post-processors for annotation-based configuration, including
CommonAnnotationBeanPostProcessor and so on.

<beans>

 <!-- post-processors for all standard config annotations -->
 <context:annotation-config/>

 <bean id="myProductDao" class="product.ProductDaoImpl"/>

</beans>

The main problem with such a DAO is that it always creates a new EntityManager through
the factory. You can avoid this by requesting a transactional EntityManager (also
called "shared EntityManager" because it is a shared, thread-safe proxy for the actual
transactional EntityManager) to be injected instead of the factory:

public class ProductDaoImpl implements ProductDao {

 @PersistenceContext
 private EntityManager em;

 public Collection loadProductsByCategory(String category) {
 Query query = em.createQuery("from Product as p where p.category = :category");
 query.setParameter("category", category);
 return query.getResultList();
 }
}

The @PersistenceContext annotation has an optional attribute type, which defaults to
PersistenceContextType.TRANSACTION. This default is what you need to receive a shared
EntityManager proxy. The alternative, PersistenceContextType.EXTENDED, is a completely
different affair: This results in a so-called extended EntityManager, which is not
thread-safe and hence must not be used in a concurrently accessed component such as a
Spring-managed singleton bean. Extended EntityManagers are only supposed to be used in
stateful components that, for example, reside in a session, with the lifecycle of the
EntityManager not tied to a current transaction but rather being completely up to the
application.

Method- and field-level Injection

Annotations that indicate dependency injections (such as @PersistenceUnit and
@PersistenceContext) can be applied on field or methods inside a class, hence the
expressions method-level injection and field-level injection. Field-level
annotations are concise and easier to use while method-level allows for further
processing of the injected dependency. In both cases the member visibility (public,
protected, private) does not matter.

What about class-level annotations?

On the Java EE platform, they are used for dependency declaration and not for resource
injection.

The injected EntityManager is Spring-managed (aware of the ongoing transaction). It is
important to note that even though the new DAO implementation uses method level
injection of an EntityManager instead of an EntityManagerFactory, no change is
required in the application context XML due to annotation usage.

The main advantage of this DAO style is that it only depends on Java Persistence API; no
import of any Spring class is required. Moreover, as the JPA annotations are understood,
the injections are applied automatically by the Spring container. This is appealing from
a non-invasiveness perspective, and might feel more natural to JPA developers.

Spring-driven JPA transactions

	[image: [Note]]	Note
	
You are strongly encouraged to read the section called “Declarative transaction management” if you have not done
so, to get a more detailed coverage of Spring’s declarative transaction support.

The recommended strategy for JPA is local transactions via JPA’s native transaction
support. Spring’s JpaTransactionManager provides many capabilities known from local
JDBC transactions, such as transaction-specific isolation levels and resource-level
read-only optimizations, against any regular JDBC connection pool (no XA requirement).

Spring JPA also allows a configured JpaTransactionManager to expose a JPA transaction
to JDBC access code that accesses the same DataSource, provided that the registered
JpaDialect supports retrieval of the underlying JDBC Connection. Out of the box,
Spring provides dialects for the EclipseLink, Hibernate and OpenJPA JPA implementations.
See the next section for details on the JpaDialect mechanism.

JpaDialect and JpaVendorAdapter

As an advanced feature JpaTransactionManager and subclasses of
AbstractEntityManagerFactoryBean support a custom JpaDialect, to be passed into the
jpaDialect bean property. A JpaDialect implementation can enable some advanced
features supported by Spring, usually in a vendor-specific manner:

	
Applying specific transaction semantics such as custom isolation level or transaction
timeout)

	
Retrieving the transactional JDBC Connection for exposure to JDBC-based DAOs)

	
Advanced translation of PersistenceExceptions to Spring DataAccessExceptions

This is particularly valuable for special transaction semantics and for advanced
translation of exception. The default implementation used (DefaultJpaDialect) does
not provide any special capabilities and if the above features are required, you have
to specify the appropriate dialect.

	[image: [Tip]]	Tip
	
As an even broader provider adaptation facility primarily for Spring’s full-featured
LocalContainerEntityManagerFactoryBean setup, JpaVendorAdapter combines the
capabilities of JpaDialect with other provider-specific defaults. Specifying a
HibernateJpaVendorAdapter or EclipseLinkJpaVendorAdapter is the most convenient
way of auto-configuring an EntityManagerFactory setup for Hibernate or EclipseLink,
respectively. Note that those provider adapters are primarily designed for use with
Spring-driven transaction management, i.e. for use with JpaTransactionManager.

See the JpaDialect and JpaVendorAdapter javadocs for more details of its operations
and how they are used within Spring’s JPA support.

Setting up JPA with JTA transaction management

As an alternative to JpaTransactionManager, Spring also allows for multi-resource
transaction coordination via JTA, either in a Java EE environment or with a
standalone transaction coordinator such as Atomikos. Aside from choosing Spring’s
JtaTransactionManager instead of JpaTransactionManager, there are a few further
steps to take:

	
The underlying JDBC connection pools need to be XA-capable and integrated with
your transaction coordinator. This is usually straightforward in a Java EE environment,
simply exposing a different kind of DataSource via JNDI. Check your application server
documentation for details. Analogously, a standalone transaction coordinator usually
comes with special XA-integrated DataSource implementations; again, check its docs.

	
The JPA EntityManagerFactory setup needs to be configured for JTA. This is
provider-specific, typically via special properties to be specified as "jpaProperties"
on LocalContainerEntityManagerFactoryBean. In the case of Hibernate, these properties
are even version-specific; please check your Hibernate documentation for details.

	
Spring’s HibernateJpaVendorAdapter enforces certain Spring-oriented defaults such
as the connection release mode "on-close" which matches Hibernate’s own default in
Hibernate 5.0 but not anymore in 5.1/5.2. For a JTA setup, either do not declare
HibernateJpaVendorAdapter to begin with, or turn off its prepareConnection flag.
Alternatively, set Hibernate 5.2’s "hibernate.connection.handling_mode" property to
"DELAYED_ACQUISITION_AND_RELEASE_AFTER_STATEMENT" to restore Hibernate’s own default.
See the section called “Spurious application server warnings with Hibernate” for a related note about WebLogic.

	
Alternatively, consider obtaining the EntityManagerFactory from your application
server itself, i.e. via a JNDI lookup instead of a locally declared
LocalContainerEntityManagerFactoryBean. A server-provided EntityManagerFactory
might require special definitions in your server configuration, making the deployment
less portable, but will be set up for the server’s JTA environment out of the box.

Chapter 21. Marshalling XML using O/X Mappers

Introduction

In this chapter, we will describe Spring’s Object/XML Mapping support. Object/XML
Mapping, or O/X mapping for short, is the act of converting an XML document to and from
an object. This conversion process is also known as XML Marshalling, or XML
Serialization. This chapter uses these terms interchangeably.

Within the field of O/X mapping, a marshaller is responsible for serializing an
object (graph) to XML. In similar fashion, an unmarshaller deserializes the XML to
an object graph. This XML can take the form of a DOM document, an input or output
stream, or a SAX handler.

Some of the benefits of using Spring for your O/X mapping needs are:

Ease of configuration

Spring’s bean factory makes it easy to configure marshallers, without needing to
construct JAXB context, JiBX binding factories, etc. The marshallers can be configured
as any other bean in your application context. Additionally, XML namespace-based
configuration is available for a number of marshallers, making the configuration even
simpler.

Consistent interfaces

Spring’s O/X mapping operates through two global interfaces: the Marshaller and
Unmarshaller interface. These abstractions allow you to switch O/X mapping frameworks
with relative ease, with little or no changes required on the classes that do the
marshalling. This approach has the additional benefit of making it possible to do XML
marshalling with a mix-and-match approach (e.g. some marshalling performed using JAXB,
other using XMLBeans) in a non-intrusive fashion, leveraging the strength of each
technology.

Consistent exception hierarchy

Spring provides a conversion from exceptions from the underlying O/X mapping tool to its
own exception hierarchy with the XmlMappingException as the root exception. As can be
expected, these runtime exceptions wrap the original exception so no information is lost.

Marshaller and Unmarshaller

As stated in the introduction, a marshaller serializes an object to XML, and an
unmarshaller deserializes XML stream to an object. In this section, we will describe
the two Spring interfaces used for this purpose.

Marshaller

Spring abstracts all marshalling operations behind the
org.springframework.oxm.Marshaller interface, the main method of which is shown below.

public interface Marshaller {

 /**
 * Marshal the object graph with the given root into the provided Result.
 */
 void marshal(Object graph, Result result) throws XmlMappingException, IOException;
}

The Marshaller interface has one main method, which marshals the given object to a
given javax.xml.transform.Result. Result is a tagging interface that basically
represents an XML output abstraction: concrete implementations wrap various XML
representations, as indicated in the table below.

	Result implementation	Wraps XML representation
	DOMResult
	org.w3c.dom.Node

	SAXResult
	org.xml.sax.ContentHandler

	StreamResult
	java.io.File, java.io.OutputStream, or java.io.Writer

	[image: [Note]]	Note
	
Although the marshal() method accepts a plain object as its first parameter, most
Marshaller implementations cannot handle arbitrary objects. Instead, an object class
must be mapped in a mapping file, marked with an annotation, registered with the
marshaller, or have a common base class. Refer to the further sections in this chapter
to determine how your O/X technology of choice manages this.

Unmarshaller

Similar to the Marshaller, there is the org.springframework.oxm.Unmarshaller
interface.

public interface Unmarshaller {

 /**
 * Unmarshal the given provided Source into an object graph.
 */
 Object unmarshal(Source source) throws XmlMappingException, IOException;
}

This interface also has one method, which reads from the given
javax.xml.transform.Source (an XML input abstraction), and returns the object read. As
with Result, Source is a tagging interface that has three concrete implementations. Each
wraps a different XML representation, as indicated in the table below.

	Source implementation	Wraps XML representation
	DOMSource
	org.w3c.dom.Node

	SAXSource
	org.xml.sax.InputSource, and org.xml.sax.XMLReader

	StreamSource
	java.io.File, java.io.InputStream, or java.io.Reader

Even though there are two separate marshalling interfaces (Marshaller and
Unmarshaller), all implementations found in Spring-WS implement both in one class.
This means that you can wire up one marshaller class and refer to it both as a
marshaller and an unmarshaller in your applicationContext.xml.

XmlMappingException

Spring converts exceptions from the underlying O/X mapping tool to its own exception
hierarchy with the XmlMappingException as the root exception. As can be expected,
these runtime exceptions wrap the original exception so no information will be lost.

Additionally, the MarshallingFailureException and UnmarshallingFailureException
provide a distinction between marshalling and unmarshalling operations, even though the
underlying O/X mapping tool does not do so.

The O/X Mapping exception hierarchy is shown in the following figure:

[image: oxm exceptions]

O/X Mapping exception hierarchy

Using Marshaller and Unmarshaller

Spring’s OXM can be used for a wide variety of situations. In the following example, we
will use it to marshal the settings of a Spring-managed application as an XML file. We
will use a simple JavaBean to represent the settings:

public class Settings {

 private boolean fooEnabled;

 public boolean isFooEnabled() {
 return fooEnabled;
 }

 public void setFooEnabled(boolean fooEnabled) {
 this.fooEnabled = fooEnabled;
 }
}

The application class uses this bean to store its settings. Besides a main method, the
class has two methods: saveSettings() saves the settings bean to a file named
settings.xml, and loadSettings() loads these settings again. A main() method
constructs a Spring application context, and calls these two methods.

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import javax.xml.transform.stream.StreamResult;
import javax.xml.transform.stream.StreamSource;
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;
import org.springframework.oxm.Marshaller;
import org.springframework.oxm.Unmarshaller;

public class Application {

 private static final String FILE_NAME = "settings.xml";
 private Settings settings = new Settings();
 private Marshaller marshaller;
 private Unmarshaller unmarshaller;

 public void setMarshaller(Marshaller marshaller) {
 this.marshaller = marshaller;
 }

 public void setUnmarshaller(Unmarshaller unmarshaller) {
 this.unmarshaller = unmarshaller;
 }

 public void saveSettings() throws IOException {
 FileOutputStream os = null;
 try {
 os = new FileOutputStream(FILE_NAME);
 this.marshaller.marshal(settings, new StreamResult(os));
 } finally {
 if (os != null) {
 os.close();
 }
 }
 }

 public void loadSettings() throws IOException {
 FileInputStream is = null;
 try {
 is = new FileInputStream(FILE_NAME);
 this.settings = (Settings) this.unmarshaller.unmarshal(new StreamSource(is));
 } finally {
 if (is != null) {
 is.close();
 }
 }
 }

 public static void main(String[] args) throws IOException {
 ApplicationContext appContext =
 new ClassPathXmlApplicationContext("applicationContext.xml");
 Application application = (Application) appContext.getBean("application");
 application.saveSettings();
 application.loadSettings();
 }
}

The Application requires both a marshaller and unmarshaller property to be set. We
can do so using the following applicationContext.xml:

<beans>
 <bean id="application" class="Application">
 <property name="marshaller" ref="castorMarshaller" />
 <property name="unmarshaller" ref="castorMarshaller" />
 </bean>
 <bean id="castorMarshaller" class="org.springframework.oxm.castor.CastorMarshaller"/>
</beans>

This application context uses Castor, but we could have used any of the other marshaller
instances described later in this chapter. Note that Castor does not require any further
configuration by default, so the bean definition is rather simple. Also note that the
CastorMarshaller implements both Marshaller and Unmarshaller, so we can refer to the
castorMarshaller bean in both the marshaller and unmarshaller property of the
application.

This sample application produces the following settings.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<settings foo-enabled="false"/>

XML configuration namespace

Marshallers could be configured more concisely using tags from the OXM namespace. To
make these tags available, the appropriate schema has to be referenced first in the
preamble of the XML configuration file. Note the 'oxm' related text below:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:oxm="http://www.springframework.org/schema/oxm" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd http://www.springframework.org/schema/oxm http://www.springframework.org/schema/oxm/spring-oxm.xsd">

Currently, the following tags are available:

	
jaxb2-marshaller

	
xmlbeans-marshaller

	
castor-marshaller

	
jibx-marshaller

Each tag will be explained in its respective marshaller’s section. As an example though,
here is how the configuration of a JAXB2 marshaller might look like:

<oxm:jaxb2-marshaller id="marshaller" contextPath="org.springframework.ws.samples.airline.schema"/>

JAXB

The JAXB binding compiler translates a W3C XML Schema into one or more Java classes, a
jaxb.properties file, and possibly some resource files. JAXB also offers a way to
generate a schema from annotated Java classes.

Spring supports the JAXB 2.0 API as XML marshalling strategies, following the
Marshaller and Unmarshaller interfaces described in the section called “Marshaller and Unmarshaller”.
The corresponding integration classes reside in the org.springframework.oxm.jaxb
package.

Jaxb2Marshaller

The Jaxb2Marshaller class implements both the Spring Marshaller and Unmarshaller
interface. It requires a context path to operate, which you can set using the
contextPath property. The context path is a list of colon (:) separated Java package
names that contain schema derived classes. It also offers a classesToBeBound property,
which allows you to set an array of classes to be supported by the marshaller. Schema
validation is performed by specifying one or more schema resource to the bean, like so:

<beans>
 <bean id="jaxb2Marshaller" class="org.springframework.oxm.jaxb.Jaxb2Marshaller">
 <property name="classesToBeBound">
 <list>
 <value>org.springframework.oxm.jaxb.Flight</value>
 <value>org.springframework.oxm.jaxb.Flights</value>
 </list>
 </property>
 <property name="schema" value="classpath:org/springframework/oxm/schema.xsd"/>
 </bean>

 ...

</beans>

XML configuration namespace

The jaxb2-marshaller tag configures a org.springframework.oxm.jaxb.Jaxb2Marshaller.
Here is an example:

<oxm:jaxb2-marshaller id="marshaller" contextPath="org.springframework.ws.samples.airline.schema"/>

Alternatively, the list of classes to bind can be provided to the marshaller via the
class-to-be-bound child tag:

<oxm:jaxb2-marshaller id="marshaller">
 <oxm:class-to-be-bound name="org.springframework.ws.samples.airline.schema.Airport"/>
 <oxm:class-to-be-bound name="org.springframework.ws.samples.airline.schema.Flight"/>
 ...
</oxm:jaxb2-marshaller>

Available attributes are:

	Attribute	Description	Required
	id
	the id of the marshaller
	no

	contextPath
	the JAXB Context path
	no

Castor

Castor XML mapping is an open source XML binding framework. It allows you to transform
the data contained in a java object model into/from an XML document. By default, it does
not require any further configuration, though a mapping file can be used to have more
control over the behavior of Castor.

For more information on Castor, refer to the
Castor web site. The Spring
integration classes reside in the org.springframework.oxm.castor package.

CastorMarshaller

As with JAXB, the CastorMarshaller implements both the Marshaller and Unmarshaller
interface. It can be wired up as follows:

<beans>
 <bean id="castorMarshaller" class="org.springframework.oxm.castor.CastorMarshaller" />
 ...
</beans>

Mapping

Although it is possible to rely on Castor’s default marshalling behavior, it might be
necessary to have more control over it. This can be accomplished using a Castor mapping
file. For more information, refer to Castor
XML Mapping.

The mapping can be set using the mappingLocation resource property, indicated below
with a classpath resource.

<beans>
 <bean id="castorMarshaller" class="org.springframework.oxm.castor.CastorMarshaller" >
 <property name="mappingLocation" value="classpath:mapping.xml" />
 </bean>
</beans>

XML configuration namespace

The castor-marshaller tag configures a
org.springframework.oxm.castor.CastorMarshaller. Here is an example:

<oxm:castor-marshaller id="marshaller" mapping-location="classpath:org/springframework/oxm/castor/mapping.xml"/>

The marshaller instance can be configured in two ways, by specifying either the location
of a mapping file (through the mapping-location property), or by identifying Java
POJOs (through the target-class or target-package properties) for which there exist
corresponding XML descriptor classes. The latter way is usually used in conjunction with
XML code generation from XML schemas.

Available attributes are:

	Attribute	Description	Required
	id
	the id of the marshaller
	no

	encoding
	the encoding to use for unmarshalling from XML
	no

	target-class
	a Java class name for a POJO for which an XML class descriptor is available (as
 generated through code generation)
	no

	target-package
	a Java package name that identifies a package that contains POJOs and their
 corresponding Castor XML descriptor classes (as generated through code generation from
 XML schemas)
	no

	mapping-location
	location of a Castor XML mapping file
	no

XMLBeans

XMLBeans is an XML binding tool that has full XML Schema support, and offers full XML
Infoset fidelity. It takes a different approach to that of most other O/X mapping
frameworks, in that all classes that are generated from an XML Schema are all derived
from XmlObject, and contain XML binding information in them.

For more information on XMLBeans, refer to the XMLBeans
web site . The Spring-WS integration classes reside in the
org.springframework.oxm.xmlbeans package.

XmlBeansMarshaller

The XmlBeansMarshaller implements both the Marshaller and Unmarshaller interfaces.
It can be configured as follows:

<beans>

 <bean id="xmlBeansMarshaller" class="org.springframework.oxm.xmlbeans.XmlBeansMarshaller" />
 ...

</beans>

	[image: [Note]]	Note
	
Note that the XmlBeansMarshaller can only marshal objects of type XmlObject, and not
every java.lang.Object.

XML configuration namespace

The xmlbeans-marshaller tag configures a
org.springframework.oxm.xmlbeans.XmlBeansMarshaller. Here is an example:

<oxm:xmlbeans-marshaller id="marshaller"/>

Available attributes are:

	Attribute	Description	Required
	id
	the id of the marshaller
	no

	options
	the bean name of the XmlOptions that is to be used for this marshaller. Typically a
 XmlOptionsFactoryBean definition
	no

JiBX

The JiBX framework offers a solution similar to that which JDO provides for ORM: a
binding definition defines the rules for how your Java objects are converted to or from
XML. After preparing the binding and compiling the classes, a JiBX binding compiler
enhances the class files, and adds code to handle converting instances of the classes
from or to XML.

For more information on JiBX, refer to the JiBX web
site. The Spring integration classes reside in the org.springframework.oxm.jibx
package.

JibxMarshaller

The JibxMarshaller class implements both the Marshaller and Unmarshaller
interface. To operate, it requires the name of the class to marshal in, which you can
set using the targetClass property. Optionally, you can set the binding name using the
bindingName property. In the next sample, we bind the Flights class:

<beans>
 <bean id="jibxFlightsMarshaller" class="org.springframework.oxm.jibx.JibxMarshaller">
 <property name="targetClass">org.springframework.oxm.jibx.Flights</property>
 </bean>
 ...
</beans>

A JibxMarshaller is configured for a single class. If you want to marshal multiple
classes, you have to configure multiple JibxMarshallers with different targetClass
property values.

XML configuration namespace

The jibx-marshaller tag configures a org.springframework.oxm.jibx.JibxMarshaller.
Here is an example:

<oxm:jibx-marshaller id="marshaller" target-class="org.springframework.ws.samples.airline.schema.Flight"/>

Available attributes are:

	Attribute	Description	Required
	id
	the id of the marshaller
	no

	target-class
	the target class for this marshaller
	yes

	bindingName
	the binding name used by this marshaller
	no

XStream

XStream is a simple library to serialize objects to XML and back again. It does not
require any mapping, and generates clean XML.

For more information on XStream, refer to the XStream
web site. The Spring integration classes reside in the
org.springframework.oxm.xstream package.

XStreamMarshaller

The XStreamMarshaller does not require any configuration, and can be configured in an
application context directly. To further customize the XML, you can set analias map,
which consists of string aliases mapped to classes:

<beans>
 <bean id="xstreamMarshaller" class="org.springframework.oxm.xstream.XStreamMarshaller">
 <property name="aliases">
 <props>
 <prop key="Flight">org.springframework.oxm.xstream.Flight</prop>
 </props>
 </property>
 </bean>
 ...
</beans>

	[image: [Warning]]	Warning
	
By default, XStream allows for arbitrary classes to be unmarshalled, which can lead to
unsafe Java serialization effects. As such, it is not recommended to use the
XStreamMarshaller to unmarshal XML from external sources (i.e. the Web), as this can
result in security vulnerabilities.

If you choose to use the XStreamMarshaller to unmarshal XML from an external source,
set the supportedClasses property on the XStreamMarshaller, like as follows:

<bean id="xstreamMarshaller" class="org.springframework.oxm.xstream.XStreamMarshaller">
 <property name="supportedClasses" value="org.springframework.oxm.xstream.Flight"/>
 ...
</bean>

This will make sure that only the registered classes are eligible for unmarshalling.

Additionally, you can register
custom
converters to make sure that only your supported classes can be unmarshalled. You might
want to add a CatchAllConverter as the last converter in the list, in addition to
converters that explicitly support the domain classes that should be supported. As a
result, default XStream converters with lower priorities and possible security
vulnerabilities do not get invoked.

	[image: [Note]]	Note
	
Note that XStream is an XML serialization library, not a data binding library.
Therefore, it has limited namespace support. As such, it is rather unsuitable for usage
within Web services.

Part VI. The Web

This part of the reference documentation covers Spring Framework’s support for the
presentation tier (and specifically web-based presentation tiers) including support
for WebSocket-style messaging in web applications.

Spring Framework’s own web framework, Spring Web MVC, is covered in the
first couple of chapters. Subsequent chapters are concerned with Spring Framework’s
integration with other web technologies, such as JSF.

Following that is coverage of Spring Framework’s MVC portlet framework.

The section then concludes with comprehensive coverage of the Spring Framework
Chapter 26, WebSocket Support (including the section called “STOMP”).

	
Chapter 22, Web MVC framework

	
Chapter 23, View Technologies

	
Chapter 24, Integrating with other web frameworks

	
Chapter 25, Portlet MVC Framework

	
Chapter 26, WebSocket Support

Chapter 22. Web MVC framework

Introduction to Spring Web MVC framework

The Spring Web model-view-controller (MVC) framework is designed around a
DispatcherServlet that dispatches requests to handlers, with configurable handler
mappings, view resolution, locale, time zone and theme resolution as well as support for
uploading files. The default handler is based on the @Controller and @RequestMapping
annotations, offering a wide range of flexible handling methods. With the introduction
of Spring 3.0, the @Controller mechanism also allows you to create RESTful Web sites
and applications, through the @PathVariable annotation and other features.

"Open for extension…​"
A key design principle in Spring Web MVC and in Spring in general is the "Open for
extension, closed for modification" principle.

Some methods in the core classes of Spring Web MVC are marked final. As a developer
you cannot override these methods to supply your own behavior. This has not been done
arbitrarily, but specifically with this principle in mind.

For an explanation of this principle, refer to Expert Spring Web MVC and Web Flow by
Seth Ladd and others; specifically see the section "A Look At Design," on page 117 of
the first edition. Alternatively, see

	
Bob Martin, The Open-Closed
Principle (PDF)

You cannot add advice to final methods when you use Spring MVC. For example, you cannot
add advice to the AbstractController.setSynchronizeOnSession() method. Refer to
the section called “Understanding AOP proxies” for more information on AOP proxies and why you cannot
add advice to final methods.

In Spring Web MVC you can use any object as a command or form-backing object; you do not
need to implement a framework-specific interface or base class. Spring’s data binding is
highly flexible: for example, it treats type mismatches as validation errors that can be
evaluated by the application, not as system errors. Thus you do not need to duplicate your
business objects' properties as simple, untyped strings in your form objects simply to
handle invalid submissions, or to convert the Strings properly. Instead, it is often
preferable to bind directly to your business objects.

Spring’s view resolution is extremely flexible. A Controller is typically responsible
for preparing a model Map with data and selecting a view name but it can also write
directly to the response stream and complete the request. View name resolution is highly
configurable through file extension or Accept header content type negotiation, through
bean names, a properties file, or even a custom ViewResolver implementation. The model
(the M in MVC) is a Map interface, which allows for the complete abstraction of the
view technology. You can integrate directly with template based rendering technologies
such as JSP, Velocity and Freemarker, or directly generate XML, JSON, Atom, and many
other types of content. The model Map is simply transformed into an appropriate
format, such as JSP request attributes, a Velocity template model.

Features of Spring Web MVC

Spring Web Flow

Spring Web Flow (SWF) aims to be the best solution for the management of web application
page flow.

SWF integrates with existing frameworks like Spring MVC and JSF, in both Servlet and
Portlet environments. If you have a business process (or processes) that would benefit
from a conversational model as opposed to a purely request model, then SWF may be the
solution.

SWF allows you to capture logical page flows as self-contained modules that are reusable
in different situations, and as such is ideal for building web application modules that
guide the user through controlled navigations that drive business processes.

For more information about SWF, consult the
Spring Web Flow website.

Spring’s web module includes many unique web support features:

	
Clear separation of roles. Each role — controller, validator, command object,
form object, model object, DispatcherServlet, handler mapping, view resolver, and so
on — can be fulfilled by a specialized object.

	
Powerful and straightforward configuration of both framework and application classes
as JavaBeans. This configuration capability includes easy referencing across
contexts, such as from web controllers to business objects and validators.

	
Adaptability, non-intrusiveness, and flexibility. Define any controller method
signature you need, possibly using one of the parameter annotations (such as
@RequestParam, @RequestHeader, @PathVariable, and more) for a given scenario.

	
Reusable business code, no need for duplication. Use existing business objects
as command or form objects instead of mirroring them to extend a particular framework
base class.

	
Customizable binding and validation. Type mismatches as application-level
validation errors that keep the offending value, localized date and number binding,
and so on instead of String-only form objects with manual parsing and conversion to
business objects.

	
Customizable handler mapping and view resolution. Handler mapping and view
resolution strategies range from simple URL-based configuration, to sophisticated,
purpose-built resolution strategies. Spring is more flexible than web MVC frameworks
that mandate a particular technique.

	
Flexible model transfer. Model transfer with a name/value Map supports easy
integration with any view technology.

	
Customizable locale, time zone and theme resolution, support for JSPs with or without
Spring tag library, support for JSTL, support for Velocity without the need for extra
bridges, and so on.

	
A simple yet powerful JSP tag library known as the Spring tag library that provides
support for features such as data binding and themes. The custom tags allow for
maximum flexibility in terms of markup code. For information on the tag library
descriptor, see the appendix entitled Chapter 43, spring JSP Tag Library

	
A JSP form tag library, introduced in Spring 2.0, that makes writing forms in JSP
pages much easier. For information on the tag library descriptor, see the appendix
entitled Chapter 44, spring-form JSP Tag Library

	
Beans whose lifecycle is scoped to the current HTTP request or HTTP Session.
This is not a specific feature of Spring MVC itself, but rather of the
WebApplicationContext container(s) that Spring MVC uses. These bean scopes are
described in the section called “Request, session, global session, application, and WebSocket scopes”

Pluggability of other MVC implementations

Non-Spring MVC implementations are preferable for some projects. Many teams expect to
leverage their existing investment in skills and tools, for example with JSF.

If you do not want to use Spring’s Web MVC, but intend to leverage other solutions that
Spring offers, you can integrate the web MVC framework of your choice with Spring
easily. Simply start up a Spring root application context through its
ContextLoaderListener, and access it through its ServletContext attribute (or
Spring’s respective helper method) from within any action object. No "plug-ins"
are involved, so no dedicated integration is necessary. From the web layer’s point of
view, you simply use Spring as a library, with the root application context instance as
the entry point.

Your registered beans and Spring’s services can be at your fingertips even without
Spring’s Web MVC. Spring does not compete with other web frameworks in this scenario.
It simply addresses the many areas that the pure web MVC frameworks do not, from bean
configuration to data access and transaction handling. So you can enrich your
application with a Spring middle tier and/or data access tier, even if you just want
to use, for example, the transaction abstraction with JDBC or Hibernate.

The DispatcherServlet

Spring’s web MVC framework is, like many other web MVC frameworks, request-driven,
designed around a central Servlet that dispatches requests to controllers and offers
other functionality that facilitates the development of web applications. Spring’s
DispatcherServlet however, does more than just that. It is completely integrated with
the Spring IoC container and as such allows you to use every other feature that Spring
has.

The request processing workflow of the Spring Web MVC DispatcherServlet is illustrated
in the following diagram. The pattern-savvy reader will recognize that the
DispatcherServlet is an expression of the "Front Controller" design pattern (this is a
pattern that Spring Web MVC shares with many other leading web frameworks).

Figure 22.1. The request processing workflow in Spring Web MVC (high level)

[image: mvc]

The DispatcherServlet is an actual Servlet (it inherits from the HttpServlet base
class), and as such is declared in your web application. You need to map requests that
you want the DispatcherServlet to handle, by using a URL mapping. Here is a standard
Java EE Servlet configuration in a Servlet 3.0+ environment:

public class MyWebApplicationInitializer implements WebApplicationInitializer {

 @Override
 public void onStartup(ServletContext container) {
 ServletRegistration.Dynamic registration = container.addServlet("example", new DispatcherServlet());
 registration.setLoadOnStartup(1);
 registration.addMapping("/example/*");
 }
}

In the preceding example, all requests starting with /example will be handled by the
DispatcherServlet instance named example.

WebApplicationInitializer is an interface provided by Spring MVC that ensures your
code-based configuration is detected and automatically used to initialize any Servlet 3
container. An abstract base class implementation of this interface named
AbstractAnnotationConfigDispatcherServletInitializer makes it even easier to register the
DispatcherServlet by simply specifying its servlet mapping and listing configuration
classes - it’s even the recommended way to set up your Spring MVC application.
See Code-based Servlet container initialization for more details.

The DispatcherServlet is an actual Servlet (it inherits from the HttpServlet base
class), and as such is declared in the web.xml of your web application. You need to
map requests that you want the DispatcherServlet to handle, by using a URL mapping in
the same web.xml file. This is standard Java EE Servlet configuration; the following
example shows such a DispatcherServlet declaration and mapping:

Below is the web.xml equivalent of the above code based example:

<web-app>
 <servlet>
 <servlet-name>example</servlet-name>
 <servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>

 <servlet-mapping>
 <servlet-name>example</servlet-name>
 <url-pattern>/example/*</url-pattern>
 </servlet-mapping>

</web-app>

As detailed in the section called “Additional capabilities of the ApplicationContext”, ApplicationContext instances in Spring can be
scoped. In the Web MVC framework, each DispatcherServlet has its own
WebApplicationContext, which inherits all the beans already defined in the root
WebApplicationContext. The root WebApplicationContext should contain all the
infrastructure beans that should be shared between your other contexts and Servlet
instances. These inherited beans can be overridden in the servlet-specific
scope, and you can define new scope-specific beans local to a given Servlet instance.

Figure 22.2. Typical context hierarchy in Spring Web MVC

[image: mvc context hierarchy]

Upon initialization of a DispatcherServlet, Spring MVC looks for a file named
[servlet-name]-servlet.xml in the WEB-INF directory of your web application and
creates the beans defined there, overriding the definitions of any beans defined with
the same name in the global scope.

Consider the following DispatcherServlet Servlet configuration (in the web.xml file):

<web-app>
 <servlet>
 <servlet-name>golfing</servlet-name>
 <servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>golfing</servlet-name>
 <url-pattern>/golfing/*</url-pattern>
 </servlet-mapping>
</web-app>

With the above Servlet configuration in place, you will need to have a file called
/WEB-INF/golfing-servlet.xml in your application; this file will contain all of your
Spring Web MVC-specific components (beans). You can change the exact location of this
configuration file through a Servlet initialization parameter (see below for details).

It is also possible to have just one root context for single DispatcherServlet scenarios.

Figure 22.3. Single root context in Spring Web MVC

[image: mvc root context]

This can be configured by setting an empty contextConfigLocation servlet init parameter,
as shown below:

<web-app>
 <context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>/WEB-INF/root-context.xml</param-value>
 </context-param>
 <servlet>
 <servlet-name>dispatcher</servlet-name>
 <servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
 <init-param>
 <param-name>contextConfigLocation</param-name>
 <param-value></param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>dispatcher</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>
 <listener>
 <listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>
 </listener>
</web-app>

The WebApplicationContext is an extension of the plain ApplicationContext that has
some extra features necessary for web applications. It differs from a normal
ApplicationContext in that it is capable of resolving themes (see
the section called “Using themes”), and that it knows which Servlet it is associated with (by having
a link to the ServletContext). The WebApplicationContext is bound in the
ServletContext, and by using static methods on the RequestContextUtils class you can
always look up the WebApplicationContext if you need access to it.

Note that we can achieve the same with java-based configurations:

public class GolfingWebAppInitializer extends AbstractAnnotationConfigDispatcherServletInitializer {

 @Override
 protected Class<?>[] getRootConfigClasses() {
 // GolfingAppConfig defines beans that would be in root-context.xml
 return new Class<?>[] { GolfingAppConfig.class };
 }

 @Override
 protected Class<?>[] getServletConfigClasses() {
 // GolfingWebConfig defines beans that would be in golfing-servlet.xml
 return new Class<?>[] { GolfingWebConfig.class };
 }

 @Override
 protected String[] getServletMappings() {
 return new String[] { "/golfing/*" };
 }
}

Special Bean Types In the WebApplicationContext

The Spring DispatcherServlet uses special beans to process requests and render the
appropriate views. These beans are part of Spring MVC. You can choose which special
beans to use by simply configuring one or more of them in the WebApplicationContext.
However, you don’t need to do that initially since Spring MVC maintains a list of
default beans to use if you don’t configure any. More on that in the next section. First
see the table below listing the special bean types the DispatcherServlet relies on.

Table 22.1. Special bean types in the WebApplicationContext

	Bean type	Explanation
	HandlerMapping
	Maps incoming requests to handlers and a list of pre- and post-processors (handler
 interceptors) based on some criteria the details of which vary by HandlerMapping
 implementation. The most popular implementation supports annotated controllers but
 other implementations exists as well.

	HandlerAdapter
	Helps the DispatcherServlet to invoke a handler mapped to a request regardless of
 the handler is actually invoked. For example, invoking an annotated controller
 requires resolving various annotations. Thus the main purpose of a HandlerAdapter is
 to shield the DispatcherServlet from such details.

	HandlerExceptionResolver
	Maps exceptions to views also allowing for more complex exception handling code.

	ViewResolver
	Resolves logical String-based view names to actual View types.

	LocaleResolver & LocaleContextResolver
	Resolves the locale a client is using and possibly their time zone, in order to be able
 to offer internationalized views

	ThemeResolver
	Resolves themes your web application can use, for example, to offer personalized layouts

	MultipartResolver
	Parses multi-part requests for example to support processing file uploads from HTML
 forms.

	FlashMapManager
	Stores and retrieves the "input" and the "output" FlashMap that can be used to pass
 attributes from one request to another, usually across a redirect.

Default DispatcherServlet Configuration

As mentioned in the previous section for each special bean the DispatcherServlet
maintains a list of implementations to use by default. This information is kept in the
file DispatcherServlet.properties in the package org.springframework.web.servlet.

All special beans have some reasonable defaults of their own. Sooner or later though
you’ll need to customize one or more of the properties these beans provide. For example
it’s quite common to configure an InternalResourceViewResolver settings its prefix
property to the parent location of view files.

Regardless of the details, the important concept to understand here is that once
you	configure a special bean such as an InternalResourceViewResolver in your
WebApplicationContext, you effectively override the list of default implementations
that would have been used otherwise for that special bean type. For example if you
configure an InternalResourceViewResolver, the default list of ViewResolver
implementations is ignored.

In the section called “Configuring Spring MVC” you’ll learn about other options for configuring Spring MVC including
MVC Java config and the MVC XML namespace both of which provide a simple starting point
and assume little knowledge of how Spring MVC works. Regardless of how you choose to
configure your application, the concepts explained in this section are fundamental
should be of help to you.

DispatcherServlet Processing Sequence

After you set up a DispatcherServlet, and a request comes in for that specific
DispatcherServlet, the DispatcherServlet starts processing the request as follows:

	
The WebApplicationContext is searched for and bound in the request as an attribute
that the controller and other elements in the process can use. It is bound by default
under the key DispatcherServlet.WEB_APPLICATION_CONTEXT_ATTRIBUTE.

	
The locale resolver is bound to the request to enable elements in the process to
resolve the locale to use when processing the request (rendering the view, preparing
data, and so on). If you do not need locale resolving, you do not need it.

	
The theme resolver is bound to the request to let elements such as views determine
which theme to use. If you do not use themes, you can ignore it.

	
If you specify a multipart file resolver, the request is inspected for multiparts; if
multiparts are found, the request is wrapped in a MultipartHttpServletRequest for
further processing by other elements in the process. See the section called “Spring’s multipart (file upload) support” for further
information about multipart handling.

	
An appropriate handler is searched for. If a handler is found, the execution chain
associated with the handler (preprocessors, postprocessors, and controllers) is
executed in order to prepare a model or rendering.

	
If a model is returned, the view is rendered. If no model is returned, (may be due to
a preprocessor or postprocessor intercepting the request, perhaps for security
reasons), no view is rendered, because the request could already have been fulfilled.

Handler exception resolvers that are declared in the WebApplicationContext pick up
exceptions that are thrown during processing of the request. Using these exception
resolvers allows you to define custom behaviors to address exceptions.

The Spring DispatcherServlet also supports the return of the
last-modification-date, as specified by the Servlet API. The process of determining
the last modification date for a specific request is straightforward: the
DispatcherServlet looks up an appropriate handler mapping and tests whether the
handler that is found implements the LastModified interface. If so, the value of the
long getLastModified(request) method of the LastModified interface is returned to
the client.

You can customize individual DispatcherServlet instances by adding Servlet
initialization parameters (init-param elements) to the Servlet declaration in the
web.xml file. See the following table for the list of supported parameters.

Table 22.2. DispatcherServlet initialization parameters

	Parameter	Explanation
	contextClass
	Class that implements WebApplicationContext, which instantiates the context used by
 this Servlet. By default, the XmlWebApplicationContext is used.

	contextConfigLocation
	String that is passed to the context instance (specified by contextClass) to
 indicate where context(s) can be found. The string consists potentially of multiple
 strings (using a comma as a delimiter) to support multiple contexts. In case of
 multiple context locations with beans that are defined twice, the latest location
 takes precedence.

	namespace
	Namespace of the WebApplicationContext. Defaults to [servlet-name]-servlet.

Implementing Controllers

Controllers provide access to the application behavior that you typically define through
a service interface. Controllers interpret user input and transform it into a model that
is represented to the user by the view. Spring implements a controller in a very
abstract way, which enables you to create a wide variety of controllers.

Spring 2.5 introduced an annotation-based programming model for MVC controllers that
uses annotations such as @RequestMapping, @RequestParam, @ModelAttribute, and so
on. This annotation support is available for both Servlet MVC and Portlet MVC.
Controllers implemented in this style do not have to extend specific base classes or
implement specific interfaces. Furthermore, they do not usually have direct dependencies
on Servlet or Portlet APIs, although you can easily configure access to Servlet or
Portlet facilities.

	[image: [Tip]]	Tip
	
Available in the spring-projects Org on Github,
a number of web applications leverage the annotation support described in this section
including MvcShowcase, MvcAjax, MvcBasic, PetClinic, PetCare,
and others.

@Controller
public class HelloWorldController {

 @RequestMapping("/helloWorld")
 public String helloWorld(Model model) {
 model.addAttribute("message", "Hello World!");
 return "helloWorld";
 }
}

As you can see, the @Controller and @RequestMapping annotations allow flexible
method names and signatures. In this particular example the method accepts a Model and
returns a view name as a String, but various other method parameters and return values
can be used as explained later in this section. @Controller and @RequestMapping and
a number of other annotations form the basis for the Spring MVC implementation. This
section documents these annotations and how they are most commonly used in a Servlet
environment.

Defining a controller with @Controller

The @Controller annotation indicates that a particular class serves the role of
a controller. Spring does not require you to extend any controller base class or
reference the Servlet API. However, you can still reference Servlet-specific features if
you need to.

The @Controller annotation acts as a stereotype for the annotated class, indicating
its role. The dispatcher scans such annotated classes for mapped methods and detects
@RequestMapping annotations (see the next section).

You can define annotated controller beans explicitly, using a standard Spring bean
definition in the dispatcher’s context. However, the @Controller stereotype also
allows for autodetection, aligned with Spring general support for detecting component
classes in the classpath and auto-registering bean definitions for them.

To enable autodetection of such annotated controllers, you add component scanning to
your configuration. Use the spring-context schema as shown in the following XML
snippet:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context.xsd">

 <context:component-scan base-package="org.springframework.samples.petclinic.web"/>

 <!-- ... -->

</beans>

Mapping Requests With @RequestMapping

You use the @RequestMapping annotation to map URLs such as /appointments onto an
entire class or a particular handler method. Typically the class-level annotation maps a
specific request path (or path pattern) onto a form controller, with additional
method-level annotations narrowing the primary mapping for a specific HTTP method
request method ("GET", "POST", etc.) or an HTTP request parameter condition.

The following example from the Petcare sample shows a controller in a Spring MVC
application that uses this annotation:

@Controller
@RequestMapping("/appointments")
public class AppointmentsController {

 private final AppointmentBook appointmentBook;

 @Autowired
 public AppointmentsController(AppointmentBook appointmentBook) {
 this.appointmentBook = appointmentBook;
 }

 @RequestMapping(method = RequestMethod.GET)
 public Map<String, Appointment> get() {
 return appointmentBook.getAppointmentsForToday();
 }

 @RequestMapping(path = "/{day}", method = RequestMethod.GET)
 public Map<String, Appointment> getForDay(@PathVariable @DateTimeFormat(iso=ISO.DATE) Date day, Model model) {
 return appointmentBook.getAppointmentsForDay(day);
 }

 @RequestMapping(path = "/new", method = RequestMethod.GET)
 public AppointmentForm getNewForm() {
 return new AppointmentForm();
 }

 @RequestMapping(method = RequestMethod.POST)
 public String add(@Valid AppointmentForm appointment, BindingResult result) {
 if (result.hasErrors()) {
 return "appointments/new";
 }
 appointmentBook.addAppointment(appointment);
 return "redirect:/appointments";
 }
}

In the above example, @RequestMapping is used in a number of places. The first usage is
on the type (class) level, which indicates that all handler methods in this controller
are relative to the /appointments path. The get() method has a further
@RequestMapping refinement: it only accepts GET requests, meaning that an HTTP GET for
/appointments invokes this method. The add() has a similar refinement, and the
getNewForm() combines the definition of HTTP method and path into one, so that GET
requests for appointments/new are handled by that method.

The getForDay() method shows another usage of @RequestMapping: URI templates. (See
the section called “URI Template Patterns”).

A @RequestMapping on the class level is not required. Without it, all paths are simply
absolute, and not relative. The following example from the PetClinic sample
application shows a multi-action controller using @RequestMapping:

@Controller
public class ClinicController {

 private final Clinic clinic;

 @Autowired
 public ClinicController(Clinic clinic) {
 this.clinic = clinic;
 }

 @RequestMapping("/")
 public void welcomeHandler() {
 }

 @RequestMapping("/vets")
 public ModelMap vetsHandler() {
 return new ModelMap(this.clinic.getVets());
 }

}

The above example does not specify GET vs. PUT, POST, and so forth, because
@RequestMapping maps all HTTP methods by default. Use @RequestMapping(method=GET) or
@GetMapping to narrow the mapping.

Composed @RequestMapping Variants

Spring Framework 4.3 introduces the following method-level composed variants of the
@RequestMapping annotation that help to simplify mappings for common HTTP methods and
better express the semantics of the annotated handler method. For example, a
@GetMapping can be read as a GET @RequestMapping.

	
@GetMapping

	
@PostMapping

	
@PutMapping

	
@DeleteMapping

	
@PatchMapping

The following example shows a modified version of the AppointmentsController from the
previous section that has been simplified with composed @RequestMapping annotations.

@Controller
@RequestMapping("/appointments")
public class AppointmentsController {

 private final AppointmentBook appointmentBook;

 @Autowired
 public AppointmentsController(AppointmentBook appointmentBook) {
 this.appointmentBook = appointmentBook;
 }

 @GetMapping
 public Map<String, Appointment> get() {
 return appointmentBook.getAppointmentsForToday();
 }

 @GetMapping("/{day}")
 public Map<String, Appointment> getForDay(@PathVariable @DateTimeFormat(iso=ISO.DATE) Date day, Model model) {
 return appointmentBook.getAppointmentsForDay(day);
 }

 @GetMapping("/new")
 public AppointmentForm getNewForm() {
 return new AppointmentForm();
 }

 @PostMapping
 public String add(@Valid AppointmentForm appointment, BindingResult result) {
 if (result.hasErrors()) {
 return "appointments/new";
 }
 appointmentBook.addAppointment(appointment);
 return "redirect:/appointments";
 }
}

@Controller and AOP Proxying

In some cases a controller may need to be decorated with an AOP proxy at runtime.
One example is if you choose to have @Transactional annotations directly on the
controller. When this is the case, for controllers specifically, we recommend
using class-based proxying. This is typically the default choice with controllers.
However if a controller must implement an interface that is not a Spring Context
callback (e.g. InitializingBean, *Aware, etc), you may need to explicitly
configure class-based proxying. For example with <tx:annotation-driven/>,
change to <tx:annotation-driven proxy-target-class="true"/>.

New Support Classes for @RequestMapping methods in Spring MVC 3.1

Spring 3.1 introduced a new set of support classes for @RequestMapping methods called
RequestMappingHandlerMapping and RequestMappingHandlerAdapter respectively. They are
recommended for use and even required to take advantage of new features in Spring MVC
3.1 and going forward. The new support classes are enabled by default by the MVC
namespace and the MVC Java config but must be configured explicitly if using neither.
This section describes a few important differences between the old and the new support
classes.

Prior to Spring 3.1, type and method-level request mappings were examined in two
separate stages — a controller was selected first by the
DefaultAnnotationHandlerMapping and the actual method to invoke was narrowed down
second by the AnnotationMethodHandlerAdapter.

With the new support classes in Spring 3.1, the RequestMappingHandlerMapping is the
only place where a decision is made about which method should process the request. Think
of controller methods as a collection of unique endpoints with mappings for each method
derived from type and method-level @RequestMapping information.

This enables some new possibilities. For once a HandlerInterceptor or a
HandlerExceptionResolver can now expect the Object-based handler to be a
HandlerMethod, which allows them to examine the exact method, its parameters and
associated annotations. The processing for a URL no longer needs to be split across
different controllers.

There are also several things no longer possible:

	
Select a controller first with a SimpleUrlHandlerMapping or
BeanNameUrlHandlerMapping and then narrow the method based on @RequestMapping
annotations.

	
Rely on method names as a fall-back mechanism to disambiguate between two
@RequestMapping methods that don’t have an explicit path mapping URL path but
otherwise match equally, e.g. by HTTP method. In the new support classes
@RequestMapping methods have to be mapped uniquely.

	
Have a single default method (without an explicit path mapping) with which requests
are processed if no other controller method matches more concretely. In the new
support classes if a matching method is not found a 404 error is raised.

The above features are still supported with the existing support classes. However to
take advantage of new Spring MVC 3.1 features you’ll need to use the new support classes.

URI Template Patterns

URI templates can be used for convenient access to selected parts of a URL in a
@RequestMapping method.

A URI Template is a URI-like string, containing one or more variable names. When you
substitute values for these variables, the template becomes a URI. The
proposed RFC for URI Templates defines
how a URI is parameterized. For example, the URI Template
http://www.example.com/users/{userId} contains the variable userId. Assigning the
value fred to the variable yields http://www.example.com/users/fred.

In Spring MVC you can use the @PathVariable annotation on a method argument to bind it
to the value of a URI template variable:

@GetMapping("/owners/{ownerId}")
public String findOwner(@PathVariable String ownerId, Model model) {
 Owner owner = ownerService.findOwner(ownerId);
 model.addAttribute("owner", owner);
 return "displayOwner";
}

The URI Template " /owners/{ownerId}`" specifies the variable name `ownerId. When the
controller handles this request, the value of ownerId is set to the value found in the
appropriate part of the URI. For example, when a request comes in for /owners/fred,
the value of ownerId is fred.

	[image: [Tip]]	Tip
	
To process the @PathVariable annotation, Spring MVC needs to find the matching URI
template variable by name. You can specify it in the annotation:

@GetMapping("/owners/{ownerId}")
public String findOwner(@PathVariable("ownerId") String theOwner, Model model) {
 // implementation omitted
}

Or if the URI template variable name matches the method argument name you can omit that
detail. As long as your code is compiled with debugging information or the -parameters
compiler flag on Java 8, Spring MVC will match the method argument name to the URI
template variable name:

@GetMapping("/owners/{ownerId}")
public String findOwner(@PathVariable String ownerId, Model model) {
 // implementation omitted
}

A method can have any number of @PathVariable annotations:

@GetMapping("/owners/{ownerId}/pets/{petId}")
public String findPet(@PathVariable String ownerId, @PathVariable String petId, Model model) {
 Owner owner = ownerService.findOwner(ownerId);
 Pet pet = owner.getPet(petId);
 model.addAttribute("pet", pet);
 return "displayPet";
}

When a @PathVariable annotation is used on a Map<String, String> argument, the map
is populated with all URI template variables.

A URI template can be assembled from type and method level @RequestMapping
annotations. As a result the findPet() method can be invoked with a URL such as
/owners/42/pets/21.

@Controller
@RequestMapping("/owners/{ownerId}")
public class RelativePathUriTemplateController {

 @RequestMapping("/pets/{petId}")
 public void findPet(@PathVariable String ownerId, @PathVariable String petId, Model model) {
 // implementation omitted
 }

}

A @PathVariable argument can be of any simple type such as int, long, Date, etc.
Spring automatically converts to the appropriate type or throws a
TypeMismatchException if it fails to do so. You can also register support for parsing
additional data types. See the section called “Method Parameters And Type Conversion” and the section called “Customizing WebDataBinder initialization”.

URI Template Patterns with Regular Expressions

Sometimes you need more precision in defining URI template variables. Consider the URL
"/spring-web/spring-web-3.0.5.jar". How do you break it down into multiple parts?

The @RequestMapping annotation supports the use of regular expressions in URI template
variables. The syntax is {varName:regex} where the first part defines the variable
name and the second - the regular expression. For example:

@RequestMapping("/spring-web/{symbolicName:[a-z-]+}-{version:\\d\\.\\d\\.\\d}{extension:\\.[a-z]+}")
public void handle(@PathVariable String version, @PathVariable String extension) {
 // ...
}

Path Patterns

In addition to URI templates, the @RequestMapping annotation and all composed
@RequestMapping variants also support Ant-style path patterns (for example,
/myPath/*.do). A combination of URI template variables and Ant-style globs is
also supported (e.g. /owners/*/pets/{petId}).

Path Pattern Comparison

When a URL matches multiple patterns, a sort is used to find the most specific match.

A pattern with a lower count of URI variables and wild cards is considered more specific.
For example /hotels/{hotel}/* has 1 URI variable and 1 wild card and is considered
more specific than /hotels/{hotel}/** which as 1 URI variable and 2 wild cards.

If two patterns have the same count, the one that is longer is considered more specific.
For example /foo/bar* is longer and considered more specific than /foo/*.

When two patterns have the same count and length, the pattern with fewer wild cards is considered more specific.
For example /hotels/{hotel} is more specific than /hotels/*.

There are also some additional special rules:

	
The default mapping pattern /** is less specific than any other pattern.
For example /api/{a}/{b}/{c} is more specific.

	
A prefix pattern such as /public/** is less specific than any other pattern that doesn’t contain double wildcards.
For example /public/path3/{a}/{b}/{c} is more specific.

For the full details see AntPatternComparator in AntPathMatcher. Note that the PathMatcher
can be customized (see the section called “Path Matching” in the section on configuring Spring MVC).

Path Patterns with Placeholders

Patterns in @RequestMapping annotations support ${…​} placeholders against local
properties and/or system properties and environment variables. This may be useful in
cases where the path a controller is mapped to may need to be customized through
configuration. For more information on placeholders, see the javadocs of the
PropertyPlaceholderConfigurer class.

Suffix Pattern Matching

By default Spring MVC performs ".*" suffix pattern matching so that a
controller mapped to /person is also implicitly mapped to /person.*.
This makes it easy to request different representations of a resource through the
URL path (e.g. /person.pdf, /person.xml).

Suffix pattern matching can be turned off or restricted to a set of path extensions
explicitly registered for content negotiation purposes. This is generally
recommended to minimize ambiguity with common request mappings such as
/person/{id} where a dot might not represent a file extension, e.g.
/person/joe@email.com vs /person/joe@email.com.json. Furthermore as explained
in the note below suffix pattern matching as well as content negotiation may be
used in some circumstances to attempt malicious attacks and there are good
reasons to restrict them meaningfully.

See the section called “Path Matching” for suffix pattern matching configuration and
also the section called “Content Negotiation” for content negotiation configuration.

Suffix Pattern Matching and RFD

Reflected file download (RFD) attack was first described in a
paper by Trustwave
in 2014. The attack is similar to XSS in that it relies on input
(e.g. query parameter, URI variable) being reflected in the response.
However instead of inserting JavaScript into HTML, an RFD attack relies on the
browser switching to perform a download and treating the response as an executable
script if double-clicked based on the file extension (e.g. .bat, .cmd).

In Spring MVC @ResponseBody and ResponseEntity methods are at risk because
they can render different content types which clients can request including
via URL path extensions. Note however that neither disabling suffix pattern matching
nor disabling the use of path extensions for content negotiation purposes alone
are effective at preventing RFD attacks.

For comprehensive protection against RFD, prior to rendering the response body
Spring MVC adds a Content-Disposition:inline;filename=f.txt header to
suggest a fixed and safe download file filename. This is done only if the URL
path contains a file extension that is neither whitelisted nor explicitly
registered for content negotiation purposes. However it may potentially have
side effects when URLs are typed directly into a browser.

Many common path extensions are whitelisted by
default. Furthermore REST API calls are typically not meant to be used as URLs
directly in browsers. Nevertheless applications that use custom
HttpMessageConverter implementations can explicitly register file extensions
for content negotiation and the Content-Disposition header will not be added
for such extensions. See the section called “Content Negotiation”.

	[image: [Note]]	Note
	
This was originally introduced as part of work for
CVE-2015-5211.
Below are additional recommendations from the report:

	
Encode rather than escape JSON responses. This is also an OWASP XSS recommendation.
For an example of how to do that with Spring see spring-jackson-owasp.

	
Configure suffix pattern matching to be turned off or restricted to explicitly
registered suffixes only.

	
Configure content negotiation with the properties "useJaf" and "ignoreUnknownPathExtensions"
set to false which would result in a 406 response for URLs with unknown extensions.
Note however that this may not be an option if URLs are naturally expected to have
a dot towards the end.

	
Add X-Content-Type-Options: nosniff header to responses. Spring Security 4 does
this by default.

Matrix Variables

The URI specification RFC 3986 defines
the possibility of including name-value pairs within path segments. There is no specific
term used in the spec. The general "URI path parameters" could be applied although the
more unique "Matrix URIs", originating
from an old post by Tim Berners-Lee, is also frequently used and fairly well known.
Within Spring MVC these are referred to as matrix variables.

Matrix variables can appear in any path segment, each matrix variable separated with a
";" (semicolon). For example: "/cars;color=red;year=2012". Multiple values may be
either "," (comma) separated "color=red,green,blue" or the variable name may be
repeated "color=red;color=green;color=blue".

If a URL is expected to contain matrix variables, the request mapping pattern must
represent them with a URI template. This ensures the request can be matched correctly
regardless of whether matrix variables are present or not and in what order they are
provided.

Below is an example of extracting the matrix variable "q":

// GET /pets/42;q=11;r=22

@GetMapping("/pets/{petId}")
public void findPet(@PathVariable String petId, @MatrixVariable int q) {

 // petId == 42
 // q == 11

}

Since all path segments may contain matrix variables, in some cases you need to be more
specific to identify where the variable is expected to be:

// GET /owners/42;q=11/pets/21;q=22

@GetMapping("/owners/{ownerId}/pets/{petId}")
public void findPet(
 @MatrixVariable(name="q", pathVar="ownerId") int q1,
 @MatrixVariable(name="q", pathVar="petId") int q2) {

 // q1 == 11
 // q2 == 22

}

A matrix variable may be defined as optional and a default value specified:

// GET /pets/42

@GetMapping("/pets/{petId}")
public void findPet(@MatrixVariable(required=false, defaultValue="1") int q) {

 // q == 1

}

All matrix variables may be obtained in a Map:

// GET /owners/42;q=11;r=12/pets/21;q=22;s=23

@GetMapping("/owners/{ownerId}/pets/{petId}")
public void findPet(
 @MatrixVariable MultiValueMap<String, String> matrixVars,
 @MatrixVariable(pathVar="petId"") MultiValueMap<String, String> petMatrixVars) {

 // matrixVars: ["q" : [11,22], "r" : 12, "s" : 23]
 // petMatrixVars: ["q" : 11, "s" : 23]

}

Note that to enable the use of matrix variables, you must set the
removeSemicolonContent property of RequestMappingHandlerMapping to false. By
default it is set to true.

	[image: [Tip]]	Tip
	
The MVC Java config and the MVC namespace both provide options for enabling the use of
matrix variables.

If you are using Java config, The Advanced Customizations
with MVC Java Config section describes how the RequestMappingHandlerMapping can
be customized.

In the MVC namespace, the <mvc:annotation-driven> element has an
enable-matrix-variables attribute that should be set to true. By default it is set
to false.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:mvc="http://www.springframework.org/schema/mvc"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/mvc
 http://www.springframework.org/schema/mvc/spring-mvc.xsd">

 <mvc:annotation-driven enable-matrix-variables="true"/>

</beans>

Consumable Media Types

You can narrow the primary mapping by specifying a list of consumable media types. The
request will be matched only if the Content-Type request header matches the specified
media type. For example:

@PostMapping(path = "/pets", consumes = "application/json")
public void addPet(@RequestBody Pet pet, Model model) {
 // implementation omitted
}

Consumable media type expressions can also be negated as in !text/plain to match to
all requests other than those with Content-Type of text/plain. Also consider
using constants provided in MediaType such as APPLICATION_JSON_VALUE and
APPLICATION_JSON_UTF8_VALUE.

	[image: [Tip]]	Tip
	
The consumes condition is supported on the type and on the method level. Unlike most
other conditions, when used at the type level, method-level consumable types override
rather than extend type-level consumable types.

Producible Media Types

You can narrow the primary mapping by specifying a list of producible media types. The
request will be matched only if the Accept request header matches one of these
values. Furthermore, use of the produces condition ensures the actual content type
used to generate the response respects the media types specified in the produces
condition. For example:

@GetMapping(path = "/pets/{petId}", produces = MediaType.APPLICATION_JSON_UTF8_VALUE)
@ResponseBody
public Pet getPet(@PathVariable String petId, Model model) {
 // implementation omitted
}

	[image: [Note]]	Note
	
Be aware that the media type specified in the produces condition can also optionally
specify a character set. For example, in the code snippet above we specify the same media
type than the default one configured in MappingJackson2HttpMessageConverter, including
the UTF-8 charset.

Just like with consumes, producible media type expressions can be negated as in
!text/plain to match to all requests other than those with an Accept header
value of text/plain. Also consider using constants provided in MediaType such
as APPLICATION_JSON_VALUE and APPLICATION_JSON_UTF8_VALUE.

	[image: [Tip]]	Tip
	
The produces condition is supported on the type and on the method level. Unlike most
other conditions, when used at the type level, method-level producible types override
rather than extend type-level producible types.

Request Parameters and Header Values

You can narrow request matching through request parameter conditions such as
"myParam", "!myParam", or "myParam=myValue". The first two test for request
parameter presence/absence and the third for a specific parameter value. Here is an
example with a request parameter value condition:

@Controller
@RequestMapping("/owners/{ownerId}")
public class RelativePathUriTemplateController {

 @GetMapping(path = "/pets/{petId}", params = "myParam=myValue")
 public void findPet(@PathVariable String ownerId, @PathVariable String petId, Model model) {
 // implementation omitted
 }

}

The same can be done to test for request header presence/absence or to match based on a
specific request header value:

@Controller
@RequestMapping("/owners/{ownerId}")
public class RelativePathUriTemplateController {

 @GetMapping(path = "/pets", headers = "myHeader=myValue")
 public void findPet(@PathVariable String ownerId, @PathVariable String petId, Model model) {
 // implementation omitted
 }

}

	[image: [Tip]]	Tip
	
Although you can match to Content-Type and Accept header values using media type
wild cards (for example "content-type=text/*" will match to "text/plain" and
"text/html"), it is recommended to use the consumes and produces conditions
respectively instead. They are intended specifically for that purpose.

HTTP HEAD and HTTP OPTIONS

@RequestMapping methods mapped to "GET" are also implicitly mapped to "HEAD",
i.e. there is no need to have "HEAD" explicitly declared. An HTTP HEAD request
is processed as if it were an HTTP GET except instead of writing the body only
the number of bytes are counted and the "Content-Length" header set.

@RequestMapping methods have built-in support for HTTP OPTIONS. By default an
HTTP OPTIONS request is handled by setting the "Allow" response header to the
HTTP methods explicitly declared on all @RequestMapping methods with matching
URL patterns. When no HTTP methods are explicitly declared the "Allow" header
is set to "GET,HEAD,POST,PUT,PATCH,DELETE,OPTIONS". Ideally always declare the
HTTP method(s) that an @RequestMapping method is intended to handle, or alternatively
use one of the dedicated composed @RequestMapping variants (see
the section called “Composed @RequestMapping Variants”).

Although not necessary an @RequestMapping method can be mapped to and handle
either HTTP HEAD or HTTP OPTIONS, or both.

Defining @RequestMapping handler methods

@RequestMapping handler methods can have very flexible signatures. The supported
method arguments and return values are described in the following section. Most
arguments can be used in arbitrary order with the only exception being BindingResult
arguments. This is described in the next section.

	[image: [Note]]	Note
	
Spring 3.1 introduced a new set of support classes for @RequestMapping methods called
RequestMappingHandlerMapping and RequestMappingHandlerAdapter respectively. They are
recommended for use and even required to take advantage of new features in Spring MVC
3.1 and going forward. The new support classes are enabled by default from the MVC
namespace and with use of the MVC Java config but must be configured explicitly if using
neither.

Supported method argument types

The following are the supported method arguments:

	
Request or response objects (Servlet API). Choose any specific request or response
type, for example ServletRequest or HttpServletRequest.

	
Session object (Servlet API): of type HttpSession. An argument of this type enforces
the presence of a corresponding session. As a consequence, such an argument is never
null.

	[image: [Note]]	Note
	
Session access may not be thread-safe, in particular in a Servlet environment. Consider
setting the RequestMappingHandlerAdapter's "synchronizeOnSession" flag to "true" if
multiple requests are allowed to access a session concurrently.

	
org.springframework.web.context.request.WebRequest or
org.springframework.web.context.request.NativeWebRequest. Allows for generic
request parameter access as well as request/session attribute access, without ties
to the native Servlet/Portlet API.

	
java.util.Locale for the current request locale, determined by the most specific
locale resolver available, in effect, the configured LocaleResolver /
LocaleContextResolver in an MVC environment.

	
java.util.TimeZone (Java 6+) / java.time.ZoneId (on Java 8) for the time zone
associated with the current request, as determined by a LocaleContextResolver.

	
java.io.InputStream / java.io.Reader for access to the request’s content.
This value is the raw InputStream/Reader as exposed by the Servlet API.

	
java.io.OutputStream / java.io.Writer for generating the response’s content.
This value is the raw OutputStream/Writer as exposed by the Servlet API.

	
org.springframework.http.HttpMethod for the HTTP request method.

	
java.security.Principal containing the currently authenticated user.

	
@PathVariable annotated parameters for access to URI template variables. See
the section called “URI Template Patterns”.

	
@MatrixVariable annotated parameters for access to name-value pairs located in
URI path segments. See the section called “Matrix Variables”.

	
@RequestParam annotated parameters for access to specific Servlet request
parameters. Parameter values are converted to the declared method argument type.
See the section called “Binding request parameters to method parameters with @RequestParam”.

	
@RequestHeader annotated parameters for access to specific Servlet request HTTP
headers. Parameter values are converted to the declared method argument type.
See the section called “Mapping request header attributes with the @RequestHeader annotation”.

	
@RequestBody annotated parameters for access to the HTTP request body. Parameter
values are converted to the declared method argument type using
HttpMessageConverters. See the section called “Mapping the request body with the @RequestBody annotation”.

	
@RequestPart annotated parameters for access to the content of a
"multipart/form-data" request part. See the section called “Handling a file upload request from programmatic clients” and
the section called “Spring’s multipart (file upload) support”.

	
@SessionAttribute annotated parameters for access to existing, permanent
session attributes (e.g. user authentication object) as opposed to model
attributes temporarily stored in the session as part of a controller workflow
via @SessionAttributes.

	
@RequestAttribute annotated parameters for access to request attributes.

	
HttpEntity<?> parameters for access to the Servlet request HTTP headers and
contents. The request stream will be converted to the entity body using
HttpMessageConverters. See the section called “Using HttpEntity”.

	
java.util.Map / org.springframework.ui.Model / org.springframework.ui.ModelMap
for enriching the implicit model that is exposed to the web view.

	
org.springframework.web.servlet.mvc.support.RedirectAttributes to specify the exact
set of attributes to use in case of a redirect and also to add flash attributes
(attributes stored temporarily on the server-side to make them available to the
request after the redirect). See the section called “Passing Data To the Redirect Target” and
the section called “Using flash attributes”.

	
Command or form objects to bind request parameters to bean properties (via setters)
or directly to fields, with customizable type conversion, depending on @InitBinder
methods and/or the HandlerAdapter configuration. See the webBindingInitializer
property on RequestMappingHandlerAdapter. Such command objects along with their
validation results will be exposed as model attributes by default, using the command
class name - e.g. model attribute "orderAddress" for a command object of type
"some.package.OrderAddress". The ModelAttribute annotation can be used on a method
argument to customize the model attribute name used.

	
org.springframework.validation.Errors /
org.springframework.validation.BindingResult validation results for a preceding
command or form object (the immediately preceding method argument).

	
org.springframework.web.bind.support.SessionStatus status handle for marking form
processing as complete, which triggers the cleanup of session attributes that have
been indicated by the @SessionAttributes annotation at the handler type level.

	
org.springframework.web.util.UriComponentsBuilder a builder for preparing a URL
relative to the current request’s host, port, scheme, context path, and the literal
part of the servlet mapping.

The Errors or BindingResult parameters have to follow the model object that is being
bound immediately as the method signature might have more than one model object and
Spring will create a separate BindingResult instance for each of them so the following
sample won’t work:

Invalid ordering of BindingResult and @ModelAttribute.

@PostMapping
public String processSubmit(@ModelAttribute("pet") Pet pet, Model model, BindingResult result) { ... }

Note, that there is a Model parameter in between Pet and BindingResult. To get
this working you have to reorder the parameters as follows:

@PostMapping
public String processSubmit(@ModelAttribute("pet") Pet pet, BindingResult result, Model model) { ... }

	[image: [Note]]	Note
	
JDK 1.8’s java.util.Optional is supported as a method parameter type with annotations
that have a required attribute (e.g. @RequestParam, @RequestHeader, etc. The use
of java.util.Optional in those cases is equivalent to having required=false.

Supported method return types

The following are the supported return types:

	
A ModelAndView object, with the model implicitly enriched with command objects and
the results of @ModelAttribute annotated reference data accessor methods.

	
A Model object, with the view name implicitly determined through a
RequestToViewNameTranslator and the model implicitly enriched with command objects
and the results of @ModelAttribute annotated reference data accessor methods.

	
A Map object for exposing a model, with the view name implicitly determined through
a RequestToViewNameTranslator and the model implicitly enriched with command objects
and the results of @ModelAttribute annotated reference data accessor methods.

	
A View object, with the model implicitly determined through command objects and
@ModelAttribute annotated reference data accessor methods. The handler method may
also programmatically enrich the model by declaring a Model argument (see above).

	
A String value that is interpreted as the logical view name, with the model
implicitly determined through command objects and @ModelAttribute annotated
reference data accessor methods. The handler method may also programmatically enrich
the model by declaring a Model argument (see above).

	
void if the method handles the response itself (by writing the response content
directly, declaring an argument of type ServletResponse / HttpServletResponse for
that purpose) or if the view name is supposed to be implicitly determined through a
RequestToViewNameTranslator (not declaring a response argument in the handler method
signature).

	
If the method is annotated with @ResponseBody, the return type is written to the
response HTTP body. The return value will be converted to the declared method argument
type using HttpMessageConverters. See the section called “Mapping the response body with the @ResponseBody annotation”.

	
An HttpEntity<?> or ResponseEntity<?> object to provide access to the Servlet
response HTTP headers and contents. The entity body will be converted to the response
stream using HttpMessageConverters. See the section called “Using HttpEntity”.

	
An HttpHeaders object to return a response with no body.

	
A Callable<?> can be returned when the application wants to produce the return value
asynchronously in a thread managed by Spring MVC.

	
A DeferredResult<?> can be returned when the application wants to produce the return
value from a thread of its own choosing.

	
A ListenableFuture<?> or CompletableFuture<?>/CompletionStage<?> can be returned
when the application wants to produce the value from a thread pool submission.

	
A ResponseBodyEmitter can be returned to write multiple objects to the response
asynchronously; also supported as the body within a ResponseEntity.

	
An SseEmitter can be returned to write Server-Sent Events to the response
asynchronously; also supported as the body within a ResponseEntity.

	
A StreamingResponseBody can be returned to write to the response OutputStream
asynchronously; also supported as the body within a ResponseEntity.

	
Any other return type is considered to be a single model attribute to be exposed to
the view, using the attribute name specified through @ModelAttribute at the method
level (or the default attribute name based on the return type class name). The model
is implicitly enriched with command objects and the results of @ModelAttribute
annotated reference data accessor methods.

Binding request parameters to method parameters with @RequestParam

Use the @RequestParam annotation to bind request parameters to a method parameter in
your controller.

The following code snippet shows the usage:

@Controller
@RequestMapping("/pets")
@SessionAttributes("pet")
public class EditPetForm {

 // ...

 @GetMapping
 public String setupForm(@RequestParam("petId") int petId, ModelMap model) {
 Pet pet = this.clinic.loadPet(petId);
 model.addAttribute("pet", pet);
 return "petForm";
 }

 // ...

}

Parameters using this annotation are required by default, but you can specify that a
parameter is optional by setting @RequestParam's required attribute to false
(e.g., @RequestParam(name="id", required=false)).

Type conversion is applied automatically if the target method parameter type is not
String. See the section called “Method Parameters And Type Conversion”.

When an @RequestParam annotation is used on a Map<String, String> or
MultiValueMap<String, String> argument, the map is populated with all request
parameters.

Mapping the request body with the @RequestBody annotation

The @RequestBody method parameter annotation indicates that a method parameter should
be bound to the value of the HTTP request body. For example:

@PutMapping("/something")
public void handle(@RequestBody String body, Writer writer) throws IOException {
 writer.write(body);
}

You convert the request body to the method argument by using an HttpMessageConverter.
HttpMessageConverter is responsible for converting from the HTTP request message to an
object and converting from an object to the HTTP response body. The
RequestMappingHandlerAdapter supports the @RequestBody annotation with the following
default HttpMessageConverters:

	
ByteArrayHttpMessageConverter converts byte arrays.

	
StringHttpMessageConverter converts strings.

	
FormHttpMessageConverter converts form data to/from a MultiValueMap<String, String>.

	
SourceHttpMessageConverter converts to/from a javax.xml.transform.Source.

For more information on these converters, see Message
Converters. Also note that if using the MVC namespace or the MVC Java config, a wider
range of message converters are registered by default. See the section called “Enabling the MVC Java Config or the MVC XML Namespace” for more information.

If you intend to read and write XML, you will need to configure the
MarshallingHttpMessageConverter with a specific Marshaller and an Unmarshaller
implementation from the org.springframework.oxm package. The example below shows how
to do that directly in your configuration but if your application is configured through
the MVC namespace or the MVC Java config see the section called “Enabling the MVC Java Config or the MVC XML Namespace” instead.

<bean class="org.springframework.web.servlet.mvc.method.annotation.RequestMappingHandlerAdapter">
 <property name="messageConverters">
 <util:list id="beanList">
 <ref bean="stringHttpMessageConverter"/>
 <ref bean="marshallingHttpMessageConverter"/>
 </util:list>
 </property
</bean>

<bean id="stringHttpMessageConverter"
 class="org.springframework.http.converter.StringHttpMessageConverter"/>

<bean id="marshallingHttpMessageConverter"
 class="org.springframework.http.converter.xml.MarshallingHttpMessageConverter">
 <property name="marshaller" ref="castorMarshaller"/>
 <property name="unmarshaller" ref="castorMarshaller"/>
</bean>

<bean id="castorMarshaller" class="org.springframework.oxm.castor.CastorMarshaller"/>

An @RequestBody method parameter can be annotated with @Valid, in which case it will
be validated using the configured Validator instance. When using the MVC namespace or
the MVC Java config, a JSR-303 validator is configured automatically assuming a JSR-303
implementation is available on the classpath.

Just like with @ModelAttribute parameters, an Errors argument can be used to examine
the errors. If such an argument is not declared, a MethodArgumentNotValidException
will be raised. The exception is handled in the DefaultHandlerExceptionResolver, which
sends a 400 error back to the client.

	[image: [Note]]	Note
	
Also see the section called “Enabling the MVC Java Config or the MVC XML Namespace” for
information on configuring message converters and a validator through the MVC namespace
or the MVC Java config.

Mapping the response body with the @ResponseBody annotation

The @ResponseBody annotation is similar to @RequestBody. This annotation can be placed
on a method and indicates that the return type should be written straight to the HTTP
response body (and not placed in a Model, or interpreted as a view name). For example:

@GetMapping("/something")
@ResponseBody
public String helloWorld() {
 return "Hello World";
}

The above example will result in the text Hello World being written to the HTTP
response stream.

As with @RequestBody, Spring converts the returned object to a response body by using
an HttpMessageConverter. For more information on these converters, see the previous
section and Message Converters.

Creating REST Controllers with the @RestController annotation

It’s a very common use case to have Controllers implement a REST API, thus serving only
JSON, XML or custom MediaType content. For convenience, instead of annotating all your
@RequestMapping methods with @ResponseBody, you can annotate your controller Class
with @RestController.

@RestController
is a stereotype annotation that combines @ResponseBody and @Controller. More than
that, it gives more meaning to your Controller and also may carry additional semantics
in future releases of the framework.

As with regular @Controllers, a @RestController may be assisted by
@ControllerAdvice or @RestControllerAdvice beans. See the the section called “Advising controllers with @ControllerAdvice and @RestControllerAdvice”
section for more details.

Using HttpEntity

The HttpEntity is similar to @RequestBody and @ResponseBody. Besides getting
access to the request and response body, HttpEntity (and the response-specific
subclass ResponseEntity) also allows access to the request and response headers, like
so:

@RequestMapping("/something")
public ResponseEntity<String> handle(HttpEntity<byte[]> requestEntity) throws UnsupportedEncodingException {
 String requestHeader = requestEntity.getHeaders().getFirst("MyRequestHeader"));
 byte[] requestBody = requestEntity.getBody();

 // do something with request header and body

 HttpHeaders responseHeaders = new HttpHeaders();
 responseHeaders.set("MyResponseHeader", "MyValue");
 return new ResponseEntity<String>("Hello World", responseHeaders, HttpStatus.CREATED);
}

The above example gets the value of the MyRequestHeader request header, and reads the
body as a byte array. It adds the MyResponseHeader to the response, writes Hello
World to the response stream, and sets the response status code to 201 (Created).

As with @RequestBody and @ResponseBody, Spring uses HttpMessageConverter to
convert from and to the request and response streams. For more information on these
converters, see the previous section and Message Converters.

Using @ModelAttribute on a method

The @ModelAttribute annotation can be used on methods or on method arguments. This
section explains its usage on methods while the next section explains its usage on
method arguments.

An @ModelAttribute on a method indicates the purpose of that method is to add one or
more model attributes. Such methods support the same argument types as @RequestMapping
methods but cannot be mapped directly to requests. Instead @ModelAttribute methods in
a controller are invoked before @RequestMapping methods, within the same controller. A
couple of examples:

// Add one attribute
// The return value of the method is added to the model under the name "account"
// You can customize the name via @ModelAttribute("myAccount")

@ModelAttribute
public Account addAccount(@RequestParam String number) {
 return accountManager.findAccount(number);
}

// Add multiple attributes

@ModelAttribute
public void populateModel(@RequestParam String number, Model model) {
 model.addAttribute(accountManager.findAccount(number));
 // add more ...
}

@ModelAttribute methods are used to populate the model with commonly needed attributes
for example to fill a drop-down with states or with pet types, or to retrieve a command
object like Account in order to use it to represent the data on an HTML form. The latter
case is further discussed in the next section.

Note the two styles of @ModelAttribute methods. In the first, the method adds an
attribute implicitly by returning it. In the second, the method accepts a Model and
adds any number of model attributes to it. You can choose between the two styles
depending on your needs.

A controller can have any number of @ModelAttribute methods. All such methods are
invoked before @RequestMapping methods of the same controller.

@ModelAttribute methods can also be defined in an @ControllerAdvice-annotated class
and such methods apply to many controllers. See the the section called “Advising controllers with @ControllerAdvice and @RestControllerAdvice” section
for more details.

	[image: [Tip]]	Tip
	
What happens when a model attribute name is not explicitly specified? In such cases a
default name is assigned to the model attribute based on its type. For example if the
method returns an object of type Account, the default name used is "account". You can
change that through the value of the @ModelAttribute annotation. If adding attributes
directly to the Model, use the appropriate overloaded addAttribute(..) method -
i.e., with or without an attribute name.

The @ModelAttribute annotation can be used on @RequestMapping methods as well. In
that case the return value of the @RequestMapping method is interpreted as a model
attribute rather than as a view name. The view name is then derived based on view name
conventions instead, much like for methods returning void — see the section called “Default view name”.

Using @ModelAttribute on a method argument

As explained in the previous section @ModelAttribute can be used on methods or on
method arguments. This section explains its usage on method arguments.

An @ModelAttribute on a method argument indicates the argument should be retrieved
from the model. If not present in the model, the argument should be instantiated first
and then added to the model. Once present in the model, the argument’s fields should be
populated from all request parameters that have matching names. This is known as data
binding in Spring MVC, a very useful mechanism that saves you from having to parse each
form field individually.

@PostMapping("/owners/{ownerId}/pets/{petId}/edit")
public String processSubmit(@ModelAttribute Pet pet) { }

Given the above example where can the Pet instance come from? There are several options:

	
It may already be in the model due to use of @SessionAttributes — see
the section called “Using @SessionAttributes to store model attributes in the HTTP session between requests”.

	
It may already be in the model due to an @ModelAttribute method in the same
controller — as explained in the previous section.

	
It may be retrieved based on a URI template variable and type converter (explained in
more detail below).

	
It may be instantiated using its default constructor.

An @ModelAttribute method is a common way to retrieve an attribute from the
database, which may optionally be stored between requests through the use of
@SessionAttributes. In some cases it may be convenient to retrieve the attribute by
using an URI template variable and a type converter. Here is an example:

@PutMapping("/accounts/{account}")
public String save(@ModelAttribute("account") Account account) {
 // ...
}

In this example the name of the model attribute (i.e. "account") matches the name of a
URI template variable. If you register Converter<String, Account> that can turn the
String account value into an Account instance, then the above example will work
without the need for an @ModelAttribute method.

The next step is data binding. The WebDataBinder class matches request parameter names — including query string parameters and form fields — to model attribute fields by
name. Matching fields are populated after type conversion (from String to the target
field type) has been applied where necessary. Data binding and validation are covered in
Chapter 9, Validation, Data Binding, and Type Conversion. Customizing the data binding process for a controller level is covered
in the section called “Customizing WebDataBinder initialization”.

As a result of data binding there may be errors such as missing required fields or type
conversion errors. To check for such errors add a BindingResult argument immediately
following the @ModelAttribute argument:

@PostMapping("/owners/{ownerId}/pets/{petId}/edit")
public String processSubmit(@ModelAttribute("pet") Pet pet, BindingResult result) {

 if (result.hasErrors()) {
 return "petForm";
 }

 // ...

}

With a BindingResult you can check if errors were found in which case it’s common to
render the same form where the errors can be shown with the help of Spring’s <errors>
form tag.

Note that in some cases it may be useful to gain access to an attribute in the
model without data binding. For such cases you may inject the Model into the
controller or alternatively use the binding flag on the annotation:

@ModelAttribute
public AccountForm setUpForm() {
 return new AccountForm();
}

@ModelAttribute
public Account findAccount(@PathVariable String accountId) {
 return accountRepository.findOne(accountId);
}

@PostMapping("update")
public String update(@Valid AccountUpdateForm form, BindingResult result,
 @ModelAttribute(binding=false) Account account) {

 // ...
}

In addition to data binding you can also invoke validation using your own custom
validator passing the same BindingResult that was used to record data binding errors.
That allows for data binding and validation errors to be accumulated in one place and
subsequently reported back to the user:

@PostMapping("/owners/{ownerId}/pets/{petId}/edit")
public String processSubmit(@ModelAttribute("pet") Pet pet, BindingResult result) {

 new PetValidator().validate(pet, result);
 if (result.hasErrors()) {
 return "petForm";
 }

 // ...

}

Or you can have validation invoked automatically by adding the JSR-303 @Valid
annotation:

@PostMapping("/owners/{ownerId}/pets/{petId}/edit")
public String processSubmit(@Valid @ModelAttribute("pet") Pet pet, BindingResult result) {

 if (result.hasErrors()) {
 return "petForm";
 }

 // ...

}

See the section called “Spring Validation” and Chapter 9, Validation, Data Binding, and Type Conversion for details on how to configure and
use validation.

Using @SessionAttributes to store model attributes in the HTTP session between requests

The type-level @SessionAttributes annotation declares session attributes used by a
specific handler. This will typically list the names of model attributes or types of
model attributes which should be transparently stored in the session or some
conversational storage, serving as form-backing beans between subsequent requests.

The following code snippet shows the usage of this annotation, specifying the model
attribute name:

@Controller
@RequestMapping("/editPet.do")
@SessionAttributes("pet")
public class EditPetForm {
 // ...
}

Using @SessionAttribute to access pre-existing global session attributes

If you need access to pre-existing session attributes that are managed globally,
i.e. outside the controller (e.g. by a filter), and may or may not be present
use the @SessionAttribute annotation on a method parameter:

@RequestMapping("/")
public String handle(@SessionAttribute User user) {
 // ...
}

For use cases that require adding or removing session attributes consider injecting
org.springframework.web.context.request.WebRequest or
javax.servlet.http.HttpSession into the controller method.

For temporary storage of model attributes in the session as part of a controller
workflow consider using SessionAttributes as described in
the section called “Using @SessionAttributes to store model attributes in the HTTP session between requests”.

Using @RequestAttribute to access request attributes

Similar to @SessionAttribute the @RequestAttribute annotation can be used to
access pre-existing request attributes created by a filter or interceptor:

@RequestMapping("/")
public String handle(@RequestAttribute Client client) {
 // ...
}

Working with "application/x-www-form-urlencoded" data

The previous sections covered use of @ModelAttribute to support form submission
requests from browser clients. The same annotation is recommended for use with requests
from non-browser clients as well. However there is one notable difference when it comes
to working with HTTP PUT requests. Browsers can submit form data via HTTP GET or HTTP
POST. Non-browser clients can also submit forms via HTTP PUT. This presents a challenge
because the Servlet specification requires the ServletRequest.getParameter*() family
of methods to support form field access only for HTTP POST, not for HTTP PUT.

To support HTTP PUT and PATCH requests, the spring-web module provides the filter
HttpPutFormContentFilter, which can be configured in web.xml:

<filter>
 <filter-name>httpPutFormFilter</filter-name>
 <filter-class>org.springframework.web.filter.HttpPutFormContentFilter</filter-class>
</filter>

<filter-mapping>
 <filter-name>httpPutFormFilter</filter-name>
 <servlet-name>dispatcherServlet</servlet-name>
</filter-mapping>

<servlet>
 <servlet-name>dispatcherServlet</servlet-name>
 <servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
</servlet>

The above filter intercepts HTTP PUT and PATCH requests with content type
application/x-www-form-urlencoded, reads the form data from the body of the request,
and wraps the ServletRequest in order to make the form data available through the
ServletRequest.getParameter*() family of methods.

	[image: [Note]]	Note
	
As HttpPutFormContentFilter consumes the body of the request, it should not be
configured for PUT or PATCH URLs that rely on other converters for
application/x-www-form-urlencoded. This includes @RequestBody MultiValueMap<String,
String> and HttpEntity<MultiValueMap<String, String>>.

Mapping cookie values with the @CookieValue annotation

The @CookieValue annotation allows a method parameter to be bound to the value of an
HTTP cookie.

Let us consider that the following cookie has been received with an http request:

JSESSIONID=415A4AC178C59DACE0B2C9CA727CDD84

The following code sample demonstrates how to get the value of the JSESSIONID cookie:

@RequestMapping("/displayHeaderInfo.do")
public void displayHeaderInfo(@CookieValue("JSESSIONID") String cookie) {
 //...
}

Type conversion is applied automatically if the target method parameter type is not
String. See the section called “Method Parameters And Type Conversion”.

This annotation is supported for annotated handler methods in Servlet and Portlet
environments.

Mapping request header attributes with the @RequestHeader annotation

The @RequestHeader annotation allows a method parameter to be bound to a request header.

Here is a sample request header:

Host localhost:8080
Accept text/html,application/xhtml+xml,application/xml;q=0.9
Accept-Language fr,en-gb;q=0.7,en;q=0.3
Accept-Encoding gzip,deflate
Accept-Charset ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive 300

The following code sample demonstrates how to get the value of the Accept-Encoding and
Keep-Alive headers:

@RequestMapping("/displayHeaderInfo.do")
public void displayHeaderInfo(@RequestHeader("Accept-Encoding") String encoding,
 @RequestHeader("Keep-Alive") long keepAlive) {
 //...
}

Type conversion is applied automatically if the method parameter is not String. See
the section called “Method Parameters And Type Conversion”.

When an @RequestHeader annotation is used on a Map<String, String>,
MultiValueMap<String, String>, or HttpHeaders argument, the map is populated
with all header values.

	[image: [Tip]]	Tip
	
Built-in support is available for converting a comma-separated string into an
array/collection of strings or other types known to the type conversion system. For
example a method parameter annotated with @RequestHeader("Accept") may be of type
String but also String[] or List<String>.

This annotation is supported for annotated handler methods in Servlet and Portlet
environments.

Method Parameters And Type Conversion

String-based values extracted from the request including request parameters, path
variables, request headers, and cookie values may need to be converted to the target
type of the method parameter or field (e.g., binding a request parameter to a field in
an @ModelAttribute parameter) they’re bound to. If the target type is not String,
Spring automatically converts to the appropriate type. All simple types such as int,
long, Date, etc. are supported. You can further customize the conversion process through
a WebDataBinder (see the section called “Customizing WebDataBinder initialization”) or by registering Formatters with
the FormattingConversionService (see the section called “Spring Field Formatting”).

Customizing WebDataBinder initialization

To customize request parameter binding with PropertyEditors through Spring’s
WebDataBinder, you can use @InitBinder-annotated methods within your controller,
@InitBinder methods within an @ControllerAdvice class, or provide a custom
WebBindingInitializer. See the the section called “Advising controllers with @ControllerAdvice and @RestControllerAdvice” section for more details.

Customizing data binding with @InitBinder

Annotating controller methods with @InitBinder allows you to configure web data
binding directly within your controller class. @InitBinder identifies methods that
initialize the WebDataBinder that will be used to populate command and form object
arguments of annotated handler methods.

Such init-binder methods support all arguments that @RequestMapping methods support,
except for command/form objects and corresponding validation result objects. Init-binder
methods must not have a return value. Thus, they are usually declared as void.
Typical arguments include WebDataBinder in combination with WebRequest or
java.util.Locale, allowing code to register context-specific editors.

The following example demonstrates the use of @InitBinder to configure a
CustomDateEditor for all java.util.Date form properties.

@Controller
public class MyFormController {

 @InitBinder
 protected void initBinder(WebDataBinder binder) {
 SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd");
 dateFormat.setLenient(false);
 binder.registerCustomEditor(Date.class, new CustomDateEditor(dateFormat, false));
 }

 // ...
}

Alternatively, as of Spring 4.2, consider using addCustomFormatter to specify
Formatter implementations instead of PropertyEditor instances. This is
particularly useful if you happen to have a Formatter-based setup in a shared
FormattingConversionService as well, with the same approach to be reused for
controller-specific tweaking of the binding rules.

@Controller
public class MyFormController {

 @InitBinder
 protected void initBinder(WebDataBinder binder) {
 binder.addCustomFormatter(new DateFormatter("yyyy-MM-dd"));
 }

 // ...
}

Configuring a custom WebBindingInitializer

To externalize data binding initialization, you can provide a custom implementation of
the WebBindingInitializer interface, which you then enable by supplying a custom bean
configuration for an AnnotationMethodHandlerAdapter, thus overriding the default
configuration.

The following example from the PetClinic application shows a configuration using a
custom implementation of the WebBindingInitializer interface,
org.springframework.samples.petclinic.web.ClinicBindingInitializer, which configures
PropertyEditors required by several of the PetClinic controllers.

<bean class="org.springframework.web.servlet.mvc.method.annotation.RequestMappingHandlerAdapter">
 <property name="cacheSeconds" value="0"/>
 <property name="webBindingInitializer">
 <bean class="org.springframework.samples.petclinic.web.ClinicBindingInitializer"/>
 </property>
</bean>

@InitBinder methods can also be defined in an @ControllerAdvice-annotated class in
which case they apply to matching controllers. This provides an alternative to using a
WebBindingInitializer. See the the section called “Advising controllers with @ControllerAdvice and @RestControllerAdvice” section for more details.

Advising controllers with @ControllerAdvice and @RestControllerAdvice

The @ControllerAdvice annotation is a component annotation allowing implementation
classes to be auto-detected through classpath scanning. It is automatically enabled when
using the MVC namespace or the MVC Java config.

Classes annotated with @ControllerAdvice can contain @ExceptionHandler,
@InitBinder, and @ModelAttribute annotated methods, and these methods will apply to
@RequestMapping methods across all controller hierarchies as opposed to the controller
hierarchy within which they are declared.

@RestControllerAdvice is an alternative where @ExceptionHandler methods
assume @ResponseBody semantics by default.

Both @ControllerAdvice and @RestControllerAdvice can target a subset of controllers:

// Target all Controllers annotated with @RestController
@ControllerAdvice(annotations = RestController.class)
public class AnnotationAdvice {}

// Target all Controllers within specific packages
@ControllerAdvice("org.example.controllers")
public class BasePackageAdvice {}

// Target all Controllers assignable to specific classes
@ControllerAdvice(assignableTypes = {ControllerInterface.class, AbstractController.class})
public class AssignableTypesAdvice {}

Check out the
@ControllerAdvice
documentation for more details.

Jackson Serialization View Support

It can sometimes be useful to filter contextually the object that will be serialized to the
HTTP response body. In order to provide such capability, Spring MVC has built-in support for
rendering with Jackson’s Serialization Views.

To use it with an @ResponseBody controller method or controller methods that return
ResponseEntity, simply add the @JsonView annotation with a class argument specifying
the view class or interface to be used:

@RestController
public class UserController {

 @GetMapping("/user")
 @JsonView(User.WithoutPasswordView.class)
 public User getUser() {
 return new User("eric", "7!jd#h23");
 }
}

public class User {

 public interface WithoutPasswordView {};
 public interface WithPasswordView extends WithoutPasswordView {};

 private String username;
 private String password;

 public User() {
 }

 public User(String username, String password) {
 this.username = username;
 this.password = password;
 }

 @JsonView(WithoutPasswordView.class)
 public String getUsername() {
 return this.username;
 }

 @JsonView(WithPasswordView.class)
 public String getPassword() {
 return this.password;
 }
}

	[image: [Note]]	Note
	
Note that despite @JsonView allowing for more than one class to
be specified, the use on a controller method is only supported with
exactly one class argument. Consider the use of a composite interface
if you need to enable multiple views.

For controllers relying on view resolution, simply add the serialization view class
to the model:

@Controller
public class UserController extends AbstractController {

 @GetMapping("/user")
 public String getUser(Model model) {
 model.addAttribute("user", new User("eric", "7!jd#h23"));
 model.addAttribute(JsonView.class.getName(), User.WithoutPasswordView.class);
 return "userView";
 }
}

Jackson JSONP Support

In order to enable JSONP support for @ResponseBody
and ResponseEntity methods, declare an @ControllerAdvice bean that extends
AbstractJsonpResponseBodyAdvice as shown below where the constructor argument indicates
the JSONP query parameter name(s):

@ControllerAdvice
public class JsonpAdvice extends AbstractJsonpResponseBodyAdvice {

 public JsonpAdvice() {
 super("callback");
 }
}

For controllers relying on view resolution, JSONP is automatically enabled when the
request has a query parameter named jsonp or callback. Those names can be
customized through jsonpParameterNames property.

	[image: [Note]]	Note
	
As of Spring Framework 4.3.18, JSONP support is deprecated and will be removed as of
Spring Framework 5.1, CORS should be used instead.

Asynchronous Request Processing

Spring MVC 3.2 introduced Servlet 3 based asynchronous request processing. Instead of
returning a value, as usual, a controller method can now return a
java.util.concurrent.Callable and produce the return value from a Spring MVC managed thread.
Meanwhile the main Servlet container thread is exited and released and allowed to process other
requests. Spring MVC invokes the Callable in a separate thread with the help of a
TaskExecutor and when the Callable returns, the request is dispatched back to the
Servlet container to resume processing using the value returned by the Callable. Here
is an example of such a controller method:

@PostMapping
public Callable<String> processUpload(final MultipartFile file) {

 return new Callable<String>() {
 public String call() throws Exception {
 // ...
 return "someView";
 }
 };

}

Another option is for the controller method to return an instance of DeferredResult. In this
case the return value will also be produced from any thread, i.e. one that
is not managed by Spring MVC. For example the result may be produced in response to some
external event such as a JMS message, a scheduled task, and so on. Here is an example
of such a controller method:

@RequestMapping("/quotes")
@ResponseBody
public DeferredResult<String> quotes() {
 DeferredResult<String> deferredResult = new DeferredResult<String>();
 // Save the deferredResult somewhere..
 return deferredResult;
}

// In some other thread...
deferredResult.setResult(data);

This may be difficult to understand without any knowledge of the Servlet 3.0
asynchronous request processing features. It would certainly help to read up
on that. Here are a few basic facts about the underlying mechanism:

	
A ServletRequest can be put in asynchronous mode by calling request.startAsync().
The main effect of doing so is that the Servlet, as well as any Filters, can exit but
the response will remain open to allow processing to complete later.

	
The call to request.startAsync() returns AsyncContext which can be used for
further control over async processing. For example it provides the method dispatch,
that is similar to a forward from the Servlet API except it allows an
application to resume request processing on a Servlet container thread.

	
The ServletRequest provides access to the current DispatcherType that can
be used to distinguish between processing the initial request, an async
dispatch, a forward, and other dispatcher types.

With the above in mind, the following is the sequence of events for async request
processing with a Callable:

	
Controller returns a Callable.

	
Spring MVC starts asynchronous processing and submits the Callable to
a TaskExecutor for processing in a separate thread.

	
The DispatcherServlet and all Filter’s exit the Servlet container thread
but the response remains open.

	
The Callable produces a result and Spring MVC dispatches the request back
to the Servlet container to resume processing.

	
The DispatcherServlet is invoked again and processing resumes with the
asynchronously produced result from the Callable.

The sequence for DeferredResult is very similar except it’s up to the
application to produce the asynchronous result from any thread:

	
Controller returns a DeferredResult and saves it in some in-memory
queue or list where it can be accessed.

	
Spring MVC starts async processing.

	
The DispatcherServlet and all configured Filter’s exit the request
processing thread but the response remains open.

	
The application sets the DeferredResult from some thread and Spring MVC
dispatches the request back to the Servlet container.

	
The DispatcherServlet is invoked again and processing resumes with the
asynchronously produced result.

For further background on the motivation for async request processing and
when or why to use it please read
this
blog post series.

Exception Handling for Async Requests

What happens if a Callable returned from a controller method raises an
Exception while being executed? The short answer is the same as what happens
when a controller method raises an exception. It goes through the regular
exception handling mechanism. The longer explanation is that when a Callable
raises an Exception Spring MVC dispatches to the Servlet container with
the Exception as the result and that leads to resume request processing
with the Exception instead of a controller method return value.
When using a DeferredResult you have a choice whether to call
setResult or setErrorResult with an Exception instance.

Intercepting Async Requests

A HandlerInterceptor can also implement AsyncHandlerInterceptor in order
to implement the afterConcurrentHandlingStarted callback, which is called
instead of postHandle and afterCompletion when asynchronous processing
starts.

A HandlerInterceptor can also register a CallableProcessingInterceptor
or a DeferredResultProcessingInterceptor in order to integrate more
deeply with the lifecycle of an asynchronous request and for example
handle a timeout event. See the Javadoc of AsyncHandlerInterceptor
for more details.

The DeferredResult type also provides methods such as onTimeout(Runnable)
and onCompletion(Runnable). See the Javadoc of DeferredResult for more
details.

When using a Callable you can wrap it with an instance of WebAsyncTask
which also provides registration methods for timeout and completion.

HTTP Streaming

A controller method can use DeferredResult and Callable to produce its
return value asynchronously and that can be used to implement techniques such as
long polling
where the server can push an event to the client as soon as possible.

What if you wanted to push multiple events on a single HTTP response?
This is a technique related to "Long Polling" that is known as "HTTP Streaming".
Spring MVC makes this possible through the ResponseBodyEmitter return value
type which can be used to send multiple Objects, instead of one as is normally
the case with @ResponseBody, where each Object sent is written to the
response with an HttpMessageConverter.

Here is an example of that:

@RequestMapping("/events")
public ResponseBodyEmitter handle() {
 ResponseBodyEmitter emitter = new ResponseBodyEmitter();
 // Save the emitter somewhere..
 return emitter;
}

// In some other thread
emitter.send("Hello once");

// and again later on
emitter.send("Hello again");

// and done at some point
emitter.complete();

Note that ResponseBodyEmitter can also be used as the body in a
ResponseEntity in order to customize the status and headers of
the response.

HTTP Streaming With Server-Sent Events

SseEmitter is a subclass of ResponseBodyEmitter providing support for
Server-Sent Events.
Server-sent events is a just another variation on the same "HTTP Streaming"
technique except events pushed from the server are formatted according to
the W3C Server-Sent Events specification.

Server-Sent Events can be used for their intended purpose, that is to push
events from the server to clients. It is quite easy to do in Spring MVC and
requires simply returning a value of type SseEmitter.

Note however that Internet Explorer does not support Server-Sent Events and
that for more advanced web application messaging scenarios such as online games,
collaboration, financial applicatinos, and others it’s better to consider
Spring’s WebSocket support that includes SockJS-style WebSocket emulation
falling back to a very wide range of browsers (including Internet Explorer)
and also higher-level messaging patterns for interacting with clients through
a publish-subscribe model within a more messaging-centric architecture.
For further background on this see
the following blog post.

HTTP Streaming Directly To The OutputStream

ResponseBodyEmitter allows sending events by writing Objects to the
response through an HttpMessageConverter. This is probably the most common
case, for example when writing JSON data. However sometimes it is useful to
bypass message conversion and write directly to the response OutputStream
for example for a file download. This can be done with the help of the
StreamingResponseBody return value type.

Here is an example of that:

@RequestMapping("/download")
public StreamingResponseBody handle() {
 return new StreamingResponseBody() {
 @Override
 public void writeTo(OutputStream outputStream) throws IOException {
 // write...
 }
 };
}

Note that StreamingResponseBody can also be used as the body in a
ResponseEntity in order to customize the status and headers of
the response.

Configuring Asynchronous Request Processing

Servlet Container Configuration

For applications configured with a web.xml be sure to update to version 3.0:

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
 version="3.0">

 ...

</web-app>

Asynchronous support must be enabled on the DispatcherServlet through the
<async-supported>true</async-supported> sub-element in web.xml. Additionally
any Filter that participates in asyncrequest processing must be configured
to support the ASYNC dispatcher type. It should be safe to enable the ASYNC
dispatcher type for all filters provided with the Spring Framework since they
usually extend OncePerRequestFilter and that has runtime checks for whether
the filter needs to be involved in async dispatches or not.

Below is some example web.xml configuration:

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
 version="3.0">

 <filter>
 <filter-name>Spring OpenEntityManagerInViewFilter</filter-name>
 <filter-class>org.springframework.~.OpenEntityManagerInViewFilter</filter-class>
 <async-supported>true</async-supported>
 </filter>

 <filter-mapping>
 <filter-name>Spring OpenEntityManagerInViewFilter</filter-name>
 <url-pattern>/*</url-pattern>
 <dispatcher>REQUEST</dispatcher>
 <dispatcher>ASYNC</dispatcher>
 </filter-mapping>

</web-app>

If using Servlet 3, Java based configuration for example via WebApplicationInitializer,
you’ll also need to set the "asyncSupported" flag as well as the ASYNC dispatcher type
just like with web.xml. To simplify all this configuration, consider extending
AbstractDispatcherServletInitializer, or better
AbstractAnnotationConfigDispatcherServletInitializer which automatically
set those options and make it very easy to register Filter instances.

