Testing

Version 6.0.0-M2

Table of Contents

1. Introduction to Spring TeStING 2
20Nt TeStING . ..o 3
2.1. MOCK ODJeCESo 3
211 ENVITONIMENT © .. oo 3
2.0 2, IN DI e 3
2.1.3. Serviet APL . . e 4
2.1.4. Spring Web Reactive. 4
2.2. Unit Testing Support Classes 4
2.2.1. General Testing Utilities. 4
2.2.2. Spring MVC Testing Utilities. 5
3.Integration TESTING. 6
3L OVEIVIBW. oo 6
3.2. Goals of Integration TeSting 6
3.2.1. Context Management and Caching. i i 7
3.2.2. Dependency Injection of Test Fixtures. i i 7
3.2.3. Transaction Management i 8
3.2.4. Support Classes for Integration Testing. i 8
3.3.JDBC TeSting SUPPOTt.o 8
34, ANNOtAtioNS 9
3.4.1. Spring Testing ANNOtations 9
@BootstrapWith . .. 10
@ContextConfiguration 10
@WebAppConfiguration 12
@ContextHierarchy 13
OACETIVEPIOfILeS . . 14
TestPropertySource . .. 16
@DYNamicPropertySourCe ... o 17
EDirtiesContext 18
@TestExecutionlisteners 22
@RecordApplicationEvents 23
COMMIt . .. 23
ROLIDACK . . oo 24
@BeforeTransaction 25
EATterTransaction 25
BSG L. . 26
OSGLCONTIg . . oo 26
OSqLMergeMode o 27

3.4.2. Standard Annotation Support

3.4.3. Spring JUnit 4 Testing Annotations
@IfProfileValue
@ProfileValueSourceConfiguration
@Timed
@Repeat

3.4.4. Spring JUnit Jupiter Testing Annotations
@SpringlUnitConfig
@SpringJUnitWebConfig
@TestConstructor
@NestedTestConfiguration
@EnabledIf
@DisabledIf

3.4.5. Meta-Annotation Support for Testing

3.5. Spring TestContext Framework

3.5.1. Key Abstractions
TestContext
TestContextManager
TestExecutionListener
Context Loaders
3.5.2. Bootstrapping the TestContext Framework
3.5.3. TestExecutionListener Configuration
Registering TestExecutionListener Implementations
Automatic Discovery of Default TestExecutionListener Implementations
Ordering TestExecutionListener Implementations
Merging TestExecutionListener Implementations
3.5.4. Application Events
3.5.5. Test Execution Events
Exception Handling
Asynchronous Listeners
3.5.6. Context Management
Context Configuration with XML resources
Context Configuration with Groovy Scripts
Context Configuration with Component Classes
Mixing XML, Groovy Scripts, and Component Classes
Context Configuration with Context Initializers
Context Configuration Inheritance
Context Configuration with Environment Profiles
Context Configuration with Test Property Sources
Context Configuration with Dynamic Property Sources

Loading a WebApplicationContext

29
30
30
31
32
33
33
33
34
36
36
37
38
39
44
45
45
45
45
45
46
47
47
47
47
48
49
51
52
52
52
35
56
58
61
62
63
66
76
81
83

Context Caching 88

Context Hierarchies 90
3.5.7. Dependency Injection of Test Fixtures 95
3.5.8. Testing Request- and Session-scoped Beans 99
3.5.9. Transaction Management 103
Test-managed Transactions 103
Enabling and Disabling Transactions 104
Transaction Rollback and Commit Behavior 107
Programmatic Transaction Management 108
Running Code Outside of a Transaction 109
Configuring a Transaction Manager 110
Demonstration of All Transaction-related Annotations 110
3.5.10. Executing SQL Scripts 115
Executing SQL scripts programmatically 115
Executing SQL scripts declaratively with @Sql 117
3.5.11. Parallel Test Execution 123
3.5.12. TestContext Framework Support Classes 124
Spring JUnit 4 Runner 124
Spring JUnit 4 Rules 125
JUnit 4 Support Classes 126
SpringExtension for JUnit Jupiter 127
Dependency Injection with SpringExtension 129
@Nested test class configuration 133
TestNG Support Classes 135
3.6. WebTestClient 136
3.6.1. Setup 136
Bind to Controller 136
Bind to ApplicationContext 137
Bind to Router Function 139
Bind to Server 139
Client Config 140
3.6.2. Writing Tests 140
No Content 142
JSON Content 143
Streaming Responses 144
MockMvc Assertions 145
3.7. MockMvc 146
3.7.1. Overview 147
Static Imports 147