Spring MVC Configuration

The MVC Java config and the MVC namespace provide options for configuring
asynchronous request processing. WebMvcConfigurer has the method
configureAsyncSupport while <mvc:annotation-driven> has an
<async-support> sub-element.

Those allow you to configure the default timeout value to use for async requests, which
if not set depends on the underlying Servlet container (e.g. 10 seconds on Tomcat). You
can also configure an AsyncTaskExecutor to use for executing Callable instances
returned from controller methods. It is highly recommended to configure this property
since by default Spring MVC uses SimpleAsyncTaskExecutor. The MVC Java config and the
MVC namespace also allow you to register CallableProcessingInterceptor and
DeferredResultProcessingInterceptor instances.

If you need to override the default timeout value for a specific DeferredResult, you
can do so by using the appropriate class constructor. Similarly, for a Callable, you
can wrap it in a WebAsyncTask and use the appropriate class constructor to customize
the timeout value. The class constructor of WebAsyncTask also allows providing an
AsyncTaskExecutor.

Testing Controllers

The spring-test module offers first class support for testing annotated controllers.
See the section called “Spring MVC Test Framework”.

Handler mappings

In previous versions of Spring, users were required to define one or more
HandlerMapping beans in the web application context to map incoming web requests to
appropriate handlers. With the introduction of annotated controllers, you generally
don’t need to do that because the RequestMappingHandlerMapping automatically looks for
@RequestMapping annotations on all @Controller beans. However, do keep in mind that
all HandlerMapping classes extending from AbstractHandlerMapping have the following
properties that you can use to customize their behavior:

	
interceptors List of interceptors to use. HandlerInterceptors are discussed in
the section called “Intercepting requests with a HandlerInterceptor”.

	
defaultHandler Default handler to use, when this handler mapping does not result in
a matching handler.

	
order Based on the value of the order property (see the
org.springframework.core.Ordered interface), Spring sorts all handler mappings
available in the context and applies the first matching handler.

	
alwaysUseFullPath If true , Spring uses the full path within the current Servlet
context to find an appropriate handler. If false (the default), the path within the
current Servlet mapping is used. For example, if a Servlet is mapped using
/testing/* and the alwaysUseFullPath property is set to true,
/testing/viewPage.html is used, whereas if the property is set to false,
/viewPage.html is used.

	
urlDecode Defaults to true, as of Spring 2.5. If you prefer to compare encoded
paths, set this flag to false. However, the HttpServletRequest always exposes the
Servlet path in decoded form. Be aware that the Servlet path will not match when
compared with encoded paths.

The following example shows how to configure an interceptor:

<beans>
 <bean class="org.springframework.web.servlet.mvc.method.annotation.RequestMappingHandlerMapping">
 <property name="interceptors">
 <bean class="example.MyInterceptor"/>
 </property>
 </bean>
<beans>

Intercepting requests with a HandlerInterceptor

Spring’s handler mapping mechanism includes handler interceptors, which are useful when
you want to apply specific functionality to certain requests, for example, checking for
a principal.

Interceptors located in the handler mapping must implement HandlerInterceptor from the
org.springframework.web.servlet package. This interface defines three methods:
preHandle(..) is called before the actual handler is executed; postHandle(..) is
called after the handler is executed; and afterCompletion(..) is called after
the complete request has finished. These three methods should provide enough
flexibility to do all kinds of preprocessing and postprocessing.

The preHandle(..) method returns a boolean value. You can use this method to break or
continue the processing of the execution chain. When this method returns true, the
handler execution chain will continue; when it returns false, the DispatcherServlet
assumes the interceptor itself has taken care of requests (and, for example, rendered an
appropriate view) and does not continue executing the other interceptors and the actual
handler in the execution chain.

Interceptors can be configured using the interceptors property, which is present on
all HandlerMapping classes extending from AbstractHandlerMapping. This is shown in
the example below:

<beans>
 <bean id="handlerMapping"
 class="org.springframework.web.servlet.mvc.method.annotation.RequestMappingHandlerMapping">
 <property name="interceptors">
 <list>
 <ref bean="officeHoursInterceptor"/>
 </list>
 </property>
 </bean>

 <bean id="officeHoursInterceptor"
 class="samples.TimeBasedAccessInterceptor">
 <property name="openingTime" value="9"/>
 <property name="closingTime" value="18"/>
 </bean>
</beans>

package samples;

public class TimeBasedAccessInterceptor extends HandlerInterceptorAdapter {

 private int openingTime;
 private int closingTime;

 public void setOpeningTime(int openingTime) {
 this.openingTime = openingTime;
 }

 public void setClosingTime(int closingTime) {
 this.closingTime = closingTime;
 }

 public boolean preHandle(HttpServletRequest request, HttpServletResponse response,
 Object handler) throws Exception {
 Calendar cal = Calendar.getInstance();
 int hour = cal.get(HOUR_OF_DAY);
 if (openingTime <= hour && hour < closingTime) {
 return true;
 }
 response.sendRedirect("http://host.com/outsideOfficeHours.html");
 return false;
 }
}

Any request handled by this mapping is intercepted by the TimeBasedAccessInterceptor.
If the current time is outside office hours, the user is redirected to a static HTML
file that says, for example, you can only access the website during office hours.

	[image: [Note]]	Note
	
When using the RequestMappingHandlerMapping the actual handler is an instance of
HandlerMethod which identifies the specific controller method that will be invoked.

As you can see, the Spring adapter class HandlerInterceptorAdapter makes it easier to
extend the HandlerInterceptor interface.

	[image: [Tip]]	Tip
	
In the example above, the configured interceptor will apply to all requests handled with
annotated controller methods. If you want to narrow down the URL paths to which an
interceptor applies, you can use the MVC namespace or the MVC Java config, or declare
bean instances of type MappedInterceptor to do that. See the section called “Enabling the MVC Java Config or the MVC XML Namespace”.

Note that the postHandle method of HandlerInterceptor is not always ideally suited for
use with @ResponseBody and ResponseEntity methods. In such cases an HttpMessageConverter
writes to and commits the response before postHandle is called which makes it impossible
to change the response, for example to add a header. Instead an application can implement
ResponseBodyAdvice and either declare it as an @ControllerAdvice bean or configure it
directly on RequestMappingHandlerAdapter.

Resolving views

All MVC frameworks for web applications provide a way to address views. Spring provides
view resolvers, which enable you to render models in a browser without tying you to a
specific view technology. Out of the box, Spring enables you to use JSPs, Velocity
templates and XSLT views, for example. See Chapter 23, View Technologies for a discussion of how to integrate
and use a number of disparate view technologies.

The two interfaces that are important to the way Spring handles views are ViewResolver
and View. The ViewResolver provides a mapping between view names and actual views.
The View interface addresses the preparation of the request and hands the request over
to one of the view technologies.

Resolving views with the ViewResolver interface

As discussed in the section called “Implementing Controllers”, all handler methods in the Spring Web MVC
controllers must resolve to a logical view name, either explicitly (e.g., by returning a
String, View, or ModelAndView) or implicitly (i.e., based on conventions). Views
in Spring are addressed by a logical view name and are resolved by a view resolver.
Spring comes with quite a few view resolvers. This table lists most of them; a couple of
examples follow.

Table 22.3. View resolvers

	ViewResolver	Description
	AbstractCachingViewResolver
	Abstract view resolver that caches views. Often views need preparation before they can
 be used; extending this view resolver provides caching.

	XmlViewResolver
	Implementation of ViewResolver that accepts a configuration file written in XML with
 the same DTD as Spring’s XML bean factories. The default configuration file is
 /WEB-INF/views.xml.

	ResourceBundleViewResolver
	Implementation of ViewResolver that uses bean definitions in a ResourceBundle,
 specified by the bundle base name. Typically you define the bundle in a properties
 file, located in the classpath. The default file name is views.properties.

	UrlBasedViewResolver
	Simple implementation of the ViewResolver interface that effects the direct
 resolution of logical view names to URLs, without an explicit mapping definition. This
 is appropriate if your logical names match the names of your view resources in a
 straightforward manner, without the need for arbitrary mappings.

	InternalResourceViewResolver
	Convenient subclass of UrlBasedViewResolver that supports InternalResourceView (in
 effect, Servlets and JSPs) and subclasses such as JstlView and TilesView. You can
 specify the view class for all views generated by this resolver by using
 setViewClass(..). See the UrlBasedViewResolver javadocs for details.

	VelocityViewResolver / FreeMarkerViewResolver
	Convenient subclass of UrlBasedViewResolver that supports VelocityView (in effect,
 Velocity templates) or FreeMarkerView ,respectively, and custom subclasses of them.

	ContentNegotiatingViewResolver
	Implementation of the ViewResolver interface that resolves a view based on the
 request file name or Accept header. See the section called “ContentNegotiatingViewResolver”.

As an example, with JSP as a view technology, you can use the UrlBasedViewResolver.
This view resolver translates a view name to a URL and hands the request over to the
RequestDispatcher to render the view.

<bean id="viewResolver"
 class="org.springframework.web.servlet.view.UrlBasedViewResolver">
 <property name="viewClass" value="org.springframework.web.servlet.view.JstlView"/>
 <property name="prefix" value="/WEB-INF/jsp/"/>
 <property name="suffix" value=".jsp"/>
</bean>

When returning test as a logical view name, this view resolver forwards the request to
the RequestDispatcher that will send the request to /WEB-INF/jsp/test.jsp.

When you combine different view technologies in a web application, you can use the
ResourceBundleViewResolver:

<bean id="viewResolver"
 class="org.springframework.web.servlet.view.ResourceBundleViewResolver">
 <property name="basename" value="views"/>
 <property name="defaultParentView" value="parentView"/>
</bean>

The ResourceBundleViewResolver inspects the ResourceBundle identified by the
basename, and for each view it is supposed to resolve, it uses the value of the property
[viewname].(class) as the view class and the value of the property [viewname].url as
the view url. Examples can be found in the next chapter which covers view technologies.
As you can see, you can identify a parent view, from which all views in the properties
file "extend". This way you can specify a default view class, for example.

	[image: [Note]]	Note
	
Subclasses of AbstractCachingViewResolver cache view instances that they resolve.
Caching improves performance of certain view technologies. It’s possible to turn off the
cache by setting the cache property to false. Furthermore, if you must refresh a
certain view at runtime (for example when a Velocity template is modified), you can use
the removeFromCache(String viewName, Locale loc) method.

Chaining ViewResolvers

Spring supports multiple view resolvers. Thus you can chain resolvers and, for example,
override specific views in certain circumstances. You chain view resolvers by adding
more than one resolver to your application context and, if necessary, by setting the
order property to specify ordering. Remember, the higher the order property, the later
the view resolver is positioned in the chain.

In the following example, the chain of view resolvers consists of two resolvers, an
InternalResourceViewResolver, which is always automatically positioned as the last
resolver in the chain, and an XmlViewResolver for specifying Excel views. Excel views
are not supported by the InternalResourceViewResolver.

<bean id="jspViewResolver" class="org.springframework.web.servlet.view.InternalResourceViewResolver">
 <property name="viewClass" value="org.springframework.web.servlet.view.JstlView"/>
 <property name="prefix" value="/WEB-INF/jsp/"/>
 <property name="suffix" value=".jsp"/>
</bean>

<bean id="excelViewResolver" class="org.springframework.web.servlet.view.XmlViewResolver">
 <property name="order" value="1"/>
 <property name="location" value="/WEB-INF/views.xml"/>
</bean>

<!-- in views.xml -->

<beans>
 <bean name="report" class="org.springframework.example.ReportExcelView"/>
</beans>

If a specific view resolver does not result in a view, Spring examines the context for
other view resolvers. If additional view resolvers exist, Spring continues to inspect
them until a view is resolved. If no view resolver returns a view, Spring throws a
ServletException.

The contract of a view resolver specifies that a view resolver can return null to
indicate the view could not be found. Not all view resolvers do this, however, because
in some cases, the resolver simply cannot detect whether or not the view exists. For
example, the InternalResourceViewResolver uses the RequestDispatcher internally, and
dispatching is the only way to figure out if a JSP exists, but this action can only
execute once. The same holds for the VelocityViewResolver and some others. Check the
javadocs of the specific view resolver to see whether it reports non-existing views.
Thus, putting an InternalResourceViewResolver in the chain in a place other than
the last results in the chain not being fully inspected, because the
InternalResourceViewResolver will always return a view!

Redirecting to Views

As mentioned previously, a controller typically returns a logical view name, which a
view resolver resolves to a particular view technology. For view technologies such as
JSPs that are processed through the Servlet or JSP engine, this resolution is usually
handled through the combination of InternalResourceViewResolver and
InternalResourceView, which issues an internal forward or include via the Servlet
API’s RequestDispatcher.forward(..) method or RequestDispatcher.include() method.
For other view technologies, such as Velocity, XSLT, and so on, the view itself writes
the content directly to the response stream.

It is sometimes desirable to issue an HTTP redirect back to the client, before the view
is rendered. This is desirable, for example, when one controller has been called with
POST data, and the response is actually a delegation to another controller (for
example on a successful form submission). In this case, a normal internal forward will
mean that the other controller will also see the same POST data, which is potentially
problematic if it can confuse it with other expected data. Another reason to perform a
redirect before displaying the result is to eliminate the possibility of the user
submitting the form data multiple times. In this scenario, the browser will first send
an initial POST; it will then receive a response to redirect to a different URL; and
finally the browser will perform a subsequent GET for the URL named in the redirect
response. Thus, from the perspective of the browser, the current page does not reflect
the result of a POST but rather of a GET. The end effect is that there is no way the
user can accidentally re- POST the same data by performing a refresh. The refresh
forces a GET of the result page, not a resend of the initial POST data.

RedirectView

One way to force a redirect as the result of a controller response is for the controller
to create and return an instance of Spring’s RedirectView. In this case,
DispatcherServlet does not use the normal view resolution mechanism. Rather because it
has been given the (redirect) view already, the DispatcherServlet simply instructs the
view to do its work. The RedirectView in turn calls HttpServletResponse.sendRedirect()
to send an HTTP redirect to the client browser.

If you use RedirectView and the view is created by the controller itself, it is
recommended that you configure the redirect URL to be injected into the controller so
that it is not baked into the controller but configured in the context along with the
view names. The the section called “The redirect: prefix” facilitates this decoupling.

Passing Data To the Redirect Target

By default all model attributes are considered to be exposed as URI template variables in
the redirect URL. Of the remaining attributes those that are primitive types or
collections/arrays of primitive types are automatically appended as query parameters.

Appending primitive type attributes as query parameters may be the desired result if a
model instance was prepared specifically for the redirect. However, in annotated
controllers the model may contain additional attributes added for rendering purposes (e.g.
drop-down field values). To avoid the possibility of having such attributes appear in the
URL, an @RequestMapping method can declare an argument of type RedirectAttributes and
use it to specify the exact attributes to make available to RedirectView. If the method
does redirect, the content of RedirectAttributes is used. Otherwise the content of the
model is used.

The RequestMappingHandlerAdapter provides a flag called
"ignoreDefaultModelOnRedirect" that can be used to indicate the content of the default
Model should never be used if a controller method redirects. Instead the controller
method should declare an attribute of type RedirectAttributes or if it doesn’t do so
no attributes should be passed on to RedirectView. Both the MVC namespace and the MVC
Java config keep this flag set to false in order to maintain backwards compatibility.
However, for new applications we recommend setting it to true

Note that URI template variables from the present request are automatically made
available when expanding a redirect URL and do not need to be added explicitly neither
through Model nor RedirectAttributes. For example:

@PostMapping("/files/{path}")
public String upload(...) {
 // ...
 return "redirect:files/{path}";
}

Another way of passing data to the redirect target is via Flash Attributes. Unlike
other redirect attributes, flash attributes are saved in the HTTP session (and hence do
not appear in the URL). See the section called “Using flash attributes” for more information.

The redirect: prefix

While the use of RedirectView works fine, if the controller itself creates the
RedirectView, there is no avoiding the fact that the controller is aware that a
redirection is happening. This is really suboptimal and couples things too tightly. The
controller should not really care about how the response gets handled. In general it
should operate only in terms of view names that have been injected into it.

The special redirect: prefix allows you to accomplish this. If a view name is returned
that has the prefix redirect:, the UrlBasedViewResolver (and all subclasses) will
recognize this as a special indication that a redirect is needed. The rest of the view
name will be treated as the redirect URL.

The net effect is the same as if the controller had returned a RedirectView, but now
the controller itself can simply operate in terms of logical view names. A logical view
name such as redirect:/myapp/some/resource will redirect relative to the current
Servlet context, while a name such as redirect:http://myhost.com/some/arbitrary/path
will redirect to an absolute URL.

Note that the controller handler is annotated with the @ResponseStatus, the annotation
value takes precedence over the response status set by RedirectView.

The forward: prefix

It is also possible to use a special forward: prefix for view names that are
ultimately resolved by UrlBasedViewResolver and subclasses. This creates an
InternalResourceView (which ultimately does a RequestDispatcher.forward()) around
the rest of the view name, which is considered a URL. Therefore, this prefix is not
useful with InternalResourceViewResolver and InternalResourceView (for JSPs for
example). But the prefix can be helpful when you are primarily using another view
technology, but still want to force a forward of a resource to be handled by the
Servlet/JSP engine. (Note that you may also chain multiple view resolvers, instead.)

As with the redirect: prefix, if the view name with the forward: prefix is injected
into the controller, the controller does not detect that anything special is happening
in terms of handling the response.

ContentNegotiatingViewResolver

The ContentNegotiatingViewResolver does not resolve views itself but rather delegates
to other view resolvers, selecting the view that resembles the representation requested
by the client. Two strategies exist for a client to request a representation from the
server:

	
Use a distinct URI for each resource, typically by using a different file extension in
the URI. For example, the URI http://www.example.com/users/fred.pdf requests a PDF
representation of the user fred, and http://www.example.com/users/fred.xml requests
an XML representation.

	
Use the same URI for the client to locate the resource, but set the Accept HTTP
request header to list the media
types that it understands. For example, an HTTP request for
http://www.example.com/users/fred with an Accept header set to application/pdf
requests a PDF representation of the user fred, while
http://www.example.com/users/fred with an Accept header set to text/xml requests
an XML representation. This strategy is known as
content negotiation.

	[image: [Note]]	Note
	
One issue with the Accept header is that it is impossible to set it in a web browser
within HTML. For example, in Firefox, it is fixed to:

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

For this reason it is common to see the use of a distinct URI for each representation
when developing browser based web applications.

To support multiple representations of a resource, Spring provides the
ContentNegotiatingViewResolver to resolve a view based on the file extension or
Accept header of the HTTP request. ContentNegotiatingViewResolver does not perform
the view resolution itself but instead delegates to a list of view resolvers that you
specify through the bean property ViewResolvers.

The ContentNegotiatingViewResolver selects an appropriate View to handle the request
by comparing the request media type(s) with the media type (also known as
Content-Type) supported by the View associated with each of its ViewResolvers. The
first View in the list that has a compatible Content-Type returns the representation
to the client. If a compatible view cannot be supplied by the ViewResolver chain, then
the list of views specified through the DefaultViews property will be consulted. This
latter option is appropriate for singleton Views that can render an appropriate
representation of the current resource regardless of the logical view name. The Accept
header may include wild cards, for example text/*, in which case a View whose
Content-Type was text/xml is a compatible match.

To support custom resolution of a view based on a file extension, use a
ContentNegotiationManager: see the section called “Content Negotiation”.

Here is an example configuration of a ContentNegotiatingViewResolver:

<bean class="org.springframework.web.servlet.view.ContentNegotiatingViewResolver">
 <property name="viewResolvers">
 <list>
 <bean class="org.springframework.web.servlet.view.BeanNameViewResolver"/>
 <bean class="org.springframework.web.servlet.view.InternalResourceViewResolver">
 <property name="prefix" value="/WEB-INF/jsp/"/>
 <property name="suffix" value=".jsp"/>
 </bean>
 </list>
 </property>
 <property name="defaultViews">
 <list>
 <bean class="org.springframework.web.servlet.view.json.MappingJackson2JsonView"/>
 </list>
 </property>
</bean>

<bean id="content" class="com.foo.samples.rest.SampleContentAtomView"/>

The InternalResourceViewResolver handles the translation of view names and JSP pages,
while the BeanNameViewResolver returns a view based on the name of a bean. (See
"Resolving views with the ViewResolver interface" for more
details on how Spring looks up and instantiates a view.) In this example, the content
bean is a class that inherits from AbstractAtomFeedView, which returns an Atom RSS
feed. For more information on creating an Atom Feed representation, see the section Atom
Views.

In the above configuration, if a request is made with an .html extension, the view
resolver looks for a view that matches the text/html media type. The
InternalResourceViewResolver provides the matching view for text/html. If the
request is made with the file extension .atom, the view resolver looks for a view that
matches the application/atom+xml media type. This view is provided by the
BeanNameViewResolver that maps to the SampleContentAtomView if the view name
returned is content. If the request is made with the file extension .json, the
MappingJackson2JsonView instance from the DefaultViews list will be selected
regardless of the view name. Alternatively, client requests can be made without a file
extension but with the Accept header set to the preferred media-type, and the same
resolution of request to views would occur.

	[image: [Note]]	Note
	
If `ContentNegotiatingViewResolver’s list of ViewResolvers is not configured
explicitly, it automatically uses any ViewResolvers defined in the application context.

The corresponding controller code that returns an Atom RSS feed for a URI of the form
http://localhost/content.atom or http://localhost/content with an Accept header of
application/atom+xml is shown below.

@Controller
public class ContentController {

 private List<SampleContent> contentList = new ArrayList<SampleContent>();

 @GetMapping("/content")
 public ModelAndView getContent() {
 ModelAndView mav = new ModelAndView();
 mav.setViewName("content");
 mav.addObject("sampleContentList", contentList);
 return mav;
 }

}

Using flash attributes

Flash attributes provide a way for one request to store attributes intended for use in
another. This is most commonly needed when redirecting — for example, the
Post/Redirect/Get pattern. Flash attributes are saved temporarily before the
redirect (typically in the session) to be made available to the request after the
redirect and removed immediately.

Spring MVC has two main abstractions in support of flash attributes. FlashMap is used
to hold flash attributes while FlashMapManager is used to store, retrieve, and manage
FlashMap instances.

Flash attribute support is always "on" and does not need to enabled explicitly although
if not used, it never causes HTTP session creation. On each request there is an "input"
FlashMap with attributes passed from a previous request (if any) and an "output"
FlashMap with attributes to save for a subsequent request. Both FlashMap instances
are accessible from anywhere in Spring MVC through static methods in
RequestContextUtils.

Annotated controllers typically do not need to work with FlashMap directly. Instead an
@RequestMapping method can accept an argument of type RedirectAttributes and use it
to add flash attributes for a redirect scenario. Flash attributes added via
RedirectAttributes are automatically propagated to the "output" FlashMap. Similarly,
after the redirect, attributes from the "input" FlashMap are automatically added to the
Model of the controller serving the target URL.

Matching requests to flash attributes

The concept of flash attributes exists in many other Web frameworks and has proven to be
exposed sometimes to concurrency issues. This is because by definition flash attributes
are to be stored until the next request. However the very "next" request may not be the
intended recipient but another asynchronous request (e.g. polling or resource requests)
in which case the flash attributes are removed too early.

To reduce the possibility of such issues, RedirectView automatically "stamps"
FlashMap instances with the path and query parameters of the target redirect URL. In
turn the default FlashMapManager matches that information to incoming requests when
looking up the "input" FlashMap.

This does not eliminate the possibility of a concurrency issue entirely but nevertheless
reduces it greatly with information that is already available in the redirect URL.
Therefore the use of flash attributes is recommended mainly for redirect scenarios .

Building URIs

Spring MVC provides a mechanism for building and encoding a URI using
UriComponentsBuilder and UriComponents.

For example you can expand and encode a URI template string:

UriComponents uriComponents = UriComponentsBuilder.fromUriString(
 "http://example.com/hotels/{hotel}/bookings/{booking}").build();

URI uri = uriComponents.expand("42", "21").encode().toUri();

Note that UriComponents is immutable and the expand() and encode() operations
return new instances if necessary.

You can also expand and encode using individual URI components:

UriComponents uriComponents = UriComponentsBuilder.newInstance()
 .scheme("http").host("example.com").path("/hotels/{hotel}/bookings/{booking}").build()
 .expand("42", "21")
 .encode();

In a Servlet environment the ServletUriComponentsBuilder subclass provides static
factory methods to copy available URL information from a Servlet requests:

HttpServletRequest request = ...

// Re-use host, scheme, port, path and query string
// Replace the "accountId" query param

ServletUriComponentsBuilder ucb = ServletUriComponentsBuilder.fromRequest(request)
 .replaceQueryParam("accountId", "{id}").build()
 .expand("123")
 .encode();

Alternatively, you may choose to copy a subset of the available information up to and
including the context path:

// Re-use host, port and context path
// Append "/accounts" to the path

ServletUriComponentsBuilder ucb = ServletUriComponentsBuilder.fromContextPath(request)
 .path("/accounts").build()

Or in cases where the DispatcherServlet is mapped by name (e.g. /main/*), you can
also have the literal part of the servlet mapping included:

// Re-use host, port, context path
// Append the literal part of the servlet mapping to the path
// Append "/accounts" to the path

ServletUriComponentsBuilder ucb = ServletUriComponentsBuilder.fromServletMapping(request)
 .path("/accounts").build()

Building URIs to Controllers and methods

Spring MVC provides a mechanism to prepare links to controller methods. For example,
the following MVC controller easily allows for link creation:

@Controller
@RequestMapping("/hotels/{hotel}")
public class BookingController {

 @GetMapping("/bookings/{booking}")
 public ModelAndView getBooking(@PathVariable Long booking) {
 // ...
 }
}

You can prepare a link by referring to the method by name:

UriComponents uriComponents = MvcUriComponentsBuilder
 .fromMethodName(BookingController.class, "getBooking", 21).buildAndExpand(42);

URI uri = uriComponents.encode().toUri();

In the above example we provided actual method argument values, in this case the long value 21,
to be used as a path variable and inserted into the URL. Furthermore, we provided the
value 42 in order to fill in any remaining URI variables such as the "hotel" variable inherited
from the type-level request mapping. If the method had more arguments you can supply null for
arguments not needed for the URL. In general only @PathVariable and @RequestParam arguments
are relevant for constructing the URL.

There are additional ways to use MvcUriComponentsBuilder. For example you can use a technique
akin to mock testing through proxies to avoid referring to the controller method by name
(the example assumes static import of MvcUriComponentsBuilder.on):

UriComponents uriComponents = MvcUriComponentsBuilder
 .fromMethodCall(on(BookingController.class).getBooking(21)).buildAndExpand(42);

URI uri = uriComponents.encode().toUri();

	[image: [Note]]	Note
	
Controller method signatures are limited in their design when supposed to be usable for
link creation with fromMethodCall. Aside from needing a proper parameter signature,
there is a technical limitation on the return type: namely generating a runtime proxy
for link builder invocations, so the return type must not be final. In particular,
the common String return type for view names does not work here; use ModelAndView
or even plain Object (with a String return value) instead.

The above examples use static methods in MvcUriComponentsBuilder. Internally they rely
on ServletUriComponentsBuilder to prepare a base URL from the scheme, host, port,
context path and servlet path of the current request. This works well in most cases,
however sometimes it may be insufficient. For example you may be outside the context of
a request (e.g. a batch process that prepares links) or perhaps you need to insert a path
prefix (e.g. a locale prefix that was removed from the request path and needs to be
re-inserted into links).

For such cases you can use the static "fromXxx" overloaded methods that accept a
UriComponentsBuilder to use base URL. Or you can create an instance of MvcUriComponentsBuilder
with a base URL and then use the instance-based "withXxx" methods. For example:

UriComponentsBuilder base = ServletUriComponentsBuilder.fromCurrentContextPath().path("/en");
MvcUriComponentsBuilder builder = MvcUriComponentsBuilder.relativeTo(base);
builder.withMethodCall(on(BookingController.class).getBooking(21)).buildAndExpand(42);

URI uri = uriComponents.encode().toUri();

Working with "Forwarded" and "X-Forwarded-*" Headers

As a request goes through proxies such as load balancers the host, port, and
scheme may change presenting a challenge for applications that need to create links
to resources since the links should reflect the host, port, and scheme of the
original request as seen from a client perspective.

RFC 7239 defines the "Forwarded" HTTP header
for proxies to use to provide information about the original request. There are also
other non-standard headers in use such as "X-Forwarded-Host", "X-Forwarded-Port",
and "X-Forwarded-Proto".

Both ServletUriComponentsBuilder and MvcUriComponentsBuilder detect, extract, and use
information from the "Forwarded" header, or from "X-Forwarded-Host", "X-Forwarded-Port",
and "X-Forwarded-Proto" if "Forwarded" is not present, so that the resulting links reflect
the original request.

The ForwardedHeaderFilter provides an alternative to do the same once and globally for
the entire application. The filter wraps the request in order to overlay host, port, and
scheme information and also "hides" any forwarded headers for subsequent processing.

Note that there are security considerations when using forwarded headers as explained
in Section 8 of RFC 7239. At the application level it is difficult to determine whether
forwarded headers can be trusted or not. This is why the network upstream should be
configured correctly to filter out untrusted forwarded headers from the outside.

Applications that don’t have a proxy and don’t need to use forwarded headers can
configure the ForwardedHeaderFilter to remove and ignore such headers.

Building URIs to Controllers and methods from views

You can also build links to annotated controllers from views such as JSP, Thymeleaf,
FreeMarker. This can be done using the fromMappingName method in MvcUriComponentsBuilder
which refers to mappings by name.

Every @RequestMapping is assigned a default name based on the capital letters of the
class and the full method name. For example, the method getFoo in class FooController
is assigned the name "FC#getFoo". This strategy can be replaced or customized by creating
an instance of HandlerMethodMappingNamingStrategy and plugging it into your
RequestMappingHandlerMapping. The default strategy implementation also looks at the
name attribute on @RequestMapping and uses that if present. That means if the default
mapping name assigned conflicts with another (e.g. overloaded methods) you can assign
a name explicitly on the @RequestMapping.

	[image: [Note]]	Note
	
The assigned request mapping names are logged at TRACE level on startup.

The Spring JSP tag library provides a function called mvcUrl that can be used to
prepare links to controller methods based on this mechanism.

For example given:

@RequestMapping("/people/{id}/addresses")
public class PersonAddressController {

 @RequestMapping("/{country}")
 public HttpEntity getAddress(@PathVariable String country) { ... }
}

You can prepare a link from a JSP as follows:

<%@ taglib uri="http://www.springframework.org/tags" prefix="s" %>
...
Get Address

The above example relies on the mvcUrl JSP function declared in the Spring tag library
(i.e. META-INF/spring.tld). For more advanced cases (e.g. a custom base URL as explained
in the previous section), it is easy to define your own function, or use a custom tag file,
in order to use a specific instance of MvcUriComponentsBuilder with a custom base URL.

Using locales

Most parts of Spring’s architecture support internationalization, just as the Spring web
MVC framework does. DispatcherServlet enables you to automatically resolve messages
using the client’s locale. This is done with LocaleResolver objects.

When a request comes in, the DispatcherServlet looks for a locale resolver, and if it
finds one it tries to use it to set the locale. Using the RequestContext.getLocale()
method, you can always retrieve the locale that was resolved by the locale resolver.

In addition to automatic locale resolution, you can also attach an interceptor to the
handler mapping (see the section called “Intercepting requests with a HandlerInterceptor” for more information on handler
mapping interceptors) to change the locale under specific circumstances, for example,
based on a parameter in the request.

Locale resolvers and interceptors are defined in the
org.springframework.web.servlet.i18n package and are configured in your application
context in the normal way. Here is a selection of the locale resolvers included in
Spring.

Obtaining Time Zone Information

In addition to obtaining the client’s locale, it is often useful to know their time zone.
The LocaleContextResolver interface offers an extension to LocaleResolver that allows
resolvers to provide a richer LocaleContext, which may include time zone information.

When available, the user’s TimeZone can be obtained using the
RequestContext.getTimeZone() method. Time zone information will automatically be used
by Date/Time Converter and Formatter objects registered with Spring’s
ConversionService.

AcceptHeaderLocaleResolver

This locale resolver inspects the accept-language header in the request that was sent
by the client (e.g., a web browser). Usually this header field contains the locale of
the client’s operating system. Note that this resolver does not support time zone
information.

CookieLocaleResolver

This locale resolver inspects a Cookie that might exist on the client to see if a
Locale or TimeZone is specified. If so, it uses the specified details. Using the
properties of this locale resolver, you can specify the name of the cookie as well as the
maximum age. Find below an example of defining a CookieLocaleResolver.

<bean id="localeResolver" class="org.springframework.web.servlet.i18n.CookieLocaleResolver">

 <property name="cookieName" value="clientlanguage"/>

 <!-- in seconds. If set to -1, the cookie is not persisted (deleted when browser shuts down) -->
 <property name="cookieMaxAge" value="100000"/>

</bean>

Table 22.4. CookieLocaleResolver properties

	Property	Default	Description
	cookieName
	classname + LOCALE
	The name of the cookie

	cookieMaxAge
	Servlet container default
	The maximum time a cookie will stay persistent on the client. If -1 is specified, the
 cookie will not be persisted; it will only be available until the client shuts down
 their browser.

	cookiePath
	/
	Limits the visibility of the cookie to a certain part of your site. When cookiePath is
 specified, the cookie will only be visible to that path and the paths below it.

SessionLocaleResolver

The SessionLocaleResolver allows you to retrieve Locale and TimeZone from the
session that might be associated with the user’s request. In contrast to
CookieLocaleResolver, this strategy stores locally chosen locale settings in the
Servlet container’s HttpSession. As a consequence, those settings are just temporary
for each session and therefore lost when each session terminates.

Note that there is no direct relationship with external session management mechanisms
such as the Spring Session project. This SessionLocaleResolver will simply evaluate and
modify corresponding HttpSession attributes against the current HttpServletRequest.

LocaleChangeInterceptor

You can enable changing of locales by adding the LocaleChangeInterceptor to one of the
handler mappings (see the section called “Handler mappings”). It will detect a parameter in the request
and change the locale. It calls setLocale() on the LocaleResolver that also exists
in the context. The following example shows that calls to all *.view resources
containing a parameter named siteLanguage will now change the locale. So, for example,
a request for the following URL, http://www.sf.net/home.view?siteLanguage=nl will
change the site language to Dutch.

<bean id="localeChangeInterceptor"
 class="org.springframework.web.servlet.i18n.LocaleChangeInterceptor">
 <property name="paramName" value="siteLanguage"/>
</bean>

<bean id="localeResolver"
 class="org.springframework.web.servlet.i18n.CookieLocaleResolver"/>

<bean id="urlMapping"
 class="org.springframework.web.servlet.handler.SimpleUrlHandlerMapping">
 <property name="interceptors">
 <list>
 <ref bean="localeChangeInterceptor"/>
 </list>
 </property>
 <property name="mappings">
 <value>/**/*.view=someController</value>
 </property>
</bean>

Using themes

Overview of themes

You can apply Spring Web MVC framework themes to set the overall look-and-feel of your
application, thereby enhancing user experience. A theme is a collection of static
resources, typically style sheets and images, that affect the visual style of the
application.

Defining themes

To use themes in your web application, you must set up an implementation of the
org.springframework.ui.context.ThemeSource interface. The WebApplicationContext
interface extends ThemeSource but delegates its responsibilities to a dedicated
implementation. By default the delegate will be an
org.springframework.ui.context.support.ResourceBundleThemeSource implementation that
loads properties files from the root of the classpath. To use a custom ThemeSource
implementation or to configure the base name prefix of the ResourceBundleThemeSource,
you can register a bean in the application context with the reserved name themeSource.
The web application context automatically detects a bean with that name and uses it.

When using the ResourceBundleThemeSource, a theme is defined in a simple properties
file. The properties file lists the resources that make up the theme. Here is an example:

styleSheet=/themes/cool/style.css
background=/themes/cool/img/coolBg.jpg

The keys of the properties are the names that refer to the themed elements from view
code. For a JSP, you typically do this using the spring:theme custom tag, which is
very similar to the spring:message tag. The following JSP fragment uses the theme
defined in the previous example to customize the look and feel:

<%@ taglib prefix="spring" uri="http://www.springframework.org/tags"%>
<html>
 <head>
 <link rel="stylesheet" href="<spring:theme code='styleSheet'/>" type="text/css"/>
 </head>
 <body style="background=<spring:theme code='background'/>">
 ...
 </body>
</html>

By default, the ResourceBundleThemeSource uses an empty base name prefix. As a result,
the properties files are loaded from the root of the classpath. Thus you would put the
cool.properties theme definition in a directory at the root of the classpath, for
example, in /WEB-INF/classes. The ResourceBundleThemeSource uses the standard Java
resource bundle loading mechanism, allowing for full internationalization of themes. For
example, we could have a /WEB-INF/classes/cool_nl.properties that references a special
background image with Dutch text on it.

Theme resolvers

After you define themes, as in the preceding section, you decide which theme to use. The
DispatcherServlet will look for a bean named themeResolver to find out which
ThemeResolver implementation to use. A theme resolver works in much the same way as a
LocaleResolver. It detects the theme to use for a particular request and can also
alter the request’s theme. The following theme resolvers are provided by Spring:

Table 22.5. ThemeResolver implementations

	Class	Description
	FixedThemeResolver
	Selects a fixed theme, set using the defaultThemeName property.

	SessionThemeResolver
	The theme is maintained in the user’s HTTP session. It only needs to be set once for
 each session, but is not persisted between sessions.

	CookieThemeResolver
	The selected theme is stored in a cookie on the client.

Spring also provides a ThemeChangeInterceptor that allows theme changes on every
request with a simple request parameter.

Spring’s multipart (file upload) support

Introduction

Spring’s built-in multipart support handles file uploads in web applications. You enable
this multipart support with pluggable MultipartResolver objects, defined in the
org.springframework.web.multipart package. Spring provides one MultipartResolver
implementation for use with Commons
FileUpload and another for use with Servlet 3.0 multipart request parsing.

By default, Spring does no multipart handling, because some developers want to handle
multiparts themselves. You enable Spring multipart handling by adding a multipart
resolver to the web application’s context. Each request is inspected to see if it
contains a multipart. If no multipart is found, the request continues as expected. If a
multipart is found in the request, the MultipartResolver that has been declared in
your context is used. After that, the multipart attribute in your request is treated
like any other attribute.

Using a MultipartResolver with Commons FileUpload

The following example shows how to use the CommonsMultipartResolver:

<bean id="multipartResolver"
 class="org.springframework.web.multipart.commons.CommonsMultipartResolver">

 <!-- one of the properties available; the maximum file size in bytes -->
 <property name="maxUploadSize" value="100000"/>

</bean>

Of course you also need to put the appropriate jars in your classpath for the multipart
resolver to work. In the case of the CommonsMultipartResolver, you need to use
commons-fileupload.jar.

When the Spring DispatcherServlet detects a multi-part request, it activates the
resolver that has been declared in your context and hands over the request. The resolver
then wraps the current HttpServletRequest into a MultipartHttpServletRequest that
supports multipart file uploads. Using the MultipartHttpServletRequest, you can get
information about the multiparts contained by this request and actually get access to
the multipart files themselves in your controllers.

Using a MultipartResolver with Servlet 3.0

In order to use Servlet 3.0 based multipart parsing, you need to mark the
DispatcherServlet with a "multipart-config" section in web.xml, or with a
javax.servlet.MultipartConfigElement in programmatic Servlet registration, or in case
of a custom Servlet class possibly with a javax.servlet.annotation.MultipartConfig
annotation on your Servlet class. Configuration settings such as maximum sizes or
storage locations need to be applied at that Servlet registration level as Servlet 3.0
does not allow for those settings to be done from the MultipartResolver.

Once Servlet 3.0 multipart parsing has been enabled in one of the above mentioned ways
you can add the StandardServletMultipartResolver to your Spring configuration:

<bean id="multipartResolver"
 class="org.springframework.web.multipart.support.StandardServletMultipartResolver">
</bean>

Handling a file upload in a form

After the MultipartResolver completes its job, the request is processed like any
other. First, create a form with a file input that will allow the user to upload a form.
The encoding attribute (enctype="multipart/form-data") lets the browser know how to
encode the form as multipart request:

<html>
 <head>
 <title>Upload a file please</title>
 </head>
 <body>
 <h1>Please upload a file</h1>
 <form method="post" action="/form" enctype="multipart/form-data">
 <input type="text" name="name"/>
 <input type="file" name="file"/>
 <input type="submit"/>
 </form>
 </body>
</html>

The next step is to create a controller that handles the file upload. This controller is
very similar to a normal annotated @Controller, except that we
use MultipartHttpServletRequest or MultipartFile in the method parameters:

@Controller
public class FileUploadController {

 @PostMapping("/form")
 public String handleFormUpload(@RequestParam("name") String name,
 @RequestParam("file") MultipartFile file) {

 if (!file.isEmpty()) {
 byte[] bytes = file.getBytes();
 // store the bytes somewhere
 return "redirect:uploadSuccess";
 }

 return "redirect:uploadFailure";
 }

}

Note how the @RequestParam method parameters map to the input elements declared in the
form. In this example, nothing is done with the byte[], but in practice you can save
it in a database, store it on the file system, and so on.

When using Servlet 3.0 multipart parsing you can also use javax.servlet.http.Part for
the method parameter:

@Controller
public class FileUploadController {

 @PostMapping("/form")
 public String handleFormUpload(@RequestParam("name") String name,
 @RequestParam("file") Part file) {

 InputStream inputStream = file.getInputStream();
 // store bytes from uploaded file somewhere

 return "redirect:uploadSuccess";
 }

}

Handling a file upload request from programmatic clients

Multipart requests can also be submitted from non-browser clients in a RESTful service
scenario. All of the above examples and configuration apply here as well. However,
unlike browsers that typically submit files and simple form fields, a programmatic
client can also send more complex data of a specific content type — for example a
multipart request with a file and second part with JSON formatted data:

POST /someUrl
Content-Type: multipart/mixed

--edt7Tfrdusa7r3lNQc79vXuhIIMlatb7PQg7Vp
Content-Disposition: form-data; name="meta-data"
Content-Type: application/json; charset=UTF-8
Content-Transfer-Encoding: 8bit

{
	"name": "value"
}
--edt7Tfrdusa7r3lNQc79vXuhIIMlatb7PQg7Vp
Content-Disposition: form-data; name="file-data"; filename="file.properties"
Content-Type: text/xml
Content-Transfer-Encoding: 8bit
... File Data ...

You could access the part named "meta-data" with a @RequestParam("meta-data") String
metadata controller method argument. However, you would probably prefer to accept a
strongly typed object initialized from the JSON formatted data in the body of the
request part, very similar to the way @RequestBody converts the body of a
non-multipart request to a target object with the help of an HttpMessageConverter.

You can use the @RequestPart annotation instead of the @RequestParam annotation for
this purpose. It allows you to have the content of a specific multipart passed through
an HttpMessageConverter taking into consideration the 'Content-Type' header of the
multipart:

@PostMapping("/someUrl")
public String onSubmit(@RequestPart("meta-data") MetaData metadata,
 @RequestPart("file-data") MultipartFile file) {

 // ...

}

Notice how MultipartFile method arguments can be accessed with @RequestParam or with
@RequestPart interchangeably. However, the @RequestPart("meta-data") MetaData method
argument in this case is read as JSON content based on its 'Content-Type' header and
converted with the help of the MappingJackson2HttpMessageConverter.

Handling exceptions

HandlerExceptionResolver

Spring HandlerExceptionResolver implementations deal with unexpected exceptions that
occur during controller execution. A HandlerExceptionResolver somewhat resembles the
exception mappings you can define in the web application descriptor web.xml. However,
they provide a more flexible way to do so. For example they provide information about
which handler was executing when the exception was thrown. Furthermore, a programmatic
way of handling exceptions gives you more options for responding appropriately before
the request is forwarded to another URL (the same end result as when you use the Servlet
specific exception mappings).

Besides implementing the HandlerExceptionResolver interface, which is only a matter of
implementing the resolveException(Exception, Handler) method and returning a
ModelAndView, you may also use the provided SimpleMappingExceptionResolver or create
@ExceptionHandler methods. The SimpleMappingExceptionResolver enables you to take
the class name of any exception that might be thrown and map it to a view name. This is
functionally equivalent to the exception mapping feature from the Servlet API, but it is
also possible to implement more finely grained mappings of exceptions from different
handlers. The @ExceptionHandler annotation on the other hand can be used on methods
that should be invoked to handle an exception. Such methods may be defined locally
within an @Controller or may apply to many @Controller classes when defined within an
@ControllerAdvice class. The following sections explain this in more detail.

@ExceptionHandler

The HandlerExceptionResolver interface and the SimpleMappingExceptionResolver
implementations allow you to map Exceptions to specific views declaratively along with
some optional Java logic before forwarding to those views. However, in some cases,
especially when relying on @ResponseBody methods rather than on view resolution, it
may be more convenient to directly set the status of the response and optionally write
error content to the body of the response.

You can do that with @ExceptionHandler methods. When declared within a controller,
such methods apply to exceptions raised by @RequestMapping methods of that controller
(or any of its subclasses). You can also declare an @ExceptionHandler method within
an @ControllerAdvice class in which case it handles exceptions from @RequestMapping
methods from many controllers. Below is an example for a controller-local
@ExceptionHandler method:

@Controller
public class SimpleController {

 // ...

 @ExceptionHandler
 public ResponseEntity<String> handle(IOException ex) {
 // ...
 }
}

The exception may match against a top-level exception being propagated (i.e. a direct
IOException thrown), or against the immediate cause within a top-level wrapper exception
(e.g. an IOException wrapped inside an IllegalStateException).

For matching exception types, preferably declare the target exception as a method argument
as shown above. When multiple exception methods match, a root exception match is generally
preferred to a cause exception match. More specifically, the ExceptionDepthComparator is
used to sort exceptions based on their depth from the thrown exception type.

Alternatively, the @ExceptionHandler value can be set to an array of exception types.
If an exception is thrown that matches one of the types in the list, then the method
annotated with the matching @ExceptionHandler will be invoked. If the annotation value
is not set, then the declared method parameter type will be used for matching.

	[image: [Tip]]	Tip
	
For @ExceptionHandler methods, a root exception match will be preferred to just
matching a cause of the current exception, among the handler methods of a particular
controller or advice bean. However, a cause match on a higher-priority @ControllerAdvice
will still be preferred to a any match (whether root or cause level) on a lower-priority
advice bean. As a consequence, when using a multi-advice arrangement, please declare your
primary root exception mappings on a prioritized advice bean with a corresponding order!

Much like standard controller methods annotated with a @RequestMapping annotation,
the method arguments and return values of @ExceptionHandler methods can be flexible.
For example, the HttpServletRequest can be accessed in Servlet environments and the
PortletRequest in Portlet environments. The return type can be a String, which is
interpreted as a view name, a ModelAndView object, a ResponseEntity, or you can also
add the @ResponseBody to have the method return value converted with message
converters and written to the response stream.

Last but not least, an @ExceptionHandler method implementation may choose to back
out of dealing with a given exception instance by rethrowing it in its original form.
This is useful in scenarios where you are only interested in root-level matches or in
matches within a specific context that cannot be statically determined. A rethrown
exception will be propagated through the remaining resolution chain, just like if
the given @ExceptionHandler method would not have matched in the first place.

Handling Standard Spring MVC Exceptions

Spring MVC may raise a number of exceptions while processing a request. The
SimpleMappingExceptionResolver can easily map any exception to a default error view as
needed. However, when working with clients that interpret responses in an automated way
you will want to set specific status code on the response. Depending on the exception
raised the status code may indicate a client error (4xx) or a server error (5xx).

The DefaultHandlerExceptionResolver translates Spring MVC exceptions to specific error
status codes. It is registered by default with the MVC namespace, the MVC Java config,
and also by the DispatcherServlet (i.e. when not using the MVC namespace or Java
config). Listed below are some of the exceptions handled by this resolver and the
corresponding status codes:

	Exception	HTTP Status Code
	BindException
	400 (Bad Request)

	ConversionNotSupportedException
	500 (Internal Server Error)

	HttpMediaTypeNotAcceptableException
	406 (Not Acceptable)

	HttpMediaTypeNotSupportedException
	415 (Unsupported Media Type)

	HttpMessageNotReadableException
	400 (Bad Request)

	HttpMessageNotWritableException
	500 (Internal Server Error)

	HttpRequestMethodNotSupportedException
	405 (Method Not Allowed)

	MethodArgumentNotValidException
	400 (Bad Request)

	MissingPathVariableException
	500 (Internal Server Error)

	MissingServletRequestParameterException
	400 (Bad Request)

	MissingServletRequestPartException
	400 (Bad Request)

	NoHandlerFoundException
	404 (Not Found)

	NoSuchRequestHandlingMethodException
	404 (Not Found)

	TypeMismatchException
	400 (Bad Request)

The DefaultHandlerExceptionResolver works transparently by setting the status of the
response. However, it stops short of writing any error content to the body of the
response while your application may need to add developer-friendly content to every
error response for example when providing a REST API. You can prepare a ModelAndView
and render error content through view resolution — i.e. by configuring a
ContentNegotiatingViewResolver, MappingJackson2JsonView, and so on. However, you may
prefer to use @ExceptionHandler methods instead.

If you prefer to write error content via @ExceptionHandler methods you can extend
ResponseEntityExceptionHandler instead. This is a convenient base for
@ControllerAdvice classes providing an @ExceptionHandler method to handle standard
Spring MVC exceptions and return ResponseEntity. That allows you to customize the
response and write error content with message converters. See the
ResponseEntityExceptionHandler javadocs for more details.

Annotating Business Exceptions With @ResponseStatus

A business exception can be annotated with @ResponseStatus. When the exception is
raised, the ResponseStatusExceptionResolver handles it by setting the status of the
response accordingly. By default the DispatcherServlet registers the
ResponseStatusExceptionResolver and it is available for use.

Customizing the Default Servlet Container Error Page

When the status of the response is set to an error status code and the body of the
response is empty, Servlet containers commonly render an HTML formatted error page. To
customize the default error page of the container, you can declare an <error-page>
element in web.xml. Up until Servlet 3, that element had to be mapped to a specific
status code or exception type. Starting with Servlet 3 an error page does not need to be
mapped, which effectively means the specified location customizes the default Servlet
container error page.

<error-page>
 <location>/error</location>
</error-page>

Note that the actual location for the error page can be a JSP page or some other URL
within the container including one handled through an @Controller method:

When writing error information, the status code and the error message set on the
HttpServletResponse can be accessed through request attributes in a controller:

@Controller
public class ErrorController {

 @RequestMapping(path = "/error", produces = MediaType.APPLICATION_JSON_UTF8_VALUE)
 @ResponseBody
 public Map<String, Object> handle(HttpServletRequest request) {

 Map<String, Object> map = new HashMap<String, Object>();
 map.put("status", request.getAttribute("javax.servlet.error.status_code"));
 map.put("reason", request.getAttribute("javax.servlet.error.message"));

 return map;
 }

}

or in a JSP:

<%@ page contentType="application/json" pageEncoding="UTF-8"%>
{
 status:<%=request.getAttribute("javax.servlet.error.status_code") %>,
 reason:<%=request.getAttribute("javax.servlet.error.message") %>
}

Web Security

The Spring Security project provides features
to protect web applications from malicious exploits. Check out the reference documentation in the sections on
"CSRF protection",
"Security Response Headers", and also
"Spring MVC Integration".
Note that using Spring Security to secure the application is not necessarily required for all features.
For example CSRF protection can be added simply by adding the CsrfFilter and
CsrfRequestDataValueProcessor to your configuration. See the
Spring MVC Showcase
for an example.

Another option is to use a framework dedicated to Web Security.
HDIV is one such framework and integrates with Spring MVC.

Convention over configuration support

For a lot of projects, sticking to established conventions and having reasonable
defaults is just what they (the projects) need, and Spring Web MVC now has explicit
support for convention over configuration. What this means is that if you establish
a set of naming conventions and suchlike, you can substantially cut down on the
amount of configuration that is required to set up handler mappings, view resolvers,
ModelAndView instances, etc. This is a great boon with regards to rapid prototyping,
and can also lend a degree of (always good-to-have) consistency across a codebase should
you choose to move forward with it into production.

Convention-over-configuration support addresses the three core areas of MVC: models,
views, and controllers.

The Controller ControllerClassNameHandlerMapping

The ControllerClassNameHandlerMapping class is a HandlerMapping implementation that
uses a convention to determine the mapping between request URLs and the Controller
instances that are to handle those requests.

Consider the following simple Controller implementation. Take special notice of the
name of the class.

public class ViewShoppingCartController implements Controller {

 public ModelAndView handleRequest(HttpServletRequest request, HttpServletResponse response) {
 // the implementation is not hugely important for this example...
 }

}

Here is a snippet from the corresponding Spring Web MVC configuration file:

<bean class="org.springframework.web.servlet.mvc.support.ControllerClassNameHandlerMapping"/>

<bean id="viewShoppingCart" class="x.y.z.ViewShoppingCartController">
 <!-- inject dependencies as required... -->
</bean>

The ControllerClassNameHandlerMapping finds all of the various handler (or
Controller) beans defined in its application context and strips Controller off the
name to define its handler mappings. Thus, ViewShoppingCartController maps to the
/viewshoppingcart* request URL.

Let’s look at some more examples so that the central idea becomes immediately familiar.
(Notice all lowercase in the URLs, in contrast to camel-cased Controller class names.)

	
WelcomeController maps to the /welcome* request URL

	
HomeController maps to the /home* request URL

	
IndexController maps to the /index* request URL

	
RegisterController maps to the /register* request URL

In the case of MultiActionController handler classes, the mappings generated are
slightly more complex. The Controller names in the following examples are assumed to
be MultiActionController implementations:

	
AdminController maps to the /admin/* request URL

	
CatalogController maps to the /catalog/* request URL

If you follow the convention of naming your Controller implementations as
xxxController, the ControllerClassNameHandlerMapping saves you the tedium of
defining and maintaining a potentially looooong SimpleUrlHandlerMapping (or
suchlike).

The ControllerClassNameHandlerMapping class extends the AbstractHandlerMapping base
class so you can define HandlerInterceptor instances and everything else just as you
would with many other HandlerMapping implementations.

The Model ModelMap (ModelAndView)

The ModelMap class is essentially a glorified Map that can make adding objects that
are to be displayed in (or on) a View adhere to a common naming convention. Consider
the following Controller implementation; notice that objects are added to the
ModelAndView without any associated name specified.

public class DisplayShoppingCartController implements Controller {

 public ModelAndView handleRequest(HttpServletRequest request, HttpServletResponse response) {

 List cartItems = // get a List of CartItem objects
 User user = // get the User doing the shopping

 ModelAndView mav = new ModelAndView("displayShoppingCart"); <-- the logical view name

 mav.addObject(cartItems); <-- look ma, no name, just the object
 mav.addObject(user); <-- and again ma!

 return mav;
 }
}

The ModelAndView class uses a ModelMap class that is a custom Map implementation
that automatically generates a key for an object when an object is added to it. The
strategy for determining the name for an added object is, in the case of a scalar object
such as User, to use the short class name of the object’s class. The following
examples are names that are generated for scalar objects put into a ModelMap instance.

	
An x.y.User instance added will have the name user generated.

	
An x.y.Registration instance added will have the name registration generated.

	
An x.y.Foo instance added will have the name foo generated.

	
A java.util.HashMap instance added will have the name hashMap generated. You
probably want to be explicit about the name in this case because hashMap is less
than intuitive.

	
Adding null will result in an IllegalArgumentException being thrown. If the object
(or objects) that you are adding could be null, then you will also want to be
explicit about the name.

What, no automatic pluralization?

Spring Web MVC’s convention-over-configuration support does not support automatic
pluralization. That is, you cannot add a List of Person objects to a ModelAndView
and have the generated name be people.

This decision was made after some debate, with the "Principle of Least Surprise" winning
out in the end.

The strategy for generating a name after adding a Set or a List is to peek into the
collection, take the short class name of the first object in the collection, and use
that with List appended to the name. The same applies to arrays although with arrays
it is not necessary to peek into the array contents. A few examples will make the
semantics of name generation for collections clearer:

	
An x.y.User[] array with zero or more x.y.User elements added will have the name
userList generated.

	
An x.y.Foo[] array with zero or more x.y.User elements added will have the name
fooList generated.

	
A java.util.ArrayList with one or more x.y.User elements added will have the name
userList generated.

	
A java.util.HashSet with one or more x.y.Foo elements added will have the name
fooList generated.

	
An empty java.util.ArrayList will not be added at all (in effect, the
addObject(..) call will essentially be a no-op).

Default view name

The RequestToViewNameTranslator interface determines a logical View name when no
such logical view name is explicitly supplied. It has just one implementation, the
DefaultRequestToViewNameTranslator class.

The DefaultRequestToViewNameTranslator maps request URLs to logical view names, as
with this example:

public class RegistrationController implements Controller {

 public ModelAndView handleRequest(HttpServletRequest request, HttpServletResponse response) {
 // process the request...
 ModelAndView mav = new ModelAndView();
 // add data as necessary to the model...
 return mav;
 // notice that no View or logical view name has been set
 }

}

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <!-- this bean with the well known name generates view names for us -->
 <bean id="viewNameTranslator"
 class="org.springframework.web.servlet.view.DefaultRequestToViewNameTranslator"/>

 <bean class="x.y.RegistrationController">
 <!-- inject dependencies as necessary -->
 </bean>

 <!-- maps request URLs to Controller names -->
 <bean class="org.springframework.web.servlet.mvc.support.ControllerClassNameHandlerMapping"/>

 <bean id="viewResolver" class="org.springframework.web.servlet.view.InternalResourceViewResolver">
 <property name="prefix" value="/WEB-INF/jsp/"/>
 <property name="suffix" value=".jsp"/>
 </bean>

</beans>

Notice how in the implementation of the handleRequest(..) method no View or logical
view name is ever set on the ModelAndView that is returned. The
DefaultRequestToViewNameTranslator is tasked with generating a logical view name
from the URL of the request. In the case of the above RegistrationController, which is
used in conjunction with the ControllerClassNameHandlerMapping, a request URL of
http://localhost/registration.html results in a logical view name of registration
being generated by the DefaultRequestToViewNameTranslator. This logical view name is
then resolved into the /WEB-INF/jsp/registration.jsp view by the
InternalResourceViewResolver bean.

	[image: [Tip]]	Tip
	
You do not need to define a DefaultRequestToViewNameTranslator bean explicitly. If you
like the default settings of the DefaultRequestToViewNameTranslator, you can rely on
the Spring Web MVC DispatcherServlet to instantiate an instance of this class if one
is not explicitly configured.

Of course, if you need to change the default settings, then you do need to configure
your own DefaultRequestToViewNameTranslator bean explicitly. Consult the comprehensive
DefaultRequestToViewNameTranslator javadocs for details on the various properties
that can be configured.

HTTP caching support

A good HTTP caching strategy can significantly improve the performance of a web application
and the experience of its clients. The 'Cache-Control' HTTP response header is mostly
responsible for this, along with conditional headers such as 'Last-Modified' and 'ETag'.

The 'Cache-Control' HTTP response header advises private caches (e.g. browsers) and
public caches (e.g. proxies) on how they can cache HTTP responses for further reuse.

An ETag (entity tag) is an HTTP response header
returned by an HTTP/1.1 compliant web server used to determine change in content at a
given URL. It can be considered to be the more sophisticated successor to the
Last-Modified header. When a server returns a representation with an ETag header, the
client can use this header in subsequent GETs, in an If-None-Match header. If the
content has not changed, the server returns 304: Not Modified.

This section describes the different choices available to configure HTTP caching in a
Spring Web MVC application.

Cache-Control HTTP header

Spring Web MVC supports many use cases and ways to configure "Cache-Control" headers for
an application. While RFC 7234 Section 5.2.2
completely describes that header and its possible directives, there are several ways to
address the most common cases.

Spring Web MVC uses a configuration convention in several of its APIs:
setCachePeriod(int seconds):

	
A -1 value won’t generate a 'Cache-Control' response header.

	
A 0 value will prevent caching using the 'Cache-Control: no-store' directive.

	
An n > 0 value will cache the given response for n seconds using the
'Cache-Control: max-age=n' directive.

The CacheControl builder
class simply describes the available "Cache-Control" directives and makes it easier to
build your own HTTP caching strategy. Once built, a CacheControl instance can then be
accepted as an argument in several Spring Web MVC APIs.

// Cache for an hour - "Cache-Control: max-age=3600"
CacheControl ccCacheOneHour = CacheControl.maxAge(1, TimeUnit.HOURS);

// Prevent caching - "Cache-Control: no-store"
CacheControl ccNoStore = CacheControl.noStore();

// Cache for ten days in public and private caches,
// public caches should not transform the response
// "Cache-Control: max-age=864000, public, no-transform"
CacheControl ccCustom = CacheControl.maxAge(10, TimeUnit.DAYS)
 .noTransform().cachePublic();

HTTP caching support for static resources

Static resources should be served with appropriate 'Cache-Control' and conditional
headers for optimal performance.
Configuring a ResourceHttpRequestHandler for serving
static resources not only natively writes 'Last-Modified' headers by reading a file’s
metadata, but also 'Cache-Control' headers if properly configured.

You can set the cachePeriod attribute on a ResourceHttpRequestHandler or use
a CacheControl instance, which supports more specific directives:

@Configuration
@EnableWebMvc
public class WebConfig extends WebMvcConfigurerAdapter {

 @Override
 public void addResourceHandlers(ResourceHandlerRegistry registry) {
 registry.addResourceHandler("/resources/**")
 .addResourceLocations("/public-resources/")
 .setCacheControl(CacheControl.maxAge(1, TimeUnit.HOURS).cachePublic());
 }

}

And in XML:

<mvc:resources mapping="/resources/**" location="/public-resources/">
 <mvc:cache-control max-age="3600" cache-public="true"/>
</mvc:resources>

Support for the Cache-Control, ETag and Last-Modified response headers in Controllers

Controllers can support 'Cache-Control', 'ETag', and/or 'If-Modified-Since' HTTP requests;
this is indeed recommended if a 'Cache-Control' header is to be set on the response.
This involves calculating a lastModified long and/or an Etag value for a given request,
comparing it against the 'If-Modified-Since' request header value, and potentially returning
a response with status code 304 (Not Modified).

As described in the section called “Using HttpEntity”, controllers can interact with the request/response using
HttpEntity types. Controllers returning ResponseEntity can include HTTP caching information
in responses like this:

@GetMapping("/book/{id}")
public ResponseEntity<Book> showBook(@PathVariable Long id) {

 Book book = findBook(id);
 String version = book.getVersion();

 return ResponseEntity
 .ok()
 .cacheControl(CacheControl.maxAge(30, TimeUnit.DAYS))
 .eTag(version) // lastModified is also available
 .body(book);
}

Doing this will not only include 'ETag' and 'Cache-Control' headers in the response, it will also convert the
response to an HTTP 304 Not Modified response with an empty body if the conditional headers sent by the client
match the caching information set by the Controller.

An @RequestMapping method may also wish to support the same behavior.
This can be achieved as follows:

@RequestMapping
public String myHandleMethod(WebRequest webRequest, Model model) {

 long lastModified = // 1. application-specific calculation

 if (request.checkNotModified(lastModified)) {
 // 2. shortcut exit - no further processing necessary
 return null;
 }

 // 3. or otherwise further request processing, actually preparing content
 model.addAttribute(...);
 return "myViewName";
}

There are two key elements here: calling request.checkNotModified(lastModified) and
returning null. The former sets the appropriate response status and headers
before it returns true.
The latter, in combination with the former, causes Spring MVC to do no further
processing of the request.

Note that there are 3 variants for this:

	
request.checkNotModified(lastModified) compares lastModified with the
'If-Modified-Since' or 'If-Unmodified-Since' request header

	
request.checkNotModified(eTag) compares eTag with the 'If-None-Match' request header

	
request.checkNotModified(eTag, lastModified) does both, meaning that both
conditions should be valid

When receiving conditional 'GET'/'HEAD' requests, checkNotModified will check
that the resource has not been modified and if so, it will result in a HTTP 304 Not Modified
response. In case of conditional 'POST'/'PUT'/'DELETE' requests, checkNotModified
will check that the resource has not been modified and if it has been, it will result in a
HTTP 409 Precondition Failed response to prevent concurrent modifications.

Shallow ETag support

Support for ETags is provided by the Servlet filter ShallowEtagHeaderFilter. It is a
plain Servlet Filter, and thus can be used in combination with any web framework. The
ShallowEtagHeaderFilter filter creates so-called shallow ETags (as opposed to deep
ETags, more about that later).The filter caches the content of the rendered JSP (or
other content), generates an MD5 hash over that, and returns that as an ETag header in
the response. The next time a client sends a request for the same resource, it uses that
hash as the If-None-Match value. The filter detects this, renders the view again, and
compares the two hashes. If they are equal, a 304 is returned.

Note that this strategy saves network bandwidth but not CPU, as the full response must be
computed for each request. Other strategies at the controller level (described above) can
save network bandwidth and avoid computation.

This filter has a writeWeakETag parameter that configures the filter to write Weak ETags,
like this: W/"02a2d595e6ed9a0b24f027f2b63b134d6", as defined in
RFC 7232 Section 2.3.

You configure the ShallowEtagHeaderFilter in web.xml:

<filter>
 <filter-name>etagFilter</filter-name>
 <filter-class>org.springframework.web.filter.ShallowEtagHeaderFilter</filter-class>
 <!-- Optional parameter that configures the filter to write weak ETags
 <init-param>
 <param-name>writeWeakETag</param-name>
 <param-value>true</param-value>
 </init-param>
 -->
</filter>

<filter-mapping>
 <filter-name>etagFilter</filter-name>
 <servlet-name>petclinic</servlet-name>
</filter-mapping>

Or in Servlet 3.0+ environments,

public class MyWebAppInitializer extends AbstractDispatcherServletInitializer {

 // ...

 @Override
 protected Filter[] getServletFilters() {
 return new Filter[] { new ShallowEtagHeaderFilter() };
 }

}

See the section called “Code-based Servlet container initialization” for more details.

Code-based Servlet container initialization

In a Servlet 3.0+ environment, you have the option of configuring the Servlet container
programmatically as an alternative or in combination with a web.xml file. Below is an
example of registering a DispatcherServlet:

import org.springframework.web.WebApplicationInitializer;

public class MyWebApplicationInitializer implements WebApplicationInitializer {

 @Override
 public void onStartup(ServletContext container) {
 XmlWebApplicationContext appContext = new XmlWebApplicationContext();
 appContext.setConfigLocation("/WEB-INF/spring/dispatcher-config.xml");

 ServletRegistration.Dynamic registration = container.addServlet("dispatcher", new DispatcherServlet(appContext));
 registration.setLoadOnStartup(1);
 registration.addMapping("/");
 }

}

WebApplicationInitializer is an interface provided by Spring MVC that ensures your
implementation is detected and automatically used to initialize any Servlet 3 container.
An abstract base class implementation of WebApplicationInitializer named
AbstractDispatcherServletInitializer makes it even easier to register the
DispatcherServlet by simply overriding methods to specify the servlet mapping and the
location of the DispatcherServlet configuration.

This is recommended for applications that use Java-based Spring configuration:

public class MyWebAppInitializer extends AbstractAnnotationConfigDispatcherServletInitializer {

 @Override
 protected Class<?>[] getRootConfigClasses() {
 return null;
 }

 @Override
 protected Class<?>[] getServletConfigClasses() {
 return new Class<?>[] { MyWebConfig.class };
 }

 @Override
 protected String[] getServletMappings() {
 return new String[] { "/" };
 }

}

If using XML-based Spring configuration, you should extend directly from
AbstractDispatcherServletInitializer:

public class MyWebAppInitializer extends AbstractDispatcherServletInitializer {

 @Override
 protected WebApplicationContext createRootApplicationContext() {
 return null;
 }

 @Override
 protected WebApplicationContext createServletApplicationContext() {
 XmlWebApplicationContext cxt = new XmlWebApplicationContext();
 cxt.setConfigLocation("/WEB-INF/spring/dispatcher-config.xml");
 return cxt;
 }

 @Override
 protected String[] getServletMappings() {
 return new String[] { "/" };
 }

}

AbstractDispatcherServletInitializer also provides a convenient way to add Filter
instances and have them automatically mapped to the DispatcherServlet:

public class MyWebAppInitializer extends AbstractDispatcherServletInitializer {

 // ...

 @Override
 protected Filter[] getServletFilters() {
 return new Filter[] { new HiddenHttpMethodFilter(), new CharacterEncodingFilter() };
 }

}

Each filter is added with a default name based on its concrete type and automatically
mapped to the DispatcherServlet.

The isAsyncSupported protected method of AbstractDispatcherServletInitializer
provides a single place to enable async support on the DispatcherServlet and all
filters mapped to it. By default this flag is set to true.

Finally, if you need to further customize the DispatcherServlet itself, you can
override the createDispatcherServlet method.

Configuring Spring MVC

the section called “Special Bean Types In the WebApplicationContext” and the section called “Default DispatcherServlet Configuration” explained about Spring
MVC’s special beans and the default implementations used by the DispatcherServlet. In
this section you’ll learn about two additional ways of configuring Spring MVC. Namely
the MVC Java config and the MVC XML namespace.

The MVC Java config and the MVC namespace provide similar default configuration that
overrides the DispatcherServlet defaults. The goal is to spare most applications from
having to create the same configuration and also to provide higher-level constructs for
configuring Spring MVC that serve as a simple starting point and require little or no
prior knowledge of the underlying configuration.

You can choose either the MVC Java config or the MVC namespace depending on your
preference. Also as you will see further below, with the MVC Java config it is easier to
see the underlying configuration as well as to make fine-grained customizations directly
to the created Spring MVC beans. But let’s start from the beginning.

Enabling the MVC Java Config or the MVC XML Namespace

To enable MVC Java config add the annotation @EnableWebMvc to one of your
@Configuration classes:

@Configuration
@EnableWebMvc
public class WebConfig {
}

To achieve the same in XML use the mvc:annotation-driven element in your
DispatcherServlet context (or in your root context if you have no DispatcherServlet
context defined):

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:mvc="http://www.springframework.org/schema/mvc"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/mvc
 http://www.springframework.org/schema/mvc/spring-mvc.xsd">

 <mvc:annotation-driven/>

</beans>

The above registers a RequestMappingHandlerMapping, a RequestMappingHandlerAdapter,
and an ExceptionHandlerExceptionResolver (among others) in support of processing
requests with annotated controller methods using annotations such as @RequestMapping,
@ExceptionHandler, and others.

It also enables the following:

	
Spring 3 style type conversion through a ConversionService instance
in addition to the JavaBeans PropertyEditors used for Data Binding.

	
Support for formatting Number fields using the @NumberFormat annotation
through the ConversionService.

	
Support for formatting Date, Calendar, Long, and Joda-Time fields using the
@DateTimeFormat annotation.

	
Support for validating @Controller inputs with @Valid, if
a JSR-303 Provider is present on the classpath.

	
HttpMessageConverter support for @RequestBody method parameters and @ResponseBody
method return values from @RequestMapping or @ExceptionHandler methods.

This is the complete list of HttpMessageConverters set up by mvc:annotation-driven:

	
ByteArrayHttpMessageConverter converts byte arrays.

	
StringHttpMessageConverter converts strings.

	
ResourceHttpMessageConverter converts to/from
org.springframework.core.io.Resource for all media types.

	
SourceHttpMessageConverter converts to/from a javax.xml.transform.Source.

	
FormHttpMessageConverter converts form data to/from a MultiValueMap<String,
String>.

	
Jaxb2RootElementHttpMessageConverter converts Java objects to/from XML — added if
JAXB2 is present and Jackson 2 XML extension is not present on the classpath.

	
MappingJackson2HttpMessageConverter converts to/from JSON — added if Jackson 2
is present on the classpath.

	
MappingJackson2XmlHttpMessageConverter converts to/from XML — added if
Jackson 2 XML extension is present
on the classpath.

	
AtomFeedHttpMessageConverter converts Atom feeds — added if Rome is present on the
classpath.

	
RssChannelHttpMessageConverter converts RSS feeds — added if Rome is present on
the classpath.

See the section called “Message Converters” for more information about how to customize these
default converters.

	[image: [Note]]	Note
	
Jackson JSON and XML converters are created using ObjectMapper instances created by
Jackson2ObjectMapperBuilder
in order to provide a better default configuration.

This builder customizes Jackson’s default properties with the following ones:

	
DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES is disabled.

	
MapperFeature.DEFAULT_VIEW_INCLUSION is disabled.

It also automatically registers the following well-known modules if they are detected on the classpath:

	
jackson-datatype-jdk7: support for Java 7 types like java.nio.file.Path.

	
jackson-datatype-joda: support for Joda-Time types.

	
jackson-datatype-jsr310: support for Java 8 Date & Time API types.

	
jackson-datatype-jdk8: support for other Java 8 types like Optional.

Customizing the Provided Configuration

To customize the default configuration in Java you simply implement the
WebMvcConfigurer interface or more likely extend the class WebMvcConfigurerAdapter
and override the methods you need:

@Configuration
@EnableWebMvc
public class WebConfig extends WebMvcConfigurerAdapter {

 // Override configuration methods...
}

To customize the default configuration of <mvc:annotation-driven/> check what
attributes and sub-elements it supports. You can view the
Spring MVC XML schema or use the code
completion feature of your IDE to discover what attributes and sub-elements are
available.

Conversion and Formatting

By default formatters for Number and Date types are installed, including support for
the @NumberFormat and @DateTimeFormat annotations. Full support for the Joda-Time
formatting library is also installed if Joda-Time is present on the classpath. To
register custom formatters and converters, override the addFormatters method:

@Configuration
@EnableWebMvc
public class WebConfig extends WebMvcConfigurerAdapter {

 @Override
 public void addFormatters(FormatterRegistry registry) {
 // ...
 }
}

In the MVC namespace the same defaults apply when <mvc:annotation-driven> is added.
To register custom formatters and converters simply supply a ConversionService:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:mvc="http://www.springframework.org/schema/mvc"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/mvc
 http://www.springframework.org/schema/mvc/spring-mvc.xsd">

 <mvc:annotation-driven conversion-service="conversionService"/>

 <bean id="conversionService"
 class="org.springframework.format.support.FormattingConversionServiceFactoryBean">
 <property name="converters">
 <set>
 <bean class="org.example.MyConverter"/>
 </set>
 </property>
 <property name="formatters">
 <set>
 <bean class="org.example.MyFormatter"/>
 <bean class="org.example.MyAnnotationFormatterFactory"/>
 </set>
 </property>
 <property name="formatterRegistrars">
 <set>
 <bean class="org.example.MyFormatterRegistrar"/>
 </set>
 </property>
 </bean>

</beans>

	[image: [Note]]	Note
	
See the section called “FormatterRegistrar SPI” and the FormattingConversionServiceFactoryBean
for more information on when to use FormatterRegistrars.

Validation

Spring provides a Validator interface that can be used for validation in all layers
of an application. In Spring MVC you can configure it for use as a global Validator instance, to be used
whenever an @Valid or @Validated controller method argument is encountered, and/or as a local
Validator within a controller through an @InitBinder method. Global and local validator
instances can be combined to provide composite validation.

Spring also supports JSR-303/JSR-349 Bean Validation
via LocalValidatorFactoryBean which adapts the Spring org.springframework.validation.Validator
interface to the Bean Validation javax.validation.Validator contract. This class can be
plugged into Spring MVC as a global validator as described next.

By default use of @EnableWebMvc or <mvc:annotation-driven> automatically registers Bean
Validation support in Spring MVC through the LocalValidatorFactoryBean when a Bean Validation
provider such as Hibernate Validator is detected on the classpath.

	[image: [Note]]	Note
	
Sometimes it’s convenient to have a LocalValidatorFactoryBean injected into a controller
or another class. The easiest way to do that is to declare your own @Bean and also mark it
with @Primary in order to avoid a conflict with the one provided with the MVC Java config.

If you prefer to use the one from the MVC Java config, you’ll need to override the
mvcValidator method from WebMvcConfigurationSupport and declare the method to explicitly
return LocalValidatorFactory rather than Validator. See the section called “Advanced Customizations with MVC Java Config”
for information on how to switch to extend the provided configuration.

Alternatively you can configure your own global Validator instance:

@Configuration
@EnableWebMvc
public class WebConfig extends WebMvcConfigurerAdapter {

 @Override
 public Validator getValidator(); {
 // return "global" validator
 }
}

and in XML:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:mvc="http://www.springframework.org/schema/mvc"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/mvc
 http://www.springframework.org/schema/mvc/spring-mvc.xsd">

 <mvc:annotation-driven validator="globalValidator"/>

</beans>

To combine global with local validation, simply add one or more local validator(s):

@Controller
public class MyController {

 @InitBinder
 protected void initBinder(WebDataBinder binder) {
 binder.addValidators(new FooValidator());
 }

}

With this minimal configuration any time an @Valid or @Validated method argument is encountered, it
will be validated by the configured validators. Any validation violations will automatically
be exposed as errors in the BindingResult accessible as a method argument and also renderable
in Spring MVC HTML views.

Interceptors

You can configure HandlerInterceptors or WebRequestInterceptors to be applied to all
incoming requests or restricted to specific URL path patterns.

An example of registering interceptors in Java:

@Configuration
@EnableWebMvc
public class WebConfig extends WebMvcConfigurerAdapter {

 @Override
 public void addInterceptors(InterceptorRegistry registry) {
 registry.addInterceptor(new LocaleInterceptor());
 registry.addInterceptor(new ThemeInterceptor()).addPathPatterns("/**").excludePathPatterns("/admin/**");
 registry.addInterceptor(new SecurityInterceptor()).addPathPatterns("/secure/*");
 }

}

And in XML use the <mvc:interceptors> element:

<mvc:interceptors>
 <bean class="org.springframework.web.servlet.i18n.LocaleChangeInterceptor"/>
 <mvc:interceptor>
 <mvc:mapping path="/**"/>
 <mvc:exclude-mapping path="/admin/**"/>
 <bean class="org.springframework.web.servlet.theme.ThemeChangeInterceptor"/>
 </mvc:interceptor>
 <mvc:interceptor>
 <mvc:mapping path="/secure/*"/>
 <bean class="org.example.SecurityInterceptor"/>
 </mvc:interceptor>
</mvc:interceptors>

Content Negotiation

You can configure how Spring MVC determines the requested media types from the request.
The available options are to check the URL path for a file extension, check the
"Accept" header, a specific query parameter, or to fall back on a default content
type when nothing is requested. By default the path extension in the request URI
is checked first and the "Accept" header is checked second.

The MVC Java config and the MVC namespace register json, xml, rss, atom by
default if corresponding dependencies are on the classpath. Additional
path extension-to-media type mappings may also be registered explicitly and that
also has the effect of whitelisting them as safe extensions for the purpose of RFD
attack detection (see the section called “Suffix Pattern Matching and RFD” for more detail).

Below is an example of customizing content negotiation options through the MVC Java config:

@Configuration
@EnableWebMvc
public class WebConfig extends WebMvcConfigurerAdapter {

 @Override
 public void configureContentNegotiation(ContentNegotiationConfigurer configurer) {
 configurer.mediaType("json", MediaType.APPLICATION_JSON);
 }
}

In the MVC namespace, the <mvc:annotation-driven> element has a
content-negotiation-manager attribute, which expects a ContentNegotiationManager
that in turn can be created with a ContentNegotiationManagerFactoryBean:

<mvc:annotation-driven content-negotiation-manager="contentNegotiationManager"/>

<bean id="contentNegotiationManager" class="org.springframework.web.accept.ContentNegotiationManagerFactoryBean">
 <property name="mediaTypes">
 <value>
 json=application/json
 xml=application/xml
 </value>
 </property>
</bean>

If not using the MVC Java config or the MVC namespace, you’ll need to create an instance
of ContentNegotiationManager and use it to configure RequestMappingHandlerMapping
for request mapping purposes, and RequestMappingHandlerAdapter and
ExceptionHandlerExceptionResolver for content negotiation purposes.

Note that ContentNegotiatingViewResolver now can also be configured with a
ContentNegotiationManager, so you can use one shared instance throughout Spring MVC.

In more advanced cases, it may be useful to configure multiple
ContentNegotiationManager instances that in turn may contain custom
ContentNegotiationStrategy implementations. For example you could configure
ExceptionHandlerExceptionResolver with a ContentNegotiationManager that always
resolves the requested media type to "application/json". Or you may want to plug a
custom strategy that has some logic to select a default content type (e.g. either XML or
JSON) if no content types were requested.

View Controllers

This is a shortcut for defining a ParameterizableViewController that immediately
forwards to a view when invoked. Use it in static cases when there is no Java controller
logic to execute before the view generates the response.

An example of forwarding a request for "/" to a view called "home" in Java:

@Configuration
@EnableWebMvc
public class WebConfig extends WebMvcConfigurerAdapter {

 @Override
 public void addViewControllers(ViewControllerRegistry registry) {
 registry.addViewController("/").setViewName("home");
 }
}

And the same in XML use the <mvc:view-controller> element:

<mvc:view-controller path="/" view-name="home"/>

View Resolvers

The MVC config simplifies the registration of view resolvers.

The following is a Java config example that configures content negotiation view
resolution using FreeMarker HTML templates and Jackson as a default View for
JSON rendering:

@Configuration
@EnableWebMvc
public class WebConfig extends WebMvcConfigurerAdapter {

 @Override
 public void configureViewResolvers(ViewResolverRegistry registry) {
 registry.enableContentNegotiation(new MappingJackson2JsonView());
 registry.jsp();
 }
}

And the same in XML:

<mvc:view-resolvers>
 <mvc:content-negotiation>
 <mvc:default-views>
 <bean class="org.springframework.web.servlet.view.json.MappingJackson2JsonView"/>
 </mvc:default-views>
 </mvc:content-negotiation>
 <mvc:jsp/>
</mvc:view-resolvers>

Note however that FreeMarker, Velocity, Tiles, Groovy Markup and script templates also require
configuration of the underlying view technology.

The MVC namespace provides dedicated elements. For example with FreeMarker:

<mvc:view-resolvers>
 <mvc:content-negotiation>
 <mvc:default-views>
 <bean class="org.springframework.web.servlet.view.json.MappingJackson2JsonView"/>
 </mvc:default-views>
 </mvc:content-negotiation>
 <mvc:freemarker cache="false"/>
</mvc:view-resolvers>

<mvc:freemarker-configurer>
 <mvc:template-loader-path location="/freemarker"/>
</mvc:freemarker-configurer>

In Java config simply add the respective "Configurer" bean:

@Configuration
@EnableWebMvc
public class WebConfig extends WebMvcConfigurerAdapter {

 @Override
 public void configureViewResolvers(ViewResolverRegistry registry) {
 registry.enableContentNegotiation(new MappingJackson2JsonView());
 registry.freeMarker().cache(false);
 }

 @Bean
 public FreeMarkerConfigurer freeMarkerConfigurer() {
 FreeMarkerConfigurer configurer = new FreeMarkerConfigurer();
 configurer.setTemplateLoaderPath("/WEB-INF/");
 return configurer;
 }
}

Serving of Resources

This option allows static resource requests following a particular URL pattern to be
served by a ResourceHttpRequestHandler from any of a list of Resource locations.
This provides a convenient way to serve static resources from locations other than the
web application root, including locations on the classpath. The cache-period property
may be used to set far future expiration headers (1 year is the recommendation of
optimization tools such as Page Speed and YSlow) so that they will be more efficiently
utilized by the client. The handler also properly evaluates the Last-Modified header
(if present) so that a 304 status code will be returned as appropriate, avoiding
unnecessary overhead for resources that are already cached by the client. For example,
to serve resource requests with a URL pattern of /resources/** from a
public-resources directory within the web application root you would use:

@Configuration
@EnableWebMvc
public class WebConfig extends WebMvcConfigurerAdapter {

 @Override
 public void addResourceHandlers(ResourceHandlerRegistry registry) {
 registry.addResourceHandler("/resources/**").addResourceLocations("/public-resources/");
 }

}

And the same in XML:

<mvc:resources mapping="/resources/**" location="/public-resources/"/>

To serve these resources with a 1-year future expiration to ensure maximum use of the
browser cache and a reduction in HTTP requests made by the browser:

@Configuration
@EnableWebMvc
public class WebConfig extends WebMvcConfigurerAdapter {

 @Override
 public void addResourceHandlers(ResourceHandlerRegistry registry) {
 registry.addResourceHandler("/resources/**").addResourceLocations("/public-resources/").setCachePeriod(31556926);
 }

}

And in XML:

<mvc:resources mapping="/resources/**" location="/public-resources/" cache-period="31556926"/>

For more details, see HTTP caching support for static resources.

The mapping attribute must be an Ant pattern that can be used by
SimpleUrlHandlerMapping, and the location attribute must specify one or more valid
resource directory locations. Multiple resource locations may be specified using a
comma-separated list of values. The locations specified will be checked in the specified
order for the presence of the resource for any given request. For example, to enable the
serving of resources from both the web application root and from a known path of
/META-INF/public-web-resources/ in any jar on the classpath use:

@EnableWebMvc
@Configuration
public class WebConfig extends WebMvcConfigurerAdapter {

 @Override
 public void addResourceHandlers(ResourceHandlerRegistry registry) {
 registry.addResourceHandler("/resources/**")
 .addResourceLocations("/", "classpath:/META-INF/public-web-resources/");
 }

}

And in XML:

<mvc:resources mapping="/resources/**" location="/, classpath:/META-INF/public-web-resources/"/>

When serving resources that may change when a new version of the application is
deployed it is recommended that you incorporate a version string into the mapping
pattern used to request the resources so that you may force clients to request the
newly deployed version of your application’s resources. Support for versioned URLs is
built into the framework and can be enabled by configuring a resource chain
on the resource handler. The chain consists of one more ResourceResolver
instances followed by one or more ResourceTransformer instances. Together they
can provide arbitrary resolution and transformation of resources.

The built-in VersionResourceResolver can be configured with different strategies.
For example a FixedVersionStrategy can use a property, a date, or other as the version.
A ContentVersionStrategy uses an MD5 hash computed from the content of the resource
(known as "fingerprinting" URLs). Note that the VersionResourceResolver will automatically
use the resolved version strings as HTTP ETag header values when serving resources.

ContentVersionStrategy is a good default choice to use except in cases where
it cannot be used (e.g. with JavaScript module loaders). You can configure
different version strategies against different patterns as shown below. Keep in mind
also that computing content-based versions is expensive and therefore resource chain
caching should be enabled in production.

Java config example;

@Configuration
@EnableWebMvc
public class WebConfig extends WebMvcConfigurerAdapter {

 @Override
 public void addResourceHandlers(ResourceHandlerRegistry registry) {
 registry.addResourceHandler("/resources/**")
 .addResourceLocations("/public-resources/")
 .resourceChain(true)
 .addResolver(new VersionResourceResolver().addContentVersionStrategy("/**"));
 }
}

XML example:

<mvc:resources mapping="/resources/**" location="/public-resources/">
	<mvc:resource-chain>
		<mvc:resource-cache/>
		<mvc:resolvers>
			<mvc:version-resolver>
				<mvc:content-version-strategy patterns="/**"/>
			</mvc:version-resolver>
		</mvc:resolvers>
	</mvc:resource-chain>
</mvc:resources>

In order for the above to work the application must also
render URLs with versions. The easiest way to do that is to configure the
ResourceUrlEncodingFilter which wraps the response and overrides its encodeURL method.
This will work in JSPs, FreeMarker, Velocity, and any other view technology that calls
the response encodeURL method. Alternatively, an application can also inject and
use directly the ResourceUrlProvider bean, which is automatically declared with the MVC
Java config and the MVC namespace.

Webjars are also supported with WebJarsResourceResolver, which is automatically registered
when the "org.webjars:webjars-locator" library is on classpath. This resolver allows
the resource chain to resolve version agnostic libraries from HTTP GET requests
"GET /jquery/jquery.min.js" will return resource "/jquery/1.2.0/jquery.min.js".
It also works by rewriting resource URLs in templates
<script src="/jquery/jquery.min.js"/> → <script src="/jquery/1.2.0/jquery.min.js"/>.

Default Servlet

This allows for mapping the DispatcherServlet to "/" (thus overriding the mapping
of the container’s default Servlet), while still allowing static resource requests to be
handled by the container’s default Servlet. It configures a
DefaultServletHttpRequestHandler with a URL mapping of "/**" and the lowest priority
relative to other URL mappings.

This handler will forward all requests to the default Servlet. Therefore it is important
that it remains last in the order of all other URL HandlerMappings. That will be the
case if you use <mvc:annotation-driven> or alternatively if you are setting up your
own customized HandlerMapping instance be sure to set its order property to a value
lower than that of the DefaultServletHttpRequestHandler, which is Integer.MAX_VALUE.

To enable the feature using the default setup use:

@Configuration
@EnableWebMvc
public class WebConfig extends WebMvcConfigurerAdapter {

 @Override
 public void configureDefaultServletHandling(DefaultServletHandlerConfigurer configurer) {
 configurer.enable();
 }
}

Or in XML:

<mvc:default-servlet-handler/>

The caveat to overriding the "/" Servlet mapping is that the RequestDispatcher for the
default Servlet must be retrieved by name rather than by path. The
DefaultServletHttpRequestHandler will attempt to auto-detect the default Servlet for
the container at startup time, using a list of known names for most of the major Servlet
containers (including Tomcat, Jetty, GlassFish, JBoss, Resin, WebLogic, and WebSphere).
If the default Servlet has been custom configured with a different name, or if a
different Servlet container is being used where the default Servlet name is unknown,
then the default Servlet’s name must be explicitly provided as in the following example:

@Configuration
@EnableWebMvc
public class WebConfig extends WebMvcConfigurerAdapter {

 @Override
 public void configureDefaultServletHandling(DefaultServletHandlerConfigurer configurer) {
 configurer.enable("myCustomDefaultServlet");
 }

}

Or in XML:

<mvc:default-servlet-handler default-servlet-name="myCustomDefaultServlet"/>

Path Matching

This allows customizing various settings related to URL mapping and path matching.
For details on the individual options check out the
PathMatchConfigurer API.

Below is an example in Java config:

@Configuration
@EnableWebMvc
public class WebConfig extends WebMvcConfigurerAdapter {

 @Override
 public void configurePathMatch(PathMatchConfigurer configurer) {
 configurer
 .setUseSuffixPatternMatch(true)
 .setUseTrailingSlashMatch(false)
 .setUseRegisteredSuffixPatternMatch(true)
 .setPathMatcher(antPathMatcher())
 .setUrlPathHelper(urlPathHelper());
 }

 @Bean
 public UrlPathHelper urlPathHelper() {
 //...
 }

 @Bean
 public PathMatcher antPathMatcher() {
 //...
 }

}

And the same in XML, use the <mvc:path-matching> element:

<mvc:annotation-driven>
 <mvc:path-matching
 suffix-pattern="true"
 trailing-slash="false"
 registered-suffixes-only="true"
 path-helper="pathHelper"
 path-matcher="pathMatcher"/>
</mvc:annotation-driven>

<bean id="pathHelper" class="org.example.app.MyPathHelper"/>
<bean id="pathMatcher" class="org.example.app.MyPathMatcher"/>

Message Converters

Customization of HttpMessageConverter can be achieved in Java config by overriding
configureMessageConverters()
if you want to replace the default converters created by Spring MVC, or by overriding
extendMessageConverters()
if you just want to customize them or add additional converters to the default ones.

Below is an example that adds Jackson JSON and XML converters with a customized
ObjectMapper instead of default ones:

@Configuration
@EnableWebMvc
public class WebConfiguration extends WebMvcConfigurerAdapter {

 @Override
 public void configureMessageConverters(List<HttpMessageConverter<?>> converters) {
 Jackson2ObjectMapperBuilder builder = new Jackson2ObjectMapperBuilder()
 .indentOutput(true)
 .dateFormat(new SimpleDateFormat("yyyy-MM-dd"))
 .modulesToInstall(new ParameterNamesModule());
 converters.add(new MappingJackson2HttpMessageConverter(builder.build()));
 converters.add(new MappingJackson2XmlHttpMessageConverter(builder.xml().build()));
 }

}

In this example, Jackson2ObjectMapperBuilder is used to create a common configuration for
both MappingJackson2HttpMessageConverter and MappingJackson2XmlHttpMessageConverter with
indentation enabled, a customized date format and the registration of
jackson-module-parameter-names
that adds support for accessing parameter names (feature added in Java 8).

	[image: [Note]]	Note
	
Enabling indentation with Jackson XML support requires
woodstox-core-asl
dependency in addition to jackson-dataformat-xml one.

Other interesting Jackson modules are available:

	
jackson-datatype-money: support for javax.money types (unofficial module)

	
jackson-datatype-hibernate: support for Hibernate specific types and properties (including lazy-loading aspects)

It is also possible to do the same in XML:

<mvc:annotation-driven>
 <mvc:message-converters>
 <bean class="org.springframework.http.converter.json.MappingJackson2HttpMessageConverter">
 <property name="objectMapper" ref="objectMapper"/>
 </bean>
 <bean class="org.springframework.http.converter.xml.MappingJackson2XmlHttpMessageConverter">
 <property name="objectMapper" ref="xmlMapper"/>
 </bean>
 </mvc:message-converters>
</mvc:annotation-driven>

<bean id="objectMapper" class="org.springframework.http.converter.json.Jackson2ObjectMapperFactoryBean"
 p:indentOutput="true"
 p:simpleDateFormat="yyyy-MM-dd"
 p:modulesToInstall="com.fasterxml.jackson.module.paramnames.ParameterNamesModule"/>

<bean id="xmlMapper" parent="objectMapper" p:createXmlMapper="true"/>

Advanced Customizations with MVC Java Config

As you can see from the above examples, MVC Java config and the MVC namespace provide
higher level constructs that do not require deep knowledge of the underlying beans
created for you. Instead it helps you to focus on your application needs. However, at
some point you may need more fine-grained control or you may simply wish to understand
the underlying configuration.

The first step towards more fine-grained control is to see the underlying beans created
for you. In MVC Java config you can see the javadocs and the @Bean methods in
WebMvcConfigurationSupport. The configuration in this class is automatically imported
through the @EnableWebMvc annotation. In fact if you open @EnableWebMvc you can see
the @Import statement.

The next step towards more fine-grained control is to customize a property on one of the
beans created in WebMvcConfigurationSupport or perhaps to provide your own instance.
This requires two things — remove the @EnableWebMvc annotation in order to prevent
the import and then extend from DelegatingWebMvcConfiguration, a subclass of
WebMvcConfigurationSupport.
Here is an example:

@Configuration
public class WebConfig extends DelegatingWebMvcConfiguration {

 @Override
 public void addInterceptors(InterceptorRegistry registry){
 // ...
 }

 @Override
 @Bean
 public RequestMappingHandlerAdapter requestMappingHandlerAdapter() {
 // Create or let "super" create the adapter
 // Then customize one of its properties
 }

}

	[image: [Note]]	Note
	
An application should have only one configuration extending DelegatingWebMvcConfiguration
or a single @EnableWebMvc annotated class, since they both register the same underlying
beans.

Modifying beans in this way does not prevent you from using any of the higher-level
constructs shown earlier in this section. WebMvcConfigurerAdapter subclasses and
WebMvcConfigurer implementations are still being used.

Advanced Customizations with the MVC Namespace

Fine-grained control over the configuration created for you is a bit harder with the MVC
namespace.

If you do need to do that, rather than replicating the configuration it provides,
consider configuring a BeanPostProcessor that detects the bean you want to customize
by type and then modifying its properties as necessary. For example:

@Component
public class MyPostProcessor implements BeanPostProcessor {

 public Object postProcessBeforeInitialization(Object bean, String name) throws BeansException {
 if (bean instanceof RequestMappingHandlerAdapter) {
 // Modify properties of the adapter
 }
 }

}

Note that MyPostProcessor needs to be included in an <component scan/> in order for
it to be detected or if you prefer you can declare it explicitly with an XML bean
declaration.

Chapter 23. View Technologies

Introduction

One of the areas in which Spring excels is in the separation of view technologies from
the rest of the MVC framework. For example, deciding to use Groovy Markup Templates
or Thymeleaf in place of an existing JSP is primarily a matter of configuration.
This chapter covers the major view technologies that work with Spring and touches
briefly on how to add new ones. This chapter assumes you are already familiar with
the section called “Resolving views” which covers the basics of how views in general are coupled
to the MVC framework.

Thymeleaf

Thymeleaf is a good example of a view technology fitting
perfectly in the MVC framework. Support for this integration is not provided by
the Spring team but by the Thymeleaf team itself.

Configuring Thymeleaf for Spring usually requires a few beans defined, like a
ServletContextTemplateResolver, a SpringTemplateEngine and a ThymeleafViewResolver.
Please refer to the Thymeleaf+Spring
documentation section for more details.

Groovy Markup

The Groovy Markup Template Engine
is another view technology, supported by Spring. This template engine is a template engine primarily
aimed at generating XML-like markup (XML, XHTML, HTML5, …​​), but that can be used to generate any
text based content.

This requires Groovy 2.3.1+ on the classpath.

Configuration

Configuring the Groovy Markup Template Engine is quite easy:

@Configuration
@EnableWebMvc
public class WebConfig extends WebMvcConfigurerAdapter {

 @Override
 public void configureViewResolvers(ViewResolverRegistry registry) {
 registry.groovy();
 }

 @Bean
 public GroovyMarkupConfigurer groovyMarkupConfigurer() {
 GroovyMarkupConfigurer configurer = new GroovyMarkupConfigurer();
 configurer.setResourceLoaderPath("/WEB-INF/");
 return configurer;
 }
}

The XML counterpart using the MVC namespace is:

<mvc:annotation-driven/>

<mvc:view-resolvers>
 <mvc:groovy/>
</mvc:view-resolvers>

<mvc:groovy-configurer resource-loader-path="/WEB-INF/"/>

Example

Unlike traditional template engines, this one relies on a DSL that uses the builder syntax.
Here is a sample template for an HTML page:

yieldUnescaped '<!DOCTYPE html>'
html(lang:'en') {
 head {
 meta('http-equiv':'"Content-Type" content="text/html; charset=utf-8"')
 title('My page')
 }
 body {
 p('This is an example of HTML contents')
 }
}

Velocity & FreeMarker

Velocity and FreeMarker are two
templating languages that can be used as view technologies within Spring MVC
applications. The languages are quite similar and serve similar needs and so are
considered together in this section. For semantic and syntactic differences between the
two languages, see the FreeMarker web site.

	[image: [Note]]	Note
	
As of Spring Framework 4.3, Velocity support has been deprecated due to six years
without active maintenance of the Apache Velocity project. We recommend Spring’s
FreeMarker support instead, or Thymeleaf which comes with Spring support itself.

Dependencies

Your web application will need to include velocity-1.x.x.jar or freemarker-2.x.jar
in order to work with Velocity or FreeMarker respectively and commons-collections.jar
is required for Velocity. Typically they are included in the WEB-INF/lib folder where
they are guaranteed to be found by a Java EE server and added to the classpath for your
application. It is of course assumed that you already have the spring-webmvc.jar in
your 'WEB-INF/lib' directory too! If you make use of Spring’s 'dateToolAttribute' or
'numberToolAttribute' in your Velocity views, you will also need to include the
velocity-tools-generic-1.x.jar

Context configuration

A suitable configuration is initialized by adding the relevant configurer bean
definition to your '*-servlet.xml' as shown below:

<!--
This bean sets up the Velocity environment for us based on a root path for templates.
Optionally, a properties file can be specified for more control over the Velocity
environment, but the defaults are pretty sane for file based template loading.
-->
<bean id="velocityConfig" class="org.springframework.web.servlet.view.velocity.VelocityConfigurer">
 <property name="resourceLoaderPath" value="/WEB-INF/velocity/"/>
</bean>

<!--
View resolvers can also be configured with ResourceBundles or XML files. If you need
different view resolving based on Locale, you have to use the resource bundle resolver.
-->
<bean id="viewResolver" class="org.springframework.web.servlet.view.velocity.VelocityViewResolver">
 <property name="cache" value="true"/>
 <property name="prefix" value=""/>
 <property name="suffix" value=".vm"/>
</bean>

<!-- freemarker config -->
<bean id="freemarkerConfig" class="org.springframework.web.servlet.view.freemarker.FreeMarkerConfigurer">
 <property name="templateLoaderPath" value="/WEB-INF/freemarker/"/>
</bean>

<!--
View resolvers can also be configured with ResourceBundles or XML files. If you need
different view resolving based on Locale, you have to use the resource bundle resolver.
-->
<bean id="viewResolver" class="org.springframework.web.servlet.view.freemarker.FreeMarkerViewResolver">
 <property name="cache" value="true"/>
 <property name="prefix" value=""/>
 <property name="suffix" value=".ftl"/>
</bean>

	[image: [Note]]	Note
	
For non web-apps add a VelocityConfigurationFactoryBean or a
FreeMarkerConfigurationFactoryBean to your application context definition file.

Creating templates

Your templates need to be stored in the directory specified by the *Configurer bean
shown above. This document does not cover details of creating templates for the two
languages - please see their relevant websites for information. If you use the view
resolvers highlighted, then the logical view names relate to the template file names in
similar fashion to InternalResourceViewResolver for JSP’s. So if your controller
returns a ModelAndView object containing a view name of "welcome" then the resolvers
will look for the /WEB-INF/freemarker/welcome.ftl or /WEB-INF/velocity/welcome.vm
template as appropriate.

Advanced configuration

The basic configurations highlighted above will be suitable for most application
requirements, however additional configuration options are available for when unusual or
advanced requirements dictate.

velocity.properties

This file is completely optional, but if specified, contains the values that are passed
to the Velocity runtime in order to configure velocity itself. Only required for
advanced configurations, if you need this file, specify its location on the
VelocityConfigurer bean definition above.

<bean id="velocityConfig" class="org.springframework.web.servlet.view.velocity.VelocityConfigurer">
 <property name="configLocation" value="/WEB-INF/velocity.properties"/>
</bean>

Alternatively, you can specify velocity properties directly in the bean definition for
the Velocity config bean by replacing the "configLocation" property with the following
inline properties.

<bean id="velocityConfig" class="org.springframework.web.servlet.view.velocity.VelocityConfigurer">
 <property name="velocityProperties">
 <props>
 <prop key="resource.loader">file</prop>
 <prop key="file.resource.loader.class">
 org.apache.velocity.runtime.resource.loader.FileResourceLoader
 </prop>
 <prop key="file.resource.loader.path">${webapp.root}/WEB-INF/velocity</prop>
 <prop key="file.resource.loader.cache">false</prop>
 </props>
 </property>
</bean>

Refer to the
API
documentation for Spring configuration of Velocity, or the Velocity documentation for
examples and definitions of the 'velocity.properties' file itself.

FreeMarker

FreeMarker 'Settings' and 'SharedVariables' can be passed directly to the FreeMarker
Configuration object managed by Spring by setting the appropriate bean properties on
the FreeMarkerConfigurer bean. The freemarkerSettings property requires a
java.util.Properties object and the freemarkerVariables property requires a
java.util.Map.