Setup Choices 147

Setup Features 151

Performing Requests 151

Defining Expectations 154
Async Requests 158
Streaming Responses 159
Filter Registrations 160
MockMvc vs End-to-End Tests 160
Further Examples 161
3.7.2. HtmlUnit Integration 161
Why HtmlUnit Integration? 162
MockMvc and HtmlUnit 165
MockMvc and WebDriver 170
MockMvc and Geb 179
3.8. Testing Client Applications 181
3.8.1. Static Imports 184
3.8.2. Further Examples of Client-side REST Tests 184

4. Further Resources 185

This chapter covers Spring’s support for integration testing and best practices
for unit testing. The Spring team advocates test-driven development (TDD). The
Spring team has found that the correct use of inversion of control (IoC) certainly
does make both unit and integration testing easier (in that the presence of setter
methods and appropriate constructors on classes makes them easier to wire
together in a test without having to set up service locator registries and similar
structures).

Chapter 1. Introduction to Spring Testing

Testing is an integral part of enterprise software development. This chapter focuses on the value
added by the IoC principle to unit testing and on the benefits of the Spring Framework’s support for
integration testing. (A thorough treatment of testing in the enterprise is beyond the scope of this

reference manual.)

Chapter 2. Unit Testing

Dependency injection should make your code less dependent on the container than it would be
with traditional J2EE / Java EE development. The POJOs that make up your application should be
testable in JUnit or TestNG tests, with objects instantiated by using the new operator, without Spring
or any other container. You can use mock objects (in conjunction with other valuable testing
techniques) to test your code in isolation. If you follow the architecture recommendations for
Spring, the resulting clean layering and componentization of your codebase facilitate easier unit
testing. For example, you can test service layer objects by stubbing or mocking DAO or repository
interfaces, without needing to access persistent data while running unit tests.

True unit tests typically run extremely quickly, as there is no runtime infrastructure to set up.
Emphasizing true unit tests as part of your development methodology can boost your productivity.
You may not need this section of the testing chapter to help you write effective unit tests for your
IoC-based applications. For certain unit testing scenarios, however, the Spring Framework provides
mock objects and testing support classes, which are described in this chapter.

2.1. Mock Objects

Spring includes a number of packages dedicated to mocking:

¢ Environment
* JNDI
* Servlet API

» Spring Web Reactive

2.1.1. Environment

The org.springframework.mock.env package contains mock implementations of the Environment and
PropertySource abstractions (see Bean Definition Profiles and PropertySource Abstraction).
MockEnvironment and MockPropertySource are useful for developing out-of-container tests for code
that depends on environment-specific properties.

2.1.2. JNDI

The org.springframework.mock.jndi package contains a partial implementation of the JNDI SPI,
which you can use to set up a simple JNDI environment for test suites or stand-alone applications.
If, for example, J]DBC DataSource instances get bound to the same JNDI names in test code as they do
in a Jakarta EE container, you can reuse both application code and configuration in testing
scenarios without modification.

The mock JNDI support in the org.springframework.mock.jndi package is officially
deprecated as of Spring Framework 5.2 in favor of complete solutions from third
parties such as Simple-JNDI.

core.pdf#beans-definition-profiles
core.pdf#beans-property-source-abstraction
core.pdf#beans-property-source-abstraction
https://github.com/h-thurow/Simple-JNDI

2.1.3. Servlet API

The org.springframework.mock.web package contains a comprehensive set of Servlet API mock
objects that are useful for testing web contexts, controllers, and filters. These mock objects are
targeted at usage with Spring’s Web MVC framework and are generally more convenient to use
than dynamic mock objects (such as EasyMock) or alternative Servlet API mock objects (such as
MockObjects).

G Since Spring Framework 5.0, the mock objects in org.springframework.mock.web are
- based on the Servlet 4.0 APIL.