<bean id="freemarkerConfig" class="org.springframework.web.servlet.view.freemarker.FreeMarkerConfigurer">
 <property name="templateLoaderPath" value="/WEB-INF/freemarker/"/>
 <property name="freemarkerVariables">
 <map>
 <entry key="xml_escape" value-ref="fmXmlEscape"/>
 </map>
 </property>
</bean>

<bean id="fmXmlEscape" class="freemarker.template.utility.XmlEscape"/>

See the FreeMarker documentation for details of settings and variables as they apply to
the Configuration object.

Bind support and form handling

Spring provides a tag library for use in JSP’s that contains (amongst other things) a
<spring:bind/> tag. This tag primarily enables forms to display values from form
backing objects and to show the results of failed validations from a Validator in the
web or business tier. From version 1.1, Spring now has support for the same
functionality in both Velocity and FreeMarker, with additional convenience macros for
generating form input elements themselves.

The bind macros

A standard set of macros are maintained within the spring-webmvc.jar file for both
languages, so they are always available to a suitably configured application.

Some of the macros defined in the Spring libraries are considered internal (private) but
no such scoping exists in the macro definitions making all macros visible to calling
code and user templates. The following sections concentrate only on the macros you need
to be directly calling from within your templates. If you wish to view the macro code
directly, the files are called spring.vm / spring.ftl and are in the packages
org.springframework.web.servlet.view.velocity or
org.springframework.web.servlet.view.freemarker respectively.

Simple binding

In your HTML forms (vm / ftl templates) which act as a form view for a Spring MVC
controller, you can use code similar to the following to bind to field values and
display error messages for each input field in similar fashion to the JSP equivalent.
Example code is shown below for the personFormV/personFormF views configured earlier:

<!-- velocity macros are automatically available -->
<html>
 ...
 <form action="" method="POST">
 Name:
 #springBind("myModelObject.name")
 <input type="text"
 name="${status.expression}"
 value="$!status.value"/>

 #foreach($error in $status.errorMessages) $error
 #end

 ...
 <input type="submit" value="submit"/>
 </form>
 ...
</html>

<!-- freemarker macros have to be imported into a namespace. We strongly
recommend sticking to 'spring' -->
<#import "/spring.ftl" as spring/>
<html>
 ...
 <form action="" method="POST">
 Name:
 <@spring.bind "myModelObject.name"/>
 <input type="text"
 name="${spring.status.expression}"
 value="${spring.status.value?html}"/>

 <#list spring.status.errorMessages as error> ${error}
 </#list>

 ...
 <input type="submit" value="submit"/>
 </form>
 ...
</html>

#springBind / <@spring.bind> requires a 'path' argument which consists of the name
of your command object (it will be 'command' unless you changed it in your
FormController properties) followed by a period and the name of the field on the command
object you wish to bind to. Nested fields can be used too such as
"command.address.street". The bind macro assumes the default HTML escaping behavior
specified by the ServletContext parameter defaultHtmlEscape in web.xml

The optional form of the macro called #springBindEscaped / <@spring.bindEscaped>
takes a second argument and explicitly specifies whether HTML escaping should be used in
the status error messages or values. Set to true or false as required. Additional form
handling macros simplify the use of HTML escaping and these macros should be used
wherever possible. They are explained in the next section.

Form input generation macros

Additional convenience macros for both languages simplify both binding and form
generation (including validation error display). It is never necessary to use these
macros to generate form input fields, and they can be mixed and matched with simple HTML
or calls direct to the spring bind macros highlighted previously.

The following table of available macros show the VTL and FTL definitions and the
parameter list that each takes.

Table 23.1. Table of macro definitions

	macro	VTL definition	FTL definition
	message (output a string from a resource bundle based on the code parameter)
	#springMessage($code)
	<@spring.message code/>

	messageText (output a string from a resource bundle based on the code parameter,
 falling back to the value of the default parameter)
	#springMessageText($code $text)
	<@spring.messageText code, text/>

	url (prefix a relative URL with the application’s context root)
	#springUrl($relativeUrl)
	<@spring.url relativeUrl/>

	formInput (standard input field for gathering user input)
	#springFormInput($path $attributes)
	<@spring.formInput path, attributes, fieldType/>

	formHiddenInput * (hidden input field for submitting non-user input)
	#springFormHiddenInput($path $attributes)
	<@spring.formHiddenInput path, attributes/>

	formPasswordInput * (standard input field for gathering passwords. Note that no
 value will ever be populated in fields of this type)
	#springFormPasswordInput($path $attributes)
	<@spring.formPasswordInput path, attributes/>

	formTextarea (large text field for gathering long, freeform text input)
	#springFormTextarea($path $attributes)
	<@spring.formTextarea path, attributes/>

	formSingleSelect (drop down box of options allowing a single required value to be
 selected)
	#springFormSingleSelect($path $options $attributes)
	<@spring.formSingleSelect path, options, attributes/>

	formMultiSelect (a list box of options allowing the user to select 0 or more values)
	#springFormMultiSelect($path $options $attributes)
	<@spring.formMultiSelect path, options, attributes/>

	formRadioButtons (a set of radio buttons allowing a single selection to be made
 from the available choices)
	#springFormRadioButtons($path $options $separator $attributes)
	<@spring.formRadioButtons path, options separator, attributes/>

	formCheckboxes (a set of checkboxes allowing 0 or more values to be selected)
	#springFormCheckboxes($path $options $separator $attributes)
	<@spring.formCheckboxes path, options, separator, attributes/>

	formCheckbox (a single checkbox)
	#springFormCheckbox($path $attributes)
	<@spring.formCheckbox path, attributes/>

	showErrors (simplify display of validation errors for the bound field)
	#springShowErrors($separator $classOrStyle)
	<@spring.showErrors separator, classOrStyle/>

	
In FTL (FreeMarker), these two macros are not actually required as you can use the
normal formInput macro, specifying ' hidden’ or ' `password’ as the value for the
`fieldType parameter.

The parameters to any of the above macros have consistent meanings:

	
path: the name of the field to bind to (ie "command.name")

	
options: a Map of all the available values that can be selected from in the input
field. The keys to the map represent the values that will be POSTed back from the form
and bound to the command object. Map objects stored against the keys are the labels
displayed on the form to the user and may be different from the corresponding values
posted back by the form. Usually such a map is supplied as reference data by the
controller. Any Map implementation can be used depending on required behavior. For
strictly sorted maps, a SortedMap such as a TreeMap with a suitable Comparator may
be used and for arbitrary Maps that should return values in insertion order, use a
LinkedHashMap or a LinkedMap from commons-collections.

	
separator: where multiple options are available as discreet elements (radio buttons or
checkboxes), the sequence of characters used to separate each one in the list (ie
"
").

	
attributes: an additional string of arbitrary tags or text to be included within the
HTML tag itself. This string is echoed literally by the macro. For example, in a
textarea field you may supply attributes as 'rows="5" cols="60"' or you could pass
style information such as 'style="border:1px solid silver"'.

	
classOrStyle: for the showErrors macro, the name of the CSS class that the span tag
wrapping each error will use. If no information is supplied (or the value is empty)
then the errors will be wrapped in tags.

Examples of the macros are outlined below some in FTL and some in VTL. Where usage
differences exist between the two languages, they are explained in the notes.

Input Fields

<!-- the Name field example from above using form macros in VTL -->
...
Name:
#springFormInput("command.name" "")

#springShowErrors("
" "")

The formInput macro takes the path parameter (command.name) and an additional attributes
parameter which is empty in the example above. The macro, along with all other form
generation macros, performs an implicit spring bind on the path parameter. The binding
remains valid until a new bind occurs so the showErrors macro doesn’t need to pass the
path parameter again - it simply operates on whichever field a bind was last created for.

The showErrors macro takes a separator parameter (the characters that will be used to
separate multiple errors on a given field) and also accepts a second parameter, this
time a class name or style attribute. Note that FreeMarker is able to specify default
values for the attributes parameter, unlike Velocity, and the two macro calls above
could be expressed as follows in FTL:

<@spring.formInput "command.name"/>
<@spring.showErrors "
"/>

Output is shown below of the form fragment generating the name field, and displaying a
validation error after the form was submitted with no value in the field. Validation
occurs through Spring’s Validation framework.

The generated HTML looks like this:

Name:
<input type="text" name="name" value="">

 required

The formTextarea macro works the same way as the formInput macro and accepts the same
parameter list. Commonly, the second parameter (attributes) will be used to pass style
information or rows and cols attributes for the textarea.

Selection Fields

Four selection field macros can be used to generate common UI value selection inputs in
your HTML forms.

	
formSingleSelect

	
formMultiSelect

	
formRadioButtons

	
formCheckboxes

Each of the four macros accepts a Map of options containing the value for the form
field, and the label corresponding to that value. The value and the label can be the
same.

An example of radio buttons in FTL is below. The form backing object specifies a default
value of 'London' for this field and so no validation is necessary. When the form is
rendered, the entire list of cities to choose from is supplied as reference data in the
model under the name 'cityMap'.

...
Town:
<@spring.formRadioButtons "command.address.town", cityMap, ""/>

This renders a line of radio buttons, one for each value in cityMap using the
separator "". No additional attributes are supplied (the last parameter to the macro is
missing). The cityMap uses the same String for each key-value pair in the map. The map’s
keys are what the form actually submits as POSTed request parameters, map values are the
labels that the user sees. In the example above, given a list of three well known cities
and a default value in the form backing object, the HTML would be

Town:
<input type="radio" name="address.town" value="London">London</input>
<input type="radio" name="address.town" value="Paris" checked="checked">Paris</input>
<input type="radio" name="address.town" value="New York">New York</input>

If your application expects to handle cities by internal codes for example, the map of
codes would be created with suitable keys like the example below.

protected Map<String, String> referenceData(HttpServletRequest request) throws Exception {
 Map<String, String> cityMap = new LinkedHashMap<>();
 cityMap.put("LDN", "London");
 cityMap.put("PRS", "Paris");
 cityMap.put("NYC", "New York");

 Map<String, String> model = new HashMap<>();
 model.put("cityMap", cityMap);
 return model;
}

The code would now produce output where the radio values are the relevant codes but the
user still sees the more user friendly city names.

Town:
<input type="radio" name="address.town" value="LDN">London</input>
<input type="radio" name="address.town" value="PRS" checked="checked">Paris</input>
<input type="radio" name="address.town" value="NYC">New York</input>

HTML escaping and XHTML compliance

Default usage of the form macros above will result in HTML tags that are HTML 4.01
compliant and that use the default value for HTML escaping defined in your web.xml as
used by Spring’s bind support. In order to make the tags XHTML compliant or to override
the default HTML escaping value, you can specify two variables in your template (or in
your model where they will be visible to your templates). The advantage of specifying
them in the templates is that they can be changed to different values later in the
template processing to provide different behavior for different fields in your form.

To switch to XHTML compliance for your tags, specify a value of 'true' for a
model/context variable named xhtmlCompliant:

for Velocity..
#set($springXhtmlCompliant = true)

<-- for FreeMarker -->
<#assign xhtmlCompliant = true in spring>

Any tags generated by the Spring macros will now be XHTML compliant after processing
this directive.

In similar fashion, HTML escaping can be specified per field:

<#-- until this point, default HTML escaping is used -->

<#assign htmlEscape = true in spring>
<#-- next field will use HTML escaping -->
<@spring.formInput "command.name"/>

<#assign htmlEscape = false in spring>
<#-- all future fields will be bound with HTML escaping off -->

JSP & JSTL

Spring provides a couple of out-of-the-box solutions for JSP and JSTL views. Using JSP
or JSTL is done using a normal view resolver defined in the WebApplicationContext.
Furthermore, of course you need to write some JSPs that will actually render the view.

	[image: [Note]]	Note
	
Setting up your application to use JSTL is a common source of error, mainly caused by
confusion over the different servlet spec., JSP and JSTL version numbers, what they mean
and how to declare the taglibs correctly. The article
How
to Reference and Use JSTL in your Web Application provides a useful guide to the common
pitfalls and how to avoid them. Note that as of Spring 3.0, the minimum supported
servlet version is 2.4 (JSP 2.0 and JSTL 1.1), which reduces the scope for confusion
somewhat.

View resolvers

Just as with any other view technology you’re integrating with Spring, for JSPs you’ll
need a view resolver that will resolve your views. The most commonly used view resolvers
when developing with JSPs are the InternalResourceViewResolver and the
ResourceBundleViewResolver. Both are declared in the WebApplicationContext:

<!-- the ResourceBundleViewResolver -->
<bean id="viewResolver" class="org.springframework.web.servlet.view.ResourceBundleViewResolver">
 <property name="basename" value="views"/>
</bean>

And a sample properties file is uses (views.properties in WEB-INF/classes):
welcome.(class)=org.springframework.web.servlet.view.JstlView
welcome.url=/WEB-INF/jsp/welcome.jsp

productList.(class)=org.springframework.web.servlet.view.JstlView
productList.url=/WEB-INF/jsp/productlist.jsp

As you can see, the ResourceBundleViewResolver needs a properties file defining the
view names mapped to 1) a class and 2) a URL. With a ResourceBundleViewResolver you
can mix different types of views using only one resolver.

<bean id="viewResolver" class="org.springframework.web.servlet.view.InternalResourceViewResolver">
 <property name="viewClass" value="org.springframework.web.servlet.view.JstlView"/>
 <property name="prefix" value="/WEB-INF/jsp/"/>
 <property name="suffix" value=".jsp"/>
</bean>

The InternalResourceBundleViewResolver can be configured for using JSPs as described
above. As a best practice, we strongly encourage placing your JSP files in a directory
under the 'WEB-INF' directory, so there can be no direct access by clients.

'Plain-old' JSPs versus JSTL

When using the Java Standard Tag Library you must use a special view class, the
JstlView, as JSTL needs some preparation before things such as the I18N features will
work.

Spring’s JSP tag library

Spring provides data binding of request parameters to command objects as described in
earlier chapters. To facilitate the development of JSP pages in combination with those
data binding features, Spring provides a few tags that make things even easier. All
Spring tags haveHTML escaping features to enable or disable escaping of characters.

The tag library descriptor (TLD) is included in the spring-webmvc.jar. Further
information about the individual tags can be found in the appendix entitled
???.

Spring’s form tag library

As of version 2.0, Spring provides a comprehensive set of data binding-aware tags for
handling form elements when using JSP and Spring Web MVC. Each tag provides support for
the set of attributes of its corresponding HTML tag counterpart, making the tags
familiar and intuitive to use. The tag-generated HTML is HTML 4.01/XHTML 1.0 compliant.

Unlike other form/input tag libraries, Spring’s form tag library is integrated with
Spring Web MVC, giving the tags access to the command object and reference data your
controller deals with. As you will see in the following examples, the form tags make
JSPs easier to develop, read and maintain.

Let’s go through the form tags and look at an example of how each tag is used. We have
included generated HTML snippets where certain tags require further commentary.

Configuration

The form tag library comes bundled in spring-webmvc.jar. The library descriptor is
called spring-form.tld.

To use the tags from this library, add the following directive to the top of your JSP
page:

<%@ taglib prefix="form" uri="http://www.springframework.org/tags/form" %>

where form is the tag name prefix you want to use for the tags from this library.

The form tag

This tag renders an HTML 'form' tag and exposes a binding path to inner tags for
binding. It puts the command object in the PageContext so that the command object can
be accessed by inner tags. All the other tags in this library are nested tags of the
form tag.

Let’s assume we have a domain object called User. It is a JavaBean with properties
such as firstName and lastName. We will use it as the form backing object of our
form controller which returns form.jsp. Below is an example of what form.jsp would
look like:

<form:form>
 <table>
 <tr>
 <td>First Name:</td>
 <td><form:input path="firstName"/></td>
 </tr>
 <tr>
 <td>Last Name:</td>
 <td><form:input path="lastName"/></td>
 </tr>
 <tr>
 <td colspan="2">
 <input type="submit" value="Save Changes"/>
 </td>
 </tr>
 </table>
</form:form>

The firstName and lastName values are retrieved from the command object placed in
the PageContext by the page controller. Keep reading to see more complex examples of
how inner tags are used with the form tag.

The generated HTML looks like a standard form:

<form method="POST">
 <table>
 <tr>
 <td>First Name:</td>
 <td><input name="firstName" type="text" value="Harry"/></td>
 </tr>
 <tr>
 <td>Last Name:</td>
 <td><input name="lastName" type="text" value="Potter"/></td>
 </tr>
 <tr>
 <td colspan="2">
 <input type="submit" value="Save Changes"/>
 </td>
 </tr>
 </table>
</form>

The preceding JSP assumes that the variable name of the form backing object is
'command'. If you have put the form backing object into the model under another name
(definitely a best practice), then you can bind the form to the named variable like so:

<form:form modelAttribute="user">
 <table>
 <tr>
 <td>First Name:</td>
 <td><form:input path="firstName"/></td>
 </tr>
 <tr>
 <td>Last Name:</td>
 <td><form:input path="lastName"/></td>
 </tr>
 <tr>
 <td colspan="2">
 <input type="submit" value="Save Changes"/>
 </td>
 </tr>
 </table>
</form:form>

The input tag

This tag renders an HTML 'input' tag using the bound value and type='text' by default.
For an example of this tag, see the section called “The form tag”. Starting with Spring
3.1 you can use other types such HTML5-specific types like 'email', 'tel', 'date', and
others.

The checkbox tag

This tag renders an HTML 'input' tag with type 'checkbox'.

Let’s assume our User has preferences such as newsletter subscription and a list of
hobbies. Below is an example of the Preferences class:

public class Preferences {

 private boolean receiveNewsletter;
 private String[] interests;
 private String favouriteWord;

 public boolean isReceiveNewsletter() {
 return receiveNewsletter;
 }

 public void setReceiveNewsletter(boolean receiveNewsletter) {
 this.receiveNewsletter = receiveNewsletter;
 }

 public String[] getInterests() {
 return interests;
 }

 public void setInterests(String[] interests) {
 this.interests = interests;
 }

 public String getFavouriteWord() {
 return favouriteWord;
 }

 public void setFavouriteWord(String favouriteWord) {
 this.favouriteWord = favouriteWord;
 }
}

The form.jsp would look like:

<form:form>
 <table>
 <tr>
 <td>Subscribe to newsletter?:</td>
 <%-- Approach 1: Property is of type java.lang.Boolean --%>
 <td><form:checkbox path="preferences.receiveNewsletter"/></td>
 </tr>

 <tr>
 <td>Interests:</td>
 <%-- Approach 2: Property is of an array or of type java.util.Collection --%>
 <td>
 Quidditch: <form:checkbox path="preferences.interests" value="Quidditch"/>
 Herbology: <form:checkbox path="preferences.interests" value="Herbology"/>
 Defence Against the Dark Arts: <form:checkbox path="preferences.interests" value="Defence Against the Dark Arts"/>
 </td>
 </tr>

 <tr>
 <td>Favourite Word:</td>
 <%-- Approach 3: Property is of type java.lang.Object --%>
 <td>
 Magic: <form:checkbox path="preferences.favouriteWord" value="Magic"/>
 </td>
 </tr>
 </table>
</form:form>

There are 3 approaches to the checkbox tag which should meet all your checkbox needs.

	
Approach One - When the bound value is of type java.lang.Boolean, the
input(checkbox) is marked as 'checked' if the bound value is true. The value
attribute corresponds to the resolved value of the setValue(Object) value property.

	
Approach Two - When the bound value is of type array or java.util.Collection, the
input(checkbox) is marked as 'checked' if the configured setValue(Object) value is
present in the bound Collection.

	
Approach Three - For any other bound value type, the input(checkbox) is marked as
'checked' if the configured setValue(Object) is equal to the bound value.

Note that regardless of the approach, the same HTML structure is generated. Below is an
HTML snippet of some checkboxes:

<tr>
 <td>Interests:</td>
 <td>
 Quidditch: <input name="preferences.interests" type="checkbox" value="Quidditch"/>
 <input type="hidden" value="1" name="_preferences.interests"/>
 Herbology: <input name="preferences.interests" type="checkbox" value="Herbology"/>
 <input type="hidden" value="1" name="_preferences.interests"/>
 Defence Against the Dark Arts: <input name="preferences.interests" type="checkbox" value="Defence Against the Dark Arts"/>
 <input type="hidden" value="1" name="_preferences.interests"/>
 </td>
</tr>

What you might not expect to see is the additional hidden field after each checkbox.
When a checkbox in an HTML page is not checked, its value will not be sent to the
server as part of the HTTP request parameters once the form is submitted, so we need a
workaround for this quirk in HTML in order for Spring form data binding to work. The
checkbox tag follows the existing Spring convention of including a hidden parameter
prefixed by an underscore ("_") for each checkbox. By doing this, you are effectively
telling Spring that "the checkbox was visible in the form and I want my object to
which the form data will be bound to reflect the state of the checkbox no matter what".

The checkboxes tag

This tag renders multiple HTML 'input' tags with type 'checkbox'.

Building on the example from the previous checkbox tag section. Sometimes you prefer
not to have to list all the possible hobbies in your JSP page. You would rather provide
a list at runtime of the available options and pass that in to the tag. That is the
purpose of the checkboxes tag. You pass in an Array, a List or a Map containing
the available options in the "items" property. Typically the bound property is a
collection so it can hold multiple values selected by the user. Below is an example of
the JSP using this tag:

<form:form>
 <table>
 <tr>
 <td>Interests:</td>
 <td>
 <%-- Property is of an array or of type java.util.Collection --%>
 <form:checkboxes path="preferences.interests" items="${interestList}"/>
 </td>
 </tr>
 </table>
</form:form>

This example assumes that the "interestList" is a List available as a model attribute
containing strings of the values to be selected from. In the case where you use a Map,
the map entry key will be used as the value and the map entry’s value will be used as
the label to be displayed. You can also use a custom object where you can provide the
property names for the value using "itemValue" and the label using "itemLabel".

The radiobutton tag

This tag renders an HTML 'input' tag with type 'radio'.

A typical usage pattern will involve multiple tag instances bound to the same property
but with different values.

<tr>
 <td>Sex:</td>
 <td>
 Male: <form:radiobutton path="sex" value="M"/>

 Female: <form:radiobutton path="sex" value="F"/>
 </td>
</tr>

The radiobuttons tag

This tag renders multiple HTML 'input' tags with type 'radio'.

Just like the checkboxes tag above, you might want to pass in the available options as
a runtime variable. For this usage you would use the radiobuttons tag. You pass in an
Array, a List or a Map containing the available options in the "items" property.
In the case where you use a Map, the map entry key will be used as the value and the map
entry’s value will be used as the label to be displayed. You can also use a custom
object where you can provide the property names for the value using "itemValue" and the
label using "itemLabel".

<tr>
 <td>Sex:</td>
 <td><form:radiobuttons path="sex" items="${sexOptions}"/></td>
</tr>

The password tag

This tag renders an HTML 'input' tag with type 'password' using the bound value.

<tr>
 <td>Password:</td>
 <td>
 <form:password path="password"/>
 </td>
</tr>

Please note that by default, the password value is not shown. If you do want the
password value to be shown, then set the value of the 'showPassword' attribute to
true, like so.

<tr>
 <td>Password:</td>
 <td>
 <form:password path="password" value="^76525bvHGq" showPassword="true"/>
 </td>
</tr>

The select tag

This tag renders an HTML 'select' element. It supports data binding to the selected
option as well as the use of nested option and options tags.

Let’s assume a User has a list of skills.

<tr>
 <td>Skills:</td>
 <td><form:select path="skills" items="${skills}"/></td>
</tr>

If the User’s skill were in Herbology, the HTML source of the 'Skills' row would look
like:

<tr>
 <td>Skills:</td>
 <td>
 <select name="skills" multiple="true">
 <option value="Potions">Potions</option>
 <option value="Herbology" selected="selected">Herbology</option>
 <option value="Quidditch">Quidditch</option>
 </select>
 </td>
</tr>

The option tag

This tag renders an HTML 'option'. It sets 'selected' as appropriate based on the bound
value.

<tr>
 <td>House:</td>
 <td>
 <form:select path="house">
 <form:option value="Gryffindor"/>
 <form:option value="Hufflepuff"/>
 <form:option value="Ravenclaw"/>
 <form:option value="Slytherin"/>
 </form:select>
 </td>
</tr>

If the User’s house was in Gryffindor, the HTML source of the 'House' row would look
like:

<tr>
 <td>House:</td>
 <td>
 <select name="house">
 <option value="Gryffindor" selected="selected">Gryffindor</option>
 <option value="Hufflepuff">Hufflepuff</option>
 <option value="Ravenclaw">Ravenclaw</option>
 <option value="Slytherin">Slytherin</option>
 </select>
 </td>
</tr>

The options tag

This tag renders a list of HTML 'option' tags. It sets the 'selected' attribute as
appropriate based on the bound value.

<tr>
 <td>Country:</td>
 <td>
 <form:select path="country">
 <form:option value="-" label="--Please Select"/>
 <form:options items="${countryList}" itemValue="code" itemLabel="name"/>
 </form:select>
 </td>
</tr>

If the User lived in the UK, the HTML source of the 'Country' row would look like:

<tr>
 <td>Country:</td>
 <td>
 <select name="country">
 <option value="-">--Please Select</option>
 <option value="AT">Austria</option>
 <option value="UK" selected="selected">United Kingdom</option>
 <option value="US">United States</option>
 </select>
 </td>
</tr>

As the example shows, the combined usage of an option tag with the options tag
generates the same standard HTML, but allows you to explicitly specify a value in the
JSP that is for display only (where it belongs) such as the default string in the
example: "-- Please Select".

The items attribute is typically populated with a collection or array of item objects.
itemValue and itemLabel simply refer to bean properties of those item objects, if
specified; otherwise, the item objects themselves will be stringified. Alternatively,
you may specify a Map of items, in which case the map keys are interpreted as option
values and the map values correspond to option labels. If itemValue and/or itemLabel
happen to be specified as well, the item value property will apply to the map key and
the item label property will apply to the map value.

The textarea tag

This tag renders an HTML 'textarea'.

<tr>
 <td>Notes:</td>
 <td><form:textarea path="notes" rows="3" cols="20"/></td>
 <td><form:errors path="notes"/></td>
</tr>

The hidden tag

This tag renders an HTML 'input' tag with type 'hidden' using the bound value. To submit
an unbound hidden value, use the HTML input tag with type 'hidden'.

<form:hidden path="house"/>

If we choose to submit the 'house' value as a hidden one, the HTML would look like:

<input name="house" type="hidden" value="Gryffindor"/>

The errors tag

This tag renders field errors in an HTML 'span' tag. It provides access to the errors
created in your controller or those that were created by any validators associated with
your controller.

Let’s assume we want to display all error messages for the firstName and lastName
fields once we submit the form. We have a validator for instances of the User class
called UserValidator.

public class UserValidator implements Validator {

 public boolean supports(Class candidate) {
 return User.class.isAssignableFrom(candidate);
 }

 public void validate(Object obj, Errors errors) {
 ValidationUtils.rejectIfEmptyOrWhitespace(errors, "firstName", "required", "Field is required.");
 ValidationUtils.rejectIfEmptyOrWhitespace(errors, "lastName", "required", "Field is required.");
 }
}

The form.jsp would look like:

<form:form>
 <table>
 <tr>
 <td>First Name:</td>
 <td><form:input path="firstName"/></td>
 <%-- Show errors for firstName field --%>
 <td><form:errors path="firstName"/></td>
 </tr>

 <tr>
 <td>Last Name:</td>
 <td><form:input path="lastName"/></td>
 <%-- Show errors for lastName field --%>
 <td><form:errors path="lastName"/></td>
 </tr>
 <tr>
 <td colspan="3">
 <input type="submit" value="Save Changes"/>
 </td>
 </tr>
 </table>
</form:form>

If we submit a form with empty values in the firstName and lastName fields, this is
what the HTML would look like:

<form method="POST">
 <table>
 <tr>
 <td>First Name:</td>
 <td><input name="firstName" type="text" value=""/></td>
 <%-- Associated errors to firstName field displayed --%>
 <td>Field is required.</td>
 </tr>

 <tr>
 <td>Last Name:</td>
 <td><input name="lastName" type="text" value=""/></td>
 <%-- Associated errors to lastName field displayed --%>
 <td>Field is required.</td>
 </tr>
 <tr>
 <td colspan="3">
 <input type="submit" value="Save Changes"/>
 </td>
 </tr>
 </table>
</form>

What if we want to display the entire list of errors for a given page? The example below
shows that the errors tag also supports some basic wildcarding functionality.

	
path="*" - displays all errors

	
path="lastName" - displays all errors associated with the lastName field

	
if path is omitted - object errors only are displayed

The example below will display a list of errors at the top of the page, followed by
field-specific errors next to the fields:

<form:form>
 <form:errors path="*" cssClass="errorBox"/>
 <table>
 <tr>
 <td>First Name:</td>
 <td><form:input path="firstName"/></td>
 <td><form:errors path="firstName"/></td>
 </tr>
 <tr>
 <td>Last Name:</td>
 <td><form:input path="lastName"/></td>
 <td><form:errors path="lastName"/></td>
 </tr>
 <tr>
 <td colspan="3">
 <input type="submit" value="Save Changes"/>
 </td>
 </tr>
 </table>
</form:form>

The HTML would look like:

<form method="POST">
 Field is required.
Field is required.
 <table>
 <tr>
 <td>First Name:</td>
 <td><input name="firstName" type="text" value=""/></td>
 <td>Field is required.</td>
 </tr>

 <tr>
 <td>Last Name:</td>
 <td><input name="lastName" type="text" value=""/></td>
 <td>Field is required.</td>
 </tr>
 <tr>
 <td colspan="3">
 <input type="submit" value="Save Changes"/>
 </td>
 </tr>
 </table>
</form>

HTTP method conversion

A key principle of REST is the use of the Uniform Interface. This means that all
resources (URLs) can be manipulated using the same four HTTP methods: GET, PUT, POST,
and DELETE. For each method, the HTTP specification defines the exact semantics. For
instance, a GET should always be a safe operation, meaning that is has no side effects,
and a PUT or DELETE should be idempotent, meaning that you can repeat these operations
over and over again, but the end result should be the same. While HTTP defines these
four methods, HTML only supports two: GET and POST. Fortunately, there are two possible
workarounds: you can either use JavaScript to do your PUT or DELETE, or simply do a POST
with the 'real' method as an additional parameter (modeled as a hidden input field in an
HTML form). This latter trick is what Spring’s HiddenHttpMethodFilter does. This
filter is a plain Servlet Filter and therefore it can be used in combination with any
web framework (not just Spring MVC). Simply add this filter to your web.xml, and a POST
with a hidden _method parameter will be converted into the corresponding HTTP method
request.

To support HTTP method conversion the Spring MVC form tag was updated to support setting
the HTTP method. For example, the following snippet taken from the updated Petclinic
sample

<form:form method="delete">
 <p class="submit"><input type="submit" value="Delete Pet"/></p>
</form:form>

This will actually perform an HTTP POST, with the 'real' DELETE method hidden behind a
request parameter, to be picked up by the HiddenHttpMethodFilter, as defined in
web.xml:

<filter>
 <filter-name>httpMethodFilter</filter-name>
 <filter-class>org.springframework.web.filter.HiddenHttpMethodFilter</filter-class>
</filter>

<filter-mapping>
 <filter-name>httpMethodFilter</filter-name>
 <servlet-name>petclinic</servlet-name>
</filter-mapping>

The corresponding @Controller method is shown below:

@RequestMapping(method = RequestMethod.DELETE)
public String deletePet(@PathVariable int ownerId, @PathVariable int petId) {
 this.clinic.deletePet(petId);
 return "redirect:/owners/" + ownerId;
}

HTML5 tags

Starting with Spring 3, the Spring form tag library allows entering dynamic attributes,
which means you can enter any HTML5 specific attributes.

In Spring 3.1, the form input tag supports entering a type attribute other than 'text'.
This is intended to allow rendering new HTML5 specific input types such as 'email',
'date', 'range', and others. Note that entering type='text' is not required since 'text'
is the default type.

Script views

It is possible to integrate any templating library running on top of a JSR-223
script engine in web applications using Spring. The following describes in a
broad way how to do this. The script engine must implement both ScriptEngine
and Invocable interfaces.

It has been tested with:

	
Handlebars running on Nashorn

	
Mustache running on Nashorn

	
React running on Nashorn

	
EJS running on Nashorn

	
ERB running on JRuby

	
String templates running on Jython

Requirements

To be able to use script templates integration, you need to have available in your classpath
the script engine:

	
Nashorn Javascript engine is provided builtin with Java 8+.
Using the latest update release available is highly recommended.

	
Rhino
Javascript engine is provided builtin with Java 6 and Java 7.
Please notice that using Rhino is not recommended since it does not
support running most template engines.

	
JRuby dependency should be added in order to get Ruby support.

	
Jython dependency should be added in order to get Python support.

You should also need to add dependencies for your script based template engine. For example,
for Javascript you can use WebJars to add Maven/Gradle dependencies
in order to make your javascript libraries available in the classpath.

Script templates

To be able to use script templates, you have to configure it in order to specify various parameters
like the script engine to use, the script files to load and what function should be called to
render the templates. This is done thanks to a ScriptTemplateConfigurer bean and optional script
files.

For example, in order to render Mustache templates thanks to the Nashorn Javascript engine
provided with Java 8+, you should declare the following configuration:

@Configuration
@EnableWebMvc
public class MustacheConfig extends WebMvcConfigurerAdapter {

 @Override
 public void configureViewResolvers(ViewResolverRegistry registry) {
 registry.scriptTemplate();
 }

 @Bean
 public ScriptTemplateConfigurer configurer() {
 ScriptTemplateConfigurer configurer = new ScriptTemplateConfigurer();
 configurer.setEngineName("nashorn");
 configurer.setScripts("mustache.js");
 configurer.setRenderObject("Mustache");
 configurer.setRenderFunction("render");
 return configurer;
 }
}

The XML counterpart using MVC namespace is:

<mvc:annotation-driven/>

<mvc:view-resolvers>
 <mvc:script-template/>
</mvc:view-resolvers>

<mvc:script-template-configurer engine-name="nashorn" render-object="Mustache" render-function="render">
 <mvc:script location="mustache.js"/>
</mvc:script-template-configurer>

The controller is exactly what you should expect:

@Controller
public class SampleController {

 @RequestMapping
 public ModelAndView test() {
 ModelAndView mav = new ModelAndView();
 mav.addObject("title", "Sample title").addObject("body", "Sample body");
 mav.setViewName("template.html");
 return mav;
 }
}

And the Mustache template is:

<html>
 <head>
 <title>{{title}}</title>
 </head>
 <body>
 <p>{{body}}</p>
 </body>
</html>

The render function is called with the following parameters:

	
String template: the template content

	
Map model: the view model

	
String url: the template url (since 4.2.2)

Mustache.render() is natively compatible with this signature, so you can call it directly.

If your templating technology requires some customization, you may provide a script that
implements a custom render function. For example, Handlerbars
needs to compile templates before using them, and requires a
polyfill in order to emulate some
browser facilities not available in the server-side script engine.

@Configuration
@EnableWebMvc
public class MustacheConfig extends WebMvcConfigurerAdapter {

 @Override
 public void configureViewResolvers(ViewResolverRegistry registry) {
 registry.scriptTemplate();
 }

 @Bean
 public ScriptTemplateConfigurer configurer() {
 ScriptTemplateConfigurer configurer = new ScriptTemplateConfigurer();
 configurer.setEngineName("nashorn");
 configurer.setScripts("polyfill.js", "handlebars.js", "render.js");
 configurer.setRenderFunction("render");
 configurer.setSharedEngine(false);
 return configurer;
 }
}

	[image: [Note]]	Note
	
Setting the sharedEngine property to false is required when using non thread-safe
script engines with templating libraries not designed for concurrency, like Handlebars or
React running on Nashorn for example. In that case, Java 8u60 or greater is required due
to this bug.

polyfill.js only defines the window object needed by Handlebars to run properly:

var window = {};

This basic render.js implementation compiles the template before using it. A production
ready implementation should also store and reused cached templates / pre-compiled templates.
This can be done on the script side, as well as any customization you need (managing
template engine configuration for example).

function render(template, model) {
 var compiledTemplate = Handlebars.compile(template);
 return compiledTemplate(model);
}

Check out Spring script templates unit tests
(java,
resources)
for more configuration examples.

XML Marshalling

The MarshallingView uses an XML Marshaller defined in the org.springframework.oxm
package to render the response content as XML. The object to be marshalled can be set
explicitly using MarshallingView's modelKey bean property. Alternatively, the view
will iterate over all model properties and marshal the first type that is supported
by the Marshaller. For more information on the functionality in the
org.springframework.oxm package refer to the chapter Marshalling XML using O/X
Mappers.

Tiles

It is possible to integrate Tiles - just as any other view technology - in web
applications using Spring. The following describes in a broad way how to do this.

	[image: [Note]]	Note
	
This section focuses on Spring’s support for Tiles v3 in the
org.springframework.web.servlet.view.tiles3 package.

Dependencies

To be able to use Tiles, you have to add a dependency on Tiles version 3.0.1 or higher
and its transitive dependencies
to your project.

Configuration

To be able to use Tiles, you have to configure it using files containing definitions
(for basic information on definitions and other Tiles concepts, please have a look at
http://tiles.apache.org). In Spring this is done using the TilesConfigurer. Have a
look at the following piece of example ApplicationContext configuration:

<bean id="tilesConfigurer" class="org.springframework.web.servlet.view.tiles3.TilesConfigurer">
 <property name="definitions">
 <list>
 <value>/WEB-INF/defs/general.xml</value>
 <value>/WEB-INF/defs/widgets.xml</value>
 <value>/WEB-INF/defs/administrator.xml</value>
 <value>/WEB-INF/defs/customer.xml</value>
 <value>/WEB-INF/defs/templates.xml</value>
 </list>
 </property>
</bean>

As you can see, there are five files containing definitions, which are all located in
the 'WEB-INF/defs' directory. At initialization of the WebApplicationContext, the
files will be loaded and the definitions factory will be initialized. After that has
been done, the Tiles includes in the definition files can be used as views within your
Spring web application. To be able to use the views you have to have a ViewResolver
just as with any other view technology used with Spring. Below you can find two
possibilities, the UrlBasedViewResolver and the ResourceBundleViewResolver.

You can specify locale specific Tiles definitions by adding an underscore and then
the locale. For example:

<bean id="tilesConfigurer" class="org.springframework.web.servlet.view.tiles3.TilesConfigurer">
 <property name="definitions">
 <list>
 <value>/WEB-INF/defs/tiles.xml</value>
 <value>/WEB-INF/defs/tiles_fr_FR.xml</value>
 </list>
 </property>
</bean>

With this configuration, tiles_fr_FR.xml will be used for requests with the fr_FR locale,
and tiles.xml will be used by default.

	[image: [Note]]	Note
	
Since underscores are used to indicate locales, it is recommended to avoid using
them otherwise in the file names for Tiles definitions.

UrlBasedViewResolver

The UrlBasedViewResolver instantiates the given viewClass for each view it has to
resolve.

<bean id="viewResolver" class="org.springframework.web.servlet.view.UrlBasedViewResolver">
 <property name="viewClass" value="org.springframework.web.servlet.view.tiles3.TilesView"/>
</bean>

ResourceBundleViewResolver

The ResourceBundleViewResolver has to be provided with a property file containing
view names and view classes the resolver can use:

<bean id="viewResolver" class="org.springframework.web.servlet.view.ResourceBundleViewResolver">
 <property name="basename" value="views"/>
</bean>

...
welcomeView.(class)=org.springframework.web.servlet.view.tiles3.TilesView
welcomeView.url=welcome (this is the name of a Tiles definition)

vetsView.(class)=org.springframework.web.servlet.view.tiles3.TilesView
vetsView.url=vetsView (again, this is the name of a Tiles definition)

findOwnersForm.(class)=org.springframework.web.servlet.view.JstlView
findOwnersForm.url=/WEB-INF/jsp/findOwners.jsp
...

As you can see, when using the ResourceBundleViewResolver, you can easily mix
different view technologies.

Note that the TilesView class supports JSTL (the JSP Standard Tag Library) out of the
box.

SimpleSpringPreparerFactory and SpringBeanPreparerFactory

As an advanced feature, Spring also supports two special Tiles PreparerFactory
implementations. Check out the Tiles documentation for details on how to use
ViewPreparer references in your Tiles definition files.

Specify SimpleSpringPreparerFactory to autowire ViewPreparer instances based on
specified preparer classes, applying Spring’s container callbacks as well as applying
configured Spring BeanPostProcessors. If Spring’s context-wide annotation-config has
been activated, annotations in ViewPreparer classes will be automatically detected and
applied. Note that this expects preparer classes in the Tiles definition files, just
like the default PreparerFactory does.

Specify SpringBeanPreparerFactory to operate on specified preparer names instead
of classes, obtaining the corresponding Spring bean from the DispatcherServlet’s
application context. The full bean creation process will be in the control of the Spring
application context in this case, allowing for the use of explicit dependency injection
configuration, scoped beans etc. Note that you need to define one Spring bean definition
per preparer name (as used in your Tiles definitions).

<bean id="tilesConfigurer" class="org.springframework.web.servlet.view.tiles3.TilesConfigurer">
 <property name="definitions">
 <list>
 <value>/WEB-INF/defs/general.xml</value>
 <value>/WEB-INF/defs/widgets.xml</value>
 <value>/WEB-INF/defs/administrator.xml</value>
 <value>/WEB-INF/defs/customer.xml</value>
 <value>/WEB-INF/defs/templates.xml</value>
 </list>
 </property>

 <!-- resolving preparer names as Spring bean definition names -->
 <property name="preparerFactoryClass"
 value="org.springframework.web.servlet.view.tiles3.SpringBeanPreparerFactory"/>

</bean>

XSLT

XSLT is a transformation language for XML and is popular as a view technology within web
applications. XSLT can be a good choice as a view technology if your application
naturally deals with XML, or if your model can easily be converted to XML. The following
section shows how to produce an XML document as model data and have it transformed with
XSLT in a Spring Web MVC application.

This example is a trivial Spring application that creates a list of words in the
Controller and adds them to the model map. The map is returned along with the view
name of our XSLT view. See the section called “Implementing Controllers” for details of Spring Web MVC’s
Controller interface. The XSLT Controller will turn the list of words into a simple XML
document ready for transformation.

Beans

Configuration is standard for a simple Spring application.
The MVC configuration has to define a XsltViewResolver bean and
regular MVC annotation configuration.

@EnableWebMvc
@ComponentScan
@Configuration
public class WebConfig extends WebMvcConfigurerAdapter {

	@Bean
	public XsltViewResolver xsltViewResolver() {
		XsltViewResolver viewResolver = new XsltViewResolver();
		viewResolver.setPrefix("/WEB-INF/xsl/");
		viewResolver.setSuffix(".xslt");
		return viewResolver;
	}

}

And we need a Controller that encapsulates our word generation logic.

Controller

The controller logic is encapsulated in a @Controller class, with the
handler method being defined like so…​

@Controller
public class XsltController {

 @RequestMapping("/")
 public String home(Model model) throws Exception {

 Document document = DocumentBuilderFactory.newInstance().newDocumentBuilder().newDocument();
 Element root = document.createElement("wordList");

 List<String> words = Arrays.asList("Hello", "Spring", "Framework");
 for (String word : words) {
 Element wordNode = document.createElement("word");
 Text textNode = document.createTextNode(word);
 wordNode.appendChild(textNode);
 root.appendChild(wordNode);
 }

 model.addAttribute("wordList", root);
 return "home";
 }

}

So far we’ve only created a DOM document and added it to the Model map. Note that you
can also load an XML file as a Resource and use it instead of a custom DOM document.

Of course, there are software packages available that will automatically 'domify'
an object graph, but within Spring, you have complete flexibility to create the DOM
from your model in any way you choose. This prevents the transformation of XML playing
too great a part in the structure of your model data which is a danger when using tools
to manage the domification process.

Next, XsltViewResolver will resolve the "home" XSLT template file and merge the
DOM document into it to generate our view.

Transformation

Finally, the XsltViewResolver will resolve the "home" XSLT template file and merge the
DOM document into it to generate our view. As shown in the XsltViewResolver
configuration, XSLT templates live in the war file in the 'WEB-INF/xsl' directory
and end with a "xslt" file extension.

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="html" omit-xml-declaration="yes"/>

 <xsl:template match="/">
 <html>
 <head><title>Hello!</title></head>
 <body>
 <h1>My First Words</h1>

 <xsl:apply-templates/>

 </body>
 </html>
 </xsl:template>

 <xsl:template match="word">
 <xsl:value-of select="."/>
 </xsl:template>

</xsl:stylesheet>

This is rendered as:

<html>
	<head>
		<META http-equiv="Content-Type" content="text/html; charset=UTF-8">
		<title>Hello!</title>
	</head>
	<body>
		<h1>My First Words</h1>
		
			Hello
			Spring
			Framework
		
	</body>
</html>

Document views: PDF, Excel

Introduction

Returning an HTML page isn’t always the best way for the user to view the model output,
and Spring makes it simple to generate a PDF document or an Excel spreadsheet
dynamically from the model data. The document is the view and will be streamed from the
server with the correct content type to (hopefully) enable the client PC to run their
spreadsheet or PDF viewer application in response.

In order to use Excel views, you need to add the Apache POI library to your classpath,
and for PDF generation preferably the OpenPDF library.

	[image: [Note]]	Note
	
Use the latest versions of the underlying document generation libraries if possible.
In particular, we strongly recommend OpenPDF (e.g. OpenPDF 1.0.5) instead of the
outdated original iText 2.1.7 since it is actively maintained and fixes an important
vulnerability for untrusted PDF content.

Configuration

Document based views are handled in an almost identical fashion to XSLT views, and the
following sections build upon the previous one by demonstrating how the same controller
used in the XSLT example is invoked to render the same model as both a PDF document and
an Excel spreadsheet (which can also be viewed or manipulated in Open Office).

View definition

First, let’s amend the views.properties file (or xml equivalent) and add a simple view
definition for both document types. The entire file now looks like this with the XSLT
view shown from earlier:

home.(class)=xslt.HomePage
home.stylesheetLocation=/WEB-INF/xsl/home.xslt
home.root=words

xl.(class)=excel.HomePage

pdf.(class)=pdf.HomePage

If you want to start with a template spreadsheet or a fillable PDF form to add your
model data to, specify the location as the 'url' property in the view definition

Controller

The controller code we’ll use remains exactly the same from the XSLT example earlier
other than to change the name of the view to use. Of course, you could be clever and
have this selected based on a URL parameter or some other logic - proof that Spring
really is very good at decoupling the views from the controllers!

Excel views

Exactly as we did for the XSLT example, we’ll subclass suitable abstract classes in
order to implement custom behavior in generating our output documents. For Excel, this
involves writing a subclass of
org.springframework.web.servlet.view.document.AbstractExcelView (for Excel files
generated by POI) or org.springframework.web.servlet.view.document.AbstractJExcelView
(for JExcelApi-generated Excel files) and implementing the buildExcelDocument() method.

Here’s the complete listing for our POI Excel view which displays the word list from the
model map in consecutive rows of the first column of a new spreadsheet:

package excel;

// imports omitted for brevity

public class HomePage extends AbstractExcelView {

 protected void buildExcelDocument(Map model, HSSFWorkbook wb, HttpServletRequest req,
 HttpServletResponse resp) throws Exception {

 HSSFSheet sheet;
 HSSFRow sheetRow;
 HSSFCell cell;

 // Go to the first sheet
 // getSheetAt: only if wb is created from an existing document
 // sheet = wb.getSheetAt(0);
 sheet = wb.createSheet("Spring");
 sheet.setDefaultColumnWidth((short) 12);

 // write a text at A1
 cell = getCell(sheet, 0, 0);
 setText(cell, "Spring-Excel test");

 List words = (List) model.get("wordList");
 for (int i=0; i < words.size(); i++) {
 cell = getCell(sheet, 2+i, 0);
 setText(cell, (String) words.get(i));
 }
 }

}

And the following is a view generating the same Excel file, now using JExcelApi:

package excel;

// imports omitted for brevity

public class HomePage extends AbstractJExcelView {

 protected void buildExcelDocument(Map model, WritableWorkbook wb,
 HttpServletRequest request, HttpServletResponse response) throws Exception {

 WritableSheet sheet = wb.createSheet("Spring", 0);

 sheet.addCell(new Label(0, 0, "Spring-Excel test"));

 List words = (List) model.get("wordList");
 for (int i = 0; i < words.size(); i++) {
 sheet.addCell(new Label(2+i, 0, (String) words.get(i)));
 }
 }
}

Note the differences between the APIs. We’ve found that the JExcelApi is somewhat more
intuitive, and furthermore, JExcelApi has slightly better image-handling capabilities.
There have been memory problems with large Excel files when using JExcelApi however.

If you now amend the controller such that it returns xl as the name of the view (
return new ModelAndView("xl", map);) and run your application again, you should find
that the Excel spreadsheet is created and downloaded automatically when you request the
same page as before.

PDF views

The PDF version of the word list is even simpler. This time, the class extends
org.springframework.web.servlet.view.document.AbstractPdfView and implements the
buildPdfDocument() method as follows:

package pdf;

// imports omitted for brevity

public class PDFPage extends AbstractPdfView {

 protected void buildPdfDocument(Map model, Document doc, PdfWriter writer,
 HttpServletRequest req, HttpServletResponse resp) throws Exception {
 List words = (List) model.get("wordList");
 for (int i=0; i<words.size(); i++) {
 doc.add(new Paragraph((String) words.get(i)));
 }
 }

}

Once again, amend the controller to return the pdf view with return new
ModelAndView("pdf", map);, and reload the URL in your application. This time a PDF
document should appear listing each of the words in the model map.

JasperReports

JasperReports (http://jasperreports.sourceforge.net) is a powerful open-source
reporting engine that supports the creation of report designs using an easily understood
XML file format. JasperReports is capable of rendering reports in four different
formats: CSV, Excel, HTML and PDF.

Dependencies

Your application will need to include a recent release of JasperReports, e.g. 6.2.
JasperReports itself depends on the following projects:

	
BeanShell

	
Commons BeanUtils

	
Commons Collections

	
Commons Digester

	
Commons Logging

	
iText

	
POI

JasperReports also requires a JAXP-compliant XML parser.

Configuration

To configure JasperReports views in your Spring container configuration you need to
define a ViewResolver to map view names to the appropriate view class depending on
which format you want your report rendered in.

Configuring the ViewResolver

Typically, you will use the ResourceBundleViewResolver to map view names to view
classes and files in a properties file.

<bean id="viewResolver" class="org.springframework.web.servlet.view.ResourceBundleViewResolver">
 <property name="basename" value="views"/>
</bean>

Here we’ve configured an instance of the ResourceBundleViewResolver class that will
look for view mappings in the resource bundle with base name views. (The content of
this file is described in the next section.)

Configuring the Views

The Spring Framework contains five different View implementations for JasperReports,
four of which correspond to one of the four output formats supported by JasperReports,
and one that allows for the format to be determined at runtime:

Table 23.2. JasperReports View classes

	Class Name	Render Format
	JasperReportsCsvView
	CSV

	JasperReportsHtmlView
	HTML

	JasperReportsPdfView
	PDF

	JasperReportsXlsView
	Microsoft Excel

	JasperReportsMultiFormatView
	The view is decided upon at
 runtime

Mapping one of these classes to a view name and a report file is a matter of adding the
appropriate entries in the resource bundle configured in the previous section as shown
here:

simpleReport.(class)=org.springframework.web.servlet.view.jasperreports.JasperReportsPdfView
simpleReport.url=/WEB-INF/reports/DataSourceReport.jasper

Here you can see that the view with name simpleReport is mapped to the
JasperReportsPdfView class, causing the output of this report to be rendered in PDF
format. The url property of the view is set to the location of the underlying report
file.

About Report Files

JasperReports has two distinct types of report file: the design file, which has a
.jrxml extension, and the compiled report file, which has a .jasper extension.
Typically, you use the JasperReports Ant task to compile your .jrxml design file into
a .jasper file before deploying it into your application. With the Spring Framework
you can map either of these files to your report file and the framework will take care
of compiling the .jrxml file on the fly for you. You should note that after a .jrxml
file is compiled by the Spring Framework, the compiled report is cached for the lifetime
of the application. Thus, to make changes to the file you will need to restart your
application.

Using JasperReportsMultiFormatView

The JasperReportsMultiFormatView allows for the report format to be specified at
runtime. The actual rendering of the report is delegated to one of the other
JasperReports view classes - the JasperReportsMultiFormatView class simply adds a
wrapper layer that allows for the exact implementation to be specified at runtime.

The JasperReportsMultiFormatView class introduces two concepts: the format key and the
discriminator key. The JasperReportsMultiFormatView class uses the mapping key to look
up the actual view implementation class, and it uses the format key to lookup up the
mapping key. From a coding perspective you add an entry to your model with the format
key as the key and the mapping key as the value, for example:

public ModelAndView handleSimpleReportMulti(HttpServletRequest request,
HttpServletResponse response) throws Exception {

 String uri = request.getRequestURI();
 String format = uri.substring(uri.lastIndexOf(".") + 1);

 Map model = getModel();
 model.put("format", format);

 return new ModelAndView("simpleReportMulti", model);

}

In this example, the mapping key is determined from the extension of the request URI and
is added to the model under the default format key: format. If you wish to use a
different format key then you can configure this using the formatKey property of the
JasperReportsMultiFormatView class.

By default the following mapping key mappings are configured in
JasperReportsMultiFormatView:

Table 23.3. JasperReportsMultiFormatView Default Mapping Key Mappings

	Mapping Key	View Class
	csv
	JasperReportsCsvView

	html
	JasperReportsHtmlView

	pdf
	JasperReportsPdfView

	xls
	JasperReportsXlsView

So in the example above a request to URI /foo/myReport.pdf would be mapped to the
JasperReportsPdfView class. You can override the mapping key to view class mappings
using the formatMappings property of JasperReportsMultiFormatView.

Populating the ModelAndView

In order to render your report correctly in the format you have chosen, you must supply
Spring with all of the data needed to populate your report. For JasperReports this means
you must pass in all report parameters along with the report datasource. Report
parameters are simple name/value pairs and can be added to the Map for your model as
you would add any name/value pair.

When adding the datasource to the model you have two approaches to choose from. The
first approach is to add an instance of JRDataSource or a Collection type to the
model Map under any arbitrary key. Spring will then locate this object in the model
and treat it as the report datasource. For example, you may populate your model like so:

private Map getModel() {
 Map model = new HashMap();
 Collection beanData = getBeanData();
 model.put("myBeanData", beanData);
 return model;
}

The second approach is to add the instance of JRDataSource or Collection under a
specific key and then configure this key using the reportDataKey property of the view
class. In both cases Spring will wrap instances of Collection in a
JRBeanCollectionDataSource instance. For example:

private Map getModel() {
 Map model = new HashMap();
 Collection beanData = getBeanData();
 Collection someData = getSomeData();
 model.put("myBeanData", beanData);
 model.put("someData", someData);
 return model;
}

Here you can see that two Collection instances are being added to the model. To ensure
that the correct one is used, we simply modify our view configuration as appropriate:

simpleReport.(class)=org.springframework.web.servlet.view.jasperreports.JasperReportsPdfView
simpleReport.url=/WEB-INF/reports/DataSourceReport.jasper
simpleReport.reportDataKey=myBeanData

Be aware that when using the first approach, Spring will use the first instance of
JRDataSource or Collection that it encounters. If you need to place multiple
instances of JRDataSource or Collection into the model you need to use the second
approach.

Working with sub-reports

JasperReports provides support for embedded sub-reports within your master report files.
There are a wide variety of mechanisms for including sub-reports in your report files.
The easiest way is to hard code the report path and the SQL query for the sub report
into your design files. The drawback of this approach is obvious: the values are
hard-coded into your report files reducing reusability and making it harder to modify
and update report designs. To overcome this you can configure sub-reports declaratively,
and you can include additional data for these sub-reports directly from your controllers.

Configuring sub-report files

To control which sub-report files are included in a master report using Spring, your
report file must be configured to accept sub-reports from an external source. To do this
you declare a parameter in your report file like so:

<parameter name="ProductsSubReport" class="net.sf.jasperreports.engine.JasperReport"/>

Then, you define your sub-report to use this sub-report parameter:

<subreport>
 <reportElement isPrintRepeatedValues="false" x="5" y="25" width="325"
 height="20" isRemoveLineWhenBlank="true" backcolor="#ffcc99"/>
 <subreportParameter name="City">
 <subreportParameterExpression><![CDATA[$F{city}]]></subreportParameterExpression>
 </subreportParameter>
 <dataSourceExpression><![CDATA[$P{SubReportData}]]></dataSourceExpression>
 <subreportExpression class="net.sf.jasperreports.engine.JasperReport">
 <![CDATA[$P{ProductsSubReport}]]></subreportExpression>
</subreport>

This defines a master report file that expects the sub-report to be passed in as an
instance of net.sf.jasperreports.engine.JasperReports under the parameter
ProductsSubReport. When configuring your Jasper view class, you can instruct Spring to
load a report file and pass it into the JasperReports engine as a sub-report using the
subReportUrls property:

<property name="subReportUrls">
 <map>
 <entry key="ProductsSubReport" value="/WEB-INF/reports/subReportChild.jrxml"/>
 </map>
</property>

Here, the key of the Map corresponds to the name of the sub-report parameter in the
report design file, and the entry is the URL of the report file. Spring will load this
report file, compiling it if necessary, and pass it into the JasperReports engine under
the given key.

Configuring sub-report data sources

This step is entirely optional when using Spring to configure your sub-reports. If you
wish, you can still configure the data source for your sub-reports using static queries.
However, if you want Spring to convert data returned in your ModelAndView into
instances of JRDataSource then you need to specify which of the parameters in your
ModelAndView Spring should convert. To do this, configure the list of parameter names
using the subReportDataKeys property of your chosen view class:

<property name="subReportDataKeys" value="SubReportData"/>

Here, the key you supply must correspond to both the key used in your ModelAndView
and the key used in your report design file.

Configuring exporter parameters

If you have special requirements for exporter configuration — perhaps you want a
specific page size for your PDF report — you can configure these exporter parameters
declaratively in your Spring configuration file using the exporterParameters property
of the view class. The exporterParameters property is typed as a Map. In your
configuration the key of an entry should be the fully-qualified name of a static field
that contains the exporter parameter definition, and the value of an entry should be the
value you want to assign to the parameter. An example of this is shown below:

<bean id="htmlReport" class="org.springframework.web.servlet.view.jasperreports.JasperReportsHtmlView">
 <property name="url" value="/WEB-INF/reports/simpleReport.jrxml"/>
 <property name="exporterParameters">
 <map>
 <entry key="net.sf.jasperreports.engine.export.JRHtmlExporterParameter.HTML_FOOTER">
 <value>Footer by Spring!
 </td><td width="50%">&nbsp; </td></tr>
 </table></body></html>
 </value>
 </entry>
 </map>
 </property>
</bean>

Here you can see that the JasperReportsHtmlView is configured with an exporter
parameter for net.sf.jasperreports.engine.export.JRHtmlExporterParameter.HTML_FOOTER
which will output a footer in the resulting HTML.

Feed views: RSS, Atom

Both AbstractAtomFeedView and AbstractRssFeedView inherit from the base class
AbstractFeedView and are used to provide Atom and RSS Feed views respectfully. They
are based on java.net’s ROME project and are located in the
package org.springframework.web.servlet.view.feed.

AbstractAtomFeedView requires you to implement the buildFeedEntries() method and
optionally override the buildFeedMetadata() method (the default implementation is
empty), as shown below.

public class SampleContentAtomView extends AbstractAtomFeedView {

 @Override
 protected void buildFeedMetadata(Map<String, Object> model,
 Feed feed, HttpServletRequest request) {
 // implementation omitted
 }

 @Override
 protected List<Entry> buildFeedEntries(Map<String, Object> model,
 HttpServletRequest request, HttpServletResponse response) throws Exception {
 // implementation omitted
 }

}

Similar requirements apply for implementing AbstractRssFeedView, as shown below.

public class SampleContentAtomView extends AbstractRssFeedView {

 @Override
 protected void buildFeedMetadata(Map<String, Object> model,
 Channel feed, HttpServletRequest request) {
 // implementation omitted
 }

 @Override
 protected List<Item> buildFeedItems(Map<String, Object> model,
 HttpServletRequest request, HttpServletResponse response) throws Exception {
 // implementation omitted
 }

}

The buildFeedItems() and buildFeedEntires() methods pass in the HTTP request in case
you need to access the Locale. The HTTP response is passed in only for the setting of
cookies or other HTTP headers. The feed will automatically be written to the response
object after the method returns.

For an example of creating an Atom view please refer to Alef Arendsen’s Spring Team Blog
entry.

JSON Mapping View

The MappingJackson2JsonView uses the Jackson library’s ObjectMapper to render the response
content as JSON. By default, the entire contents of the model map (with the exception of
framework-specific classes) will be encoded as JSON. For cases where the contents of the
map need to be filtered, users may specify a specific set of model attributes to encode
via the modelKeys property. The extractValueFromSingleKeyModel property may
also be used to have the value in single-key models extracted and serialized directly
rather than as a map of model attributes.

JSON mapping can be customized as needed through the use of Jackson’s provided
annotations. When further control is needed, a custom ObjectMapper can be injected
through the ObjectMapper property for cases where custom JSON
serializers/deserializers need to be provided for specific types.

As of Spring Framework 4.3.18, JSONP support is
deprecated and requires to customize the JSONP query parameter
name(s) through the jsonpParameterNames property. This support will be removed as of
Spring Framework 5.1, CORS should be used instead.

XML Mapping View

The MappingJackson2XmlView uses the
Jackson XML extension's XmlMapper
to render the response content as XML. If the model contains multiples entries, the
object to be serialized should be set explicitly using the modelKey bean property.
If the model contains a single entry, it will be serialized automatically.

XML mapping can be customized as needed through the use of JAXB or Jackson’s provided
annotations. When further control is needed, a custom XmlMapper can be injected
through the ObjectMapper property for cases where custom XML
serializers/deserializers need to be provided for specific types.

Chapter 24. Integrating with other web frameworks

Introduction

Spring Web Flow

Spring Web Flow (SWF) aims to be the best solution for the management of web application
page flow.

SWF integrates with existing frameworks like Spring MVC and JSF, in both Servlet and
Portlet environments. If you have a business process (or processes) that would benefit
from a conversational model as opposed to a purely request model, then SWF may be the
solution.

SWF allows you to capture logical page flows as self-contained modules that are reusable
in different situations, and as such is ideal for building web application modules that
guide the user through controlled navigations that drive business processes.

For more information about SWF, consult the
Spring Web Flow website.

This chapter details Spring’s integration with third party web frameworks, such as
JSF.

One of the core value propositions of the Spring Framework is that of enabling
choice. In a general sense, Spring does not force one to use or buy into any
particular architecture, technology, or methodology (although it certainly recommends
some over others). This freedom to pick and choose the architecture, technology, or
methodology that is most relevant to a developer and their development team is
arguably most evident in the web area, where Spring provides its own web framework
(Spring MVC), while at the same time providing integration with a number of
popular third party web frameworks. This allows one to continue to leverage any and all
of the skills one may have acquired in a particular web framework such as JSF, while
at the same time being able to enjoy the benefits afforded by Spring in other areas such
as data access, declarative transaction management, and flexible configuration and
application assembly.

Having dispensed with the woolly sales patter (c.f. the previous paragraph), the
remainder of this chapter will concentrate upon the meaty details of integrating your
favorite web framework with Spring. One thing that is often commented upon by developers
coming to Java from other languages is the seeming super-abundance of web frameworks
available in Java. There are indeed a great number of web frameworks in the Java space;
in fact there are far too many to cover with any semblance of detail in a single
chapter. This chapter thus picks four of the more popular web frameworks in Java,
starting with the Spring configuration that is common to all of the supported web
frameworks, and then detailing the specific integration options for each supported web
framework.

	[image: [Note]]	Note
	
Please note that this chapter does not attempt to explain how to use any of the
supported web frameworks. For example, if you want to use JSF for the presentation
layer of your web application, the assumption is that you are already familiar with
JSF itself. If you need further details about any of the supported web frameworks
themselves, please do consult the section called “Further Resources” at the end of this chapter.

Common configuration

Before diving into the integration specifics of each supported web framework, let us
first take a look at the Spring configuration that is not specific to any one web
framework. (This section is equally applicable to Spring’s own web framework, Spring
MVC.)

One of the concepts (for want of a better word) espoused by (Spring’s) lightweight
application model is that of a layered architecture. Remember that in a 'classic'
layered architecture, the web layer is but one of many layers; it serves as one of the
entry points into a server side application and it delegates to service objects
(facades) defined in a service layer to satisfy business specific (and
presentation-technology agnostic) use cases. In Spring, these service objects, any other
business-specific objects, data access objects, etc. exist in a distinct 'business
context', which contains no web or presentation layer objects (presentation objects
such as Spring MVC controllers are typically configured in a distinct 'presentation
context'). This section details how one configures a Spring container (a
WebApplicationContext) that contains all of the 'business beans' in one’s application.

On to specifics: all that one need do is to declare a
ContextLoaderListener
in the standard Java EE servlet web.xml file of one’s web application, and add a
contextConfigLocation<context-param/> section (in the same file) that defines which
set of Spring XML configuration files to load.

Find below the <listener/> configuration:

<listener>
 <listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>
</listener>

Find below the <context-param/> configuration:

<context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>/WEB-INF/applicationContext*.xml</param-value>
</context-param>

If you don’t specify the contextConfigLocation context parameter, the
ContextLoaderListener will look for a file called /WEB-INF/applicationContext.xml to
load. Once the context files are loaded, Spring creates a
WebApplicationContext
object based on the bean definitions and stores it in the ServletContext of the web
application.

All Java web frameworks are built on top of the Servlet API, and so one can use the
following code snippet to get access to this 'business context' ApplicationContext
created by the ContextLoaderListener.

WebApplicationContext ctx = WebApplicationContextUtils.getWebApplicationContext(servletContext);

The
WebApplicationContextUtils
class is for convenience, so you don’t have to remember the name of the ServletContext
attribute. Its getWebApplicationContext() method will return null if an object
doesn’t exist under the WebApplicationContext.ROOT_WEB_APPLICATION_CONTEXT_ATTRIBUTE
key. Rather than risk getting NullPointerExceptions in your application, it’s better
to use the getRequiredWebApplicationContext() method. This method throws an exception
when the ApplicationContext is missing.

Once you have a reference to the WebApplicationContext, you can retrieve beans by
their name or type. Most developers retrieve beans by name and then cast them to one of
their implemented interfaces.

Fortunately, most of the frameworks in this section have simpler ways of looking up
beans. Not only do they make it easy to get beans from a Spring container, but they also
allow you to use dependency injection on their controllers. Each web framework section
has more detail on its specific integration strategies.

JavaServer Faces 1.2

JavaServer Faces (JSF) is the JCP’s standard component-based, event-driven web user
interface framework. As of Java EE 5, it is an official part of the Java EE umbrella.

For a popular JSF runtime as well as for popular JSF component libraries, check out the
Apache MyFaces project. The MyFaces project also provides
common JSF extensions such as MyFaces Orchestra:
a Spring-based JSF extension that provides rich conversation scope support.

	[image: [Note]]	Note
	
Spring Web Flow 2.0 provides rich JSF support through its newly established Spring Faces
module, both for JSF-centric usage (as described in this section) and for Spring-centric
usage (using JSF views within a Spring MVC dispatcher). Check out the
Spring Web Flow website for details!

The key element in Spring’s JSF integration is the JSF ELResolver mechanism.

SpringBeanFacesELResolver (JSF 1.2+)

SpringBeanFacesELResolver is a JSF 1.2 compliant ELResolver implementation,
integrating with the standard Unified EL as used by JSF 1.2 and JSP 2.1. Like
SpringBeanVariableResolver, it delegates to the Spring’s 'business context'
WebApplicationContext first, then to the default resolver of the underlying JSF
implementation.

Configuration-wise, simply define SpringBeanFacesELResolver in your JSF 1.2
faces-context.xml file:

<faces-config>
 <application>
 <el-resolver>org.springframework.web.jsf.el.SpringBeanFacesELResolver</el-resolver>
 ...
 </application>
</faces-config>

FacesContextUtils

A custom VariableResolver works well when mapping one’s properties to beans
in faces-config.xml, but at times one may need to grab a bean explicitly. The
FacesContextUtils
class makes this easy. It is similar to WebApplicationContextUtils, except that it
takes a FacesContext parameter rather than a ServletContext parameter.

ApplicationContext ctx = FacesContextUtils.getWebApplicationContext(FacesContext.getCurrentInstance());

Apache Struts 2.x

Invented by Craig McClanahan, Struts is an open source project
hosted by the Apache Software Foundation. At the time, it greatly simplified the
JSP/Servlet programming paradigm and won over many developers who were using proprietary
frameworks. It simplified the programming model, it was open source (and thus free as in
beer), and it had a large community, which allowed the project to grow and become popular
among Java web developers.

Check out the Struts
Spring Plugin for the
built-in Spring integration shipped with Struts.

Tapestry 5.x

From the Tapestry homepage:

Tapestry is a "Component oriented framework for creating dynamic, robust,
highly scalable web applications in Java."

While Spring has its own powerful web layer, there are a number of unique
advantages to building an enterprise Java application using a combination of Tapestry
for the web user interface and the Spring container for the lower layers.

For more information, check out Tapestry’s dedicated
integration module for
Spring.

Further Resources

Find below links to further resources about the various web frameworks described in this
chapter.

	
The JSF homepage

	
The Struts homepage

	
The Tapestry homepage

Chapter 25. Portlet MVC Framework

Introduction

JSR-286 The Java Portlet Specification

For more general information about portlet development, please review the
JSR-286 Specification itself.

In addition to supporting conventional (servlet-based) Web development, Spring also
supports JSR-286 Portlet development. As much as possible, the Portlet MVC framework is
a mirror image of the Web MVC framework, and also uses the same underlying view
abstractions and integration technology. So, be sure to review the chapters entitled
Chapter 22, Web MVC framework and Chapter 23, View Technologies before continuing with this chapter.

	[image: [Note]]	Note
	
Bear in mind that while the concepts of Spring MVC are the same in Spring Portlet MVC,
there are some notable differences created by the unique workflow of JSR-286 portlets.

The main way in which portlet workflow differs from servlet workflow is that the request
to the portlet can have two distinct phases: the action phase and the render phase. The
action phase is executed only once and is where any 'backend' changes or actions occur,
such as making changes in a database. The render phase then produces what is displayed
to the user each time the display is refreshed. The critical point here is that for a
single overall request, the action phase is executed only once, but the render phase may
be executed multiple times. This provides (and requires) a clean separation between the
activities that modify the persistent state of your system and the activities that
generate what is displayed to the user.

Spring Web Flow

Spring Web Flow (SWF) aims to be the best solution for the management of web application
page flow.

SWF integrates with existing frameworks like Spring MVC and JSF, in both Servlet and
Portlet environments. If you have a business process (or processes) that would benefit
from a conversational model as opposed to a purely request model, then SWF may be the
solution.

SWF allows you to capture logical page flows as self-contained modules that are reusable
in different situations, and as such is ideal for building web application modules that
guide the user through controlled navigations that drive business processes.

For more information about SWF, consult the Spring Web Flow website.

The dual phases of portlet requests are one of the real strengths of the JSR-286
specification. For example, dynamic search results can be updated routinely on the
display without the user explicitly rerunning the search. Most other portlet MVC
frameworks attempt to completely hide the two phases from the developer and make it look
as much like traditional servlet development as possible - we think this approach
removes one of the main benefits of using portlets. So, the separation of the two phases
is preserved throughout the Spring Portlet MVC framework. The primary manifestation of
this approach is that where the servlet version of the MVC classes will have one method
that deals with the request, the portlet version of the MVC classes will have two
methods that deal with the request: one for the action phase and one for the render
phase. For example, where the servlet version of AbstractController has the
handleRequestInternal(..) method, the portlet version of AbstractController has
handleActionRequestInternal(..) and handleRenderRequestInternal(..) methods.

The framework is designed around a DispatcherPortlet that dispatches requests to
handlers, with configurable handler mappings and view resolution, just as the
DispatcherServlet in the web framework does. File upload is also supported in the same
way.

Locale resolution and theme resolution are not supported in Portlet MVC - these areas
are in the purview of the portal/portlet container and are not appropriate at the Spring
level. However, all mechanisms in Spring that depend on the locale (such as
internationalization of messages) will still function properly because
DispatcherPortlet exposes the current locale in the same way as DispatcherServlet.

Controllers - The C in MVC

The default handler is still a very simple Controller interface, offering just two
methods:

	
void handleActionRequest(request,response)

	
ModelAndView handleRenderRequest(request,response)

The framework also includes most of the same controller implementation hierarchy, such
as AbstractController, SimpleFormController, and so on. Data binding, command object
usage, model handling, and view resolution are all the same as in the servlet framework.

Views - The V in MVC

All the view rendering capabilities of the servlet framework are used directly via a
special bridge servlet named ViewRendererServlet. By using this servlet, the portlet
request is converted into a servlet request and the view can be rendered using the
entire normal servlet infrastructure. This means all the existing renderers, such as
JSP, Velocity, etc., can still be used within the portlet.

Web-scoped beans

Spring Portlet MVC supports beans whose lifecycle is scoped to the current HTTP request
or HTTP Session (both normal and global). This is not a specific feature of Spring
Portlet MVC itself, but rather of the WebApplicationContext container(s) that Spring
Portlet MVC uses. These bean scopes are described in detail in
the section called “Request, session, global session, application, and WebSocket scopes”

The DispatcherPortlet

Portlet MVC is a request-driven web MVC framework, designed around a portlet that
dispatches requests to controllers and offers other functionality facilitating the
development of portlet applications. Spring’s DispatcherPortlet however, does more
than just that. It is completely integrated with the Spring ApplicationContext and
allows you to use every other feature Spring has.

Like ordinary portlets, the DispatcherPortlet is declared in the portlet.xml file of
your web application:

<portlet>
 <portlet-name>sample</portlet-name>
 <portlet-class>org.springframework.web.portlet.DispatcherPortlet</portlet-class>
 <supports>
 <mime-type>text/html</mime-type>
 <portlet-mode>view</portlet-mode>
 </supports>
 <portlet-info>
 <title>Sample Portlet</title>
 </portlet-info>
</portlet>

The DispatcherPortlet now needs to be configured.

In the Portlet MVC framework, each DispatcherPortlet has its own
WebApplicationContext, which inherits all the beans already defined in the Root
WebApplicationContext. These inherited beans can be overridden in the portlet-specific
scope, and new scope-specific beans can be defined local to a given portlet instance.

The framework will, on initialization of a DispatcherPortlet, look for a file named
[portlet-name]-portlet.xml in the WEB-INF directory of your web application and
create the beans defined there (overriding the definitions of any beans defined with the
same name in the global scope).

The config location used by the DispatcherPortlet can be modified through a portlet
initialization parameter (see below for details).

The Spring DispatcherPortlet has a few special beans it uses, in order to be able to
process requests and render the appropriate views. These beans are included in the
Spring framework and can be configured in the WebApplicationContext, just as any other
bean would be configured. Each of those beans is described in more detail below. Right
now, we’ll just mention them, just to let you know they exist and to enable us to go on
talking about the DispatcherPortlet. For most of the beans, defaults are provided so
you don’t have to worry about configuring them.

Table 25.1. Special beans in the WebApplicationContext

	Expression	Explanation
	handler mapping(s)
	(the section called “Handler mappings”) a list of pre- and post-processors and controllers that
 will be executed if they match certain criteria (for instance a matching portlet mode
 specified with the controller)

	controller(s)
	(the section called “Controllers”) the beans providing the actual functionality (or at least,
 access to the functionality) as part of the MVC triad

	view resolver
	(the section called “Views and resolving them”) capable of resolving view names to view definitions

	multipart resolver
	(the section called “Multipart (file upload) support”) offers functionality to process file uploads from HTML forms

	handler exception resolver
	(the section called “Handling exceptions”) offers functionality to map exceptions to views or
 implement other more complex exception handling code

When a DispatcherPortlet is setup for use and a request comes in for that specific
DispatcherPortlet, it starts processing the request. The list below describes the
complete process a request goes through if handled by a DispatcherPortlet:

	
The locale returned by PortletRequest.getLocale() is bound to the request to let
elements in the process resolve the locale to use when processing the request (rendering
the view, preparing data, etc.).

	
If a multipart resolver is specified and this is an ActionRequest, the request is
inspected for multiparts and if they are found, it is wrapped in a
MultipartActionRequest for further processing by other elements in the process. (See
the section called “Multipart (file upload) support” for further information about multipart handling).

	
An appropriate handler is searched for. If a handler is found, the execution chain
associated with the handler (pre-processors, post-processors, controllers) will be
executed in order to prepare a model.

	
If a model is returned, the view is rendered, using the view resolver that has been
configured with the WebApplicationContext. If no model is returned (which could be due
to a pre- or post-processor intercepting the request, for example, for security
reasons), no view is rendered, since the request could already have been fulfilled.

Exceptions that are thrown during processing of the request get picked up by any of the
handler exception resolvers that are declared in the WebApplicationContext. Using
these exception resolvers you can define custom behavior in case such exceptions get
thrown.

You can customize Spring’s DispatcherPortlet by adding context parameters in the
portlet.xml file or portlet init-parameters. The possibilities are listed below.

Table 25.2. DispatcherPortlet initialization parameters

	Parameter	Explanation
	contextClass
	Class that implements WebApplicationContext, which will be used to instantiate the
 context used by this portlet. If this parameter isn’t specified, the
 XmlPortletApplicationContext will be used.

	contextConfigLocation
	String which is passed to the context instance (specified by contextClass) to
 indicate where context(s) can be found. The String is potentially split up into
 multiple Strings (using a comma as a delimiter) to support multiple contexts (in case
 of multiple context locations, for beans that are defined twice, the latest takes
 precedence).

	namespace
	The namespace of the WebApplicationContext. Defaults to [portlet-name]-portlet.

	viewRendererUrl
	The URL at which DispatcherPortlet can access an instance of ViewRendererServlet
 (see the section called “The ViewRendererServlet”).

The ViewRendererServlet

The rendering process in Portlet MVC is a bit more complex than in Web MVC. In order to
reuse all the view technologies from Spring Web MVC, we must convert the
PortletRequest / PortletResponse to HttpServletRequest / HttpServletResponse and
then call the render method of the View. To do this, DispatcherPortlet uses a
special servlet that exists for just this purpose: the ViewRendererServlet.

In order for DispatcherPortlet rendering to work, you must declare an instance of the
ViewRendererServlet in the web.xml file for your web application as follows:

<servlet>
 <servlet-name>ViewRendererServlet</servlet-name>
 <servlet-class>org.springframework.web.servlet.ViewRendererServlet</servlet-class>
</servlet>

<servlet-mapping>
 <servlet-name>ViewRendererServlet</servlet-name>
 <url-pattern>/WEB-INF/servlet/view</url-pattern>
</servlet-mapping>

To perform the actual rendering, DispatcherPortlet does the following:

	
Binds the WebApplicationContext to the request as an attribute under the same
WEB_APPLICATION_CONTEXT_ATTRIBUTE key that DispatcherServlet uses.

	
Binds the Model and View objects to the request to make them available to the
ViewRendererServlet.

	
Constructs a PortletRequestDispatcher and performs an include using the /WEB-
INF/servlet/view URL that is mapped to the ViewRendererServlet.

The ViewRendererServlet is then able to call the render method on the View with
the appropriate arguments.

The actual URL for the ViewRendererServlet can be changed using DispatcherPortlet’s
`viewRendererUrl configuration parameter.

Controllers

The controllers in Portlet MVC are very similar to the Web MVC Controllers, and porting
code from one to the other should be simple.

The basis for the Portlet MVC controller architecture is the
org.springframework.web.portlet.mvc.Controller interface, which is listed below.

public interface Controller {

 /**
 * Process the render request and return a ModelAndView object which the
 * DispatcherPortlet will render.
 */
 ModelAndView handleRenderRequest(RenderRequest request,
 RenderResponse response) throws Exception;

 /**
 * Process the action request. There is nothing to return.
 */
 void handleActionRequest(ActionRequest request,
 ActionResponse response) throws Exception;

}

As you can see, the Portlet Controller interface requires two methods that handle the
two phases of a portlet request: the action request and the render request. The action
phase should be capable of handling an action request, and the render phase should be
capable of handling a render request and returning an appropriate model and view. While
the Controller interface is quite abstract, Spring Portlet MVC offers several
controllers that already contain a lot of the functionality you might need; most of
these are very similar to controllers from Spring Web MVC. The Controller interface
just defines the most common functionality required of every controller: handling an
action request, handling a render request, and returning a model and a view.

AbstractController and PortletContentGenerator

Of course, just a Controller interface isn’t enough. To provide a basic
infrastructure, all of Spring Portlet MVC’s Controllers inherit from
AbstractController, a class offering access to Spring’s ApplicationContext and
control over caching.

Table 25.3. Features offered by the AbstractController

	Parameter	Explanation
	requireSession
	Indicates whether or not this Controller requires a session to do its work. This
 feature is offered to all controllers. If a session is not present when such a
 controller receives a request, the user is informed using a SessionRequiredException.

	synchronizeSession
	Use this if you want handling by this controller to be synchronized on the user’s
 session. To be more specific, the extending controller will override the
 handleRenderRequestInternal(..) and handleActionRequestInternal(..) methods, which
 will be synchronized on the user’s session if you specify this variable.

	renderWhenMinimized
	If you want your controller to actually render the view when the portlet is in a
 minimized state, set this to true. By default, this is set to false so that portlets
 that are in a minimized state don’t display any content.

	cacheSeconds
	When you want a controller to override the default cache expiration defined for the
 portlet, specify a positive integer here. By default it is set to -1, which does not
 change the default caching. Setting it to 0 will ensure the result is never cached.

The requireSession and cacheSeconds properties are declared on the
PortletContentGenerator class, which is the superclass of AbstractController) but
are included here for completeness.

When using the AbstractController as a base class for your controllers (which is not
recommended since there are a lot of other controllers that might already do the job for
you) you only have to override either the handleActionRequestInternal(ActionRequest,
ActionResponse) method or the handleRenderRequestInternal(RenderRequest,
RenderResponse) method (or both), implement your logic, and return a ModelAndView
object (in the case of handleRenderRequestInternal).

The default implementations of both handleActionRequestInternal(..) and
handleRenderRequestInternal(..) throw a PortletException. This is consistent with
the behavior of GenericPortlet from the JSR- 168 Specification API. So you only need
to override the method that your controller is intended to handle.

Here is short example consisting of a class and a declaration in the web application
context.

package samples;

import javax.portlet.RenderRequest;
import javax.portlet.RenderResponse;

import org.springframework.web.portlet.mvc.AbstractController;
import org.springframework.web.portlet.ModelAndView;

public class SampleController extends AbstractController {

 public ModelAndView handleRenderRequestInternal(RenderRequest request, RenderResponse response) {
 ModelAndView mav = new ModelAndView("foo");
 mav.addObject("message", "Hello World!");
 return mav;
 }

}

<bean id="sampleController" class="samples.SampleController">
 <property name="cacheSeconds" value="120"/>
</bean>

The class above and the declaration in the web application context is all you need
besides setting up a handler mapping (see the section called “Handler mappings”) to get this very
simple controller working.

Other simple controllers

Although you can extend AbstractController, Spring Portlet MVC provides a number of
concrete implementations which offer functionality that is commonly used in simple MVC
applications.

The ParameterizableViewController is basically the same as the example above, except
for the fact that you can specify the view name that it will return in the web
application context (no need to hard-code the view name).

The PortletModeNameViewController uses the current mode of the portlet as the view
name. So, if your portlet is in View mode (i.e. PortletMode.VIEW) then it uses "view"
as the view name.

Command Controllers

Spring Portlet MVC has the exact same hierarchy of command controllers as Spring Web
MVC. They provide a way to interact with data objects and dynamically bind parameters
from the PortletRequest to the data object specified. Your data objects don’t have to
implement a framework-specific interface, so you can directly manipulate your persistent
objects if you desire. Let’s examine what command controllers are available, to get an
overview of what you can do with them:

	
AbstractCommandController - a command controller you can use to create your own
command controller, capable of binding request parameters to a data object you
specify. This class does not offer form functionality, it does however offer
validation features and lets you specify in the controller itself what to do with the
command object that has been filled with the parameters from the request.

	
AbstractFormController - an abstract controller offering form submission support.
Using this controller you can model forms and populate them using a command object you
retrieve in the controller. After a user has filled the form, AbstractFormController
binds the fields, validates, and hands the object back to the controller to take
appropriate action. Supported features are: invalid form submission (resubmission),
validation, and normal form workflow. You implement methods to determine which views
are used for form presentation and success. Use this controller if you need forms, but
don’t want to specify what views you’re going to show the user in the application
context.

	
SimpleFormController - a concrete AbstractFormController that provides even more
support when creating a form with a corresponding command object. The
SimpleFormController lets you specify a command object, a viewname for the form, a
viewname for the page you want to show the user when form submission has succeeded,
and more.

	
AbstractWizardFormController — a concrete AbstractFormController that provides a
wizard-style interface for editing the contents of a command object across multiple
display pages. Supports multiple user actions: finish, cancel, or page change, all of
which are easily specified in request parameters from the view.

These command controllers are quite powerful, but they do require a detailed
understanding of how they operate in order to use them efficiently. Carefully review the
javadocs for this entire hierarchy and then look at some sample implementations before
you start using them.

PortletWrappingController

Instead of developing new controllers, it is possible to use existing portlets and map
requests to them from a DispatcherPortlet. Using the PortletWrappingController, you
can instantiate an existing Portlet as a Controller as follows:

<bean id="myPortlet" class="org.springframework.web.portlet.mvc.PortletWrappingController">
 <property name="portletClass" value="sample.MyPortlet"/>
 <property name="portletName" value="my-portlet"/>
 <property name="initParameters">
 <value>config=/WEB-INF/my-portlet-config.xml</value>
 </property>
</bean>

This can be very valuable since you can then use interceptors to pre-process and
post-process requests going to these portlets. Since JSR-286 does not support any kind
of filter mechanism, this is quite handy. For example, this can be used to wrap the
Hibernate OpenSessionInViewInterceptor around a MyFaces JSF Portlet.

Handler mappings

Using a handler mapping you can map incoming portlet requests to appropriate handlers.
There are some handler mappings you can use out of the box, for example, the
PortletModeHandlerMapping, but let’s first examine the general concept of a
HandlerMapping.

Note: We are intentionally using the term "Handler" here instead of "Controller".
DispatcherPortlet is designed to be used with other ways to process requests than just
Spring Portlet MVC’s own Controllers. A Handler is any Object that can handle portlet
requests. Controllers are an example of Handlers, and they are of course the default. To
use some other framework with DispatcherPortlet, a corresponding implementation of
HandlerAdapter is all that is needed.

The functionality a basic HandlerMapping provides is the delivering of a
HandlerExecutionChain, which must contain the handler that matches the incoming
request, and may also contain a list of handler interceptors that are applied to the
request. When a request comes in, the DispatcherPortlet will hand it over to the
handler mapping to let it inspect the request and come up with an appropriate
HandlerExecutionChain. Then the DispatcherPortlet will execute the handler and
interceptors in the chain (if any). These concepts are all exactly the same as in Spring
Web MVC.

The concept of configurable handler mappings that can optionally contain interceptors
(executed before or after the actual handler was executed, or both) is extremely
powerful. A lot of supporting functionality can be built into a custom HandlerMapping.
Think of a custom handler mapping that chooses a handler not only based on the portlet
mode of the request coming in, but also on a specific state of the session associated
with the request.

In Spring Web MVC, handler mappings are commonly based on URLs. Since there is really no
such thing as a URL within a Portlet, we must use other mechanisms to control mappings.
The two most common are the portlet mode and a request parameter, but anything available
to the portlet request can be used in a custom handler mapping.

The rest of this section describes three of Spring Portlet MVC’s most commonly used
handler mappings. They all extend AbstractHandlerMapping and share the following
properties:

	
interceptors: The list of interceptors to use. HandlerInterceptors are discussed
in the section called “Adding HandlerInterceptors”.

	
defaultHandler: The default handler to use, when this handler mapping does not
result in a matching handler.

	
order: Based on the value of the order property (see the
org.springframework.core.Ordered interface), Spring will sort all handler mappings
available in the context and apply the first matching handler.

	
lazyInitHandlers: Allows for lazy initialization of singleton handlers (prototype
handlers are always lazily initialized). Default value is false. This property is
directly implemented in the three concrete Handlers.

PortletModeHandlerMapping

This is a simple handler mapping that maps incoming requests based on the current mode
of the portlet (e.g. 'view', 'edit', 'help'). An example:

<bean class="org.springframework.web.portlet.handler.PortletModeHandlerMapping">
 <property name="portletModeMap">
 <map>
 <entry key="view" value-ref="viewHandler"/>
 <entry key="edit" value-ref="editHandler"/>
 <entry key="help" value-ref="helpHandler"/>
 </map>
 </property>
</bean>

ParameterHandlerMapping

If we need to navigate around to multiple controllers without changing portlet mode, the
simplest way to do this is with a request parameter that is used as the key to control
the mapping.

ParameterHandlerMapping uses the value of a specific request parameter to control the
mapping. The default name of the parameter is 'action', but can be changed using the
'parameterName' property.

The bean configuration for this mapping will look something like this:

<bean class="org.springframework.web.portlet.handler.ParameterHandlerMapping">
 <property name="parameterMap">
 <map>
 <entry key="add" value-ref="addItemHandler"/>
 <entry key="edit" value-ref="editItemHandler"/>
 <entry key="delete" value-ref="deleteItemHandler"/>
 </map>
 </property>
</bean>

PortletModeParameterHandlerMapping

The most powerful built-in handler mapping, PortletModeParameterHandlerMapping
combines the capabilities of the two previous ones to allow different navigation within
each portlet mode.

Again the default name of the parameter is "action", but can be changed using the
parameterName property.

By default, the same parameter value may not be used in two different portlet modes.
This is so that if the portal itself changes the portlet mode, the request will no
longer be valid in the mapping. This behavior can be changed by setting the
allowDupParameters property to true. However, this is not recommended.

The bean configuration for this mapping will look something like this:

<bean class="org.springframework.web.portlet.handler.PortletModeParameterHandlerMapping">
 <property name="portletModeParameterMap">
 <map>
 <entry key="view"> <!-- 'view' portlet mode -->
 <map>
 <entry key="add" value-ref="addItemHandler"/>
 <entry key="edit" value-ref="editItemHandler"/>
 <entry key="delete" value-ref="deleteItemHandler"/>
 </map>
 </entry>
 <entry key="edit"> <!-- 'edit' portlet mode -->
 <map>
 <entry key="prefs" value-ref="prefsHandler"/>
 <entry key="resetPrefs" value-ref="resetPrefsHandler"/>
 </map>
 </entry>
 </map>
 </property>
</bean>

This mapping can be chained ahead of a PortletModeHandlerMapping, which can then
provide defaults for each mode and an overall default as well.

Adding HandlerInterceptors

Spring’s handler mapping mechanism has a notion of handler interceptors, which can be
extremely useful when you want to apply specific functionality to certain requests, for
example, checking for a principal. Again Spring Portlet MVC implements these concepts in
the same way as Web MVC.

Interceptors located in the handler mapping must implement HandlerInterceptor from the
org.springframework.web.portlet package. Just like the servlet version, this interface
defines three methods: one that will be called before the actual handler will be
executed (preHandle), one that will be called after the handler is executed (
postHandle), and one that is called after the complete request has finished (
afterCompletion). These three methods should provide enough flexibility to do all
kinds of pre- and post- processing.

The preHandle method returns a boolean value. You can use this method to break or
continue the processing of the execution chain. When this method returns true, the
handler execution chain will continue. When it returns false, the DispatcherPortlet
assumes the interceptor itself has taken care of requests (and, for example, rendered an
appropriate view) and does not continue executing the other interceptors and the actual
handler in the execution chain.

The postHandle method is only called on a RenderRequest. The preHandle and
afterCompletion methods are called on both an ActionRequest and a RenderRequest.
If you need to execute logic in these methods for just one type of request, be sure to
check what kind of request it is before processing it.

HandlerInterceptorAdapter

As with the servlet package, the portlet package has a concrete implementation of
HandlerInterceptor called HandlerInterceptorAdapter. This class has empty versions
of all the methods so that you can inherit from this class and implement just one or two
methods when that is all you need.

ParameterMappingInterceptor

The portlet package also has a concrete interceptor named ParameterMappingInterceptor
that is meant to be used directly with ParameterHandlerMapping and
PortletModeParameterHandlerMapping. This interceptor will cause the parameter that is
being used to control the mapping to be forwarded from an ActionRequest to the
subsequent RenderRequest. This will help ensure that the RenderRequest is mapped to
the same Handler as the ActionRequest. This is done in the preHandle method of the
interceptor, so you can still modify the parameter value in your handler to change where
the RenderRequest will be mapped.

Be aware that this interceptor is calling setRenderParameter on the ActionResponse,
which means that you cannot call sendRedirect in your handler when using this
interceptor. If you need to do external redirects then you will either need to forward
the mapping parameter manually or write a different interceptor to handle this for you.

Views and resolving them

As mentioned previously, Spring Portlet MVC directly reuses all the view technologies
from Spring Web MVC. This includes not only the various View implementations
themselves, but also the ViewResolver implementations. For more information, refer to
Chapter 23, View Technologies and the section called “Resolving views” respectively.

A few items on using the existing View and ViewResolver implementations are worth
mentioning:

	
Most portals expect the result of rendering a portlet to be an HTML fragment. So,
things like JSP/JSTL, Velocity, FreeMarker, and XSLT all make sense. But it is
unlikely that views that return other document types will make any sense in a portlet
context.

	
There is no such thing as an HTTP redirect from within a portlet (the
sendRedirect(..) method of ActionResponse cannot be used to stay within the
portal). So, RedirectView and use of the 'redirect:' prefix will not work
correctly from within Portlet MVC.

	
It may be possible to use the 'forward:' prefix from within Portlet MVC. However,
remember that since you are in a portlet, you have no idea what the current URL looks
like. This means you cannot use a relative URL to access other resources in your web
application and that you will have to use an absolute URL.

Also, for JSP development, the new Spring Taglib and the new Spring Form Taglib both
work in portlet views in exactly the same way that they work in servlet views.

Multipart (file upload) support

Spring Portlet MVC has built-in multipart support to handle file uploads in portlet
applications, just like Web MVC does. The design for the multipart support is done with
pluggable PortletMultipartResolver objects, defined in the
org.springframework.web.portlet.multipart package. Spring provides a
PortletMultipartResolver for use with
Commons FileUpload. How uploading files is
supported will be described in the rest of this section.

By default, no multipart handling will be done by Spring Portlet MVC, as some developers
will want to handle multiparts themselves. You will have to enable it yourself by adding
a multipart resolver to the web application’s context. After you have done that,
DispatcherPortlet will inspect each request to see if it contains a multipart. If no
multipart is found, the request will continue as expected. However, if a multipart is
found in the request, the PortletMultipartResolver that has been declared in your
context will be used. After that, the multipart attribute in your request will be
treated like any other attribute.

	[image: [Note]]	Note
	
Any configured PortletMultipartResolver bean must have the following id (or name):
" portletMultipartResolver`". If you have defined your `PortletMultipartResolver with
any other name, then the DispatcherPortlet will not find your
PortletMultipartResolver, and consequently no multipart support will be in effect.

Using the PortletMultipartResolver

The following example shows how to use the CommonsPortletMultipartResolver:

<bean id="portletMultipartResolver"
 class="org.springframework.web.portlet.multipart.CommonsPortletMultipartResolver">
 <!-- one of the properties available; the maximum file size in bytes -->
 <property name="maxUploadSize" value="100000"/>
</bean>

Of course you also need to put the appropriate jars in your classpath for the multipart
resolver to work. In the case of the CommonsMultipartResolver, you need to use
commons-fileupload.jar. Be sure to use at least version 1.1 of Commons FileUpload as
previous versions do not support JSR-286 Portlet applications.

Now that you have seen how to set Portlet MVC up to handle multipart requests, let’s
talk about how to actually use it. When DispatcherPortlet detects a multipart request,
it activates the resolver that has been declared in your context and hands over the
request. What the resolver then does is wrap the current ActionRequest in a
MultipartActionRequest that has support for multipart file uploads. Using the
MultipartActionRequest you can get information about the multiparts contained by this
request and actually get access to the multipart files themselves in your controllers.

Note that you can only receive multipart file uploads as part of an ActionRequest, not
as part of a RenderRequest.

Handling a file upload in a form

After the PortletMultipartResolver has finished doing its job, the request will be
processed like any other. To use the PortletMultipartResolver, create a form with an
upload field (see example below), then let Spring bind the file onto your form (backing
object). To actually let the user upload a file, we have to create a (JSP/HTML) form:

<h1>Please upload a file</h1>
<form method="post" action="<portlet:actionURL/>" enctype="multipart/form-data">
 <input type="file" name="file"/>
 <input type="submit"/>
</form>

As you can see, we’ve created a field named "file" that matches the property of the bean
that holds the byte[] array. Furthermore we’ve added the encoding attribute (
enctype="multipart/form-data"), which is necessary to let the browser know how to
encode the multipart fields (do not forget this!).

Just as with any other property that’s not automagically convertible to a string or
primitive type, to be able to put binary data in your objects you have to register a
custom editor with the PortletRequestDataBinder. There are a couple of editors
available for handling files and setting the results on an object. There’s a
StringMultipartFileEditor capable of converting files to Strings (using a user-defined
character set), and there is a ByteArrayMultipartFileEditor which converts files to
byte arrays. They function analogous to the CustomDateEditor.

So, to be able to upload files using a form, declare the resolver, a mapping to a
controller that will process the bean, and the controller itself.

<bean id="portletMultipartResolver"
 class="org.springframework.web.portlet.multipart.CommonsPortletMultipartResolver"/>

<bean class="org.springframework.web.portlet.handler.PortletModeHandlerMapping">
 <property name="portletModeMap">
 <map>
 <entry key="view" value-ref="fileUploadController"/>
 </map>
 </property>
</bean>

<bean id="fileUploadController" class="examples.FileUploadController">
 <property name="commandClass" value="examples.FileUploadBean"/>
 <property name="formView" value="fileuploadform"/>
 <property name="successView" value="confirmation"/>
</bean>

After that, create the controller and the actual class to hold the file property.

public class FileUploadController extends SimpleFormController {

 public void onSubmitAction(ActionRequest request, ActionResponse response,
 Object command, BindException errors) throws Exception {

 // cast the bean
 FileUploadBean bean = (FileUploadBean) command;

 // let's see if there's content there
 byte[] file = bean.getFile();
 if (file == null) {
 // hmm, that's strange, the user did not upload anything
 }

 // do something with the file here
 }

 protected void initBinder(PortletRequest request,
 PortletRequestDataBinder binder) throws Exception {
 // to actually be able to convert Multipart instance to byte[]
 // we have to register a custom editor
 binder.registerCustomEditor(byte[].class, new ByteArrayMultipartFileEditor());
 // now Spring knows how to handle multipart object and convert
 }

}

public class FileUploadBean {

 private byte[] file;

 public void setFile(byte[] file) {
 this.file = file;
 }

 public byte[] getFile() {
 return file;
 }

}

As you can see, the FileUploadBean has a property of type byte[] that holds the
file. The controller registers a custom editor to let Spring know how to actually
convert the multipart objects the resolver has found to properties specified by the
bean. In this example, nothing is done with the byte[] property of the bean itself,
but in practice you can do whatever you want (save it in a database, mail it to
somebody, etc).

An equivalent example in which a file is bound straight to a String-typed property on a
form backing object might look like this:

public class FileUploadController extends SimpleFormController {

 public void onSubmitAction(ActionRequest request, ActionResponse response,
 Object command, BindException errors) throws Exception {

 // cast the bean
 FileUploadBean bean = (FileUploadBean) command;

 // let's see if there's content there
 String file = bean.getFile();
 if (file == null) {
 // hmm, that's strange, the user did not upload anything
 }

 // do something with the file here
 }

 protected void initBinder(PortletRequest request,
 PortletRequestDataBinder binder) throws Exception {

 // to actually be able to convert Multipart instance to a String
 // we have to register a custom editor
 binder.registerCustomEditor(String.class, new StringMultipartFileEditor());
 // now Spring knows how to handle multipart objects and convert
 }
}

public class FileUploadBean {

 private String file;

 public void setFile(String file) {
 this.file = file;
 }

 public String getFile() {
 return file;
 }
}

Of course, this last example only makes (logical) sense in the context of uploading a
plain text file (it wouldn’t work so well in the case of uploading an image file).

The third (and final) option is where one binds directly to a MultipartFile property
declared on the (form backing) object’s class. In this case one does not need to
register any custom property editor because there is no type conversion to be performed.

public class FileUploadController extends SimpleFormController {

 public void onSubmitAction(ActionRequest request, ActionResponse response,
 Object command, BindException errors) throws Exception {

 // cast the bean
 FileUploadBean bean = (FileUploadBean) command;

 // let's see if there's content there
 MultipartFile file = bean.getFile();
 if (file == null) {
 // hmm, that's strange, the user did not upload anything
 }

 // do something with the file here
 }
}

public class FileUploadBean {

 private MultipartFile file;

 public void setFile(MultipartFile file) {
 this.file = file;
 }

 public MultipartFile getFile() {
 return file;
 }

}

Handling exceptions

Just like Servlet MVC, Portlet MVC provides HandlerExceptionResolvers to ease the
pain of unexpected exceptions that occur while your request is being processed by a
handler that matched the request. Portlet MVC also provides a portlet-specific, concrete
SimpleMappingExceptionResolver that enables you to take the class name of any
exception that might be thrown and map it to a view name.

Annotation-based controller configuration

Spring 2.5 introduced an annotation-based programming model for MVC controllers, using
annotations such as @RequestMapping, @RequestParam, @ModelAttribute, etc. This
annotation support is available for both Servlet MVC and Portlet MVC. Controllers
implemented in this style do not have to extend specific base classes or implement
specific interfaces. Furthermore, they do not usually have direct dependencies on
Servlet or Portlet API’s, although they can easily get access to Servlet or Portlet
facilities if desired.

The following sections document these annotations and how they are most commonly used in
a Portlet environment.

Setting up the dispatcher for annotation support

`@RequestMapping` will only be processed if a corresponding HandlerMapping (for
type level annotations) and/or HandlerAdapter (for method level annotations) is
present in the dispatcher. This is the case by default in both DispatcherServlet and
DispatcherPortlet.

However, if you are defining custom HandlerMappings or HandlerAdapters, then you
need to make sure that a corresponding custom DefaultAnnotationHandlerMapping and/or
AnnotationMethodHandlerAdapter is defined as well - provided that you intend to use
@RequestMapping.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean class="org.springframework.web.portlet.mvc.annotation.DefaultAnnotationHandlerMapping"/>

 <bean class="org.springframework.web.portlet.mvc.annotation.AnnotationMethodHandlerAdapter"/>

 // ... (controller bean definitions) ...

</beans>

Defining a DefaultAnnotationHandlerMapping and/or AnnotationMethodHandlerAdapter
explicitly also makes sense if you would like to customize the mapping strategy, e.g.
specifying a custom WebBindingInitializer (see below).

Defining a controller with @Controller

The @Controller annotation indicates that a particular class serves the role of a
controller. There is no need to extend any controller base class or reference the
Portlet API. You are of course still able to reference Portlet-specific features if you
need to.

The basic purpose of the @Controller annotation is to act as a stereotype for the
annotated class, indicating its role. The dispatcher will scan such annotated classes
for mapped methods, detecting @RequestMapping annotations (see the next section).

Annotated controller beans may be defined explicitly, using a standard Spring bean
definition in the dispatcher’s context. However, the @Controller stereotype also
allows for autodetection, aligned with Spring 2.5’s general support for detecting
component classes in the classpath and auto-registering bean definitions for them.

To enable autodetection of such annotated controllers, you have to add component
scanning to your configuration. This is easily achieved by using the spring-context
schema as shown in the following XML snippet:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context.xsd">

 <context:component-scan base-package="org.springframework.samples.petportal.portlet"/>

 // ...

</beans>

Mapping requests with @RequestMapping

The @RequestMapping annotation is used to map portlet modes like 'VIEW'/'EDIT' onto an
entire class or a particular handler method. Typically the type-level annotation maps a
specific mode (or mode plus parameter condition) onto a form controller, with additional
method-level annotations 'narrowing' the primary mapping for specific portlet request
parameters.

	[image: [Tip]]	Tip
	
@RequestMapping at the type level may be used for plain implementations of the
Controller interface as well. In this case, the request processing code would follow
the traditional handle(Action|Render)Request signature, while the controller’s mapping
would be expressed through an @RequestMapping annotation. This works for pre-built
Controller base classes, such as SimpleFormController, too.

In the following discussion, we’ll focus on controllers that are based on annotated
handler methods.

The following is an example of a form controller from the PetPortal sample application
using this annotation:

@Controller
@RequestMapping("EDIT")
@SessionAttributes("site")
public class PetSitesEditController {

 private Properties petSites;

 public void setPetSites(Properties petSites) {
 this.petSites = petSites;
 }

 @ModelAttribute("petSites")
 public Properties getPetSites() {
 return this.petSites;
 }

 @RequestMapping // default (action=list)
 public String showPetSites() {
 return "petSitesEdit";
 }

 @RequestMapping(params = "action=add") // render phase
 public String showSiteForm(Model model) {
 // Used for the initial form as well as for redisplaying with errors.
 if (!model.containsAttribute("site")) {
 model.addAttribute("site", new PetSite());
 }

 return "petSitesAdd";
 }

 @RequestMapping(params = "action=add") // action phase
 public void populateSite(@ModelAttribute("site") PetSite petSite,
 BindingResult result, SessionStatus status, ActionResponse response) {
 new PetSiteValidator().validate(petSite, result);
 if (!result.hasErrors()) {
 this.petSites.put(petSite.getName(), petSite.getUrl());
 status.setComplete();
 response.setRenderParameter("action", "list");
 }
 }

 @RequestMapping(params = "action=delete")
 public void removeSite(@RequestParam("site") String site, ActionResponse response) {
 this.petSites.remove(site);
 response.setRenderParameter("action", "list");
 }
}

As of Spring 3.0, there are dedicated @ActionMapping and @RenderMapping (as well as
@ResourceMapping and @EventMapping) annotations which can be used instead:

@Controller
@RequestMapping("EDIT")
@SessionAttributes("site")
public class PetSitesEditController {

 private Properties petSites;

 public void setPetSites(Properties petSites) {
 this.petSites = petSites;
 }

 @ModelAttribute("petSites")
 public Properties getPetSites() {
 return this.petSites;
 }

 @RenderMapping // default (action=list)
 public String showPetSites() {
 return "petSitesEdit";
 }

 @RenderMapping(params = "action=add")
 public String showSiteForm(Model model) {
 // Used for the initial form as well as for redisplaying with errors.
 if (!model.containsAttribute("site")) {
 model.addAttribute("site", new PetSite());
 }

 return "petSitesAdd";
 }

 @ActionMapping(params = "action=add")
 public void populateSite(@ModelAttribute("site") PetSite petSite,
 BindingResult result, SessionStatus status, ActionResponse response) {
 new PetSiteValidator().validate(petSite, result);
 if (!result.hasErrors()) {
 this.petSites.put(petSite.getName(), petSite.getUrl());
 status.setComplete();
 response.setRenderParameter("action", "list");
 }
 }

 @ActionMapping(params = "action=delete")
 public void removeSite(@RequestParam("site") String site, ActionResponse response) {
 this.petSites.remove(site);
 response.setRenderParameter("action", "list");
 }
}

Supported handler method arguments

Handler methods which are annotated with @RequestMapping are allowed to have very
flexible signatures. They may have arguments of the following types, in arbitrary order
(except for validation results, which need to follow right after the corresponding
command object, if desired):

	
Request and/or response objects (Portlet API). You may choose any specific
request/response type, e.g. PortletRequest / ActionRequest / RenderRequest. An
explicitly declared action/render argument is also used for mapping specific request
types onto a handler method (in case of no other information given that differentiates
between action and render requests).

	
Session object (Portlet API): of type PortletSession. An argument of this type will
enforce the presence of a corresponding session. As a consequence, such an argument
will never be null.

	
org.springframework.web.context.request.WebRequest or
org.springframework.web.context.request.NativeWebRequest. Allows for generic request
parameter access as well as request/session attribute access, without ties to the
native Servlet/Portlet API.

	
java.util.Locale for the current request locale (the portal locale in a Portlet
environment).

	
java.util.TimeZone / java.time.ZoneId for the current request time zone.

	
java.io.InputStream / java.io.Reader for access to the request’s content. This
will be the raw InputStream/Reader as exposed by the Portlet API.

	
java.io.OutputStream / java.io.Writer for generating the response’s content. This
will be the raw OutputStream/Writer as exposed by the Portlet API.

	
@RequestParam annotated parameters for access to specific Portlet request
parameters. Parameter values will be converted to the declared method argument type.

	
java.util.Map / org.springframework.ui.Model / org.springframework.ui.ModelMap
for enriching the implicit model that will be exposed to the web view.

	
Command/form objects to bind parameters to: as bean properties or fields, with
customizable type conversion, depending on @InitBinder methods and/or the
HandlerAdapter configuration - see the " webBindingInitializer`" property on
`AnnotationMethodHandlerAdapter. Such command objects along with their validation
results will be exposed as model attributes, by default using the non-qualified
command class name in property notation (e.g. "orderAddress" for type
"mypackage.OrderAddress"). Specify a parameter-level ModelAttribute annotation for
declaring a specific model attribute name.

	
org.springframework.validation.Errors /
org.springframework.validation.BindingResult validation results for a preceding
command/form object (the immediate preceding argument).

	
org.springframework.web.bind.support.SessionStatus status handle for marking form
processing as complete (triggering the cleanup of session attributes that have been
indicated by the @SessionAttributes annotation at the handler type level).

The following return types are supported for handler methods:

	
A ModelAndView object, with the model implicitly enriched with command objects and
the results of @ModelAttribute annotated reference data accessor methods.

	
A Model object, with the view name implicitly determined through a
RequestToViewNameTranslator and the model implicitly enriched with command objects
and the results of @ModelAttribute annotated reference data accessor methods.

	
A Map object for exposing a model, with the view name implicitly determined through
a RequestToViewNameTranslator and the model implicitly enriched with command objects
and the results of @ModelAttribute annotated reference data accessor methods.

	
A View object, with the model implicitly determined through command objects and
@ModelAttribute annotated reference data accessor methods. The handler method may
also programmatically enrich the model by declaring a Model argument (see above).

	
A String value which is interpreted as view name, with the model implicitly
determined through command objects and @ModelAttribute annotated reference data
accessor methods. The handler method may also programmatically enrich the model by
declaring a Model argument (see above).

	
void if the method handles the response itself (e.g. by writing the response content
directly).

	
Any other return type will be considered a single model attribute to be exposed to the
view, using the attribute name specified through @ModelAttribute at the method level
(or the default attribute name based on the return type’s class name otherwise). The
model will be implicitly enriched with command objects and the results of
@ModelAttribute annotated reference data accessor methods.

Binding request parameters to method parameters with @RequestParam

The @RequestParam annotation is used to bind request parameters to a method parameter
in your controller.

The following code snippet from the PetPortal sample application shows the usage:

@Controller
@RequestMapping("EDIT")
@SessionAttributes("site")
public class PetSitesEditController {

 // ...

 public void removeSite(@RequestParam("site") String site, ActionResponse response) {
 this.petSites.remove(site);
 response.setRenderParameter("action", "list");
 }

 // ...

}

Parameters using this annotation are required by default, but you can specify that a
parameter is optional by setting @RequestParam’s `required attribute to false
(e.g., @RequestParam(name="id", required=false)).

Providing a link to data from the model with @ModelAttribute

@ModelAttribute has two usage scenarios in controllers. When placed on a method
parameter, @ModelAttribute is used to map a model attribute to the specific, annotated
method parameter (see the populateSite() method below). This is how the controller
gets a reference to the object holding the data entered in the form. In addition, the
parameter can be declared as the specific type of the form backing object rather than as
a generic java.lang.Object, thus increasing type safety.

@ModelAttribute is also used at the method level to provide reference data for the
model (see the getPetSites() method below). For this usage the method signature can
contain the same types as documented above for the @RequestMapping annotation.

	[image: [Note]]	Note
	
@ModelAttribute annotated methods will be executed before the chosen
@RequestMapping annotated handler method. They effectively pre-populate the implicit
model with specific attributes, often loaded from a database. Such an attribute can then
already be accessed through @ModelAttribute annotated handler method parameters in the
chosen handler method, potentially with binding and validation applied to it.

The following code snippet shows these two usages of this annotation:

@Controller
@RequestMapping("EDIT")
@SessionAttributes("site")
public class PetSitesEditController {

 // ...

 @ModelAttribute("petSites")
 public Properties getPetSites() {
 return this.petSites;
 }

 @RequestMapping(params = "action=add") // action phase
 public void populateSite(@ModelAttribute("site") PetSite petSite, BindingResult result, SessionStatus status, ActionResponse response) {
 new PetSiteValidator().validate(petSite, result);
 if (!result.hasErrors()) {
 this.petSites.put(petSite.getName(), petSite.getUrl());
 status.setComplete();
 response.setRenderParameter("action", "list");
 }
 }
}

Specifying attributes to store in a Session with @SessionAttributes

The type-level @SessionAttributes annotation declares session attributes used by a
specific handler. This will typically list the names of model attributes or types of
model attributes which should be transparently stored in the session or some
conversational storage, serving as form-backing beans between subsequent requests.

The following code snippet shows the usage of this annotation:

@Controller
@RequestMapping("EDIT")
@SessionAttributes("site")
public class PetSitesEditController {
 // ...
}

Customizing WebDataBinder initialization

To customize request parameter binding with PropertyEditors, etc. via Spring’s
WebDataBinder, you can either use @InitBinder-annotated methods within your
controller or externalize your configuration by providing a custom
WebBindingInitializer.

Customizing data binding with @InitBinder

Annotating controller methods with @InitBinder allows you to configure web data
binding directly within your controller class. @InitBinder identifies methods which
initialize the WebDataBinder which will be used for populating command and form object
arguments of annotated handler methods.

Such init-binder methods support all arguments that @RequestMapping supports, except
for command/form objects and corresponding validation result objects. Init-binder
methods must not have a return value. Thus, they are usually declared as void. Typical
arguments include WebDataBinder in combination with WebRequest or
java.util.Locale, allowing code to register context-specific editors.

The following example demonstrates the use of @InitBinder for configuring a
CustomDateEditor for all java.util.Date form properties.

@Controller
public class MyFormController {

 @InitBinder
 protected void initBinder(WebDataBinder binder) {
 SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd");
 dateFormat.setLenient(false);
 binder.registerCustomEditor(Date.class, new CustomDateEditor(dateFormat, false));
 }

 // ...

}

Configuring a custom WebBindingInitializer

To externalize data binding initialization, you can provide a custom implementation of
the WebBindingInitializer interface, which you then enable by supplying a custom bean
configuration for an AnnotationMethodHandlerAdapter, thus overriding the default
configuration.

Portlet application deployment

The process of deploying a Spring Portlet MVC application is no different than deploying
any JSR-286 Portlet application. However, this area is confusing enough in general that
it is worth talking about here briefly.

Generally, the portal/portlet container runs in one webapp in your servlet container and
your portlets run in another webapp in your servlet container. In order for the portlet
container webapp to make calls into your portlet webapp it must make cross-context calls
to a well-known servlet that provides access to the portlet services defined in your
portlet.xml file.

The JSR-286 specification does not specify exactly how this should happen, so each
portlet container has its own mechanism for this, which usually involves some kind of
"deployment process" that makes changes to the portlet webapp itself and then registers
the portlets within the portlet container.

At a minimum, the web.xml file in your portlet webapp is modified to inject the
well-known servlet that the portlet container will call. In some cases a single servlet
will service all portlets in the webapp, in other cases there will be an instance of the
servlet for each portlet.

Some portlet containers will also inject libraries and/or configuration files into the
webapp as well. The portlet container must also make its implementation of the Portlet
JSP Tag Library available to your webapp.

The bottom line is that it is important to understand the deployment needs of your
target portal and make sure they are met (usually by following the automated deployment
process it provides). Be sure to carefully review the documentation from your portal for
this process.

Once you have deployed your portlet, review the resulting web.xml file for sanity.
Some older portals have been known to corrupt the definition of the
ViewRendererServlet, thus breaking the rendering of your portlets.

Chapter 26. WebSocket Support

This part of the reference documentation covers Spring Framework’s support for
WebSocket-style messaging in web applications including use of STOMP as an
application level WebSocket sub-protocol.

the section called “Introduction” establishes a frame of mind in which to think about
WebSocket, covering adoption challenges, design considerations, and thoughts on
when it is a good fit.

the section called “WebSocket API” reviews the Spring WebSocket API on the server-side, while
the section called “SockJS Fallback” explains the SockJS protocol and shows how to configure
and use it.

the section called “Overview” introduces the STOMP messaging protocol.
the section called “Enable STOMP” demonstrates how to configure STOMP support in Spring.
the section called “Annotated Controllers” and the following sections explain how to
write annotated message handling methods, send messages, choose message broker
options, as well as work with the special "user" destinations. Finally,
the section called “Testing” lists three approaches to testing STOMP/WebSocket
applications.

Introduction

The WebSocket protocol RFC 6455 defines an important
new capability for web applications: full-duplex, two-way communication between client
and server. It is an exciting new capability on the heels of a long history of
techniques to make the web more interactive including Java Applets, XMLHttpRequest,
Adobe Flash, ActiveXObject, various Comet techniques, server-sent events, and others.

A proper introduction to the WebSocket protocol is beyond the scope of this
document. At a minimum however it’s important to understand that HTTP is used only for
the initial handshake, which relies on a mechanism built into HTTP to request
a protocol upgrade (or in this case a protocol switch) to which the server can respond with
HTTP status 101 (switching protocols) if it agrees. Assuming the handshake succeeds
the TCP socket underlying the HTTP upgrade request remains open and both client and
server can use it to send messages to each other.

Spring Framework 4 includes a new spring-websocket module with comprehensive
WebSocket support. It is compatible with the Java WebSocket API standard
(JSR-356)
and also provides additional value-add as explained in the rest of the introduction.

WebSocket Fallback Options

An important challenge to adoption is the lack of support for WebSocket in some
browsers. Notably the first Internet Explorer version to support WebSocket is
version 10 (see http://caniuse.com/websockets for support by browser versions).
Furthermore, some restrictive proxies may be configured in ways that either
preclude the attempt to do an HTTP upgrade or otherwise break connection after
some time because it has remained opened for too long. A good overview on this
topic from Peter Lubbers is available in the InfoQ article
"How HTML5 Web Sockets Interact With Proxy Servers".

Therefore to build a WebSocket application today, fallback options are required in
order to simulate the WebSocket API where necessary. The Spring Framework provides
such transparent fallback options based on the SockJS protocol.
These options can be enabled through configuration and do not require modifying the
application otherwise.

A Messaging Architecture

Aside from short-to-midterm adoption challenges, using WebSocket
brings up important design considerations that are important to recognize
early on, especially in contrast to what we know about building web applications today.

Today REST is a widely accepted, understood, and supported
architecture for building web applications. It is an architecture that relies
on having many URLs (nouns), a handful of HTTP methods (verbs), and
other principles such as using hypermedia (links), remaining stateless, etc.

By contrast a WebSocket application may use a single URL only for the
initial HTTP handshake. All messages thereafter share and flow on the
same TCP connection. This points to an entirely different, asynchronous,
event-driven, messaging architecture. One that is much closer
to traditional messaging applications (e.g. JMS, AMQP).

Spring Framework 4 includes a new spring-messaging module with key
abstractions from the
Spring Integration project
such as Message, MessageChannel, MessageHandler, and others that can serve as
a foundation for such a messaging architecture. The module also includes a
set of annotations for mapping messages to methods, similar to the Spring MVC
annotation based programming model.

Sub-Protocol Support in WebSocket

WebSocket does imply a messaging architecture but does not mandate the
use of any specific messaging protocol. It is a very thin layer over TCP
that transforms a stream of bytes into a stream of messages
(either text or binary) and not much more. It is up to applications
to interpret the meaning of a message.

Unlike HTTP, which is an application-level protocol, in the WebSocket protocol
there is simply not enough information in an incoming message for a framework
or container to know how to route it or process it. Therefore WebSocket is arguably
too low level for anything but a very trivial application. It can be done, but
it will likely lead to creating a framework on top. This is comparable to how
most web applications today are written using a web framework rather than the
Servlet API alone.

For this reason the WebSocket RFC defines the use of
sub-protocols.
During the handshake, the client and server can use the header
Sec-WebSocket-Protocol to agree on a sub-protocol, i.e. a higher, application-level
protocol to use. The use of a sub-protocol is not required, but
even if not used, applications will still need to choose a message
format that both the client and server can understand. That format can be custom,
framework-specific, or a standard messaging protocol.

The Spring Framework provides support for using
STOMP — a simple, messaging protocol
originally created for use in scripting languages with frames inspired
by HTTP. STOMP is widely supported and well suited for use over
WebSocket and over the web.

Should I Use WebSocket?

With all the design considerations surrounding the use of WebSocket, it is
reasonable to ask, "When is it appropriate to use?".

The best fit for WebSocket is in web applications where the client and
server need to exchange events at high frequency and with low latency. Prime
candidates include, but are not limited to, applications in finance, games,
collaboration, and others. Such applications are both very sensitive to time
delays and also need to exchange a wide variety of messages at a high
frequency.

For other application types, however, this may not be the case.
For example, a news or social feed that shows breaking news as it becomes
available may be perfectly okay with simple polling once every few minutes.
Here latency is important, but it is acceptable if the news takes a
few minutes to appear.

Even in cases where latency is crucial, if the volume of messages is
relatively low (e.g. monitoring network failures) the use of
long polling
should be considered as a relatively simple alternative that
works reliably and is comparable in terms of efficiency (again assuming the volume of
messages is relatively low).

It is the combination of both low latency and high frequency of messages that can make
the use of the WebSocket protocol critical. Even in such applications,
the choice remains whether all client-server
communication should be done through WebSocket messages as opposed to using
HTTP and REST. The answer is going to vary by application; however, it is likely
that some functionality may be exposed over both WebSocket and as a REST API in
order to provide clients with alternatives. Furthermore, a REST API call may need
to broadcast a message to interested clients connected via WebSocket.

The Spring Framework allows @Controller and @RestController classes to have both
HTTP request handling and WebSocket message handling methods.
Furthermore, a Spring MVC request handling method, or any application
method for that matter, can easily broadcast a message to all interested
WebSocket clients or to a specific user.

WebSocket API

The Spring Framework provides a WebSocket API designed to adapt to various WebSocket engines.
Currently the list includes WebSocket runtimes such as Tomcat 7.0.47+, Jetty 9.1+,
GlassFish 4.1+, WebLogic 12.1.3+, and Undertow 1.0+ (and WildFly 8.0+). Additional support
may be added as more WebSocket runtimes become available.

	[image: [Note]]	Note
	
As explained in the introduction, direct use of a
WebSocket API is too low level for applications — until assumptions are made about the
format of a message there is little a framework can do to interpret messages or route
them via annotations. This is why applications should consider using a sub-protocol
and Spring’s STOMP over WebSocket support.

When using a higher level protocol, the details of the WebSocket API become less
relevant, much like the details of TCP communication are not exposed to applications
when using HTTP. Nevertheless this section covers the details of using WebSocket
directly.

WebSocketHandler

Creating a WebSocket server is as simple as implementing WebSocketHandler or more
likely extending either TextWebSocketHandler or BinaryWebSocketHandler:

import org.springframework.web.socket.WebSocketHandler;
import org.springframework.web.socket.WebSocketSession;
import org.springframework.web.socket.TextMessage;

public class MyHandler extends TextWebSocketHandler {

 @Override
 public void handleTextMessage(WebSocketSession session, TextMessage message) {
 // ...
 }

}

There is dedicated WebSocket Java-config and XML namespace support for mapping the above
WebSocket handler to a specific URL:

import org.springframework.web.socket.config.annotation.EnableWebSocket;
import org.springframework.web.socket.config.annotation.WebSocketConfigurer;
import org.springframework.web.socket.config.annotation.WebSocketHandlerRegistry;

@Configuration
@EnableWebSocket
public class WebSocketConfig implements WebSocketConfigurer {

 @Override
 public void registerWebSocketHandlers(WebSocketHandlerRegistry registry) {
 registry.addHandler(myHandler(), "/myHandler");
 }

 @Bean
 public WebSocketHandler myHandler() {
 return new MyHandler();
 }

}

XML configuration equivalent:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:websocket="http://www.springframework.org/schema/websocket"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/websocket
 http://www.springframework.org/schema/websocket/spring-websocket.xsd">

 <websocket:handlers>
 <websocket:mapping path="/myHandler" handler="myHandler"/>
 </websocket:handlers>

 <bean id="myHandler" class="org.springframework.samples.MyHandler"/>

</beans>

The above is for use in Spring MVC applications and should be included in the
configuration of a DispatcherServlet. However, Spring’s WebSocket
support does not depend on Spring MVC. It is relatively simple to integrate a WebSocketHandler
into other HTTP serving environments with the help of
WebSocketHttpRequestHandler.

WebSocket Handshake

The easiest way to customize the initial HTTP WebSocket handshake request is through
a HandshakeInterceptor, which exposes "before" and "after" the handshake methods.
Such an interceptor can be used to preclude the handshake or to make any attributes
available to the WebSocketSession. For example, there is a built-in interceptor
for passing HTTP session attributes to the WebSocket session:

@Configuration
@EnableWebSocket
public class WebSocketConfig implements WebSocketConfigurer {

 @Override
 public void registerWebSocketHandlers(WebSocketHandlerRegistry registry) {
 registry.addHandler(new MyHandler(), "/myHandler")
 .addInterceptors(new HttpSessionHandshakeInterceptor());
 }

}

And the XML configuration equivalent:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:websocket="http://www.springframework.org/schema/websocket"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/websocket
 http://www.springframework.org/schema/websocket/spring-websocket.xsd">

 <websocket:handlers>
 <websocket:mapping path="/myHandler" handler="myHandler"/>
 <websocket:handshake-interceptors>
 <bean class="org.springframework.web.socket.server.support.HttpSessionHandshakeInterceptor"/>
 </websocket:handshake-interceptors>
 </websocket:handlers>

 <bean id="myHandler" class="org.springframework.samples.MyHandler"/>

</beans>

A more advanced option is to extend the DefaultHandshakeHandler that performs
the steps of the WebSocket handshake, including validating the client origin,
negotiating a sub-protocol, and others. An application may also need to use this
option if it needs to configure a custom RequestUpgradeStrategy in order to
adapt to a WebSocket server engine and version that is not yet supported
(also see the section called “Deployment” for more on this subject).
Both the Java-config and XML namespace make it possible to configure a custom
HandshakeHandler.

WebSocketHandler Decoration

Spring provides a WebSocketHandlerDecorator base class that can be used to decorate
a WebSocketHandler with additional behavior. Logging and exception handling
implementations are provided and added by default when using the WebSocket Java-config
or XML namespace. The ExceptionWebSocketHandlerDecorator catches all uncaught
exceptions arising from any WebSocketHandler method and closes the WebSocket
session with status 1011 that indicates a server error.

Deployment

The Spring WebSocket API is easy to integrate into a Spring MVC application where
the DispatcherServlet serves both HTTP WebSocket handshake as well as other
HTTP requests. It is also easy to integrate into other HTTP processing scenarios
by invoking WebSocketHttpRequestHandler. This is convenient and easy to
understand. However, special considerations apply with regards to JSR-356 runtimes.

The Java WebSocket API (JSR-356) provides two deployment mechanisms. The first
involves a Servlet container classpath scan (Servlet 3 feature) at startup; and
the other is a registration API to use at Servlet container initialization.
Neither of these mechanism makes it possible to use a single "front controller"
for all HTTP processing — including WebSocket handshake and all other HTTP
requests — such as Spring MVC’s DispatcherServlet.

This is a significant limitation of JSR-356 that Spring’s WebSocket support
addresses by providing a server-specific RequestUpgradeStrategy even when
running in a JSR-356 runtime.

	[image: [Note]]	Note
	
A request to overcome the above limitation in the Java WebSocket API has been
created and can be followed at
WEBSOCKET_SPEC-211.
Also note that Tomcat and Jetty already provide native API alternatives that
makes it easy to overcome the limitation. We are hopeful that more servers
will follow their example regardless of when it is addressed in the
Java WebSocket API.

A secondary consideration is that Servlet containers with JSR-356 support are expected
to perform a ServletContainerInitializer (SCI) scan that can slow down application
startup, in some cases dramatically. If a significant impact is observed after an
upgrade to a Servlet container version with JSR-356 support, it should
be possible to selectively enable or disable web fragments (and SCI scanning)
through the use of the <absolute-ordering /> element in web.xml:

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
 version="3.0">

 <absolute-ordering/>

</web-app>

You can then selectively enable web fragments by name, such as Spring’s own
SpringServletContainerInitializer that provides support for the Servlet 3
Java initialization API, if required:

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
 version="3.0">

 <absolute-ordering>
 <name>spring_web</name>
 </absolute-ordering>

</web-app>

Configuring the WebSocket Engine

Each underlying WebSocket engine exposes configuration properties that control
runtime characteristics such as the size of message buffer sizes, idle timeout,
and others.

For Tomcat, WildFly, and GlassFish add a ServletServerContainerFactoryBean to your
WebSocket Java config:

@Configuration
@EnableWebSocket
public class WebSocketConfig implements WebSocketConfigurer {

 @Bean
 public ServletServerContainerFactoryBean createWebSocketContainer() {
 ServletServerContainerFactoryBean container = new ServletServerContainerFactoryBean();
 container.setMaxTextMessageBufferSize(8192);
 container.setMaxBinaryMessageBufferSize(8192);
 return container;
 }

}

or WebSocket XML namespace:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:websocket="http://www.springframework.org/schema/websocket"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/websocket
 http://www.springframework.org/schema/websocket/spring-websocket.xsd">

 <bean class="org.springframework...ServletServerContainerFactoryBean">
 <property name="maxTextMessageBufferSize" value="8192"/>
 <property name="maxBinaryMessageBufferSize" value="8192"/>
 </bean>

</beans>

	[image: [Note]]	Note
	
For client side WebSocket configuration, you should use WebSocketContainerFactoryBean
(XML) or ContainerProvider.getWebSocketContainer() (Java config).

For Jetty, you’ll need to supply a pre-configured Jetty WebSocketServerFactory and plug
that into Spring’s DefaultHandshakeHandler through your WebSocket Java config:

@Configuration
@EnableWebSocket
public class WebSocketConfig implements WebSocketConfigurer {

 @Override
 public void registerWebSocketHandlers(WebSocketHandlerRegistry registry) {
 registry.addHandler(echoWebSocketHandler(),
 "/echo").setHandshakeHandler(handshakeHandler());
 }

 @Bean
 public DefaultHandshakeHandler handshakeHandler() {

 WebSocketPolicy policy = new WebSocketPolicy(WebSocketBehavior.SERVER);
 policy.setInputBufferSize(8192);
 policy.setIdleTimeout(600000);

 return new DefaultHandshakeHandler(
 new JettyRequestUpgradeStrategy(new WebSocketServerFactory(policy)));
 }

}

or WebSocket XML namespace:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:websocket="http://www.springframework.org/schema/websocket"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/websocket
 http://www.springframework.org/schema/websocket/spring-websocket.xsd">

 <websocket:handlers>
 <websocket:mapping path="/echo" handler="echoHandler"/>
 <websocket:handshake-handler ref="handshakeHandler"/>
 </websocket:handlers>

 <bean id="handshakeHandler" class="org.springframework...DefaultHandshakeHandler">
 <constructor-arg ref="upgradeStrategy"/>
 </bean>

 <bean id="upgradeStrategy" class="org.springframework...JettyRequestUpgradeStrategy">
 <constructor-arg ref="serverFactory"/>
 </bean>

 <bean id="serverFactory" class="org.eclipse.jetty...WebSocketServerFactory">
 <constructor-arg>
 <bean class="org.eclipse.jetty...WebSocketPolicy">
 <constructor-arg value="SERVER"/>
 <property name="inputBufferSize" value="8092"/>
 <property name="idleTimeout" value="600000"/>
 </bean>
 </constructor-arg>
 </bean>

</beans>

Configuring allowed origins

As of Spring Framework 4.1.5, the default behavior for WebSocket and SockJS is to accept
only same origin requests. It is also possible to allow all or a specified list of origins.
This check is mostly designed for browser clients. There is nothing preventing other types
of clients from modifying the Origin header value (see
RFC 6454: The Web Origin Concept for more details).

The 3 possible behaviors are:

	
Allow only same origin requests (default): in this mode, when SockJS is enabled, the
Iframe HTTP response header X-Frame-Options is set to SAMEORIGIN, and JSONP
transport is disabled since it does not allow to check the origin of a request.
As a consequence, IE6 and IE7 are not supported when this mode is enabled.

	
Allow a specified list of origins: each provided allowed origin must start with http://
or https://. In this mode, when SockJS is enabled, both IFrame and JSONP based
transports are disabled. As a consequence, IE6 through IE9 are not supported when this
mode is enabled.

	
Allow all origins: to enable this mode, you should provide * as the allowed origin
value. In this mode, all transports are available.

WebSocket and SockJS allowed origins can be configured as shown bellow:

import org.springframework.web.socket.config.annotation.EnableWebSocket;
import org.springframework.web.socket.config.annotation.WebSocketConfigurer;
import org.springframework.web.socket.config.annotation.WebSocketHandlerRegistry;

@Configuration
@EnableWebSocket
public class WebSocketConfig implements WebSocketConfigurer {

 @Override
 public void registerWebSocketHandlers(WebSocketHandlerRegistry registry) {
 registry.addHandler(myHandler(), "/myHandler").setAllowedOrigins("http://mydomain.com");
 }

 @Bean
 public WebSocketHandler myHandler() {
 return new MyHandler();
 }

}

XML configuration equivalent:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:websocket="http://www.springframework.org/schema/websocket"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/websocket
 http://www.springframework.org/schema/websocket/spring-websocket.xsd">

 <websocket:handlers allowed-origins="http://mydomain.com">
 <websocket:mapping path="/myHandler" handler="myHandler" />
 </websocket:handlers>

 <bean id="myHandler" class="org.springframework.samples.MyHandler"/>

</beans>

SockJS Fallback

As explained in the introduction, WebSocket is not
supported in all browsers yet and may be precluded by restrictive network proxies.
This is why Spring provides fallback options that emulate the WebSocket API as close
as possible based on the SockJS protocol
(version 0.3.3).

Overview

The goal of SockJS is to let applications use a WebSocket API but fall back to
non-WebSocket alternatives when necessary at runtime, i.e. without the need to
change application code.

SockJS consists of:

	
The SockJS protocol
defined in the form of executable
narrated tests.

	
The SockJS JavaScript client - a client library for use in browsers.

	
SockJS server implementations including one in the Spring Framework spring-websocket module.

	
As of 4.1 spring-websocket also provides a SockJS Java client.

SockJS is designed for use in browsers. It goes to great lengths
to support a wide range of browser versions using a variety of techniques.
For the full list of SockJS transport types and browsers see the
SockJS client page. Transports
fall in 3 general categories: WebSocket, HTTP Streaming, and HTTP Long Polling.
For an overview of these categories see
this blog post.

The SockJS client begins by sending "GET /info" to
obtain basic information from the server. After that it must decide what transport
to use. If possible WebSocket is used. If not, in most browsers
there is at least one HTTP streaming option and if not then HTTP (long)
polling is used.

All transport requests have the following URL structure:

http://host:port/myApp/myEndpoint/{server-id}/{session-id}/{transport}

	
{server-id} - useful for routing requests in a cluster but not used otherwise.

	
{session-id} - correlates HTTP requests belonging to a SockJS session.

	
{transport} - indicates the transport type, e.g. "websocket", "xhr-streaming", etc.

The WebSocket transport needs only a single HTTP request to do the WebSocket handshake.
All messages thereafter are exchanged on that socket.

HTTP transports require more requests. Ajax/XHR streaming for example relies on
one long-running request for server-to-client messages and additional HTTP POST
requests for client-to-server messages. Long polling is similar except it
ends the current request after each server-to-client send.

SockJS adds minimal message framing. For example the server sends the letter o
("open" frame) initially, messages are sent as a["message1","message2"]
(JSON-encoded array), the letter h ("heartbeat" frame) if no messages flow
for 25 seconds by default, and the letter c ("close" frame) to close the session.

To learn more, run an example in a browser and watch the HTTP requests.
The SockJS client allows fixing the list of transports so it is possible to
see each transport one at a time. The SockJS client also provides a debug flag
which enables helpful messages in the browser console. On the server side enable
TRACE logging for org.springframework.web.socket.
For even more detail refer to the SockJS protocol
narrated test.

Enable SockJS

SockJS is easy to enable through Java configuration:

@Configuration
@EnableWebSocket
public class WebSocketConfig implements WebSocketConfigurer {

 @Override
 public void registerWebSocketHandlers(WebSocketHandlerRegistry registry) {
 registry.addHandler(myHandler(), "/myHandler").withSockJS();
 }

 @Bean
 public WebSocketHandler myHandler() {
 return new MyHandler();
 }

}

and the XML configuration equivalent:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:websocket="http://www.springframework.org/schema/websocket"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/websocket
 http://www.springframework.org/schema/websocket/spring-websocket.xsd">

 <websocket:handlers>
 <websocket:mapping path="/myHandler" handler="myHandler"/>
 <websocket:sockjs/>
 </websocket:handlers>

 <bean id="myHandler" class="org.springframework.samples.MyHandler"/>

</beans>

The above is for use in Spring MVC applications and should be included in the
configuration of a DispatcherServlet. However, Spring’s WebSocket
and SockJS support does not depend on Spring MVC. It is relatively simple to
integrate into other HTTP serving environments with the help of
SockJsHttpRequestHandler.

On the browser side, applications can use the
sockjs-client (version 1.0.x) that
emulates the W3C WebSocket API and communicates with the server to select the best
transport option depending on the browser it’s running in. Review the
sockjs-client page and the list of
transport types supported by browser. The client also provides several
configuration options, for example, to specify which transports to include.

IE 8, 9

Internet Explorer 8 and 9 are and will remain common for some time. They are
a key reason for having SockJS. This section covers important
considerations about running in those browsers.

The SockJS client supports Ajax/XHR streaming in IE 8 and 9 via Microsoft’s
XDomainRequest.
That works across domains but does not support sending cookies.
Cookies are very often essential for Java applications.
However since the SockJS client can be used with many server
types (not just Java ones), it needs to know whether cookies matter.
If so the SockJS client prefers Ajax/XHR for streaming or otherwise it
relies on a iframe-based technique.

The very first "/info" request from the SockJS client is a request for
information that can influence the client’s choice of transports.
One of those details is whether the server application relies on cookies,
e.g. for authentication purposes or clustering with sticky sessions.
Spring’s SockJS support includes a property called sessionCookieNeeded.
It is enabled by default since most Java applications rely on the JSESSIONID
cookie. If your application does not need it, you can turn off this option
and the SockJS client should choose xdr-streaming in IE 8 and 9.

If you do use an iframe-based transport, and in any case, it is good to know
that browsers can be instructed to block the use of IFrames on a given page by
setting the HTTP response header X-Frame-Options to DENY,
SAMEORIGIN, or ALLOW-FROM <origin>. This is used to prevent
clickjacking.

	[image: [Note]]	Note
	
Spring Security 3.2+ provides support for setting X-Frame-Options on every
response. By default the Spring Security Java config sets it to DENY.
In 3.2 the Spring Security XML namespace does not set that header by default
but may be configured to do so, and in the future it may set it by default.

See Section 7.1. "Default Security Headers"
of the Spring Security documentation for details on how to configure the
setting of the X-Frame-Options header. You may also check or watch
SEC-2501 for additional background.

If your application adds the X-Frame-Options response header (as it should!)
and relies on an iframe-based transport, you will need to set the header value to
SAMEORIGIN or ALLOW-FROM <origin>. Along with that the Spring SockJS
support also needs to know the location of the SockJS client because it is loaded
from the iframe. By default the iframe is set to download the SockJS client
from a CDN location. It is a good idea to configure this option to
a URL from the same origin as the application.

In Java config this can be done as shown below. The XML namespace provides a
similar option via the <websocket:sockjs> element:

@Configuration
@EnableWebSocket
public class WebSocketConfig implements WebSocketConfigurer {

 @Override
 public void registerStompEndpoints(StompEndpointRegistry registry) {
 registry.addEndpoint("/portfolio").withSockJS()
 .setClientLibraryUrl("http://localhost:8080/myapp/js/sockjs-client.js");
 }

 // ...

}

	[image: [Note]]	Note
	
During initial development, do enable the SockJS client devel mode that prevents
the browser from caching SockJS requests (like the iframe) that would otherwise
be cached. For details on how to enable it see the
SockJS client page.

Heartbeats

The SockJS protocol requires servers to send heartbeat messages to preclude proxies
from concluding a connection is hung. The Spring SockJS configuration has a property
called heartbeatTime that can be used to customize the frequency. By default a
heartbeat is sent after 25 seconds assuming no other messages were sent on that
connection. This 25 seconds value is in line with the following
IETF recommendation for public Internet applications.

	[image: [Note]]	Note
	
When using STOMP over WebSocket/SockJS, if the STOMP client and server negotiate
heartbeats to be exchanged, the SockJS heartbeats are disabled.

The Spring SockJS support also allows configuring the TaskScheduler to use
for scheduling heartbeats tasks. The task scheduler is backed by a thread pool
with default settings based on the number of available processors. Applications
should consider customizing the settings according to their specific needs.

Client disconnects

HTTP streaming and HTTP long polling SockJS transports require a connection to remain
open longer than usual. For an overview of these techniques see
this blog post.

In Servlet containers this is done through Servlet 3 async support that
allows exiting the Servlet container thread processing a request and continuing
to write to the response from another thread.

A specific issue is that the Servlet API does not provide notifications for a client
that has gone away, see SERVLET_SPEC-44.
However, Servlet containers raise an exception on subsequent attempts to write
to the response. Since Spring’s SockJS Service supports sever-sent heartbeats (every
25 seconds by default), that means a client disconnect is usually detected within that
time period or earlier if messages are sent more frequently.

	[image: [Note]]	Note
	
As a result network IO failures may occur simply because a client has disconnected, which
can fill the log with unnecessary stack traces. Spring makes a best effort to identify
such network failures that represent client disconnects (specific to each server) and log
a minimal message using the dedicated log category DISCONNECTED_CLIENT_LOG_CATEGORY
defined in AbstractSockJsSession. If you need to see the stack traces, set that
log category to TRACE.

SockJS and CORS

If you allow cross-origin requests (see the section called “Configuring allowed origins”), the SockJS protocol
uses CORS for cross-domain support in the XHR streaming and polling transports. Therefore
CORS headers are added automatically unless the presence of CORS headers in the response
is detected. So if an application is already configured to provide CORS support, e.g.
through a Servlet Filter, Spring’s SockJsService will skip this part.

It is also possible to disable the addition of these CORS headers via the
suppressCors property in Spring’s SockJsService.

The following is the list of headers and values expected by SockJS:

	
"Access-Control-Allow-Origin" - initialized from the value of the "Origin" request header.

	
"Access-Control-Allow-Credentials" - always set to true.

	
"Access-Control-Request-Headers" - initialized from values from the equivalent request header.

	
"Access-Control-Allow-Methods" - the HTTP methods a transport supports (see TransportType enum).

	
"Access-Control-Max-Age" - set to 31536000 (1 year).

For the exact implementation see addCorsHeaders in AbstractSockJsService as well
as the TransportType enum in the source code.

Alternatively if the CORS configuration allows it consider excluding URLs with the
SockJS endpoint prefix thus letting Spring’s SockJsService handle it.

SockJsClient

A SockJS Java client is provided in order to connect to remote SockJS endpoints without
using a browser. This can be especially useful when there is a need for bidirectional
communication between 2 servers over a public network, i.e. where network proxies may
preclude the use of the WebSocket protocol. A SockJS Java client is also very useful
for testing purposes, for example to simulate a large number of concurrent users.

The SockJS Java client supports the "websocket", "xhr-streaming", and "xhr-polling"
transports. The remaining ones only make sense for use in a browser.

The WebSocketTransport can be configured with:

	
StandardWebSocketClient in a JSR-356 runtime

	
JettyWebSocketClient using the Jetty 9+ native WebSocket API

	
Any implementation of Spring’s WebSocketClient

An XhrTransport by definition supports both "xhr-streaming" and "xhr-polling" since
from a client perspective there is no difference other than in the URL used to connect
to the server. At present there are two implementations:

	
RestTemplateXhrTransport uses Spring’s RestTemplate for HTTP requests.

	
JettyXhrTransport uses Jetty’s HttpClient for HTTP requests.

The example below shows how to create a SockJS client and connect to a SockJS endpoint:

List<Transport> transports = new ArrayList<>(2);
transports.add(new WebSocketTransport(new StandardWebSocketClient()));
transports.add(new RestTemplateXhrTransport());

SockJsClient sockJsClient = new SockJsClient(transports);
sockJsClient.doHandshake(new MyWebSocketHandler(), "ws://example.com:8080/sockjs");

	[image: [Note]]	Note
	
SockJS uses JSON formatted arrays for messages. By default Jackson 2 is used and needs
to be on the classpath. Alternatively you can configure a custom implementation of
SockJsMessageCodec and configure it on the SockJsClient.

To use the SockJsClient for simulating a large number of concurrent users you will
need to configure the underlying HTTP client (for XHR transports) to allow a sufficient
number of connections and threads. For example with Jetty:

HttpClient jettyHttpClient = new HttpClient();
jettyHttpClient.setMaxConnectionsPerDestination(1000);
jettyHttpClient.setExecutor(new QueuedThreadPool(1000));

Consider also customizing these server-side SockJS related properties (see Javadoc for details):

@Configuration
public class WebSocketConfig extends WebSocketMessageBrokerConfigurationSupport {

 @Override
 public void registerStompEndpoints(StompEndpointRegistry registry) {
 registry.addEndpoint("/sockjs").withSockJS()
 .setStreamBytesLimit(512 * 1024)
 .setHttpMessageCacheSize(1000)
 .setDisconnectDelay(30 * 1000);
 }

 // ...
}

STOMP

The WebSocket protocol defines two types of messages, text and binary, but their
content is undefined. The defines a mechanism for client and server to negotiate a
sub-protocol — i.e. a higher level messaging protocol, to use on top of WebSocket to
define what kind of messages each can send, what is the format and content for each
message, and so on. The use of a sub-protocol is optional but either way client and
server will need to agree on some protocol that defines message content.

Overview

STOMP is a simple
text-oriented messaging protocol that was originally created for scripting languages
such as Ruby, Python, and Perl to connect to enterprise message brokers. It is
designed to address a subset of commonly used messaging patterns. STOMP can be
used over any reliable 2-way streaming network protocol such as TCP and WebSocket.
Although STOMP is a text-oriented protocol, the payload of messages can be
either text or binary.

STOMP is a frame based protocol whose frames are modeled on HTTP. The structure
of a STOMP frame:

COMMAND
header1:value1
header2:value2

Body^@

Clients can use the SEND or SUBSCRIBE commands to send or subscribe for
messages along with a "destination" header that describes what the
message is about and who should receive it. This enables a simple
publish-subscribe mechanism that can be used to send messages through the broker
to other connected clients or to send messages to the server to request that
some work be performed.

When using Spring’s STOMP support, the Spring WebSocket application acts
as the STOMP broker to clients. Messages are routed to @Controller message-handling
methods or to a simple, in-memory broker that keeps track of subscriptions and
broadcasts messages to subscribed users. You can also configure Spring to work
with a dedicated STOMP broker (e.g. RabbitMQ, ActiveMQ, etc) for the actual
broadcasting of messages. In that case Spring maintains
TCP connections to the broker, relays messages to it, and also passes messages
from it down to connected WebSocket clients. Thus Spring web applications can
rely on unified HTTP-based security, common validation, and a familiar programming
model message-handling work.

Here is an example of a client subscribing to receive stock quotes which
the server may emit periodically e.g. via a scheduled task sending messages
through a SimpMessagingTemplate to the broker:

SUBSCRIBE
id:sub-1
destination:/topic/price.stock.*

^@

Here is an example of a client sending a trade request, which the server
may handle through an @MessageMapping method and later on, after the execution,
broadcast a trade confirmation message and details down to the client:

SEND
destination:/queue/trade
content-type:application/json
content-length:44

{"action":"BUY","ticker":"MMM","shares",44}^@

The meaning of a destination is intentionally left opaque in the STOMP spec. It can
be any string, and it’s entirely up to STOMP servers to define the semantics and
the syntax of the destinations that they support. It is very common, however, for
destinations to be path-like strings where "/topic/.." implies publish-subscribe
(one-to-many) and "/queue/" implies point-to-point (one-to-one) message
exchanges.

STOMP servers can use the MESSAGE command to broadcast messages to all subscribers.
Here is an example of a server sending a stock quote to a subscribed client:

MESSAGE
message-id:nxahklf6-1
subscription:sub-1
destination:/topic/price.stock.MMM

{"ticker":"MMM","price":129.45}^@

It is important to know that a server cannot send unsolicited messages. All messages
from a server must be in response to a specific client subscription, and the
"subscription-id" header of the server message must match the "id" header of the
client subscription.

The above overview is intended to provide the most basic understanding of the
STOMP protocol. It is recommended to review the protocol
specification in full.

Benefits

Use of STOMP as a sub-protocol enables the Spring Framework and Spring Security to
provide a richer programming model vs using raw WebSockets. The same point can be
made about how HTTP vs raw TCP and how it enables Spring MVC and other web frameworks
to provide rich functionality. The following is a list of benefits:

	
No need to invent a custom messaging protocol and message format.

	
STOMP clients are available including a Java client
in the Spring Framework.

	
Message brokers such as RabbitMQ, ActiveMQ, and others can be used (optionally) to
manage subscriptions and broadcast messages.

	
Application logic can be organized in any number of @Controller's and messages
routed to them based on the STOMP destination header vs handling raw WebSocket messages
with a single WebSocketHandler for a given connection.

	
Use Spring Security to secure messages based on STOMP destinations and message types.

Enable STOMP

STOMP over WebSocket support is available in the spring-messaging and the
spring-websocket modules. Once you have those dependencies, you can expose a STOMP
endpoints, over WebSocket with the section called “SockJS Fallback”, as shown below:

import org.springframework.web.socket.config.annotation.EnableWebSocketMessageBroker;
import org.springframework.web.socket.config.annotation.StompEndpointRegistry;

@Configuration
@EnableWebSocketMessageBroker
public class WebSocketConfig implements WebSocketMessageBrokerConfigurer {

 @Override
 public void registerStompEndpoints(StompEndpointRegistry registry) {
 registry.addEndpoint("/portfolio").withSockJS();
 }

 @Override
 public void configureMessageBroker(MessageBrokerRegistry config) {
 config.setApplicationDestinationPrefixes("/app");
 config.enableSimpleBroker("/topic", "/queue");
 }
}

	
	
"/portfolio" is the HTTP URL for the endpoint to which a WebSocket (or SockJS)
client will need to connect to for the WebSocket handshake.

	
	
STOMP messages whose destination header begins with "/app" are routed to
@MessageMapping methods in @Controller classes.

	
	
Use the built-in, message broker for subscriptions and broadcasting;
Route messages whose destination header begins with "/topic" or "/queue" to the broker.

The same configuration in XML:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:websocket="http://www.springframework.org/schema/websocket"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/websocket
 http://www.springframework.org/schema/websocket/spring-websocket.xsd">

 <websocket:message-broker application-destination-prefix="/app">
 <websocket:stomp-endpoint path="/portfolio">
 <websocket:sockjs/>
 </websocket:stomp-endpoint>
 <websocket:simple-broker prefix="/topic, /queue"/>
 </websocket:message-broker>

</beans>

	[image: [Note]]	Note
	
For the built-in, simple broker the "/topic" and "/queue" prefixes do not have any special
meaning. They’re merely a convention to differentiate between pub-sub vs point-to-point
messaging (i.e. many subscribers vs one consumer). When using an external broker, please
check the STOMP page of the broker to understand what kind of STOMP destinations and
prefixes it supports.

To connect from a browser, for SockJS you can use the
sockjs-client. For STOMP many applications have
used the jmesnil/stomp-websocket library
(also known as stomp.js) which is feature complete and has been used in production for
years but is no longer maintained. At present the
JSteunou/webstomp-client is the most
actively maintained and evolving successor of that library and the example code below
is based on it:

var socket = new SockJS("/spring-websocket-portfolio/portfolio");
var stompClient = webstomp.over(socket);

stompClient.connect({}, function(frame) {
}

Or if connecting via WebSocket (without SockJS):

var socket = new WebSocket("/spring-websocket-portfolio/portfolio");
var stompClient = Stomp.over(socket);

stompClient.connect({}, function(frame) {
}

Note that the stompClient above does not need to specify login and passcode headers.
Even if it did, they would be ignored, or rather overridden, on the server side. See the
sections the section called “Connect to Broker” and
the section called “Authentication” for more information on authentication.

For a more example code see:

	
Using WebSocket to build an
interactive web application getting started guide.

	
Stock Portfolio sample
application.

Flow of Messages

Once a STOMP endpoint is exposed, the Spring application becomes a STOMP broker for
connected clients. This section describes the flow of messages on the server side.

The spring-messaging module contains foundational support for messaging applications
that originated in Spring Integration and was
later extracted and incorporated into the Spring Framework for broader use across many
Spring projects and application scenarios.
Below is a list of a few of the available messaging abstractions:

	
Message — simple representation for a message including headers and payload.

	
MessageHandler — contract for handling a message.

	
MessageChannel — contract for sending a message that enables loose coupling between producers and consumers.

	
SubscribableChannel — MessageChannel with MessageHandler subscribers.

	
ExecutorSubscribableChannel — SubscribableChannel that uses an Executor for delivering messages.

Both the Java config (i.e. @EnableWebSocketMessageBroker) and the XML namespace config
(i.e. <websocket:message-broker>) use the above components to assemble a message
workflow. The diagram below shows the components used when the simple, built-in message
broker is enabled:

[image: message flow simple broker]

There are 3 message channels in the above diagram:

	
"clientInboundChannel" — for passing messages received from WebSocket clients.

	
"clientOutboundChannel" — for sending server messages to WebSocket clients.

	
"brokerChannel" — for sending messages to the message broker from within
server-side, application code.

The next diagram shows the components used when an external broker (e.g. RabbitMQ)
is configured for managing subscriptions and broadcasting messages:

[image: message flow broker relay]

The main difference in the above diagram is the use of the "broker relay" for passing
messages up to the external STOMP broker over TCP, and for passing messages down from the
broker to subscribed clients.

When messages are received from a WebSocket connectin, they’re decoded to STOMP frames,
then turned into a Spring Message representation, and sent to the
"clientInboundChannel" for further processing. For example STOMP messages whose
destination header starts with "/app" may be routed to @MessageMapping methods in
annotated controllers, while "/topic" and "/queue" messages may be routed directly
to the message broker.

An annotated @Controller handling a STOMP message from a client may send a message to
the message broker through the "brokerChannel", and the broker will broadcast the
message to matching subscribers through the "clientOutboundChannel". The same
controller can also do the same in response to HTTP requests, so a client may perform an
HTTP POST and then an @PostMapping method can send a message to the message broker
to broadcast to subscribed clients.

Let’s trace the flow through a simple example. Given the following server setup:

@Configuration
@EnableWebSocketMessageBroker
public class WebSocketConfig implements WebSocketMessageBrokerConfigurer {

 @Override
 public void registerStompEndpoints(StompEndpointRegistry registry) {
 registry.addEndpoint("/portfolio");
 }

 @Override
 public void configureMessageBroker(MessageBrokerRegistry registry) {
 registry.setApplicationDestinationPrefixes("/app");
 registry.enableSimpleBroker("/topic");
 }

}

@Controller
public class GreetingController {

 @MessageMapping("/greeting") {
 public String handle(String greeting) {
 return "[" + getTimestamp() + ": " + greeting;
 }

}

	
Client connects to "http://localhost:8080/portfolio" and once a WebSocket connection
is established, STOMP frames begin to flow on it.

	
Client sends SUBSCRIBE frame with destination header "/topic/greeting". Once received
and decoded, the message is sent to the "clientInboundChannel", then routed to the
message broker which stores the client subscription.

	
Client sends SEND frame to "/app/greeting". The "/app" prefix helps to route it to
annotated controllers. After the "/app" prefix is stripped, the remaining "/greeting"
part of the destination is mapped to the @MessageMapping method in GreetingController.

	
The value returned from GreetingController is turned into a Spring Message with
a payload based on the return value and a default destination header of
"/topic/greeting" (derived from the input destination with "/app" replaced by
"/topic"). The resulting message is sent to the "brokerChannel" and handled
by the message broker.

	
The message broker finds all matching subscribers, and sends a MESSAGE frame to each
through the "clientOutboundChannel" from where messages are encoded as STOMP frames
and sent on the WebSocket connection.

The next section provides more details on annotated methods including the
kinds of arguments and return values supported.

Annotated Controllers

Applications can use annotated @Controller classes to handle messages from clients.
Such classes can declare @MessageMapping, @SubscribeMapping, and @ExceptionHandler
methods as described next.

@MessageMapping

The @MessageMapping annotation can be used on methods to route messages based on their
destination. It is supported at the method level as well as at the type level. At type
level @MessageMapping is used to express shared mappings across all methods in a
controller.

By default destination mappings are expected to be Ant-style, path patterns, e.g. "/foo*",
"/foo/**". The patterns include support for template variables, e.g. "/foo/{id}", that can
be referenced with @DestinationVariable method arguments.

	[image: [Tip]]	Tip
	
Applications can choose to switch to a dot-separated destination convention.
See the section called “Dot as Separator”.

@MessageMapping methods can have flexible signatures with the following arguments:

	Method argument	Description
	Message
	For access to the complete message.

	MessageHeaders
	For access to the headers within the Message.

	MessageHeaderAccessor, SimpMessageHeaderAccessor, StompHeaderAccessor
	For access to the headers via typed accessor methods.

	@Payload
	For access to the payload of the message, converted (e.g. from JSON) via a configured
MessageConverter.

The presence of this annotation is not required since it is assumed by default if no
other argument is matched.

Payload arguments may be annotated with @javax.validation.Valid or Spring’s @Validated
in order to be automatically validated.

	@Header
	For access to a specific header value along with type conversion using an
org.springframework.core.convert.converter.Converter if necessary.

	@Headers
	For access to all headers in the message. This argument must be assignable to
java.util.Map.

	@DestinationVariable
	For access to template variables extracted from the message destination.
Values will be converted to the declared method argument type as necessary.

	java.security.Principal
	Reflects the user logged in at the time of the WebSocket HTTP handshake.

When an @MessageMapping method returns a value, by default the value is serialized to
a payload through a configured MessageConverter, and then sent as a Message to the
"brokerChannel" from where it is broadcast to subscribers. The destination of the
outbound message is the same as that of the inbound message but prefixed with "/topic".

You can use the @SendTo method annotation to customize the destination to send
the payload to. @SendTo can also be used at the class level to share a default target
destination to send messages to. @SendToUser is an variant for sending messages only to
the user associated with a message. See the section called “User Destinations” for details.

The return value from an @MessageMapping method may be wrapped with ListenableFuture,
CompletableFuture, or CompletionStage in order to produce the payload asynchronously.

As an alternative to returning a payload from an @MessageMapping method you can also
send messages using the SimpMessagingTemplate, which is also how return values are
handled under the covers. See the section called “Send Messages”.

@SubscribeMapping

The @SubscribeMapping annotation is used in combination with @MessageMapping in order
to narrow the mapping to subscription messages. In such scenarios, the @MessageMapping
annotation specifies the destination while @SubscribeMapping indicates interest in
subscription messages only.

An @SubscribeMapping method is generally no different from any @MessageMapping
method with respect to mapping and input arguments. For example you can combine it with a
type-level @MessageMapping to express a shared destination prefix, and you can use the
same method arguments as any @MessageMapping` method.

The key difference with @SubscribeMapping is that the return value of the method is
serialized as a payload and sent, not to the "brokerChannel" but to the
"clientOutboundChannel", effectively replying directly to the client rather than
broadcasting through the broker. This is useful for implementing one-off, request-reply
message exchanges, and never holding on to the subscription. A common scenario for this
pattern is application initialization when data must be loaded and presented.

A @SubscribeMapping method can also be annotated with @SendTo in which case the
return value is sent to the "brokerChannel" with the explicitly specified target
destination.

@MessageExceptionHandler

An application can use @MessageExceptionHandler methods to handle exceptions from
@MessageMapping methods. Exceptions of interest can be declared in the annotation
itself, or through a method argument if you want to get access to the exception instance:

@Controller
public class MyController {

 // ...

 @MessageExceptionHandler
 public ApplicationError handleException(MyException exception) {
 // ...
 return appError;
 }
}

@MessageExceptionHandler methods support flexible method signatures and support the same
method argument types and return values as
@MessageMapping methods.

Typically @MessageExceptionHandler methods apply within the @Controller class (or
class hierarchy) they are declared in. If you want such methods to apply more globally,
across controllers, you can declare them in a class marked with @ControllerAdvice.
This is comparable to similar support in Spring MVC.

Send Messages

What if you want to send messages to connected clients from any part of the
application? Any application component can send messages to the "brokerChannel".
The easiest way to do that is to have a SimpMessagingTemplate injected, and
use it to send messages. Typically it should be easy to have it injected by
type, for example:

@Controller
public class GreetingController {

 private SimpMessagingTemplate template;

 @Autowired
 public GreetingController(SimpMessagingTemplate template) {
 this.template = template;
 }

 @RequestMapping(path="/greetings", method=POST)
 public void greet(String greeting) {
 String text = "[" + getTimestamp() + "]:" + greeting;
 this.template.convertAndSend("/topic/greetings", text);
 }

}

But it can also be qualified by its name "brokerMessagingTemplate" if another
bean of the same type exists.

Simple Broker

The built-in, simple message broker handles subscription requests from clients,
stores them in memory, and broadcasts messages to connected clients with matching
destinations. The broker supports path-like destinations, including subscriptions
to Ant-style destination patterns.

	[image: [Note]]	Note
	
Applications can also use dot-separated destinations (vs slash).
See the section called “Dot as Separator”.

External Broker

The simple broker is great for getting started but supports only a subset of
STOMP commands (e.g. no acks, receipts, etc.), relies on a simple message
sending loop, and is not suitable for clustering. As an alternative, applications
can upgrade to using a full-featured message broker.

Check the STOMP documentation for your message broker of choice (e.g.
RabbitMQ,
ActiveMQ, etc.), install the broker,
and run it with STOMP support enabled. Then enable the STOMP broker relay in the
Spring configuration instead of the simple broker.

Below is example configuration that enables a full-featured broker:

@Configuration
@EnableWebSocketMessageBroker
public class WebSocketConfig implements WebSocketMessageBrokerConfigurer {

 @Override
 public void registerStompEndpoints(StompEndpointRegistry registry) {
 registry.addEndpoint("/portfolio").withSockJS();
 }

 @Override
 public void configureMessageBroker(MessageBrokerRegistry registry) {
 registry.enableStompBrokerRelay("/topic", "/queue");
 registry.setApplicationDestinationPrefixes("/app");
 }

}

XML configuration equivalent:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:websocket="http://www.springframework.org/schema/websocket"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/websocket
 http://www.springframework.org/schema/websocket/spring-websocket.xsd">

 <websocket:message-broker application-destination-prefix="/app">
 <websocket:stomp-endpoint path="/portfolio" />
 <websocket:sockjs/>
 </websocket:stomp-endpoint>
 <websocket:stomp-broker-relay prefix="/topic,/queue" />
 </websocket:message-broker>

</beans>

The "STOMP broker relay" in the above configuration is a Spring
MessageHandler
that handles messages by forwarding them to an external message broker.
To do so it establishes TCP connections to the broker, forwards all
messages to it, and then forwards all messages received
from the broker to clients through their WebSocket sessions. Essentially
it acts as a "relay" that forwards messages in both directions.

	[image: [Note]]	Note
	
Spring uses org.projectreactor:reactor-net and io.netty:netty-all for managing
TCP connections to the broker both of which need to be added as project dependencies.

The STOMP broker support in Spring Framework 4.3.x is compatible with the 2.0.x
generation of Reactor. Therefore it is not supported in combination with the
spring-cloud-stream-reactive module which requires Reactor 3.x.

Spring Framework 5 relies on Reactor 3 and Reactor Netty, which has independent
versioning, for TCP connections to the STOMP broker but also to provide
broad support for reactive programming models.

Furthermore, application components (e.g. HTTP request handling methods,
business services, etc.) can also send messages to the broker relay, as described
in the section called “Send Messages”, in order to broadcast messages to
subscribed WebSocket clients.

In effect, the broker relay enables robust and scalable message broadcasting.

Connect to Broker

A STOMP broker relay maintains a single "system" TCP connection to the broker.
This connection is used for messages originating from the server-side application
only, not for receiving messages. You can configure the STOMP credentials
for this connection, i.e. the STOMP frame login and passcode headers. This
is exposed in both the XML namespace and the Java config as the
systemLogin/systemPasscode properties with default values guest/guest.

The STOMP broker relay also creates a separate TCP connection for every connected
WebSocket client. You can configure the STOMP credentials to use for all TCP
connections created on behalf of clients. This is exposed in both the XML namespace
and the Java config as the clientLogin/clientPasscode properties with default
values guest/guest.

	[image: [Note]]	Note
	
The STOMP broker relay always sets the login and passcode headers on every CONNECT
frame that it forwards to the broker on behalf of clients. Therefore WebSocket clients
need not set those headers; they will be ignored. As the the section called “Authentication”
explains, instead WebSocket clients should rely on HTTP authentication to protect the WebSocket
endpoint and establish the client identity.

The STOMP broker relay also sends and receives heartbeats to and from the message
broker over the "system" TCP connection. You can configure the intervals for sending
and receiving heartbeats (10 seconds each by default). If connectivity to the broker
is lost, the broker relay will continue to try to reconnect, every 5 seconds,
until it succeeds.

Any Spring bean can implement ApplicationListener<BrokerAvailabilityEvent> in order
to receive notifications when the "system" connection to the broker is lost and
re-established. For example a Stock Quote service broadcasting stock quotes can
stop trying to send messages when there is no active "system" connection.

By default, the STOMP broker relay always connects, and reconnects as needed if
connectivity is lost, to the same host and port. If you wish to supply multiple addresses,
on each attempt to connect, you can configure a supplier of addresses, instead of a
fixed host and port. For example:

@Configuration
@EnableWebSocketMessageBroker
public class WebSocketConfig extends AbstractWebSocketMessageBrokerConfigurer {

	// ...

	@Override
	public void configureMessageBroker(MessageBrokerRegistry registry) {
		registry.enableStompBrokerRelay("/queue/", "/topic/").setTcpClient(createTcpClient());
		registry.setApplicationDestinationPrefixes("/app");
	}

	private Reactor2TcpClient<byte[]> createTcpClient() {

		Supplier<InetSocketAddress> addressSupplier = new Supplier<InetSocketAddress>() {
			@Override
			public InetSocketAddress get() {
				// Select address to connect to ...
			}
		};

		StompDecoder decoder = new StompDecoder();
		Reactor2StompCodec codec = new Reactor2StompCodec(new StompEncoder(), decoder);
		return new Reactor2TcpClient<>(addressSupplier, codec);
	}

}

The STOMP broker relay can also be configured with a virtualHost property.
The value of this property will be set as the host header of every CONNECT frame
and may be useful for example in a cloud environment where the actual host to which
the TCP connection is established is different from the host providing the
cloud-based STOMP service.

Dot as Separator

When messages are routed to @MessageMapping methods, they’re matched with
AntPathMatcher and by default patterns are expected to use slash "/" as separator.
This is a good convention in a web applications and similar to HTTP URLs. However if
you are more used to messaging conventions, you can switch to using dot "." as separator.

In Java config:

@Configuration
@EnableWebSocketMessageBroker
public class WebSocketConfig implements WebSocketMessageBrokerConfigurer {

 // ...

 @Override
 public void configureMessageBroker(MessageBrokerRegistry registry) {
 registry.setPathMatcher(new AntPathMatcher("."));
 registry.enableStompBrokerRelay("/queue", "/topic");
 registry.setApplicationDestinationPrefixes("/app");
 }
}

In XML:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:websocket="http://www.springframework.org/schema/websocket"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/websocket
 http://www.springframework.org/schema/websocket/spring-websocket.xsd">

 <websocket:message-broker application-destination-prefix="/app" path-matcher="pathMatcher">
 <websocket:stomp-endpoint path="/stomp"/>
 <websocket:stomp-broker-relay prefix="/topic,/queue" />
 </websocket:message-broker>

 <bean id="pathMatcher" class="org.springframework.util.AntPathMatcher">
 <constructor-arg index="0" value="."/>
 </bean>

</beans>

After that a controller may use dot "." as separator in @MessageMapping methods:

@Controller
@MessageMapping("foo")
public class FooController {

 @MessageMapping("bar.{baz}")
 public void handleBaz(@DestinationVariable String baz) {
 // ...
 }
}

The client can now send a message to "/app/foo.bar.baz123".

In the example above we did not change the prefixes on the "broker relay" because those
depend entirely on the external message broker. Check the STOMP documentation pages of
the broker you’re using to see what conventions it supports for the destination header.

The "simple broker" on the other hand does rely on the configured PathMatcher so if
you switch the separator that will also apply to the broker and the way matches
destinations from a message to patterns in subscriptions.

Authentication

Every STOMP over WebSocket messaging session begins with an HTTP request — that can be a request to upgrade to WebSockets (i.e. a WebSocket handshake)
or in the case of SockJS fallbacks a series of SockJS HTTP transport requests.

Web applications already have authentication and authorization in place to
secure HTTP requests. Typically a user is authenticated via Spring Security
using some mechanism such as a login page, HTTP basic authentication, or other.
The security context for the authenticated user is saved in the HTTP session
and is associated with subsequent requests in the same cookie-based session.

Therefore for a WebSocket handshake, or for SockJS HTTP transport requests,
typically there will already be an authenticated user accessible via
HttpServletRequest#getUserPrincipal(). Spring automatically associates that user
with a WebSocket or SockJS session created for them and subsequently with all
STOMP messages transported over that session through a user header.

In short there is nothing special a typical web application needs to do above
and beyond what it already does for security. The user is authenticated at
the HTTP request level with a security context maintained through a cookie-based
HTTP session which is then associated with WebSocket or SockJS sessions created
for that user and results in a user header stamped on every Message flowing
through the application.

Note that the STOMP protocol does have a "login" and "passcode" headers
on the CONNECT frame. Those were originally designed for and are still needed
for example for STOMP over TCP. However for STOMP over WebSocket by default
Spring ignores authorization headers at the STOMP protocol level and assumes
the user is already authenticated at the HTTP transport level and expects that
the WebSocket or SockJS session contain the authenticated user.

	[image: [Note]]	Note
	
Spring Security provides
WebSocket sub-protocol authorization
that uses a ChannelInterceptor to authorize messages based on the user header in them.
Also Spring Session provides a
WebSocket integration
that ensures the user HTTP session does not expire when the WebSocket session is still active.

Token Authentication

Spring Security OAuth
provides support for token based security including JSON Web Token (JWT).
This can be used as the authentication mechanism in Web applications
including STOMP over WebSocket interactions just as described in the previous
section, i.e. maintaining identity through a cookie-based session.

At the same time cookie-based sessions are not always the best fit for example
in applications that don’t wish to maintain a server-side session at all or in
mobile applications where it’s common to use headers for authentication.

The WebSocket protocol RFC 6455
"doesn’t prescribe any particular way that servers can authenticate clients during
the WebSocket handshake." In practice however browser clients can only use standard
authentication headers (i.e. basic HTTP authentication) or cookies and cannot for example
provide custom headers. Likewise the SockJS JavaScript client does not provide
a way to send HTTP headers with SockJS transport requests, see
sockjs-client issue 196.
Instead it does allow sending query parameters that can be used to send a token
but that has its own drawbacks, for example as the token may be inadvertently
logged with the URL in server logs.

	[image: [Note]]	Note
	
The above limitations are for browser-based clients and do not apply to the
Spring Java-based STOMP client which does support sending headers with both
WebSocket and SockJS requests.

Therefore applications that wish to avoid the use of cookies may not have any good
alternatives for authentication at the HTTP protocol level. Instead of using cookies
they may prefer to authenticate with headers at the STOMP messaging protocol level
There are 2 simple steps to doing that:

	
Use the STOMP client to pass authentication header(s) at connect time.

	
Process the authentication header(s) with a ChannelInterceptor.

Below is the example server-side configuration to register a custom authentication
interceptor. Note that an interceptor only needs to authenticate and set
the user header on the CONNECT Message. Spring will note and save the authenticated
user and associate it with subsequent STOMP messages on the same session:

@Configuration
@EnableWebSocketMessageBroker
public class MyConfig extends AbstractWebSocketMessageBrokerConfigurer {

 @Override
 public void configureClientInboundChannel(ChannelRegistration registration) {
 registration.setInterceptors(new ChannelInterceptorAdapter() {
 @Override
 public Message<?> preSend(Message<?> message, MessageChannel channel) {
 StompHeaderAccessor accessor =
 MessageHeaderAccessor.getAccessor(message, StompHeaderAccessor.class);
 if (StompCommand.CONNECT.equals(accessor.getCommand())) {
 Authentication user = ... ; // access authentication header(s)
 accessor.setUser(user);
 }
 return message;
 }
 });
 }
}

Also note that when using Spring Security’s authorization for messages, at present
you will need to ensure that the authentication ChannelInterceptor config is ordered
ahead of Spring Security’s. This is best done by declaring the custom interceptor in
its own sub-class of AbstractWebSocketMessageBrokerConfigurer marked with
@Order(Ordered.HIGHEST_PRECEDENCE + 99).

User Destinations

An application can send messages targeting a specific user, and Spring’s STOMP support
recognizes destinations prefixed with "/user/" for this purpose.
For example, a client might subscribe to the destination "/user/queue/position-updates".
This destination will be handled by the UserDestinationMessageHandler and
transformed into a destination unique to the user session,
e.g. "/queue/position-updates-user123". This provides the convenience of subscribing
to a generically named destination while at the same time ensuring no collisions
with other users subscribing to the same destination so that each user can receive
unique stock position updates.

On the sending side messages can be sent to a destination such as
"/user/{username}/queue/position-updates", which in turn will be translated
by the UserDestinationMessageHandler into one or more destinations, one for each
session associated with the user. This allows any component within the application to
send messages targeting a specific user without necessarily knowing anything more
than their name and the generic destination. This is also supported through an
annotation as well as a messaging template.

For example, a message-handling method can send messages to the user associated with
the message being handled through the @SendToUser annotation (also supported on
the class-level to share a common destination):

@Controller
public class PortfolioController {

 @MessageMapping("/trade")
 @SendToUser("/queue/position-updates")
 public TradeResult executeTrade(Trade trade, Principal principal) {
 // ...
 return tradeResult;
 }
}

If the user has more than one session, by default all of the sessions subscribed
to the given destination are targeted. However sometimes, it may be necessary to
target only the session that sent the message being handled. This can be done by
setting the broadcast attribute to false, for example:

@Controller
public class MyController {

 @MessageMapping("/action")
 public void handleAction() throws Exception{
 // raise MyBusinessException here
 }

 @MessageExceptionHandler
 @SendToUser(destinations="/queue/errors", broadcast=false)
 public ApplicationError handleException(MyBusinessException exception) {
 // ...
 return appError;
 }
}

	[image: [Note]]	Note
	
While user destinations generally imply an authenticated user, it isn’t required
strictly. A WebSocket session that is not associated with an authenticated user
can subscribe to a user destination. In such cases the @SendToUser annotation
will behave exactly the same as with broadcast=false, i.e. targeting only the
session that sent the message being handled.

It is also possible to send a message to user destinations from any application
component by injecting the SimpMessagingTemplate created by the Java config or
XML namespace, for example (the bean name is "brokerMessagingTemplate" if required
for qualification with @Qualifier):

@Service
public class TradeServiceImpl implements TradeService {

	private final SimpMessagingTemplate messagingTemplate;

	@Autowired
	public TradeServiceImpl(SimpMessagingTemplate messagingTemplate) {
		this.messagingTemplate = messagingTemplate;
	}

	// ...

	public void afterTradeExecuted(Trade trade) {
		this.messagingTemplate.convertAndSendToUser(
				trade.getUserName(), "/queue/position-updates", trade.getResult());
	}
}

	[image: [Note]]	Note
	
When using user destinations with an external message broker, check the broker
documentation on how to manage inactive queues, so that when the user session is
over, all unique user queues are removed. For example, RabbitMQ creates auto-delete
queues when destinations like /exchange/amq.direct/position-updates are used.
So in that case the client could subscribe to /user/exchange/amq.direct/position-updates.
Similarly, ActiveMQ has
configuration options
for purging inactive destinations.

In a multi-application server scenario a user destination may remain unresolved because
the user is connected to a different server. In such cases you can configure a
destination to broadcast unresolved messages to so that other servers have a chance to try.
This can be done through the userDestinationBroadcast property of the
MessageBrokerRegistry in Java config and the user-destination-broadcast attribute
of the message-broker element in XML.

Events and Interception

Several ApplicationContext events (listed below) are published and can be
received by implementing Spring’s ApplicationListener interface.

	
BrokerAvailabilityEvent — indicates when the broker becomes available/unavailable.
While the "simple" broker becomes available immediately on startup and remains so while
the application is running, the STOMP "broker relay" may lose its connection
to the full featured broker, for example if the broker is restarted. The broker relay
has reconnect logic and will re-establish the "system" connection to the broker
when it comes back, hence this event is published whenever the state changes from connected
to disconnected and vice versa. Components using the SimpMessagingTemplate should
subscribe to this event and avoid sending messages at times when the broker is not
available. In any case they should be prepared to handle MessageDeliveryException
when sending a message.

	
SessionConnectEvent — published when a new STOMP CONNECT is received
indicating the start of a new client session. The event contains the message representing the
connect including the session id, user information (if any), and any custom headers the client
may have sent. This is useful for tracking client sessions. Components subscribed
to this event can wrap the contained message using SimpMessageHeaderAccessor or
StompMessageHeaderAccessor.

	
SessionConnectedEvent — published shortly after a SessionConnectEvent when the
broker has sent a STOMP CONNECTED frame in response to the CONNECT. At this point the
STOMP session can be considered fully established.

	
SessionSubscribeEvent — published when a new STOMP SUBSCRIBE is received.

	
SessionUnsubscribeEvent — published when a new STOMP UNSUBSCRIBE is received.

	
SessionDisconnectEvent — published when a STOMP session ends. The DISCONNECT may
have been sent from the client, or it may also be automatically generated when the
WebSocket session is closed. In some cases this event may be published more than once
per session. Components should be idempotent with regard to multiple disconnect events.

	[image: [Note]]	Note
	
When using a full-featured broker, the STOMP "broker relay" automatically reconnects the
"system" connection in case the broker becomes temporarily unavailable. Client connections
however are not automatically reconnected. Assuming heartbeats are enabled, the client
will typically notice the broker is not responding within 10 seconds. Clients need to
implement their own reconnect logic.

The above events reflect points in the lifecycle of a STOMP connection. They’re not meant
to provide notification for every message sent from the client. Instead an application
can register a ChannelInterceptor to intercept every incoming and outgoing STOMP message.
For example to intercept inbound messages:

@Configuration
@EnableWebSocketMessageBroker
public class WebSocketConfig extends AbstractWebSocketMessageBrokerConfigurer {

 @Override
 public void configureClientInboundChannel(ChannelRegistration registration) {
 registration.setInterceptors(new MyChannelInterceptor());
 }
}

A custom ChannelInterceptor can extend the empty method base class
ChannelInterceptorAdapter and use StompHeaderAccessor or SimpMessageHeaderAccessor
to access information about the message.

public class MyChannelInterceptor extends ChannelInterceptorAdapter {

 @Override
 public Message<?> preSend(Message<?> message, MessageChannel channel) {
 StompHeaderAccessor accessor = StompHeaderAccessor.wrap(message);
 StompCommand command = accessor.getStompCommand();
 // ...
 return message;
 }
}

Note that just like with the SesionDisconnectEvent above, a DISCONNECT message
may have been sent from the client, or it may also be automatically generated when
the WebSocket session is closed. In some cases an interceptor may intercept this
message more than once per session. Components should be idempotent with regard to
multiple disconnect events.

STOMP Client

Spring provides a STOMP over WebSocket client and a STOMP over TCP client.

To begin create and configure WebSocketStompClient:

WebSocketClient webSocketClient = new StandardWebSocketClient();
WebSocketStompClient stompClient = new WebSocketStompClient(webSocketClient);
stompClient.setMessageConverter(new StringMessageConverter());
stompClient.setTaskScheduler(taskScheduler); // for heartbeats

In the above example StandardWebSocketClient could be replaced with SockJsClient
since that is also an implementation of WebSocketClient. The SockJsClient can
use WebSocket or HTTP-based transport as a fallback. For more details see
the section called “SockJsClient”.

Next establish a connection and provide a handler for the STOMP session:

String url = "ws://127.0.0.1:8080/endpoint";
StompSessionHandler sessionHandler = new MyStompSessionHandler();
stompClient.connect(url, sessionHandler);

When the session is ready for use the handler is notified:

public class MyStompSessionHandler extends StompSessionHandlerAdapter {

	@Override
	public void afterConnected(StompSession session, StompHeaders connectedHeaders) {
		// ...
	}
}

Once the session is established any payload can be sent and that will be
serialized with the configured MessageConverter:

session.send("/topic/foo", "payload");

You can also subscribe to destinations. The subscribe methods require a handler
for messages on the subscription and return a Subscription handle that can be
used to unsubscribe. For each received message the handler can specify the target
Object type the payload should be deserialized to:

session.subscribe("/topic/foo", new StompFrameHandler() {

	@Override
	public Type getPayloadType(StompHeaders headers) {
		return String.class;
	}

	@Override
	public void handleFrame(StompHeaders headers, Object payload) {
		// ...
	}

});

To enable STOMP heartbeat configure WebSocketStompClient with a TaskScheduler
and optionally customize the heartbeat intervals, 10 seconds for write inactivity
which causes a heartbeat to be sent and 10 seconds for read inactivity which
closes the connection.

	[image: [Note]]	Note
	
When using WebSocketStompClient for performance tests to simulate thousands
of clients from the same machine consider turning off heartbeats since each
connection schedules its own heartbeat tasks and that’s not optimized for a
a large number of clients running on the same machine.

The STOMP protocol also supports receipts where the client must add a "receipt"
header to which the server responds with a RECEIPT frame after the send or
subscribe are processed. To support this the StompSession offers
setAutoReceipt(boolean) that causes a "receipt" header to be
added on every subsequent send or subscribe.
Alternatively you can also manually add a "receipt" header to the StompHeaders.
Both send and subscribe return an instance of Receiptable
that can be used to register for receipt success and failure callbacks.
For this feature the client must be configured with a TaskScheduler
and the amount of time before a receipt expires (15 seconds by default).

Note that StompSessionHandler itself is a StompFrameHandler which allows
it to handle ERROR frames in addition to the handleException callback for
exceptions from the handling of messages, and handleTransportError for
transport-level errors including ConnectionLostException.

WebSocket Scope

Each WebSocket session has a map of attributes. The map is attached as a header to
inbound client messages and may be accessed from a controller method, for example:

@Controller
public class MyController {

	@MessageMapping("/action")
	public void handle(SimpMessageHeaderAccessor headerAccessor) {
		Map<String, Object> attrs = headerAccessor.getSessionAttributes();
		// ...
	}
}

It is also possible to declare a Spring-managed bean in the websocket scope.
WebSocket-scoped beans can be injected into controllers and any channel interceptors
registered on the "clientInboundChannel". Those are typically singletons and live
longer than any individual WebSocket session. Therefore you will need to use a
scope proxy mode for WebSocket-scoped beans:

@Component
@Scope(scopeName = "websocket", proxyMode = ScopedProxyMode.TARGET_CLASS)
public class MyBean {

 @PostConstruct
 public void init() {
 // Invoked after dependencies injected
 }

 // ...

 @PreDestroy
 public void destroy() {
 // Invoked when the WebSocket session ends
 }
}

@Controller
public class MyController {

 private final MyBean myBean;

 @Autowired
 public MyController(MyBean myBean) {
 this.myBean = myBean;
 }

 @MessageMapping("/action")
 public void handle() {
 // this.myBean from the current WebSocket session
 }
}

As with any custom scope, Spring initializes a new MyBean instance the first
time it is accessed from the controller and stores the instance in the WebSocket
session attributes. The same instance is returned subsequently until the session
ends. WebSocket-scoped beans will have all Spring lifecycle methods invoked as
shown in the examples above.

Performance

There is no silver bullet when it comes to performance. Many factors may
affect it including the size of messages, the volume, whether application
methods perform work that requires blocking, as well as external factors
such as network speed and others. The goal of this section is to provide
an overview of the available configuration options along with some thoughts
on how to reason about scaling.

In a messaging application messages are passed through channels for asynchronous
executions backed by thread pools. Configuring such an application requires
good knowledge of the channels and the flow of messages. Therefore it is
recommended to review the section called “Flow of Messages”.

The obvious place to start is to configure the thread pools backing the
"clientInboundChannel" and the "clientOutboundChannel". By default both
are configured at twice the number of available processors.

If the handling of messages in annotated methods is mainly CPU bound then the
number of threads for the "clientInboundChannel" should remain close to the
number of processors. If the work they do is more IO bound and requires blocking
or waiting on a database or other external system then the thread pool size
will need to be increased.

	[image: [Note]]	Note
	
ThreadPoolExecutor has 3 important properties. Those are the core and
the max thread pool size as well as the capacity for the queue to store
tasks for which there are no available threads.

A common point of confusion is that configuring the core pool size (e.g. 10)
and max pool size (e.g. 20) results in a thread pool with 10 to 20 threads.
In fact if the capacity is left at its default value of Integer.MAX_VALUE
then the thread pool will never increase beyond the core pool size since
all additional tasks will be queued.

Please review the Javadoc of ThreadPoolExecutor to learn how these
properties work and understand the various queuing strategies.

On the "clientOutboundChannel" side it is all about sending messages to WebSocket
clients. If clients are on a fast network then the number of threads should
remain close to the number of available processors. If they are slow or on
low bandwidth they will take longer to consume messages and put a burden on the
thread pool. Therefore increasing the thread pool size will be necessary.

While the workload for the "clientInboundChannel" is possible to predict — after all it is based on what the application does — how to configure the
"clientOutboundChannel" is harder as it is based on factors beyond
the control of the application. For this reason there are two additional
properties related to the sending of messages. Those are the "sendTimeLimit"
and the "sendBufferSizeLimit". Those are used to configure how long a
send is allowed to take and how much data can be buffered when sending
messages to a client.

The general idea is that at any given time only a single thread may be used
to send to a client. All additional messages meanwhile get buffered and you
can use these properties to decide how long sending a message is allowed to
take and how much data can be buffered in the mean time. Please review the
Javadoc and documentation of the XML schema for this configuration for
important additional details.

Here is example configuration:

@Configuration
@EnableWebSocketMessageBroker
public class WebSocketConfig implements WebSocketMessageBrokerConfigurer {

 @Override
 public void configureWebSocketTransport(WebSocketTransportRegistration registration) {
 registration.setSendTimeLimit(15 * 1000).setSendBufferSizeLimit(512 * 1024);
 }

 // ...

}

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:websocket="http://www.springframework.org/schema/websocket"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/websocket
 http://www.springframework.org/schema/websocket/spring-websocket.xsd">

 <websocket:message-broker>
 <websocket:transport send-timeout="15000" send-buffer-size="524288" />
 <!-- ... -->
 </websocket:message-broker>

</beans>

The WebSocket transport configuration shown above can also be used to configure the
maximum allowed size for incoming STOMP messages. Although in theory a WebSocket
message can be almost unlimited in size, in practice WebSocket servers impose
limits — for example, 8K on Tomcat and 64K on Jetty. For this reason STOMP clients
such as stomp.js split larger STOMP messages at 16K boundaries and send them as
multiple WebSocket messages thus requiring the server to buffer and re-assemble.

Spring’s STOMP over WebSocket support does this so applications can configure the
maximum size for STOMP messages irrespective of WebSocket server specific message
sizes. Do keep in mind that the WebSocket message size will be automatically
adjusted if necessary to ensure they can carry 16K WebSocket messages at a
minimum.

Here is example configuration:

@Configuration
@EnableWebSocketMessageBroker
public class WebSocketConfig implements WebSocketMessageBrokerConfigurer {

 @Override
 public void configureWebSocketTransport(WebSocketTransportRegistration registration) {
 registration.setMessageSizeLimit(128 * 1024);
 }

 // ...

}

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:websocket="http://www.springframework.org/schema/websocket"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/websocket
 http://www.springframework.org/schema/websocket/spring-websocket.xsd">

 <websocket:message-broker>
 <websocket:transport message-size="131072" />
 <!-- ... -->
 </websocket:message-broker>

</beans>

An important point about scaling is using multiple application instances.
Currently it is not possible to do that with the simple broker.
However when using a full-featured broker such as RabbitMQ, each application
instance connects to the broker and messages broadcast from one application
instance can be broadcast through the broker to WebSocket clients connected
through any other application instances.

Monitoring

When using @EnableWebSocketMessageBroker or <websocket:message-broker> key
infrastructure components automatically gather stats and counters that provide
important insight into the internal state of the application. The configuration
also declares a bean of type WebSocketMessageBrokerStats that gathers all
available information in one place and by default logs it at INFO level once
every 30 minutes. This bean can be exported to JMX through Spring’s
MBeanExporter for viewing at runtime, for example through JDK’s jconsole.
Below is a summary of the available information.

	Client WebSocket Sessions
	
	Current
	
indicates how many client sessions there are
currently with the count further broken down by WebSocket vs HTTP
streaming and polling SockJS sessions.

	Total
	
indicates how many total sessions have been established.

	Abnormally Closed
	
	Connect Failures
	
these are sessions that got established but were
closed after not having received any messages within 60 seconds. This is
usually an indication of proxy or network issues.

	Send Limit Exceeded
	
sessions closed after exceeding the configured send
timeout or the send buffer limits which can occur with slow clients
(see previous section).

	Transport Errors
	
sessions closed after a transport error such as
failure to read or write to a WebSocket connection or
HTTP request/response.

	STOMP Frames
	
the total number of CONNECT, CONNECTED, and DISCONNECT frames
processed indicating how many clients connected on the STOMP level. Note that
the DISCONNECT count may be lower when sessions get closed abnormally or when
clients close without sending a DISCONNECT frame.

	STOMP Broker Relay
	
	TCP Connections
	
indicates how many TCP connections on behalf of client
WebSocket sessions are established to the broker. This should be equal to the
number of client WebSocket sessions + 1 additional shared "system" connection
for sending messages from within the application.

	STOMP Frames
	
the total number of CONNECT, CONNECTED, and DISCONNECT frames
forwarded to or received from the broker on behalf of clients. Note that a
DISCONNECT frame is sent to the broker regardless of how the client WebSocket
session was closed. Therefore a lower DISCONNECT frame count is an indication
that the broker is pro-actively closing connections, may be because of a
heartbeat that didn’t arrive in time, an invalid input frame, or other.

	Client Inbound Channel
	
stats from thread pool backing the "clientInboundChannel"
providing insight into the health of incoming message processing. Tasks queueing
up here is an indication the application may be too slow to handle messages.
If there I/O bound tasks (e.g. slow database query, HTTP request to 3rd party
REST API, etc) consider increasing the thread pool size.

	Client Outbound Channel
	
stats from the thread pool backing the "clientOutboundChannel"
providing insight into the health of broadcasting messages to clients. Tasks
queueing up here is an indication clients are too slow to consume messages.
One way to address this is to increase the thread pool size to accommodate the
number of concurrent slow clients expected. Another option is to reduce the
send timeout and send buffer size limits (see the previous section).

	SockJS Task Scheduler
	
stats from thread pool of the SockJS task scheduler which
is used to send heartbeats. Note that when heartbeats are negotiated on the
STOMP level the SockJS heartbeats are disabled.

Testing

There are two main approaches to testing applications using Spring’s STOMP over
WebSocket support. The first is to write server-side tests verifying the functionality
of controllers and their annotated message handling methods. The second is to write
full end-to-end tests that involve running a client and a server.

The two approaches are not mutually exclusive. On the contrary each has a place
in an overall test strategy. Server-side tests are more focused and easier to write
and maintain. End-to-end integration tests on the other hand are more complete and
test much more, but they’re also more involved to write and maintain.

The simplest form of server-side tests is to write controller unit tests. However
this is not useful enough since much of what a controller does depends on its
annotations. Pure unit tests simply can’t test that.

Ideally controllers under test should be invoked as they are at runtime, much like
the approach to testing controllers handling HTTP requests using the Spring MVC Test
framework. i.e. without running a Servlet container but relying on the Spring Framework
to invoke the annotated controllers. Just like with Spring MVC Test here there are two
two possible alternatives, either using a "context-based" or "standalone" setup:

	
Load the actual Spring configuration with the help of the
Spring TestContext framework, inject "clientInboundChannel" as a test field, and
use it to send messages to be handled by controller methods.

	
Manually set up the minimum Spring framework infrastructure required to invoke
controllers (namely the SimpAnnotationMethodMessageHandler) and pass messages for
controllers directly to it.

Both of these setup scenarios are demonstrated in the
tests for the stock portfolio
sample application.

The second approach is to create end-to-end integration tests. For that you will need
to run a WebSocket server in embedded mode and connect to it as a WebSocket client
sending WebSocket messages containing STOMP frames.
The tests for the stock portfolio
sample application also demonstrates this approach using Tomcat as the embedded
WebSocket server and a simple STOMP client for test purposes.

Chapter 27. CORS Support

Introduction

For security reasons, browsers prohibit AJAX calls to resources residing outside the
current origin. For example, as you’re checking your bank account in one tab, you
could have the evil.com website open in another tab. The scripts from evil.com should not
be able to make AJAX requests to your bank API (e.g., withdrawing money from your account!)
using your credentials.

Cross-origin resource sharing
(CORS) is a W3C specification implemented by
most browsers that allows you to specify in a flexible
way what kind of cross domain requests are authorized, instead of using some less secured
and less powerful hacks like IFRAME or JSONP.

As of Spring Framework 4.2, CORS is supported out of the box. CORS requests
(including preflight ones with an OPTIONS method)
are automatically dispatched to the various registered HandlerMappings. They handle
CORS preflight requests and intercept CORS simple and actual requests thanks to a
CorsProcessor
implementation (DefaultCorsProcessor
by default) in order to add the relevant CORS response headers (like Access-Control-Allow-Origin)
based on the CORS configuration you have provided.

	[image: [Note]]	Note
	
Since CORS requests are automatically dispatched, you do not need to change the
DispatcherServlet dispatchOptionsRequest init parameter value; using its default value
(false) is the recommended approach.

Controller method CORS configuration

You can add an
@CrossOrigin
annotation to your @RequestMapping annotated handler method in order to enable CORS on
it. By default @CrossOrigin allows all origins and the HTTP methods specified in the
@RequestMapping annotation:

@RestController
@RequestMapping("/account")
public class AccountController {

	@CrossOrigin
	@RequestMapping("/{id}")
	public Account retrieve(@PathVariable Long id) {
		// ...
	}

	@RequestMapping(method = RequestMethod.DELETE, path = "/{id}")
	public void remove(@PathVariable Long id) {
		// ...
	}
}

It is also possible to enable CORS for the whole controller:

@CrossOrigin(origins = "http://domain2.com", maxAge = 3600)
@RestController
@RequestMapping("/account")
public class AccountController {

	@RequestMapping("/{id}")
	public Account retrieve(@PathVariable Long id) {
		// ...
	}

	@RequestMapping(method = RequestMethod.DELETE, path = "/{id}")
	public void remove(@PathVariable Long id) {
		// ...
	}
}

In the above example CORS support is enabled for both the retrieve() and the remove()
handler methods, and you can also see how you can customize the CORS configuration using
@CrossOrigin attributes.

You can even use both controller-level and method-level CORS configurations; Spring will
then combine attributes from both annotations to create merged CORS configuration.

@CrossOrigin(maxAge = 3600)
@RestController
@RequestMapping("/account")
public class AccountController {

	@CrossOrigin("http://domain2.com")
	@RequestMapping("/{id}")
	public Account retrieve(@PathVariable Long id) {
		// ...
	}

	@RequestMapping(method = RequestMethod.DELETE, path = "/{id}")
	public void remove(@PathVariable Long id) {
		// ...
	}
}

Global CORS configuration

In addition to fine-grained, annotation-based configuration you’ll probably want to
define some global CORS configuration as well. This is similar to using filters but can
be declared within Spring MVC and combined with fine-grained @CrossOrigin configuration.
By default all origins and GET, HEAD, and POST methods are allowed.

JavaConfig

Enabling CORS for the whole application is as simple as:

@Configuration
@EnableWebMvc
public class WebConfig extends WebMvcConfigurerAdapter {

	@Override
	public void addCorsMappings(CorsRegistry registry) {
		registry.addMapping("/**");
	}
}

You can easily change any properties, as well as only apply this CORS configuration to a
specific path pattern:

@Configuration
@EnableWebMvc
public class WebConfig extends WebMvcConfigurerAdapter {

	@Override
	public void addCorsMappings(CorsRegistry registry) {
		registry.addMapping("/api/**")
			.allowedOrigins("http://domain2.com")
			.allowedMethods("PUT", "DELETE")
			.allowedHeaders("header1", "header2", "header3")
			.exposedHeaders("header1", "header2")
			.allowCredentials(false).maxAge(3600);
	}
}

XML namespace

The following minimal XML configuration enables CORS for the /** path pattern with
the same default properties as with the aforementioned JavaConfig examples:

<mvc:cors>
	<mvc:mapping path="/**" />
</mvc:cors>

It is also possible to declare several CORS mappings with customized properties:

<mvc:cors>

	<mvc:mapping path="/api/**"
		allowed-origins="http://domain1.com, http://domain2.com"
		allowed-methods="GET, PUT"
		allowed-headers="header1, header2, header3"
		exposed-headers="header1, header2" allow-credentials="false"
		max-age="123" />

	<mvc:mapping path="/resources/**"
		allowed-origins="http://domain1.com" />

</mvc:cors>

Advanced Customization

CorsConfiguration
allows you to specify how the CORS requests should be processed: allowed origins, headers, methods, etc.
It can be provided in various ways:

	
AbstractHandlerMapping#setCorsConfiguration()
allows to specify a Map with several CorsConfiguration
instances mapped to path patterns like /api/**.

	
Subclasses can provide their own CorsConfiguration by overriding the
AbstractHandlerMapping#getCorsConfiguration(Object, HttpServletRequest) method.

	
Handlers can implement the CorsConfigurationSource
interface (like ResourceHttpRequestHandler
now does) in order to provide a CorsConfiguration
instance for each request.

Filter based CORS support

In order to support CORS with filter-based security frameworks like
Spring Security, or
with other libraries that do not support natively CORS, Spring Framework also
provides a CorsFilter.
Instead of using @CrossOrigin or WebMvcConfigurer#addCorsMappings(CorsRegistry), you
need to register a custom filter defined like bellow:

import org.springframework.web.cors.CorsConfiguration;
import org.springframework.web.cors.UrlBasedCorsConfigurationSource;
import org.springframework.web.filter.CorsFilter;

public class MyCorsFilter extends CorsFilter {

	public MyCorsFilter() {
		super(configurationSource());
	}

	private static UrlBasedCorsConfigurationSource configurationSource() {
		CorsConfiguration config = new CorsConfiguration();
		config.setAllowCredentials(true);
		config.addAllowedOrigin("http://domain1.com");
		config.addAllowedHeader("*");
		config.addAllowedMethod("*");
		UrlBasedCorsConfigurationSource source = new UrlBasedCorsConfigurationSource();
		source.registerCorsConfiguration("/**", config);
		return source;
	}
}

You need to ensure that CorsFilter is ordered before the other filters, see
this blog post
about how to configure Spring Boot accordingly.

Part VII. Integration

This part of the reference documentation covers the Spring Framework’s integration with
a number of Java EE (and related) technologies.

	
Chapter 28, Remoting and web services using Spring

	
Chapter 29, Enterprise JavaBeans (EJB) integration

	
Chapter 30, JMS (Java Message Service)

	
Chapter 31, JMX

	
Chapter 32, JCA CCI

	
Chapter 33, Email

	
Chapter 34, Task Execution and Scheduling

	
Chapter 35, Dynamic language support

	
Chapter 36, Cache Abstraction

Chapter 28. Remoting and web services using Spring

Introduction

Spring features integration classes for remoting support using various technologies. The
remoting support eases the development of remote-enabled services, implemented by your
usual (Spring) POJOs. Currently, Spring supports the following remoting technologies:

	
Remote Method Invocation (RMI). Through the use of the RmiProxyFactoryBean and
the RmiServiceExporter Spring supports both traditional RMI (with java.rmi.Remote
interfaces and java.rmi.RemoteException) and transparent remoting via RMI invokers
(with any Java interface).

	
Spring’s HTTP invoker. Spring provides a special remoting strategy which allows
for Java serialization via HTTP, supporting any Java interface (just like the RMI
invoker). The corresponding support classes are HttpInvokerProxyFactoryBean and
HttpInvokerServiceExporter.

	
Hessian. By using Spring’s HessianProxyFactoryBean and the
HessianServiceExporter you can transparently expose your services using the
lightweight binary HTTP-based protocol provided by Caucho.

	
Burlap. Burlap is Caucho’s XML-based alternative to Hessian. Spring provides
support classes such as BurlapProxyFactoryBean and BurlapServiceExporter.

	
JAX-WS. Spring provides remoting support for web services via JAX-WS (the
successor of JAX-RPC, as introduced in Java EE 5 and Java 6).

	
JMS. Remoting using JMS as the underlying protocol is supported via the
JmsInvokerServiceExporter and JmsInvokerProxyFactoryBean classes.

	
AMQP. Remoting using AMQP as the underlying protocol is supported by the Spring
AMQP project.

While discussing the remoting capabilities of Spring, we’ll use the following domain
model and corresponding services:

public class Account implements Serializable{

 private String name;

 public String getName(){
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

}

public interface AccountService {

 public void insertAccount(Account account);

 public List<Account> getAccounts(String name);

}

// the implementation doing nothing at the moment
public class AccountServiceImpl implements AccountService {

 public void insertAccount(Account acc) {
 // do something...
 }

 public List<Account> getAccounts(String name) {
 // do something...
 }

}

We will start exposing the service to a remote client by using RMI and talk a bit about
the drawbacks of using RMI. We’ll then continue to show an example using Hessian as the
protocol.

Exposing services using RMI

Using Spring’s support for RMI, you can transparently expose your services through the
RMI infrastructure. After having this set up, you basically have a configuration similar
to remote EJBs, except for the fact that there is no standard support for security
context propagation or remote transaction propagation. Spring does provide hooks for
such additional invocation context when using the RMI invoker, so you can for example
plug in security frameworks or custom security credentials here.

Exporting the service using the RmiServiceExporter

Using the RmiServiceExporter, we can expose the interface of our AccountService object
as RMI object. The interface can be accessed by using RmiProxyFactoryBean, or via
plain RMI in case of a traditional RMI service. The RmiServiceExporter explicitly
supports the exposing of any non-RMI services via RMI invokers.

Of course, we first have to set up our service in the Spring container:

<bean id="accountService" class="example.AccountServiceImpl">
 <!-- any additional properties, maybe a DAO? -->
</bean>

Next we’ll have to expose our service using the RmiServiceExporter:

<bean class="org.springframework.remoting.rmi.RmiServiceExporter">
 <!-- does not necessarily have to be the same name as the bean to be exported -->
 <property name="serviceName" value="AccountService"/>
 <property name="service" ref="accountService"/>
 <property name="serviceInterface" value="example.AccountService"/>
 <!-- defaults to 1099 -->
 <property name="registryPort" value="1199"/>
</bean>

As you can see, we’re overriding the port for the RMI registry. Often, your application
server also maintains an RMI registry and it is wise to not interfere with that one.
Furthermore, the service name is used to bind the service under. So right now, the
service will be bound at 'rmi://HOST:1199/AccountService'. We’ll use the URL later on
to link in the service at the client side.

	[image: [Note]]	Note
	
The servicePort property has been omitted (it defaults to 0). This means that an
anonymous port will be used to communicate with the service.

Linking in the service at the client

Our client is a simple object using the AccountService to manage accounts:

public class SimpleObject {

 private AccountService accountService;

 public void setAccountService(AccountService accountService) {
 this.accountService = accountService;
 }

 // additional methods using the accountService

}

To link in the service on the client, we’ll create a separate Spring container,
containing the simple object and the service linking configuration bits:

<bean class="example.SimpleObject">
 <property name="accountService" ref="accountService"/>
</bean>

<bean id="accountService" class="org.springframework.remoting.rmi.RmiProxyFactoryBean">
 <property name="serviceUrl" value="rmi://HOST:1199/AccountService"/>
 <property name="serviceInterface" value="example.AccountService"/>
</bean>

That’s all we need to do to support the remote account service on the client. Spring
will transparently create an invoker and remotely enable the account service through the
RmiServiceExporter. At the client we’re linking it in using the RmiProxyFactoryBean.

Using Hessian or Burlap to remotely call services via HTTP

Hessian offers a binary HTTP-based remoting protocol. It is developed by Caucho and more
information about Hessian itself can be found at http://www.caucho.com.

Wiring up the DispatcherServlet for Hessian and co.

Hessian communicates via HTTP and does so using a custom servlet. Using Spring’s
DispatcherServlet principles, as known from Spring Web MVC usage, you can easily wire
up such a servlet exposing your services. First we’ll have to create a new servlet in
your application (this is an excerpt from 'web.xml'):

<servlet>
 <servlet-name>remoting</servlet-name>
 <servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
</servlet>

<servlet-mapping>
 <servlet-name>remoting</servlet-name>
 <url-pattern>/remoting/*</url-pattern>
</servlet-mapping>

You’re probably familiar with Spring’s DispatcherServlet principles and if so, you
know that now you’ll have to create a Spring container configuration resource named
'remoting-servlet.xml' (after the name of your servlet) in the 'WEB-INF' directory.
The application context will be used in the next section.

Alternatively, consider the use of Spring’s simpler HttpRequestHandlerServlet. This
allows you to embed the remote exporter definitions in your root application context (by
default in 'WEB-INF/applicationContext.xml'), with individual servlet definitions
pointing to specific exporter beans. Each servlet name needs to match the bean name of
its target exporter in this case.

Exposing your beans by using the HessianServiceExporter

In the newly created application context called remoting-servlet.xml, we’ll create a
HessianServiceExporter exporting your services:

<bean id="accountService" class="example.AccountServiceImpl">
 <!-- any additional properties, maybe a DAO? -->
</bean>

<bean name="/AccountService" class="org.springframework.remoting.caucho.HessianServiceExporter">
 <property name="service" ref="accountService"/>
 <property name="serviceInterface" value="example.AccountService"/>
</bean>

Now we’re ready to link in the service at the client. No explicit handler mapping is
specified, mapping request URLs onto services, so BeanNameUrlHandlerMapping will be
used: Hence, the service will be exported at the URL indicated through its bean name
within the containing DispatcherServlet's mapping (as defined above):
'http://HOST:8080/remoting/AccountService'.

Alternatively, create a HessianServiceExporter in your root application context (e.g.
in 'WEB-INF/applicationContext.xml'):

<bean name="accountExporter" class="org.springframework.remoting.caucho.HessianServiceExporter">
 <property name="service" ref="accountService"/>
 <property name="serviceInterface" value="example.AccountService"/>
</bean>

In the latter case, define a corresponding servlet for this exporter in 'web.xml',
with the same end result: The exporter getting mapped to the request path
/remoting/AccountService. Note that the servlet name needs to match the bean name of
the target exporter.

<servlet>
 <servlet-name>accountExporter</servlet-name>
 <servlet-class>org.springframework.web.context.support.HttpRequestHandlerServlet</servlet-class>
</servlet>

<servlet-mapping>
 <servlet-name>accountExporter</servlet-name>
 <url-pattern>/remoting/AccountService</url-pattern>
</servlet-mapping>

Linking in the service on the client

Using the HessianProxyFactoryBean we can link in the service at the client. The same
principles apply as with the RMI example. We’ll create a separate bean factory or
application context and mention the following beans where the SimpleObject is using
the AccountService to manage accounts:

<bean class="example.SimpleObject">
 <property name="accountService" ref="accountService"/>
</bean>

<bean id="accountService" class="org.springframework.remoting.caucho.HessianProxyFactoryBean">
 <property name="serviceUrl" value="http://remotehost:8080/remoting/AccountService"/>
 <property name="serviceInterface" value="example.AccountService"/>
</bean>

Using Burlap

We won’t discuss Burlap, the XML-based equivalent of Hessian, in detail here, since it
is configured and set up in exactly the same way as the Hessian variant explained above.
Just replace the word Hessian with Burlap and you’re all set to go.

Applying HTTP basic authentication to a service exposed through Hessian or Burlap

One of the advantages of Hessian and Burlap is that we can easily apply HTTP basic
authentication, because both protocols are HTTP-based. Your normal HTTP server security
mechanism can easily be applied through using the web.xml security features, for
example. Usually, you don’t use per-user security credentials here, but rather shared
credentials defined at the Hessian/BurlapProxyFactoryBean level (similar to a JDBC
DataSource).

<bean class="org.springframework.web.servlet.handler.BeanNameUrlHandlerMapping">
 <property name="interceptors" ref="authorizationInterceptor"/>
</bean>

<bean id="authorizationInterceptor"
 class="org.springframework.web.servlet.handler.UserRoleAuthorizationInterceptor">
 <property name="authorizedRoles" value="administrator,operator"/>
</bean>

This is an example where we explicitly mention the BeanNameUrlHandlerMapping and set
an interceptor allowing only administrators and operators to call the beans mentioned in
this application context.

	[image: [Note]]	Note
	
Of course, this example doesn’t show a flexible kind of security infrastructure. For
more options as far as security is concerned, have a look at the Spring Security project
at http://projects.spring.io/spring-security/.

Exposing services using HTTP invokers

As opposed to Burlap and Hessian, which are both lightweight protocols using their own
slim serialization mechanisms, Spring HTTP invokers use the standard Java serialization
mechanism to expose services through HTTP. This has a huge advantage if your arguments
and return types are complex types that cannot be serialized using the serialization
mechanisms Hessian and Burlap use (refer to the next section for more considerations
when choosing a remoting technology).

Under the hood, Spring uses either the standard facilities provided by the JDK or
Apache HttpComponents to perform HTTP calls. Use the latter if you need more
advanced and easier-to-use functionality. Refer to
hc.apache.org/httpcomponents-client-ga/
for more information.

	[image: [Warning]]	Warning
	
Be aware of vulnerabilities due to unsafe Java deserialization:
Manipulated input streams could lead to unwanted code execution on the server
during the deserialization step. As a consequence, do not expose HTTP invoker
endpoints to untrusted clients but rather just between your own services.
In general, we strongly recommend any other message format (e.g. JSON) instead.

If you are concerned about security vulnerabilities due to Java serialization,
consider the general-purpose serialization filter mechanism at the core JVM level,
originally developed for JDK 9 but backported to JDK 8, 7 and 6 in the meantime:
https://blogs.oracle.com/java-platform-group/entry/incoming_filter_serialization_data_a
http://openjdk.java.net/jeps/290

Exposing the service object

Setting up the HTTP invoker infrastructure for a service object resembles closely the
way you would do the same using Hessian or Burlap. Just as Hessian support provides the
HessianServiceExporter, Spring’s HttpInvoker support provides the
org.springframework.remoting.httpinvoker.HttpInvokerServiceExporter.

To expose the AccountService (mentioned above) within a Spring Web MVC
DispatcherServlet, the following configuration needs to be in place in the
dispatcher’s application context:

<bean name="/AccountService" class="org.springframework.remoting.httpinvoker.HttpInvokerServiceExporter">
 <property name="service" ref="accountService"/>
 <property name="serviceInterface" value="example.AccountService"/>
</bean>

Such an exporter definition will be exposed through the DispatcherServlet's standard
mapping facilities, as explained in the section on Hessian.

Alternatively, create an HttpInvokerServiceExporter in your root application context
(e.g. in 'WEB-INF/applicationContext.xml'):

<bean name="accountExporter" class="org.springframework.remoting.httpinvoker.HttpInvokerServiceExporter">
 <property name="service" ref="accountService"/>
 <property name="serviceInterface" value="example.AccountService"/>
</bean>

In addition, define a corresponding servlet for this exporter in 'web.xml', with the
servlet name matching the bean name of the target exporter:

<servlet>
 <servlet-name>accountExporter</servlet-name>
 <servlet-class>org.springframework.web.context.support.HttpRequestHandlerServlet</servlet-class>
</servlet>

<servlet-mapping>
 <servlet-name>accountExporter</servlet-name>
 <url-pattern>/remoting/AccountService</url-pattern>
</servlet-mapping>

If you are running outside of a servlet container and are using Oracle’s Java 6, then you
can use the built-in HTTP server implementation. You can configure the
SimpleHttpServerFactoryBean together with a SimpleHttpInvokerServiceExporter as is
shown in this example:

<bean name="accountExporter"
 class="org.springframework.remoting.httpinvoker.SimpleHttpInvokerServiceExporter">
 <property name="service" ref="accountService"/>
 <property name="serviceInterface" value="example.AccountService"/>
</bean>

<bean id="httpServer"
 class="org.springframework.remoting.support.SimpleHttpServerFactoryBean">
 <property name="contexts">
 <util:map>
 <entry key="/remoting/AccountService" value-ref="accountExporter"/>
 </util:map>
 </property>
 <property name="port" value="8080"/>
</bean>

Linking in the service at the client

Again, linking in the service from the client much resembles the way you would do it
when using Hessian or Burlap. Using a proxy, Spring will be able to translate your calls
to HTTP POST requests to the URL pointing to the exported service.

<bean id="httpInvokerProxy" class="org.springframework.remoting.httpinvoker.HttpInvokerProxyFactoryBean">
 <property name="serviceUrl" value="http://remotehost:8080/remoting/AccountService"/>
 <property name="serviceInterface" value="example.AccountService"/>
</bean>

As mentioned before, you can choose what HTTP client you want to use. By default, the
HttpInvokerProxy uses the JDK’s HTTP functionality, but you can also use the Apache
HttpComponents client by setting the httpInvokerRequestExecutor property:

<property name="httpInvokerRequestExecutor">
 <bean class="org.springframework.remoting.httpinvoker.HttpComponentsHttpInvokerRequestExecutor"/>
</property>

Web services

Spring provides full support for standard Java web services APIs:

	
Exposing web services using JAX-WS

	
Accessing web services using JAX-WS

In addition to stock support for JAX-WS in Spring Core, the Spring portfolio also
features Spring Web Services, a solution for
contract-first, document-driven web services - highly recommended for building modern,
future-proof web services.

Exposing servlet-based web services using JAX-WS

Spring provides a convenient base class for JAX-WS servlet endpoint implementations -
SpringBeanAutowiringSupport. To expose our AccountService we extend Spring’s
SpringBeanAutowiringSupport class and implement our business logic here, usually
delegating the call to the business layer. We’ll simply use Spring’s @Autowired
annotation for expressing such dependencies on Spring-managed beans.

/**
 * JAX-WS compliant AccountService implementation that simply delegates
 * to the AccountService implementation in the root web application context.
 *
 * This wrapper class is necessary because JAX-WS requires working with dedicated
 * endpoint classes. If an existing service needs to be exported, a wrapper that
 * extends SpringBeanAutowiringSupport for simple Spring bean autowiring (through
 * the @Autowired annotation) is the simplest JAX-WS compliant way.
 *
 * This is the class registered with the server-side JAX-WS implementation.
 * In the case of a Java EE 5 server, this would simply be defined as a servlet
 * in web.xml, with the server detecting that this is a JAX-WS endpoint and reacting
 * accordingly. The servlet name usually needs to match the specified WS service name.
 *
 * The web service engine manages the lifecycle of instances of this class.
 * Spring bean references will just be wired in here.
 */
import org.springframework.web.context.support.SpringBeanAutowiringSupport;

@WebService(serviceName="AccountService")
public class AccountServiceEndpoint extends SpringBeanAutowiringSupport {

 @Autowired
 private AccountService biz;

 @WebMethod
 public void insertAccount(Account acc) {
 biz.insertAccount(acc);
 }

 @WebMethod
 public Account[] getAccounts(String name) {
 return biz.getAccounts(name);
 }

}

Our AccountServiceEndpoint needs to run in the same web application as the Spring
context to allow for access to Spring’s facilities. This is the case by default in Java
EE 5 environments, using the standard contract for JAX-WS servlet endpoint deployment.
See Java EE 5 web service tutorials for details.

Exporting standalone web services using JAX-WS

The built-in JAX-WS provider that comes with Oracle’s JDK supports exposure of web
services using the built-in HTTP server that’s included in the JDK as well. Spring’s
SimpleJaxWsServiceExporter detects all @WebService annotated beans in the Spring
application context, exporting them through the default JAX-WS server (the JDK HTTP
server).

In this scenario, the endpoint instances are defined and managed as Spring beans
themselves; they will be registered with the JAX-WS engine but their lifecycle will be
up to the Spring application context. This means that Spring functionality like explicit
dependency injection may be applied to the endpoint instances. Of course,
annotation-driven injection through @Autowired will work as well.

<bean class="org.springframework.remoting.jaxws.SimpleJaxWsServiceExporter">
 <property name="baseAddress" value="http://localhost:8080/"/>
</bean>

<bean id="accountServiceEndpoint" class="example.AccountServiceEndpoint">
 ...
</bean>

...

The AccountServiceEndpoint may derive from Spring’s SpringBeanAutowiringSupport but
doesn’t have to since the endpoint is a fully Spring-managed bean here. This means that
the endpoint implementation may look like as follows, without any superclass declared -
and Spring’s @Autowired configuration annotation still being honored:

@WebService(serviceName="AccountService")
public class AccountServiceEndpoint {

 @Autowired
 private AccountService biz;

 @WebMethod
 public void insertAccount(Account acc) {
 biz.insertAccount(acc);
 }

 @WebMethod
 public List<Account> getAccounts(String name) {
 return biz.getAccounts(name);
 }

}

Exporting web services using the JAX-WS RI’s Spring support

Oracle’s JAX-WS RI, developed as part of the GlassFish project, ships Spring support as
part of its JAX-WS Commons project. This allows for defining JAX-WS endpoints as
Spring-managed beans, similar to the standalone mode discussed in the previous section -
but this time in a Servlet environment. Note that this is not portable in a Java EE 5
environment; it is mainly intended for non-EE environments such as Tomcat, embedding the
JAX-WS RI as part of the web application.

The difference to the standard style of exporting servlet-based endpoints is that the
lifecycle of the endpoint instances themselves will be managed by Spring here, and that
there will be only one JAX-WS servlet defined in web.xml. With the standard Java EE 5
style (as illustrated above), you’ll have one servlet definition per service endpoint,
with each endpoint typically delegating to Spring beans (through the use of
@Autowired, as shown above).

Check out https://jax-ws-commons.java.net/spring/
for details on setup and usage style.

Accessing web services using JAX-WS

Spring provides two factory beans to create JAX-WS web service proxies, namely
LocalJaxWsServiceFactoryBean and JaxWsPortProxyFactoryBean. The former can only
return a JAX-WS service class for us to work with. The latter is the full-fledged
version that can return a proxy that implements our business service interface. In this
example we use the latter to create a proxy for the AccountService endpoint (again):

<bean id="accountWebService" class="org.springframework.remoting.jaxws.JaxWsPortProxyFactoryBean">
 <property name="serviceInterface" value="example.AccountService"/>
 <property name="wsdlDocumentUrl" value="http://localhost:8888/AccountServiceEndpoint?WSDL"/>
 <property name="namespaceUri" value="http://example/"/>
 <property name="serviceName" value="AccountService"/>
 <property name="portName" value="AccountServiceEndpointPort"/>
</bean>

Where serviceInterface is our business interface the clients will use.
wsdlDocumentUrl is the URL for the WSDL file. Spring needs this a startup time to
create the JAX-WS Service. namespaceUri corresponds to the targetNamespace in the
.wsdl file. serviceName corresponds to the service name in the .wsdl file. portName
corresponds to the port name in the .wsdl file.

Accessing the web service is now very easy as we have a bean factory for it that will
expose it as AccountService interface. We can wire this up in Spring:

<bean id="client" class="example.AccountClientImpl">
 ...
 <property name="service" ref="accountWebService"/>
</bean>

From the client code we can access the web service just as if it was a normal class:

public class AccountClientImpl {

 private AccountService service;

 public void setService(AccountService service) {
 this.service = service;
 }

 public void foo() {
 service.insertAccount(...);
 }
}

	[image: [Note]]	Note
	
The above is slightly simplified in that JAX-WS requires endpoint interfaces
and implementation classes to be annotated with @WebService, @SOAPBinding etc
annotations. This means that you cannot (easily) use plain Java interfaces and
implementation classes as JAX-WS endpoint artifacts; you need to annotate them
accordingly first. Check the JAX-WS documentation for details on those requirements.

JMS

It is also possible to expose services transparently using JMS as the underlying
communication protocol. The JMS remoting support in the Spring Framework is pretty basic
- it sends and receives on the same thread and in the same non-transactional
Session, and as such throughput will be very implementation dependent. Note that these
single-threaded and non-transactional constraints apply only to Spring’s JMS
remoting support. See Chapter 30, JMS (Java Message Service) for information on Spring’s rich support for JMS-based
messaging.

The following interface is used on both the server and the client side.

package com.foo;

public interface CheckingAccountService {

 public void cancelAccount(Long accountId);

}

The following simple implementation of the above interface is used on the server-side.

package com.foo;

public class SimpleCheckingAccountService implements CheckingAccountService {

 public void cancelAccount(Long accountId) {
 System.out.println("Cancelling account [" + accountId + "]");
 }

}

This configuration file contains the JMS-infrastructure beans that are shared on both
the client and server.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean id="connectionFactory" class="org.apache.activemq.ActiveMQConnectionFactory">
 <property name="brokerURL" value="tcp://ep-t43:61616"/>
 </bean>

 <bean id="queue" class="org.apache.activemq.command.ActiveMQQueue">
 <constructor-arg value="mmm"/>
 </bean>

</beans>

Server-side configuration

On the server, you just need to expose the service object using the
JmsInvokerServiceExporter.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean id="checkingAccountService"
 class="org.springframework.jms.remoting.JmsInvokerServiceExporter">
 <property name="serviceInterface" value="com.foo.CheckingAccountService"/>
 <property name="service">
 <bean class="com.foo.SimpleCheckingAccountService"/>
 </property>
 </bean>

 <bean class="org.springframework.jms.listener.SimpleMessageListenerContainer">
 <property name="connectionFactory" ref="connectionFactory"/>
 <property name="destination" ref="queue"/>
 <property name="concurrentConsumers" value="3"/>
 <property name="messageListener" ref="checkingAccountService"/>
 </bean>

</beans>

package com.foo;

import org.springframework.context.support.ClassPathXmlApplicationContext;

public class Server {

 public static void main(String[] args) throws Exception {
 new ClassPathXmlApplicationContext(new String[]{"com/foo/server.xml", "com/foo/jms.xml"});
 }

}

Client-side configuration

The client merely needs to create a client-side proxy that will implement the agreed
upon interface (CheckingAccountService). The resulting object created off the back of
the following bean definition can be injected into other client side objects, and the
proxy will take care of forwarding the call to the server-side object via JMS.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean id="checkingAccountService"
 class="org.springframework.jms.remoting.JmsInvokerProxyFactoryBean">
 <property name="serviceInterface" value="com.foo.CheckingAccountService"/>
 <property name="connectionFactory" ref="connectionFactory"/>
 <property name="queue" ref="queue"/>
 </bean>

</beans>

package com.foo;

import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;

public class Client {

 public static void main(String[] args) throws Exception {
 ApplicationContext ctx = new ClassPathXmlApplicationContext(
 new String[] {"com/foo/client.xml", "com/foo/jms.xml"});
 CheckingAccountService service = (CheckingAccountService) ctx.getBean("checkingAccountService");
 service.cancelAccount(new Long(10));
 }

}

AMQP

Refer to the Spring AMQP Reference Document
'Spring Remoting with AMQP' section for more information.

Auto-detection is not implemented for remote interfaces

The main reason why auto-detection of implemented interfaces does not occur for remote
interfaces is to avoid opening too many doors to remote callers. The target object might
implement internal callback interfaces like InitializingBean or DisposableBean which
one would not want to expose to callers.

Offering a proxy with all interfaces implemented by the target usually does not matter
in the local case. But when exporting a remote service, you should expose a specific
service interface, with specific operations intended for remote usage. Besides internal
callback interfaces, the target might implement multiple business interfaces, with just
one of them intended for remote exposure. For these reasons, we require such a
service interface to be specified.

This is a trade-off between configuration convenience and the risk of accidental
exposure of internal methods. Always specifying a service interface is not too much
effort, and puts you on the safe side regarding controlled exposure of specific methods.

Considerations when choosing a technology

Each and every technology presented here has its drawbacks. You should carefully
consider your needs, the services you are exposing and the objects you’ll be sending
over the wire when choosing a technology.

When using RMI, it’s not possible to access the objects through the HTTP protocol,
unless you’re tunneling the RMI traffic. RMI is a fairly heavy-weight protocol in that
it supports full-object serialization which is important when using a complex data model
that needs serialization over the wire. However, RMI-JRMP is tied to Java clients: It is
a Java-to-Java remoting solution.

Spring’s HTTP invoker is a good choice if you need HTTP-based remoting but also rely on
Java serialization. It shares the basic infrastructure with RMI invokers, just using
HTTP as transport. Note that HTTP invokers are not only limited to Java-to-Java remoting
but also to Spring on both the client and server side. (The latter also applies to
Spring’s RMI invoker for non-RMI interfaces.)

Hessian and/or Burlap might provide significant value when operating in a heterogeneous
environment, because they explicitly allow for non-Java clients. However, non-Java
support is still limited. Known issues include the serialization of Hibernate objects in
combination with lazily-initialized collections. If you have such a data model, consider
using RMI or HTTP invokers instead of Hessian.

JMS can be useful for providing clusters of services and allowing the JMS broker to take
care of load balancing, discovery and auto-failover. By default: Java serialization is
used when using JMS remoting but the JMS provider could use a different mechanism for
the wire formatting, such as XStream to allow servers to be implemented in other
technologies.

Last but not least, EJB has an advantage over RMI in that it supports standard
role-based authentication and authorization and remote transaction propagation. It is
possible to get RMI invokers or HTTP invokers to support security context propagation as
well, although this is not provided by core Spring: There are just appropriate hooks for
plugging in third-party or custom solutions here.

Accessing RESTful services on the client

The RestTemplate is the core class for client-side access to RESTful services. It is
conceptually similar to other template classes in Spring, such as JdbcTemplate and
JmsTemplate and other template classes found in other Spring portfolio projects.
RestTemplate’s behavior is customized by providing callback methods and configuring
the `HttpMessageConverter used to marshal objects into the HTTP request body and to
unmarshal any response back into an object. As it is common to use XML as a message
format, Spring provides a MarshallingHttpMessageConverter that uses the Object-to-XML
framework that is part of the org.springframework.oxm package. This gives you a wide
range of choices of XML to Object mapping technologies to choose from.

This section describes how to use the RestTemplate and its associated
HttpMessageConverters.

RestTemplate

Invoking RESTful services in Java is typically done using a helper class such as Apache
HttpComponents HttpClient. For common REST operations this approach is too low level as
shown below.

String uri = "http://example.com/hotels/1/bookings";

PostMethod post = new PostMethod(uri);
String request = // create booking request content
post.setRequestEntity(new StringRequestEntity(request));

httpClient.executeMethod(post);

if (HttpStatus.SC_CREATED == post.getStatusCode()) {
 Header location = post.getRequestHeader("Location");
 if (location != null) {
 System.out.println("Created new booking at :" + location.getValue());
 }
}

RestTemplate provides higher level methods that correspond to each of the six main HTTP
methods that make invoking many RESTful services a one-liner and enforce REST best
practices.

	[image: [Note]]	Note
	
RestTemplate has an asynchronous counter-part: see the section called “Async RestTemplate”.

Table 28.1. Overview of RestTemplate methods

	HTTP Method	RestTemplate Method
	DELETE
	delete

	GET
	getForObject
 getForEntity

	HEAD
	headForHeaders(String
 url, String…​ uriVariables)

	OPTIONS
	optionsForAllow(String
 url, String…​ uriVariables)

	POST
	postForLocation(String
 url, Object request, String…​ uriVariables)
 postForObject(String
 url, Object request, Class<T> responseType, String…​ uriVariables)

	PUT
	put(String
 url, Object request, String…​uriVariables)

	PATCH and others
	exchange
 execute

The names of RestTemplate methods follow a naming convention, the first part indicates
what HTTP method is being invoked and the second part indicates what is returned. For
example, the method getForObject() will perform a GET, convert the HTTP response into
an object type of your choice and return that object. The method postForLocation()
will do a POST, converting the given object into a HTTP request and return the response
HTTP Location header where the newly created object can be found. In case of an
exception processing the HTTP request, an exception of the type RestClientException
will be thrown; this behavior can be changed by plugging in another
ResponseErrorHandler implementation into the RestTemplate.

The exchange and execute methods are generalized versions of the more specific
methods listed above them and can support additional combinations and methods,
e.g. HTTP PATCH. However, note that the underlying HTTP library must also support the
desired combination. The JDK HttpURLConnection does not support the PATCH method
but Apache HttpComponents HttpClient version 4.2 or later does. They also enable
RestTemplate to read an HTTP response to a generic type (e.g. List<Account>),
using a ParameterizedTypeReference, a new class that enables capturing and passing
generic type info.

Objects passed to and returned from these methods are converted to and from HTTP
messages by HttpMessageConverter implementations. Converters for the main MIME types
are registered by default, but you can also override the defaults and register custom
converters via the messageConverters() bean property. The default converters are
ByteArrayHttpMessageConverter, StringHttpMessageConverter,
ResourceHttpMessageConverter, SourceHttpMessageConverter as well as
AllEncompassingFormHttpMessageConverter and a few provider-specific converters:
e.g. MappingJackson2HttpMessageConverter when Jackson is present on the classpath.

Each method takes URI template arguments in two forms, either as a String
variable-length argument or a Map<String,String>. For example,

String result = restTemplate.getForObject(
 "http://example.com/hotels/{hotel}/bookings/{booking}", String.class,"42", "21");

using variable-length arguments and

Map<String, String> vars = Collections.singletonMap("hotel", "42");
String result = restTemplate.getForObject(
 "http://example.com/hotels/{hotel}/rooms/{hotel}", String.class, vars);

using a Map<String,String>.

To create an instance of RestTemplate you can simply call the default no-arg
constructor. This will use standard Java classes from the java.net package as the
underlying implementation to create HTTP requests. This can be overridden by specifying
an implementation of ClientHttpRequestFactory. Spring provides the implementation
HttpComponentsClientHttpRequestFactory that uses the Apache HttpComponents
HttpClient to create requests. HttpComponentsClientHttpRequestFactory is configured
using an instance of org.apache.http.client.HttpClient which can in turn be configured
with credentials information or connection pooling functionality.

	[image: [Tip]]	Tip
	
Note that the java.net implementation for HTTP requests may raise an exception when
accessing the status of a response that represents an error (e.g. 401). If this is an
issue, switch to HttpComponentsClientHttpRequestFactory instead.

The previous example using Apache HttpComponents HttpClient directly rewritten to use
the RestTemplate is shown below

uri = "http://example.com/hotels/{id}/bookings";

RestTemplate template = new RestTemplate();

Booking booking = // create booking object

URI location = template.postForLocation(uri, booking, "1");

To use Apache HttpComponents instead of the native java.net functionality, construct
the RestTemplate as follows:

RestTemplate template = new RestTemplate(new HttpComponentsClientHttpRequestFactory());

	[image: [Tip]]	Tip
	
Apache HttpClient supports gzip encoding. To use it,
construct a HttpComponentsClientHttpRequestFactory like so:

HttpClient httpClient = HttpClientBuilder.create().build();
ClientHttpRequestFactory requestFactory = new HttpComponentsClientHttpRequestFactory(httpClient);
RestTemplate restTemplate = new RestTemplate(requestFactory);

The general callback interface is RequestCallback and is called when the execute
method is invoked.

public <T> T execute(String url, HttpMethod method, RequestCallback requestCallback,
 ResponseExtractor<T> responseExtractor, String... uriVariables)

// also has an overload with uriVariables as a Map<String, String>.

The RequestCallback interface is defined as

public interface RequestCallback {
 void doWithRequest(ClientHttpRequest request) throws IOException;
}

and allows you to manipulate the request headers and write to the request body. When
using the execute method you do not have to worry about any resource management, the
template will always close the request and handle any errors. Refer to the API
documentation for more information on using the execute method and the meaning of its
other method arguments.

Working with the URI

For each of the main HTTP methods, the RestTemplate provides variants that either take
a String URI or java.net.URI as the first argument.

The String URI variants accept template arguments as a String variable-length argument
or as a Map<String,String>. They also assume the URL String is not encoded and needs
to be encoded. For example the following:

restTemplate.getForObject("http://example.com/hotel list", String.class);

will perform a GET on http://example.com/hotel%20list. That means if the input URL
String is already encoded, it will be encoded twice — i.e.
http://example.com/hotel%20list will become http://example.com/hotel%2520list. If
this is not the intended effect, use the java.net.URI method variant, which assumes
the URL is already encoded is also generally useful if you want to reuse a single (fully
expanded) URI multiple times.

The UriComponentsBuilder class can be used to build and encode the URI including
support for URI templates. For example you can start with a URL String:

UriComponents uriComponents = UriComponentsBuilder.fromUriString(
 "http://example.com/hotels/{hotel}/bookings/{booking}").build()
 .expand("42", "21")
 .encode();

URI uri = uriComponents.toUri();

Or specify each URI component individually:

UriComponents uriComponents = UriComponentsBuilder.newInstance()
 .scheme("http").host("example.com").path("/hotels/{hotel}/bookings/{booking}").build()
 .expand("42", "21")
 .encode();

URI uri = uriComponents.toUri();

Dealing with request and response headers

Besides the methods described above, the RestTemplate also has the exchange()
method, which can be used for arbitrary HTTP method execution based on the HttpEntity
class.

Perhaps most importantly, the exchange() method can be used to add request headers and
read response headers. For example:

HttpHeaders requestHeaders = new HttpHeaders();
requestHeaders.set("MyRequestHeader", "MyValue");
HttpEntity<?> requestEntity = new HttpEntity(requestHeaders);

HttpEntity<String> response = template.exchange(
 "http://example.com/hotels/{hotel}",
 HttpMethod.GET, requestEntity, String.class, "42");

String responseHeader = response.getHeaders().getFirst("MyResponseHeader");
String body = response.getBody();

In the above example, we first prepare a request entity that contains the
MyRequestHeader header. We then retrieve the response, and read the MyResponseHeader
and body.

Jackson JSON Views support

It is possible to specify a Jackson JSON View
to serialize only a subset of the object properties. For example:

MappingJacksonValue value = new MappingJacksonValue(new User("eric", "7!jd#h23"));
value.setSerializationView(User.WithoutPasswordView.class);
HttpEntity<MappingJacksonValue> entity = new HttpEntity<MappingJacksonValue>(value);
String s = template.postForObject("http://example.com/user", entity, String.class);

HTTP message conversion

Objects passed to and returned from the methods getForObject(), postForLocation(),
and put() are converted to HTTP requests and from HTTP responses by
HttpMessageConverters. The HttpMessageConverter interface is shown below to give you
a better feel for its functionality

public interface HttpMessageConverter<T> {

 // Indicate whether the given class and media type can be read by this converter.
 boolean canRead(Class<?> clazz, MediaType mediaType);

 // Indicate whether the given class and media type can be written by this converter.
 boolean canWrite(Class<?> clazz, MediaType mediaType);

 // Return the list of MediaType objects supported by this converter.
 List<MediaType> getSupportedMediaTypes();

 // Read an object of the given type from the given input message, and returns it.
 T read(Class<T> clazz, HttpInputMessage inputMessage) throws IOException, HttpMessageNotReadableException;

 // Write an given object to the given output message.
 void write(T t, HttpOutputMessage outputMessage) throws IOException, HttpMessageNotWritableException;

}

Concrete implementations for the main media (mime) types are provided in the framework
and are registered by default with the RestTemplate on the client-side and with
RequestMethodHandlerAdapter on the server-side.

The implementations of HttpMessageConverters are described in the following sections.
For all converters a default media type is used but can be overridden by setting the
supportedMediaTypes bean property

StringHttpMessageConverter

An HttpMessageConverter implementation that can read and write Strings from the HTTP
request and response. By default, this converter supports all text media types (
text/*), and writes with a Content-Type of text/plain.

FormHttpMessageConverter

An HttpMessageConverter implementation that can read and write form data from the HTTP
request and response. By default, this converter reads and writes the media type
application/x-www-form-urlencoded. Form data is read from and written into a
MultiValueMap<String, String>.

ByteArrayHttpMessageConverter

An HttpMessageConverter implementation that can read and write byte arrays from the
HTTP request and response. By default, this converter supports all media types (*/*),
and writes with a Content-Type of application/octet-stream. This can be overridden
by setting the supportedMediaTypes property, and overriding getContentType(byte[]).

MarshallingHttpMessageConverter

An HttpMessageConverter implementation that can read and write XML using Spring’s
Marshaller and Unmarshaller abstractions from the org.springframework.oxm package.
This converter requires a Marshaller and Unmarshaller before it can be used. These
can be injected via constructor or bean properties. By default this converter supports (
text/xml) and (application/xml).

MappingJackson2HttpMessageConverter

An HttpMessageConverter implementation that can read and write JSON using Jackson’s
ObjectMapper. JSON mapping can be customized as needed through the use of Jackson’s
provided annotations. When further control is needed, a custom ObjectMapper can be
injected through the ObjectMapper property for cases where custom JSON
serializers/deserializers need to be provided for specific types. By default this
converter supports (application/json).

MappingJackson2XmlHttpMessageConverter

An HttpMessageConverter implementation that can read and write XML using
Jackson XML extension’s
XmlMapper. XML mapping can be customized as needed through the use of JAXB
or Jackson’s provided annotations. When further control is needed, a custom XmlMapper
can be injected through the ObjectMapper property for cases where custom XML
serializers/deserializers need to be provided for specific types. By default this
converter supports (application/xml).

SourceHttpMessageConverter

An HttpMessageConverter implementation that can read and write
javax.xml.transform.Source from the HTTP request and response. Only DOMSource,
SAXSource, and StreamSource are supported. By default, this converter supports (
text/xml) and (application/xml).

BufferedImageHttpMessageConverter

An HttpMessageConverter implementation that can read and write
java.awt.image.BufferedImage from the HTTP request and response. This converter reads
and writes the media type supported by the Java I/O API.

Async RestTemplate

Web applications often need to query external REST services those days. The very nature of
HTTP and synchronous calls can lead up to challenges when scaling applications for those
needs: multiple threads may be blocked, waiting for remote HTTP responses.

AsyncRestTemplate and the section called “RestTemplate”'s APIs are very similar; see
Table 28.1, “Overview of RestTemplate methods”. The main difference between those APIs is
that AsyncRestTemplate returns
ListenableFuture
wrappers as opposed to concrete results.

The previous RestTemplate example translates to:

// async call
Future<ResponseEntity<String>> futureEntity = template.getForEntity(
 "http://example.com/hotels/{hotel}/bookings/{booking}", String.class, "42", "21");

// get the concrete result - synchronous call
ResponseEntity<String> entity = futureEntity.get();

ListenableFuture
accepts completion callbacks:

ListenableFuture<ResponseEntity<String>> futureEntity = template.getForEntity(
 "http://example.com/hotels/{hotel}/bookings/{booking}", String.class, "42", "21");

// register a callback
futureEntity.addCallback(new ListenableFutureCallback<ResponseEntity<String>>() {
 @Override
 public void onSuccess(ResponseEntity<String> entity) {
 //...
 }

 @Override
 public void onFailure(Throwable t) {
 //...
 }
});

	[image: [Note]]	Note
	
The default AsyncRestTemplate constructor registers a
SimpleAsyncTaskExecutor
 for executing HTTP requests.
When dealing with a large number of short-lived requests, a thread-pooling TaskExecutor
implementation like
ThreadPoolTaskExecutor
may be a good choice.

See the
ListenableFuture javadocs
and
AsyncRestTemplate javadocs
for more details.

Chapter 29. Enterprise JavaBeans (EJB) integration

Introduction

As a lightweight container, Spring is often considered an EJB replacement. We do believe
that for many if not most applications and use cases, Spring as a container, combined
with its rich supporting functionality in the area of transactions, ORM and JDBC access,
is a better choice than implementing equivalent functionality via an EJB container and
EJBs.

However, it is important to note that using Spring does not prevent you from using EJBs.
In fact, Spring makes it much easier to access EJBs and implement EJBs and functionality
within them. Additionally, using Spring to access services provided by EJBs allows the
implementation of those services to later transparently be switched between local EJB,
remote EJB, or POJO (plain old Java object) variants, without the client code having to
be changed.

In this chapter, we look at how Spring can help you access and implement EJBs. Spring
provides particular value when accessing stateless session beans (SLSBs), so we’ll begin
by discussing this.

Accessing EJBs

Concepts

To invoke a method on a local or remote stateless session bean, client code must
normally perform a JNDI lookup to obtain the (local or remote) EJB Home object, then use
a 'create' method call on that object to obtain the actual (local or remote) EJB object.
One or more methods are then invoked on the EJB.

To avoid repeated low-level code, many EJB applications use the Service Locator and
Business Delegate patterns. These are better than spraying JNDI lookups throughout
client code, but their usual implementations have significant disadvantages. For example:

	
Typically code using EJBs depends on Service Locator or Business Delegate singletons,
making it hard to test.

	
In the case of the Service Locator pattern used without a Business Delegate,
application code still ends up having to invoke the create() method on an EJB home,
and deal with the resulting exceptions. Thus it remains tied to the EJB API and the
complexity of the EJB programming model.

	
Implementing the Business Delegate pattern typically results in significant code
duplication, where we have to write numerous methods that simply call the same method
on the EJB.

The Spring approach is to allow the creation and use of proxy objects, normally
configured inside a Spring container, which act as codeless business delegates. You do
not need	to write another Service Locator, another JNDI lookup, or duplicate methods in
a hand-coded Business Delegate unless you are actually adding real value in such code.

Accessing local SLSBs

Assume that we have a web controller that needs to use a local EJB. We’ll follow best
practice and use the EJB Business Methods Interface pattern, so that the EJB’s local
interface extends a non EJB-specific business methods interface. Let’s call this
business methods interface MyComponent.

public interface MyComponent {
 ...
}

One of the main reasons to use the Business Methods Interface pattern is to ensure that
synchronization between method signatures in local interface and bean implementation
class is automatic. Another reason is that it later makes it much easier for us to
switch to a POJO (plain old Java object) implementation of the service if it makes sense
to do so. Of course we’ll also need to implement the local home interface and provide an
implementation class that implements SessionBean and the MyComponent business
methods interface. Now the only Java coding we’ll need to do to hook up our web tier
controller to the EJB implementation is to expose a setter method of type MyComponent
on the controller. This will save the reference as an instance variable in the
controller:

private MyComponent myComponent;

public void setMyComponent(MyComponent myComponent) {
 this.myComponent = myComponent;
}

We can subsequently use this instance variable in any business method in the controller.
Now assuming we are obtaining our controller object out of a Spring container, we can
(in the same context) configure a LocalStatelessSessionProxyFactoryBean instance,
which will be the EJB proxy object. The configuration of the proxy, and setting of the
myComponent property of the controller is done with a configuration entry such as:

<bean id="myComponent"
 class="org.springframework.ejb.access.LocalStatelessSessionProxyFactoryBean">
 <property name="jndiName" value="ejb/myBean"/>
 <property name="businessInterface" value="com.mycom.MyComponent"/>
</bean>

<bean id="myController" class="com.mycom.myController">
 <property name="myComponent" ref="myComponent"/>
</bean>

There’s a lot of work happening behind the scenes, courtesy of the Spring AOP framework,
although you aren’t forced to work with AOP concepts to enjoy the results. The
myComponent bean definition creates a proxy for the EJB, which implements the business
method interface. The EJB local home is cached on startup, so there’s only a single JNDI
lookup. Each time the EJB is invoked, the proxy invokes the classname method on the
local EJB and invokes the	corresponding business method on the EJB.

The myController bean definition sets the myComponent property of the controller
class to the EJB proxy.

Alternatively (and preferably in case of many such proxy definitions), consider using
the <jee:local-slsb> configuration element in Spring’s "jee" namespace:

<jee:local-slsb id="myComponent" jndi-name="ejb/myBean"
 business-interface="com.mycom.MyComponent"/>

<bean id="myController" class="com.mycom.myController">
 <property name="myComponent" ref="myComponent"/>
</bean>

This EJB access mechanism delivers huge simplification of application code: the web tier
code (or other EJB client code) has no dependence on the use of EJB. If we want to
replace this EJB reference with a POJO or a mock object or other test stub, we could
simply change the myComponent bean definition without changing a line of Java code.
Additionally, we haven’t had to write a single line of JNDI lookup or other EJB plumbing
code as part of our application.

Benchmarks and experience in real applications indicate that the performance overhead of
this approach (which involves reflective invocation of the target EJB) is minimal, and
is typically undetectable in typical use. Remember that we don’t want to make
fine-grained calls to EJBs anyway, as there’s a cost associated with the EJB
infrastructure in the application server.

There is one caveat with regards to the JNDI lookup. In a bean container, this class is
normally best used as a singleton (there simply is no reason to make it a prototype).
However, if that bean container pre-instantiates singletons (as do the various XML
ApplicationContext variants) you may have a problem if the bean container is loaded
before the EJB container loads the target EJB. That is because the JNDI lookup will be
performed in the init() method of this class and then cached, but the EJB will not
have been bound at the target location yet. The solution is to not pre-instantiate this
factory object, but allow it to be created on first use. In the XML containers, this is
controlled via the lazy-init attribute.

Although this will not be of interest to the majority of Spring users, those doing
programmatic AOP work with EJBs may want to look at LocalSlsbInvokerInterceptor.

Accessing remote SLSBs

Accessing remote EJBs is essentially identical to accessing local EJBs, except that the
SimpleRemoteStatelessSessionProxyFactoryBean or <jee:remote-slsb> configuration
element is used. Of course, with or without Spring, remote invocation semantics apply; a
call to a method on an object in another VM in another computer does sometimes have to
be treated differently in terms of usage scenarios and failure handling.

Spring’s EJB client support adds one more advantage over the non-Spring approach.
Normally it is problematic for EJB client code to be easily switched back and forth
between calling EJBs locally or remotely. This is because the remote interface methods
must declare that they throw RemoteException, and client code must deal with this,
while the local interface methods don’t. Client code written for local EJBs which needs
to be moved to remote EJBs typically has to be modified to add handling for the remote
exceptions, and client code written for remote EJBs which needs to be moved to local
EJBs, can either stay the same but do a lot of unnecessary handling of remote
exceptions, or needs to be modified to remove that code. With the Spring remote EJB
proxy, you can instead not declare any thrown RemoteException in your Business Method
Interface and implementing EJB code, have a remote interface which is identical except
that it does throw RemoteException, and rely on the proxy to dynamically treat the two
interfaces as if they were the same. That is, client code does not have to deal with the
checked RemoteException class. Any actual RemoteException that is thrown during the
EJB invocation will be re-thrown as the non-checked RemoteAccessException class, which
is a subclass of RuntimeException. The target service can then be switched at will
between a local EJB or remote EJB (or even plain Java object) implementation, without
the client code knowing or caring. Of course, this is optional; there is nothing
stopping you from declaring RemoteExceptions in your business interface.

Accessing EJB 2.x SLSBs versus EJB 3 SLSBs

Accessing EJB 2.x Session Beans and EJB 3 Session Beans via Spring is largely
transparent. Spring’s EJB accessors, including the <jee:local-slsb> and
<jee:remote-slsb> facilities, transparently adapt to the actual component at runtime.
They handle a home interface if found (EJB 2.x style), or perform straight component
invocations if no home interface is available (EJB 3 style).

Note: For EJB 3 Session Beans, you could effectively use a JndiObjectFactoryBean /
<jee:jndi-lookup> as well, since fully usable component references are exposed for
plain JNDI lookups there. Defining explicit <jee:local-slsb> / <jee:remote-slsb>
lookups simply provides consistent and more explicit EJB access configuration.

Using Spring’s EJB implementation support classes

EJB 3 injection interceptor

For EJB 3 Session Beans and Message-Driven Beans, Spring provides a convenient
interceptor that resolves Spring’s @Autowired annotation in the EJB component
class: org.springframework.ejb.interceptor.SpringBeanAutowiringInterceptor. This
interceptor can be applied through an @Interceptors annotation in the EJB component
class, or through an interceptor-binding XML element in the EJB deployment descriptor.

@Stateless
@Interceptors(SpringBeanAutowiringInterceptor.class)
public class MyFacadeEJB implements MyFacadeLocal {

 // automatically injected with a matching Spring bean
 @Autowired
 private MyComponent myComp;

 // for business method, delegate to POJO service impl.
 public String myFacadeMethod(...) {
 return myComp.myMethod(...);
 }

 ...

}

SpringBeanAutowiringInterceptor by default obtains target beans from a
ContextSingletonBeanFactoryLocator, with the context defined in a bean definition file
named beanRefContext.xml. By default, a single context definition is expected, which
is obtained by type rather than by name. However, if you need to choose between multiple
context definitions, a specific locator key is required. The locator key (i.e. the name
of the context definition in beanRefContext.xml) can be explicitly specified either
through overriding the getBeanFactoryLocatorKey method in a custom
SpringBeanAutowiringInterceptor subclass.

Alternatively, consider overriding SpringBeanAutowiringInterceptor’s `getBeanFactory
method, e.g. obtaining a shared ApplicationContext from a custom holder class.

Chapter 30. JMS (Java Message Service)

Introduction

Spring provides a JMS integration framework that simplifies the use of the JMS API much
like Spring’s integration does for the JDBC API.

JMS can be roughly divided into two areas of functionality, namely the production and
consumption of messages. The JmsTemplate class is used for message production and
synchronous message reception. For asynchronous reception similar to Java EE’s
message-driven bean style, Spring provides a number of message listener containers that
are used to create Message-Driven POJOs (MDPs). Spring also provides a declarative way
of creating message listeners.

The package org.springframework.jms.core provides the core functionality for using
JMS. It contains JMS template classes that simplify the use of the JMS by handling the
creation and release of resources, much like the JdbcTemplate does for JDBC. The
design principle common to Spring template classes is to provide helper methods to
perform common operations and for more sophisticated usage, delegate the essence of the
processing task to user implemented callback interfaces. The JMS template follows the
same design. The classes offer various convenience methods for the sending of messages,
consuming a message synchronously, and exposing the JMS session and message producer to
the user.

The package org.springframework.jms.support provides JMSException translation
functionality. The translation converts the checked JMSException hierarchy to a
mirrored hierarchy of unchecked exceptions. If there are any provider specific
subclasses of the checked javax.jms.JMSException, this exception is wrapped in the
unchecked UncategorizedJmsException.

The package org.springframework.jms.support.converter provides a MessageConverter
abstraction to convert between Java objects and JMS messages.

The package org.springframework.jms.support.destination provides various strategies
for managing JMS destinations, such as providing a service locator for destinations
stored in JNDI.

The package org.springframework.jms.annotation provides the necessary infrastructure
to support annotation-driven listener endpoints using @JmsListener.

The package org.springframework.jms.config provides the parser implementation for the
jms namespace as well the java config support to configure listener containers and
create listener endpoints.

Finally, the package org.springframework.jms.connection provides an implementation of
the ConnectionFactory suitable for use in standalone applications. It also contains an
implementation of Spring’s PlatformTransactionManager for JMS (the cunningly named
JmsTransactionManager). This allows for seamless integration of JMS as a transactional
resource into Spring’s transaction management mechanisms.

Using Spring JMS

JmsTemplate

The JmsTemplate class is the central class in the JMS core package. It simplifies the
use of JMS since it handles the creation and release of resources when sending or
synchronously receiving messages.

Code that uses the JmsTemplate only needs to implement callback interfaces giving them
a clearly defined high level contract. The MessageCreator callback interface creates a
message given a Session provided by the calling code in JmsTemplate. In order to
allow for more complex usage of the JMS API, the callback SessionCallback provides the
user with the JMS session and the callback ProducerCallback exposes a Session and
MessageProducer pair.

The JMS API exposes two types of send methods, one that takes delivery mode, priority,
and time-to-live as Quality of Service (QOS) parameters and one that takes no QOS
parameters which uses default values. Since there are many send methods in
JmsTemplate, the setting of the QOS parameters have been exposed as bean properties to
avoid duplication in the number of send methods. Similarly, the timeout value for
synchronous receive calls is set using the property setReceiveTimeout.

Some JMS providers allow the setting of default QOS values administratively through the
configuration of the ConnectionFactory. This has the effect that a call to
MessageProducer's send method send(Destination destination, Message message) will
use different QOS default values than those specified in the JMS specification. In order
to provide consistent management of QOS values, the JmsTemplate must therefore be
specifically enabled to use its own QOS values by setting the boolean property
isExplicitQosEnabled to true.

For convenience, JmsTemplate also exposes a basic request-reply operation that allows
to send a message and wait for a reply on a temporary queue that is created as part of
the operation.

	[image: [Note]]	Note
	
Instances of the JmsTemplate class are thread-safe once configured. This is
important because it means that you can configure a single instance of a JmsTemplate
and then safely inject this shared reference into multiple collaborators. To be
clear, the JmsTemplate is stateful, in that it maintains a reference to a
ConnectionFactory, but this state is not conversational state.

As of Spring Framework 4.1, JmsMessagingTemplate is built on top of JmsTemplate
and provides an integration with the messaging abstraction, i.e.
org.springframework.messaging.Message. This allows you to create the message to
send in generic manner.

Connections

The JmsTemplate requires a reference to a ConnectionFactory. The ConnectionFactory
is part of the JMS specification and serves as the entry point for working with JMS. It
is used by the client application as a factory to create connections with the JMS
provider and encapsulates various configuration parameters, many of which are vendor
specific such as SSL configuration options.

When using JMS inside an EJB, the vendor provides implementations of the JMS interfaces
so that they can participate in declarative transaction management and perform pooling
of connections and sessions. In order to use this implementation, Java EE containers
typically require that you declare a JMS connection factory as a resource-ref inside
the EJB or servlet deployment descriptors. To ensure the use of these features with the
JmsTemplate inside an EJB, the client application should ensure that it references the
managed implementation of the ConnectionFactory.

Caching Messaging Resources

The standard API involves creating many intermediate objects. To send a message the
following 'API' walk is performed

ConnectionFactory->Connection->Session->MessageProducer->send

Between the ConnectionFactory and the Send operation there are three intermediate
objects that are created and destroyed. To optimise the resource usage and increase
performance two implementations of ConnectionFactory are provided.

SingleConnectionFactory

Spring provides an implementation of the ConnectionFactory interface,
SingleConnectionFactory, that will return the same Connection on all
createConnection() calls and ignore calls to close(). This is useful for testing and
standalone environments so that the same connection can be used for multiple
JmsTemplate calls that may span any number of transactions. SingleConnectionFactory
takes a reference to a standard ConnectionFactory that would typically come from JNDI.

CachingConnectionFactory

The CachingConnectionFactory extends the functionality of SingleConnectionFactory
and adds the caching of Sessions, MessageProducers, and MessageConsumers. The initial
cache size is set to 1, use the property sessionCacheSize to increase the number of
cached sessions. Note that the number of actual cached sessions will be more than that
number as sessions are cached based on their acknowledgment mode, so there can be up to
4 cached session instances when sessionCacheSize is set to one, one for each
acknowledgment mode. MessageProducers and MessageConsumers are cached within their
owning session and also take into account the unique properties of the producers and
consumers when caching. MessageProducers are cached based on their destination.
MessageConsumers are cached based on a key composed of the destination, selector,
noLocal delivery flag, and the durable subscription name (if creating durable consumers).

Destination Management

Destinations, like ConnectionFactories, are JMS administered objects that can be stored
and retrieved in JNDI. When configuring a Spring application context you can use the
JNDI factory class JndiObjectFactoryBean / <jee:jndi-lookup> to perform dependency
injection on your object’s references to JMS destinations. However, often this strategy
is cumbersome if there are a large number of destinations in the application or if there
are advanced destination management features unique to the JMS provider. Examples of
such advanced destination management would be the creation of dynamic destinations or
support for a hierarchical namespace of destinations. The JmsTemplate delegates the
resolution of a destination name to a JMS destination object to an implementation of the
interface DestinationResolver. DynamicDestinationResolver is the default
implementation used by JmsTemplate and accommodates resolving dynamic destinations. A
JndiDestinationResolver is also provided that acts as a service locator for
destinations contained in JNDI and optionally falls back to the behavior contained in
DynamicDestinationResolver.

Quite often the destinations used in a JMS application are only known at runtime and
therefore cannot be administratively created when the application is deployed. This is
often because there is shared application logic between interacting system components
that create destinations at runtime according to a well-known naming convention. Even
though the creation of dynamic destinations is not part of the JMS specification, most
vendors have provided this functionality. Dynamic destinations are created with a name
defined by the user which differentiates them from temporary destinations and are often
not registered in JNDI. The API used to create dynamic destinations varies from provider
to provider since the properties associated with the destination are vendor specific.
However, a simple implementation choice that is sometimes made by vendors is to
disregard the warnings in the JMS specification and to use the TopicSession method
createTopic(String topicName) or the QueueSession method createQueue(String
queueName) to create a new destination with default destination properties. Depending
on the vendor implementation, DynamicDestinationResolver may then also create a
physical destination instead of only resolving one.

The boolean property pubSubDomain is used to configure the JmsTemplate with
knowledge of what JMS domain is being used. By default the value of this property is
false, indicating that the point-to-point domain, Queues, will be used. This property
used by JmsTemplate determines the behavior of dynamic destination resolution via
implementations of the DestinationResolver interface.

You can also configure the JmsTemplate with a default destination via the property
defaultDestination. The default destination will be used with send and receive
operations that do not refer to a specific destination.

Message Listener Containers

One of the most common uses of JMS messages in the EJB world is to drive message-driven
beans (MDBs). Spring offers a solution to create message-driven POJOs (MDPs) in a way
that does not tie a user to an EJB container. (See the section called “Asynchronous reception: Message-Driven POJOs”
for detailed coverage of Spring’s MDP support.) As from Spring Framework 4.1, endpoint
methods can be simply annotated using @JmsListener see the section called “Annotation-driven listener endpoints” for more
details.

A message listener container is used to receive messages from a JMS message queue and
drive the MessageListener that is injected into it. The listener container is
responsible for all threading of message reception and dispatches into the listener for
processing. A message listener container is the intermediary between an MDP and a
messaging provider, and takes care of registering to receive messages, participating in
transactions, resource acquisition and release, exception conversion and suchlike. This
allows you as an application developer to write the (possibly complex) business logic
associated with receiving a message (and possibly responding to it), and delegates
boilerplate JMS infrastructure concerns to the framework.

There are two standard JMS message listener containers packaged with Spring, each with
its specialised feature set.

SimpleMessageListenerContainer

This message listener container is the simpler of the two standard flavors. It creates a
fixed number of JMS sessions and consumers at startup, registers the listener using the
standard JMS MessageConsumer.setMessageListener() method, and leaves it up the JMS
provider to perform listener callbacks. This variant does not allow for dynamic adaption
to runtime demands or for participation in externally managed transactions.
Compatibility-wise, it stays very close to the spirit of the standalone JMS
specification - but is generally not compatible with Java EE’s JMS restrictions.

	[image: [Note]]	Note
	
While SimpleMessageListenerContainer does not allow for the participation in externally
managed transactions, it does support native JMS transactions: simply switch the
'sessionTransacted' flag to 'true' or, in the namespace, set the 'acknowledge' attribute
to 'transacted': Exceptions thrown from your listener will lead to a rollback then, with
the message getting redelivered. Alternatively, consider using 'CLIENT_ACKNOWLEDGE' mode
which provides redelivery in case of an exception as well but does not use transacted
Sessions and therefore does not include any other Session operations (such as sending
response messages) in the transaction protocol.

The default 'AUTO_ACKNOWLEDGE' mode does not provide proper reliability guarantees.
Messages may get lost when listener execution fails (since the provider will automatically
acknowledge each message after listener invocation, with no exceptions to be propagated to
the provider) or when the listener container shuts down (this may be configured through
the 'acceptMessagesWhileStopping' flag). Make sure to use transacted sessions in case of
reliability needs, e.g. for reliable queue handling and durable topic subscriptions.

DefaultMessageListenerContainer

This message listener container is the one used in most cases. In contrast to
SimpleMessageListenerContainer, this container variant allows for dynamic adaptation
to runtime demands and is able to participate in externally managed transactions. Each
received message is registered with an XA transaction when configured with a
JtaTransactionManager; so processing may take advantage of XA transaction semantics.
This listener container strikes a good balance between low requirements on the JMS
provider, advanced functionality such as the participation in externally managed
transactions, and compatibility with Java EE environments.

The cache level of the container can be customized. Note that when no caching is enabled,
a new connection and a new session is created for each message reception. Combining this
with a non durable subscription with high loads may lead to message lost. Make sure to
use a proper cache level in such case.

This container also has recoverable capabilities when the broker goes down. By default,
a simple BackOff implementation retries every 5 seconds. It is possible to specify
a custom BackOff implementation for more fine-grained recovery options, see
ExponentialBackOff for an example.

	[image: [Note]]	Note
	
Like its sibling SimpleMessageListenerContainer, DefaultMessageListenerContainer
supports native JMS transactions and also allows for customizing the acknowledgment mode.
This is strongly recommended over externally managed transactions if feasible for your
scenario: that is, if you can live with occasional duplicate messages in case of the
JVM dying. Custom duplicate message detection steps in your business logic may cover
such situations, e.g. in the form of a business entity existence check or a protocol
table check. Any such arrangements will be significantly more efficient than the
alternative: wrapping your entire processing with an XA transaction (through configuring
your DefaultMessageListenerContainer with an JtaTransactionManager), covering the
reception of the JMS message as well as the execution of the business logic in your
message listener (including database operations etc).

The default 'AUTO_ACKNOWLEDGE' mode does not provide proper reliability guarantees.
Messages may get lost when listener execution fails (since the provider will automatically
acknowledge each message before listener invocation) or when the listener container shuts
down (this may be configured through the 'acceptMessagesWhileStopping' flag). Make sure
to use transacted sessions in case of reliability needs, e.g. for reliable queue handling
and durable topic subscriptions.

Transaction management

Spring provides a JmsTransactionManager that manages transactions for a single JMS
ConnectionFactory. This allows JMS applications to leverage the managed transaction
features of Spring as described in Chapter 17, Transaction Management. The JmsTransactionManager performs
local resource transactions, binding a JMS Connection/Session pair from the specified
ConnectionFactory to the thread. JmsTemplate automatically detects such
transactional resources and operates on them accordingly.

In a Java EE environment, the ConnectionFactory will pool Connections and Sessions, so
those resources are efficiently reused across transactions. In a standalone environment,
using Spring’s SingleConnectionFactory will result in a shared JMS Connection, with
each transaction having its own independent Session. Alternatively, consider the use
of a provider-specific pooling adapter such as ActiveMQ’s PooledConnectionFactory
class.

JmsTemplate can also be used with the JtaTransactionManager and an XA-capable JMS
ConnectionFactory for performing distributed transactions. Note that this requires the
use of a JTA transaction manager as well as a properly XA-configured ConnectionFactory!
(Check your Java EE server’s / JMS provider’s documentation.)

Reusing code across a managed and unmanaged transactional environment can be confusing
when using the JMS API to create a Session from a Connection. This is because the
JMS API has only one factory method to create a Session and it requires values for the
transaction and acknowledgment modes. In a managed environment, setting these values is
the responsibility of the environment’s transactional infrastructure, so these values
are ignored by the vendor’s wrapper to the JMS Connection. When using the JmsTemplate
in an unmanaged environment you can specify these values through the use of the
properties sessionTransacted and sessionAcknowledgeMode. When using a
PlatformTransactionManager with JmsTemplate, the template will always be given a
transactional JMS Session.

Sending a Message

The JmsTemplate contains many convenience methods to send a message. There are send
methods that specify the destination using a javax.jms.Destination object and those
that specify the destination using a string for use in a JNDI lookup. The send method
that takes no destination argument uses the default destination.

import javax.jms.ConnectionFactory;
import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.Queue;
import javax.jms.Session;

import org.springframework.jms.core.MessageCreator;
import org.springframework.jms.core.JmsTemplate;

public class JmsQueueSender {

 private JmsTemplate jmsTemplate;
 private Queue queue;

 public void setConnectionFactory(ConnectionFactory cf) {
 this.jmsTemplate = new JmsTemplate(cf);
 }

 public void setQueue(Queue queue) {
 this.queue = queue;
 }

 public void simpleSend() {
 this.jmsTemplate.send(this.queue, new MessageCreator() {
 public Message createMessage(Session session) throws JMSException {
 return session.createTextMessage("hello queue world");
 }
 });
 }
}

This example uses the MessageCreator callback to create a text message from the
supplied Session object. The JmsTemplate is constructed by passing a reference to a
ConnectionFactory. As an alternative, a zero argument constructor and
connectionFactory is provided and can be used for constructing the instance in
JavaBean style (using a BeanFactory or plain Java code). Alternatively, consider
deriving from Spring’s JmsGatewaySupport convenience base class, which provides
pre-built bean properties for JMS configuration.

The method send(String destinationName, MessageCreator creator) lets you send a
message using the string name of the destination. If these names are registered in JNDI,
you should set the destinationResolver property of the template to an instance of
JndiDestinationResolver.

If you created the JmsTemplate and specified a default destination, the
send(MessageCreator c) sends a message to that destination.

Using Message Converters

In order to facilitate the sending of domain model objects, the JmsTemplate has
various send methods that take a Java object as an argument for a message’s data
content. The overloaded methods convertAndSend() and receiveAndConvert() in
JmsTemplate delegate the conversion process to an instance of the MessageConverter
interface. This interface defines a simple contract to convert between Java objects and
JMS messages. The default implementation SimpleMessageConverter supports conversion
between String and TextMessage, byte[] and BytesMesssage, and java.util.Map
and MapMessage. By using the converter, you and your application code can focus on the
business object that is being sent or received via JMS and not be concerned with the
details of how it is represented as a JMS message.

The sandbox currently includes a MapMessageConverter which uses reflection to convert
between a JavaBean and a MapMessage. Other popular implementation choices you might
implement yourself are Converters that use an existing XML marshalling package, such as
JAXB, Castor, XMLBeans, or XStream, to create a TextMessage representing the object.

To accommodate the setting of a message’s properties, headers, and body that can not be
generically encapsulated inside a converter class, the MessagePostProcessor interface
gives you access to the message after it has been converted, but before it is sent. The
example below demonstrates how to modify a message header and a property after a
java.util.Map is converted to a message.

public void sendWithConversion() {
 Map map = new HashMap();
 map.put("Name", "Mark");
 map.put("Age", new Integer(47));
 jmsTemplate.convertAndSend("testQueue", map, new MessagePostProcessor() {
 public Message postProcessMessage(Message message) throws JMSException {
 message.setIntProperty("AccountID", 1234);
 message.setJMSCorrelationID("123-00001");
 return message;
 }
 });
}

This results in a message of the form:

MapMessage={
	Header={
		... standard headers ...
		CorrelationID={123-00001}
	}
	Properties={
		AccountID={Integer:1234}
	}
	Fields={
		Name={String:Mark}
		Age={Integer:47}
	}
}

SessionCallback and ProducerCallback

While the send operations cover many common usage scenarios, there are cases when you
want to perform multiple operations on a JMS Session or MessageProducer. The
SessionCallback and ProducerCallback expose the JMS Session and Session /
MessageProducer pair respectively. The execute() methods on JmsTemplate execute
these callback methods.

Receiving a message

Synchronous reception

While JMS is typically associated with asynchronous processing, it is possible to
consume messages synchronously. The overloaded receive(..) methods provide this
functionality. During a synchronous receive, the calling thread blocks until a message
becomes available. This can be a dangerous operation since the calling thread can
potentially be blocked indefinitely. The property receiveTimeout specifies how long
the receiver should wait before giving up waiting for a message.

Asynchronous reception: Message-Driven POJOs

	[image: [Note]]	Note
	
Spring also supports annotated-listener endpoints through the use of the @JmsListener
annotation and provides an open infrastructure to register endpoints programmatically. This
is by far the most convenient way to setup an asynchronous receiver, see
the section called “Enable listener endpoint annotations” for more details.

In a fashion similar to a Message-Driven Bean (MDB) in the EJB world, the Message-Driven
POJO (MDP) acts as a receiver for JMS messages. The one restriction (but see also below
for the discussion of the MessageListenerAdapter class) on an MDP is that it must
implement the javax.jms.MessageListener interface. Please also be aware that in the
case where your POJO will be receiving messages on multiple threads, it is important to
ensure that your implementation is thread-safe.

Below is a simple implementation of an MDP:

import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageListener;
import javax.jms.TextMessage;

public class ExampleListener implements MessageListener {

 public void onMessage(Message message) {
 if (message instanceof TextMessage) {
 try {
 System.out.println(((TextMessage) message).getText());
 }
 catch (JMSException ex) {
 throw new RuntimeException(ex);
 }
 }
 else {
 throw new IllegalArgumentException("Message must be of type TextMessage");
 }
 }
}

Once you’ve implemented your MessageListener, it’s time to create a message listener
container.

Find below an example of how to define and configure one of the message listener
containers that ships with Spring (in this case the DefaultMessageListenerContainer).

<!-- this is the Message Driven POJO (MDP) -->
<bean id="messageListener" class="jmsexample.ExampleListener"/>

<!-- and this is the message listener container -->
<bean id="jmsContainer" class="org.springframework.jms.listener.DefaultMessageListenerContainer">
 <property name="connectionFactory" ref="connectionFactory"/>
 <property name="destination" ref="destination"/>
 <property name="messageListener" ref="messageListener"/>
</bean>

Please refer to the Spring javadocs of the various message listener containers for a full
description of the features supported by each implementation.

SessionAwareMessageListener interface

The SessionAwareMessageListener interface is a Spring-specific interface that provides
a similar contract to the JMS MessageListener interface, but also provides the message
handling method with access to the JMS Session from which the Message was received.

package org.springframework.jms.listener;

public interface SessionAwareMessageListener {

 void onMessage(Message message, Session session) throws JMSException;
}

You can choose to have your MDPs implement this interface (in preference to the standard
JMS MessageListener interface) if you want your MDPs to be able to respond to any
received messages (using the Session supplied in the onMessage(Message, Session)
method). All of the message listener container implementations that ship with Spring
have support for MDPs that implement either the MessageListener or
SessionAwareMessageListener interface. Classes that implement the
SessionAwareMessageListener come with the caveat that they are then tied to Spring
through the interface. The choice of whether or not to use it is left entirely up to you
as an application developer or architect.

Please note that the 'onMessage(..)' method of the SessionAwareMessageListener
interface throws JMSException. In contrast to the standard JMS MessageListener
interface, when using the SessionAwareMessageListener interface, it is the
responsibility of the client code to handle any exceptions thrown.

MessageListenerAdapter

The MessageListenerAdapter class is the final component in Spring’s asynchronous
messaging support: in a nutshell, it allows you to expose almost any class as a MDP
(there are of course some constraints).

Consider the following interface definition. Notice that although the interface extends
neither the MessageListener nor SessionAwareMessageListener interfaces, it can still
be used as a MDP via the use of the MessageListenerAdapter class. Notice also how the
various message handling methods are strongly typed according to the contents of the
various Message types that they can receive and handle.

public interface MessageDelegate {

 void handleMessage(String message);

 void handleMessage(Map message);

 void handleMessage(byte[] message);

 void handleMessage(Serializable message);
}

public class DefaultMessageDelegate implements MessageDelegate {
 // implementation elided for clarity...
}

In particular, note how the above implementation of the MessageDelegate interface (the
above DefaultMessageDelegate class) has no JMS dependencies at all. It truly is a
POJO that we will make into an MDP via the following configuration.

<!-- this is the Message Driven POJO (MDP) -->
<bean id="messageListener" class="org.springframework.jms.listener.adapter.MessageListenerAdapter">
 <constructor-arg>
 <bean class="jmsexample.DefaultMessageDelegate"/>
 </constructor-arg>
</bean>

<!-- and this is the message listener container... -->
<bean id="jmsContainer" class="org.springframework.jms.listener.DefaultMessageListenerContainer">
 <property name="connectionFactory" ref="connectionFactory"/>
 <property name="destination" ref="destination"/>
 <property name="messageListener" ref="messageListener"/>
</bean>

Below is an example of another MDP that can only handle the receiving of JMS
TextMessage messages. Notice how the message handling method is actually called
'receive' (the name of the message handling method in a MessageListenerAdapter
defaults to 'handleMessage'), but it is configurable (as you will see below). Notice
also how the 'receive(..)' method is strongly typed to receive and respond only to JMS
TextMessage messages.

public interface TextMessageDelegate {

 void receive(TextMessage message);
}

public class DefaultTextMessageDelegate implements TextMessageDelegate {
 // implementation elided for clarity...
}

The configuration of the attendant MessageListenerAdapter would look like this:

<bean id="messageListener" class="org.springframework.jms.listener.adapter.MessageListenerAdapter">
 <constructor-arg>
 <bean class="jmsexample.DefaultTextMessageDelegate"/>
 </constructor-arg>
 <property name="defaultListenerMethod" value="receive"/>
 <!-- we don't want automatic message context extraction -->
 <property name="messageConverter">
 <null/>
 </property>
</bean>

Please note that if the above 'messageListener' receives a JMS Message of a type
other than TextMessage, an IllegalStateException will be thrown (and subsequently
swallowed). Another of the capabilities of the MessageListenerAdapter class is the
ability to automatically send back a response Message if a handler method returns a
non-void value. Consider the interface and class:

public interface ResponsiveTextMessageDelegate {

 // notice the return type...
 String receive(TextMessage message);
}

public class DefaultResponsiveTextMessageDelegate implements ResponsiveTextMessageDelegate {
 // implementation elided for clarity...
}

If the above DefaultResponsiveTextMessageDelegate is used in conjunction with a
MessageListenerAdapter then any non-null value that is returned from the execution of
the 'receive(..)' method will (in the default configuration) be converted into a
TextMessage. The resulting TextMessage will then be sent to the Destination (if
one exists) defined in the JMS Reply-To property of the original Message, or the
default Destination set on the MessageListenerAdapter (if one has been configured);
if no Destination is found then an InvalidDestinationException will be thrown (and
please note that this exception will not be swallowed and will propagate up the
call stack).

Processing messages within transactions

Invoking a message listener within a transaction only requires reconfiguration of the
listener container.

Local resource transactions can simply be activated through the sessionTransacted flag
on the listener container definition. Each message listener invocation will then operate
within an active JMS transaction, with message reception rolled back in case of listener
execution failure. Sending a response message (via SessionAwareMessageListener) will
be part of the same local transaction, but any other resource operations (such as
database access) will operate independently. This usually requires duplicate message
detection in the listener implementation, covering the case where database processing
has committed but message processing failed to commit.

<bean id="jmsContainer" class="org.springframework.jms.listener.DefaultMessageListenerContainer">
 <property name="connectionFactory" ref="connectionFactory"/>
 <property name="destination" ref="destination"/>
 <property name="messageListener" ref="messageListener"/>
 <property name="sessionTransacted" value="true"/>
</bean>

For participating in an externally managed transaction, you will need to configure a
transaction manager and use a listener container which supports externally managed
transactions: typically DefaultMessageListenerContainer.

To configure a message listener container for XA transaction participation, you’ll want
to configure a JtaTransactionManager (which, by default, delegates to the Java EE
server’s transaction subsystem). Note that the underlying JMS ConnectionFactory needs to
be XA-capable and properly registered with your JTA transaction coordinator! (Check your
Java EE server’s configuration of JNDI resources.) This allows message reception as well
as e.g. database access to be part of the same transaction (with unified commit
semantics, at the expense of XA transaction log overhead).

<bean id="transactionManager" class="org.springframework.transaction.jta.JtaTransactionManager"/>

Then you just need to add it to our earlier container configuration. The container will
take care of the rest.

<bean id="jmsContainer" class="org.springframework.jms.listener.DefaultMessageListenerContainer">
 <property name="connectionFactory" ref="connectionFactory"/>
 <property name="destination" ref="destination"/>
 <property name="messageListener" ref="messageListener"/>
 <property name="transactionManager" ref="transactionManager"/>
</bean>

Support for JCA Message Endpoints

Beginning with version 2.5, Spring also provides support for a JCA-based
MessageListener container. The JmsMessageEndpointManager will attempt to
automatically determine the ActivationSpec class name from the provider’s
ResourceAdapter class name. Therefore, it is typically possible to just provide
Spring’s generic JmsActivationSpecConfig as shown in the following example.

<bean class="org.springframework.jms.listener.endpoint.JmsMessageEndpointManager">
 <property name="resourceAdapter" ref="resourceAdapter"/>
 <property name="activationSpecConfig">
 <bean class="org.springframework.jms.listener.endpoint.JmsActivationSpecConfig">
 <property name="destinationName" value="myQueue"/>
 </bean>
 </property>
 <property name="messageListener" ref="myMessageListener"/>
</bean>

Alternatively, you may set up a JmsMessageEndpointManager with a given
ActivationSpec object. The ActivationSpec object may also come from a JNDI lookup
(using <jee:jndi-lookup>).

<bean class="org.springframework.jms.listener.endpoint.JmsMessageEndpointManager">
 <property name="resourceAdapter" ref="resourceAdapter"/>
 <property name="activationSpec">
 <bean class="org.apache.activemq.ra.ActiveMQActivationSpec">
 <property name="destination" value="myQueue"/>
 <property name="destinationType" value="javax.jms.Queue"/>
 </bean>
 </property>
 <property name="messageListener" ref="myMessageListener"/>
</bean>

Using Spring’s ResourceAdapterFactoryBean, the target ResourceAdapter may be
configured locally as depicted in the following example.

<bean id="resourceAdapter" class="org.springframework.jca.support.ResourceAdapterFactoryBean">
 <property name="resourceAdapter">
 <bean class="org.apache.activemq.ra.ActiveMQResourceAdapter">
 <property name="serverUrl" value="tcp://localhost:61616"/>
 </bean>
 </property>
 <property name="workManager">
 <bean class="org.springframework.jca.work.SimpleTaskWorkManager"/>
 </property>
</bean>

The specified WorkManager may also point to an environment-specific thread pool -
typically through SimpleTaskWorkManager’s "asyncTaskExecutor" property. Consider
defining a shared thread pool for all your ResourceAdapter instances if you happen to
use multiple adapters.

In some environments (e.g. WebLogic 9 or above), the entire ResourceAdapter object may
be obtained from JNDI instead (using <jee:jndi-lookup>). The Spring-based message
listeners can then interact with the server-hosted ResourceAdapter, also using the
server’s built-in WorkManager.

Please consult the javadoc for JmsMessageEndpointManager, JmsActivationSpecConfig,
and ResourceAdapterFactoryBean for more details.

Spring also provides a generic JCA message endpoint manager which is not tied to JMS:
org.springframework.jca.endpoint.GenericMessageEndpointManager. This component allows
for using any message listener type (e.g. a CCI MessageListener) and any
provider-specific ActivationSpec object. Check out your JCA provider’s documentation to
find out about the actual capabilities of your connector, and consult
GenericMessageEndpointManager's javadoc for the Spring-specific configuration details.

	[image: [Note]]	Note
	
JCA-based message endpoint management is very analogous to EJB 2.1 Message-Driven Beans;
it uses the same underlying resource provider contract. Like with EJB 2.1 MDBs, any
message listener interface supported by your JCA provider can be used in the Spring
context as well. Spring nevertheless provides explicit 'convenience' support for JMS,
simply because JMS is the most common endpoint API used with the JCA endpoint management
contract.

Annotation-driven listener endpoints

The easiest way to receive a message asynchronously is to use the annotated listener
endpoint infrastructure. In a nutshell, it allows you to expose a method of a managed
bean as a JMS listener endpoint.

@Component
public class MyService {

 @JmsListener(destination = "myDestination")
 public void processOrder(String data) { ... }
}

The idea of the example above is that whenever a message is available on the
javax.jms.Destination "myDestination", the processOrder method is invoked
accordingly (in this case, with the content of the JMS message similarly to
what the MessageListenerAdapter
provides).

The annotated endpoint infrastructure creates a message listener container
behind the scenes for each annotated method, using a JmsListenerContainerFactory.
Such a container is not registered against the application context but can be easily
located for management purposes using the JmsListenerEndpointRegistry bean.

	[image: [Tip]]	Tip
	
@JmsListener is a repeatable annotation on Java 8, so it is possible to associate
several JMS destinations to the same method by adding additional @JmsListener
declarations to it. On Java 6 and 7, you can use the @JmsListeners annotation.

Enable listener endpoint annotations

To enable support for @JmsListener annotations add @EnableJms to one of
your @Configuration classes.

@Configuration
@EnableJms
public class AppConfig {

 @Bean
 public DefaultJmsListenerContainerFactory jmsListenerContainerFactory() {
 DefaultJmsListenerContainerFactory factory = new DefaultJmsListenerContainerFactory();
 factory.setConnectionFactory(connectionFactory());
 factory.setDestinationResolver(destinationResolver());
 factory.setSessionTransacted(true);
 factory.setConcurrency("3-10");
 return factory;
 }
}

By default, the infrastructure looks for a bean named jmsListenerContainerFactory
as the source for the factory to use to create message listener containers. In this
case, and ignoring the JMS infrastructure setup, the processOrder method can be
invoked with a core poll size of 3 threads and a maximum pool size of 10 threads.

It is possible to customize the listener container factory to use per annotation or
an explicit default can be configured by implementing the JmsListenerConfigurer
interface. The default is only required if at least one endpoint is registered
without a specific container factory. See the javadoc for full details and examples.

If you prefer XML configuration use the <jms:annotation-driven>
element.

<jms:annotation-driven/>

<bean id="jmsListenerContainerFactory"
 class="org.springframework.jms.config.DefaultJmsListenerContainerFactory">
 <property name="connectionFactory" ref="connectionFactory"/>
 <property name="destinationResolver" ref="destinationResolver"/>
 <property name="sessionTransacted" value="true"/>
 <property name="concurrency" value="3-10"/>
</bean>

Programmatic endpoints registration

JmsListenerEndpoint provides a model of an JMS endpoint and is responsible for configuring
the container for that model. The infrastructure allows you to configure endpoints
programmatically in addition to the ones that are detected by the JmsListener annotation.

@Configuration
@EnableJms
public class AppConfig implements JmsListenerConfigurer {

 @Override
 public void configureJmsListeners(JmsListenerEndpointRegistrar registrar) {
 SimpleJmsListenerEndpoint endpoint = new SimpleJmsListenerEndpoint();
 endpoint.setId("myJmsEndpoint");
 endpoint.setDestination("anotherQueue");
 endpoint.setMessageListener(message -> {
 // processing
 });
 registrar.registerEndpoint(endpoint);
 }
}

In the example above, we used SimpleJmsListenerEndpoint which provides the actual
MessageListener to invoke but you could just as well build your own endpoint variant
describing a custom invocation mechanism.

It should be noted that you could just as well skip the use of @JmsListener altogether
and only register your endpoints programmatically through JmsListenerConfigurer.

Annotated endpoint method signature

So far, we have been injecting a simple String in our endpoint but it can actually
have a very flexible method signature. Let’s rewrite it to inject the Order with
a custom header:

@Component
public class MyService {

 @JmsListener(destination = "myDestination")
 public void processOrder(Order order, @Header("order_type") String orderType) {
 ...
 }
}

These are the main elements you can inject in JMS listener endpoints:

	
The raw javax.jms.Message or any of its subclasses (provided of course that it
matches the incoming message type).

	
The javax.jms.Session for optional access to the native JMS API e.g. for sending
a custom reply.

	
The org.springframework.messaging.Message representing the incoming JMS message.
Note that this message holds both the custom and the standard headers (as defined
by JmsHeaders).

	
@Header-annotated method arguments to extract a specific header value, including
standard JMS headers.

	
@Headers-annotated argument that must also be assignable to java.util.Map for
getting access to all headers.

	
A non-annotated element that is not one of the supported types (i.e. Message and
Session) is considered to be the payload. You can make that explicit by annotating
the parameter with @Payload. You can also turn on validation by adding an extra
@Valid.

The ability to inject Spring’s Message abstraction is particularly useful to benefit
from all the information stored in the transport-specific message without relying on
transport-specific API.

@JmsListener(destination = "myDestination")
public void processOrder(Message<Order> order) { ... }

Handling of method arguments is provided by DefaultMessageHandlerMethodFactory which can be
further customized to support additional method arguments. The conversion and validation
support can be customized there as well.

For instance, if we want to make sure our Order is valid before processing it, we can
annotate the payload with @Valid and configure the necessary validator as follows:

@Configuration
@EnableJms
public class AppConfig implements JmsListenerConfigurer {

 @Override
 public void configureJmsListeners(JmsListenerEndpointRegistrar registrar) {
 registrar.setMessageHandlerMethodFactory(myJmsHandlerMethodFactory());
 }

 @Bean
 public DefaultMessageHandlerMethodFactory myHandlerMethodFactory() {
 DefaultMessageHandlerMethodFactory factory = new DefaultMessageHandlerMethodFactory();
 factory.setValidator(myValidator());
 return factory;
 }
}

Response management

The existing support in MessageListenerAdapter
already allows your method to have a non-void return type. When that’s the case, the result of
the invocation is encapsulated in a javax.jms.Message sent either in the destination specified
in the JMSReplyTo header of the original message or in the default destination configured on
the listener. That default destination can now be set using the @SendTo annotation of the
messaging abstraction.

Assuming our processOrder method should now return an OrderStatus, it is possible to write it
as follow to automatically send a response:

@JmsListener(destination = "myDestination")
@SendTo("status")
public OrderStatus processOrder(Order order) {
 // order processing
 return status;
}

	[image: [Tip]]	Tip
	
If you have several @JmsListener-annotated methods, you can also place the @SendTo
annotation at the class level to share a default reply destination.

If you need to set additional headers in a transport-independent manner, you could return a
Message instead, something like:

@JmsListener(destination = "myDestination")
@SendTo("status")
public Message<OrderStatus> processOrder(Order order) {
 // order processing
 return MessageBuilder
 .withPayload(status)
 .setHeader("code", 1234)
 .build();
}

If you need to compute the response destination at runtime, you can encapsulate your response
in a JmsResponse instance that also provides the destination to use at runtime. The previous
example can be rewritten as follows:

@JmsListener(destination = "myDestination")
public JmsResponse<Message<OrderStatus>> processOrder(Order order) {
 // order processing
 Message<OrderStatus> response = MessageBuilder
 .withPayload(status)
 .setHeader("code", 1234)
 .build();
 return JmsResponse.forQueue(response, "status");
}

JMS namespace support

Spring provides an XML namespace for simplifying JMS configuration. To use the JMS
namespace elements you will need to reference the JMS schema:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jms="http://www.springframework.org/schema/jms"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/jms http://www.springframework.org/schema/jms/spring-jms.xsd">

 <!-- bean definitions here -->

</beans>

The namespace consists of three top-level elements: <annotation-driven/>, <listener-container/>
and <jca-listener-container/>. <annotation-driven enables the use of annotation-driven listener endpoints. <listener-container/> and <jca-listener-container/>
defines shared listener container configuration and may contain <listener/> child elements. Here
is an example of a basic configuration for two listeners.

<jms:listener-container>

 <jms:listener destination="queue.orders" ref="orderService" method="placeOrder"/>

 <jms:listener destination="queue.confirmations" ref="confirmationLogger" method="log"/>

</jms:listener-container>

The example above is equivalent to creating two distinct listener container bean
definitions and two distinct MessageListenerAdapter bean definitions as demonstrated
in the section called “MessageListenerAdapter”. In addition to the attributes shown
above, the listener element may contain several optional ones. The following table
describes all available attributes:

Table 30.1. Attributes of the JMS <listener> element

	Attribute	Description
	id
	A bean name for the hosting listener container. If not specified, a bean name will be
 automatically generated.

	destination (required)
	The destination name for this listener, resolved through the DestinationResolver
 strategy.

	ref (required)
	The bean name of the handler object.

	method
	The name of the handler method to invoke. If the ref points to a MessageListener
 or Spring SessionAwareMessageListener, this attribute may be omitted.

	response-destination
	The name of the default response destination to send response messages to. This will
 be applied in case of a request message that does not carry a "JMSReplyTo" field. The
 type of this destination will be determined by the listener-container’s
 "response-destination-type" attribute. Note: This only applies to a listener method with a
 return value, for which each result object will be converted into a response message.

	subscription
	The name of the durable subscription, if any.

	selector
	An optional message selector for this listener.

	concurrency
	The number of concurrent sessions/consumers to start for this listener. Can either be
 a simple number indicating the maximum number (e.g. "5") or a range indicating the lower
 as well as the upper limit (e.g. "3-5"). Note that a specified minimum is just a hint
 and might be ignored at runtime. Default is the value provided by the container

The <listener-container/> element also accepts several optional attributes. This
allows for customization of the various strategies (for example, taskExecutor and
destinationResolver) as well as basic JMS settings and resource references. Using
these attributes, it is possible to define highly-customized listener containers while
still benefiting from the convenience of the namespace.

Such settings can be automatically exposed as a JmsListenerContainerFactory by
specifying the id of the bean to expose through the factory-id attribute.

<jms:listener-container connection-factory="myConnectionFactory"
 task-executor="myTaskExecutor"
 destination-resolver="myDestinationResolver"
 transaction-manager="myTransactionManager"
 concurrency="10">

 <jms:listener destination="queue.orders" ref="orderService" method="placeOrder"/>

 <jms:listener destination="queue.confirmations" ref="confirmationLogger" method="log"/>

</jms:listener-container>

The following table describes all available attributes. Consult the class-level javadocs
of the AbstractMessageListenerContainer and its concrete subclasses for more details
on the individual properties. The javadocs also provide a discussion of transaction
choices and message redelivery scenarios.

Table 30.2. Attributes of the JMS <listener-container> element

	Attribute	Description
	container-type
	The type of this listener container. Available options are: default, simple,
 default102, or simple102 (the default value is 'default').

	container-class
	A custom listener container implementation class as fully qualified class name.
 Default is Spring’s standard DefaultMessageListenerContainer or
 SimpleMessageListenerContainer, according to the "container-type" attribute.

	factory-id
	Exposes the settings defined by this element as a JmsListenerContainerFactory
 with the specified id so that they can be reused with other endpoints.

	connection-factory
	A reference to the JMS ConnectionFactory bean (the default bean name is
 'connectionFactory').

	task-executor
	A reference to the Spring TaskExecutor for the JMS listener invokers.

	destination-resolver
	A reference to the DestinationResolver strategy for resolving JMS Destinations.

	message-converter
	A reference to the MessageConverter strategy for converting JMS Messages to listener
 method arguments. Default is a SimpleMessageConverter.

	error-handler
	A reference to an ErrorHandler strategy for handling any uncaught Exceptions that
 may occur during the execution of the MessageListener.

	destination-type
	The JMS destination type for this listener: queue, topic, durableTopic, sharedTopic
 or sharedDurableTopic. This enables potentially the pubSubDomain, subscriptionDurable
 and subscriptionShared properties of the container. The default is queue (i.e. disabling
 those 3 properties).

	response-destination-type
	The JMS destination type for responses: "queue", "topic". Default is the value of the
 "destination-type" attribute.

	client-id
	The JMS client id for this listener container. Needs to be specified when using
 durable subscriptions.

	cache
	The cache level for JMS resources: none, connection, session, consumer or
 auto. By default (auto), the cache level will effectively be "consumer", unless
 an external transaction manager has been specified - in which case the effective
 default will be none (assuming Java EE-style transaction management where the given
 ConnectionFactory is an XA-aware pool).

	acknowledge
	The native JMS acknowledge mode: auto, client, dups-ok or transacted. A value
 of transacted activates a locally transacted Session. As an alternative, specify
 the transaction-manager attribute described below. Default is auto.

	transaction-manager
	A reference to an external PlatformTransactionManager (typically an XA-based
 transaction coordinator, e.g. Spring’s JtaTransactionManager). If not specified,
 native acknowledging will be used (see "acknowledge" attribute).

	concurrency
	The number of concurrent sessions/consumers to start for each listener. Can either be
 a simple number indicating the maximum number (e.g. "5") or a range indicating the
 lower as well as the upper limit (e.g. "3-5"). Note that a specified minimum is just a
 hint and might be ignored at runtime. Default is 1; keep concurrency limited to 1 in
 case of a topic listener or if queue ordering is important; consider raising it for
 general queues.

	prefetch
	The maximum number of messages to load into a single session. Note that raising this
 number might lead to starvation of concurrent consumers!

	receive-timeout
	The timeout to use for receive calls (in milliseconds). The default is 1000 ms (1
 sec); -1 indicates no timeout at all.

	back-off
	Specify the BackOff instance to use to compute the interval between recovery
 attempts. If the BackOffExecution implementation returns BackOffExecution#STOP,
 the listener container will not further attempt to recover. The recovery-interval
 value is ignored when this property is set. The default is a FixedBackOff with
 an interval of 5000 ms, that is 5 seconds.

	recovery-interval
	Specify the interval between recovery attempts, in milliseconds. Convenience
 way to create a FixedBackOff with the specified interval. For more recovery
 options, consider specifying a BackOff instance instead. The default is 5000 ms,
 that is 5 seconds.

	phase
	The lifecycle phase within which this container should start and stop. The lower the
 value the earlier this container will start and the later it will stop. The default is
 Integer.MAX_VALUE meaning the container will start as late as possible and stop as
 soon as possible.

Configuring a JCA-based listener container with the "jms" schema support is very similar.

<jms:jca-listener-container resource-adapter="myResourceAdapter"
 destination-resolver="myDestinationResolver"
 transaction-manager="myTransactionManager"
 concurrency="10">

 <jms:listener destination="queue.orders" ref="myMessageListener"/>

</jms:jca-listener-container>

The available configuration options for the JCA variant are described in the following
table:

Table 30.3. Attributes of the JMS <jca-listener-container/> element

	Attribute	Description
	factory-id
	Exposes the settings defined by this element as a JmsListenerContainerFactory
 with the specified id so that they can be reused with other endpoints.

	resource-adapter
	A reference to the JCA ResourceAdapter bean (the default bean name is
 'resourceAdapter').

	activation-spec-factory
	A reference to the JmsActivationSpecFactory. The default is to autodetect the JMS
 provider and its ActivationSpec class (see DefaultJmsActivationSpecFactory)

	destination-resolver
	A reference to the DestinationResolver strategy for resolving JMS Destinations.

	message-converter
	A reference to the MessageConverter strategy for converting JMS Messages to listener
 method arguments. Default is a SimpleMessageConverter.

	destination-type
	The JMS destination type for this listener: queue, topic, durableTopic, sharedTopic
 or sharedDurableTopic. This enables potentially the pubSubDomain, subscriptionDurable
 and subscriptionShared properties of the container. The default is queue (i.e. disabling
 those 3 properties).

	response-destination-type
	The JMS destination type for responses: "queue", "topic". Default is the value of the
 "destination-type" attribute.

	client-id
	The JMS client id for this listener container. Needs to be specified when using
 durable subscriptions.

	acknowledge
	The native JMS acknowledge mode: auto, client, dups-ok or transacted. A value
 of transacted activates a locally transacted Session. As an alternative, specify
 the transaction-manager attribute described below. Default is auto.

	transaction-manager
	A reference to a Spring JtaTransactionManager or a
 javax.transaction.TransactionManager for kicking off an XA transaction for each
 incoming message. If not specified, native acknowledging will be used (see the
 "acknowledge" attribute).

	concurrency
	The number of concurrent sessions/consumers to start for each listener. Can either be
 a simple number indicating the maximum number (e.g. "5") or a range indicating the
 lower as well as the upper limit (e.g. "3-5"). Note that a specified minimum is just a
 hint and will typically be ignored at runtime when using a JCA listener container.
 Default is 1.

	prefetch
	The maximum number of messages to load into a single session. Note that raising this
 number might lead to starvation of concurrent consumers!

Chapter 31. JMX

Introduction

The JMX support in Spring provides you with the features to easily and transparently
integrate your Spring application into a JMX infrastructure.

JMX?

This chapter is not an introduction to JMX…​ it doesn’t try to explain the motivations
of why one might want to use JMX (or indeed what the letters JMX actually stand for). If
you are new to JMX, check out the section called “Further resources” at the end of this chapter.

Specifically, Spring’s JMX support provides four core features:

	
The automatic registration of any Spring bean as a JMX MBean

	
A flexible mechanism for controlling the management interface of your beans

	
The declarative exposure of MBeans over remote, JSR-160 connectors

	
The simple proxying of both local and remote MBean resources

These features are designed to work without coupling your application components to
either Spring or JMX interfaces and classes. Indeed, for the most part your application
classes need not be aware of either Spring or JMX in order to take advantage of the
Spring JMX features.

Exporting your beans to JMX

The core class in Spring’s JMX framework is the MBeanExporter. This class is
responsible for taking your Spring beans and registering them with a JMX MBeanServer.
For example, consider the following class:

package org.springframework.jmx;

public class JmxTestBean implements IJmxTestBean {

 private String name;
 private int age;
 private boolean isSuperman;

 public int getAge() {
 return age;
 }

 public void setAge(int age) {
 this.age = age;
 }

 public void setName(String name) {
 this.name = name;
 }

 public String getName() {
 return name;
 }

 public int add(int x, int y) {
 return x + y;
 }

 public void dontExposeMe() {
 throw new RuntimeException();
 }
}

To expose the properties and methods of this bean as attributes and operations of an
MBean you simply configure an instance of the MBeanExporter class in your
configuration file and pass in the bean as shown below:

<beans>
 <!-- this bean must not be lazily initialized if the exporting is to happen -->
 <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter" lazy-init="false">
 <property name="beans">
 <map>
 <entry key="bean:name=testBean1" value-ref="testBean"/>
 </map>
 </property>
 </bean>
 <bean id="testBean" class="org.springframework.jmx.JmxTestBean">
 <property name="name" value="TEST"/>
 <property name="age" value="100"/>
 </bean>
</beans>

The pertinent bean definition from the above configuration snippet is the exporter
bean. The beans property tells the MBeanExporter exactly which of your beans must be
exported to the JMX MBeanServer. In the default configuration, the key of each entry
in the beans Map is used as the ObjectName for the bean referenced by the
corresponding entry value. This behavior can be changed as described in the section called “Controlling the ObjectNames for your beans”.

With this configuration the testBean bean is exposed as an MBean under the
ObjectName bean:name=testBean1. By default, all public properties of the bean
are exposed as attributes and all public methods (bar those inherited from the
Object class) are exposed as operations.

	[image: [Note]]	Note
	
MBeanExporter is a Lifecycle bean (see the section called “Startup and shutdown callbacks”)
and MBeans are exported as late as possible during the application lifecycle by default. It
is possible to configure the phase at which the export happens or disable automatic
registration by setting the autoStartup flag.

Creating an MBeanServer

The above configuration assumes that the application is running in an environment that
has one (and only one) MBeanServer already running. In this case, Spring will attempt
to locate the running MBeanServer and register your beans with that server (if any).
This behavior is useful when your application is running inside a container such as
Tomcat or IBM WebSphere that has its own MBeanServer.

However, this approach is of no use in a standalone environment, or when running inside
a container that does not provide an MBeanServer. To address this you can create an
MBeanServer instance declaratively by adding an instance of the
org.springframework.jmx.support.MBeanServerFactoryBean class to your configuration.
You can also ensure that a specific MBeanServer is used by setting the value of the
MBeanExporter's server property to the MBeanServer value returned by an
MBeanServerFactoryBean; for example:

<beans>

 <bean id="mbeanServer" class="org.springframework.jmx.support.MBeanServerFactoryBean"/>

 <!--
 this bean needs to be eagerly pre-instantiated in order for the exporting to occur;
 this means that it must not be marked as lazily initialized
 -->
 <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
 <property name="beans">
 <map>
 <entry key="bean:name=testBean1" value-ref="testBean"/>
 </map>
 </property>
 <property name="server" ref="mbeanServer"/>
 </bean>

 <bean id="testBean" class="org.springframework.jmx.JmxTestBean">
 <property name="name" value="TEST"/>
 <property name="age" value="100"/>
 </bean>

</beans>

Here an instance of MBeanServer is created by the MBeanServerFactoryBean and is
supplied to the MBeanExporter via the server property. When you supply your own
MBeanServer instance, the MBeanExporter will not attempt to locate a running
MBeanServer and will use the supplied MBeanServer instance. For this to work
correctly, you must (of course) have a JMX implementation on your classpath.

Reusing an existing MBeanServer

If no server is specified, the MBeanExporter tries to automatically detect a running
MBeanServer. This works in most environment where only one MBeanServer instance is
used, however when multiple instances exist, the exporter might pick the wrong server.
In such cases, one should use the MBeanServer agentId to indicate which instance to
be used:

<beans>
 <bean id="mbeanServer" class="org.springframework.jmx.support.MBeanServerFactoryBean">
 <!-- indicate to first look for a server -->
 <property name="locateExistingServerIfPossible" value="true"/>
 <!-- search for the MBeanServer instance with the given agentId -->
 <property name="agentId" value="MBeanServer_instance_agentId>"/>
 </bean>
 <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
 <property name="server" ref="mbeanServer"/>
 ...
 </bean>
</beans>

For platforms/cases where the existing MBeanServer has a dynamic (or unknown)
agentId which is retrieved through lookup methods, one should use
factory-method:

<beans>
 <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
 <property name="server">
 <!-- Custom MBeanServerLocator -->
 <bean class="platform.package.MBeanServerLocator" factory-method="locateMBeanServer"/>
 </property>
 </bean>

 <!-- other beans here -->

</beans>

Lazy-initialized MBeans

If you configure a bean with the MBeanExporter that is also configured for lazy
initialization, then the MBeanExporter will not break this contract and will avoid
instantiating the bean. Instead, it will register a proxy with the MBeanServer and
will defer obtaining the bean from the container until the first invocation on the proxy
occurs.

Automatic registration of MBeans

Any beans that are exported through the MBeanExporter and are already valid MBeans are
registered as-is with the MBeanServer without further intervention from Spring. MBeans
can be automatically detected by the MBeanExporter by setting the autodetect
property to true:

<bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
 <property name="autodetect" value="true"/>
</bean>

<bean name="spring:mbean=true" class="org.springframework.jmx.export.TestDynamicMBean"/>

Here, the bean called spring:mbean=true is already a valid JMX MBean and will be
automatically registered by Spring. By default, beans that are autodetected for JMX
registration have their bean name used as the ObjectName. This behavior can be
overridden as detailed in the section called “Controlling the ObjectNames for your beans”.

Controlling the registration behavior

Consider the scenario where a Spring MBeanExporter attempts to register an MBean
with an MBeanServer using the ObjectName 'bean:name=testBean1'. If an MBean
instance has already been registered under that same ObjectName, the default behavior
is to fail (and throw an InstanceAlreadyExistsException).

It is possible to control the behavior of exactly what happens when an MBean is
registered with an MBeanServer. Spring’s JMX support allows for three different
registration behaviors to control the registration behavior when the registration
process finds that an MBean has already been registered under the same ObjectName;
these registration behaviors are summarized on the following table:

Table 31.1. Registration Behaviors

	Registration behavior	Explanation
	REGISTRATION_FAIL_ON_EXISTING
	This is the default registration behavior. If an MBean instance has already been
 registered under the same ObjectName, the MBean that is being registered will not
 be registered and an InstanceAlreadyExistsException will be thrown. The existing
 MBean is unaffected.

	REGISTRATION_IGNORE_EXISTING
	If an MBean instance has already been registered under the same ObjectName, the
 MBean that is being registered will not be registered. The existing MBean is
 unaffected, and no Exception will be thrown. This is useful in settings where
 multiple applications want to share a common MBean in a shared MBeanServer.

	REGISTRATION_REPLACE_EXISTING
	If an MBean instance has already been registered under the same ObjectName, the
 existing MBean that was previously registered will be unregistered and the new
 MBean will be registered in its place (the new MBean effectively replaces the
 previous instance).

The above values are defined as constants on the MBeanRegistrationSupport class (the
MBeanExporter class derives from this superclass). If you want to change the default
registration behavior, you simply need to set the value of the
registrationBehaviorName property on your MBeanExporter definition to one of those
values.

The following example illustrates how to effect a change from the default registration
behavior to the REGISTRATION_REPLACE_EXISTING behavior:

<beans>

 <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
 <property name="beans">
 <map>
 <entry key="bean:name=testBean1" value-ref="testBean"/>
 </map>
 </property>
 <property name="registrationBehaviorName" value="REGISTRATION_REPLACE_EXISTING"/>
 </bean>

 <bean id="testBean" class="org.springframework.jmx.JmxTestBean">
 <property name="name" value="TEST"/>
 <property name="age" value="100"/>
 </bean>

</beans>

Controlling the management interface of your beans

In the previous example, you had little control over the management interface of your
bean; all of the public properties and methods of each exported bean was exposed
as JMX attributes and operations respectively. To exercise finer-grained control over
exactly which properties and methods of your exported beans are actually exposed as JMX
attributes and operations, Spring JMX provides a comprehensive and extensible mechanism
for controlling the management interfaces of your beans.

MBeanInfoAssembler interface

Behind the scenes, the MBeanExporter delegates to an implementation of the
org.springframework.jmx.export.assembler.MBeanInfoAssembler interface which is
responsible for defining the management interface of each bean that is being exposed.
The default implementation,
org.springframework.jmx.export.assembler.SimpleReflectiveMBeanInfoAssembler, simply
defines a management interface that exposes all public properties and methods (as you
saw in the previous examples). Spring provides two additional implementations of the
MBeanInfoAssembler interface that allow you to control the generated management
interface using either source-level metadata or any arbitrary interface.

Using source-level metadata: Java annotations

Using the MetadataMBeanInfoAssembler you can define the management interfaces for your
beans using source level metadata. The reading of metadata is encapsulated by the
org.springframework.jmx.export.metadata.JmxAttributeSource interface. Spring JMX
provides a default implementation which uses Java annotations, namely
org.springframework.jmx.export.annotation.AnnotationJmxAttributeSource. The
MetadataMBeanInfoAssembler must be configured with an implementation instance of
the JmxAttributeSource interface for it to function correctly (there is no
default).

To mark a bean for export to JMX, you should annotate the bean class with the
ManagedResource annotation. Each method you wish to expose as an operation must be
marked with the ManagedOperation annotation and each property you wish to expose must
be marked with the ManagedAttribute annotation. When marking properties you can omit
either the annotation of the getter or the setter to create a write-only or read-only
attribute respectively.

	[image: [Note]]	Note
	
A ManagedResource annotated bean must be public as well as the methods exposing
an operation or an attribute.

The example below shows the annotated version of the JmxTestBean class that you saw
earlier:

package org.springframework.jmx;

import org.springframework.jmx.export.annotation.ManagedResource;
import org.springframework.jmx.export.annotation.ManagedOperation;
import org.springframework.jmx.export.annotation.ManagedAttribute;

@ManagedResource(
 objectName="bean:name=testBean4",
 description="My Managed Bean",
 log=true,
 logFile="jmx.log",
 currencyTimeLimit=15,
 persistPolicy="OnUpdate",
 persistPeriod=200,
 persistLocation="foo",
 persistName="bar")
public class AnnotationTestBean implements IJmxTestBean {

 private String name;
 private int age;

 @ManagedAttribute(description="The Age Attribute", currencyTimeLimit=15)
 public int getAge() {
 return age;
 }

 public void setAge(int age) {
 this.age = age;
 }

 @ManagedAttribute(description="The Name Attribute",
 currencyTimeLimit=20,
 defaultValue="bar",
 persistPolicy="OnUpdate")
 public void setName(String name) {
 this.name = name;
 }

 @ManagedAttribute(defaultValue="foo", persistPeriod=300)
 public String getName() {
 return name;
 }

 @ManagedOperation(description="Add two numbers")
 @ManagedOperationParameters({
 @ManagedOperationParameter(name = "x", description = "The first number"),
 @ManagedOperationParameter(name = "y", description = "The second number")})
 public int add(int x, int y) {
 return x + y;
 }

 public void dontExposeMe() {
 throw new RuntimeException();
 }

}

Here you can see that the JmxTestBean class is marked with the ManagedResource
annotation and that this ManagedResource annotation is configured with a set of
properties. These properties can be used to configure various aspects of the MBean that
is generated by the MBeanExporter, and are explained in greater detail later in
section entitled the section called “Source-level metadata types”.

You will also notice that both the age and name properties are annotated with the
ManagedAttribute annotation, but in the case of the age property, only the getter is
marked. This will cause both of these properties to be included in the management
interface as attributes, but the age attribute will be read-only.

Finally, you will notice that the add(int, int) method is marked with the
ManagedOperation attribute whereas the dontExposeMe() method is not. This will cause
the management interface to contain only one operation, add(int, int), when using the
MetadataMBeanInfoAssembler.

The configuration below shows how you configure the MBeanExporter to use the
MetadataMBeanInfoAssembler:

<beans>
 <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
 <property name="assembler" ref="assembler"/>
 <property name="namingStrategy" ref="namingStrategy"/>
 <property name="autodetect" value="true"/>
 </bean>

 <bean id="jmxAttributeSource"
 class="org.springframework.jmx.export.annotation.AnnotationJmxAttributeSource"/>

 <!-- will create management interface using annotation metadata -->
 <bean id="assembler"
 class="org.springframework.jmx.export.assembler.MetadataMBeanInfoAssembler">
 <property name="attributeSource" ref="jmxAttributeSource"/>
 </bean>

 <!-- will pick up the ObjectName from the annotation -->
 <bean id="namingStrategy"
 class="org.springframework.jmx.export.naming.MetadataNamingStrategy">
 <property name="attributeSource" ref="jmxAttributeSource"/>
 </bean>

 <bean id="testBean" class="org.springframework.jmx.AnnotationTestBean">
 <property name="name" value="TEST"/>
 <property name="age" value="100"/>
 </bean>
</beans>

Here you can see that an MetadataMBeanInfoAssembler bean has been configured with an
instance of the AnnotationJmxAttributeSource class and passed to the MBeanExporter
through the assembler property. This is all that is required to take advantage of
metadata-driven management interfaces for your Spring-exposed MBeans.

Source-level metadata types

The following source level metadata types are available for use in Spring JMX:

Table 31.2. Source-level metadata types

	Purpose	Annotation	Annotation Type
	Mark all instances of a Class as JMX managed resources
	@ManagedResource
	Class

	Mark a method as a JMX operation
	@ManagedOperation
	Method

	Mark a getter or setter as one half of a JMX attribute
	@ManagedAttribute
	Method (only getters and setters)

	Define descriptions for operation parameters
	@ManagedOperationParameter and @ManagedOperationParameters
	Method

The following configuration parameters are available for use on these source-level
metadata types:

Table 31.3. Source-level metadata parameters

	Parameter	Description	Applies to
	ObjectName
	Used by MetadataNamingStrategy to determine the ObjectName of a managed resource
	ManagedResource

	description
	Sets the friendly description of the resource, attribute or operation
	ManagedResource, ManagedAttribute, ManagedOperation, ManagedOperationParameter

	currencyTimeLimit
	Sets the value of the currencyTimeLimit descriptor field
	ManagedResource, ManagedAttribute

	defaultValue
	Sets the value of the defaultValue descriptor field
	ManagedAttribute

	log
	Sets the value of the log descriptor field
	ManagedResource

	logFile
	Sets the value of the logFile descriptor field
	ManagedResource

	persistPolicy
	Sets the value of the persistPolicy descriptor field
	ManagedResource

	persistPeriod
	Sets the value of the persistPeriod descriptor field
	ManagedResource

	persistLocation
	Sets the value of the persistLocation descriptor field
	ManagedResource

	persistName
	Sets the value of the persistName descriptor field
	ManagedResource

	name
	Sets the display name of an operation parameter
	ManagedOperationParameter

	index
	Sets the index of an operation parameter
	ManagedOperationParameter

AutodetectCapableMBeanInfoAssembler interface

To simplify configuration even further, Spring introduces the
AutodetectCapableMBeanInfoAssembler interface which extends the MBeanInfoAssembler
interface to add support for autodetection of MBean resources. If you configure the
MBeanExporter with an instance of AutodetectCapableMBeanInfoAssembler then it is
allowed to "vote" on the inclusion of beans for exposure to JMX.

Out of the box, the only implementation of the AutodetectCapableMBeanInfo interface is
the MetadataMBeanInfoAssembler which will vote to include any bean which is marked
with the ManagedResource attribute. The default approach in this case is to use the
bean name as the ObjectName which results in a configuration like this:

<beans>

 <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
 <!-- notice how no 'beans' are explicitly configured here -->
 <property name="autodetect" value="true"/>
 <property name="assembler" ref="assembler"/>
 </bean>

 <bean id="testBean" class="org.springframework.jmx.JmxTestBean">
 <property name="name" value="TEST"/>
 <property name="age" value="100"/>
 </bean>

 <bean id="assembler" class="org.springframework.jmx.export.assembler.MetadataMBeanInfoAssembler">
 <property name="attributeSource">
 <bean class="org.springframework.jmx.export.annotation.AnnotationJmxAttributeSource"/>
 </property>
 </bean>

</beans>

Notice that in this configuration no beans are passed to the MBeanExporter; however,
the JmxTestBean will still be registered since it is marked with the ManagedResource
attribute and the MetadataMBeanInfoAssembler detects this and votes to include it. The
only problem with this approach is that the name of the JmxTestBean now has business
meaning. You can address this issue by changing the default behavior for ObjectName
creation as defined in the section called “Controlling the ObjectNames for your beans”.

Defining management interfaces using Java interfaces

In addition to the MetadataMBeanInfoAssembler, Spring also includes the
InterfaceBasedMBeanInfoAssembler which allows you to constrain the methods and
properties that are exposed based on the set of methods defined in a collection of
interfaces.

Although the standard mechanism for exposing MBeans is to use interfaces and a simple
naming scheme, the InterfaceBasedMBeanInfoAssembler extends this functionality by
removing the need for naming conventions, allowing you to use more than one interface
and removing the need for your beans to implement the MBean interfaces.

Consider this interface that is used to define a management interface for the
JmxTestBean class that you saw earlier:

public interface IJmxTestBean {

 public int add(int x, int y);

 public long myOperation();

 public int getAge();

 public void setAge(int age);

 public void setName(String name);

 public String getName();

}

This interface defines the methods and properties that will be exposed as operations and
attributes on the JMX MBean. The code below shows how to configure Spring JMX to use
this interface as the definition for the management interface:

<beans>

 <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
 <property name="beans">
 <map>
 <entry key="bean:name=testBean5" value-ref="testBean"/>
 </map>
 </property>
 <property name="assembler">
 <bean class="org.springframework.jmx.export.assembler.InterfaceBasedMBeanInfoAssembler">
 <property name="managedInterfaces">
 <value>org.springframework.jmx.IJmxTestBean</value>
 </property>
 </bean>
 </property>
 </bean>

 <bean id="testBean" class="org.springframework.jmx.JmxTestBean">
 <property name="name" value="TEST"/>
 <property name="age" value="100"/>
 </bean>

</beans>

Here you can see that the InterfaceBasedMBeanInfoAssembler is configured to use the
IJmxTestBean interface when constructing the management interface for any bean. It is
important to understand that beans processed by the InterfaceBasedMBeanInfoAssembler
are not required to implement the interface used to generate the JMX management
interface.

In the case above, the IJmxTestBean interface is used to construct all management
interfaces for all beans. In many cases this is not the desired behavior and you may
want to use different interfaces for different beans. In this case, you can pass
InterfaceBasedMBeanInfoAssembler a Properties instance via the interfaceMappings
property, where the key of each entry is the bean name and the value of each entry is a
comma-separated list of interface names to use for that bean.

If no management interface is specified through either the managedInterfaces or
interfaceMappings properties, then the InterfaceBasedMBeanInfoAssembler will reflect
on the bean and use all of the interfaces implemented by that bean to create the
management interface.

Using MethodNameBasedMBeanInfoAssembler

The MethodNameBasedMBeanInfoAssembler allows you to specify a list of method names
that will be exposed to JMX as attributes and operations. The code below shows a sample
configuration for this:

<bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
 <property name="beans">
 <map>
 <entry key="bean:name=testBean5" value-ref="testBean"/>
 </map>
 </property>
 <property name="assembler">
 <bean class="org.springframework.jmx.export.assembler.MethodNameBasedMBeanInfoAssembler">
 <property name="managedMethods">
 <value>add,myOperation,getName,setName,getAge</value>
 </property>
 </bean>
 </property>
</bean>

Here you can see that the methods add and myOperation will be exposed as JMX
operations and getName(), setName(String) and getAge() will be exposed as the
appropriate half of a JMX attribute. In the code above, the method mappings apply to
beans that are exposed to JMX. To control method exposure on a bean-by-bean basis, use
the methodMappings property of MethodNameMBeanInfoAssembler to map bean names to
lists of method names.

Controlling the ObjectNames for your beans

Behind the scenes, the MBeanExporter delegates to an implementation of the
ObjectNamingStrategy to obtain ObjectNames for each of the beans it is registering.
The default implementation, KeyNamingStrategy, will, by default, use the key of the
beans Map as the ObjectName. In addition, the KeyNamingStrategy can map the key
of the beans Map to an entry in a Properties file (or files) to resolve the
ObjectName. In addition to the KeyNamingStrategy, Spring provides two additional
ObjectNamingStrategy implementations: the IdentityNamingStrategy that builds an
ObjectName based on the JVM identity of the bean and the MetadataNamingStrategy that
uses source level metadata to obtain the ObjectName.

Reading ObjectNames from Properties

You can configure your own KeyNamingStrategy instance and configure it to read
ObjectNames from a Properties instance rather than use bean key. The
KeyNamingStrategy will attempt to locate an entry in the Properties with a key
corresponding to the bean key. If no entry is found or if the Properties instance is
null then the bean key itself is used.

The code below shows a sample configuration for the KeyNamingStrategy:

<beans>

 <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
 <property name="beans">
 <map>
 <entry key="testBean" value-ref="testBean"/>
 </map>
 </property>
 <property name="namingStrategy" ref="namingStrategy"/>
 </bean>

 <bean id="testBean" class="org.springframework.jmx.JmxTestBean">
 <property name="name" value="TEST"/>
 <property name="age" value="100"/>
 </bean>

 <bean id="namingStrategy" class="org.springframework.jmx.export.naming.KeyNamingStrategy">
 <property name="mappings">
 <props>
 <prop key="testBean">bean:name=testBean1</prop>
 </props>
 </property>
 <property name="mappingLocations">
 <value>names1.properties,names2.properties</value>
 </property>
 </bean>

</beans>

Here an instance of KeyNamingStrategy is configured with a Properties instance that
is merged from the Properties instance defined by the mapping property and the
properties files located in the paths defined by the mappings property. In this
configuration, the testBean bean will be given the ObjectName bean:name=testBean1
since this is the entry in the Properties instance that has a key corresponding to the
bean key.

If no entry in the Properties instance can be found then the bean key name is used as
the ObjectName.

Using the MetadataNamingStrategy

The MetadataNamingStrategy uses the objectName property of the ManagedResource
attribute on each bean to create the ObjectName. The code below shows the
configuration for the MetadataNamingStrategy:

<beans>

 <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
 <property name="beans">
 <map>
 <entry key="testBean" value-ref="testBean"/>
 </map>
 </property>
 <property name="namingStrategy" ref="namingStrategy"/>
 </bean>

 <bean id="testBean" class="org.springframework.jmx.JmxTestBean">
 <property name="name" value="TEST"/>
 <property name="age" value="100"/>
 </bean>

 <bean id="namingStrategy" class="org.springframework.jmx.export.naming.MetadataNamingStrategy">
 <property name="attributeSource" ref="attributeSource"/>
 </bean>

 <bean id="attributeSource"
 class="org.springframework.jmx.export.annotation.AnnotationJmxAttributeSource"/>

</beans>

If no objectName has been provided for the ManagedResource attribute, then an
ObjectName will be created with the following
format:[fully-qualified-package-name]:type=[short-classname],name=[bean-name]. For
example, the generated ObjectName for the following bean would be:
com.foo:type=MyClass,name=myBean.

<bean id="myBean" class="com.foo.MyClass"/>

Configuring annotation based MBean export

If you prefer using the annotation based approach to define
your management interfaces, then a convenience subclass of MBeanExporter is available:
AnnotationMBeanExporter. When defining an instance of this subclass, the
namingStrategy, assembler, and attributeSource configuration is no longer needed,
since it will always use standard Java annotation-based metadata (autodetection is
always enabled as well). In fact, rather than defining an MBeanExporter bean, an even
simpler syntax is supported by the @EnableMBeanExport @Configuration annotation.

@Configuration
@EnableMBeanExport
public class AppConfig {

}

If you prefer XML based configuration the 'context:mbean-export' element serves the
same purpose.

<context:mbean-export/>

You can provide a reference to a particular MBean server if necessary, and the
defaultDomain attribute (a property of AnnotationMBeanExporter) accepts an alternate
value for the generated MBean `ObjectNames’ domains. This would be used in place of the
fully qualified package name as described in the previous section on
MetadataNamingStrategy.

@EnableMBeanExport(server="myMBeanServer", defaultDomain="myDomain")
@Configuration
ContextConfiguration {

}

<context:mbean-export server="myMBeanServer" default-domain="myDomain"/>

	[image: [Note]]	Note
	
Do not use interface-based AOP proxies in combination with autodetection of JMX
annotations in your bean classes. Interface-based proxies 'hide' the target class, which
also hides the JMX managed resource annotations. Hence, use target-class proxies in that
case: through setting the 'proxy-target-class' flag on <aop:config/>,
<tx:annotation-driven/>, etc. Otherwise, your JMX beans might be silently ignored at
startup…​

JSR-160 Connectors

For remote access, Spring JMX module offers two FactoryBean implementations inside the
org.springframework.jmx.support package for creating both server- and client-side
connectors.

Server-side connectors

To have Spring JMX create, start and expose a JSR-160 JMXConnectorServer use the
following configuration:

<bean id="serverConnector" class="org.springframework.jmx.support.ConnectorServerFactoryBean"/>

By default ConnectorServerFactoryBean creates a JMXConnectorServer bound to
"service:jmx:jmxmp://localhost:9875". The serverConnector bean thus exposes the
local MBeanServer to clients through the JMXMP protocol on localhost, port 9875. Note
that the JMXMP protocol is marked as optional by the JSR 160 specification: currently,
the main open-source JMX implementation, MX4J, and the one provided with the JDK
do not support JMXMP.

To specify another URL and register the JMXConnectorServer itself with the
MBeanServer use the serviceUrl and ObjectName properties respectively:

<bean id="serverConnector"
 class="org.springframework.jmx.support.ConnectorServerFactoryBean">
 <property name="objectName" value="connector:name=rmi"/>
 <property name="serviceUrl"
 value="service:jmx:rmi://localhost/jndi/rmi://localhost:1099/myconnector"/>
</bean>

If the ObjectName property is set Spring will automatically register your connector
with the MBeanServer under that ObjectName. The example below shows the full set of
parameters which you can pass to the ConnectorServerFactoryBean when creating a
JMXConnector:

<bean id="serverConnector"
 class="org.springframework.jmx.support.ConnectorServerFactoryBean">
 <property name="objectName" value="connector:name=iiop"/>
 <property name="serviceUrl"
 value="service:jmx:iiop://localhost/jndi/iiop://localhost:900/myconnector"/>
 <property name="threaded" value="true"/>
 <property name="daemon" value="true"/>
 <property name="environment">
 <map>
 <entry key="someKey" value="someValue"/>
 </map>
 </property>
</bean>

Note that when using a RMI-based connector you need the lookup service (tnameserv or
rmiregistry) to be started in order for the name registration to complete. If you are
using Spring to export remote services for you via RMI, then Spring will already have
constructed an RMI registry. If not, you can easily start a registry using the following
snippet of configuration:

<bean id="registry" class="org.springframework.remoting.rmi.RmiRegistryFactoryBean">
 <property name="port" value="1099"/>
</bean>

Client-side connectors

To create an MBeanServerConnection to a remote JSR-160 enabled MBeanServer use the
MBeanServerConnectionFactoryBean as shown below:

<bean id="clientConnector" class="org.springframework.jmx.support.MBeanServerConnectionFactoryBean">
 <property name="serviceUrl" value="service:jmx:rmi://localhost/jndi/rmi://localhost:1099/jmxrmi"/>
</bean>

JMX over Burlap/Hessian/SOAP

JSR-160 permits extensions to the way in which communication is done between the client
and the server. The examples above are using the mandatory RMI-based implementation
required by the JSR-160 specification (IIOP and JRMP) and the (optional) JMXMP. By using
other providers or JMX implementations (such as MX4J) you
can take advantage of protocols like SOAP, Hessian, Burlap over simple HTTP or SSL and
others:

<bean id="serverConnector" class="org.springframework.jmx.support.ConnectorServerFactoryBean">
 <property name="objectName" value="connector:name=burlap"/>
 <property name="serviceUrl" value="service:jmx:burlap://localhost:9874"/>
</bean>

In the case of the above example, MX4J 3.0.0 was used; see the official MX4J
documentation for more information.

Accessing MBeans via proxies

Spring JMX allows you to create proxies that re-route calls to MBeans registered in a
local or remote MBeanServer. These proxies provide you with a standard Java interface
through which you can interact with your MBeans. The code below shows how to configure a
proxy for an MBean running in a local MBeanServer:

<bean id="proxy" class="org.springframework.jmx.access.MBeanProxyFactoryBean">
 <property name="objectName" value="bean:name=testBean"/>
 <property name="proxyInterface" value="org.springframework.jmx.IJmxTestBean"/>
</bean>

Here you can see that a proxy is created for the MBean registered under the
ObjectName: bean:name=testBean. The set of interfaces that the proxy will implement
is controlled by the proxyInterfaces property and the rules for mapping methods and
properties on these interfaces to operations and attributes on the MBean are the same
rules used by the InterfaceBasedMBeanInfoAssembler.

The MBeanProxyFactoryBean can create a proxy to any MBean that is accessible via an
MBeanServerConnection. By default, the local MBeanServer is located and used, but
you can override this and provide an MBeanServerConnection pointing to a remote
MBeanServer to cater for proxies pointing to remote MBeans:

<bean id="clientConnector"
 class="org.springframework.jmx.support.MBeanServerConnectionFactoryBean">
 <property name="serviceUrl" value="service:jmx:rmi://remotehost:9875"/>
</bean>

<bean id="proxy" class="org.springframework.jmx.access.MBeanProxyFactoryBean">
 <property name="objectName" value="bean:name=testBean"/>
 <property name="proxyInterface" value="org.springframework.jmx.IJmxTestBean"/>
 <property name="server" ref="clientConnector"/>
</bean>

Here you can see that we create an MBeanServerConnection pointing to a remote machine
using the MBeanServerConnectionFactoryBean. This MBeanServerConnection is then
passed to the MBeanProxyFactoryBean via the server property. The proxy that is
created will forward all invocations to the MBeanServer via this
MBeanServerConnection.

Notifications

Spring’s JMX offering includes comprehensive support for JMX notifications.

Registering listeners for notifications

Spring’s JMX support makes it very easy to register any number of
NotificationListeners with any number of MBeans (this includes MBeans exported by
Spring’s MBeanExporter and MBeans registered via some other mechanism). By way of an
example, consider the scenario where one would like to be informed (via a
Notification) each and every time an attribute of a target MBean changes.

package com.example;

import javax.management.AttributeChangeNotification;
import javax.management.Notification;
import javax.management.NotificationFilter;
import javax.management.NotificationListener;

public class ConsoleLoggingNotificationListener
 implements NotificationListener, NotificationFilter {

 public void handleNotification(Notification notification, Object handback) {
 System.out.println(notification);
 System.out.println(handback);
 }

 public boolean isNotificationEnabled(Notification notification) {
 return AttributeChangeNotification.class.isAssignableFrom(notification.getClass());
 }

}

<beans>

 <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
 <property name="beans">
 <map>
 <entry key="bean:name=testBean1" value-ref="testBean"/>
 </map>
 </property>
 <property name="notificationListenerMappings">
 <map>
 <entry key="bean:name=testBean1">
 <bean class="com.example.ConsoleLoggingNotificationListener"/>
 </entry>
 </map>
 </property>
 </bean>

 <bean id="testBean" class="org.springframework.jmx.JmxTestBean">
 <property name="name" value="TEST"/>
 <property name="age" value="100"/>
 </bean>

</beans>

With the above configuration in place, every time a JMX Notification is broadcast from
the target MBean (bean:name=testBean1), the ConsoleLoggingNotificationListener bean
that was registered as a listener via the notificationListenerMappings property will
be notified. The ConsoleLoggingNotificationListener bean can then take whatever action
it deems appropriate in response to the Notification.

You can also use straight bean names as the link between exported beans and listeners:

<beans>

 <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
 <property name="beans">
 <map>
 <entry key="bean:name=testBean1" value-ref="testBean"/>
 </map>
 </property>
 <property name="notificationListenerMappings">
 <map>
 <entry key="testBean">
 <bean class="com.example.ConsoleLoggingNotificationListener"/>
 </entry>
 </map>
 </property>
 </bean>

 <bean id="testBean" class="org.springframework.jmx.JmxTestBean">
 <property name="name" value="TEST"/>
 <property name="age" value="100"/>
 </bean>

</beans>

If one wants to register a single NotificationListener instance for all of the beans
that the enclosing MBeanExporter is exporting, one can use the special wildcard '*'
(sans quotes) as the key for an entry in the notificationListenerMappings property
map; for example:

<property name="notificationListenerMappings">
 <map>
 <entry key="*">
 <bean class="com.example.ConsoleLoggingNotificationListener"/>
 </entry>
 </map>
</property>

If one needs to do the inverse (that is, register a number of distinct listeners against
an MBean), then one has to use the notificationListeners list property instead (and in
preference to the notificationListenerMappings property). This time, instead of
configuring simply a NotificationListener for a single MBean, one configures
NotificationListenerBean instances…​ a NotificationListenerBean encapsulates a
NotificationListener and the ObjectName (or ObjectNames) that it is to be
registered against in an MBeanServer. The NotificationListenerBean also encapsulates
a number of other properties such as a NotificationFilter and an arbitrary handback
object that can be used in advanced JMX notification scenarios.

The configuration when using NotificationListenerBean instances is not wildly
different to what was presented previously:

<beans>

 <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
 <property name="beans">
 <map>
 <entry key="bean:name=testBean1" value-ref="testBean"/>
 </map>
 </property>
 <property name="notificationListeners">
 <list>
 <bean class="org.springframework.jmx.export.NotificationListenerBean">
 <constructor-arg>
 <bean class="com.example.ConsoleLoggingNotificationListener"/>
 </constructor-arg>
 <property name="mappedObjectNames">
 <list>
 <value>bean:name=testBean1</value>
 </list>
 </property>
 </bean>
 </list>
 </property>
 </bean>

 <bean id="testBean" class="org.springframework.jmx.JmxTestBean">
 <property name="name" value="TEST"/>
 <property name="age" value="100"/>
 </bean>

</beans>

The above example is equivalent to the first notification example. Lets assume then that
we want to be given a handback object every time a Notification is raised, and that
additionally we want to filter out extraneous Notifications by supplying a
NotificationFilter. (For a full discussion of just what a handback object is, and
indeed what a NotificationFilter is, please do consult that section of the JMX
specification (1.2) entitled 'The JMX Notification Model'.)

<beans>

 <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
 <property name="beans">
 <map>
 <entry key="bean:name=testBean1" value-ref="testBean1"/>
 <entry key="bean:name=testBean2" value-ref="testBean2"/>
 </map>
 </property>
 <property name="notificationListeners">
 <list>
 <bean class="org.springframework.jmx.export.NotificationListenerBean">
 <constructor-arg ref="customerNotificationListener"/>
 <property name="mappedObjectNames">
 <list>
 <!-- handles notifications from two distinct MBeans -->
 <value>bean:name=testBean1</value>
 <value>bean:name=testBean2</value>
 </list>
 </property>
 <property name="handback">
 <bean class="java.lang.String">
 <constructor-arg value="This could be anything..."/>
 </bean>
 </property>
 <property name="notificationFilter" ref="customerNotificationListener"/>
 </bean>
 </list>
 </property>
 </bean>

 <!-- implements both the NotificationListener and NotificationFilter interfaces -->
 <bean id="customerNotificationListener" class="com.example.ConsoleLoggingNotificationListener"/>

 <bean id="testBean1" class="org.springframework.jmx.JmxTestBean">
 <property name="name" value="TEST"/>
 <property name="age" value="100"/>
 </bean>

 <bean id="testBean2" class="org.springframework.jmx.JmxTestBean">
 <property name="name" value="ANOTHER TEST"/>
 <property name="age" value="200"/>
 </bean>

</beans>

Publishing Notifications

Spring provides support not just for registering to receive Notifications, but also
for publishing Notifications.

	[image: [Note]]	Note
	
Please note that this section is really only relevant to Spring managed beans that have
been exposed as MBeans via an MBeanExporter; any existing, user-defined MBeans should
use the standard JMX APIs for notification publication.

The key interface in Spring’s JMX notification publication support is the
NotificationPublisher interface (defined in the
org.springframework.jmx.export.notification package). Any bean that is going to be
exported as an MBean via an MBeanExporter instance can implement the related
NotificationPublisherAware interface to gain access to a NotificationPublisher
instance. The NotificationPublisherAware interface simply supplies an instance of a
NotificationPublisher to the implementing bean via a simple setter method, which the
bean can then use to publish Notifications.

As stated in the javadocs of the NotificationPublisher class, managed beans that are
publishing events via the NotificationPublisher mechanism are not responsible for
the state management of any notification listeners and the like …​ Spring’s JMX support
will take care of handling all the JMX infrastructure issues. All one need do as an
application developer is implement the NotificationPublisherAware interface and start
publishing events using the supplied NotificationPublisher instance. Note that the
NotificationPublisher will be set after the managed bean has been registered with
an MBeanServer.

Using a NotificationPublisher instance is quite straightforward…​ one simply creates
a JMX Notification instance (or an instance of an appropriate Notification
subclass), populates the notification with the data pertinent to the event that is to be
published, and one then invokes the sendNotification(Notification) on the
NotificationPublisher instance, passing in the Notification.

Find below a simple example…​ in this scenario, exported instances of the JmxTestBean
are going to publish a NotificationEvent every time the add(int, int) operation is
invoked.

package org.springframework.jmx;

import org.springframework.jmx.export.notification.NotificationPublisherAware;
import org.springframework.jmx.export.notification.NotificationPublisher;
import javax.management.Notification;

public class JmxTestBean implements IJmxTestBean, NotificationPublisherAware {

 private String name;
 private int age;
 private boolean isSuperman;
 private NotificationPublisher publisher;

 // other getters and setters omitted for clarity

 public int add(int x, int y) {
 int answer = x + y;
 this.publisher.sendNotification(new Notification("add", this, 0));
 return answer;
 }

 public void dontExposeMe() {
 throw new RuntimeException();
 }

 public void setNotificationPublisher(NotificationPublisher notificationPublisher) {
 this.publisher = notificationPublisher;
 }

}

The NotificationPublisher interface and the machinery to get it all working is one of
the nicer features of Spring’s JMX support. It does however come with the price tag of
coupling your classes to both Spring and JMX; as always, the advice here is to be
pragmatic…​ if you need the functionality offered by the NotificationPublisher and
you can accept the coupling to both Spring and JMX, then do so.

Further resources

This section contains links to further resources about JMX.

	
The JMX
homepage at Oracle

	
The JMX
specification (JSR-000003)

	
The JMX Remote API
specification (JSR-000160)

	
The MX4J homepage (an Open Source implementation of
various JMX specs)

Chapter 32. JCA CCI

Introduction

Java EE provides a specification to standardize access to enterprise information systems
(EIS): the JCA (Java EE Connector Architecture). This specification is divided into
several different parts:

	
SPI (Service provider interfaces) that the connector provider must implement. These
interfaces constitute a resource adapter which can be deployed on a Java EE
application server. In such a scenario, the server manages connection pooling,
transaction and security (managed mode). The application server is also responsible
for managing the configuration, which is held outside the client application. A
connector can be used without an application server as well; in this case, the
application must configure it directly (non-managed mode).

	
CCI (Common Client Interface) that an application can use to interact with the
connector and thus communicate with an EIS. An API for local transaction demarcation
is provided as well.

The aim of the Spring CCI support is to provide classes to access a CCI connector in
typical Spring style, leveraging the Spring Framework’s general resource and transaction
management facilities.

	[image: [Note]]	Note
	
The client side of connectors doesn’t alway use CCI. Some connectors expose their own
APIs, only providing JCA resource adapter to use the system contracts of a Java EE
container (connection pooling, global transactions, security). Spring does not offer
special support for such connector-specific APIs.

Configuring CCI

Connector configuration

The base resource to use JCA CCI is the ConnectionFactory interface. The connector
used must provide an implementation of this interface.

To use your connector, you can deploy it on your application server and fetch the
ConnectionFactory from the server’s JNDI environment (managed mode). The connector
must be packaged as a RAR file (resource adapter archive) and contain a ra.xml file to
describe its deployment characteristics. The actual name of the resource is specified
when you deploy it. To access it within Spring, simply use Spring’s
JndiObjectFactoryBean / <jee:jndi-lookup> fetch the factory by its JNDI name.

Another way to use a connector is to embed it in your application (non-managed mode),
not using an application server to deploy and configure it. Spring offers the
possibility to configure a connector as a bean, through a provided FactoryBean (
LocalConnectionFactoryBean). In this manner, you only need the connector library in
the classpath (no RAR file and no ra.xml descriptor needed). The library must be
extracted from the connector’s RAR file, if necessary.

Once you have got access to your ConnectionFactory instance, you can inject it into
your components. These components can either be coded against the plain CCI API or
leverage Spring’s support classes for CCI access (e.g. CciTemplate).

	[image: [Note]]	Note
	
When you use a connector in non-managed mode, you can’t use global transactions because
the resource is never enlisted / delisted in the current global transaction of the
current thread. The resource is simply not aware of any global Java EE transactions that
might be running.

ConnectionFactory configuration in Spring

In order to make connections to the EIS, you need to obtain a ConnectionFactory from
the application server if you are in a managed mode, or directly from Spring if you are
in a non-managed mode.

In a managed mode, you access a ConnectionFactory from JNDI; its properties will be
configured in the application server.

<jee:jndi-lookup id="eciConnectionFactory" jndi-name="eis/cicseci"/>

In non-managed mode, you must configure the ConnectionFactory you want to use in the
configuration of Spring as a JavaBean. The LocalConnectionFactoryBean class offers
this setup style, passing in the ManagedConnectionFactory implementation of your
connector, exposing the application-level CCI ConnectionFactory.

<bean id="eciManagedConnectionFactory" class="com.ibm.connector2.cics.ECIManagedConnectionFactory">
 <property name="serverName" value="TXSERIES"/>
 <property name="connectionURL" value="tcp://localhost/"/>
 <property name="portNumber" value="2006"/>
</bean>

<bean id="eciConnectionFactory" class="org.springframework.jca.support.LocalConnectionFactoryBean">
 <property name="managedConnectionFactory" ref="eciManagedConnectionFactory"/>
</bean>

	[image: [Note]]	Note
	
You can’t directly instantiate a specific ConnectionFactory. You need to go through
the corresponding implementation of the ManagedConnectionFactory interface for your
connector. This interface is part of the JCA SPI specification.

Configuring CCI connections

JCA CCI allow the developer to configure the connections to the EIS using the
ConnectionSpec implementation of your connector. In order to configure its properties,
you need to wrap the target connection factory with a dedicated adapter,
ConnectionSpecConnectionFactoryAdapter. So, the dedicated ConnectionSpec can be
configured with the property connectionSpec (as an inner bean).

This property is not mandatory because the CCI ConnectionFactory interface defines two
different methods to obtain a CCI connection. Some of the ConnectionSpec properties
can often be configured in the application server (in managed mode) or on the
corresponding local ManagedConnectionFactory implementation.

public interface ConnectionFactory implements Serializable, Referenceable {
 ...
 Connection getConnection() throws ResourceException;
 Connection getConnection(ConnectionSpec connectionSpec) throws ResourceException;
 ...
}

Spring provides a ConnectionSpecConnectionFactoryAdapter that allows for specifying a
ConnectionSpec instance to use for all operations on a given factory. If the adapter’s
connectionSpec property is specified, the adapter uses the getConnection variant
with the ConnectionSpec argument, otherwise the variant without argument.

<bean id="managedConnectionFactory"
 class="com.sun.connector.cciblackbox.CciLocalTxManagedConnectionFactory">
 <property name="connectionURL" value="jdbc:hsqldb:hsql://localhost:9001"/>
 <property name="driverName" value="org.hsqldb.jdbcDriver"/>
</bean>

<bean id="targetConnectionFactory"
 class="org.springframework.jca.support.LocalConnectionFactoryBean">
 <property name="managedConnectionFactory" ref="managedConnectionFactory"/>
</bean>

<bean id="connectionFactory"
 class="org.springframework.jca.cci.connection.ConnectionSpecConnectionFactoryAdapter">
 <property name="targetConnectionFactory" ref="targetConnectionFactory"/>
 <property name="connectionSpec">
 <bean class="com.sun.connector.cciblackbox.CciConnectionSpec">
 <property name="user" value="sa"/>
 <property name="password" value=""/>
 </bean>
 </property>
</bean>

Using a single CCI connection

If you want to use a single CCI connection, Spring provides a further
ConnectionFactory adapter to manage this. The SingleConnectionFactory adapter class
will open a single connection lazily and close it when this bean is destroyed at
application shutdown. This class will expose special Connection proxies that behave
accordingly, all sharing the same underlying physical connection.

<bean id="eciManagedConnectionFactory"
 class="com.ibm.connector2.cics.ECIManagedConnectionFactory">
 <property name="serverName" value="TEST"/>
 <property name="connectionURL" value="tcp://localhost/"/>
 <property name="portNumber" value="2006"/>
</bean>

<bean id="targetEciConnectionFactory"
 class="org.springframework.jca.support.LocalConnectionFactoryBean">
 <property name="managedConnectionFactory" ref="eciManagedConnectionFactory"/>
</bean>

<bean id="eciConnectionFactory"
 class="org.springframework.jca.cci.connection.SingleConnectionFactory">
 <property name="targetConnectionFactory" ref="targetEciConnectionFactory"/>
</bean>

	[image: [Note]]	Note
	
This ConnectionFactory adapter cannot directly be configured with a ConnectionSpec.
Use an intermediary ConnectionSpecConnectionFactoryAdapter that the
SingleConnectionFactory talks to if you require a single connection for a specific
ConnectionSpec.

Using Spring’s CCI access support

Record conversion

One of the aims of the JCA CCI support is to provide convenient facilities for
manipulating CCI records. The developer can specify the strategy to create records and
extract datas from records, for use with Spring’s CciTemplate. The following
interfaces will configure the strategy to use input and output records if you don’t want
to work with records directly in your application.

In order to create an input Record, the developer can use a dedicated implementation
of the RecordCreator interface.

public interface RecordCreator {

 Record createRecord(RecordFactory recordFactory) throws ResourceException, DataAccessException;

}

As you can see, the createRecord(..) method receives a RecordFactory instance as
parameter, which corresponds to the RecordFactory of the ConnectionFactory used.
This reference can be used to create IndexedRecord or MappedRecord instances. The
following sample shows how to use the RecordCreator interface and indexed/mapped
records.

public class MyRecordCreator implements RecordCreator {

 public Record createRecord(RecordFactory recordFactory) throws ResourceException {
 IndexedRecord input = recordFactory.createIndexedRecord("input");
 input.add(new Integer(id));
 return input;
 }

}

An output Record can be used to receive data back from the EIS. Hence, a specific
implementation of the RecordExtractor interface can be passed to Spring’s
CciTemplate for extracting data from the output Record.

public interface RecordExtractor {

 Object extractData(Record record) throws ResourceException, SQLException, DataAccessException;

}

The following sample shows how to use the RecordExtractor interface.

public class MyRecordExtractor implements RecordExtractor {

 public Object extractData(Record record) throws ResourceException {
 CommAreaRecord commAreaRecord = (CommAreaRecord) record;
 String str = new String(commAreaRecord.toByteArray());
 String field1 = string.substring(0,6);
 String field2 = string.substring(6,1);
 return new OutputObject(Long.parseLong(field1), field2);
 }

}

CciTemplate

The CciTemplate is the central class of the core CCI support package (
org.springframework.jca.cci.core). It simplifies the use of CCI since it handles the
creation and release of resources. This helps to avoid common errors like forgetting to
always close the connection. It cares for the lifecycle of connection and interaction
objects, letting application code focus on generating input records from application
data and extracting application data from output records.

The JCA CCI specification defines two distinct methods to call operations on an EIS. The
CCI Interaction interface provides two execute method signatures:

public interface javax.resource.cci.Interaction {

 ...

 boolean execute(InteractionSpec spec, Record input, Record output) throws ResourceException;

 Record execute(InteractionSpec spec, Record input) throws ResourceException;

 ...

}

Depending on the template method called, CciTemplate will know which execute method
to call on the interaction. In any case, a correctly initialized InteractionSpec
instance is mandatory.

CciTemplate.execute(..) can be used in two ways:

	
With direct Record arguments. In this case, you simply need to pass the CCI input
record in, and the returned object be the corresponding CCI output record.

	
With application objects, using record mapping. In this case, you need to provide
corresponding RecordCreator and RecordExtractor instances.

With the first approach, the following methods of the template will be used. These
methods directly correspond to those on the Interaction interface.

public class CciTemplate implements CciOperations {

 public Record execute(InteractionSpec spec, Record inputRecord)
 throws DataAccessException { ... }

 public void execute(InteractionSpec spec, Record inputRecord, Record outputRecord)
 throws DataAccessException { ... }

}

With the second approach, we need to specify the record creation and record extraction
strategies as arguments. The interfaces used are those describe in the previous section
on record conversion. The corresponding CciTemplate methods are the following:

public class CciTemplate implements CciOperations {

 public Record execute(InteractionSpec spec,
 RecordCreator inputCreator) throws DataAccessException {
 // ...
 }

 public Object execute(InteractionSpec spec, Record inputRecord,
 RecordExtractor outputExtractor) throws DataAccessException {
 // ...
 }

 public Object execute(InteractionSpec spec, RecordCreator creator,
 RecordExtractor extractor) throws DataAccessException {
 // ...
 }

}

Unless the outputRecordCreator property is set on the template (see the following
section), every method will call the corresponding execute method of the CCI
Interaction with two parameters: InteractionSpec and input Record, receiving an
output Record as return value.

CciTemplate also provides methods to create IndexRecord and MappedRecord outside a
RecordCreator implementation, through its createIndexRecord(..) and
createMappedRecord(..) methods. This can be used within DAO implementations to create
Record instances to pass into corresponding CciTemplate.execute(..) methods.

public class CciTemplate implements CciOperations {

 public IndexedRecord createIndexedRecord(String name) throws DataAccessException { ... }

 public MappedRecord createMappedRecord(String name) throws DataAccessException { ... }

}

DAO support

Spring’s CCI support provides a abstract class for DAOs, supporting injection of a
ConnectionFactory or a CciTemplate instances. The name of the class is
CciDaoSupport: It provides simple setConnectionFactory and setCciTemplate methods.
Internally, this class will create a CciTemplate instance for a passed-in
ConnectionFactory, exposing it to concrete data access implementations in subclasses.

public abstract class CciDaoSupport {

 public void setConnectionFactory(ConnectionFactory connectionFactory) {
 // ...
 }

 public ConnectionFactory getConnectionFactory() {
 // ...
 }

 public void setCciTemplate(CciTemplate cciTemplate) {
 // ...
 }

 public CciTemplate getCciTemplate() {
 // ...
 }

}

Automatic output record generation

If the connector used only supports the Interaction.execute(..) method with input and
output records as parameters (that is, it requires the desired output record to be
passed in instead of returning an appropriate output record), you can set the
outputRecordCreator property of the CciTemplate to automatically generate an output
record to be filled by the JCA connector when the response is received. This record will
be then returned to the caller of the template.

This property simply holds an implementation of the RecordCreator interface, used for
that purpose. The RecordCreator interface has already been discussed in
the section called “Record conversion”. The outputRecordCreator property must be directly specified on
the CciTemplate. This could be done in the application code like so:

cciTemplate.setOutputRecordCreator(new EciOutputRecordCreator());

Or (recommended) in the Spring configuration, if the CciTemplate is configured as a
dedicated bean instance:

<bean id="eciOutputRecordCreator" class="eci.EciOutputRecordCreator"/>

<bean id="cciTemplate" class="org.springframework.jca.cci.core.CciTemplate">
 <property name="connectionFactory" ref="eciConnectionFactory"/>
 <property name="outputRecordCreator" ref="eciOutputRecordCreator"/>
</bean>

	[image: [Note]]	Note
	
As the CciTemplate class is thread-safe, it will usually be configured as a shared
instance.

Summary

The following table summarizes the mechanisms of the CciTemplate class and the
corresponding methods called on the CCI Interaction interface:

Table 32.1. Usage of Interaction execute methods

	CciTemplate method signature	CciTemplate outputRecordCreator property	execute method called on the CCI Interaction
	Record execute(InteractionSpec, Record)
	not set
	Record execute(InteractionSpec, Record)

	Record execute(InteractionSpec, Record)
	set
	boolean execute(InteractionSpec, Record, Record)

	void execute(InteractionSpec, Record, Record)
	not set
	void execute(InteractionSpec, Record, Record)

	void execute(InteractionSpec, Record, Record)
	set
	void execute(InteractionSpec, Record, Record)

	Record execute(InteractionSpec, RecordCreator)
	not set
	Record execute(InteractionSpec, Record)

	Record execute(InteractionSpec, RecordCreator)
	set
	void execute(InteractionSpec, Record, Record)

	Record execute(InteractionSpec, Record, RecordExtractor)
	not set
	Record execute(InteractionSpec, Record)

	Record execute(InteractionSpec, Record, RecordExtractor)
	set
	void execute(InteractionSpec, Record, Record)

	Record execute(InteractionSpec, RecordCreator, RecordExtractor)
	not set
	Record execute(InteractionSpec, Record)

	Record execute(InteractionSpec, RecordCreator, RecordExtractor)
	set
	void execute(InteractionSpec, Record, Record)

Using a CCI Connection and Interaction directly

CciTemplate also offers the possibility to work directly with CCI connections and
interactions, in the same manner as JdbcTemplate and JmsTemplate. This is useful
when you want to perform multiple operations on a CCI connection or interaction, for
example.

The interface ConnectionCallback provides a CCI Connection as argument, in order to
perform custom operations on it, plus the CCI ConnectionFactory which the Connection
was created with. The latter can be useful for example to get an associated
RecordFactory instance and create indexed/mapped records, for example.

public interface ConnectionCallback {

 Object doInConnection(Connection connection, ConnectionFactory connectionFactory)
 throws ResourceException, SQLException, DataAccessException;

}

The interface InteractionCallback provides the CCI Interaction, in order to perform
custom operations on it, plus the corresponding CCI ConnectionFactory.

public interface InteractionCallback {

 Object doInInteraction(Interaction interaction, ConnectionFactory connectionFactory)
 throws ResourceException, SQLException, DataAccessException;

}

	[image: [Note]]	Note
	
InteractionSpec objects can either be shared across multiple template calls or newly
created inside every callback method. This is completely up to the DAO implementation.

Example for CciTemplate usage

In this section, the usage of the CciTemplate will be shown to acces to a CICS with
ECI mode, with the IBM CICS ECI connector.

Firstly, some initializations on the CCI InteractionSpec must be done to specify which
CICS program to access and how to interact with it.

ECIInteractionSpec interactionSpec = new ECIInteractionSpec();
interactionSpec.setFunctionName("MYPROG");
interactionSpec.setInteractionVerb(ECIInteractionSpec.SYNC_SEND_RECEIVE);

Then the program can use CCI via Spring’s template and specify mappings between custom
objects and CCI Records.

public class MyDaoImpl extends CciDaoSupport implements MyDao {

 public OutputObject getData(InputObject input) {
 ECIInteractionSpec interactionSpec = ...;

 OutputObject output = (ObjectOutput) getCciTemplate().execute(interactionSpec,
 new RecordCreator() {
 public Record createRecord(RecordFactory recordFactory) throws ResourceException {
 return new CommAreaRecord(input.toString().getBytes());
 }
 },
 new RecordExtractor() {
 public Object extractData(Record record) throws ResourceException {
 CommAreaRecord commAreaRecord = (CommAreaRecord)record;
 String str = new String(commAreaRecord.toByteArray());
 String field1 = string.substring(0,6);
 String field2 = string.substring(6,1);
 return new OutputObject(Long.parseLong(field1), field2);
 }
 });

 return output;
 }
}

As discussed previously, callbacks can be used to work directly on CCI connections or
interactions.

public class MyDaoImpl extends CciDaoSupport implements MyDao {

 public OutputObject getData(InputObject input) {
 ObjectOutput output = (ObjectOutput) getCciTemplate().execute(
 new ConnectionCallback() {
 public Object doInConnection(Connection connection,
 ConnectionFactory factory) throws ResourceException {

 // do something...

 }
 });
 }
 return output;
 }

}

	[image: [Note]]	Note
	
With a ConnectionCallback, the Connection used will be managed and closed by the
CciTemplate, but any interactions created on the connection must be managed by the
callback implementation.

For a more specific callback, you can implement an InteractionCallback. The passed-in
Interaction will be managed and closed by the CciTemplate in this case.

public class MyDaoImpl extends CciDaoSupport implements MyDao {

 public String getData(String input) {
 ECIInteractionSpec interactionSpec = ...;
 String output = (String) getCciTemplate().execute(interactionSpec,
 new InteractionCallback() {
 public Object doInInteraction(Interaction interaction,
 ConnectionFactory factory) throws ResourceException {
 Record input = new CommAreaRecord(inputString.getBytes());
 Record output = new CommAreaRecord();
 interaction.execute(holder.getInteractionSpec(), input, output);
 return new String(output.toByteArray());
 }
 });
 return output;
 }

}

For the examples above, the corresponding configuration of the involved Spring beans
could look like this in non-managed mode:

<bean id="managedConnectionFactory" class="com.ibm.connector2.cics.ECIManagedConnectionFactory">
 <property name="serverName" value="TXSERIES"/>
 <property name="connectionURL" value="local:"/>
 <property name="userName" value="CICSUSER"/>
 <property name="password" value="CICS"/>
</bean>

<bean id="connectionFactory" class="org.springframework.jca.support.LocalConnectionFactoryBean">
 <property name="managedConnectionFactory" ref="managedConnectionFactory"/>
</bean>

<bean id="component" class="mypackage.MyDaoImpl">
 <property name="connectionFactory" ref="connectionFactory"/>
</bean>

In managed mode (that is, in a Java EE environment), the configuration could look as
follows:

<jee:jndi-lookup id="connectionFactory" jndi-name="eis/cicseci"/>

<bean id="component" class="MyDaoImpl">
 <property name="connectionFactory" ref="connectionFactory"/>
</bean>

Modeling CCI access as operation objects

The org.springframework.jca.cci.object package contains support classes that allow you
to access the EIS in a different style: through reusable operation objects, analogous to
Spring’s JDBC operation objects (see JDBC chapter). This will usually encapsulate the
CCI API: an application-level input object will be passed to the operation object, so it
can construct the input record and then convert the received record data to an
application-level output object and return it.

	[image: [Note]]	Note
	
This approach is internally based on the CciTemplate class and the
RecordCreator / RecordExtractor interfaces, reusing the machinery of Spring’s core
CCI support.

MappingRecordOperation

MappingRecordOperation essentially performs the same work as CciTemplate, but
represents a specific, pre-configured operation as an object. It provides two template
methods to specify how to convert an input object to a input record, and how to convert
an output record to an output object (record mapping):

	
createInputRecord(..) to specify how to convert an input object to an input Record

	
extractOutputData(..) to specify how to extract an output object from an output
Record

Here are the signatures of these methods:

public abstract class MappingRecordOperation extends EisOperation {

 ...

 protected abstract Record createInputRecord(RecordFactory recordFactory,
 Object inputObject) throws ResourceException, DataAccessException {
 // ...
 }

 protected abstract Object extractOutputData(Record outputRecord)
 throws ResourceException, SQLException, DataAccessException {
 // ...
 }

 ...

}

Thereafter, in order to execute an EIS operation, you need to use a single execute
method, passing in an application-level input object and receiving an application-level
output object as result:

public abstract class MappingRecordOperation extends EisOperation {

 ...

 public Object execute(Object inputObject) throws DataAccessException {
 }

 ...
}

As you can see, contrary to the CciTemplate class, this execute(..) method does not
have an InteractionSpec as argument. Instead, the InteractionSpec is global to the
operation. The following constructor must be used to instantiate an operation object
with a specific InteractionSpec:

InteractionSpec spec = ...;
MyMappingRecordOperation eisOperation = new MyMappingRecordOperation(getConnectionFactory(), spec);
...

MappingCommAreaOperation

Some connectors use records based on a COMMAREA which represents an array of bytes
containing parameters to send to the EIS and data returned by it. Spring provides a
special operation class for working directly on COMMAREA rather than on records. The
MappingCommAreaOperation class extends the MappingRecordOperation class to provide
such special COMMAREA support. It implicitly uses the CommAreaRecord class as input
and output record type, and provides two new methods to convert an input object into an
input COMMAREA and the output COMMAREA into an output object.

public abstract class MappingCommAreaOperation extends MappingRecordOperation {

 ...

 protected abstract byte[] objectToBytes(Object inObject)
 throws IOException, DataAccessException;

 protected abstract Object bytesToObject(byte[] bytes)
 throws IOException, DataAccessException;

 ...

}

Automatic output record generation

As every MappingRecordOperation subclass is based on CciTemplate internally, the same
way to automatically generate output records as with CciTemplate is available. Every
operation object provides a corresponding setOutputRecordCreator(..) method. For
further information, see the section called “Automatic output record generation”.

Summary

The operation object approach uses records in the same manner as the CciTemplate class.

Table 32.2. Usage of Interaction execute methods

	MappingRecordOperation method signature	MappingRecordOperation outputRecordCreator property	execute method called on the CCI Interaction
	Object execute(Object)
	not set
	Record execute(InteractionSpec, Record)

	Object execute(Object)
	set
	boolean execute(InteractionSpec, Record, Record)

Example for MappingRecordOperation usage

In this section, the usage of the MappingRecordOperation will be shown to access a
database with the Blackbox CCI connector.

	[image: [Note]]	Note
	
The original version of this connector is provided by the Java EE SDK (version 1.3),
available from Oracle.

Firstly, some initializations on the CCI InteractionSpec must be done to specify which
SQL request to execute. In this sample, we directly define the way to convert the
parameters of the request to a CCI record and the way to convert the CCI result record
to an instance of the Person class.

public class PersonMappingOperation extends MappingRecordOperation {

 public PersonMappingOperation(ConnectionFactory connectionFactory) {
 setConnectionFactory(connectionFactory);
 CciInteractionSpec interactionSpec = new CciConnectionSpec();
 interactionSpec.setSql("select * from person where person_id=?");
 setInteractionSpec(interactionSpec);
 }

 protected Record createInputRecord(RecordFactory recordFactory,
 Object inputObject) throws ResourceException {
 Integer id = (Integer) inputObject;
 IndexedRecord input = recordFactory.createIndexedRecord("input");
 input.add(new Integer(id));
 return input;
 }

 protected Object extractOutputData(Record outputRecord)
 throws ResourceException, SQLException {
 ResultSet rs = (ResultSet) outputRecord;
 Person person = null;
 if (rs.next()) {
 Person person = new Person();
 person.setId(rs.getInt("person_id"));
 person.setLastName(rs.getString("person_last_name"));
 person.setFirstName(rs.getString("person_first_name"));
 }
 return person;
 }
}

Then the application can execute the operation object, with the person identifier as
argument. Note that operation object could be set up as shared instance, as it is
thread-safe.

public class MyDaoImpl extends CciDaoSupport implements MyDao {

 public Person getPerson(int id) {
 PersonMappingOperation query = new PersonMappingOperation(getConnectionFactory());
 Person person = (Person) query.execute(new Integer(id));
 return person;
 }
}

The corresponding configuration of Spring beans could look as follows in non-managed mode:

<bean id="managedConnectionFactory"
 class="com.sun.connector.cciblackbox.CciLocalTxManagedConnectionFactory">
 <property name="connectionURL" value="jdbc:hsqldb:hsql://localhost:9001"/>
 <property name="driverName" value="org.hsqldb.jdbcDriver"/>
</bean>

<bean id="targetConnectionFactory"
 class="org.springframework.jca.support.LocalConnectionFactoryBean">
 <property name="managedConnectionFactory" ref="managedConnectionFactory"/>
</bean>

<bean id="connectionFactory"
 class="org.springframework.jca.cci.connection.ConnectionSpecConnectionFactoryAdapter">
 <property name="targetConnectionFactory" ref="targetConnectionFactory"/>
 <property name="connectionSpec">
 <bean class="com.sun.connector.cciblackbox.CciConnectionSpec">
 <property name="user" value="sa"/>
 <property name="password" value=""/>
 </bean>
 </property>
</bean>

<bean id="component" class="MyDaoImpl">
 <property name="connectionFactory" ref="connectionFactory"/>
</bean>

In managed mode (that is, in a Java EE environment), the configuration could look as
follows:

<jee:jndi-lookup id="targetConnectionFactory" jndi-name="eis/blackbox"/>

<bean id="connectionFactory"
 class="org.springframework.jca.cci.connection.ConnectionSpecConnectionFactoryAdapter">
 <property name="targetConnectionFactory" ref="targetConnectionFactory"/>
 <property name="connectionSpec">
 <bean class="com.sun.connector.cciblackbox.CciConnectionSpec">
 <property name="user" value="sa"/>
 <property name="password" value=""/>
 </bean>
 </property>
</bean>

<bean id="component" class="MyDaoImpl">
 <property name="connectionFactory" ref="connectionFactory"/>
</bean>

Example for MappingCommAreaOperation usage

In this section, the usage of the MappingCommAreaOperation will be shown: accessing a
CICS with ECI mode with the IBM CICS ECI connector.

Firstly, the CCI InteractionSpec needs to be initialized to specify which CICS program
to access and how to interact with it.

public abstract class EciMappingOperation extends MappingCommAreaOperation {

 public EciMappingOperation(ConnectionFactory connectionFactory, String programName) {
 setConnectionFactory(connectionFactory);
 ECIInteractionSpec interactionSpec = new ECIInteractionSpec(),
 interactionSpec.setFunctionName(programName);
 interactionSpec.setInteractionVerb(ECIInteractionSpec.SYNC_SEND_RECEIVE);
 interactionSpec.setCommareaLength(30);
 setInteractionSpec(interactionSpec);
 setOutputRecordCreator(new EciOutputRecordCreator());
 }

 private static class EciOutputRecordCreator implements RecordCreator {
 public Record createRecord(RecordFactory recordFactory) throws ResourceException {
 return new CommAreaRecord();
 }
 }

}

The abstract EciMappingOperation class can then be subclassed to specify mappings
between custom objects and Records.

public class MyDaoImpl extends CciDaoSupport implements MyDao {

 public OutputObject getData(Integer id) {
 EciMappingOperation query = new EciMappingOperation(getConnectionFactory(), "MYPROG") {

 protected abstract byte[] objectToBytes(Object inObject) throws IOException {
 Integer id = (Integer) inObject;
 return String.valueOf(id);
 }

 protected abstract Object bytesToObject(byte[] bytes) throws IOException;
 String str = new String(bytes);
 String field1 = str.substring(0,6);
 String field2 = str.substring(6,1);
 String field3 = str.substring(7,1);
 return new OutputObject(field1, field2, field3);
 }
 });

 return (OutputObject) query.execute(new Integer(id));
 }

}

The corresponding configuration of Spring beans could look as follows in non-managed mode:

<bean id="managedConnectionFactory" class="com.ibm.connector2.cics.ECIManagedConnectionFactory">
 <property name="serverName" value="TXSERIES"/>
 <property name="connectionURL" value="local:"/>
 <property name="userName" value="CICSUSER"/>
 <property name="password" value="CICS"/>
</bean>

<bean id="connectionFactory" class="org.springframework.jca.support.LocalConnectionFactoryBean">
 <property name="managedConnectionFactory" ref="managedConnectionFactory"/>
</bean>

<bean id="component" class="MyDaoImpl">
 <property name="connectionFactory" ref="connectionFactory"/>
</bean>

In managed mode (that is, in a Java EE environment), the configuration could look as
follows:

<jee:jndi-lookup id="connectionFactory" jndi-name="eis/cicseci"/>

<bean id="component" class="MyDaoImpl">
 <property name="connectionFactory" ref="connectionFactory"/>
</bean>

Transactions

JCA specifies several levels of transaction support for resource adapters. The kind of
transactions that your resource adapter supports is specified in its ra.xml file.
There are essentially three options: none (for example with CICS EPI connector), local
transactions (for example with a CICS ECI connector), global transactions (for example
with an IMS connector).

<connector>
 <resourceadapter>
 <!-- <transaction-support>NoTransaction</transaction-support> -->
 <!-- <transaction-support>LocalTransaction</transaction-support> -->
 <transaction-support>XATransaction</transaction-support>
 <resourceadapter>
<connector>

For global transactions, you can use Spring’s generic transaction infrastructure to
demarcate transactions, with JtaTransactionManager as backend (delegating to the Java
EE server’s distributed transaction coordinator underneath).

For local transactions on a single CCI ConnectionFactory, Spring provides a specific
transaction management strategy for CCI, analogous to the DataSourceTransactionManager
for JDBC. The CCI API defines a local transaction object and corresponding local
transaction demarcation methods. Spring’s CciLocalTransactionManager executes such
local CCI transactions, fully compliant with Spring’s generic
PlatformTransactionManager abstraction.

<jee:jndi-lookup id="eciConnectionFactory" jndi-name="eis/cicseci"/>

<bean id="eciTransactionManager"
 class="org.springframework.jca.cci.connection.CciLocalTransactionManager">
 <property name="connectionFactory" ref="eciConnectionFactory"/>
</bean>

Both transaction strategies can be used with any of Spring’s transaction demarcation
facilities, be it declarative or programmatic. This is a consequence of Spring’s generic
PlatformTransactionManager abstraction, which decouples transaction demarcation from
the actual execution strategy. Simply switch between JtaTransactionManager and
CciLocalTransactionManager as needed, keeping your transaction demarcation as-is.

For more information on Spring’s transaction facilities, see the chapter entitled
Chapter 17, Transaction Management.

Chapter 33. Email

Introduction

Library dependencies

The following JAR needs to be on the classpath of your application in order to use
the Spring Framework’s email library.

	
The JavaMail library

This library is freely available on the web — for example, in Maven Central as
com.sun.mail:javax.mail.

The Spring Framework provides a helpful utility library for sending email that shields
the user from the specifics of the underlying mailing system and is responsible for low
level resource handling on behalf of the client.

The org.springframework.mail package is the root level package for the Spring
Framework’s email support. The central interface for sending emails is the MailSender
interface; a simple value object encapsulating the properties of a simple mail such as
from and to (plus many others) is the SimpleMailMessage class. This package
also contains a hierarchy of checked exceptions which provide a higher level of
abstraction over the lower level mail system exceptions with the root exception being
MailException. Please refer to the javadocs for more information on the rich mail
exception hierarchy.

The org.springframework.mail.javamail.JavaMailSender interface adds specialized
JavaMail features such as MIME message support to the MailSender interface (from
which it inherits). JavaMailSender also provides a callback interface for preparing
a 'MimeMessage', called org.springframework.mail.javamail.MimeMessagePreparator.

Usage

Let’s assume there is a business interface called OrderManager:

public interface OrderManager {

 void placeOrder(Order order);

}

Let us also assume that there is a requirement stating that an email message with an
order number needs to be generated and sent to a customer placing the relevant order.

Basic MailSender and SimpleMailMessage usage

import org.springframework.mail.MailException;
import org.springframework.mail.MailSender;
import org.springframework.mail.SimpleMailMessage;

public class SimpleOrderManager implements OrderManager {

 private MailSender mailSender;
 private SimpleMailMessage templateMessage;

 public void setMailSender(MailSender mailSender) {
 this.mailSender = mailSender;
 }

 public void setTemplateMessage(SimpleMailMessage templateMessage) {
 this.templateMessage = templateMessage;
 }

 public void placeOrder(Order order) {

 // Do the business calculations...

 // Call the collaborators to persist the order...

 // Create a thread safe "copy" of the template message and customize it
 SimpleMailMessage msg = new SimpleMailMessage(this.templateMessage);
 msg.setTo(order.getCustomer().getEmailAddress());
 msg.setText(
 "Dear " + order.getCustomer().getFirstName()
 + order.getCustomer().getLastName()
 + ", thank you for placing order. Your order number is "
 + order.getOrderNumber());
 try{
 this.mailSender.send(msg);
 }
 catch (MailException ex) {
 // simply log it and go on...
 System.err.println(ex.getMessage());
 }
 }

}

Find below the bean definitions for the above code:

<bean id="mailSender" class="org.springframework.mail.javamail.JavaMailSenderImpl">
 <property name="host" value="mail.mycompany.com"/>
</bean>

<!-- this is a template message that we can pre-load with default state -->
<bean id="templateMessage" class="org.springframework.mail.SimpleMailMessage">
 <property name="from" value="customerservice@mycompany.com"/>
 <property name="subject" value="Your order"/>
</bean>

<bean id="orderManager" class="com.mycompany.businessapp.support.SimpleOrderManager">
 <property name="mailSender" ref="mailSender"/>
 <property name="templateMessage" ref="templateMessage"/>
</bean>

Using the JavaMailSender and the MimeMessagePreparator

Here is another implementation of OrderManager using the MimeMessagePreparator
callback interface. Please note in this case that the mailSender property is of type
JavaMailSender so that we are able to use the JavaMail MimeMessage class:

import javax.mail.Message;
import javax.mail.MessagingException;
import javax.mail.internet.InternetAddress;
import javax.mail.internet.MimeMessage;

import javax.mail.internet.MimeMessage;
import org.springframework.mail.MailException;
import org.springframework.mail.javamail.JavaMailSender;
import org.springframework.mail.javamail.MimeMessagePreparator;

public class SimpleOrderManager implements OrderManager {

 private JavaMailSender mailSender;

 public void setMailSender(JavaMailSender mailSender) {
 this.mailSender = mailSender;
 }

 public void placeOrder(final Order order) {
 // Do the business calculations...
 // Call the collaborators to persist the order...

 MimeMessagePreparator preparator = new MimeMessagePreparator() {
 public void prepare(MimeMessage mimeMessage) throws Exception {
 mimeMessage.setRecipient(Message.RecipientType.TO,
 new InternetAddress(order.getCustomer().getEmailAddress()));
 mimeMessage.setFrom(new InternetAddress("mail@mycompany.com"));
 mimeMessage.setText("Dear " + order.getCustomer().getFirstName() + " " +
 order.getCustomer().getLastName() + ", thanks for your order. " +
 "Your order number is " + order.getOrderNumber() + ".");
 }
 };

 try {
 this.mailSender.send(preparator);
 }
 catch (MailException ex) {
 // simply log it and go on...
 System.err.println(ex.getMessage());
 }
 }

}

	[image: [Note]]	Note
	
The mail code is a crosscutting concern and could well be a candidate for refactoring
into a custom Spring AOP aspect, which then could be executed at appropriate
joinpoints on the OrderManager target.

The Spring Framework’s mail support ships with the standard JavaMail implementation.
Please refer to the relevant javadocs for more information.

Using the JavaMail MimeMessageHelper

A class that comes in pretty handy when dealing with JavaMail messages is the
org.springframework.mail.javamail.MimeMessageHelper class, which shields you from
having to use the verbose JavaMail API. Using the MimeMessageHelper it is pretty easy
to create a MimeMessage:

// of course you would use DI in any real-world cases
JavaMailSenderImpl sender = new JavaMailSenderImpl();
sender.setHost("mail.host.com");

MimeMessage message = sender.createMimeMessage();
MimeMessageHelper helper = new MimeMessageHelper(message);
helper.setTo("test@host.com");
helper.setText("Thank you for ordering!");

sender.send(message);

Sending attachments and inline resources

Multipart email messages allow for both attachments and inline resources. Examples of
inline resources would be images or a stylesheet you want to use in your message, but
that you don’t want displayed as an attachment.

Attachments

The following example shows you how to use the MimeMessageHelper to send an email
along with a single JPEG image attachment.

JavaMailSenderImpl sender = new JavaMailSenderImpl();
sender.setHost("mail.host.com");

MimeMessage message = sender.createMimeMessage();

// use the true flag to indicate you need a multipart message
MimeMessageHelper helper = new MimeMessageHelper(message, true);
helper.setTo("test@host.com");

helper.setText("Check out this image!");

// let's attach the infamous windows Sample file (this time copied to c:/)
FileSystemResource file = new FileSystemResource(new File("c:/Sample.jpg"));
helper.addAttachment("CoolImage.jpg", file);

sender.send(message);

Inline resources

The following example shows you how to use the MimeMessageHelper to send an email
along with an inline image.

JavaMailSenderImpl sender = new JavaMailSenderImpl();
sender.setHost("mail.host.com");

MimeMessage message = sender.createMimeMessage();

// use the true flag to indicate you need a multipart message
MimeMessageHelper helper = new MimeMessageHelper(message, true);
helper.setTo("test@host.com");

// use the true flag to indicate the text included is HTML
helper.setText("<html><body></body></html>", true);

// let's include the infamous windows Sample file (this time copied to c:/)
FileSystemResource res = new FileSystemResource(new File("c:/Sample.jpg"));
helper.addInline("identifier1234", res);

sender.send(message);

	[image: [Warning]]	Warning
	
Inline resources are added to the MimeMessage using the specified Content-ID
(identifier1234 in the above example). The order in which you are adding the text
and the resource are very important. Be sure to first add the text and after
that the resources. If you are doing it the other way around, it won’t work!

Creating email content using a templating library

The code in the previous examples explicitly created the content of the email message,
using methods calls such as message.setText(..). This is fine for simple cases, and it
is okay in the context of the aforementioned examples, where the intent was to show you
the very basics of the API.

In your typical enterprise application though, you are not going to create the content
of your emails using the above approach for a number of reasons.

	
Creating HTML-based email content in Java code is tedious and error prone

	
There is no clear separation between display logic and business logic

	
Changing the display structure of the email content requires writing Java code,
recompiling, redeploying…​

Typically the approach taken to address these issues is to use a template library such
as FreeMarker or Velocity to define the display structure of email content. This leaves
your code tasked only with creating the data that is to be rendered in the email
template and sending the email. It is definitely a best practice for when the content of
your emails becomes even moderately complex, and with the Spring Framework’s support
classes for FreeMarker and Velocity becomes quite easy to do. Find below an example of
using the Velocity template library to create email content.

A Velocity-based example

To use Velocity to create your email template(s), you will
need to have the Velocity libraries available on your classpath. You will also need to
create one or more Velocity templates for the email content that your application needs.
Find below the Velocity template that this example will be using. As you can see it is
HTML-based, and since it is plain text it can be created using your favorite HTML or
text editor.

in the com/foo/package
<html>
 <body>
 <h3>Hi ${user.userName}, welcome to the Chipping Sodbury On-the-Hill message boards!</h3>

 <div>
 Your email address is ${user.emailAddress}.
 </div>
 </body>
</html>

Find below some simple code and Spring XML configuration that makes use of the above
Velocity template to create email content and send email(s).

package com.foo;

import org.apache.velocity.app.VelocityEngine;
import org.springframework.mail.javamail.JavaMailSender;
import org.springframework.mail.javamail.MimeMessageHelper;
import org.springframework.mail.javamail.MimeMessagePreparator;
import org.springframework.ui.velocity.VelocityEngineUtils;

import javax.mail.internet.MimeMessage;
import java.util.HashMap;
import java.util.Map;

public class SimpleRegistrationService implements RegistrationService {

 private JavaMailSender mailSender;
 private VelocityEngine velocityEngine;

 public void setMailSender(JavaMailSender mailSender) {
 this.mailSender = mailSender;
 }

 public void setVelocityEngine(VelocityEngine velocityEngine) {
 this.velocityEngine = velocityEngine;
 }

 public void register(User user) {

 // Do the registration logic...

 sendConfirmationEmail(user);
 }

 private void sendConfirmationEmail(final User user) {
 MimeMessagePreparator preparator = new MimeMessagePreparator() {
 public void prepare(MimeMessage mimeMessage) throws Exception {
 MimeMessageHelper message = new MimeMessageHelper(mimeMessage);
 message.setTo(user.getEmailAddress());
 message.setFrom("webmaster@csonth.gov.uk"); // could be parameterized...
 Map model = new HashMap();
 model.put("user", user);
 String text = VelocityEngineUtils.mergeTemplateIntoString(
 velocityEngine, "com/dns/registration-confirmation.vm", model);
 message.setText(text, true);
 }
 };
 this.mailSender.send(preparator);
 }

}

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean id="mailSender" class="org.springframework.mail.javamail.JavaMailSenderImpl">
 <property name="host" value="mail.csonth.gov.uk"/>
 </bean>

 <bean id="registrationService" class="com.foo.SimpleRegistrationService">
 <property name="mailSender" ref="mailSender"/>
 <property name="velocityEngine" ref="velocityEngine"/>
 </bean>

 <bean id="velocityEngine" class="org.springframework.ui.velocity.VelocityEngineFactoryBean">
 <property name="velocityProperties">
 <value>
 resource.loader=class
 class.resource.loader.class=org.apache.velocity.runtime.resource.loader.ClasspathResourceLoader
 </value>
 </property>
 </bean>

</beans>

Chapter 34. Task Execution and Scheduling

Introduction

The Spring Framework provides abstractions for asynchronous execution and scheduling of
tasks with the TaskExecutor and TaskScheduler interfaces, respectively. Spring also
features implementations of those interfaces that support thread pools or delegation to
CommonJ within an application server environment. Ultimately the use of these
implementations behind the common interfaces abstracts away the differences between Java
SE 5, Java SE 6 and Java EE environments.

Spring also features integration classes for supporting scheduling with the Timer,
part of the JDK since 1.3, and the Quartz Scheduler (http://quartz-scheduler.org).
Both of those schedulers are set up using a FactoryBean with optional references to
Timer or Trigger instances, respectively. Furthermore, a convenience class for both
the Quartz Scheduler and the Timer is available that allows you to invoke a method of
an existing target object (analogous to the normal MethodInvokingFactoryBean
operation).

The Spring TaskExecutor abstraction

Executors are the JDK name for the concept of thread pools. The "executor" naming is
due to the fact that there is no guarantee that the underlying implementation is
actually a pool; an executor may be single-threaded or even synchronous. Spring’s
abstraction hides implementation details between Java SE and Java EE environments.

Spring’s TaskExecutor interface is identical to the java.util.concurrent.Executor
interface. In fact, originally, its primary reason for existence was to abstract away
the need for Java 5 when using thread pools. The interface has a single method
execute(Runnable task) that accepts a task for execution based on the semantics
and configuration of the thread pool.

The TaskExecutor was originally created to give other Spring components an abstraction
for thread pooling where needed. Components such as the ApplicationEventMulticaster,
JMS’s AbstractMessageListenerContainer, and Quartz integration all use the
TaskExecutor abstraction to pool threads. However, if your beans need thread pooling
behavior, it is possible to use this abstraction for your own needs.

TaskExecutor types

There are a number of pre-built implementations of TaskExecutor included with the
Spring distribution. In all likelihood, you should never need to implement your own.
The common out-of-the-box variants are:

	
SyncTaskExecutor
This implementation does not execute invocations asynchronously. Instead, each
invocation takes place in the calling thread. It is primarily used in situations
where multi-threading is not necessary such as in simple test cases.

	
SimpleAsyncTaskExecutor
This implementation does not reuse any threads, rather it starts up a new thread
for each invocation. However, it does support a concurrency limit which will block
any invocations that are over the limit until a slot has been freed up. If you
are looking for true pooling, see ThreadPoolTaskExecutor below.

	
ConcurrentTaskExecutor
This implementation is an adapter for a java.util.concurrent.Executor instance.
There is an alternative, ThreadPoolTaskExecutor, that exposes the Executor
configuration parameters as bean properties. There is rarely a need to use
ConcurrentTaskExecutor directly, but if the ThreadPoolTaskExecutor is not
flexible enough for your needs, then ConcurrentTaskExecutor is an alternative.

	
ThreadPoolTaskExecutor
This implementation is the most commonly used one. It exposes bean properties for
configuring a java.util.concurrent.ThreadPoolExecutor and wraps it in a TaskExecutor.
If you need to adapt to a different kind of java.util.concurrent.Executor, it is
recommended that you use a ConcurrentTaskExecutor instead.

	
WorkManagerTaskExecutor
This implementation uses a CommonJ WorkManager as its backing service provider
and is the central convenience class for setting up CommonJ-based thread pool
integration on WebLogic/WebSphere within a Spring application context.

	
DefaultManagedTaskExecutor
This implementation uses a JNDI-obtained ManagedExecutorService in a JSR-236
compatible runtime environment such as a Java EE 7+ application server,
replacing a CommonJ WorkManager for that purpose.

Using a TaskExecutor

Spring’s TaskExecutor implementations are used as simple JavaBeans. In the example
below, we define a bean that uses the ThreadPoolTaskExecutor to asynchronously print
out a set of messages.

import org.springframework.core.task.TaskExecutor;

public class TaskExecutorExample {

 private class MessagePrinterTask implements Runnable {

 private String message;

 public MessagePrinterTask(String message) {
 this.message = message;
 }

 public void run() {
 System.out.println(message);
 }
 }

 private TaskExecutor taskExecutor;

 public TaskExecutorExample(TaskExecutor taskExecutor) {
 this.taskExecutor = taskExecutor;
 }

 public void printMessages() {
 for(int i = 0; i < 25; i++) {
 taskExecutor.execute(new MessagePrinterTask("Message" + i));
 }
 }
}

As you can see, rather than retrieving a thread from the pool and executing yourself,
you add your Runnable to the queue and the TaskExecutor uses its internal rules to
decide when the task gets executed.

To configure the rules that the TaskExecutor will use, simple bean properties have
been exposed.

<bean id="taskExecutor" class="org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor">
 <property name="corePoolSize" value="5"/>
 <property name="maxPoolSize" value="10"/>
 <property name="queueCapacity" value="25"/>
</bean>

<bean id="taskExecutorExample" class="TaskExecutorExample">
 <constructor-arg ref="taskExecutor"/>
</bean>

The Spring TaskScheduler abstraction

In addition to the TaskExecutor abstraction, Spring 3.0 introduces a TaskScheduler
with a variety of methods for scheduling tasks to run at some point in the future.

public interface TaskScheduler {

 ScheduledFuture schedule(Runnable task, Trigger trigger);

 ScheduledFuture schedule(Runnable task, Date startTime);

 ScheduledFuture scheduleAtFixedRate(Runnable task, Date startTime, long period);

 ScheduledFuture scheduleAtFixedRate(Runnable task, long period);

 ScheduledFuture scheduleWithFixedDelay(Runnable task, Date startTime, long delay);

 ScheduledFuture scheduleWithFixedDelay(Runnable task, long delay);
}

The simplest method is the one named 'schedule' that takes a Runnable and Date only.
That will cause the task to run once after the specified time. All of the other methods
are capable of scheduling tasks to run repeatedly. The fixed-rate and fixed-delay
methods are for simple, periodic execution, but the method that accepts a Trigger is
much more flexible.

Trigger interface

The Trigger interface is essentially inspired by JSR-236 which, as of Spring 3.0,
was not yet officially implemented. The basic idea of the Trigger is that execution
times may be determined based on past execution outcomes or even arbitrary conditions.
If these determinations do take into account the outcome of the preceding execution,
that information is available within a TriggerContext. The Trigger interface itself
is quite simple:

public interface Trigger {

 Date nextExecutionTime(TriggerContext triggerContext);
}

As you can see, the TriggerContext is the most important part. It encapsulates all of
the relevant data, and is open for extension in the future if necessary. The
TriggerContext is an interface (a SimpleTriggerContext implementation is used by
default). Here you can see what methods are available for Trigger implementations.

public interface TriggerContext {

 Date lastScheduledExecutionTime();

 Date lastActualExecutionTime();

 Date lastCompletionTime();
}

Trigger implementations

Spring provides two implementations of the Trigger interface. The most interesting one
is the CronTrigger. It enables the scheduling of tasks based on cron expressions. For
example, the following task is being scheduled to run 15 minutes past each hour but only
during the 9-to-5 "business hours" on weekdays.

scheduler.schedule(task, new CronTrigger("0 15 9-17 * * MON-FRI"));

The other out-of-the-box implementation is a PeriodicTrigger that accepts a fixed
period, an optional initial delay value, and a boolean to indicate whether the period
should be interpreted as a fixed-rate or a fixed-delay. Since the TaskScheduler
interface already defines methods for scheduling tasks at a fixed-rate or with a
fixed-delay, those methods should be used directly whenever possible. The value of the
PeriodicTrigger implementation is that it can be used within components that rely on
the Trigger abstraction. For example, it may be convenient to allow periodic triggers,
cron-based triggers, and even custom trigger implementations to be used interchangeably.
Such a component could take advantage of dependency injection so that such Triggers
could be configured externally and therefore easily modified or extended.

TaskScheduler implementations

As with Spring’s TaskExecutor abstraction, the primary benefit of the TaskScheduler
arrangement is that an application’s scheduling needs are decoupled from the deployment
environment. This abstraction level is particularly relevant when deploying to an
application server environment where threads should not be created directly by the
application itself. For such scenarios, Spring provides a TimerManagerTaskScheduler
delegating to a CommonJ TimerManager on WebLogic/WebSphere as well as a more recent
DefaultManagedTaskScheduler delegating to a JSR-236 ManagedScheduledExecutorService
in a Java EE 7+ environment, both typically configured with a JNDI lookup.

Whenever external thread management is not a requirement, a simpler alternative is
a local ScheduledExecutorService setup within the application which can be adapted
through Spring’s ConcurrentTaskScheduler. As a convenience, Spring also provides a
ThreadPoolTaskScheduler which internally delegates to a ScheduledExecutorService,
providing common bean-style configuration along the lines of ThreadPoolTaskExecutor.
These variants work perfectly fine for locally embedded thread pool setups in lenient
application server environments as well, in particular on Tomcat and Jetty.

Annotation Support for Scheduling and Asynchronous Execution

Spring provides annotation support for both task scheduling and asynchronous method
execution.

Enable scheduling annotations

To enable support for @Scheduled and @Async annotations add @EnableScheduling and
@EnableAsync to one of your @Configuration classes:

@Configuration
@EnableAsync
@EnableScheduling
public class AppConfig {
}

You are free to pick and choose the relevant annotations for your application. For
example, if you only need support for @Scheduled, simply omit @EnableAsync. For more
fine-grained control you can additionally implement the SchedulingConfigurer and/or
AsyncConfigurer interfaces. See the javadocs for full details.

If you prefer XML configuration use the <task:annotation-driven> element.

<task:annotation-driven executor="myExecutor" scheduler="myScheduler"/>
<task:executor id="myExecutor" pool-size="5"/>
<task:scheduler id="myScheduler" pool-size="10"/>

Notice with the above XML that an executor reference is provided for handling those
tasks that correspond to methods with the @Async annotation, and the scheduler
reference is provided for managing those methods annotated with @Scheduled.

	[image: [Note]]	Note
	
The default advice mode for processing @Async annotations is "proxy" which allows
for interception of calls through the proxy only; local calls within the same class
cannot get intercepted that way. For a more advanced mode of interception, consider
switching to "aspectj" mode in combination with compile-time or load-time weaving.

The @Scheduled annotation

The @Scheduled annotation can be added to a method along with trigger metadata. For
example, the following method would be invoked every 5 seconds with a fixed delay,
meaning that the period will be measured from the completion time of each preceding
invocation.

@Scheduled(fixedDelay=5000)
public void doSomething() {
 // something that should execute periodically
}

If a fixed rate execution is desired, simply change the property name specified within
the annotation. The following would be executed every 5 seconds measured between the
successive start times of each invocation.

@Scheduled(fixedRate=5000)
public void doSomething() {
 // something that should execute periodically
}

For fixed-delay and fixed-rate tasks, an initial delay may be specified indicating the
number of milliseconds to wait before the first execution of the method.

@Scheduled(initialDelay=1000, fixedRate=5000)
public void doSomething() {
 // something that should execute periodically
}

If simple periodic scheduling is not expressive enough, then a cron expression may be
provided. For example, the following will only execute on weekdays.

@Scheduled(cron="*/5 * * * * MON-FRI")
public void doSomething() {
 // something that should execute on weekdays only
}

	[image: [Tip]]	Tip
	
You can additionally use the zone attribute to specify the time zone in which the cron
expression will be resolved.

Notice that the methods to be scheduled must have void returns and must not expect any
arguments. If the method needs to interact with other objects from the Application
Context, then those would typically have been provided through dependency injection.

	[image: [Note]]	Note
	
As of Spring Framework 4.3, @Scheduled methods are supported on beans of any scope.

Make sure that you are not initializing multiple instances of the same @Scheduled
annotation class at runtime, unless you do want to schedule callbacks to each such
instance. Related to this, make sure that you do not use @Configurable on bean
classes which are annotated with @Scheduled and registered as regular Spring beans
with the container: You would get double initialization otherwise, once through the
container and once through the @Configurable aspect, with the consequence of each
@Scheduled method being invoked twice.

The @Async annotation

The @Async annotation can be provided on a method so that invocation of that method
will occur asynchronously. In other words, the caller will return immediately upon
invocation and the actual execution of the method will occur in a task that has been
submitted to a Spring TaskExecutor. In the simplest case, the annotation may be
applied to a void-returning method.

@Async
void doSomething() {
 // this will be executed asynchronously
}

Unlike the methods annotated with the @Scheduled annotation, these methods can expect
arguments, because they will be invoked in the "normal" way by callers at runtime rather
than from a scheduled task being managed by the container. For example, the following is
a legitimate application of the @Async annotation.

@Async
void doSomething(String s) {
 // this will be executed asynchronously
}

Even methods that return a value can be invoked asynchronously. However, such methods
are required to have a Future typed return value. This still provides the benefit of
asynchronous execution so that the caller can perform other tasks prior to calling
get() on that Future.

@Async
Future<String> returnSomething(int i) {
 // this will be executed asynchronously
}

	[image: [Tip]]	Tip
	
@Async methods may not only declare a regular java.util.concurrent.Future return type
but also Spring’s org.springframework.util.concurrent.ListenableFuture or, as of Spring
4.2, JDK 8’s java.util.concurrent.CompletableFuture: for richer interaction with the
asynchronous task and for immediate composition with further processing steps.

@Async can not be used in conjunction with lifecycle callbacks such as
@PostConstruct. To asynchronously initialize Spring beans you currently have to use
a separate initializing Spring bean that invokes the @Async annotated method on the
target then.

public class SampleBeanImpl implements SampleBean {

 @Async
 void doSomething() {
 // ...
 }

}

public class SampleBeanInitializer {

 private final SampleBean bean;

 public SampleBeanInitializer(SampleBean bean) {
 this.bean = bean;
 }

 @PostConstruct
 public void initialize() {
 bean.doSomething();
 }

}

	[image: [Note]]	Note
	
There is no direct XML equivalent for @Async since such methods should be designed
for asynchronous execution in the first place, not externally re-declared to be async.
However, you may manually set up Spring’s AsyncExecutionInterceptor with Spring AOP,
in combination with a custom pointcut.

Executor qualification with @Async

By default when specifying @Async on a method, the executor that will be used is the
one supplied to the 'annotation-driven' element as described above. However, the value
attribute of the @Async annotation can be used when needing to indicate that an
executor other than the default should be used when executing a given method.

@Async("otherExecutor")
void doSomething(String s) {
 // this will be executed asynchronously by "otherExecutor"
}

In this case, "otherExecutor" may be the name of any Executor bean in the Spring
container, or may be the name of a qualifier associated with any Executor, e.g. as
specified with the <qualifier> element or Spring’s @Qualifier annotation.

Exception management with @Async

When an @Async method has a Future typed return value, it is easy to manage
an exception that was thrown during the method execution as this exception will
be thrown when calling get on the Future result. With a void return type
however, the exception is uncaught and cannot be transmitted. For those cases, an
AsyncUncaughtExceptionHandler can be provided to handle such exceptions.

public class MyAsyncUncaughtExceptionHandler implements AsyncUncaughtExceptionHandler {

 @Override
 public void handleUncaughtException(Throwable ex, Method method, Object... params) {
 // handle exception
 }
}

By default, the exception is simply logged. A custom AsyncUncaughtExceptionHandler can
be defined via AsyncConfigurer or the task:annotation-driven XML element.

The task namespace

Beginning with Spring 3.0, there is an XML namespace for configuring TaskExecutor and
TaskScheduler instances. It also provides a convenient way to configure tasks to be
scheduled with a trigger.

The 'scheduler' element

The following element will create a ThreadPoolTaskScheduler instance with the
specified thread pool size.

<task:scheduler id="scheduler" pool-size="10"/>

The value provided for the 'id' attribute will be used as the prefix for thread names
within the pool. The 'scheduler' element is relatively straightforward. If you do not
provide a 'pool-size' attribute, the default thread pool will only have a single thread.
There are no other configuration options for the scheduler.

The 'executor' element

The following will create a ThreadPoolTaskExecutor instance:

<task:executor id="executor" pool-size="10"/>

As with the scheduler above, the value provided for the 'id' attribute will be used as
the prefix for thread names within the pool. As far as the pool size is concerned, the
'executor' element supports more configuration options than the 'scheduler' element. For
one thing, the thread pool for a ThreadPoolTaskExecutor is itself more configurable.
Rather than just a single size, an executor’s thread pool may have different values for
the core and the max size. If a single value is provided then the executor will
have a fixed-size thread pool (the core and max sizes are the same). However, the
'executor' element’s 'pool-size' attribute also accepts a range in the form of "min-max".

<task:executor
 id="executorWithPoolSizeRange"
 pool-size="5-25"
 queue-capacity="100"/>

As you can see from that configuration, a 'queue-capacity' value has also been provided.
The configuration of the thread pool should also be considered in light of the
executor’s queue capacity. For the full description of the relationship between pool
size and queue capacity, consult the documentation for
ThreadPoolExecutor.
The main idea is that when a task is submitted, the executor will first try to use a
free thread if the number of active threads is currently less than the core size. If the
core size has been reached, then the task will be added to the queue as long as its
capacity has not yet been reached. Only then, if the queue’s capacity has been
reached, will the executor create a new thread beyond the core size. If the max size has
also been reached, then the executor will reject the task.

By default, the queue is unbounded, but this is rarely the desired configuration,
because it can lead to OutOfMemoryErrors if enough tasks are added to that queue while
all pool threads are busy. Furthermore, if the queue is unbounded, then the max size has
no effect at all. Since the executor will always try the queue before creating a new
thread beyond the core size, a queue must have a finite capacity for the thread pool to
grow beyond the core size (this is why a fixed size pool is the only sensible case
when using an unbounded queue).

In a moment, we will review the effects of the keep-alive setting which adds yet another
factor to consider when providing a pool size configuration. First, let’s consider the
case, as mentioned above, when a task is rejected. By default, when a task is rejected,
a thread pool executor will throw a TaskRejectedException. However, the rejection
policy is actually configurable. The exception is thrown when using the default
rejection policy which is the AbortPolicy implementation. For applications where some
tasks can be skipped under heavy load, either the DiscardPolicy or
DiscardOldestPolicy may be configured instead. Another option that works well for
applications that need to throttle the submitted tasks under heavy load is the
CallerRunsPolicy. Instead of throwing an exception or discarding tasks, that policy
will simply force the thread that is calling the submit method to run the task itself.
The idea is that such a caller will be busy while running that task and not able to
submit other tasks immediately. Therefore it provides a simple way to throttle the
incoming load while maintaining the limits of the thread pool and queue. Typically this
allows the executor to "catch up" on the tasks it is handling and thereby frees up some
capacity on the queue, in the pool, or both. Any of these options can be chosen from an
enumeration of values available for the 'rejection-policy' attribute on the 'executor'
element.

<task:executor
 id="executorWithCallerRunsPolicy"
 pool-size="5-25"
 queue-capacity="100"
 rejection-policy="CALLER_RUNS"/>

Finally, the keep-alive setting determines the time limit (in seconds) for which threads
may remain idle before being terminated. If there are more than the core number of threads
currently in the pool, after waiting this amount of time without processing a task, excess
threads will get terminated. A time value of zero will cause excess threads to terminate
immediately after executing a task without remaining follow-up work in the task queue.

<task:executor
 id="executorWithKeepAlive"
 pool-size="5-25"
 keep-alive="120"/>

The 'scheduled-tasks' element

The most powerful feature of Spring’s task namespace is the support for configuring
tasks to be scheduled within a Spring Application Context. This follows an approach
similar to other "method-invokers" in Spring, such as that provided by the JMS namespace
for configuring Message-driven POJOs. Basically a "ref" attribute can point to any
Spring-managed object, and the "method" attribute provides the name of a method to be
invoked on that object. Here is a simple example.

<task:scheduled-tasks scheduler="myScheduler">
 <task:scheduled ref="beanA" method="methodA" fixed-delay="5000"/>
</task:scheduled-tasks>

<task:scheduler id="myScheduler" pool-size="10"/>

As you can see, the scheduler is referenced by the outer element, and each individual
task includes the configuration of its trigger metadata. In the preceding example, that
metadata defines a periodic trigger with a fixed delay indicating the number of
milliseconds to wait after each task execution has completed. Another option is
'fixed-rate', indicating how often the method should be executed regardless of how long
any previous execution takes. Additionally, for both fixed-delay and fixed-rate tasks an
'initial-delay' parameter may be specified indicating the number of milliseconds to wait
before the first execution of the method. For more control, a "cron" attribute may be
provided instead. Here is an example demonstrating these other options.

<task:scheduled-tasks scheduler="myScheduler">
 <task:scheduled ref="beanA" method="methodA" fixed-delay="5000" initial-delay="1000"/>
 <task:scheduled ref="beanB" method="methodB" fixed-rate="5000"/>
 <task:scheduled ref="beanC" method="methodC" cron="*/5 * * * * MON-FRI"/>
</task:scheduled-tasks>

<task:scheduler id="myScheduler" pool-size="10"/>

Using the Quartz Scheduler

Quartz uses Trigger, Job and JobDetail objects to realize scheduling of all kinds
of jobs. For the basic concepts behind Quartz, have a look at
http://quartz-scheduler.org. For convenience purposes, Spring offers a couple of
classes that simplify the usage of Quartz within Spring-based applications.

Using the JobDetailFactoryBean

Quartz JobDetail objects contain all information needed to run a job. Spring provides a
JobDetailFactoryBean which provides bean-style properties for XML configuration purposes.
Let’s have a look at an example:

<bean name="exampleJob" class="org.springframework.scheduling.quartz.JobDetailFactoryBean">
 <property name="jobClass" value="example.ExampleJob"/>
 <property name="jobDataAsMap">
 <map>
 <entry key="timeout" value="5"/>
 </map>
 </property>
</bean>

The job detail configuration has all information it needs to run the job (ExampleJob).
The timeout is specified in the job data map. The job data map is available through the
JobExecutionContext (passed to you at execution time), but the JobDetail also gets
its properties from the job data mapped to properties of the job instance. So in this
case, if the ExampleJob contains a bean property named timeout, the JobDetail
will have it applied automatically:

package example;

public class ExampleJob extends QuartzJobBean {

 private int timeout;

 /**
 * Setter called after the ExampleJob is instantiated
 * with the value from the JobDetailFactoryBean (5)
 */
 public void setTimeout(int timeout) {
 this.timeout = timeout;
 }

 protected void executeInternal(JobExecutionContext ctx) throws JobExecutionException {
 // do the actual work
 }

}

All additional properties from the job data map are of course available to you as well.

	[image: [Note]]	Note
	
Using the name and group properties, you can modify the name and the group
of the job, respectively. By default, the name of the job matches the bean name
of the JobDetailFactoryBean (in the example above, this is exampleJob).

Using the MethodInvokingJobDetailFactoryBean

Often you just need to invoke a method on a specific object. Using the
MethodInvokingJobDetailFactoryBean you can do exactly this:

<bean id="jobDetail" class="org.springframework.scheduling.quartz.MethodInvokingJobDetailFactoryBean">
 <property name="targetObject" ref="exampleBusinessObject"/>
 <property name="targetMethod" value="doIt"/>
</bean>

The above example will result in the doIt method being called on the
exampleBusinessObject method (see below):

public class ExampleBusinessObject {

 // properties and collaborators

 public void doIt() {
 // do the actual work
 }
}

<bean id="exampleBusinessObject" class="examples.ExampleBusinessObject"/>

Using the MethodInvokingJobDetailFactoryBean, you don’t need to create one-line jobs
that just invoke a method, and you only need to create the actual business object and
wire up the detail object.

By default, Quartz Jobs are stateless, resulting in the possibility of jobs interfering
with each other. If you specify two triggers for the same JobDetail, it might be
possible that before the first job has finished, the second one will start. If
JobDetail classes implement the Stateful interface, this won’t happen. The second
job will not start before the first one has finished. To make jobs resulting from the
MethodInvokingJobDetailFactoryBean non-concurrent, set the concurrent flag to
false.

<bean id="jobDetail" class="org.springframework.scheduling.quartz.MethodInvokingJobDetailFactoryBean">
 <property name="targetObject" ref="exampleBusinessObject"/>
 <property name="targetMethod" value="doIt"/>
 <property name="concurrent" value="false"/>
</bean>

	[image: [Note]]	Note
	
By default, jobs will run in a concurrent fashion.

Wiring up jobs using triggers and the SchedulerFactoryBean

We’ve created job details and jobs. We’ve also reviewed the convenience bean that allows
you to invoke a method on a specific object. Of course, we still need to schedule the
jobs themselves. This is done using triggers and a SchedulerFactoryBean. Several
triggers are available within Quartz and Spring offers two Quartz FactoryBean
implementations with convenient defaults: CronTriggerFactoryBean and
SimpleTriggerFactoryBean.

Triggers need to be scheduled. Spring offers a SchedulerFactoryBean that exposes
triggers to be set as properties. SchedulerFactoryBean schedules the actual jobs with
those triggers.

Find below a couple of examples:

<bean id="simpleTrigger" class="org.springframework.scheduling.quartz.SimpleTriggerFactoryBean">
 <!-- see the example of method invoking job above -->
 <property name="jobDetail" ref="jobDetail"/>
 <!-- 10 seconds -->
 <property name="startDelay" value="10000"/>
 <!-- repeat every 50 seconds -->
 <property name="repeatInterval" value="50000"/>
</bean>

<bean id="cronTrigger" class="org.springframework.scheduling.quartz.CronTriggerFactoryBean">
 <property name="jobDetail" ref="exampleJob"/>
 <!-- run every morning at 6 AM -->
 <property name="cronExpression" value="0 0 6 * * ?"/>
</bean>

Now we’ve set up two triggers, one running every 50 seconds with a starting delay of 10
seconds and one every morning at 6 AM. To finalize everything, we need to set up the
SchedulerFactoryBean:

<bean class="org.springframework.scheduling.quartz.SchedulerFactoryBean">
 <property name="triggers">
 <list>
 <ref bean="cronTrigger"/>
 <ref bean="simpleTrigger"/>
 </list>
 </property>
</bean>

More properties are available for the SchedulerFactoryBean for you to set, such as the
calendars used by the job details, properties to customize Quartz with, etc. Have a look
at the
SchedulerFactoryBean
javadocs for more information.

Chapter 35. Dynamic language support

Introduction

Spring 2.0 introduces comprehensive support for using classes and objects that have been
defined using a dynamic language (such as JRuby) with Spring. This support allows you to
write any number of classes in a supported dynamic language, and have the Spring
container transparently instantiate, configure and dependency inject the resulting
objects.

The dynamic languages currently supported are:

	
JRuby 1.5+

	
Groovy 1.8+

	
BeanShell 2.0

Why only these languages?

The supported languages were chosen because a) the languages have a lot of traction in
the Java enterprise community, b) no requests were made for other languages at the time
that this support was added, and c) the Spring developers were most familiar with
them.

Fully working examples of where this dynamic language support can be immediately useful
are described in the section called “Scenarios”.

A first example

This bulk of this chapter is concerned with describing the dynamic language support in
detail. Before diving into all of the ins and outs of the dynamic language support,
let’s look at a quick example of a bean defined in a dynamic language. The dynamic
language for this first bean is Groovy (the basis of this example was taken from the
Spring test suite, so if you want to see equivalent examples in any of the other
supported languages, take a look at the source code).

Find below the Messenger interface that the Groovy bean is going to be implementing,
and note that this interface is defined in plain Java. Dependent objects that are
injected with a reference to the Messenger won’t know that the underlying
implementation is a Groovy script.

package org.springframework.scripting;

public interface Messenger {

 String getMessage();

}

Here is the definition of a class that has a dependency on the Messenger interface.

package org.springframework.scripting;

public class DefaultBookingService implements BookingService {

 private Messenger messenger;

 public void setMessenger(Messenger messenger) {
 this.messenger = messenger;
 }

 public void processBooking() {
 // use the injected Messenger object...
 }

}

Here is an implementation of the Messenger interface in Groovy.

// from the file 'Messenger.groovy'
package org.springframework.scripting.groovy;

// import the Messenger interface (written in Java) that is to be implemented
import org.springframework.scripting.Messenger

// define the implementation in Groovy
class GroovyMessenger implements Messenger {

 String message

}

Finally, here are the bean definitions that will effect the injection of the
Groovy-defined Messenger implementation into an instance of the
DefaultBookingService class.

	[image: [Note]]	Note
	
To use the custom dynamic language tags to define dynamic-language-backed beans, you
need to have the XML Schema preamble at the top of your Spring XML configuration file.
You also need to be using a Spring ApplicationContext implementation as your IoC
container. Using the dynamic-language-backed beans with a plain BeanFactory
implementation is supported, but you have to manage the plumbing of the Spring internals
to do so.

For more information on schema-based configuration, see Chapter 41, XML Schema-based configuration.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:lang="http://www.springframework.org/schema/lang"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/lang http://www.springframework.org/schema/lang/spring-lang.xsd">

 <!-- this is the bean definition for the Groovy-backed Messenger implementation -->
 <lang:groovy id="messenger" script-source="classpath:Messenger.groovy">
 <lang:property name="message" value="I Can Do The Frug"/>
 </lang:groovy>

 <!-- an otherwise normal bean that will be injected by the Groovy-backed Messenger -->
 <bean id="bookingService" class="x.y.DefaultBookingService">
 <property name="messenger" ref="messenger"/>
 </bean>

</beans>

The bookingService bean (a DefaultBookingService) can now use its private
messenger member variable as normal because the Messenger instance that was injected
into it is a Messenger instance. There is nothing special going on here, just
plain Java and plain Groovy.

Hopefully the above XML snippet is self-explanatory, but don’t worry unduly if it isn’t.
Keep reading for the in-depth detail on the whys and wherefores of the above
configuration.

Defining beans that are backed by dynamic languages

This section describes exactly how you define Spring managed beans in any of the
supported dynamic languages.

Please note that this chapter does not attempt to explain the syntax and idioms of the
supported dynamic languages. For example, if you want to use Groovy to write certain of
the classes in your application, then the assumption is that you already know Groovy. If
you need further details about the dynamic languages themselves, please
consult the section called “Further resources” at the end of this chapter.

Common concepts

The steps involved in using dynamic-language-backed beans are as follows:

	
Write the test for the dynamic language source code (naturally)

	
Then write the dynamic language source code itself :)

	
Define your dynamic-language-backed beans using the appropriate <lang:language/>
element in the XML configuration (you can of course define such beans programmatically
using the Spring API - although you will have to consult the source code for
directions on how to do this as this type of advanced configuration is not covered in
this chapter). Note this is an iterative step. You will need at least one bean
definition per dynamic language source file (although the same dynamic language source
file can of course be referenced by multiple bean definitions).

The first two steps (testing and writing your dynamic language source files) are beyond
the scope of this chapter. Refer to the language specification and / or reference manual
for your chosen dynamic language and crack on with developing your dynamic language
source files. You will first want to read the rest of this chapter though, as
Spring’s dynamic language support does make some (small) assumptions about the contents
of your dynamic language source files.

The <lang:language/> element

The final step involves defining dynamic-language-backed bean definitions, one for each
bean that you want to configure (this is no different from normal JavaBean
configuration). However, instead of specifying the fully qualified classname of the
class that is to be instantiated and configured by the container, you use the
<lang:language/> element to define the dynamic language-backed bean.

Each of the supported languages has a corresponding <lang:language/> element:

	
<lang:jruby/> (JRuby)

	
<lang:groovy/> (Groovy)

	
<lang:bsh/> (BeanShell)

The exact attributes and child elements that are available for configuration depends on
exactly which language the bean has been defined in (the language-specific sections
below provide the full lowdown on this).

Refreshable beans

One of the (if not the) most compelling value adds of the dynamic language support
in Spring is the'refreshable bean' feature.

A refreshable bean is a dynamic-language-backed bean that with a small amount of
configuration, a dynamic-language-backed bean can monitor changes in its underlying
source file resource, and then reload itself when the dynamic language source file is
changed (for example when a developer edits and saves changes to the file on the
filesystem).

This allows a developer to deploy any number of dynamic language source files as part of
an application, configure the Spring container to create beans backed by dynamic
language source files (using the mechanisms described in this chapter), and then later,
as requirements change or some other external factor comes into play, simply edit a
dynamic language source file and have any change they make reflected in the bean that is
backed by the changed dynamic language source file. There is no need to shut down a
running application (or redeploy in the case of a web application). The
dynamic-language-backed bean so amended will pick up the new state and logic from the
changed dynamic language source file.

	[image: [Note]]	Note
	
Please note that this feature is off by default.

Let’s take a look at an example to see just how easy it is to start using refreshable
beans. To turn on the refreshable beans feature, you simply have to specify exactly
one additional attribute on the <lang:language/> element of your bean definition.
So if we stick with the example from earlier in this
chapter, here’s what we would change in the Spring XML configuration to effect
refreshable beans:

<beans>

 <!-- this bean is now 'refreshable' due to the presence of the 'refresh-check-delay' attribute -->
 <lang:groovy id="messenger"
 refresh-check-delay="5000" <!-- switches refreshing on with 5 seconds between checks -->
 script-source="classpath:Messenger.groovy">
 <lang:property name="message" value="I Can Do The Frug"/>
 </lang:groovy>

 <bean id="bookingService" class="x.y.DefaultBookingService">
 <property name="messenger" ref="messenger"/>
 </bean>

</beans>

That really is all you have to do. The 'refresh-check-delay' attribute defined on the
'messenger' bean definition is the number of milliseconds after which the bean will be
refreshed with any changes made to the underlying dynamic language source file. You can
turn off the refresh behavior by assigning a negative value to the
'refresh-check-delay' attribute. Remember that, by default, the refresh behavior is
disabled. If you don’t want the refresh behavior, then simply don’t define the attribute.

If we then run the following application we can exercise the refreshable feature; please
do excuse the 'jumping-through-hoops-to-pause-the-execution' shenanigans in this
next slice of code. The System.in.read() call is only there so that the execution of
the program pauses while I (the author) go off and edit the underlying dynamic language
source file so that the refresh will trigger on the dynamic-language-backed bean when
the program resumes execution.

import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;
import org.springframework.scripting.Messenger;

public final class Boot {

 public static void main(final String[] args) throws Exception {
 ApplicationContext ctx = new ClassPathXmlApplicationContext("beans.xml");
 Messenger messenger = (Messenger) ctx.getBean("messenger");
 System.out.println(messenger.getMessage());
 // pause execution while I go off and make changes to the source file...
 System.in.read();
 System.out.println(messenger.getMessage());
 }
}

Let’s assume then, for the purposes of this example, that all calls to the
getMessage() method of Messenger implementations have to be changed such that the
message is surrounded by quotes. Below are the changes that I (the author) make to the
Messenger.groovy source file when the execution of the program is paused.

package org.springframework.scripting

class GroovyMessenger implements Messenger {

 private String message = "Bingo"

 public String getMessage() {
 // change the implementation to surround the message in quotes
 return "'" + this.message + "'"
 }

 public void setMessage(String message) {
 this.message = message
 }
}

When the program executes, the output before the input pause will be I Can Do The
Frug. After the change to the source file is made and saved, and the program resumes
execution, the result of calling the getMessage() method on the
dynamic-language-backed Messenger implementation will be 'I Can Do The Frug'
(notice the inclusion of the additional quotes).

It is important to understand that changes to a script will not trigger a refresh if
the changes occur within the window of the 'refresh-check-delay' value. It is equally
important to understand that changes to the script are not actually 'picked up' until
a method is called on the dynamic-language-backed bean. It is only when a method is
called on a dynamic-language-backed bean that it checks to see if its underlying script
source has changed. Any exceptions relating to refreshing the script (such as
encountering a compilation error, or finding that the script file has been deleted) will
result in a fatal exception being propagated to the calling code.

The refreshable bean behavior described above does not apply to dynamic language
source files defined using the <lang:inline-script/> element notation (see
the section called “Inline dynamic language source files”). Additionally, it only applies to beans where
changes to the underlying source file can actually be detected; for example, by code
that checks the last modified date of a dynamic language source file that exists on the
filesystem.

Inline dynamic language source files

The dynamic language support can also cater for dynamic language source files that are
embedded directly in Spring bean definitions. More specifically, the
<lang:inline-script/> element allows you to define dynamic language source immediately
inside a Spring configuration file. An example will perhaps make the inline script
feature crystal clear:

<lang:groovy id="messenger">
 <lang:inline-script>

package org.springframework.scripting.groovy;

import org.springframework.scripting.Messenger

class GroovyMessenger implements Messenger {
 String message
}

 </lang:inline-script>
 <lang:property name="message" value="I Can Do The Frug"/>
</lang:groovy>

If we put to one side the issues surrounding whether it is good practice to define
dynamic language source inside a Spring configuration file, the <lang:inline-script/>
element can be useful in some scenarios. For instance, we might want to quickly add a
Spring Validator implementation to a Spring MVC Controller. This is but a moment’s
work using inline source. (See the section called “Scripted Validators” for such an
example.)

Find below an example of defining the source for a JRuby-based bean directly in a Spring
XML configuration file using the inline: notation. (Notice the use of the <
characters to denote a '<' character. In such a case surrounding the inline source in
a <![CDATA[]]> region might be better.)

<lang:jruby id="messenger" script-interfaces="org.springframework.scripting.Messenger">
 <lang:inline-script>

require 'java'

include_class 'org.springframework.scripting.Messenger'

class RubyMessenger < Messenger

 def setMessage(message)
 @@message = message
 end

 def getMessage
 @@message
 end

end

 </lang:inline-script>
 <lang:property name="message" value="Hello World!"/>
</lang:jruby>

Understanding Constructor Injection in the context of dynamic-language-backed beans

There is one very important thing to be aware of with regard to Spring’s dynamic
language support. Namely, it is not (currently) possible to supply constructor arguments
to dynamic-language-backed beans (and hence constructor-injection is not available for
dynamic-language-backed beans). In the interests of making this special handling of
constructors and properties 100% clear, the following mixture of code and configuration
will not work.

// from the file 'Messenger.groovy'
package org.springframework.scripting.groovy;

import org.springframework.scripting.Messenger

class GroovyMessenger implements Messenger {

 GroovyMessenger() {}

 // this constructor is not available for Constructor Injection
 GroovyMessenger(String message) {
 this.message = message;
 }

 String message

 String anotherMessage

}

<lang:groovy id="badMessenger"
 script-source="classpath:Messenger.groovy">
 <!-- this next constructor argument will not be injected into the GroovyMessenger -->
 <!-- in fact, this isn't even allowed according to the schema -->
 <constructor-arg value="This will not work"/>

 <!-- only property values are injected into the dynamic-language-backed object -->
 <lang:property name="anotherMessage" value="Passed straight through to the dynamic-language-backed object"/>

</lang>

In practice this limitation is not as significant as it first appears since setter
injection is the injection style favored by the overwhelming majority of developers
anyway (let’s leave the discussion as to whether that is a good thing to another day).

JRuby beans

The JRuby library dependencies

The JRuby scripting support in Spring requires the following libraries to be on the
classpath of your application.

	
jruby.jar

From the JRuby homepage…​

"JRuby is an 100% pure-Java implementation of the Ruby programming language."

In keeping with the Spring philosophy of offering choice, Spring’s dynamic language
support also supports beans defined in the JRuby language. The JRuby language is based
on the quite intuitive Ruby language, and has support for inline regular expressions,
blocks (closures), and a whole host of other features that do make solutions for some
domain problems a whole lot easier to develop.

The implementation of the JRuby dynamic language support in Spring is interesting in
that what happens is this: Spring creates a JDK dynamic proxy implementing all of the
interfaces that are specified in the 'script-interfaces' attribute value of the
<lang:ruby> element (this is why you must supply at least one interface in the
value of the attribute, and (accordingly) program to interfaces when using JRuby-backed
beans).

Let us look at a fully working example of using a JRuby-based bean. Here is the JRuby
implementation of the Messenger interface that was defined earlier in this chapter
(for your convenience it is repeated below).

package org.springframework.scripting;

public interface Messenger {

 String getMessage();

}

require 'java'

class RubyMessenger
 include org.springframework.scripting.Messenger

 def setMessage(message)
 @@message = message
 end

 def getMessage
 @@message
 end
end

this last line is not essential (but see below)
RubyMessenger.new

And here is the Spring XML that defines an instance of the RubyMessenger JRuby bean.

<lang:jruby id="messageService"
 script-interfaces="org.springframework.scripting.Messenger"
 script-source="classpath:RubyMessenger.rb">

 <lang:property name="message" value="Hello World!"/>

</lang:jruby>

Take note of the last line of that JRuby source ('RubyMessenger.new'). When using
JRuby in the context of Spring’s dynamic language support, you are encouraged to
instantiate and return a new instance of the JRuby class that you want to use as a
dynamic-language-backed bean as the result of the execution of your JRuby source. You
can achieve this by simply instantiating a new instance of your JRuby class on the last
line of the source file like so:

require 'java'

include_class 'org.springframework.scripting.Messenger'

class definition same as above...

instantiate and return a new instance of the RubyMessenger class
RubyMessenger.new

If you forget to do this, it is not the end of the world; this will however result in
Spring having to trawl (reflectively) through the type representation of your JRuby
class looking for a class to instantiate. In the grand scheme of things this will be so
fast that you’ll never notice it, but it is something that can be avoided by simply
having a line such as the one above as the last line of your JRuby script. If you don’t
supply such a line, or if Spring cannot find a JRuby class in your script to instantiate
then an opaque ScriptCompilationException will be thrown immediately after the source
is executed by the JRuby interpreter. The key text that identifies this as the root
cause of an exception can be found immediately below (so if your Spring container throws
the following exception when creating your dynamic-language-backed bean and the
following text is there in the corresponding stacktrace, this will hopefully allow you
to identify and then easily rectify the issue):

org.springframework.scripting.ScriptCompilationException: Compilation of JRuby script returned ''

To rectify this, simply instantiate a new instance of whichever class you want to expose
as a JRuby-dynamic-language-backed bean (as shown above). Please also note that you can
actually define as many classes and objects as you want in your JRuby script; what is
important is that the source file as a whole must return an object (for Spring to
configure).

See the section called “Scenarios” for some scenarios where you might want to use
JRuby-based beans.

Groovy beans

The Groovy library dependencies

The Groovy scripting support in Spring requires the following libraries to be on the
classpath of your application.

	
groovy-1.8.jar

	
asm-3.2.jar

	
antlr-2.7.7.jar

From the Groovy homepage…​

"Groovy is an agile dynamic language for the Java 2 Platform that has many of the
features that people like so much in languages like Python, Ruby and Smalltalk, making
them available to Java developers using a Java-like syntax. "

If you have read this chapter straight from the top, you will already have
seen an example of a Groovy-dynamic-language-backed
bean. Let’s look at another example (again using an example from the Spring test suite).

package org.springframework.scripting;

public interface Calculator {

 int add(int x, int y);

}

Here is an implementation of the Calculator interface in Groovy.

// from the file 'calculator.groovy'
package org.springframework.scripting.groovy

class GroovyCalculator implements Calculator {

 int add(int x, int y) {
 x + y
 }

}

<-- from the file 'beans.xml' -->
<beans>
 <lang:groovy id="calculator" script-source="classpath:calculator.groovy"/>
</beans>

Lastly, here is a small application to exercise the above configuration.

package org.springframework.scripting;

import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;

public class Main {

 public static void Main(String[] args) {
 ApplicationContext ctx = new ClassPathXmlApplicationContext("beans.xml");
 Calculator calc = (Calculator) ctx.getBean("calculator");
 System.out.println(calc.add(2, 8));
 }
}

The resulting output from running the above program will be (unsurprisingly) 10.
(Exciting example, huh? Remember that the intent is to illustrate the concept. Please
consult the dynamic language showcase project for a more complex example, or indeed
the section called “Scenarios” later in this chapter).

It is important that you do not define more than one class per Groovy source file.
While this is perfectly legal in Groovy, it is (arguably) a bad practice: in the
interests of a consistent approach, you should (in the opinion of this author) respect
the standard Java conventions of one (public) class per source file.

Customizing Groovy objects via a callback

The GroovyObjectCustomizer interface is a callback that allows you to hook additional
creation logic into the process of creating a Groovy-backed bean. For example,
implementations of this interface could invoke any required initialization method(s), or
set some default property values, or specify a custom MetaClass.

public interface GroovyObjectCustomizer {

 void customize(GroovyObject goo);
}

The Spring Framework will instantiate an instance of your Groovy-backed bean, and will
then pass the created GroovyObject to the specified GroovyObjectCustomizer if one
has been defined. You can do whatever you like with the supplied GroovyObject
reference: it is expected that the setting of a custom MetaClass is what most folks
will want to do with this callback, and you can see an example of doing that below.

public final class SimpleMethodTracingCustomizer implements GroovyObjectCustomizer {

 public void customize(GroovyObject goo) {
 DelegatingMetaClass metaClass = new DelegatingMetaClass(goo.getMetaClass()) {

 public Object invokeMethod(Object object, String methodName, Object[] arguments) {
 System.out.println("Invoking '" + methodName + "'.");
 return super.invokeMethod(object, methodName, arguments);
 }
 };
 metaClass.initialize();
 goo.setMetaClass(metaClass);
 }

}

A full discussion of meta-programming in Groovy is beyond the scope of the Spring
reference manual. Consult the relevant section of the Groovy reference manual, or do a
search online: there are plenty of articles concerning this topic. Actually making use
of a GroovyObjectCustomizer is easy if you are using the Spring namespace support.

<!-- define the GroovyObjectCustomizer just like any other bean -->
<bean id="tracingCustomizer" class="example.SimpleMethodTracingCustomizer"/>

 <!-- ... and plug it into the desired Groovy bean via the 'customizer-ref' attribute -->
 <lang:groovy id="calculator"
 script-source="classpath:org/springframework/scripting/groovy/Calculator.groovy"
 customizer-ref="tracingCustomizer"/>

If you are not using the Spring namespace support, you can still use the
GroovyObjectCustomizer functionality.

<bean id="calculator" class="org.springframework.scripting.groovy.GroovyScriptFactory">
 <constructor-arg value="classpath:org/springframework/scripting/groovy/Calculator.groovy"/>
 <!-- define the GroovyObjectCustomizer (as an inner bean) -->
 <constructor-arg>
 <bean id="tracingCustomizer" class="example.SimpleMethodTracingCustomizer"/>
 </constructor-arg>
</bean>

<bean class="org.springframework.scripting.support.ScriptFactoryPostProcessor"/>

	[image: [Note]]	Note
	
As of Spring Framework 4.3.3, you may also specify a Groovy CompilationCustomizer
(such as an ImportCustomizer) or even a full Groovy CompilerConfiguration object
in the same place as Spring’s GroovyObjectCustomizer.

BeanShell beans

The BeanShell library dependencies

The BeanShell scripting support in Spring requires the following libraries to be on the
classpath of your application.

	
bsh-2.0b4.jar

From the BeanShell homepage…​

"BeanShell is a small, free, embeddable Java source interpreter with dynamic language
features, written in Java. BeanShell dynamically executes standard Java syntax and
extends it with common scripting conveniences such as loose types, commands, and method
closures like those in Perl and JavaScript."

In contrast to Groovy, BeanShell-backed bean definitions require some (small) additional
configuration. The implementation of the BeanShell dynamic language support in Spring is
interesting in that what happens is this: Spring creates a JDK dynamic proxy
implementing all of the interfaces that are specified in the 'script-interfaces'
attribute value of the <lang:bsh> element (this is why you must supply at least
one interface in the value of the attribute, and (accordingly) program to interfaces
when using BeanShell-backed beans). This means that every method call on a
BeanShell-backed object is going through the JDK dynamic proxy invocation mechanism.

Let’s look at a fully working example of using a BeanShell-based bean that implements
the Messenger interface that was defined earlier in this chapter (repeated below for
your convenience).

package org.springframework.scripting;

public interface Messenger {

 String getMessage();

}

Here is the BeanShell 'implementation' (the term is used loosely here) of the
Messenger interface.

String message;

String getMessage() {
 return message;
}

void setMessage(String aMessage) {
 message = aMessage;
}

And here is the Spring XML that defines an 'instance' of the above 'class' (again, the
term is used very loosely here).

<lang:bsh id="messageService" script-source="classpath:BshMessenger.bsh"
 script-interfaces="org.springframework.scripting.Messenger">

 <lang:property name="message" value="Hello World!"/>
</lang:bsh>

See the section called “Scenarios” for some scenarios where you might want to use
BeanShell-based beans.

Scenarios

The possible scenarios where defining Spring managed beans in a scripting language would
be beneficial are, of course, many and varied. This section describes two possible use
cases for the dynamic language support in Spring.

Scripted Spring MVC Controllers

One group of classes that may benefit from using dynamic-language-backed beans is that
of Spring MVC controllers. In pure Spring MVC applications, the navigational flow
through a web application is to a large extent determined by code encapsulated within
your Spring MVC controllers. As the navigational flow and other presentation layer logic
of a web application needs to be updated to respond to support issues or changing
business requirements, it may well be easier to effect any such required changes by
editing one or more dynamic language source files and seeing those changes being
immediately reflected in the state of a running application.

Remember that in the lightweight architectural model espoused by projects such as
Spring, you are typically aiming to have a really thin presentation layer, with all
the meaty business logic of an application being contained in the domain and service
layer classes. Developing Spring MVC controllers as dynamic-language-backed beans allows
you to change presentation layer logic by simply editing and saving text files; any
changes to such dynamic language source files will (depending on the configuration)
automatically be reflected in the beans that are backed by dynamic language source files.

	[image: [Note]]	Note
	
In order to effect this automatic 'pickup' of any changes to dynamic-language-backed
beans, you will have had to enable the 'refreshable beans' functionality. See
the section called “Refreshable beans” for a full treatment of this feature.

Find below an example of an org.springframework.web.servlet.mvc.Controller implemented
using the Groovy dynamic language.

// from the file '/WEB-INF/groovy/FortuneController.groovy'
package org.springframework.showcase.fortune.web

import org.springframework.showcase.fortune.service.FortuneService
import org.springframework.showcase.fortune.domain.Fortune
import org.springframework.web.servlet.ModelAndView
import org.springframework.web.servlet.mvc.Controller

import javax.servlet.http.HttpServletRequest
import javax.servlet.http.HttpServletResponse

class FortuneController implements Controller {

 @Property FortuneService fortuneService

 ModelAndView handleRequest(HttpServletRequest request,
 HttpServletResponse httpServletResponse) {
 return new ModelAndView("tell", "fortune", this.fortuneService.tellFortune())
 }

}

<lang:groovy id="fortune"
 refresh-check-delay="3000"
 script-source="/WEB-INF/groovy/FortuneController.groovy">
 <lang:property name="fortuneService" ref="fortuneService"/>
</lang:groovy>

Scripted Validators

Another area of application development with Spring that may benefit from the
flexibility afforded by dynamic-language-backed beans is that of validation. It may
be easier to express complex validation logic using a loosely typed dynamic language
(that may also have support for inline regular expressions) as opposed to regular Java.

Again, developing validators as dynamic-language-backed beans allows you to change
validation logic by simply editing and saving a simple text file; any such changes will
(depending on the configuration) automatically be reflected in the execution of a
running application and would not require the restart of an application.

	[image: [Note]]	Note
	
Please note that in order to effect the automatic 'pickup' of any changes to
dynamic-language-backed beans, you will have had to enable the 'refreshable beans'
feature. See the section called “Refreshable beans” for a full and detailed treatment of
this feature.

Find below an example of a Spring org.springframework.validation.Validator implemented
using the Groovy dynamic language. (See the section called “Validation using Spring’s Validator interface” for a discussion of the
Validator interface.)

import org.springframework.validation.Validator
import org.springframework.validation.Errors
import org.springframework.beans.TestBean

class TestBeanValidator implements Validator {

 boolean supports(Class clazz) {
 return TestBean.class.isAssignableFrom(clazz)
 }

 void validate(Object bean, Errors errors) {
 if(bean.name?.trim()?.size() > 0) {
 return
 }
 errors.reject("whitespace", "Cannot be composed wholly of whitespace.")
 }

}

Bits and bobs

This last section contains some bits and bobs related to the dynamic language support.

AOP - advising scripted beans

It is possible to use the Spring AOP framework to advise scripted beans. The Spring AOP
framework actually is unaware that a bean that is being advised might be a scripted
bean, so all of the AOP use cases and functionality that you may be using or aim to use
will work with scripted beans. There is just one (small) thing that you need to be aware
of when advising scripted beans…​ you cannot use class-based proxies, you must
use interface-based proxies.

You are of course not just limited to advising scripted beans…​ you can also write
aspects themselves in a supported dynamic language and use such beans to advise other
Spring beans. This really would be an advanced use of the dynamic language support
though.

Scoping

In case it is not immediately obvious, scripted beans can of course be scoped just like
any other bean. The scope attribute on the various <lang:language/> elements allows
you to control the scope of the underlying scripted bean, just as it does with a regular
bean. (The default scope is singleton, just as it is
with 'regular' beans.)

Find below an example of using the scope attribute to define a Groovy bean scoped as
a prototype.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:lang="http://www.springframework.org/schema/lang"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/lang http://www.springframework.org/schema/lang/spring-lang.xsd">

 <lang:groovy id="messenger" script-source="classpath:Messenger.groovy" scope="prototype">
 <lang:property name="message" value="I Can Do The RoboCop"/>
 </lang:groovy>

 <bean id="bookingService" class="x.y.DefaultBookingService">
 <property name="messenger" ref="messenger"/>
 </bean>

</beans>

See the section called “Bean scopes” in Chapter 7, The IoC container for a fuller discussion of the scoping support
in the Spring Framework.

Further resources

Find below links to further resources about the various dynamic languages described in
this chapter.

	
The JRuby homepage

	
The Groovy homepage

	
The BeanShell homepage

Chapter 36. Cache Abstraction

Introduction

Since version 3.1, Spring Framework provides support for transparently adding caching
into an existing Spring application. Similar to the transaction support,
the caching abstraction allows consistent use of various caching solutions with minimal
impact on the code.

As from Spring 4.1, the cache abstraction has been significantly improved with the
support of JSR-107 annotations and more customization options.

Understanding the cache abstraction

Cache vs Buffer

The terms "buffer" and "cache" tend to be used interchangeably; note however they
represent different things. A buffer is used traditionally as an intermediate temporary
store for data between a fast and a slow entity. As one party would have to wait for
the other affecting performance, the buffer alleviates this by allowing entire blocks of
data to move at once rather then in small chunks. The data is written and read only once
from the buffer. Furthermore, the buffers are visible to at least one party which is
aware of it.

A cache on the other hand by definition is hidden and neither party is aware that
caching occurs.It as well improves performance but does that by allowing the same data
to be read multiple times in a fast fashion.

A further explanation of the differences between two can be found
here.

At its core, the abstraction applies caching to Java methods, reducing thus the number
of executions based on the information available in the cache. That is, each time a
targeted method is invoked, the abstraction will apply a caching behavior checking
whether the method has been already executed for the given arguments. If it has, then
the cached result is returned without having to execute the actual method; if it has
not, then method is executed, the result cached and returned to the user so that, the
next time the method is invoked, the cached result is returned. This way, expensive
methods (whether CPU or IO bound) can be executed only once for a given set of
parameters and the result reused without having to actually execute the method again.
The caching logic is applied transparently without any interference to the invoker.

	[image: [Important]]	Important
	
Obviously this approach works only for methods that are guaranteed to return the same
output (result) for a given input (or arguments) no matter how many times it is being
executed.

Other cache-related operations are provided by the abstraction such as the ability
to update the content of the cache or remove one of all entries. These are useful if
the cache deals with data that can change during the course of the application.

Just like other services in the Spring Framework, the caching service is an
abstraction (not a cache implementation) and requires the use of an actual storage to
store the cache data - that is, the abstraction frees the developer from having to write
the caching logic but does not provide the actual stores. This abstraction is
materialized by the org.springframework.cache.Cache and
org.springframework.cache.CacheManager interfaces.

There are a few implementations of that abstraction
available out of the box: JDK java.util.concurrent.ConcurrentMap based caches,
Ehcache 2.x, Gemfire cache,
Caffeine,
Guava caches and
JSR-107 compliant caches (e.g. Ehcache 3.x). See the section called “Plugging-in different back-end caches” for more information
on plugging in other cache stores/providers.

	[image: [Important]]	Important
	
The caching abstraction has no special handling of multi-threaded and multi-process
environments as such features are handled by the cache implementation. .

If you have a multi-process environment (i.e. an application deployed on several nodes),
you will need to configure your cache provider accordingly. Depending on your use cases,
a copy of the same data on several nodes may be enough but if you change the data during
the course of the application, you may need to enable other propagation mechanisms.

Caching a particular item is a direct equivalent of the typical get-if-not-found-then-
proceed-and-put-eventually code blocks found with programmatic cache interaction: no locks
are applied and several threads may try to load the same item concurrently. The same applies
to eviction: if several threads are trying to update or evict data concurrently, you may
use stale data. Certain cache providers offer advanced features in that area, refer to
the documentation of the cache provider that you are using for more details.

To use the cache abstraction, the developer needs to take care of two aspects:

	
caching declaration - identify the methods that need to be cached and their policy

	
cache configuration - the backing cache where the data is stored and read from

Declarative annotation-based caching

For caching declaration, the abstraction provides a set of Java annotations:

	
@Cacheable triggers cache population

	
@CacheEvict triggers cache eviction

	
@CachePut updates the cache without interfering with the method execution

	
@Caching regroups multiple cache operations to be applied on a method

	
@CacheConfig shares some common cache-related settings at class-level

Let us take a closer look at each annotation:

@Cacheable annotation

As the name implies, @Cacheable is used to demarcate methods that are cacheable - that
is, methods for whom the result is stored into the cache so on subsequent invocations
(with the same arguments), the value in the cache is returned without having to actually
execute the method. In its simplest form, the annotation declaration requires the name
of the cache associated with the annotated method:

@Cacheable("books")
public Book findBook(ISBN isbn) {...}

In the snippet above, the method findBook is associated with the cache named books.
Each time the method is called, the cache is checked to see whether the invocation has
been already executed and does not have to be repeated. While in most cases, only one
cache is declared, the annotation allows multiple names to be specified so that more
than one cache are being used. In this case, each of the caches will be checked before
executing the method - if at least one cache is hit, then the associated value will be
returned:

	[image: [Note]]	Note
	
All the other caches that do not contain the value will be updated as well even though
the cached method was not actually executed.

@Cacheable({"books", "isbns"})
public Book findBook(ISBN isbn) {...}

Default Key Generation

Since caches are essentially key-value stores, each invocation of a cached method needs
to be translated into a suitable key for cache access. Out of the box, the caching
abstraction uses a simple KeyGenerator based on the following algorithm:

	
If no params are given, return SimpleKey.EMPTY.

	
If only one param is given, return that instance.

	
If more the one param is given, return a SimpleKey containing all parameters.

This approach works well for most use-cases; As long as parameters have natural keys
and implement valid hashCode() and equals() methods. If that is not the case then the
strategy needs to be changed.

To provide a different default key generator, one needs to implement the
org.springframework.cache.interceptor.KeyGenerator interface.

	[image: [Note]]	Note
	
The default key generation strategy changed with the release of Spring 4.0. Earlier
versions of Spring used a key generation strategy that, for multiple key parameters,
only considered the hashCode() of parameters and not equals(); this could cause
unexpected key collisions (see SPR-10237
for background). The new 'SimpleKeyGenerator' uses a compound key for such scenarios.

If you want to keep using the previous key strategy, you can configure the deprecated
org.springframework.cache.interceptor.DefaultKeyGenerator class or create a custom
hash-based 'KeyGenerator' implementation.

Custom Key Generation Declaration

Since caching is generic, it is quite likely the target methods have various signatures
that cannot be simply mapped on top of the cache structure. This tends to become obvious
when the target method has multiple arguments out of which only some are suitable for
caching (while the rest are used only by the method logic). For example:

@Cacheable("books")
public Book findBook(ISBN isbn, boolean checkWarehouse, boolean includeUsed)

At first glance, while the two boolean arguments influence the way the book is found,
they are no use for the cache. Further more what if only one of the two is important
while the other is not?

For such cases, the @Cacheable annotation allows the user to specify how the key is
generated through its key attribute. The developer can use SpEL to
pick the arguments of interest (or their nested properties), perform operations or even
invoke arbitrary methods without having to write any code or implement any interface.
This is the recommended approach over the
default generator since methods tend to be
quite different in signatures as the code base grows; while the default strategy might
work for some methods, it rarely does for all methods.

Below are some examples of various SpEL declarations - if you are not familiar with it,
do yourself a favor and read Chapter 10, Spring Expression Language (SpEL):

@Cacheable(cacheNames="books", key="#isbn")
public Book findBook(ISBN isbn, boolean checkWarehouse, boolean includeUsed)

@Cacheable(cacheNames="books", key="#isbn.rawNumber")
public Book findBook(ISBN isbn, boolean checkWarehouse, boolean includeUsed)

@Cacheable(cacheNames="books", key="T(someType).hash(#isbn)")
public Book findBook(ISBN isbn, boolean checkWarehouse, boolean includeUsed)

The snippets above show how easy it is to select a certain argument, one of its
properties or even an arbitrary (static) method.

If the algorithm responsible to generate the key is too specific or if it needs
to be shared, you may define a custom keyGenerator on the operation. To do
this, specify the name of the KeyGenerator bean implementation to use:

@Cacheable(cacheNames="books", keyGenerator="myKeyGenerator")
public Book findBook(ISBN isbn, boolean checkWarehouse, boolean includeUsed)

	[image: [Note]]	Note
	
The key and keyGenerator parameters are mutually exclusive and an operation
specifying both will result in an exception.

Default Cache Resolution

Out of the box, the caching abstraction uses a simple CacheResolver that
retrieves the cache(s) defined at the operation level using the configured
CacheManager.

To provide a different default cache resolver, one needs to implement the
org.springframework.cache.interceptor.CacheResolver interface.

Custom cache resolution

The default cache resolution fits well for applications working with a
single CacheManager and with no complex cache resolution requirements.

For applications working with several cache managers, it is possible
to set the cacheManager to use per operation:

@Cacheable(cacheNames="books", cacheManager="anotherCacheManager")
public Book findBook(ISBN isbn) {...}

It is also possible to replace the CacheResolver entirely in a similar
fashion as for key generation. The
resolution is requested for every cache operation, giving a chance to
the implementation to actually resolve the cache(s) to use based on
runtime arguments:

@Cacheable(cacheResolver="runtimeCacheResolver")
public Book findBook(ISBN isbn) {...}

	[image: [Note]]	Note
	
Since Spring 4.1, the value attribute of the cache annotations are no longer
mandatory since this particular information can be provided by the CacheResolver
regardless of the content of the annotation.

Similarly to key and keyGenerator, the cacheManager and cacheResolver
parameters are mutually exclusive and an operation specifying both will
result in an exception as a custom CacheManager will be ignored by the
CacheResolver implementation. This is probably not what you expect.

Synchronized caching

In a multi-threaded environment, certain operations might be concurrently invoked for
the same argument (typically on startup). By default, the cache abstraction does not
lock anything and the same value may be computed several times, defeating the purpose
of caching.

For those particular cases, the sync attribute can be used to instruct the underlying
cache provider to lock the cache entry while the value is being computed. As a result,
only one thread will be busy computing the value while the others are blocked until the
entry is updated in the cache.

@Cacheable(cacheNames="foos", sync=true)
public Foo executeExpensiveOperation(String id) {...}

	[image: [Note]]	Note
	
This is an optional feature and your favorite cache library may not support it. All
CacheManager implementations provided by the core framework support it. Check the
documentation of your cache provider for more details.

Conditional caching

Sometimes, a method might not be suitable for caching all the time (for example, it
might depend on the given arguments). The cache annotations support such functionality
through the condition parameter which takes a SpEL expression that is evaluated to
either true or false. If true, the method is cached - if not, it behaves as if the
method is not cached, that is executed every time no matter what values are in the cache
or what arguments are used. A quick example - the following method will be cached only
if the argument name has a length shorter than 32:

@Cacheable(cacheNames="book", condition="#name.length() < 32")
public Book findBook(String name)

In addition the condition parameter, the unless parameter can be used to veto the
adding of a value to the cache. Unlike condition, unless expressions are evaluated
after the method has been called. Expanding on the previous example - perhaps we
only want to cache paperback books:

@Cacheable(cacheNames="book", condition="#name.length() < 32", unless="#result.hardback")
public Book findBook(String name)

The cache abstraction supports java.util.Optional, using its content as cached value
only if it present. #result always refers to the business entity and never on a
supported wrapper so the previous example can be rewritten as follows:

@Cacheable(cacheNames="book", condition="#name.length() < 32", unless="#result?.hardback")
public Optional<Book> findBook(String name)

Note that result still refers to Book and not Optional. As it might be null, we
should use the safe navigation operator.

Available caching SpEL evaluation context

Each SpEL expression evaluates again a dedicated
context. In addition to the build in parameters, the
framework provides dedicated caching related metadata such as the argument names. The
next table lists the items made available to the context so one can use them for key and
conditional computations:

Table 36.1. Cache SpEL available metadata

	Name	Location	Description	Example
	methodName
	root object
	The name of the method being invoked
	#root.methodName

	method
	root object
	The method being invoked
	#root.method.name

	target
	root object
	The target object being invoked
	#root.target

	targetClass
	root object
	The class of the target being invoked
	#root.targetClass

	args
	root object
	The arguments (as array) used for invoking the target
	#root.args[0]

	caches
	root object
	Collection of caches against which the current method is executed
	#root.caches[0].name

	argument name
	evaluation context
	Name of any of the method arguments. If for some reason the names are not available
 (e.g. no debug information), the argument names are also available under the #a<#arg>
 where #arg stands for the argument index (starting from 0).
	#iban or #a0 (one can also use #p0 or #p<#arg> notation as an alias).

	result
	evaluation context
	The result of the method call (the value to be cached). Only available in unless
 expressions, cache put expressions (to compute the key), or cache evict
 expressions (when beforeInvocation is false). For supported wrappers such as
 Optional, #result refers to the actual object, not the wrapper.
	#result

@CachePut annotation

For cases where the cache needs to be updated without interfering with the method
execution, one can use the @CachePut annotation. That is, the method will always be
executed and its result placed into the cache (according to the @CachePut options). It
supports the same options as @Cacheable and should be used for cache population rather
than method flow optimization:

@CachePut(cacheNames="book", key="#isbn")
public Book updateBook(ISBN isbn, BookDescriptor descriptor)

	[image: [Important]]	Important
	
Note that using @CachePut and @Cacheable annotations on the same method is generally
strongly discouraged because they have different behaviors. While the latter causes the
method execution to be skipped by using the cache, the former forces the execution in
order to execute a cache update. This leads to unexpected behavior and with the exception of
specific corner-cases (such as annotations having conditions that exclude them from each
other), such declaration should be avoided. Note also that such condition should not rely
on the result object (i.e. the #result variable) as these are validated upfront to confirm
the exclusion.

@CacheEvict annotation

The cache abstraction allows not just population of a cache store but also eviction.
This process is useful for removing stale or unused data from the cache. Opposed to
@Cacheable, annotation @CacheEvict demarcates methods that perform cache
eviction, that is methods that act as triggers for removing data from the cache.
Just like its sibling, @CacheEvict requires specifying one (or multiple) caches
that are affected by the action, allows a custom cache and key resolution or a
condition to be specified but in addition, features an extra parameter
allEntries which indicates whether a cache-wide eviction needs to be performed
rather then just an entry one (based on the key):

@CacheEvict(cacheNames="books", allEntries=true)
public void loadBooks(InputStream batch)

This option comes in handy when an entire cache region needs to be cleared out - rather
then evicting each entry (which would take a long time since it is inefficient), all the
entries are removed in one operation as shown above. Note that the framework will ignore
any key specified in this scenario as it does not apply (the entire cache is evicted not
just one entry).

One can also indicate whether the eviction should occur after (the default) or before
the method executes through the beforeInvocation attribute. The former provides the
same semantics as the rest of the annotations - once the method completes successfully,
an action (in this case eviction) on the cache is executed. If the method does not
execute (as it might be cached) or an exception is thrown, the eviction does not occur.
The latter (beforeInvocation=true) causes the eviction to occur always, before the
method is invoked - this is useful in cases where the eviction does not need to be tied
to the method outcome.

It is important to note that void methods can be used with @CacheEvict - as the
methods act as triggers, the return values are ignored (as they don’t interact with the
cache) - this is not the case with @Cacheable which adds/updates data into the cache
and thus requires a result.

@Caching annotation

There are cases when multiple annotations of the same type, such as @CacheEvict or
@CachePut need to be specified, for example because the condition or the key
expression is different between different caches. @Caching allows multiple nested
@Cacheable, @CachePut and @CacheEvict to be used on the same method:

@Caching(evict = { @CacheEvict("primary"), @CacheEvict(cacheNames="secondary", key="#p0") })
public Book importBooks(String deposit, Date date)

@CacheConfig annotation

So far we have seen that caching operations offered many customization options and
these can be set on an operation basis. However, some of the customization options
can be tedious to configure if they apply to all operations of the class. For
instance, specifying the name of the cache to use for every cache operation of the
class could be replaced by a single class-level definition. This is where @CacheConfig
comes into play.

@CacheConfig("books")
public class BookRepositoryImpl implements BookRepository {

 @Cacheable
 public Book findBook(ISBN isbn) {...}
}

@CacheConfig is a class-level annotation that allows to share the cache names, the custom
KeyGenerator, the custom CacheManager and finally the custom CacheResolver. Placing
this annotation on the class does not turn on any caching operation.

An operation-level customization will always override a customization set on @CacheConfig. This
gives therefore three levels of customizations per cache operation:

	
Globally configured, available for CacheManager, KeyGenerator

	
At class level, using @CacheConfig

	
At the operation level

Enable caching annotations

It is important to note that even though declaring the cache annotations does not
automatically trigger their actions - like many things in Spring, the feature has to be
declaratively enabled (which means if you ever suspect caching is to blame, you can
disable it by removing only one configuration line rather than all the annotations in
your code).

To enable caching annotations add the annotation @EnableCaching to one of your
@Configuration classes:

@Configuration
@EnableCaching
public class AppConfig {
}

Alternatively for XML configuration use the cache:annotation-driven element:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:cache="http://www.springframework.org/schema/cache"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/cache http://www.springframework.org/schema/cache/spring-cache.xsd">

 <cache:annotation-driven/>
</beans>

Both the cache:annotation-driven element and @EnableCaching annotation allow various
options to be specified that influence the way the caching behavior is added to the
application through AOP. The configuration is intentionally similar with that of
@Transactional:

	[image: [Note]]	Note
	
The default advice mode for processing caching annotations is "proxy" which allows
for interception of calls through the proxy only; local calls within the same class
cannot get intercepted that way. For a more advanced mode of interception, consider
switching to "aspectj" mode in combination with compile-time or load-time weaving.

	[image: [Note]]	Note
	
Advanced customizations using Java config require to implement CachingConfigurer:
Please refer to the
javadoc for more details.

Table 36.2. Cache annotation settings

	XML Attribute	Annotation Attribute	Default	Description
	cache-manager
	N/A (See CachingConfigurer javadocs)
	cacheManager
	Name of cache manager to use. A default CacheResolver will be initialized behind
 the scenes with this cache manager (or `cacheManager`if not set). For more
 fine-grained management of the cache resolution, consider setting the 'cache-resolver'
 attribute.

	cache-resolver
	N/A (See CachingConfigurer javadocs)
	A SimpleCacheResolver using the configured cacheManager.
	The bean name of the CacheResolver that is to be used to resolve the backing caches.
 This attribute is not required, and only needs to be specified as an alternative to
 the 'cache-manager' attribute.

	key-generator
	N/A (See CachingConfigurer javadocs)
	SimpleKeyGenerator
	Name of the custom key generator to use.

	error-handler
	N/A (See CachingConfigurer javadocs)
	SimpleCacheErrorHandler
	Name of the custom cache error handler to use. By default, any exception throw during
 a cache related operations are thrown back at the client.

	mode
	mode
	proxy
	The default mode "proxy" processes annotated beans to be proxied using Spring’s AOP
 framework (following proxy semantics, as discussed above, applying to method calls
 coming in through the proxy only). The alternative mode "aspectj" instead weaves the
 affected classes with Spring’s AspectJ caching aspect, modifying the target class byte
 code to apply to any kind of method call. AspectJ weaving requires spring-aspects.jar
 in the classpath as well as load-time weaving (or compile-time weaving) enabled. (See
 the section called “Spring configuration” for details on how to set up load-time weaving.)

	proxy-target-class
	proxyTargetClass
	false
	Applies to proxy mode only. Controls what type of caching proxies are created for
 classes annotated with the @Cacheable or @CacheEvict annotations. If the
 proxy-target-class attribute is set to true, then class-based proxies are created.
 If proxy-target-class is false or if the attribute is omitted, then standard JDK
 interface-based proxies are created. (See the section called “Proxying mechanisms” for a detailed examination
 of the different proxy types.)

	order
	order
	Ordered.LOWEST_PRECEDENCE
	Defines the order of the cache advice that is applied to beans annotated with
 @Cacheable or @CacheEvict. (For more information about the rules related to
 ordering of AOP advice, see the section called “Advice ordering”.) No specified ordering
 means that the AOP subsystem determines the order of the advice.

	[image: [Note]]	Note
	
<cache:annotation-driven/> only looks for @Cacheable/@CachePut/@CacheEvict/@Caching
on beans in the same application context it is defined in. This means that, if you put
<cache:annotation-driven/> in a WebApplicationContext for a DispatcherServlet, it
only checks for beans in your controllers, and not your services. See the section called “The DispatcherServlet”
for more information.

Method visibility and cache annotations

When using proxies, you should apply the cache annotations only to methods with
public visibility. If you do annotate protected, private or package-visible methods
with these annotations, no error is raised, but the annotated method does not exhibit
the configured caching settings. Consider the use of AspectJ (see below) if you need to
annotate non-public methods as it changes the bytecode itself.

	[image: [Tip]]	Tip
	
Spring recommends that you only annotate concrete classes (and methods of concrete
classes) with the @Cache* annotation, as opposed to annotating interfaces. You
certainly can place the @Cache* annotation on an interface (or an interface method),
but this works only as you would expect it to if you are using interface-based proxies.
The fact that Java annotations are not inherited from interfaces means that if you
are using class-based proxies (proxy-target-class="true") or the weaving-based aspect
(mode="aspectj"), then the caching settings are not recognized by the proxying and
weaving infrastructure, and the object will not be wrapped in a caching proxy, which
would be decidedly bad.

	[image: [Note]]	Note
	
In proxy mode (which is the default), only external method calls coming in through the
proxy are intercepted. This means that self-invocation, in effect, a method within the
target object calling another method of the target object, will not lead to an actual
caching at runtime even if the invoked method is marked with @Cacheable - considering
using the aspectj mode in this case. Also, the proxy must be fully initialized to provide
the expected behaviour so you should not rely on this feature in your initialization
code, i.e. @PostConstruct.

Using custom annotations

Custom annotation and AspectJ

This feature only works out-of-the-box with the proxy-based approach but can be enabled
with a bit of extra effort using AspectJ.

The spring-aspects module defines an aspect for the standard annotations only. If you
have defined your own annotations, you also need to define an aspect for those. Check
AnnotationCacheAspect for an example.

The caching abstraction allows you to use your own annotations to identify what method
triggers cache population or eviction. This is quite handy as a template mechanism as it
eliminates the need to duplicate cache annotation declarations (especially useful if the
key or condition are specified) or if the foreign imports (org.springframework) are
not allowed in your code base. Similar to the rest of the
stereotype annotations, @Cacheable, @CachePut,
@CacheEvict and @CacheConfig can be used as meta-annotations,
that is annotations that can annotate other annotations. To wit, let us replace a common
@Cacheable declaration with our own, custom annotation:

@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.METHOD})
@Cacheable(cacheNames="books", key="#isbn")
public @interface SlowService {
}

Above, we have defined our own SlowService annotation which itself is annotated with
@Cacheable - now we can replace the following code:

@Cacheable(cacheNames="books", key="#isbn")
public Book findBook(ISBN isbn, boolean checkWarehouse, boolean includeUsed)

with:

@SlowService
public Book findBook(ISBN isbn, boolean checkWarehouse, boolean includeUsed)

Even though @SlowService is not a Spring annotation, the container automatically picks
up its declaration at runtime and understands its meaning. Note that as mentioned
above, the annotation-driven behavior needs to be enabled.

JCache (JSR-107) annotations

Since the Spring Framework 4.1, the caching abstraction fully supports the JCache
standard annotations: these are @CacheResult, @CachePut, @CacheRemove and
@CacheRemoveAll as well as the @CacheDefaults, @CacheKey and @CacheValue
companions. These annotations can be used right the way without migrating your
cache store to JSR-107: the internal implementation uses Spring’s caching abstraction
and provides default CacheResolver and KeyGenerator implementations that are
compliant with the specification. In other words, if you are already using Spring’s
caching abstraction, you can switch to these standard annotations without changing
your cache storage (or configuration, for that matter).

Feature summary

For those who are familiar with Spring’s caching annotations, the following table
describes the main differences between the Spring annotations and the JSR-107
counterpart:

Table 36.3. Spring vs. JSR-107 caching annotations

	Spring	JSR-107	Remark
	@Cacheable
	@CacheResult
	Fairly similar. @CacheResult can cache specific exceptions and force the
 execution of the method regardless of the content of the cache.

	@CachePut
	@CachePut
	While Spring updates the cache with the result of the method invocation, JCache
 requires to pass it as an argument that is annotated with @CacheValue. Due
 to this difference, JCache allows to update the cache before or after the
 actual method invocation.

	@CacheEvict
	@CacheRemove
	Fairly similar. @CacheRemove supports a conditional evict in case the
 method invocation results in an exception.

	@CacheEvict(allEntries=true)
	@CacheRemoveAll
	See @CacheRemove.

	@CacheConfig
	@CacheDefaults
	Allows to configure the same concepts, in a similar fashion.

JCache has the notion of javax.cache.annotation.CacheResolver that is identical
to the Spring’s CacheResolver interface, except that JCache only supports a single
cache. By default, a simple implementation retrieves the cache to use based on
the name declared on the annotation. It should be noted that if no cache name
is specified on the annotation, a default is automatically generated, check the
javadoc of @CacheResult#cacheName() for more information.

CacheResolver instances are retrieved by a CacheResolverFactory. It is
possible to customize the factory per cache operation:

@CacheResult(cacheNames="books", cacheResolverFactory=MyCacheResolverFactory.class)
public Book findBook(ISBN isbn)

	[image: [Note]]	Note
	
For all referenced classes, Spring tries to locate a bean with the given type. If
more than one match exists, a new instance is created and can use the regular
bean lifecycle callbacks such as dependency injection.

Keys are generated by a javax.cache.annotation.CacheKeyGenerator that serves the
same purpose as Spring’s KeyGenerator. By default, all method arguments are taken
into account unless at least one parameter is annotated with @CacheKey. This is
similar to Spring’s custom key generation
declaration. For instance these are identical operations, one using Spring’s
abstraction and the other with JCache:

@Cacheable(cacheNames="books", key="#isbn")
public Book findBook(ISBN isbn, boolean checkWarehouse, boolean includeUsed)

@CacheResult(cacheName="books")
public Book findBook(@CacheKey ISBN isbn, boolean checkWarehouse, boolean includeUsed)

The CacheKeyResolver to use can also be specified on the operation, in a similar
fashion as the CacheResolverFactory.

JCache can manage exceptions thrown by annotated methods: this can prevent an update of
the cache but it can also cache the exception as an indicator of the failure instead of
calling the method again. Let’s assume that InvalidIsbnNotFoundException is thrown if
the structure of the ISBN is invalid. This is a permanent failure, no book could ever be
retrieved with such parameter. The following caches the exception so that further calls
with the same, invalid ISBN, throws the cached exception directly instead of invoking
the method again.

@CacheResult(cacheName="books", exceptionCacheName="failures"
 cachedExceptions = InvalidIsbnNotFoundException.class)
public Book findBook(ISBN isbn)

Enabling JSR-107 support

Nothing specific needs to be done to enable the JSR-107 support alongside Spring’s
declarative annotation support. Both @EnableCaching and the
cache:annotation-driven element will enable automatically the JCache support
if both the JSR-107 API and the spring-context-support module are present in
the classpath.

	[image: [Note]]	Note
	
Depending of your use case, the choice is basically yours. You can even mix
and match services using the JSR-107 API and others using Spring’s own
annotations. Be aware however that if these services are impacting the same
caches, a consistent and identical key generation implementation should be used.

Declarative XML-based caching

If annotations are not an option (no access to the sources or no external code), one can
use XML for declarative caching. So instead of annotating the methods for caching, one
specifies the target method and the caching directives externally (similar to the
declarative transaction management advice).
The previous example can be translated into:

<!-- the service we want to make cacheable -->
<bean id="bookService" class="x.y.service.DefaultBookService"/>

<!-- cache definitions -->
<cache:advice id="cacheAdvice" cache-manager="cacheManager">
 <cache:caching cache="books">
 <cache:cacheable method="findBook" key="#isbn"/>
 <cache:cache-evict method="loadBooks" all-entries="true"/>
 </cache:caching>
</cache:advice>

<!-- apply the cacheable behavior to all BookService interfaces -->
<aop:config>
 <aop:advisor advice-ref="cacheAdvice" pointcut="execution(* x.y.BookService.*(..))"/>
</aop:config>

<!-- cache manager definition omitted -->

In the configuration above, the bookService is made cacheable. The caching semantics
to apply are encapsulated in the cache:advice definition which instructs method
findBooks to be used for putting data into the cache while method loadBooks for
evicting data. Both definitions are working against the books cache.

The aop:config definition applies the cache advice to the appropriate points in the
program by using the AspectJ pointcut expression (more information is available in
Chapter 11, Aspect Oriented Programming with Spring). In the example above, all methods from the BookService are considered and
the cache advice applied to them.

The declarative XML caching supports all of the annotation-based model so moving between
the two should be fairly easy - further more both can be used inside the same
application. The XML based approach does not touch the target code however it is
inherently more verbose; when dealing with classes with overloaded methods that are
targeted for caching, identifying the proper methods does take an extra effort since the
method argument is not a good discriminator - in these cases, the AspectJ pointcut can
be used to cherry pick the target methods and apply the appropriate caching
functionality. However through XML, it is easier to apply a package/group/interface-wide
caching (again due to the AspectJ pointcut) and to create template-like definitions (as
we did in the example above by defining the target cache through the cache:definitions
cache attribute).

Configuring the cache storage

Out of the box, the cache abstraction provides several storage integration. To use
them, one needs to simply declare an appropriate CacheManager - an entity that
controls and manages Caches and can be used to retrieve these for storage.

JDK ConcurrentMap-based Cache

The JDK-based Cache implementation resides under
org.springframework.cache.concurrent package. It allows one to use ConcurrentHashMap
as a backing Cache store.

<!-- simple cache manager -->
<bean id="cacheManager" class="org.springframework.cache.support.SimpleCacheManager">
 <property name="caches">
 <set>
 <bean class="org.springframework.cache.concurrent.ConcurrentMapCacheFactoryBean" p:name="default"/>
 <bean class="org.springframework.cache.concurrent.ConcurrentMapCacheFactoryBean" p:name="books"/>
 </set>
 </property>
</bean>

The snippet above uses the SimpleCacheManager to create a CacheManager for the two
nested ConcurrentMapCache instances named default and books. Note that the
names are configured directly for each cache.

As the cache is created by the application, it is bound to its lifecycle, making it
suitable for basic use cases, tests or simple applications. The cache scales well and is
very fast but it does not provide any management or persistence capabilities nor
eviction contracts.

Ehcache-based Cache

	[image: [Note]]	Note
	
Ehcache 3.x is fully JSR-107 compliant and no dedicated support is required for it.

The Ehcache 2.x implementation is located under org.springframework.cache.ehcache package.
Again, to use it, one simply needs to declare the appropriate CacheManager:

<bean id="cacheManager"
 class="org.springframework.cache.ehcache.EhCacheCacheManager" p:cache-manager-ref="ehcache"/>

<!-- EhCache library setup -->
<bean id="ehcache"
 class="org.springframework.cache.ehcache.EhCacheManagerFactoryBean" p:config-location="ehcache.xml"/>

This setup bootstraps the ehcache library inside Spring IoC (through the ehcache bean) which
is then wired into the dedicated CacheManager implementation. Note the entire
ehcache-specific configuration is read from ehcache.xml.

Caffeine Cache

Caffeine is a Java 8 rewrite of Guava’s cache and its implementation is located under
org.springframework.cache.caffeine package and provides access to several features
of Caffeine.

Configuring a CacheManager that creates the cache on demand is straightforward:

<bean id="cacheManager"
 class="org.springframework.cache.caffeine.CaffeineCacheManager"/>

It is also possible to provide the caches to use explicitly. In that case, only those
will be made available by the manager:

<bean id="cacheManager" class="org.springframework.cache.caffeine.CaffeineCacheManager">
 <property name="caches">
 <set>
 <value>default</value>
 <value>books</value>
 </set>
 </property>
</bean>

The Caffeine CacheManager also supports customs Caffeine and CacheLoader. See
the Caffeine documentation for more
information about those.

Guava Cache

The Guava implementation is located under org.springframework.cache.guava package and
provides access to several features of Guava.

Configuring a CacheManager that creates the cache on demand is straightforward:

<bean id="cacheManager"
 class="org.springframework.cache.guava.GuavaCacheManager"/>

It is also possible to provide the caches to use explicitly. In that case, only those
will be made available by the manager:

<bean id="cacheManager" class="org.springframework.cache.guava.GuavaCacheManager">
 <property name="caches">
 <set>
 <value>default</value>
 <value>books</value>
 </set>
 </property>
</bean>

The Guava CacheManager also supports customs CacheBuilder and CacheLoader. See
the Guava documentation
for more information about those.

GemFire-based Cache

GemFire is a memory-oriented/disk-backed, elastically scalable, continuously available,
active (with built-in pattern-based subscription notifications), globally replicated
database and provides fully-featured edge caching. For further information on how to use
GemFire as a CacheManager (and more), please refer to the
Spring Data GemFire reference documentation.

JSR-107 Cache

JSR-107 compliant caches can also be used by Spring’s caching abstraction. The JCache
implementation is located under org.springframework.cache.jcache package.

Again, to use it, one simply needs to declare the appropriate CacheManager:

<bean id="cacheManager"
 class="org.springframework.cache.jcache.JCacheCacheManager"
 p:cache-manager-ref="jCacheManager"/>

<!-- JSR-107 cache manager setup -->
<bean id="jCacheManager" .../>

Dealing with caches without a backing store

Sometimes when switching environments or doing testing, one might have cache
declarations without an actual backing cache configured. As this is an invalid
configuration, at runtime an exception will be thrown since the caching infrastructure
is unable to find a suitable store. In situations like this, rather then removing the
cache declarations (which can prove tedious), one can wire in a simple, dummy cache that
performs no caching - that is, forces the cached methods to be executed every time:

<bean id="cacheManager" class="org.springframework.cache.support.CompositeCacheManager">
 <property name="cacheManagers">
 <list>
 <ref bean="jdkCache"/>
 <ref bean="gemfireCache"/>
 </list>
 </property>
 <property name="fallbackToNoOpCache" value="true"/>
</bean>

The CompositeCacheManager above chains multiple CacheManagers and additionally,
through the fallbackToNoOpCache flag, adds a no op cache that for all the
definitions not handled by the configured cache managers. That is, every cache
definition not found in either jdkCache or gemfireCache (configured above) will be
handled by the no op cache, which will not store any information causing the target
method to be executed every time.

Plugging-in different back-end caches

Clearly there are plenty of caching products out there that can be used as a backing
store. To plug them in, one needs to provide a CacheManager and Cache implementation
since unfortunately there is no available standard that we can use instead. This may
sound harder than it is since in practice, the classes tend to be simple
adapters that map the caching abstraction
framework on top of the storage API as the ehcache classes can show. Most
CacheManager classes can use the classes in org.springframework.cache.support
package, such as AbstractCacheManager which takes care of the boiler-plate code
leaving only the actual mapping to be completed. We hope that in time, the libraries
that provide integration with Spring can fill in this small configuration gap.

How can I set the TTL/TTI/Eviction policy/XXX feature?

Directly through your cache provider. The cache abstraction is…​ well, an abstraction
not a cache implementation. The solution you are using might support various data
policies and different topologies which other solutions do not (take for example the JDK
ConcurrentHashMap) - exposing that in the cache abstraction would be useless simply
because there would no backing support. Such functionality should be controlled directly
through the backing cache, when configuring it or through its native API.

Part VIII. Appendices

Chapter 37. Migrating to Spring Framework 4.x

Migration guides for upgrading from previous releases of the Spring Framework are now provided as a
Wiki page.

Chapter 38. Spring Annotation Programming Model

Spring’s annotation programming model is documented in the
Spring Framework Wiki.

Chapter 39. Classic Spring Usage

This appendix discusses some classic Spring usage patterns as a reference for developers
maintaining legacy Spring applications. These usage patterns no longer reflect the
recommended way of using these features, and the current recommended usage is covered in
the respective sections of the reference manual.

Classic ORM usage

This section documents the classic usage patterns that you might encounter in a legacy
Spring application. For the currently recommended usage patterns, please refer to the
ORM chapter.

Hibernate

For the currently recommended usage patterns for Hibernate see the section called “Hibernate”.

The HibernateTemplate

The basic programming model for templating looks as follows, for methods that can be
part of any custom data access object or business service. There are no restrictions on
the implementation of the surrounding object at all, it just needs to provide a
Hibernate SessionFactory. It can get the latter from anywhere, but preferably as bean
reference from a Spring IoC container - via a simple setSessionFactory(..) bean
property setter. The following snippets show a DAO definition in a Spring container,
referencing the above defined SessionFactory, and an example for a DAO method
implementation.

<beans>

 <bean id="myProductDao" class="product.ProductDaoImpl">
 <property name="sessionFactory" ref="mySessionFactory"/>
 </bean>

</beans>

public class ProductDaoImpl implements ProductDao {

 private HibernateTemplate hibernateTemplate;

 public void setSessionFactory(SessionFactory sessionFactory) {
 this.hibernateTemplate = new HibernateTemplate(sessionFactory);
 }

 public Collection loadProductsByCategory(String category) throws DataAccessException {
 return this.hibernateTemplate.find("from test.Product product where product.category=?", category);
 }
}

The HibernateTemplate class provides many methods that mirror the methods exposed on
the Hibernate Session interface, in addition to a number of convenience methods such
as the one shown above. If you need access to the Session to invoke methods that are
not exposed on the HibernateTemplate, you can always drop down to a callback-based
approach like so.

public class ProductDaoImpl implements ProductDao {

 private HibernateTemplate hibernateTemplate;

 public void setSessionFactory(SessionFactory sessionFactory) {
 this.hibernateTemplate = new HibernateTemplate(sessionFactory);
 }

 public Collection loadProductsByCategory(final String category) throws DataAccessException {
 return this.hibernateTemplate.execute(new HibernateCallback() {
 public Object doInHibernate(Session session) {
 Criteria criteria = session.createCriteria(Product.class);
 criteria.add(Expression.eq("category", category));
 criteria.setMaxResults(6);
 return criteria.list();
 }
 };
 }

}

A callback implementation effectively can be used for any Hibernate data access.
HibernateTemplate will ensure that Session instances are properly opened and closed,
and automatically participate in transactions. The template instances are thread-safe
and reusable, they can thus be kept as instance variables of the surrounding class. For
simple single step actions like a single find, load, saveOrUpdate, or delete call,
HibernateTemplate offers alternative convenience methods that can replace such one
line callback implementations. Furthermore, Spring provides a convenient
HibernateDaoSupport base class that provides a setSessionFactory(..) method for
receiving a SessionFactory, and getSessionFactory() and getHibernateTemplate() for
use by subclasses. In combination, this allows for very simple DAO implementations for
typical requirements:

public class ProductDaoImpl extends HibernateDaoSupport implements ProductDao {

 public Collection loadProductsByCategory(String category) throws DataAccessException {
 return this.getHibernateTemplate().find(
 "from test.Product product where product.category=?", category);
 }

}

Implementing Spring-based DAOs without callbacks

As alternative to using Spring’s HibernateTemplate to implement DAOs, data access code
can also be written in a more traditional fashion, without wrapping the Hibernate access
code in a callback, while still respecting and participating in Spring’s generic
DataAccessException hierarchy. The HibernateDaoSupport base class offers methods to
access the current transactional Session and to convert exceptions in such a scenario;
similar methods are also available as static helpers on the SessionFactoryUtils class.
Note that such code will usually pass false as the value of the getSession(..)
methods allowCreate argument, to enforce running within a transaction (which avoids
the need to close the returned Session, as its lifecycle is managed by the
transaction).

public class HibernateProductDao extends HibernateDaoSupport implements ProductDao {

 public Collection loadProductsByCategory(String category) throws DataAccessException, MyException {
 Session session = getSession(false);
 try {
 Query query = session.createQuery("from test.Product product where product.category=?");
 query.setString(0, category);
 List result = query.list();
 if (result == null) {
 throw new MyException("No search results.");
 }
 return result;
 }
 catch (HibernateException ex) {
 throw convertHibernateAccessException(ex);
 }
 }
}

The advantage of such direct Hibernate access code is that it allows any checked
application exception to be thrown within the data access code; contrast this to the
HibernateTemplate class which is restricted to throwing only unchecked exceptions
within the callback. Note that you can often defer the corresponding checks and the
throwing of application exceptions to after the callback, which still allows working
with HibernateTemplate. In general, the HibernateTemplate class' convenience methods
are simpler and more convenient for many scenarios.

JMS Usage

One of the benefits of Spring’s JMS support is to shield the user from differences
between the JMS 1.0.2 and 1.1 APIs. (For a description of the differences between the
two APIs see sidebar on Domain Unification). Since it is now common to encounter only
the JMS 1.1 API the use of classes that are based on the JMS 1.0.2 API has been
deprecated in Spring 3.0. This section describes Spring JMS support for the JMS 1.0.2
deprecated classes.

Domain Unification

There are two major releases of the JMS specification, 1.0.2 and 1.1.

JMS 1.0.2 defined two types of messaging domains, point-to-point (Queues) and
publish/subscribe (Topics). The 1.0.2 API reflected these two messaging domains by
providing a parallel class hierarchy for each domain. As a result, a client application
became domain specific in its use of the JMS API. JMS 1.1 introduced the concept of
domain unification that minimized both the functional differences and client API
differences between the two domains. As an example of a functional difference that was
removed, if you use a JMS 1.1 provider you can transactionally consume a message from
one domain and produce a message on the other using the same Session.

	[image: [Note]]	Note
	
The JMS 1.1 specification was released in April 2002 and incorporated as part of J2EE
1.4 in November 2003. As a result, common J2EE 1.3 application servers which are still
in widespread use (such as BEA WebLogic 8.1 and IBM WebSphere 5.1) are based on JMS
1.0.2.

JmsTemplate

Located in the package org.springframework.jms.core the class JmsTemplate102
provides all of the features of the JmsTemplate described the JMS chapter, but is
based on the JMS 1.0.2 API instead of the JMS 1.1 API. As a consequence, if you are
using JmsTemplate102 you need to set the boolean property pubSubDomain to configure
the JmsTemplate with knowledge of what JMS domain is being used. By default the value
of this property is false, indicating that the point-to-point domain, Queues, will be
used.

Asynchronous Message Reception

MessageListenerAdapter’s are used in
conjunction with Spring’s message listener containers to support
asynchronous message reception by exposing almost any class as a Message-driven POJO. If
you are using the JMS 1.0.2 API, you will want to use the 1.0.2 specific classes such as
MessageListenerAdapter102, SimpleMessageListenerContainer102, and
DefaultMessageListenerContainer102. These classes provide the same functionality as
the JMS 1.1 based counterparts but rely only on the JMS 1.0.2 API.

Connections

The ConnectionFactory interface is part of the JMS specification and serves as the
entry point for working with JMS. Spring provides an implementation of the
ConnectionFactory interface, SingleConnectionFactory102, based on the JMS 1.0.2 API
that will return the same Connection on all createConnection() calls and ignore
calls to close(). You will need to set the boolean property pubSubDomain to indicate
which messaging domain is used as SingleConnectionFactory102 will always explicitly
differentiate between a javax.jms.QueueConnection and a javax.jmsTopicConnection.

Transaction Management

In a JMS 1.0.2 environment the class JmsTransactionManager102 provides support for
managing JMS transactions for a single Connection Factory. Please refer to the reference
documentation on JMS Transaction Management for more information on this
functionality.

Chapter 40. Classic Spring AOP Usage

In this appendix we discuss the lower-level Spring AOP APIs and the AOP support used in
Spring 1.2 applications. For new applications, we recommend the use of the Spring 2.0
AOP support described in the AOP chapter, but when working with existing
applications, or when reading books and articles, you may come across Spring 1.2 style
examples. Spring 2.0 is fully backwards compatible with Spring 1.2 and everything
described in this appendix is fully supported in Spring 2.0.

Pointcut API in Spring

Let’s look at how Spring handles the crucial pointcut concept.

Concepts

Spring’s pointcut model enables pointcut reuse independent of advice types. It’s
possible to target different advice using the same pointcut.

The org.springframework.aop.Pointcut interface is the central interface, used to
target advices to particular classes and methods. The complete interface is shown below:

public interface Pointcut {

 ClassFilter getClassFilter();

 MethodMatcher getMethodMatcher();

}

Splitting the Pointcut interface into two parts allows reuse of class and method
matching parts, and fine-grained composition operations (such as performing a "union"
with another method matcher).

The ClassFilter interface is used to restrict the pointcut to a given set of target
classes. If the matches() method always returns true, all target classes will be
matched:

public interface ClassFilter {

 boolean matches(Class clazz);

}

The MethodMatcher interface is normally more important. The complete interface is
shown below:

public interface MethodMatcher {

 boolean matches(Method m, Class targetClass);

 boolean isRuntime();

 boolean matches(Method m, Class targetClass, Object[] args);

}

The matches(Method, Class) method is used to test whether this pointcut will ever
match a given method on a target class. This evaluation can be performed when an AOP
proxy is created, to avoid the need for a test on every method invocation. If the
2-argument matches method returns true for a given method, and the isRuntime() method
for the MethodMatcher returns true, the 3-argument matches method will be invoked on
every method invocation. This enables a pointcut to look at the arguments passed to the
method invocation immediately before the target advice is to execute.

Most MethodMatchers are static, meaning that their isRuntime() method returns false.
In this case, the 3-argument matches method will never be invoked.

	[image: [Tip]]	Tip
	
If possible, try to make pointcuts static, allowing the AOP framework to cache the
results of pointcut evaluation when an AOP proxy is created.

Operations on pointcuts

Spring supports operations on pointcuts: notably, union and intersection.

	
Union means the methods that either pointcut matches.

	
Intersection means the methods that both pointcuts match.

	
Union is usually more useful.

	
Pointcuts can be composed using the static methods in the
org.springframework.aop.support.Pointcuts class, or using the
ComposablePointcut class in the same package. However, using AspectJ pointcut
expressions is usually a simpler approach.

AspectJ expression pointcuts

Since 2.0, the most important type of pointcut used by Spring is
org.springframework.aop.aspectj.AspectJExpressionPointcut. This is a pointcut that
uses an AspectJ supplied library to parse an AspectJ pointcut expression string.

See the previous chapter for a discussion of supported AspectJ pointcut primitives.

Convenience pointcut implementations

Spring provides several convenient pointcut implementations. Some can be used out of the
box; others are intended to be subclassed in application-specific pointcuts.

Static pointcuts

Static pointcuts are based on method and target class, and cannot take into account the
method’s arguments. Static pointcuts are sufficient - and best - for most usages.
It’s possible for Spring to evaluate a static pointcut only once, when a method is first
invoked: after that, there is no need to evaluate the pointcut again with each method
invocation.

Let’s consider some static pointcut implementations included with Spring.

Regular expression pointcuts

One obvious way to specify static pointcuts is regular expressions. Several AOP
frameworks besides Spring make this possible.
org.springframework.aop.support.Perl5RegexpMethodPointcut is a generic regular
expression pointcut, using Perl 5 regular expression syntax. The
Perl5RegexpMethodPointcut class depends on Jakarta ORO for regular expression
matching. Spring also provides the JdkRegexpMethodPointcut class that uses the regular
expression support in JDK 1.4+.

Using the Perl5RegexpMethodPointcut class, you can provide a list of pattern Strings.
If any of these is a match, the pointcut will evaluate to true. (So the result is
effectively the union of these pointcuts.)

The usage is shown below:

<bean id="settersAndAbsquatulatePointcut"
 class="org.springframework.aop.support.Perl5RegexpMethodPointcut">
 <property name="patterns">
 <list>
 <value>.set.</value>
 <value>.*absquatulate</value>
 </list>
 </property>
</bean>

Spring provides a convenience class, RegexpMethodPointcutAdvisor, that allows us to
also reference an Advice (remember that an Advice can be an interceptor, before advice,
throws advice etc.). Behind the scenes, Spring will use a JdkRegexpMethodPointcut.
Using RegexpMethodPointcutAdvisor simplifies wiring, as the one bean encapsulates both
pointcut and advice, as shown below:

<bean id="settersAndAbsquatulateAdvisor"
 class="org.springframework.aop.support.RegexpMethodPointcutAdvisor">
 <property name="advice">
 <ref bean="beanNameOfAopAllianceInterceptor"/>
 </property>
 <property name="patterns">
 <list>
 <value>.set.</value>
 <value>.*absquatulate</value>
 </list>
 </property>
</bean>

RegexpMethodPointcutAdvisor can be used with any Advice type.

Attribute-driven pointcuts

An important type of static pointcut is a metadata-driven pointcut. This uses the
values of metadata attributes: typically, source-level metadata.

Dynamic pointcuts

Dynamic pointcuts are costlier to evaluate than static pointcuts. They take into account
methodarguments, as well as static information. This means that they must be
evaluated with every method invocation; the result cannot be cached, as arguments will
vary.

The main example is the control flow pointcut.

Control flow pointcuts

Spring control flow pointcuts are conceptually similar to AspectJ cflow pointcuts,
although less powerful. (There is currently no way to specify that a pointcut executes
below a join point matched by another pointcut.) A control flow pointcut matches the
current call stack. For example, it might fire if the join point was invoked by a method
in the com.mycompany.web package, or by the SomeCaller class. Control flow pointcuts
are specified using the org.springframework.aop.support.ControlFlowPointcut class.

	[image: [Note]]	Note
	
Control flow pointcuts are significantly more expensive to evaluate at runtime than even
other dynamic pointcuts. In Java 1.4, the cost is about 5 times that of other dynamic
pointcuts.

Pointcut superclasses

Spring provides useful pointcut superclasses to help you to implement your own pointcuts.

Because static pointcuts are most useful, you’ll probably subclass
StaticMethodMatcherPointcut, as shown below. This requires implementing just one
abstract method (although it’s possible to override other methods to customize behavior):

class TestStaticPointcut extends StaticMethodMatcherPointcut {

 public boolean matches(Method m, Class targetClass) {
 // return true if custom criteria match
 }

}

There are also superclasses for dynamic pointcuts.

You can use custom pointcuts with any advice type in Spring 1.0 RC2 and above.

Custom pointcuts

Because pointcuts in Spring AOP are Java classes, rather than language features (as in
AspectJ) it’s possible to declare custom pointcuts, whether static or dynamic. Custom
pointcuts in Spring can be arbitrarily complex. However, using the AspectJ pointcut
expression language is recommended if possible.

	[image: [Note]]	Note
	
Later versions of Spring may offer support for "semantic pointcuts" as offered by JAC:
for example, "all methods that change instance variables in the target object."

Advice API in Spring

Let’s now look at how Spring AOP handles advice.

Advice lifecycles

Each advice is a Spring bean. An advice instance can be shared across all advised
objects, or unique to each advised object. This corresponds to per-class or
per-instance advice.

Per-class advice is used most often. It is appropriate for generic advice such as
transaction advisors. These do not depend on the state of the proxied object or add new
state; they merely act on the method and arguments.

Per-instance advice is appropriate for introductions, to support mixins. In this case,
the advice adds state to the proxied object.

It’s possible to use a mix of shared and per-instance advice in the same AOP proxy.

Advice types in Spring

Spring provides several advice types out of the box, and is extensible to support
arbitrary advice types. Let us look at the basic concepts and standard advice types.

Interception around advice

The most fundamental advice type in Spring is interception around advice.

Spring is compliant with the AOP Alliance interface for around advice using method
interception. MethodInterceptors implementing around advice should implement the
following interface:

public interface MethodInterceptor extends Interceptor {

 Object invoke(MethodInvocation invocation) throws Throwable;

}

The MethodInvocation argument to the invoke() method exposes the method being
invoked; the target join point; the AOP proxy; and the arguments to the method. The
invoke() method should return the invocation’s result: the return value of the join
point.

A simple MethodInterceptor implementation looks as follows:

public class DebugInterceptor implements MethodInterceptor {

 public Object invoke(MethodInvocation invocation) throws Throwable {
 System.out.println("Before: invocation=[" + invocation + "]");
 Object rval = invocation.proceed();
 System.out.println("Invocation returned");
 return rval;
 }

}

Note the call to the MethodInvocation’s proceed() method. This proceeds down the
interceptor chain towards the join point. Most interceptors will invoke this method, and
return its return value. However, a MethodInterceptor, like any around advice, can
return a different value or throw an exception rather than invoke the proceed method.
However, you don’t want to do this without good reason!

	[image: [Note]]	Note
	
MethodInterceptors offer interoperability with other AOP Alliance-compliant AOP
implementations. The other advice types discussed in the remainder of this section
implement common AOP concepts, but in a Spring-specific way. While there is an advantage
in using the most specific advice type, stick with MethodInterceptor around advice if
you are likely to want to run the aspect in another AOP framework. Note that pointcuts
are not currently interoperable between frameworks, and the AOP Alliance does not
currently define pointcut interfaces.

Before advice

A simpler advice type is a before advice. This does not need a MethodInvocation
object, since it will only be called before entering the method.

The main advantage of a before advice is that there is no need to invoke the proceed()
method, and therefore no possibility of inadvertently failing to proceed down the
interceptor chain.

The MethodBeforeAdvice interface is shown below. (Spring’s API design would allow for
field before advice, although the usual objects apply to field interception and it’s
unlikely that Spring will ever implement it).

public interface MethodBeforeAdvice extends BeforeAdvice {

 void before(Method m, Object[] args, Object target) throws Throwable;

}

Note the return type is void. Before advice can insert custom behavior before the join
point executes, but cannot change the return value. If a before advice throws an
exception, this will abort further execution of the interceptor chain. The exception
will propagate back up the interceptor chain. If it is unchecked, or on the signature of
the invoked method, it will be passed directly to the client; otherwise it will be
wrapped in an unchecked exception by the AOP proxy.

An example of a before advice in Spring, which counts all method invocations:

public class CountingBeforeAdvice implements MethodBeforeAdvice {

 private int count;

 public void before(Method m, Object[] args, Object target) throws Throwable {
 ++count;
 }

 public int getCount() {
 return count;
 }
}

	[image: [Tip]]	Tip
	
Before advice can be used with any pointcut.

Throws advice

Throws advice is invoked after the return of the join point if the join point threw
an exception. Spring offers typed throws advice. Note that this means that the
org.springframework.aop.ThrowsAdvice interface does not contain any methods: It is a
tag interface identifying that the given object implements one or more typed throws
advice methods. These should be in the form of:

afterThrowing([Method, args, target], subclassOfThrowable)

Only the last argument is required. The method signatures may have either one or four
arguments, depending on whether the advice method is interested in the method and
arguments. The following classes are examples of throws advice.

The advice below is invoked if a RemoteException is thrown (including subclasses):

public class RemoteThrowsAdvice implements ThrowsAdvice {

 public void afterThrowing(RemoteException ex) throws Throwable {
 // Do something with remote exception
 }

}

The following advice is invoked if a ServletException is thrown. Unlike the above
advice, it declares 4 arguments, so that it has access to the invoked method, method
arguments and target object:

public class ServletThrowsAdviceWithArguments implements ThrowsAdvice {

 public void afterThrowing(Method m, Object[] args, Object target, ServletException ex) {
 // Do something with all arguments
 }

}

The final example illustrates how these two methods could be used in a single class,
which handles both RemoteException and ServletException. Any number of throws advice
methods can be combined in a single class.

public static class CombinedThrowsAdvice implements ThrowsAdvice {

 public void afterThrowing(RemoteException ex) throws Throwable {
 // Do something with remote exception
 }

 public void afterThrowing(Method m, Object[] args, Object target, ServletException ex) {
 // Do something with all arguments
 }
}

Note: If a throws-advice method throws an exception itself, it will override the
original exception (i.e. change the exception thrown to the user). The overriding
exception will typically be a RuntimeException; this is compatible with any method
signature. However, if a throws-advice method throws a checked exception, it will have
to match the declared exceptions of the target method and is hence to some degree
coupled to specific target method signatures. Do not throw an undeclared checked
exception that is incompatible with the target method’s signature!

	[image: [Tip]]	Tip
	
Throws advice can be used with any pointcut.

After Returning advice

An after returning advice in Spring must implement the
org.springframework.aop.AfterReturningAdvice interface, shown below:

public interface AfterReturningAdvice extends Advice {

 void afterReturning(Object returnValue, Method m, Object[] args,
 Object target) throws Throwable;

}

An after returning advice has access to the return value (which it cannot modify),
invoked method, methods arguments and target.

The following after returning advice counts all successful method invocations that have
not thrown exceptions:

public class CountingAfterReturningAdvice implements AfterReturningAdvice {

 private int count;

 public void afterReturning(Object returnValue, Method m, Object[] args,
 Object target) throws Throwable {
 ++count;
 }

 public int getCount() {
 return count;
 }

}

This advice doesn’t change the execution path. If it throws an exception, this will be
thrown up the interceptor chain instead of the return value.

	[image: [Tip]]	Tip
	
After returning advice can be used with any pointcut.

Introduction advice

Spring treats introduction advice as a special kind of interception advice.

Introduction requires an IntroductionAdvisor, and an IntroductionInterceptor,
implementing the following interface:

public interface IntroductionInterceptor extends MethodInterceptor {

 boolean implementsInterface(Class intf);

}

The invoke() method inherited from the AOP Alliance MethodInterceptor interface must
implement the introduction: that is, if the invoked method is on an introduced
interface, the introduction interceptor is responsible for handling the method call - it
cannot invoke proceed().

Introduction advice cannot be used with any pointcut, as it applies only at class,
rather than method, level. You can only use introduction advice with the
IntroductionAdvisor, which has the following methods:

public interface IntroductionAdvisor extends Advisor, IntroductionInfo {

 ClassFilter getClassFilter();

 void validateInterfaces() throws IllegalArgumentException;

}

public interface IntroductionInfo {

 Class[] getInterfaces();

}

There is no MethodMatcher, and hence no Pointcut, associated with introduction
advice. Only class filtering is logical.

The getInterfaces() method returns the interfaces introduced by this advisor.

The validateInterfaces() method is used internally to see whether or not the
introduced interfaces can be implemented by the configured IntroductionInterceptor.

Let’s look at a simple example from the Spring test suite. Let’s suppose we want to
introduce the following interface to one or more objects:

public interface Lockable {

 void lock();

 void unlock();

 boolean locked();

}

This illustrates a mixin. We want to be able to cast advised objects to Lockable,
whatever their type, and call lock and unlock methods. If we call the lock() method, we
want all setter methods to throw a LockedException. Thus we can add an aspect that
provides the ability to make objects immutable, without them having any knowledge of it:
a good example of AOP.

Firstly, we’ll need an IntroductionInterceptor that does the heavy lifting. In this
case, we extend the org.springframework.aop.support.DelegatingIntroductionInterceptor
convenience class. We could implement IntroductionInterceptor directly, but using
DelegatingIntroductionInterceptor is best for most cases.

The DelegatingIntroductionInterceptor is designed to delegate an introduction to an
actual implementation of the introduced interface(s), concealing the use of interception
to do so. The delegate can be set to any object using a constructor argument; the
default delegate (when the no-arg constructor is used) is this. Thus in the example
below, the delegate is the LockMixin subclass of DelegatingIntroductionInterceptor.
Given a delegate (by default itself), a DelegatingIntroductionInterceptor instance
looks for all interfaces implemented by the delegate (other than
IntroductionInterceptor), and will support introductions against any of them. It’s
possible for subclasses such as LockMixin to call the suppressInterface(Class intf)
method to suppress interfaces that should not be exposed. However, no matter how many
interfaces an IntroductionInterceptor is prepared to support, the
IntroductionAdvisor used will control which interfaces are actually exposed. An
introduced interface will conceal any implementation of the same interface by the target.

Thus LockMixin subclasses DelegatingIntroductionInterceptor and implements Lockable
itself. The superclass automatically picks up that Lockable can be supported for
introduction, so we don’t need to specify that. We could introduce any number of
interfaces in this way.

Note the use of the locked instance variable. This effectively adds additional state
to that held in the target object.

public class LockMixin extends DelegatingIntroductionInterceptor implements Lockable {

 private boolean locked;

 public void lock() {
 this.locked = true;
 }

 public void unlock() {
 this.locked = false;
 }

 public boolean locked() {
 return this.locked;
 }

 public Object invoke(MethodInvocation invocation) throws Throwable {
 if (locked() && invocation.getMethod().getName().indexOf("set") == 0) {
 throw new LockedException();
 }
 return super.invoke(invocation);
 }

}

Often it isn’t necessary to override the invoke() method: the
DelegatingIntroductionInterceptor implementation - which calls the delegate method if
the method is introduced, otherwise proceeds towards the join point - is usually
sufficient. In the present case, we need to add a check: no setter method can be invoked
if in locked mode.

The introduction advisor required is simple. All it needs to do is hold a distinct
LockMixin instance, and specify the introduced interfaces - in this case, just
Lockable. A more complex example might take a reference to the introduction
interceptor (which would be defined as a prototype): in this case, there’s no
configuration relevant for a LockMixin, so we simply create it using new.

public class LockMixinAdvisor extends DefaultIntroductionAdvisor {

 public LockMixinAdvisor() {
 super(new LockMixin(), Lockable.class);
 }

}

We can apply this advisor very simply: it requires no configuration. (However, it is
necessary: It’s impossible to use an IntroductionInterceptor without an
IntroductionAdvisor.) As usual with introductions, the advisor must be per-instance,
as it is stateful. We need a different instance of LockMixinAdvisor, and hence
LockMixin, for each advised object. The advisor comprises part of the advised object’s
state.

We can apply this advisor programmatically, using the Advised.addAdvisor() method, or
(the recommended way) in XML configuration, like any other advisor. All proxy creation
choices discussed below, including "auto proxy creators," correctly handle introductions
and stateful mixins.

Advisor API in Spring

In Spring, an Advisor is an aspect that contains just a single advice object associated
with a pointcut expression.

Apart from the special case of introductions, any advisor can be used with any advice.
org.springframework.aop.support.DefaultPointcutAdvisor is the most commonly used
advisor class. For example, it can be used with a MethodInterceptor, BeforeAdvice or
ThrowsAdvice.

It is possible to mix advisor and advice types in Spring in the same AOP proxy. For
example, you could use a interception around advice, throws advice and before advice in
one proxy configuration: Spring will automatically create the necessary interceptor
chain.

Using the ProxyFactoryBean to create AOP proxies

If you’re using the Spring IoC container (an ApplicationContext or BeanFactory) for your
business objects - and you should be! - you will want to use one of Spring’s AOP
FactoryBeans. (Remember that a factory bean introduces a layer of indirection, enabling
it to create objects of a different type.)

	[image: [Note]]	Note
	
The Spring 2.0 AOP support also uses factory beans under the covers.

The basic way to create an AOP proxy in Spring is to use the
org.springframework.aop.framework.ProxyFactoryBean. This gives complete control over
the pointcuts and advice that will apply, and their ordering. However, there are simpler
options that are preferable if you don’t need such control.

Basics

The ProxyFactoryBean, like other Spring FactoryBean implementations, introduces a
level of indirection. If you define a ProxyFactoryBean with name foo, what objects
referencing foo see is not the ProxyFactoryBean instance itself, but an object
created by the ProxyFactoryBean’s implementation of the `getObject() method. This
method will create an AOP proxy wrapping a target object.

One of the most important benefits of using a ProxyFactoryBean or another IoC-aware
class to create AOP proxies, is that it means that advices and pointcuts can also be
managed by IoC. This is a powerful feature, enabling certain approaches that are hard to
achieve with other AOP frameworks. For example, an advice may itself reference
application objects (besides the target, which should be available in any AOP
framework), benefiting from all the pluggability provided by Dependency Injection.

JavaBean properties

In common with most FactoryBean implementations provided with Spring, the
ProxyFactoryBean class is itself a JavaBean. Its properties are used to:

	
Specify the target you want to proxy.

	
Specify whether to use CGLIB (see below and also the section called “JDK- and CGLIB-based proxies”).

Some key properties are inherited from org.springframework.aop.framework.ProxyConfig
(the superclass for all AOP proxy factories in Spring). These key properties include:

	
proxyTargetClass: true if the target class is to be proxied, rather than the
target class' interfaces. If this property value is set to true, then CGLIB proxies
will be created (but see also below the section called “JDK- and CGLIB-based proxies”).

	
optimize: controls whether or not aggressive optimizations are applied to proxies
created via CGLIB. One should not blithely use this setting unless one fully
understands how the relevant AOP proxy handles optimization. This is currently used
only for CGLIB proxies; it has no effect with JDK dynamic proxies.

	
frozen: if a proxy configuration is frozen, then changes to the configuration are
no longer allowed. This is useful both as a slight optimization and for those cases
when you don’t want callers to be able to manipulate the proxy (via the Advised
interface) after the proxy has been created. The default value of this property is
false, so changes such as adding additional advice are allowed.

	
exposeProxy: determines whether or not the current proxy should be exposed in a
ThreadLocal so that it can be accessed by the target. If a target needs to obtain
the proxy and the exposeProxy property is set to true, the target can use the
AopContext.currentProxy() method.

	
aopProxyFactory: the implementation of AopProxyFactory to use. Offers a way of
customizing whether to use dynamic proxies, CGLIB or any other proxy strategy. The
default implementation will choose dynamic proxies or CGLIB appropriately. There
should be no need to use this property; it is intended to allow the addition of new
proxy types in Spring 1.1.

Other properties specific to ProxyFactoryBean include:

	
proxyInterfaces: array of String interface names. If this isn’t supplied, a CGLIB
proxy for the target class will be used (but see also below the section called “JDK- and CGLIB-based proxies”).

	
interceptorNames: String array of Advisor, interceptor or other advice names to
apply. Ordering is significant, on a first come-first served basis. That is to say
that the first interceptor in the list will be the first to be able to intercept the
invocation.

The names are bean names in the current factory, including bean names from ancestor
factories. You can’t mention bean references here since doing so would result in the
ProxyFactoryBean ignoring the singleton setting of the advice.

You can append an interceptor name with an asterisk (*). This will result in the
application of all advisor beans with names starting with the part before the asterisk
to be applied. An example of using this feature can be found in the section called “Using 'global' advisors”.

	
singleton: whether or not the factory should return a single object, no matter how
often the getObject() method is called. Several FactoryBean implementations offer
such a method. The default value is true. If you want to use stateful advice - for
example, for stateful mixins - use prototype advices along with a singleton value of
false.

JDK- and CGLIB-based proxies

This section serves as the definitive documentation on how the ProxyFactoryBean
chooses to create one of either a JDK- and CGLIB-based proxy for a particular target
object (that is to be proxied).

	[image: [Note]]	Note
	
The behavior of the ProxyFactoryBean with regard to creating JDK- or CGLIB-based
proxies changed between versions 1.2.x and 2.0 of Spring. The ProxyFactoryBean now
exhibits similar semantics with regard to auto-detecting interfaces as those of the
TransactionProxyFactoryBean class.

If the class of a target object that is to be proxied (hereafter simply referred to as
the target class) doesn’t implement any interfaces, then a CGLIB-based proxy will be
created. This is the easiest scenario, because JDK proxies are interface based, and no
interfaces means JDK proxying isn’t even possible. One simply plugs in the target bean,
and specifies the list of interceptors via the interceptorNames property. Note that a
CGLIB-based proxy will be created even if the proxyTargetClass property of the
ProxyFactoryBean has been set to false. (Obviously this makes no sense, and is best
removed from the bean definition because it is at best redundant, and at worst
confusing.)

If the target class implements one (or more) interfaces, then the type of proxy that is
created depends on the configuration of the ProxyFactoryBean.

If the proxyTargetClass property of the ProxyFactoryBean has been set to true,
then a CGLIB-based proxy will be created. This makes sense, and is in keeping with the
principle of least surprise. Even if the proxyInterfaces property of the
ProxyFactoryBean has been set to one or more fully qualified interface names, the fact
that the proxyTargetClass property is set to true will cause CGLIB-based
proxying to be in effect.

If the proxyInterfaces property of the ProxyFactoryBean has been set to one or more
fully qualified interface names, then a JDK-based proxy will be created. The created
proxy will implement all of the interfaces that were specified in the proxyInterfaces
property; if the target class happens to implement a whole lot more interfaces than
those specified in the proxyInterfaces property, that is all well and good but those
additional interfaces will not be implemented by the returned proxy.

If the proxyInterfaces property of the ProxyFactoryBean has not been set, but
the target class does implement one (or more) interfaces, then the
ProxyFactoryBean will auto-detect the fact that the target class does actually
implement at least one interface, and a JDK-based proxy will be created. The interfaces
that are actually proxied will be all of the interfaces that the target class
implements; in effect, this is the same as simply supplying a list of each and every
interface that the target class implements to the proxyInterfaces property. However,
it is significantly less work, and less prone to typos.

Proxying interfaces

Let’s look at a simple example of ProxyFactoryBean in action. This example involves:

	
A target bean that will be proxied. This is the "personTarget" bean definition in
the example below.

	
An Advisor and an Interceptor used to provide advice.

	
An AOP proxy bean definition specifying the target object (the personTarget bean) and
the interfaces to proxy, along with the advices to apply.

<bean id="personTarget" class="com.mycompany.PersonImpl">
 <property name="name"><value>Tony</value></property>
 <property name="age"><value>51</value></property>
</bean>

<bean id="myAdvisor" class="com.mycompany.MyAdvisor">
 <property name="someProperty"><value>Custom string property value</value></property>
</bean>

<bean id="debugInterceptor" class="org.springframework.aop.interceptor.DebugInterceptor">
</bean>

<bean id="person" class="org.springframework.aop.framework.ProxyFactoryBean">
 <property name="proxyInterfaces"><value>com.mycompany.Person</value></property>
 <property name="target"><ref bean="personTarget"/></property>
 <property name="interceptorNames">
 <list>
 <value>myAdvisor</value>
 <value>debugInterceptor</value>
 </list>
 </property>
</bean>

Note that the interceptorNames property takes a list of String: the bean names of the
interceptor or advisors in the current factory. Advisors, interceptors, before, after
returning and throws advice objects can be used. The ordering of advisors is significant.

	[image: [Note]]	Note
	
You might be wondering why the list doesn’t hold bean references. The reason for this is
that if the ProxyFactoryBean’s singleton property is set to false, it must be able to
return independent proxy instances. If any of the advisors is itself a prototype, an
independent instance would need to be returned, so it’s necessary to be able to obtain
an instance of the prototype from the factory; holding a reference isn’t sufficient.

The "person" bean definition above can be used in place of a Person implementation, as
follows:

Person person = (Person) factory.getBean("person");

Other beans in the same IoC context can express a strongly typed dependency on it, as
with an ordinary Java object:

<bean id="personUser" class="com.mycompany.PersonUser">
 <property name="person"><ref bean="person" /></property>
</bean>

The PersonUser class in this example would expose a property of type Person. As far as
it’s concerned, the AOP proxy can be used transparently in place of a "real" person
implementation. However, its class would be a dynamic proxy class. It would be possible
to cast it to the Advised interface (discussed below).

It’s possible to conceal the distinction between target and proxy using an anonymous
inner bean, as follows. Only the ProxyFactoryBean definition is different; the
advice is included only for completeness:

<bean id="myAdvisor" class="com.mycompany.MyAdvisor">
 <property name="someProperty"><value>Custom string property value</value></property>
</bean>

<bean id="debugInterceptor" class="org.springframework.aop.interceptor.DebugInterceptor"/>

<bean id="person" class="org.springframework.aop.framework.ProxyFactoryBean">
 <property name="proxyInterfaces"><value>com.mycompany.Person</value></property>
 <!-- Use inner bean, not local reference to target -->
 <property name="target">
 <bean class="com.mycompany.PersonImpl">
 <property name="name"><value>Tony</value></property>
 <property name="age"><value>51</value></property>
 </bean>
 </property>
 <property name="interceptorNames">
 <list>
 <value>myAdvisor</value>
 <value>debugInterceptor</value>
 </list>
 </property>
</bean>

This has the advantage that there’s only one object of type Person: useful if we want
to prevent users of the application context from obtaining a reference to the un-advised
object, or need to avoid any ambiguity with Spring IoC autowiring. There’s also
arguably an advantage in that the ProxyFactoryBean definition is self-contained.
However, there are times when being able to obtain the un-advised target from the
factory might actually be an advantage: for example, in certain test scenarios.

Proxying classes

What if you need to proxy a class, rather than one or more interfaces?

Imagine that in our example above, there was no Person interface: we needed to advise
a class called Person that didn’t implement any business interface. In this case, you
can configure Spring to use CGLIB proxying, rather than dynamic proxies. Simply set the
proxyTargetClass property on the ProxyFactoryBean above to true. While it’s best to
program to interfaces, rather than classes, the ability to advise classes that don’t
implement interfaces can be useful when working with legacy code. (In general, Spring
isn’t prescriptive. While it makes it easy to apply good practices, it avoids forcing a
particular approach.)

If you want to, you can force the use of CGLIB in any case, even if you do have
interfaces.

CGLIB proxying works by generating a subclass of the target class at runtime. Spring
configures this generated subclass to delegate method calls to the original target: the
subclass is used to implement the Decorator pattern, weaving in the advice.

CGLIB proxying should generally be transparent to users. However, there are some issues
to consider:

	
Final methods can’t be advised, as they can’t be overridden.

	
As of Spring 3.2 it is no longer required to add CGLIB to your project classpath.
CGLIB classes have been repackaged under org.springframework and included directly in
the spring-core JAR. This is both for user convenience as well as to avoid potential
conflicts with other projects that have dependence on a differing version of CGLIB.

There’s little performance difference between CGLIB proxying and dynamic proxies. As of
Spring 1.0, dynamic proxies are slightly faster. However, this may change in the future.
Performance should not be a decisive consideration in this case.

Using 'global' advisors

By appending an asterisk to an interceptor name, all advisors with bean names matching
the part before the asterisk, will be added to the advisor chain. This can come in handy
if you need to add a standard set of 'global' advisors:

<bean id="proxy" class="org.springframework.aop.framework.ProxyFactoryBean">
 <property name="target" ref="service"/>
 <property name="interceptorNames">
 <list>
 <value>global*</value>
 </list>
 </property>
</bean>

<bean id="global_debug" class="org.springframework.aop.interceptor.DebugInterceptor"/>
<bean id="global_performance" class="org.springframework.aop.interceptor.PerformanceMonitorInterceptor"/>

Concise proxy definitions

Especially when defining transactional proxies, you may end up with many similar proxy
definitions. The use of parent and child bean definitions, along with inner bean
definitions, can result in much cleaner and more concise proxy definitions.

First a parent, template, bean definition is created for the proxy:

<bean id="txProxyTemplate" abstract="true"
 class="org.springframework.transaction.interceptor.TransactionProxyFactoryBean">
 <property name="transactionManager" ref="transactionManager"/>
 <property name="transactionAttributes">
 <props>
 <prop key="*">PROPAGATION_REQUIRED</prop>
 </props>
 </property>
</bean>

This will never be instantiated itself, so may actually be incomplete. Then each proxy
which needs to be created is just a child bean definition, which wraps the target of the
proxy as an inner bean definition, since the target will never be used on its own anyway.

<bean id="myService" parent="txProxyTemplate">
 <property name="target">
 <bean class="org.springframework.samples.MyServiceImpl">
 </bean>
 </property>
</bean>

It is of course possible to override properties from the parent template, such as in
this case, the transaction propagation settings:

<bean id="mySpecialService" parent="txProxyTemplate">
 <property name="target">
 <bean class="org.springframework.samples.MySpecialServiceImpl">
 </bean>
 </property>
 <property name="transactionAttributes">
 <props>
 <prop key="get*">PROPAGATION_REQUIRED,readOnly</prop>
 <prop key="find*">PROPAGATION_REQUIRED,readOnly</prop>
 <prop key="load*">PROPAGATION_REQUIRED,readOnly</prop>
 <prop key="store*">PROPAGATION_REQUIRED</prop>
 </props>
 </property>
</bean>

Note that in the example above, we have explicitly marked the parent bean definition as
abstract by using the abstract attribute, as described
previously, so that it may not actually ever be
instantiated. Application contexts (but not simple bean factories) will by default
pre-instantiate all singletons. It is therefore important (at least for singleton beans)
that if you have a (parent) bean definition which you intend to use only as a template,
and this definition specifies a class, you must make sure to set theabstract
attribute to true, otherwise the application context will actually try to
pre-instantiate it.

Creating AOP proxies programmatically with the ProxyFactory

It’s easy to create AOP proxies programmatically using Spring. This enables you to use
Spring AOP without dependency on Spring IoC.

The following listing shows creation of a proxy for a target object, with one
interceptor and one advisor. The interfaces implemented by the target object will
automatically be proxied:

ProxyFactory factory = new ProxyFactory(myBusinessInterfaceImpl);
factory.addInterceptor(myMethodInterceptor);
factory.addAdvisor(myAdvisor);
MyBusinessInterface tb = (MyBusinessInterface) factory.getProxy();

The first step is to construct an object of type
org.springframework.aop.framework.ProxyFactory. You can create this with a target
object, as in the above example, or specify the interfaces to be proxied in an alternate
constructor.

You can add interceptors or advisors, and manipulate them for the life of the
ProxyFactory. If you add an IntroductionInterceptionAroundAdvisor you can cause the
proxy to implement additional interfaces.

There are also convenience methods on ProxyFactory (inherited from AdvisedSupport)
which allow you to add other advice types such as before and throws advice.
AdvisedSupport is the superclass of both ProxyFactory and ProxyFactoryBean.

	[image: [Tip]]	Tip
	
Integrating AOP proxy creation with the IoC framework is best practice in most
applications. We recommend that you externalize configuration from Java code with AOP,
as in general.

Manipulating advised objects

However you create AOP proxies, you can manipulate them using the
org.springframework.aop.framework.Advised interface. Any AOP proxy can be cast to this
interface, whichever other interfaces it implements. This interface includes the
following methods:

Advisor[] getAdvisors();

void addAdvice(Advice advice) throws AopConfigException;

void addAdvice(int pos, Advice advice) throws AopConfigException;

void addAdvisor(Advisor advisor) throws AopConfigException;

void addAdvisor(int pos, Advisor advisor) throws AopConfigException;

int indexOf(Advisor advisor);

boolean removeAdvisor(Advisor advisor) throws AopConfigException;

void removeAdvisor(int index) throws AopConfigException;

boolean replaceAdvisor(Advisor a, Advisor b) throws AopConfigException;

boolean isFrozen();

The getAdvisors() method will return an Advisor for every advisor, interceptor or
other advice type that has been added to the factory. If you added an Advisor, the
returned advisor at this index will be the object that you added. If you added an
interceptor or other advice type, Spring will have wrapped this in an advisor with a
pointcut that always returns true. Thus if you added a MethodInterceptor, the advisor
returned for this index will be an DefaultPointcutAdvisor returning your
MethodInterceptor and a pointcut that matches all classes and methods.

The addAdvisor() methods can be used to add any Advisor. Usually the advisor holding
pointcut and advice will be the generic DefaultPointcutAdvisor, which can be used with
any advice or pointcut (but not for introductions).

By default, it’s possible to add or remove advisors or interceptors even once a proxy
has been created. The only restriction is that it’s impossible to add or remove an
introduction advisor, as existing proxies from the factory will not show the interface
change. (You can obtain a new proxy from the factory to avoid this problem.)

A simple example of casting an AOP proxy to the Advised interface and examining and
manipulating its advice:

Advised advised = (Advised) myObject;
Advisor[] advisors = advised.getAdvisors();
int oldAdvisorCount = advisors.length;
System.out.println(oldAdvisorCount + " advisors");

// Add an advice like an interceptor without a pointcut
// Will match all proxied methods
// Can use for interceptors, before, after returning or throws advice
advised.addAdvice(new DebugInterceptor());

// Add selective advice using a pointcut
advised.addAdvisor(new DefaultPointcutAdvisor(mySpecialPointcut, myAdvice));

assertEquals("Added two advisors", oldAdvisorCount + 2, advised.getAdvisors().length);

	[image: [Note]]	Note
	
It’s questionable whether it’s advisable (no pun intended) to modify advice on a
business object in production, although there are no doubt legitimate usage cases.
However, it can be very useful in development: for example, in tests. I have sometimes
found it very useful to be able to add test code in the form of an interceptor or other
advice, getting inside a method invocation I want to test. (For example, the advice can
get inside a transaction created for that method: for example, to run SQL to check that
a database was correctly updated, before marking the transaction for roll back.)

Depending on how you created the proxy, you can usually set a frozen flag, in which
case the Advised isFrozen() method will return true, and any attempts to modify
advice through addition or removal will result in an AopConfigException. The ability
to freeze the state of an advised object is useful in some cases, for example, to
prevent calling code removing a security interceptor. It may also be used in Spring 1.1
to allow aggressive optimization if runtime advice modification is known not to be
required.

Using the "autoproxy" facility

So far we’ve considered explicit creation of AOP proxies using a ProxyFactoryBean or
similar factory bean.

Spring also allows us to use "autoproxy" bean definitions, which can automatically proxy
selected bean definitions. This is built on Spring "bean post processor" infrastructure,
which enables modification of any bean definition as the container loads.

In this model, you set up some special bean definitions in your XML bean definition file
to configure the auto proxy infrastructure. This allows you just to declare the targets
eligible for autoproxying: you don’t need to use ProxyFactoryBean.

There are two ways to do this:

	
Using an autoproxy creator that refers to specific beans in the current context.

	
A special case of autoproxy creation that deserves to be considered separately;
autoproxy creation driven by source-level metadata attributes.

Autoproxy bean definitions

The org.springframework.aop.framework.autoproxy package provides the following
standard autoproxy creators.

BeanNameAutoProxyCreator

The BeanNameAutoProxyCreator class is a BeanPostProcessor that automatically creates
AOP proxies for beans with names matching literal values or wildcards.

<bean class="org.springframework.aop.framework.autoproxy.BeanNameAutoProxyCreator">
 <property name="beanNames"><value>jdk*,onlyJdk</value></property>
 <property name="interceptorNames">
 <list>
 <value>myInterceptor</value>
 </list>
 </property>
</bean>

As with ProxyFactoryBean, there is an interceptorNames property rather than a list
of interceptors, to allow correct behavior for prototype advisors. Named "interceptors"
can be advisors or any advice type.

As with auto proxying in general, the main point of using BeanNameAutoProxyCreator is
to apply the same configuration consistently to multiple objects, with minimal volume of
configuration. It is a popular choice for applying declarative transactions to multiple
objects.

Bean definitions whose names match, such as "jdkMyBean" and "onlyJdk" in the above
example, are plain old bean definitions with the target class. An AOP proxy will be
created automatically by the BeanNameAutoProxyCreator. The same advice will be applied
to all matching beans. Note that if advisors are used (rather than the interceptor in
the above example), the pointcuts may apply differently to different beans.

DefaultAdvisorAutoProxyCreator

A more general and extremely powerful auto proxy creator is
DefaultAdvisorAutoProxyCreator. This will automagically apply eligible advisors in the
current context, without the need to include specific bean names in the autoproxy
advisor’s bean definition. It offers the same merit of consistent configuration and
avoidance of duplication as BeanNameAutoProxyCreator.

Using this mechanism involves:

	
Specifying a DefaultAdvisorAutoProxyCreator bean definition.

	
Specifying any number of Advisors in the same or related contexts. Note that these
must be Advisors, not just interceptors or other advices. This is necessary
because there must be a pointcut to evaluate, to check the eligibility of each advice
to candidate bean definitions.

The DefaultAdvisorAutoProxyCreator will automatically evaluate the pointcut contained
in each advisor, to see what (if any) advice it should apply to each business object
(such as "businessObject1" and "businessObject2" in the example).

This means that any number of advisors can be applied automatically to each business
object. If no pointcut in any of the advisors matches any method in a business object,
the object will not be proxied. As bean definitions are added for new business objects,
they will automatically be proxied if necessary.

Autoproxying in general has the advantage of making it impossible for callers or
dependencies to obtain an un-advised object. Calling getBean("businessObject1") on this
ApplicationContext will return an AOP proxy, not the target business object. (The "inner
bean" idiom shown earlier also offers this benefit.)

<bean class="org.springframework.aop.framework.autoproxy.DefaultAdvisorAutoProxyCreator"/>

<bean class="org.springframework.transaction.interceptor.TransactionAttributeSourceAdvisor">
 <property name="transactionInterceptor" ref="transactionInterceptor"/>
</bean>

<bean id="customAdvisor" class="com.mycompany.MyAdvisor"/>

<bean id="businessObject1" class="com.mycompany.BusinessObject1">
 <!-- Properties omitted -->
</bean>

<bean id="businessObject2" class="com.mycompany.BusinessObject2"/>

The DefaultAdvisorAutoProxyCreator is very useful if you want to apply the same advice
consistently to many business objects. Once the infrastructure definitions are in place,
you can simply add new business objects without including specific proxy configuration.
You can also drop in additional aspects very easily - for example, tracing or
performance monitoring aspects - with minimal change to configuration.

The DefaultAdvisorAutoProxyCreator offers support for filtering (using a naming
convention so that only certain advisors are evaluated, allowing use of multiple,
differently configured, AdvisorAutoProxyCreators in the same factory) and ordering.
Advisors can implement the org.springframework.core.Ordered interface to ensure
correct ordering if this is an issue. The TransactionAttributeSourceAdvisor used in the
above example has a configurable order value; the default setting is unordered.

AbstractAdvisorAutoProxyCreator

This is the superclass of DefaultAdvisorAutoProxyCreator. You can create your own
autoproxy creators by subclassing this class, in the unlikely event that advisor
definitions offer insufficient customization to the behavior of the framework
DefaultAdvisorAutoProxyCreator.

Using metadata-driven auto-proxying

A particularly important type of autoproxying is driven by metadata. This produces a
similar programming model to .NET ServicedComponents. Instead of using XML deployment
descriptors as in EJB, configuration for transaction management and other enterprise
services is held in source-level attributes.

In this case, you use the DefaultAdvisorAutoProxyCreator, in combination with Advisors
that understand metadata attributes. The metadata specifics are held in the pointcut
part of the candidate advisors, rather than in the autoproxy creation class itself.

This is really a special case of the DefaultAdvisorAutoProxyCreator, but deserves
consideration on its own. (The metadata-aware code is in the pointcuts contained in the
advisors, not the AOP framework itself.)

The /attributes directory of the JPetStore sample application shows the use of
attribute-driven autoproxying. In this case, there’s no need to use the
TransactionProxyFactoryBean. Simply defining transactional attributes on business
objects is sufficient, because of the use of metadata-aware pointcuts. The bean
definitions include the following code, in /WEB-INF/declarativeServices.xml. Note that
this is generic, and can be used outside the JPetStore:

<bean class="org.springframework.aop.framework.autoproxy.DefaultAdvisorAutoProxyCreator"/>

<bean class="org.springframework.transaction.interceptor.TransactionAttributeSourceAdvisor">
 <property name="transactionInterceptor" ref="transactionInterceptor"/>
</bean>

<bean id="transactionInterceptor"
 class="org.springframework.transaction.interceptor.TransactionInterceptor">
 <property name="transactionManager" ref="transactionManager"/>
 <property name="transactionAttributeSource">
 <bean class="org.springframework.transaction.interceptor.AttributesTransactionAttributeSource">
 <property name="attributes" ref="attributes"/>
 </bean>
 </property>
</bean>

<bean id="attributes" class="org.springframework.metadata.commons.CommonsAttributes"/>

The DefaultAdvisorAutoProxyCreator bean definition (the name is not significant, hence
it can even be omitted) will pick up all eligible pointcuts in the current application
context. In this case, the "transactionAdvisor" bean definition, of type
TransactionAttributeSourceAdvisor, will apply to classes or methods carrying a
transaction attribute. The TransactionAttributeSourceAdvisor depends on a
TransactionInterceptor, via constructor dependency. The example resolves this via
autowiring. The AttributesTransactionAttributeSource depends on an implementation of
the org.springframework.metadata.Attributes interface. In this fragment, the
"attributes" bean satisfies this, using the Jakarta Commons Attributes API to obtain
attribute information. (The application code must have been compiled using the Commons
Attributes compilation task.)

The /annotation directory of the JPetStore sample application contains an analogous
example for auto-proxying driven by JDK 1.5+ annotations. The following configuration
enables automatic detection of Spring’s Transactional annotation, leading to implicit
proxies for beans containing that annotation:

<bean class="org.springframework.aop.framework.autoproxy.DefaultAdvisorAutoProxyCreator"/>

<bean class="org.springframework.transaction.interceptor.TransactionAttributeSourceAdvisor">
 <property name="transactionInterceptor" ref="transactionInterceptor"/>
</bean>

<bean id="transactionInterceptor"
 class="org.springframework.transaction.interceptor.TransactionInterceptor">
 <property name="transactionManager" ref="transactionManager"/>
 <property name="transactionAttributeSource">
 <bean class="org.springframework.transaction.annotation.AnnotationTransactionAttributeSource"/>
 </property>
</bean>

The TransactionInterceptor defined here depends on a PlatformTransactionManager
definition, which is not included in this generic file (although it could be) because it
will be specific to the application’s transaction requirements (typically JTA, as in
this example, or Hibernate, JDO or JDBC):

<bean id="transactionManager"
 class="org.springframework.transaction.jta.JtaTransactionManager"/>

	[image: [Tip]]	Tip
	
If you require only declarative transaction management, using these generic XML
definitions will result in Spring automatically proxying all classes or methods with
transaction attributes. You won’t need to work directly with AOP, and the programming
model is similar to that of .NET ServicedComponents.

This mechanism is extensible. It’s possible to do autoproxying based on custom
attributes. You need to:

	
Define your custom attribute.

	
Specify an Advisor with the necessary advice, including a pointcut that is triggered
by the presence of the custom attribute on a class or method. You may be able to use
an existing advice, merely implementing a static pointcut that picks up the custom
attribute.

It’s possible for such advisors to be unique to each advised class (for example,
mixins): they simply need to be defined as prototype, rather than singleton, bean
definitions. For example, the LockMixin introduction interceptor from the Spring test
suite, shown above, could be used in conjunction with an attribute-driven pointcut to
target a mixin, as shown here. We use the generic DefaultPointcutAdvisor, configured
using JavaBean properties:

<bean id="lockMixin" class="org.springframework.aop.LockMixin"
 scope="prototype"/>

<bean id="lockableAdvisor" class="org.springframework.aop.support.DefaultPointcutAdvisor"
 scope="prototype">
 <property name="pointcut" ref="myAttributeAwarePointcut"/>
 <property name="advice" ref="lockMixin"/>
</bean>

<bean id="anyBean" class="anyclass" ...

If the attribute aware pointcut matches any methods in the anyBean or other bean
definitions, the mixin will be applied. Note that both lockMixin and lockableAdvisor
definitions are prototypes. The myAttributeAwarePointcut pointcut can be a singleton
definition, as it doesn’t hold state for individual advised objects.

Using TargetSources

Spring offers the concept of a TargetSource, expressed in the
org.springframework.aop.TargetSource interface. This interface is responsible for
returning the "target object" implementing the join point. The TargetSource
implementation is asked for a target instance each time the AOP proxy handles a method
invocation.

Developers using Spring AOP don’t normally need to work directly with TargetSources, but
this provides a powerful means of supporting pooling, hot swappable and other
sophisticated targets. For example, a pooling TargetSource can return a different target
instance for each invocation, using a pool to manage instances.

If you do not specify a TargetSource, a default implementation is used that wraps a
local object. The same target is returned for each invocation (as you would expect).

Let’s look at the standard target sources provided with Spring, and how you can use them.

	[image: [Tip]]	Tip
	
When using a custom target source, your target will usually need to be a prototype
rather than a singleton bean definition. This allows Spring to create a new target
instance when required.

Hot swappable target sources

The org.springframework.aop.target.HotSwappableTargetSource exists to allow the target
of an AOP proxy to be switched while allowing callers to keep their references to it.

Changing the target source’s target takes effect immediately. The
HotSwappableTargetSource is threadsafe.

You can change the target via the swap() method on HotSwappableTargetSource as follows:

HotSwappableTargetSource swapper = (HotSwappableTargetSource) beanFactory.getBean("swapper");
Object oldTarget = swapper.swap(newTarget);

The XML definitions required look as follows:

<bean id="initialTarget" class="mycompany.OldTarget"/>

<bean id="swapper" class="org.springframework.aop.target.HotSwappableTargetSource">
 <constructor-arg ref="initialTarget"/>
</bean>

<bean id="swappable" class="org.springframework.aop.framework.ProxyFactoryBean">
 <property name="targetSource" ref="swapper"/>
</bean>

The above swap() call changes the target of the swappable bean. Clients who hold a
reference to that bean will be unaware of the change, but will immediately start hitting
the new target.

Although this example doesn’t add any advice - and it’s not necessary to add advice to
use a TargetSource - of course any TargetSource can be used in conjunction with
arbitrary advice.

Pooling target sources

Using a pooling target source provides a similar programming model to stateless session
EJBs, in which a pool of identical instances is maintained, with method invocations
going to free objects in the pool.

A crucial difference between Spring pooling and SLSB pooling is that Spring pooling can
be applied to any POJO. As with Spring in general, this service can be applied in a
non-invasive way.

Spring provides out-of-the-box support for Commons Pool 2.2, which provides a
fairly efficient pooling implementation. You’ll need the commons-pool Jar on your
application’s classpath to use this feature. It’s also possible to subclass
org.springframework.aop.target.AbstractPoolingTargetSource to support any other
pooling API.

	[image: [Note]]	Note
	
Commons Pool 1.5+ is also supported but deprecated as of Spring Framework 4.2.

Sample configuration is shown below:

<bean id="businessObjectTarget" class="com.mycompany.MyBusinessObject" scope="prototype">
 ... properties omitted
</bean>

<bean id="poolTargetSource" class="org.springframework.aop.target.CommonsPool2TargetSource">
 <property name="targetBeanName" value="businessObjectTarget"/>
 <property name="maxSize" value="25"/>
</bean>

<bean id="businessObject" class="org.springframework.aop.framework.ProxyFactoryBean">
 <property name="targetSource" ref="poolTargetSource"/>
 <property name="interceptorNames" value="myInterceptor"/>
</bean>

Note that the target object - "businessObjectTarget" in the example - must be a
prototype. This allows the PoolingTargetSource implementation to create new instances
of the target to grow the pool as necessary. See the Javadoc for
AbstractPoolingTargetSource and the concrete subclass you wish to use for information
about its properties: "maxSize" is the most basic, and always guaranteed to be present.

In this case, "myInterceptor" is the name of an interceptor that would need to be
defined in the same IoC context. However, it isn’t necessary to specify interceptors to
use pooling. If you want only pooling, and no other advice, don’t set the
interceptorNames property at all.

It’s possible to configure Spring so as to be able to cast any pooled object to the
org.springframework.aop.target.PoolingConfig interface, which exposes information
about the configuration and current size of the pool through an introduction. You’ll
need to define an advisor like this:

<bean id="poolConfigAdvisor" class="org.springframework.beans.factory.config.MethodInvokingFactoryBean">
 <property name="targetObject" ref="poolTargetSource"/>
 <property name="targetMethod" value="getPoolingConfigMixin"/>
</bean>

This advisor is obtained by calling a convenience method on the
AbstractPoolingTargetSource class, hence the use of MethodInvokingFactoryBean. This
advisor’s name ("poolConfigAdvisor" here) must be in the list of interceptors names in
the ProxyFactoryBean exposing the pooled object.

The cast will look as follows:

PoolingConfig conf = (PoolingConfig) beanFactory.getBean("businessObject");
System.out.println("Max pool size is " + conf.getMaxSize());

	[image: [Note]]	Note
	
Pooling stateless service objects is not usually necessary. We don’t believe it should
be the default choice, as most stateless objects are naturally thread safe, and instance
pooling is problematic if resources are cached.

Simpler pooling is available using autoproxying. It’s possible to set the TargetSources
used by any autoproxy creator.

Prototype target sources

Setting up a "prototype" target source is similar to a pooling TargetSource. In this
case, a new instance of the target will be created on every method invocation. Although
the cost of creating a new object isn’t high in a modern JVM, the cost of wiring up the
new object (satisfying its IoC dependencies) may be more expensive. Thus you shouldn’t
use this approach without very good reason.

To do this, you could modify the poolTargetSource definition shown above as follows.
(I’ve also changed the name, for clarity.)

<bean id="prototypeTargetSource" class="org.springframework.aop.target.PrototypeTargetSource">
 <property name="targetBeanName" ref="businessObjectTarget"/>
</bean>

There’s only one property: the name of the target bean. Inheritance is used in the
TargetSource implementations to ensure consistent naming. As with the pooling target
source, the target bean must be a prototype bean definition.

ThreadLocal target sources

ThreadLocal target sources are useful if you need an object to be created for each
incoming request (per thread that is). The concept of a ThreadLocal provide a JDK-wide
facility to transparently store resource alongside a thread. Setting up a
ThreadLocalTargetSource is pretty much the same as was explained for the other types
of target source:

<bean id="threadlocalTargetSource" class="org.springframework.aop.target.ThreadLocalTargetSource">
 <property name="targetBeanName" value="businessObjectTarget"/>
</bean>

	[image: [Note]]	Note
	
ThreadLocals come with serious issues (potentially resulting in memory leaks) when
incorrectly using them in a multi-threaded and multi-classloader environments. One
should always consider wrapping a threadlocal in some other class and never directly use
the ThreadLocal itself (except of course in the wrapper class). Also, one should
always remember to correctly set and unset (where the latter simply involved a call to
ThreadLocal.set(null)) the resource local to the thread. Unsetting should be done in
any case since not unsetting it might result in problematic behavior. Spring’s
ThreadLocal support does this for you and should always be considered in favor of using
ThreadLocals without other proper handling code.

Defining new Advice types

Spring AOP is designed to be extensible. While the interception implementation strategy
is presently used internally, it is possible to support arbitrary advice types in
addition to the out-of-the-box interception around advice, before, throws advice and
after returning advice.

The org.springframework.aop.framework.adapter package is an SPI package allowing
support for new custom advice types to be added without changing the core framework. The
only constraint on a custom Advice type is that it must implement the
org.aopalliance.aop.Advice tag interface.

Please refer to the org.springframework.aop.framework.adapter package’s Javadocs for
further information.

Further resources

Please refer to the Spring sample applications for further examples of Spring AOP:

	
The JPetStore’s default configuration illustrates the use of the
TransactionProxyFactoryBean for declarative transaction management.

	
The /attributes directory of the JPetStore illustrates the use of attribute-driven
declarative transaction management.

Chapter 41. XML Schema-based configuration

Introduction

This appendix details the XML Schema-based configuration introduced in Spring 2.0 and
enhanced and extended in Spring 2.5 and 3.0.

DTD support?

Authoring Spring configuration files using the older DTD style is still fully supported.

Nothing will break if you forego the use of the new XML Schema-based approach to
authoring Spring XML configuration files. All that you lose out on is the opportunity to
have more succinct and clearer configuration. Regardless of whether the XML
configuration is DTD- or Schema-based, in the end it all boils down to the same object
model in the container (namely one or more BeanDefinition instances).

The central motivation for moving to XML Schema based configuration files was to make
Spring XML configuration easier. The 'classic' <bean/>-based approach is good, but
its generic-nature comes with a price in terms of configuration overhead.

From the Spring IoC containers point-of-view, everything is a bean. That’s great
news for the Spring IoC container, because if everything is a bean then everything can
be treated in the exact same fashion. The same, however, is not true from a developer’s
point-of-view. The objects defined in a Spring XML configuration file are not all
generic, vanilla beans. Usually, each bean requires some degree of specific
configuration.

Spring 2.0’s new XML Schema-based configuration addresses this issue. The <bean/>
element is still present, and if you wanted to, you could continue to write the exact
same style of Spring XML configuration using only <bean/> elements. The new XML
Schema-based configuration does, however, make Spring XML configuration files
substantially clearer to read. In addition, it allows you to express the intent of a
bean definition.

The key thing to remember is that the new custom tags work best for infrastructure or
integration beans: for example, AOP, collections, transactions, integration with
3rd-party frameworks such as Mule, etc., while the existing bean tags are best suited to
application-specific beans, such as DAOs, service layer objects, validators, etc.

The examples included below will hopefully convince you that the inclusion of XML Schema
support in Spring 2.0 was a good idea. The reception in the community has been
encouraging; also, please note the fact that this new configuration mechanism is totally
customisable and extensible. This means you can write your own domain-specific
configuration tags that would better represent your application’s domain; the process
involved in doing so is covered in the appendix entitled Chapter 42, Extensible XML authoring.

XML Schema-based configuration

Referencing the schemas

To switch over from the DTD-style to the new XML Schema-style, you need to make the
following change.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN 2.0//EN"
 "http://www.springframework.org/dtd/spring-beans-2.0.dtd">

<beans>

<!-- bean definitions here -->

</beans>

The equivalent file in the XML Schema-style would be…​

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd">

 <!-- bean definitions here -->

</beans>

	[image: [Note]]	Note
	
The 'xsi:schemaLocation' fragment is not actually required, but can be included to
reference a local copy of a schema (which can be useful during development).

The above Spring XML configuration fragment is boilerplate that you can copy and paste
(!) and then plug <bean/> definitions into like you have always done. However, the
entire point of switching over is to take advantage of the new Spring 2.0 XML tags since
they make configuration easier. The section entitled the section called “the util schema”
demonstrates how you can start immediately by using some of the more common utility tags.

The rest of this chapter is devoted to showing examples of the new Spring XML Schema
based configuration, with at least one example for every new tag. The format follows a
before and after style, with a before snippet of XML showing the old (but still 100%
legal and supported) style, followed immediately by an after example showing the
equivalent in the new XML Schema-based style.

the util schema

First up is coverage of the util tags. As the name implies, the util tags deal with
common, utility configuration issues, such as configuring collections, referencing
constants, and suchlike.

To use the tags in the util schema, you need to have the following preamble at the top
of your Spring XML configuration file; the text in the snippet below references the
correct schema so that the tags in the util namespace are available to you.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:util="http://www.springframework.org/schema/util" xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/util http://www.springframework.org/schema/util/spring-util.xsd"> <!-- bean definitions here -->

</beans>

<util:constant/>

Before…​

<bean id="..." class="...">
 <property name="isolation">
 <bean id="java.sql.Connection.TRANSACTION_SERIALIZABLE"
 class="org.springframework.beans.factory.config.FieldRetrievingFactoryBean" />
 </property>
</bean>

The above configuration uses a Spring FactoryBean implementation, the
FieldRetrievingFactoryBean, to set the value of the isolation property on a bean
to the value of the java.sql.Connection.TRANSACTION_SERIALIZABLE constant. This is
all well and good, but it is a tad verbose and (unnecessarily) exposes Spring’s internal
plumbing to the end user.

The following XML Schema-based version is more concise and clearly expresses the
developer’s intent ('inject this constant value'), and it just reads better.

<bean id="..." class="...">
 <property name="isolation">
 <util:constant static-field="java.sql.Connection.TRANSACTION_SERIALIZABLE"/>
 </property>
</bean>

Setting a bean property or constructor arg from a field value

FieldRetrievingFactoryBean
is a FactoryBean which retrieves a static or non-static field value. It is typically
used for retrieving public static final constants, which may then be used to set a
property value or constructor arg for another bean.

Find below an example which shows how a static field is exposed, by using the
staticField
property:

<bean id="myField"
 class="org.springframework.beans.factory.config.FieldRetrievingFactoryBean">
 <property name="staticField" value="java.sql.Connection.TRANSACTION_SERIALIZABLE"/>
</bean>

There is also a convenience usage form where the static field is specified as the bean
name:

<bean id="java.sql.Connection.TRANSACTION_SERIALIZABLE"
 class="org.springframework.beans.factory.config.FieldRetrievingFactoryBean"/>

This does mean that there is no longer any choice in what the bean id is (so any other
bean that refers to it will also have to use this longer name), but this form is very
concise to define, and very convenient to use as an inner bean since the id doesn’t have
to be specified for the bean reference:

<bean id="..." class="...">
 <property name="isolation">
 <bean id="java.sql.Connection.TRANSACTION_SERIALIZABLE"
 class="org.springframework.beans.factory.config.FieldRetrievingFactoryBean" />
 </property>
</bean>

It is also possible to access a non-static (instance) field of another bean, as
described in the API documentation for the
FieldRetrievingFactoryBean
class.

Injecting enum values into beans as either property or constructor arguments is very
easy to do in Spring, in that you don’t actually have to do anything or know
anything about the Spring internals (or even about classes such as the
FieldRetrievingFactoryBean). Let’s look at an example to see how easy injecting an
enum value is; consider this JDK 5 enum:

package javax.persistence;

public enum PersistenceContextType {

 TRANSACTION,
 EXTENDED

}

Now consider a setter of type PersistenceContextType:

package example;

public class Client {

 private PersistenceContextType persistenceContextType;

 public void setPersistenceContextType(PersistenceContextType type) {
 this.persistenceContextType = type;
 }

}

	
and the corresponding bean definition:

<bean class="example.Client">
 <property name="persistenceContextType" value="TRANSACTION" />
</bean>

This works for classic type-safe emulated enums (on JDK 1.4 and JDK 1.3) as well; Spring
will automatically attempt to match the string property value to a constant on the enum
class.

<util:property-path/>

Before…​

<!-- target bean to be referenced by name -->
<bean id="testBean" class="org.springframework.beans.TestBean" scope="prototype">
 <property name="age" value="10"/>
 <property name="spouse">
 <bean class="org.springframework.beans.TestBean">
 <property name="age" value="11"/>
 </bean>
 </property>
</bean>

<!-- will result in 10, which is the value of property 'age' of bean 'testBean' -->
<bean id="testBean.age" class="org.springframework.beans.factory.config.PropertyPathFactoryBean"/>

The above configuration uses a Spring FactoryBean implementation, the
PropertyPathFactoryBean, to create a bean (of type int) called testBean.age that
has a value equal to the age property of the testBean bean.

After…​

<!-- target bean to be referenced by name -->
<bean id="testBean" class="org.springframework.beans.TestBean" scope="prototype">
 <property name="age" value="10"/>
 <property name="spouse">
 <bean class="org.springframework.beans.TestBean">
 <property name="age" value="11"/>
 </bean>
 </property>
</bean>

<!-- will result in 10, which is the value of property 'age' of bean 'testBean' -->
<util:property-path id="name" path="testBean.age"/>

The value of the path attribute of the <property-path/> tag follows the form
beanName.beanProperty.

Using <util:property-path/> to set a bean property or constructor-argument

PropertyPathFactoryBean is a FactoryBean that evaluates a property path on a given
target object. The target object can be specified directly or via a bean name. This
value may then be used in another bean definition as a property value or constructor
argument.

Here’s an example where a path is used against another bean, by name:

// target bean to be referenced by name
<bean id="person" class="org.springframework.beans.TestBean" scope="prototype">
 <property name="age" value="10"/>
 <property name="spouse">
 <bean class="org.springframework.beans.TestBean">
 <property name="age" value="11"/>
 </bean>
 </property>
</bean>

// will result in 11, which is the value of property 'spouse.age' of bean 'person'
<bean id="theAge"
 class="org.springframework.beans.factory.config.PropertyPathFactoryBean">
 <property name="targetBeanName" value="person"/>
 <property name="propertyPath" value="spouse.age"/>
</bean>

In this example, a path is evaluated against an inner bean:

<!-- will result in 12, which is the value of property 'age' of the inner bean -->
<bean id="theAge"
 class="org.springframework.beans.factory.config.PropertyPathFactoryBean">
 <property name="targetObject">
 <bean class="org.springframework.beans.TestBean">
 <property name="age" value="12"/>
 </bean>
 </property>
 <property name="propertyPath" value="age"/>
</bean>

There is also a shortcut form, where the bean name is the property path.

<!-- will result in 10, which is the value of property 'age' of bean 'person' -->
<bean id="person.age"
 class="org.springframework.beans.factory.config.PropertyPathFactoryBean"/>

This form does mean that there is no choice in the name of the bean. Any reference to it
will also have to use the same id, which is the path. Of course, if used as an inner
bean, there is no need to refer to it at all:

<bean id="..." class="...">
 <property name="age">
 <bean id="person.age"
 class="org.springframework.beans.factory.config.PropertyPathFactoryBean"/>
 </property>
</bean>

The result type may be specifically set in the actual definition. This is not necessary
for most use cases, but can be of use for some. Please see the Javadocs for more info on
this feature.

<util:properties/>

Before…​

<!-- creates a java.util.Properties instance with values loaded from the supplied location -->
<bean id="jdbcConfiguration" class="org.springframework.beans.factory.config.PropertiesFactoryBean">
 <property name="location" value="classpath:com/foo/jdbc-production.properties"/>
</bean>

The above configuration uses a Spring FactoryBean implementation, the
PropertiesFactoryBean, to instantiate a java.util.Properties instance with values
loaded from the supplied Resource location).

After…​

<!-- creates a java.util.Properties instance with values loaded from the supplied location -->
<util:properties id="jdbcConfiguration" location="classpath:com/foo/jdbc-production.properties"/>

<util:list/>

Before…​

<!-- creates a java.util.List instance with values loaded from the supplied 'sourceList' -->
<bean id="emails" class="org.springframework.beans.factory.config.ListFactoryBean">
 <property name="sourceList">
 <list>
 <value>pechorin@hero.org</value>
 <value>raskolnikov@slums.org</value>
 <value>stavrogin@gov.org</value>
 <value>porfiry@gov.org</value>
 </list>
 </property>
</bean>

The above configuration uses a Spring FactoryBean implementation, the
ListFactoryBean, to create a java.util.List instance initialized with values taken
from the supplied sourceList.

After…​

<!-- creates a java.util.List instance with the supplied values -->
<util:list id="emails">
 <value>pechorin@hero.org</value>
 <value>raskolnikov@slums.org</value>
 <value>stavrogin@gov.org</value>
 <value>porfiry@gov.org</value>
</util:list>

You can also explicitly control the exact type of List that will be instantiated and
populated via the use of the list-class attribute on the <util:list/> element. For
example, if we really need a java.util.LinkedList to be instantiated, we could use the
following configuration:

<util:list id="emails" list-class="java.util.LinkedList">
 <value>jackshaftoe@vagabond.org</value>
 <value>eliza@thinkingmanscrumpet.org</value>
 <value>vanhoek@pirate.org</value>
 <value>d'Arcachon@nemesis.org</value>
</util:list>

If no list-class attribute is supplied, a List implementation will be chosen by
the container.

<util:map/>

Before…​

<!-- creates a java.util.Map instance with values loaded from the supplied 'sourceMap' -->
<bean id="emails" class="org.springframework.beans.factory.config.MapFactoryBean">
 <property name="sourceMap">
 <map>
 <entry key="pechorin" value="pechorin@hero.org"/>
 <entry key="raskolnikov" value="raskolnikov@slums.org"/>
 <entry key="stavrogin" value="stavrogin@gov.org"/>
 <entry key="porfiry" value="porfiry@gov.org"/>
 </map>
 </property>
</bean>

The above configuration uses a Spring FactoryBean implementation, the
MapFactoryBean, to create a java.util.Map instance initialized with key-value pairs
taken from the supplied 'sourceMap'.

After…​

<!-- creates a java.util.Map instance with the supplied key-value pairs -->
<util:map id="emails">
 <entry key="pechorin" value="pechorin@hero.org"/>
 <entry key="raskolnikov" value="raskolnikov@slums.org"/>
 <entry key="stavrogin" value="stavrogin@gov.org"/>
 <entry key="porfiry" value="porfiry@gov.org"/>
</util:map>

You can also explicitly control the exact type of Map that will be instantiated and
populated via the use of the 'map-class' attribute on the <util:map/> element. For
example, if we really need a java.util.TreeMap to be instantiated, we could use the
following configuration:

<util:map id="emails" map-class="java.util.TreeMap">
 <entry key="pechorin" value="pechorin@hero.org"/>
 <entry key="raskolnikov" value="raskolnikov@slums.org"/>
 <entry key="stavrogin" value="stavrogin@gov.org"/>
 <entry key="porfiry" value="porfiry@gov.org"/>
</util:map>

If no 'map-class' attribute is supplied, a Map implementation will be chosen by the
container.

<util:set/>

Before…​

<!-- creates a java.util.Set instance with values loaded from the supplied 'sourceSet' -->
<bean id="emails" class="org.springframework.beans.factory.config.SetFactoryBean">
 <property name="sourceSet">
 <set>
 <value>pechorin@hero.org</value>
 <value>raskolnikov@slums.org</value>
 <value>stavrogin@gov.org</value>
 <value>porfiry@gov.org</value>
 </set>
 </property>
</bean>

The above configuration uses a Spring FactoryBean implementation, the
SetFactoryBean, to create a java.util.Set instance initialized with values taken
from the supplied 'sourceSet'.

After…​

<!-- creates a java.util.Set instance with the supplied values -->
<util:set id="emails">
 <value>pechorin@hero.org</value>
 <value>raskolnikov@slums.org</value>
 <value>stavrogin@gov.org</value>
 <value>porfiry@gov.org</value>
</util:set>

You can also explicitly control the exact type of Set that will be instantiated and
populated via the use of the 'set-class' attribute on the <util:set/> element. For
example, if we really need a java.util.TreeSet to be instantiated, we could use the
following configuration:

<util:set id="emails" set-class="java.util.TreeSet">
 <value>pechorin@hero.org</value>
 <value>raskolnikov@slums.org</value>
 <value>stavrogin@gov.org</value>
 <value>porfiry@gov.org</value>
</util:set>

If no 'set-class' attribute is supplied, a Set implementation will be chosen by the
container.

the jee schema

The jee tags deal with Java EE (Java Enterprise Edition)-related configuration issues,
such as looking up a JNDI object and defining EJB references.

To use the tags in the jee schema, you need to have the following preamble at the top
of your Spring XML configuration file; the text in the following snippet references the
correct schema so that the tags in the jee namespace are available to you.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jee="http://www.springframework.org/schema/jee" xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/jee http://www.springframework.org/schema/jee/spring-jee.xsd"> <!-- bean definitions here -->

</beans>

<jee:jndi-lookup/> (simple)

Before…​

<bean id="dataSource" class="org.springframework.jndi.JndiObjectFactoryBean">
 <property name="jndiName" value="jdbc/MyDataSource"/>
</bean>
<bean id="userDao" class="com.foo.JdbcUserDao">
 <!-- Spring will do the cast automatically (as usual) -->
 <property name="dataSource" ref="dataSource"/>
</bean>

After…​

<jee:jndi-lookup id="dataSource" jndi-name="jdbc/MyDataSource"/>

<bean id="userDao" class="com.foo.JdbcUserDao">
 <!-- Spring will do the cast automatically (as usual) -->
 <property name="dataSource" ref="dataSource"/>
</bean>

<jee:jndi-lookup/> (with single JNDI environment setting)

Before…​

<bean id="simple" class="org.springframework.jndi.JndiObjectFactoryBean">
 <property name="jndiName" value="jdbc/MyDataSource"/>
 <property name="jndiEnvironment">
 <props>
 <prop key="foo">bar</prop>
 </props>
 </property>
</bean>

After…​

<jee:jndi-lookup id="simple" jndi-name="jdbc/MyDataSource">
 <jee:environment>foo=bar</jee:environment>
</jee:jndi-lookup>

<jee:jndi-lookup/> (with multiple JNDI environment settings)

Before…​

<bean id="simple" class="org.springframework.jndi.JndiObjectFactoryBean">
 <property name="jndiName" value="jdbc/MyDataSource"/>
 <property name="jndiEnvironment">
 <props>
 <prop key="foo">bar</prop>
 <prop key="ping">pong</prop>
 </props>
 </property>
</bean>

After…​

<jee:jndi-lookup id="simple" jndi-name="jdbc/MyDataSource">
 <!-- newline-separated, key-value pairs for the environment (standard Properties format) -->
 <jee:environment>
 foo=bar
 ping=pong
 </jee:environment>
</jee:jndi-lookup>

<jee:jndi-lookup/> (complex)

Before…​

<bean id="simple" class="org.springframework.jndi.JndiObjectFactoryBean">
 <property name="jndiName" value="jdbc/MyDataSource"/>
 <property name="cache" value="true"/>
 <property name="resourceRef" value="true"/>
 <property name="lookupOnStartup" value="false"/>
 <property name="expectedType" value="com.myapp.DefaultFoo"/>
 <property name="proxyInterface" value="com.myapp.Foo"/>
</bean>

After…​

<jee:jndi-lookup id="simple"
 jndi-name="jdbc/MyDataSource"
 cache="true"
 resource-ref="true"
 lookup-on-startup="false"
 expected-type="com.myapp.DefaultFoo"
 proxy-interface="com.myapp.Foo"/>

<jee:local-slsb/> (simple)

The <jee:local-slsb/> tag configures a reference to an EJB Stateless SessionBean.

Before…​

<bean id="simple"
 class="org.springframework.ejb.access.LocalStatelessSessionProxyFactoryBean">
 <property name="jndiName" value="ejb/RentalServiceBean"/>
 <property name="businessInterface" value="com.foo.service.RentalService"/>
</bean>

After…​

<jee:local-slsb id="simpleSlsb" jndi-name="ejb/RentalServiceBean"
 business-interface="com.foo.service.RentalService"/>

<jee:local-slsb/> (complex)

<bean id="complexLocalEjb"
 class="org.springframework.ejb.access.LocalStatelessSessionProxyFactoryBean">
 <property name="jndiName" value="ejb/RentalServiceBean"/>
 <property name="businessInterface" value="com.foo.service.RentalService"/>
 <property name="cacheHome" value="true"/>
 <property name="lookupHomeOnStartup" value="true"/>
 <property name="resourceRef" value="true"/>
</bean>

After…​

<jee:local-slsb id="complexLocalEjb"
 jndi-name="ejb/RentalServiceBean"
 business-interface="com.foo.service.RentalService"
 cache-home="true"
 lookup-home-on-startup="true"
 resource-ref="true">

<jee:remote-slsb/>

The <jee:remote-slsb/> tag configures a reference to a remote EJB Stateless
SessionBean.

Before…​

<bean id="complexRemoteEjb"
 class="org.springframework.ejb.access.SimpleRemoteStatelessSessionProxyFactoryBean">
 <property name="jndiName" value="ejb/MyRemoteBean"/>
 <property name="businessInterface" value="com.foo.service.RentalService"/>
 <property name="cacheHome" value="true"/>
 <property name="lookupHomeOnStartup" value="true"/>
 <property name="resourceRef" value="true"/>
 <property name="homeInterface" value="com.foo.service.RentalService"/>
 <property name="refreshHomeOnConnectFailure" value="true"/>
</bean>

After…​

<jee:remote-slsb id="complexRemoteEjb"
 jndi-name="ejb/MyRemoteBean"
 business-interface="com.foo.service.RentalService"
 cache-home="true"
 lookup-home-on-startup="true"
 resource-ref="true"
 home-interface="com.foo.service.RentalService"
 refresh-home-on-connect-failure="true">

the lang schema

The lang tags deal with exposing objects that have been written in a dynamic language
such as JRuby or Groovy as beans in the Spring container.

These tags (and the dynamic language support) are comprehensively covered in the chapter
entitled Chapter 35, Dynamic language support. Please do consult that chapter for full details on this
support and the lang tags themselves.

In the interest of completeness, to use the tags in the lang schema, you need to have
the following preamble at the top of your Spring XML configuration file; the text in the
following snippet references the correct schema so that the tags in the lang namespace
are available to you.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:lang="http://www.springframework.org/schema/lang" xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/lang http://www.springframework.org/schema/lang/spring-lang.xsd"> <!-- bean definitions here -->

</beans>

the jms schema

The jms tags deal with configuring JMS-related beans such as Spring’s
MessageListenerContainers. These tags are detailed in the section of the
JMS chapter entitled the section called “JMS namespace support”. Please do consult that chapter for full
details on this support and the jms tags themselves.

In the interest of completeness, to use the tags in the jms schema, you need to have
the following preamble at the top of your Spring XML configuration file; the text in the
following snippet references the correct schema so that the tags in the jms namespace
are available to you.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jms="http://www.springframework.org/schema/jms" xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/jms http://www.springframework.org/schema/jms/spring-jms.xsd"> <!-- bean definitions here -->

</beans>

the tx (transaction) schema

The tx tags deal with configuring all of those beans in Spring’s comprehensive support
for transactions. These tags are covered in the chapter entitled Chapter 17, Transaction Management.

	[image: [Tip]]	Tip
	
You are strongly encouraged to look at the 'spring-tx.xsd' file that ships with the
Spring distribution. This file is (of course), the XML Schema for Spring’s transaction
configuration, and covers all of the various tags in the tx namespace, including
attribute defaults and suchlike. This file is documented inline, and thus the
information is not repeated here in the interests of adhering to the DRY (Don’t Repeat
Yourself) principle.

In the interest of completeness, to use the tags in the tx schema, you need to have
the following preamble at the top of your Spring XML configuration file; the text in the
following snippet references the correct schema so that the tags in the tx namespace
are available to you.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xmlns:tx="http://www.springframework.org/schema/tx" xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/tx http://www.springframework.org/schema/tx/spring-tx.xsd
 http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop.xsd"> <!-- bean definitions here -->

</beans>

	[image: [Note]]	Note
	
Often when using the tags in the tx namespace you will also be using the tags from the
aop namespace (since the declarative transaction support in Spring is implemented
using AOP). The above XML snippet contains the relevant lines needed to reference the
aop schema so that the tags in the aop namespace are available to you.

the aop schema

The aop tags deal with configuring all things AOP in Spring: this includes Spring’s
own proxy-based AOP framework and Spring’s integration with the AspectJ AOP framework.
These tags are comprehensively covered in the chapter entitled Chapter 11, Aspect Oriented Programming with Spring.

In the interest of completeness, to use the tags in the aop schema, you need to have
the following preamble at the top of your Spring XML configuration file; the text in the
following snippet references the correct schema so that the tags in the aop namespace
are available to you.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:aop="http://www.springframework.org/schema/aop" xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop.xsd"> <!-- bean definitions here -->

</beans>

the context schema

The context tags deal with ApplicationContext configuration that relates to plumbing
- that is, not usually beans that are important to an end-user but rather beans that do
a lot of grunt work in Spring, such as BeanfactoryPostProcessors. The following
snippet references the correct schema so that the tags in the context namespace are
available to you.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context" xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context.xsd"> <!-- bean definitions here -->

</beans>

	[image: [Note]]	Note
	
The context schema was only introduced in Spring 2.5.

<property-placeholder/>

This element activates the replacement of ${…​} placeholders, resolved against the
specified properties file (as a Spring resource location). This element is
a convenience mechanism that sets up aPropertyPlaceholderConfigurer for you; if you need more control over the
PropertyPlaceholderConfigurer, just define one yourself explicitly.

<annotation-config/>

Activates the Spring infrastructure for various annotations to be detected in bean
classes: Spring’s @Required and
@Autowired, as well as JSR 250’s @PostConstruct,
@PreDestroy and @Resource (if available), and JPA’s @PersistenceContext and
@PersistenceUnit (if available). Alternatively, you can choose to activate the
individual BeanPostProcessors for those annotations explicitly.

	[image: [Note]]	Note
	
This element does not activate processing of Spring’s
@Transactional annotation. Use the
<tx:annotation-driven/> element for that purpose.

<component-scan/>

This element is detailed in the section called “Annotation-based container configuration”.

<load-time-weaver/>

This element is detailed in the section called “Load-time weaving with AspectJ in the Spring Framework”.

<spring-configured/>

This element is detailed in the section called “Using AspectJ to dependency inject domain objects with Spring”.

<mbean-export/>

This element is detailed in the section called “Configuring annotation based MBean export”.

the tool schema

The tool tags are for use when you want to add tooling-specific metadata to your
custom configuration elements. This metadata can then be consumed by tools that are
aware of this metadata, and the tools can then do pretty much whatever they want with it
(validation, etc.).

The tool tags are not documented in this release of Spring as they are currently
undergoing review. If you are a third party tool vendor and you would like to contribute
to this review process, then do mail the Spring mailing list. The currently supported
tool tags can be found in the file 'spring-tool.xsd' in the
'src/org/springframework/beans/factory/xml' directory of the Spring source
distribution.

the jdbc schema

The jdbc tags allow you to quickly configure an embedded database or initialize an
existing data source. These tags are documented in the section called “Embedded database support”
and ??? respectively.

To use the tags in the jdbc schema, you need to have the following preamble at the top
of your Spring XML configuration file; the text in the following snippet references the
correct schema so that the tags in the jdbc namespace are available to you.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jdbc="http://www.springframework.org/schema/jdbc" xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/jdbc http://www.springframework.org/schema/jdbc/spring-jdbc.xsd"> <!-- bean definitions here -->

</beans>

the cache schema

The cache tags can be used to enable support for Spring’s @CacheEvict, @CachePut
and @Caching annotations. It it also supports declarative XML-based caching. See
the section called “Enable caching annotations” and the section called “Declarative XML-based caching” for details.

To use the tags in the cache schema, you need to have the following preamble at the
top of your Spring XML configuration file; the text in the following snippet references
the correct schema so that the tags in the cache namespace are available to you.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:cache="http://www.springframework.org/schema/cache" xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/cache http://www.springframework.org/schema/cache/spring-cache.xsd"> <!-- bean definitions here -->

</beans>

the beans schema

Last but not least we have the tags in the beans schema. These are the same tags that
have been in Spring since the very dawn of the framework. Examples of the various tags
in the beans schema are not shown here because they are quite comprehensively covered
in the section called “Dependencies and configuration in detail” (and indeed in that entire chapter).

One thing that is new to the beans tags themselves in Spring 2.0 is the idea of
arbitrary bean metadata. In Spring 2.0 it is now possible to add zero or more key /
value pairs to <bean/> XML definitions. What, if anything, is done with this extra
metadata is totally up to your own custom logic (and so is typically only of use if you
are writing your own custom tags as described in the appendix entitled
Chapter 42, Extensible XML authoring).

Find below an example of the <meta/> tag in the context of a surrounding <bean/>
(please note that without any logic to interpret it the metadata is effectively useless
as-is).

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean id="foo" class="x.y.Foo">
 <meta key="cacheName" value="foo"/>
 <property name="name" value="Rick"/>
 </bean>

</beans>

In the case of the above example, you would assume that there is some logic that will
consume the bean definition and set up some caching infrastructure using the supplied
metadata.

Chapter 42. Extensible XML authoring

Introduction

Since version 2.0, Spring has featured a mechanism for schema-based extensions to the
basic Spring XML format for defining and configuring beans. This section is devoted to
detailing how you would go about writing your own custom XML bean definition parsers and
integrating such parsers into the Spring IoC container.

To facilitate the authoring of configuration files using a schema-aware XML editor,
Spring’s extensible XML configuration mechanism is based on XML Schema. If you are not
familiar with Spring’s current XML configuration extensions that come with the standard
Spring distribution, please first read the appendix entitled???.

Creating new XML configuration extensions can be done by following these (relatively)
simple steps:

	
Authoring an XML schema to describe your custom element(s).

	
Coding a custom NamespaceHandler implementation
(this is an easy step, don’t worry).

	
Coding one or more BeanDefinitionParser implementations
(this is where the real work is done).

	
Registering the above artifacts with Spring (this too
is an easy step).

What follows is a description of each of these steps. For the example, we will create an
XML extension (a custom XML element) that allows us to configure objects of the type
SimpleDateFormat (from the java.text package) in an easy manner. When we are done,
we will be able to define bean definitions of type SimpleDateFormat like this:

<myns:dateformat id="dateFormat"
 pattern="yyyy-MM-dd HH:mm"
 lenient="true"/>

(Don’t worry about the fact that this example is very simple; much more detailed
examples follow afterwards. The intent in this first simple example is to walk you
through the basic steps involved.)

Authoring the schema

Creating an XML configuration extension for use with Spring’s IoC container starts with
authoring an XML Schema to describe the extension. What follows is the schema we’ll use
to configure SimpleDateFormat objects.

<!-- myns.xsd (inside package org/springframework/samples/xml) -->

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns="http://www.mycompany.com/schema/myns"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:beans="http://www.springframework.org/schema/beans"
 targetNamespace="http://www.mycompany.com/schema/myns"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">

 <xsd:import namespace="http://www.springframework.org/schema/beans"/>

 <xsd:element name="dateformat">
 <xsd:complexType>
 <xsd:complexContent>
 <xsd:extension base="beans:identifiedType">
 <xsd:attribute name="lenient" type="xsd:boolean"/>
 <xsd:attribute name="pattern" type="xsd:string" use="required"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

(The emphasized line contains an extension base for all tags that will be identifiable
(meaning they have an id attribute that will be used as the bean identifier in the
container). We are able to use this attribute because we imported the Spring-provided
'beans' namespace.)

The above schema will be used to configure SimpleDateFormat objects, directly in an
XML application context file using the <myns:dateformat/> element.

<myns:dateformat id="dateFormat"
 pattern="yyyy-MM-dd HH:mm"
 lenient="true"/>

Note that after we’ve created the infrastructure classes, the above snippet of XML will
essentially be exactly the same as the following XML snippet. In other words, we’re just
creating a bean in the container, identified by the name 'dateFormat' of type
SimpleDateFormat, with a couple of properties set.

<bean id="dateFormat" class="java.text.SimpleDateFormat">
 <constructor-arg value="yyyy-HH-dd HH:mm"/>
 <property name="lenient" value="true"/>
</bean>

	[image: [Note]]	Note
	
The schema-based approach to creating configuration format allows for tight integration
with an IDE that has a schema-aware XML editor. Using a properly authored schema, you
can use autocompletion to have a user choose between several configuration options
defined in the enumeration.

Coding a NamespaceHandler

In addition to the schema, we need a NamespaceHandler that will parse all elements of
this specific namespace Spring encounters while parsing configuration files. The
NamespaceHandler should in our case take care of the parsing of the myns:dateformat
element.

The NamespaceHandler interface is pretty simple in that it features just three methods:

	
init() - allows for initialization of the NamespaceHandler and will be called by
Spring before the handler is used

	
BeanDefinition parse(Element, ParserContext) - called when Spring encounters a
top-level element (not nested inside a bean definition or a different namespace). This
method can register bean definitions itself and/or return a bean definition.

	
BeanDefinitionHolder decorate(Node, BeanDefinitionHolder, ParserContext) - called
when Spring encounters an attribute or nested element of a different namespace. The
decoration of one or more bean definitions is used for example with
theout-of-the-box scopes Spring 2.0 supports. We’ll start by
highlighting a simple example, without using decoration, after which we will show
decoration in a somewhat more advanced example.

Although it is perfectly possible to code your own NamespaceHandler for the entire
namespace (and hence provide code that parses each and every element in the namespace),
it is often the case that each top-level XML element in a Spring XML configuration file
results in a single bean definition (as in our case, where a single <myns:dateformat/>
element results in a single SimpleDateFormat bean definition). Spring features a
number of convenience classes that support this scenario. In this example, we’ll make
use the NamespaceHandlerSupport class:

package org.springframework.samples.xml;

import org.springframework.beans.factory.xml.NamespaceHandlerSupport;

public class MyNamespaceHandler extends NamespaceHandlerSupport {

 public void init() {
 registerBeanDefinitionParser("dateformat", new SimpleDateFormatBeanDefinitionParser());
 }

}

The observant reader will notice that there isn’t actually a whole lot of parsing logic
in this class. Indeed…​ the NamespaceHandlerSupport class has a built in notion of
delegation. It supports the registration of any number of BeanDefinitionParser
instances, to which it will delegate to when it needs to parse an element in its
namespace. This clean separation of concerns allows a NamespaceHandler to handle the
orchestration of the parsing of all of the custom elements in its namespace, while
delegating to BeanDefinitionParsers to do the grunt work of the XML parsing; this
means that each BeanDefinitionParser will contain just the logic for parsing a single
custom element, as we can see in the next step

BeanDefinitionParser

A BeanDefinitionParser will be used if the NamespaceHandler encounters an XML
element of the type that has been mapped to the specific bean definition parser (which
is 'dateformat' in this case). In other words, the BeanDefinitionParser is
responsible for parsing one distinct top-level XML element defined in the schema. In
the parser, we’ll have access to the XML element (and thus its subelements too) so that
we can parse our custom XML content, as can be seen in the following example:

package org.springframework.samples.xml;

import org.springframework.beans.factory.support.BeanDefinitionBuilder;
import org.springframework.beans.factory.xml.AbstractSingleBeanDefinitionParser;
import org.springframework.util.StringUtils;
import org.w3c.dom.Element;

import java.text.SimpleDateFormat;

public class SimpleDateFormatBeanDefinitionParser extends AbstractSingleBeanDefinitionParser { [image: 1]

 protected Class getBeanClass(Element element) {
 return SimpleDateFormat.class; [image: 2]
 }

 protected void doParse(Element element, BeanDefinitionBuilder bean) {
 // this will never be null since the schema explicitly requires that a value be supplied
 String pattern = element.getAttribute("pattern");
 bean.addConstructorArg(pattern);

 // this however is an optional property
 String lenient = element.getAttribute("lenient");
 if (StringUtils.hasText(lenient)) {
 bean.addPropertyValue("lenient", Boolean.valueOf(lenient));
 }
 }

}

	[image: 1]
	
We use the Spring-provided AbstractSingleBeanDefinitionParser to handle a lot of
the basic grunt work of creating a single BeanDefinition.

	[image: 2]
	
We supply the AbstractSingleBeanDefinitionParser superclass with the type that our
single BeanDefinition will represent.

In this simple case, this is all that we need to do. The creation of our single
BeanDefinition is handled by the AbstractSingleBeanDefinitionParser superclass, as
is the extraction and setting of the bean definition’s unique identifier.

Registering the handler and the schema

The coding is finished! All that remains to be done is to somehow make the Spring XML
parsing infrastructure aware of our custom element; we do this by registering our custom
namespaceHandler and custom XSD file in two special purpose properties files. These
properties files are both placed in a 'META-INF' directory in your application, and
can, for example, be distributed alongside your binary classes in a JAR file. The Spring
XML parsing infrastructure will automatically pick up your new extension by consuming
these special properties files, the formats of which are detailed below.

'META-INF/spring.handlers'

The properties file called 'spring.handlers' contains a mapping of XML Schema URIs to
namespace handler classes. So for our example, we need to write the following:

http\://www.mycompany.com/schema/myns=org.springframework.samples.xml.MyNamespaceHandler

(The ':' character is a valid delimiter in the Java properties format, and so the
':' character in the URI needs to be escaped with a backslash.)

The first part (the key) of the key-value pair is the URI associated with your custom
namespace extension, and needs to match exactly the value of the 'targetNamespace'
attribute as specified in your custom XSD schema.

'META-INF/spring.schemas'

The properties file called 'spring.schemas' contains a mapping of XML Schema locations
(referred to along with the schema declaration in XML files that use the schema as part
of the 'xsi:schemaLocation' attribute) to classpath resources. This file is needed
to prevent Spring from absolutely having to use a default EntityResolver that requires
Internet access to retrieve the schema file. If you specify the mapping in this
properties file, Spring will search for the schema on the classpath (in this case
'myns.xsd' in the 'org.springframework.samples.xml' package):

http\://www.mycompany.com/schema/myns/myns.xsd=org/springframework/samples/xml/myns.xsd

The upshot of this is that you are encouraged to deploy your XSD file(s) right alongside
the NamespaceHandler and BeanDefinitionParser classes on the classpath.

Using a custom extension in your Spring XML configuration

Using a custom extension that you yourself have implemented is no different from using
one of the 'custom' extensions that Spring provides straight out of the box. Find below
an example of using the custom <dateformat/> element developed in the previous steps
in a Spring XML configuration file.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:myns="http://www.mycompany.com/schema/myns"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.mycompany.com/schema/myns http://www.mycompany.com/schema/myns/myns.xsd">

 <!-- as a top-level bean -->
 <myns:dateformat id="defaultDateFormat" pattern="yyyy-MM-dd HH:mm" lenient="true"/>

 <bean id="jobDetailTemplate" abstract="true">
 <property name="dateFormat">
 <!-- as an inner bean -->
 <myns:dateformat pattern="HH:mm MM-dd-yyyy"/>
 </property>
 </bean>

</beans>

Meatier examples

Find below some much meatier examples of custom XML extensions.

Nesting custom tags within custom tags

This example illustrates how you might go about writing the various artifacts required
to satisfy a target of the following configuration:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:foo="http://www.foo.com/schema/component"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.foo.com/schema/component http://www.foo.com/schema/component/component.xsd">

 <foo:component id="bionic-family" name="Bionic-1">
 <foo:component name="Mother-1">
 <foo:component name="Karate-1"/>
 <foo:component name="Sport-1"/>
 </foo:component>
 <foo:component name="Rock-1"/>
 </foo:component>

</beans>

The above configuration actually nests custom extensions within each other. The class
that is actually configured by the above <foo:component/> element is the Component
class (shown directly below). Notice how the Component class does not expose a
setter method for the 'components' property; this makes it hard (or rather impossible)
to configure a bean definition for the Component class using setter injection.

package com.foo;

import java.util.ArrayList;
import java.util.List;

public class Component {

 private String name;
 private List<Component> components = new ArrayList<Component> ();

 // mmm, there is no setter method for the 'components'
 public void addComponent(Component component) {
 this.components.add(component);
 }

 public List<Component> getComponents() {
 return components;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

}

The typical solution to this issue is to create a custom FactoryBean that exposes a
setter property for the 'components' property.

package com.foo;

import org.springframework.beans.factory.FactoryBean;

import java.util.List;

public class ComponentFactoryBean implements FactoryBean<Component> {

 private Component parent;
 private List<Component> children;

 public void setParent(Component parent) {
 this.parent = parent;
 }

 public void setChildren(List<Component> children) {
 this.children = children;
 }

 public Component getObject() throws Exception {
 if (this.children != null && this.children.size() > 0) {
 for (Component child : children) {
 this.parent.addComponent(child);
 }
 }
 return this.parent;
 }

 public Class<Component> getObjectType() {
 return Component.class;
 }

 public boolean isSingleton() {
 return true;
 }

}

This is all very well, and does work nicely, but exposes a lot of Spring plumbing to the
end user. What we are going to do is write a custom extension that hides away all of
this Spring plumbing. If we stick to the steps described
previously, we’ll start off by creating the XSD schema to define the structure of our
custom tag.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<xsd:schema xmlns="http://www.foo.com/schema/component"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.foo.com/schema/component"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">

 <xsd:element name="component">
 <xsd:complexType>
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element ref="component"/>
 </xsd:choice>
 <xsd:attribute name="id" type="xsd:ID"/>
 <xsd:attribute name="name" use="required" type="xsd:string"/>
 </xsd:complexType>
 </xsd:element>

</xsd:schema>

We’ll then create a custom NamespaceHandler.

package com.foo;

import org.springframework.beans.factory.xml.NamespaceHandlerSupport;

public class ComponentNamespaceHandler extends NamespaceHandlerSupport {

 public void init() {
 registerBeanDefinitionParser("component", new ComponentBeanDefinitionParser());
 }

}

Next up is the custom BeanDefinitionParser. Remember that what we are creating is a
BeanDefinition describing a ComponentFactoryBean.

package com.foo;

import org.springframework.beans.factory.config.BeanDefinition;
import org.springframework.beans.factory.support.AbstractBeanDefinition;
import org.springframework.beans.factory.support.BeanDefinitionBuilder;
import org.springframework.beans.factory.support.ManagedList;
import org.springframework.beans.factory.xml.AbstractBeanDefinitionParser;
import org.springframework.beans.factory.xml.ParserContext;
import org.springframework.util.xml.DomUtils;
import org.w3c.dom.Element;

import java.util.List;

public class ComponentBeanDefinitionParser extends AbstractBeanDefinitionParser {

 protected AbstractBeanDefinition parseInternal(Element element, ParserContext parserContext) {
 return parseComponentElement(element);
 }

 private static AbstractBeanDefinition parseComponentElement(Element element) {
 BeanDefinitionBuilder factory = BeanDefinitionBuilder.rootBeanDefinition(ComponentFactoryBean.class);
 factory.addPropertyValue("parent", parseComponent(element));

 List<Element> childElements = DomUtils.getChildElementsByTagName(element, "component");
 if (childElements != null && childElements.size() > 0) {
 parseChildComponents(childElements, factory);
 }

 return factory.getBeanDefinition();
 }

 private static BeanDefinition parseComponent(Element element) {
 BeanDefinitionBuilder component = BeanDefinitionBuilder.rootBeanDefinition(Component.class);
 component.addPropertyValue("name", element.getAttribute("name"));
 return component.getBeanDefinition();
 }

 private static void parseChildComponents(List<Element> childElements, BeanDefinitionBuilder factory) {
 ManagedList<BeanDefinition> children = new ManagedList<BeanDefinition>(childElements.size());
 for (Element element : childElements) {
 children.add(parseComponentElement(element));
 }
 factory.addPropertyValue("children", children);
 }

}

Lastly, the various artifacts need to be registered with the Spring XML infrastructure.

in 'META-INF/spring.handlers'
http\://www.foo.com/schema/component=com.foo.ComponentNamespaceHandler

in 'META-INF/spring.schemas'
http\://www.foo.com/schema/component/component.xsd=com/foo/component.xsd

Custom attributes on 'normal' elements

Writing your own custom parser and the associated artifacts isn’t hard, but sometimes it
is not the right thing to do. Consider the scenario where you need to add metadata to
already existing bean definitions. In this case you certainly don’t want to have to go
off and write your own entire custom extension; rather you just want to add an
additional attribute to the existing bean definition element.

By way of another example, let’s say that the service class that you are defining a bean
definition for a service object that will (unknown to it) be accessing a clustered
JCache, and you want to ensure that the named
JCache instance is eagerly started within the surrounding cluster:

<bean id="checkingAccountService" class="com.foo.DefaultCheckingAccountService"
 jcache:cache-name="checking.account">
 <!-- other dependencies here... -->
</bean>

What we are going to do here is create another BeanDefinition when the
'jcache:cache-name' attribute is parsed; this BeanDefinition will then initialize
the named JCache for us. We will also modify the existing BeanDefinition for the
'checkingAccountService' so that it will have a dependency on this new
JCache-initializing BeanDefinition.

package com.foo;

public class JCacheInitializer {

 private String name;

 public JCacheInitializer(String name) {
 this.name = name;
 }

 public void initialize() {
 // lots of JCache API calls to initialize the named cache...
 }

}

Now onto the custom extension. Firstly, the authoring of the XSD schema describing the
custom attribute (quite easy in this case).

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<xsd:schema xmlns="http://www.foo.com/schema/jcache"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.foo.com/schema/jcache"
 elementFormDefault="qualified">

 <xsd:attribute name="cache-name" type="xsd:string"/>

</xsd:schema>

Next, the associated NamespaceHandler.

package com.foo;

import org.springframework.beans.factory.xml.NamespaceHandlerSupport;

public class JCacheNamespaceHandler extends NamespaceHandlerSupport {

 public void init() {
 super.registerBeanDefinitionDecoratorForAttribute("cache-name",
 new JCacheInitializingBeanDefinitionDecorator());
 }

}

Next, the parser. Note that in this case, because we are going to be parsing an XML
attribute, we write a BeanDefinitionDecorator rather than a BeanDefinitionParser.

package com.foo;

import org.springframework.beans.factory.config.BeanDefinitionHolder;
import org.springframework.beans.factory.support.AbstractBeanDefinition;
import org.springframework.beans.factory.support.BeanDefinitionBuilder;
import org.springframework.beans.factory.xml.BeanDefinitionDecorator;
import org.springframework.beans.factory.xml.ParserContext;
import org.w3c.dom.Attr;
import org.w3c.dom.Node;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

public class JCacheInitializingBeanDefinitionDecorator implements BeanDefinitionDecorator {

 private static final String[] EMPTY_STRING_ARRAY = new String[0];

 public BeanDefinitionHolder decorate(Node source, BeanDefinitionHolder holder,
 ParserContext ctx) {
 String initializerBeanName = registerJCacheInitializer(source, ctx);
 createDependencyOnJCacheInitializer(holder, initializerBeanName);
 return holder;
 }

 private void createDependencyOnJCacheInitializer(BeanDefinitionHolder holder,
 String initializerBeanName) {
 AbstractBeanDefinition definition = ((AbstractBeanDefinition) holder.getBeanDefinition());
 String[] dependsOn = definition.getDependsOn();
 if (dependsOn == null) {
 dependsOn = new String[]{initializerBeanName};
 } else {
 List dependencies = new ArrayList(Arrays.asList(dependsOn));
 dependencies.add(initializerBeanName);
 dependsOn = (String[]) dependencies.toArray(EMPTY_STRING_ARRAY);
 }
 definition.setDependsOn(dependsOn);
 }

 private String registerJCacheInitializer(Node source, ParserContext ctx) {
 String cacheName = ((Attr) source).getValue();
 String beanName = cacheName + "-initializer";
 if (!ctx.getRegistry().containsBeanDefinition(beanName)) {
 BeanDefinitionBuilder initializer = BeanDefinitionBuilder.rootBeanDefinition(JCacheInitializer.class);
 initializer.addConstructorArg(cacheName);
 ctx.getRegistry().registerBeanDefinition(beanName, initializer.getBeanDefinition());
 }
 return beanName;
 }

}

Lastly, the various artifacts need to be registered with the Spring XML infrastructure.

in 'META-INF/spring.handlers'
http\://www.foo.com/schema/jcache=com.foo.JCacheNamespaceHandler

in 'META-INF/spring.schemas'
http\://www.foo.com/schema/jcache/jcache.xsd=com/foo/jcache.xsd

Further Resources

Find below links to further resources concerning XML Schema and the extensible XML
support described in this chapter.

	
The XML Schema Part 1: Structures
Second Edition

	
The XML Schema Part 2: Datatypes
Second Edition

Chapter 43. spring JSP Tag Library

Introduction

One of the view technologies you can use with the Spring Framework is Java Server Pages
(JSPs). To help you implement views using Java Server Pages the Spring Framework
provides you with some tags for evaluating errors, setting themes and outputting
internationalized messages.

Please note that the various tags generated by this form tag library are compliant with
the XHTML-1.0-Strict specification and attendant
DTD.

This appendix describes the spring.tld tag library.

	
the section called “The argument tag”

	
the section called “The bind tag”

	
the section called “The escapeBody tag”

	
the section called “The hasBindErrors tag”

	
the section called “The htmlEscape tag”

	
the section called “The message tag”

	
the section called “The nestedPath tag”

	
the section called “The param tag”

	
the section called “The theme tag”

	
the section called “The transform tag”

	
the section called “The url tag”

	
the section called “The eval tag”

The argument tag

Argument tag based on the JSTL fmt:param tag. The purpose is to support arguments
inside the message and theme tags.

Table 43.1. Attributes

	Attribute	Required?	Runtime Expression?	Description
	value
	false
	true
	The value of the argument.

The bind tag

Provides BindStatus object for the given bind path. The HTML escaping flag participates
in a page-wide or application-wide setting (i.e. by HtmlEscapeTag or a
"defaultHtmlEscape" context-param in web.xml).

Table 43.2. Attributes

	Attribute	Required?	Runtime Expression?	Description
	htmlEscape
	false
	true
	Set HTML escaping for this tag, as boolean value. Overrides the default HTML escaping
 setting for the current page.

	ignoreNestedPath
	false
	true
	Set whether to ignore a nested path, if any. Default is to not ignore.

	path
	true
	true
	The path to the bean or bean property to bind status information for. For instance
 account.name, company.address.zipCode or just employee. The status object will
 exported to the page scope, specifically for this bean or bean property

The escapeBody tag

Escapes its enclosed body content, applying HTML escaping and/or JavaScript escaping.
The HTML escaping flag participates in a page-wide or application-wide setting (i.e. by
HtmlEscapeTag or a "defaultHtmlEscape" context-param in web.xml).

Table 43.3. Attributes

	Attribute	Required?	Runtime Expression?	Description
	htmlEscape
	false
	true
	Set HTML escaping for this tag, as boolean value. Overrides the default HTML escaping
 setting for the current page.

	javaScriptEscape
	false
	true
	Set JavaScript escaping for this tag, as boolean value. Default is false.

The eval tag

Evaluates a Spring expression (SpEL) and either prints the result or assigns it to a
variable.

Table 43.4. Attributes

	Attribute	Required?	Runtime Expression?	Description
	expression
	true
	true
	The expression to evaluate.

	htmlEscape
	false
	true
	Set HTML escaping for this tag, as a boolean value. Overrides the default HTML
 escaping setting for the current page.

	javaScriptEscape
	false
	true
	Set JavaScript escaping for this tag, as a boolean value. Default is false.

	scope
	false
	true
	The scope for the var. 'application', 'session', 'request' and 'page' scopes are
 supported. Defaults to page scope. This attribute has no effect unless the var
 attribute is also defined.

	var
	false
	true
	The name of the variable to export the evaluation result to. If not specified the
 evaluation result is converted to a String and written as output.

The hasBindErrors tag

Provides Errors instance in case of bind errors. The HTML escaping flag participates in
a page-wide or application-wide setting (i.e. by HtmlEscapeTag or a "defaultHtmlEscape"
context-param in web.xml).

Table 43.5. Attributes

	Attribute	Required?	Runtime Expression?	Description
	htmlEscape
	false
	true
	Set HTML escaping for this tag, as boolean value. Overrides the default HTML escaping
 setting for the current page.

	name
	true
	true
	The name of the bean in the request, that needs to be inspected for errors. If errors
 are available for this bean, they will be bound under the 'errors' key.

The htmlEscape tag

Sets default HTML escape value for the current page. Overrides a "defaultHtmlEscape"
context-param in web.xml, if any.

Table 43.6. Attributes

	Attribute	Required?	Runtime Expression?	Description
	defaultHtmlEscape
	true
	true
	Set the default value for HTML escaping, to be put into the current PageContext.

The message tag

Retrieves the message with the given code, or text if code isn’t resolvable. The HTML
escaping flag participates in a page-wide or application-wide setting (i.e. by
HtmlEscapeTag or a "defaultHtmlEscape" context-param in web.xml).

Table 43.7. Attributes

	Attribute	Required?	Runtime Expression?	Description
	arguments
	false
	true
	Set optional message arguments for this tag, as a (comma-)delimited String (each
 String argument can contain JSP EL), an Object array (used as argument array), or a
 single Object (used as single argument).

	argumentSeparator
	false
	true
	The separator character to be used for splitting the arguments string value; defaults
 to a 'comma' (',').

	code
	false
	true
	The code (key) to use when looking up the message. If code is not provided, the text
 attribute will be used.

	htmlEscape
	false
	true
	Set HTML escaping for this tag, as boolean value. Overrides the default HTML escaping
 setting for the current page.

	javaScriptEscape
	false
	true
	Set JavaScript escaping for this tag, as boolean value. Default is false.

	message
	false
	true
	A MessageSourceResolvable argument (direct or through JSP EL). Fits nicely when used
 in conjunction with Spring’s own validation error classes which all implement the
 MessageSourceResolvable interface. For example, this allows you to iterate over all of
 the errors in a form, passing each error (using a runtime expression) as the value of
 this 'message' attribute, thus effecting the easy display of such error messages.

	scope
	false
	true
	The scope to use when exporting the result to a variable. This attribute is only used
 when var is also set. Possible values are page, request, session and application.

	text
	false
	true
	Default text to output when a message for the given code could not be found. If both
 text and code are not set, the tag will output null.

	var
	false
	true
	The string to use when binding the result to the page, request, session or application
 scope. If not specified, the result gets outputted to the writer (i.e. typically
 directly to the JSP).

The nestedPath tag

Sets a nested path to be used by the bind tag’s path.

Table 43.8. Attributes

	Attribute	Required?	Runtime Expression?	Description
	path
	true
	true
	Set the path that this tag should apply. E.g. 'customer' to allow bind paths like
 'address.street' rather than 'customer.address.street'.

The param tag

Parameter tag based on the JSTL c:param tag. The sole purpose is to support params
inside the url tag.

Table 43.9. Attributes

	Attribute	Required?	Runtime Expression?	Description
	name
	true
	true
	The name of the parameter.

	value
	false
	true
	The value of the parameter.

The theme tag

Retrieves the theme message with the given code, or text if code isn’t resolvable. The
HTML escaping flag participates in a page-wide or application-wide setting (i.e. by
HtmlEscapeTag or a "defaultHtmlEscape" context-param in web.xml).

Table 43.10. Attributes

	Attribute	Required?	Runtime Expression?	Description
	arguments
	false
	true
	Set optional message arguments for this tag, as a (comma-)delimited String (each
 String argument can contain JSP EL), an Object array (used as argument array), or a
 single Object (used as single argument).

	argumentSeparator
	false
	true
	The separator character to be used for splitting the arguments string value; defaults
 to a 'comma' (',').

	code
	false
	true
	The code (key) to use when looking up the message. If code is not provided, the text
 attribute will be used.

	htmlEscape
	false
	true
	Set HTML escaping for this tag, as boolean value. Overrides the default HTML escaping
 setting for the current page.

	javaScriptEscape
	false
	true
	Set JavaScript escaping for this tag, as boolean value. Default is false.

	message
	false
	true
	A MessageSourceResolvable argument (direct or through JSP EL).

	scope
	false
	true
	The scope to use when exporting the result to a variable. This attribute is only used
 when var is also set. Possible values are page, request, session and application.

	text
	false
	true
	Default text to output when a message for the given code could not be found. If both
 text and code are not set, the tag will output null.

	var
	false
	true
	The string to use when binding the result to the page, request, session or application
 scope. If not specified, the result gets outputted to the writer (i.e. typically
 directly to the JSP).

The transform tag

Provides transformation of variables to Strings, using an appropriate custom
PropertyEditor from BindTag (can only be used inside BindTag). The HTML escaping flag
participates in a page-wide or application-wide setting (i.e. by HtmlEscapeTag or a
'defaultHtmlEscape' context-param in web.xml).

Table 43.11. Attributes

	Attribute	Required?	Runtime Expression?	Description
	htmlEscape
	false
	true
	Set HTML escaping for this tag, as boolean value. Overrides the default HTML escaping
 setting for the current page.

	scope
	false
	true
	The scope to use when exported the result to a variable. This attribute is only used
 when var is also set. Possible values are page, request, session and application.

	value
	true
	true
	The value to transform. This is the actual object you want to have transformed (for
 instance a Date). Using the PropertyEditor that is currently in use by the
 'spring:bind' tag.

	var
	false
	true
	The string to use when binding the result to the page, request, session or application
 scope. If not specified, the result gets outputted to the writer (i.e. typically
 directly to the JSP).

The url tag

Creates URLs with support for URI template variables, HTML/XML escaping, and Javascript
escaping. Modeled after the JSTL c:url tag with backwards compatibility in mind.

Table 43.12. Attributes

	Attribute	Required?	Runtime Expression?	Description
	value
	true
	true
	The URL to build. This value can include template {placeholders} that are replaced
 with the URL encoded value of the named parameter. Parameters must be defined using
 the param tag inside the body of this tag.

	context
	false
	true
	Specifies a remote application context path. The default is the current application
 context path.

	var
	false
	true
	The name of the variable to export the URL value to. If not specified the URL is
 written as output.

	scope
	false
	true
	The scope for the var. 'application', 'session', 'request' and 'page' scopes are
 supported. Defaults to page scope. This attribute has no effect unless the var
 attribute is also defined.

	htmlEscape
	false
	true
	Set HTML escaping for this tag, as a boolean value. Overrides the default HTML
 escaping setting for the current page.

	javaScriptEscape
	false
	true
	Set JavaScript escaping for this tag, as a boolean value. Default is false.

Chapter 44. spring-form JSP Tag Library

Introduction

One of the view technologies you can use with the Spring Framework is Java Server Pages
(JSPs). To help you implement views using Java Server Pages the Spring Framework
provides you with some tags for evaluating errors, setting themes and outputting
internationalized messages.

Please note that the various tags generated by this form tag library are compliant with
the XHTML-1.0-Strict specification and attendant
DTD.

This appendix describes the spring-form.tld tag library.

	
the section called “The button tag”

	
the section called “The checkbox tag”

	
the section called “The checkboxes tag”

	
the section called “The errors tag”

	
the section called “The form tag”

	
the section called “The hidden tag”

	
the section called “The input tag”

	
the section called “The label tag”

	
the section called “The option tag”

	
the section called “The options tag”

	
the section called “The password tag”

	
the section called “The radiobutton tag”

	
the section called “The radiobuttons tag”

	
the section called “The select tag”

	
the section called “The textarea tag”

The button tag

Renders a form field label in an HTML 'button' tag.

Table 44.1. Attributes

	Attribute	Required?	Runtime Expression?	Description
	disabled
	false
	true
	HTML Optional Attribute. Setting the value of this attribute to 'true' will disable the HTML element.

	id
	false
	true
	HTML Standard Attribute

	name
	false
	true
	The name attribute for the HTML button tag

	value
	false
	true
	The name attribute for the HTML button tag

The checkbox tag

Renders an HTML 'input' tag with type 'checkbox'.

Table 44.2. Attributes

	Attribute	Required?	Runtime Expression?	Description
	accesskey
	false
	true
	HTML Standard Attribute

	cssClass
	false
	true
	Equivalent to "class" - HTML Optional Attribute

	cssErrorClass
	false
	true
	Equivalent to "class" - HTML Optional Attribute. Used when the bound field has errors.

	cssStyle
	false
	true
	Equivalent to "style" - HTML Optional Attribute

	dir
	false
	true
	HTML Standard Attribute

	disabled
	false
	true
	HTML Optional Attribute. Setting the value of this attribute to 'true' will disable the HTML element.

	htmlEscape
	false
	true
	Enable/disable HTML escaping of rendered values.

	id
	false
	true
	HTML Standard Attribute

	label
	false
	true
	Value to be displayed as part of the tag

	lang
	false
	true
	HTML Standard Attribute

	onblur
	false
	true
	HTML Event Attribute

	onchange
	false
	true
	HTML Event Attribute

	onclick
	false
	true
	HTML Event Attribute

	ondblclick
	false
	true
	HTML Event Attribute

	onfocus
	false
	true
	HTML Event Attribute

	onkeydown
	false
	true
	HTML Event Attribute

	onkeypress
	false
	true
	HTML Event Attribute

	onkeyup
	false
	true
	HTML Event Attribute

	onmousedown
	false
	true
	HTML Event Attribute

	onmousemove
	false
	true
	HTML Event Attribute

	onmouseout
	false
	true
	HTML Event Attribute

	onmouseover
	false
	true
	HTML Event Attribute

	onmouseup
	false
	true
	HTML Event Attribute

	path
	true
	true
	Path to property for data binding

	tabindex
	false
	true
	HTML Standard Attribute

	title
	false
	true
	HTML Standard Attribute

	value
	false
	true
	HTML Optional Attribute

The checkboxes tag

Renders multiple HTML 'input' tags with type 'checkbox'.

Table 44.3. Attributes

	Attribute	Required?	Runtime Expression?	Description
	accesskey
	false
	true
	HTML Standard Attribute

	cssClass
	false
	true
	Equivalent to "class" - HTML Optional Attribute

	cssErrorClass
	false
	true
	Equivalent to "class" - HTML Optional Attribute. Used when the bound field has errors.

	cssStyle
	false
	true
	Equivalent to "style" - HTML Optional Attribute

	delimiter
	false
	true
	Delimiter to use between each 'input' tag with type 'checkbox'. There is no delimiter by default.

	dir
	false
	true
	HTML Standard Attribute

	disabled
	false
	true
	HTML Optional Attribute. Setting the value of this attribute to 'true' will disable the HTML element.

	element
	false
	true
	Specifies the HTML element that is used to enclose each 'input' tag with type 'checkbox'. Defaults to 'span'.

	htmlEscape
	false
	true
	Enable/disable HTML escaping of rendered values.

	id
	false
	true
	HTML Standard Attribute

	itemLabel
	false
	true
	Value to be displayed as part of the 'input' tags with type 'checkbox'

	items
	true
	true
	The Collection, Map or array of objects used to generate the 'input' tags with type 'checkbox'

	itemValue
	false
	true
	Name of the property mapped to 'value' attribute of the 'input' tags with type 'checkbox'

	lang
	false
	true
	HTML Standard Attribute

	onblur
	false
	true
	HTML Event Attribute

	onchange
	false
	true
	HTML Event Attribute

	onclick
	false
	true
	HTML Event Attribute

	ondblclick
	false
	true
	HTML Event Attribute

	onfocus
	false
	true
	HTML Event Attribute

	onkeydown
	false
	true
	HTML Event Attribute

	onkeypress
	false
	true
	HTML Event Attribute

	onkeyup
	false
	true
	HTML Event Attribute

	onmousedown
	false
	true
	HTML Event Attribute

	onmousemove
	false
	true
	HTML Event Attribute

	onmouseout
	false
	true
	HTML Event Attribute

	onmouseover
	false
	true
	HTML Event Attribute

	onmouseup
	false
	true
	HTML Event Attribute

	path
	true
	true
	Path to property for data binding

	tabindex
	false
	true
	HTML Standard Attribute

	title
	false
	true
	HTML Standard Attribute

The errors tag

Renders field errors in an HTML 'span' tag.

Table 44.4. Attributes

	Attribute	Required?	Runtime Expression?	Description
	cssClass
	false
	true
	Equivalent to "class" - HTML Optional Attribute

	cssStyle
	false
	true
	Equivalent to "style" - HTML Optional Attribute

	delimiter
	false
	true
	Delimiter for displaying multiple error messages. Defaults to the br tag.

	dir
	false
	true
	HTML Standard Attribute

	element
	false
	true
	Specifies the HTML element that is used to render the enclosing errors.

	htmlEscape
	false
	true
	Enable/disable HTML escaping of rendered values.

	id
	false
	true
	HTML Standard Attribute

	lang
	false
	true
	HTML Standard Attribute

	onclick
	false
	true
	HTML Event Attribute

	ondblclick
	false
	true
	HTML Event Attribute

	onkeydown
	false
	true
	HTML Event Attribute

	onkeypress
	false
	true
	HTML Event Attribute

	onkeyup
	false
	true
	HTML Event Attribute

	onmousedown
	false
	true
	HTML Event Attribute

	onmousemove
	false
	true
	HTML Event Attribute

	onmouseout
	false
	true
	HTML Event Attribute

	onmouseover
	false
	true
	HTML Event Attribute

	onmouseup
	false
	true
	HTML Event Attribute

	path
	false
	true
	Path to errors object for data binding

	tabindex
	false
	true
	HTML Standard Attribute

	title
	false
	true
	HTML Standard Attribute

The form tag

Renders an HTML 'form' tag and exposes a binding path to inner tags for binding.

Table 44.5. Attributes

	Attribute	Required?	Runtime Expression?	Description
	acceptCharset
	false
	true
	Specifies the list of character encodings for input data that is accepted by the
 server processing this form. The value is a space- and/or comma-delimited list of
 charset values. The client must interpret this list as an exclusive-or list, i.e.,
 the server is able to accept any single character encoding per entity received.

	action
	false
	true
	HTML Required Attribute

	cssClass
	false
	true
	Equivalent to "class" - HTML Optional Attribute

	cssStyle
	false
	true
	Equivalent to "style" - HTML Optional Attribute

	dir
	false
	true
	HTML Standard Attribute

	enctype
	false
	true
	HTML Optional Attribute

	htmlEscape
	false
	true
	Enable/disable HTML escaping of rendered values.

	id
	false
	true
	HTML Standard Attribute

	lang
	false
	true
	HTML Standard Attribute

	method
	false
	true
	HTML Optional Attribute

	methodParam
	false
	true
	The parameter name used for HTTP methods other then GET and POST. Default is '_method'.

	modelAttribute
	false
	true
	Name of the model attribute under which the form object is exposed. Defaults to 'command'.

	name
	false
	true
	HTML Standard Attribute - added for backwards compatibility cases

	onclick
	false
	true
	HTML Event Attribute

	ondblclick
	false
	true
	HTML Event Attribute

	onkeydown
	false
	true
	HTML Event Attribute

	onkeypress
	false
	true
	HTML Event Attribute

	onkeyup
	false
	true
	HTML Event Attribute

	onmousedown
	false
	true
	HTML Event Attribute

	onmousemove
	false
	true
	HTML Event Attribute

	onmouseout
	false
	true
	HTML Event Attribute

	onmouseover
	false
	true
	HTML Event Attribute

	onmouseup
	false
	true
	HTML Event Attribute

	onreset
	false
	true
	HTML Event Attribute

	onsubmit
	false
	true
	HTML Event Attribute

	servletRelativeAction
	false
	true
	Action reference to be appended to the current servlet path

	target
	false
	true
	HTML Optional Attribute

	title
	false
	true
	HTML Standard Attribute

The hidden tag

Renders an HTML 'input' tag with type 'hidden' using the bound value.

Table 44.6. Attributes

	Attribute	Required?	Runtime Expression?	Description
	htmlEscape
	false
	true
	Enable/disable HTML escaping of rendered values.

	id
	false
	true
	HTML Standard Attribute

	path
	true
	true
	Path to property for data binding

The input tag

Renders an HTML 'input' tag with type 'text' using the bound value.

Table 44.7. Attributes

	Attribute	Required?	Runtime Expression?	Description
	accesskey
	false
	true
	HTML Standard Attribute

	alt
	false
	true
	HTML Optional Attribute

	autocomplete
	false
	true
	Common Optional Attribute

	cssClass
	false
	true
	Equivalent to "class" - HTML Optional Attribute

	cssErrorClass
	false
	true
	Equivalent to "class" - HTML Optional Attribute. Used when the bound field has errors.

	cssStyle
	false
	true
	Equivalent to "style" - HTML Optional Attribute

	dir
	false
	true
	HTML Standard Attribute

	disabled
	false
	true
	HTML Optional Attribute. Setting the value of this attribute to 'true' will disable the HTML element.

	htmlEscape
	false
	true
	Enable/disable HTML escaping of rendered values.

	id
	false
	true
	HTML Standard Attribute

	lang
	false
	true
	HTML Standard Attribute

	maxlength
	false
	true
	HTML Optional Attribute

	onblur
	false
	true
	HTML Event Attribute

	onchange
	false
	true
	HTML Event Attribute

	onclick
	false
	true
	HTML Event Attribute

	ondblclick
	false
	true
	HTML Event Attribute

	onfocus
	false
	true
	HTML Event Attribute

	onkeydown
	false
	true
	HTML Event Attribute

	onkeypress
	false
	true
	HTML Event Attribute

	onkeyup
	false
	true
	HTML Event Attribute

	onmousedown
	false
	true
	HTML Event Attribute

	onmousemove
	false
	true
	HTML Event Attribute

	onmouseout
	false
	true
	HTML Event Attribute

	onmouseover
	false
	true
	HTML Event Attribute

	onmouseup
	false
	true
	HTML Event Attribute

	onselect
	false
	true
	HTML Event Attribute

	path
	true
	true
	Path to property for data binding

	readonly
	false
	true
	HTML Optional Attribute. Setting the value of this attribute to 'true' will make the HTML element readonly.

	size
	false
	true
	HTML Optional Attribute

	tabindex
	false
	true
	HTML Standard Attribute

	title
	false
	true
	HTML Standard Attribute

The label tag

Renders a form field label in an HTML 'label' tag.

Table 44.8. Attributes

	Attribute	Required?	Runtime Expression?	Description
	cssClass
	false
	true
	Equivalent to "class" - HTML Optional Attribute.

	cssErrorClass
	false
	true
	Equivalent to "class" - HTML Optional Attribute. Used only when errors are present.

	cssStyle
	false
	true
	Equivalent to "style" - HTML Optional Attribute

	dir
	false
	true
	HTML Standard Attribute

	for
	false
	true
	HTML Standard Attribute

	htmlEscape
	false
	true
	Enable/disable HTML escaping of rendered values.

	id
	false
	true
	HTML Standard Attribute

	lang
	false
	true
	HTML Standard Attribute

	onclick
	false
	true
	HTML Event Attribute

	ondblclick
	false
	true
	HTML Event Attribute

	onkeydown
	false
	true
	HTML Event Attribute

	onkeypress
	false
	true
	HTML Event Attribute

	onkeyup
	false
	true
	HTML Event Attribute

	onmousedown
	false
	true
	HTML Event Attribute

	onmousemove
	false
	true
	HTML Event Attribute

	onmouseout
	false
	true
	HTML Event Attribute

	onmouseover
	false
	true
	HTML Event Attribute

	onmouseup
	false
	true
	HTML Event Attribute

	path
	true
	true
	Path to errors object for data binding

	tabindex
	false
	true
	HTML Standard Attribute

	title
	false
	true
	HTML Standard Attribute

The option tag

Renders a single HTML 'option'. Sets 'selected' as appropriate based on bound value.

Table 44.9. Attributes

	Attribute	Required?	Runtime Expression?	Description
	cssClass
	false
	true
	Equivalent to "class" - HTML Optional Attribute

	cssErrorClass
	false
	true
	Equivalent to "class" - HTML Optional Attribute. Used when the bound field has errors.

	cssStyle
	false
	true
	Equivalent to "style" - HTML Optional Attribute

	dir
	false
	true
	HTML Standard Attribute

	disabled
	false
	true
	HTML Optional Attribute. Setting the value of this attribute to 'true' will disable the HTML element.

	htmlEscape
	false
	true
	Enable/disable HTML escaping of rendered values.

	id
	false
	true
	HTML Standard Attribute

	label
	false
	true
	HTML Optional Attribute

	lang
	false
	true
	HTML Standard Attribute

	onclick
	false
	true
	HTML Event Attribute

	ondblclick
	false
	true
	HTML Event Attribute

	onkeydown
	false
	true
	HTML Event Attribute

	onkeypress
	false
	true
	HTML Event Attribute

	onkeyup
	false
	true
	HTML Event Attribute

	onmousedown
	false
	true
	HTML Event Attribute

	onmousemove
	false
	true
	HTML Event Attribute

	onmouseout
	false
	true
	HTML Event Attribute

	onmouseover
	false
	true
	HTML Event Attribute

	onmouseup
	false
	true
	HTML Event Attribute

	tabindex
	false
	true
	HTML Standard Attribute

	title
	false
	true
	HTML Standard Attribute

	value
	true
	true
	HTML Optional Attribute

The options tag

Renders a list of HTML 'option' tags. Sets 'selected' as appropriate based on bound value.

Table 44.10. Attributes

	Attribute	Required?	Runtime Expression?	Description
	cssClass
	false
	true
	Equivalent to "class" - HTML Optional Attribute

	cssErrorClass
	false
	true
	Equivalent to "class" - HTML Optional Attribute. Used when the bound field has errors.

	cssStyle
	false
	true
	Equivalent to "style" - HTML Optional Attribute

	dir
	false
	true
	HTML Standard Attribute

	disabled
	false
	true
	HTML Optional Attribute. Setting the value of this attribute to 'true' will disable the HTML element.

	htmlEscape
	false
	true
	Enable/disable HTML escaping of rendered values.

	id
	false
	true
	HTML Standard Attribute

	itemLabel
	false
	true
	Name of the property mapped to the inner text of the 'option' tag

	items
	true
	true
	The Collection, Map or array of objects used to generate the inner 'option' tags

	itemValue
	false
	true
	Name of the property mapped to 'value' attribute of the 'option' tag

	lang
	false
	true
	HTML Standard Attribute

	onclick
	false
	true
	HTML Event Attribute

	ondblclick
	false
	true
	HTML Event Attribute

	onkeydown
	false
	true
	HTML Event Attribute

	onkeypress
	false
	true
	HTML Event Attribute

	onkeyup
	false
	true
	HTML Event Attribute

	onmousedown
	false
	true
	HTML Event Attribute

	onmousemove
	false
	true
	HTML Event Attribute

	onmouseout
	false
	true
	HTML Event Attribute

	onmouseover
	false
	true
	HTML Event Attribute

	onmouseup
	false
	true
	HTML Event Attribute

	tabindex
	false
	true
	HTML Standard Attribute

	title
	false
	true
	HTML Standard Attribute

The password tag

Renders an HTML 'input' tag with type 'password' using the bound value.

Table 44.11. Attributes

	Attribute	Required?	Runtime Expression?	Description
	accesskey
	false
	true
	HTML Standard Attribute

	alt
	false
	true
	HTML Optional Attribute

	autocomplete
	false
	true
	Common Optional Attribute

	cssClass
	false
	true
	Equivalent to "class" - HTML Optional Attribute

	cssErrorClass
	false
	true
	Equivalent to "class" - HTML Optional Attribute. Used when the bound field has errors.

	cssStyle
	false
	true
	Equivalent to "style" - HTML Optional Attribute

	dir
	false
	true
	HTML Standard Attribute

	disabled
	false
	true
	HTML Optional Attribute. Setting the value of this attribute to 'true' will disable the HTML element.

	htmlEscape
	false
	true
	Enable/disable HTML escaping of rendered values.

	id
	false
	true
	HTML Standard Attribute

	lang
	false
	true
	HTML Standard Attribute

	maxlength
	false
	true
	HTML Optional Attribute

	onblur
	false
	true
	HTML Event Attribute

	onchange
	false
	true
	HTML Event Attribute

	onclick
	false
	true
	HTML Event Attribute

	ondblclick
	false
	true
	HTML Event Attribute

	onfocus
	false
	true
	HTML Event Attribute

	onkeydown
	false
	true
	HTML Event Attribute

	onkeypress
	false
	true
	HTML Event Attribute

	onkeyup
	false
	true
	HTML Event Attribute

	onmousedown
	false
	true
	HTML Event Attribute

	onmousemove
	false
	true
	HTML Event Attribute

	onmouseout
	false
	true
	HTML Event Attribute

	onmouseover
	false
	true
	HTML Event Attribute

	onmouseup
	false
	true
	HTML Event Attribute

	onselect
	false
	true
	HTML Event Attribute

	path
	true
	true
	Path to property for data binding

	readonly
	false
	true
	HTML Optional Attribute. Setting the value of this attribute to 'true' will make the HTML element readonly.

	showPassword
	false
	true
	Is the password value to be shown? Defaults to false.

	size
	false
	true
	HTML Optional Attribute

	tabindex
	false
	true
	HTML Standard Attribute

	title
	false
	true
	HTML Standard Attribute

The radiobutton tag

Renders an HTML 'input' tag with type 'radio'.

Table 44.12. Attributes

	Attribute	Required?	Runtime Expression?	Description
	accesskey
	false
	true
	HTML Standard Attribute

	cssClass
	false
	true
	Equivalent to "class" - HTML Optional Attribute

	cssErrorClass
	false
	true
	Equivalent to "class" - HTML Optional Attribute. Used when the bound field has errors.

	cssStyle
	false
	true
	Equivalent to "style" - HTML Optional Attribute

	dir
	false
	true
	HTML Standard Attribute

	disabled
	false
	true
	HTML Optional Attribute. Setting the value of this attribute to 'true' will disable the HTML element.

	htmlEscape
	false
	true
	Enable/disable HTML escaping of rendered values.

	id
	false
	true
	HTML Standard Attribute

	label
	false
	true
	Value to be displayed as part of the tag

	lang
	false
	true
	HTML Standard Attribute

	onblur
	false
	true
	HTML Event Attribute

	onchange
	false
	true
	HTML Event Attribute

	onclick
	false
	true
	HTML Event Attribute

	ondblclick
	false
	true
	HTML Event Attribute

	onfocus
	false
	true
	HTML Event Attribute

	onkeydown
	false
	true
	HTML Event Attribute

	onkeypress
	false
	true
	HTML Event Attribute

	onkeyup
	false
	true
	HTML Event Attribute

	onmousedown
	false
	true
	HTML Event Attribute

	onmousemove
	false
	true
	HTML Event Attribute

	onmouseout
	false
	true
	HTML Event Attribute

	onmouseover
	false
	true
	HTML Event Attribute

	onmouseup
	false
	true
	HTML Event Attribute

	path
	true
	true
	Path to property for data binding

	tabindex
	false
	true
	HTML Standard Attribute

	title
	false
	true
	HTML Standard Attribute

	value
	false
	true
	HTML Optional Attribute

The radiobuttons tag

Renders multiple HTML 'input' tags with type 'radio'.

Table 44.13. Attributes

	Attribute	Required?	Runtime Expression?	Description
	accesskey
	false
	true
	HTML Standard Attribute

	cssClass
	false
	true
	Equivalent to "class" - HTML Optional Attribute

	cssErrorClass
	false
	true
	Equivalent to "class" - HTML Optional Attribute. Used when the bound field has errors.

	cssStyle
	false
	true
	Equivalent to "style" - HTML Optional Attribute

	delimiter
	false
	true
	Delimiter to use between each 'input' tag with type 'radio'. There is no delimiter by default.

	dir
	false
	true
	HTML Standard Attribute

	disabled
	false
	true
	HTML Optional Attribute. Setting the value of this attribute to 'true' will disable the HTML element.

	element
	false
	true
	Specifies the HTML element that is used to enclose each 'input' tag with type 'radio'. Defaults to 'span'.

	htmlEscape
	false
	true
	Enable/disable HTML escaping of rendered values.

	id
	false
	true
	HTML Standard Attribute

	itemLabel
	false
	true
	Value to be displayed as part of the 'input' tags with type 'radio'

	items
	true
	true
	The Collection, Map or array of objects used to generate the 'input' tags with type 'radio'

	itemValue
	false
	true
	Name of the property mapped to 'value' attribute of the 'input' tags with type 'radio'

	lang
	false
	true
	HTML Standard Attribute

	onblur
	false
	true
	HTML Event Attribute

	onchange
	false
	true
	HTML Event Attribute

	onclick
	false
	true
	HTML Event Attribute

	ondblclick
	false
	true
	HTML Event Attribute

	onfocus
	false
	true
	HTML Event Attribute

	onkeydown
	false
	true
	HTML Event Attribute

	onkeypress
	false
	true
	HTML Event Attribute

	onkeyup
	false
	true
	HTML Event Attribute

	onmousedown
	false
	true
	HTML Event Attribute

	onmousemove
	false
	true
	HTML Event Attribute

	onmouseout
	false
	true
	HTML Event Attribute

	onmouseover
	false
	true
	HTML Event Attribute

	onmouseup
	false
	true
	HTML Event Attribute

	path
	true
	true
	Path to property for data binding

	tabindex
	false
	true
	HTML Standard Attribute

	title
	false
	true
	HTML Standard Attribute

The select tag

Renders an HTML 'select' element. Supports databinding to the selected option.

Table 44.14. Attributes

	Attribute	Required?	Runtime Expression?	Description
	accesskey
	false
	true
	HTML Standard Attribute

	cssClass
	false
	true
	Equivalent to "class" - HTML Optional Attribute

	cssErrorClass
	false
	true
	Equivalent to "class" - HTML Optional Attribute. Used when the bound field has errors.

	cssStyle
	false
	true
	Equivalent to "style" - HTML Optional Attribute

	dir
	false
	true
	HTML Standard Attribute

	disabled
	false
	true
	HTML Optional Attribute. Setting the value of this attribute to 'true' will disable the HTML element.

	htmlEscape
	false
	true
	Enable/disable HTML escaping of rendered values.

	id
	false
	true
	HTML Standard Attribute

	itemLabel
	false
	true
	Name of the property mapped to the inner text of the 'option' tag

	items
	false
	true
	The Collection, Map or array of objects used to generate the inner 'option' tags

	itemValue
	false
	true
	Name of the property mapped to 'value' attribute of the 'option' tag

	lang
	false
	true
	HTML Standard Attribute

	multiple
	false
	true
	HTML Optional Attribute

	onblur
	false
	true
	HTML Event Attribute

	onchange
	false
	true
	HTML Event Attribute

	onclick
	false
	true
	HTML Event Attribute

	ondblclick
	false
	true
	HTML Event Attribute

	onfocus
	false
	true
	HTML Event Attribute

	onkeydown
	false
	true
	HTML Event Attribute

	onkeypress
	false
	true
	HTML Event Attribute

	onkeyup
	false
	true
	HTML Event Attribute

	onmousedown
	false
	true
	HTML Event Attribute

	onmousemove
	false
	true
	HTML Event Attribute

	onmouseout
	false
	true
	HTML Event Attribute

	onmouseover
	false
	true
	HTML Event Attribute

	onmouseup
	false
	true
	HTML Event Attribute

	path
	true
	true
	Path to property for data binding

	size
	false
	true
	HTML Optional Attribute

	tabindex
	false
	true
	HTML Standard Attribute

	title
	false
	true
	HTML Standard Attribute

The textarea tag

Renders an HTML 'textarea'.

Table 44.15. Attributes

	Attribute	Required?	Runtime Expression?	Description
	accesskey
	false
	true
	HTML Standard Attribute

	cols
	false
	true
	HTML Required Attribute

	cssClass
	false
	true
	Equivalent to "class" - HTML Optional Attribute

	cssErrorClass
	false
	true
	Equivalent to "class" - HTML Optional Attribute. Used when the bound field has errors.

	cssStyle
	false
	true
	Equivalent to "style" - HTML Optional Attribute

	dir
	false
	true
	HTML Standard Attribute

	disabled
	false
	true
	HTML Optional Attribute. Setting the value of this attribute to 'true' will disable the HTML element.

	htmlEscape
	false
	true
	Enable/disable HTML escaping of rendered values.

	id
	false
	true
	HTML Standard Attribute

	lang
	false
	true
	HTML Standard Attribute

	onblur
	false
	true
	HTML Event Attribute

	onchange
	false
	true
	HTML Event Attribute

	onclick
	false
	true
	HTML Event Attribute

	ondblclick
	false
	true
	HTML Event Attribute

	onfocus
	false
	true
	HTML Event Attribute

	onkeydown
	false
	true
	HTML Event Attribute

	onkeypress
	false
	true
	HTML Event Attribute

	onkeyup
	false
	true
	HTML Event Attribute

	onmousedown
	false
	true
	HTML Event Attribute

	onmousemove
	false
	true
	HTML Event Attribute

	onmouseout
	false
	true
	HTML Event Attribute

	onmouseover
	false
	true
	HTML Event Attribute

	onmouseup
	false
	true
	HTML Event Attribute

	onselect
	false
	true
	HTML Event Attribute

	path
	true
	true
	Path to property for data binding

	readonly
	false
	true
	HTML Optional Attribute. Setting the value of this attribute to 'true' will make the HTML element readonly.

	rows
	false
	true
	HTML Required Attribute

	tabindex
	false
	true
	HTML Standard Attribute

	title
	false
	true
	HTML Standard Attribute

images/oxm-exceptions.png
XmiMappingException
ValidationFailureException
MarshallingFailureException UnmarshallingFailureException

MarshallingException

images/tx_prop_required.png
REQUIRED ©————Transaction |

[callerf= o Transactional method 1 |7 Transactional method 2

;

Method 2 executes in the existing transaction.

Transaction created,

committed or rolled back as
needed

images/tip.png

images/mvc.png
request

response|

Delegate Handle
Incoming request request
— —
— S={model =
Return Delegate Create
rendering model
of response
Return
control Render

response

Servlet engine
(e.g. Tomcat)

images/mvc-context-hierarchy.png
DispatcherServiet

Servlet WebApplicationContext

—]

Controllers

ViewResolver|

(containing controllers, view resolvers,
and other web-related beans)

HandlerMapping

¢ Delegates if no bean found

Root WebApplicationContext

(containing middle-tier services, datasources, etc.)

Services

Repositories

images/singleton.png
Only one instance is ever created...

<bean id="accountDao” [class="..." />

... and this same shared instance is injected into each collaborating object

images/prototype.png
A brand new bean instance is created...

—0

—0

<bean id="accountbao” class="..."
scope="prototype” />

L

... each and every time the prototype is referenced by collaborating beans

images/tx_prop_requires_new.png
REQUIRES_NEW ~— Transactionl
~Transaction2

[Caller | Transactional method 1 |"{ Transactional method 2

;

Transaction created, Method 2 executes in a new transaction, and the
committed or rolled back as outer transaction is suspended.
needed

images/DataAccessException.gif
[patatosessResouroeF aiureExospton]

[eteanup sitreDatancoessExcaption

frvatiavstascoesapisageexceptior]

T ——

[ureategonzeasatapccssserosptiod]

patatntegrtyvioiationeosptior]

[pesdionosarbatanccescExcaption

fovatiabstaooesazourcauiageExosption]

[pataRetrievalF itueExceptior]

[optimistcLoddngF ailure Exceptior]

T —

[objecthatisvalFsitreExosption]

[obiectoptimisitodtingF aitureException

[rypetimatonD stancosssesospton]

images/mvc-root-context.png
DispatcherServiet

(with empty contextConfigLocation)

Servlet WebApplicationContext

¢ Delegates

Root WebApplicationContext

(containing all beans)

Controllers HandlerMapping

ViewResolver|

_)

Services Repositories

images/callouts/2.png

images/callouts/3.png

images/callouts/1.png

images/important.png

images/tx.png
Control flows back through

interceptor chain to return
/ result to caller

o I3 Transacton Custom
Adsor Adasorts)

Caller invokes proxy,

not target
Transaction created on way
in, committed or rolled

back on way out Business logic invoked

Custom interceptors may run
before or after transaction advisor

images/message-flow-simple-broker.png
SEND
destination:/app/a

SEND
destination:/topic/a

SimpAnnotationMethod|
Han er

WebSocket client messages

destination:/topic/a

images/overview-full.png
Sending
Email

Integration
Form Multipart ;’y':;'"'"'fo with JSP,
Controllers Resolver A Velocity, SLT.
PDF, Excel
WebApplication Context

Custom domain logic

Declarative Transactions

for POJOs
ORM Mappings
Tomcat Serviet Container Custom DAO/Repositories

Remote
Access

images/message-flow-broker-relay.png
SEND
destination:/app/a

SEND
destination:/topic/a

S J.rnpAnnotatlonMethod

WebSocket client messages

destination:/topic/a

images/spring-overview.png
UCEETND “ m

“ “ *Pe

images/overview-thirdparty-web.png
‘Spring Framework Runtime

Core Container

Expression
Language

Core ‘ l Context

AoP Instrumentation

Transactions ORM

images/overview-remoting.png
‘Spring Framework Runtime

Core Container

Expression
Language

‘ Core ‘ ‘ Context J ‘

images/overview-ejb.png
‘Spring Framework Runtime

Core Container

Expression

Context T

WebSphere, WebLogic, JBoss)

images/warning.png

images/note.png

images/container-magic.png
Your Business Objects (POJOs)

The §
Configuration St

Metadata

produces

images/aop-proxy-plain-pojo-call.png
pojo.foo()

Plain Object £00() on the object

images/aop-proxy-call.png
Caling code

pojo.£oo()

£o0() on the proxy

Plain Object then £o0() on the object