The Spring MVC Test framework builds on the mock Servlet API objects to provide an integration
testing framework for Spring MVC. See MockMvc.

2.1.4. Spring Web Reactive

The org.springframework.mock.http.server.reactive package contains mock implementations of
ServerHttpRequest and ServerHttpResponse for wuse in WebFlux applications. The
org.springframework.mock.web.server package contains a mock ServerWebExchange that depends on
those mock request and response objects.

Both MockServerHttpRequest and MockServerHttpResponse extend from the same abstract base classes
as server-specific implementations and share behavior with them. For example, a mock request is
immutable once created, but you can use the mutate() method from ServerHttpRequest to create a
modified instance.

In order for the mock response to properly implement the write contract and return a write
completion handle (that is, Mono<Void>), it by default uses a Flux with cache().then(), which buffers
the data and makes it available for assertions in tests. Applications can set a custom write function
(for example, to test an infinite stream).

The WebTestClient builds on the mock request and response to provide support for testing WebFlux
applications without an HTTP server. The client can also be used for end-to-end tests with a
running server.

2.2. Unit Testing Support Classes
Spring includes a number of classes that can help with unit testing. They fall into two categories:
* General Testing Utilities

* Spring MVC Testing Utilities

2.2.1. General Testing Utilities

The org.springframework.test.util package contains several general purpose utilities for use in unit
and integration testing.

ReflectionTestUtils is a collection of reflection-based utility methods. You can use these methods in
testing scenarios where you need to change the value of a constant, set a non-public field, invoke a

http://easymock.org/
http://www.mockobjects.com

non-public setter method, or invoke a non-public configuration or lifecycle callback method when
testing application code for use cases such as the following:

* ORM frameworks (such as JPA and Hibernate) that condone private or protected field access as
opposed to public setter methods for properties in a domain entity.

» Spring’s support for annotations (such as @Autowired, @Inject, and @Resource), that provide
dependency injection for private or protected fields, setter methods, and configuration
methods.

» Use of annotations such as @PostConstruct and @PreDestroy for lifecycle callback methods.

AopTestUtils is a collection of AOP-related utility methods. You can use these methods to obtain a
reference to the underlying target object hidden behind one or more Spring proxies. For example, if
you have configured a bean as a dynamic mock by using a library such as EasyMock or Mockito,
and the mock is wrapped in a Spring proxy, you may need direct access to the underlying mock to
configure expectations on it and perform verifications. For Spring’s core AOP utilities, see AopUtils
and AopProxyUtils.

2.2.2. Spring MVC Testing Utilities

The org.springframework.test.web package contains ModelAndViewAssert, which you can use in
combination with JUnit, TestNG, or any other testing framework for unit tests that deal with Spring
MVC ModelAndView objects.

Unit testing Spring MVC Controllers

To unit test your Spring MVC Controller classes as POJOs, use ModelAndViewAssert
(r) combined with MockHttpServletRequest, MockHttpSession, and so on from Spring’s
- Servlet API mocks. For thorough integration testing of your Spring MVC and REST
Controller classes in conjunction with your WebApplicationContext configuration
for Spring MVC, use the Spring MVC Test Framework instead.

https://docs.spring.io/spring-framework/docs/6.0.0-M2/javadoc-api/org/springframework/test/util/AopTestUtils.html
https://docs.spring.io/spring-framework/docs/6.0.0-M2/javadoc-api/org/springframework/aop/support/AopUtils.html
https://docs.spring.io/spring-framework/docs/6.0.0-M2/javadoc-api/org/springframework/aop/framework/AopProxyUtils.html
https://docs.spring.io/spring-framework/docs/6.0.0-M2/javadoc-api/org/springframework/test/web/ModelAndViewAssert.html

Chapter 3. Integration Testing

This section (most of the rest of this chapter) covers integration testing for Spring applications. It
includes the following topics:

e Overview

* Goals of Integration Testing

JDBC Testing Support
* Annotations
* Spring TestContext Framework

* MockMvc

3.1. Overview

It is important to be able to perform some integration testing without requiring deployment to your
application server or connecting to other enterprise infrastructure. Doing so lets you test things
such as:

* The correct wiring of your Spring IoC container contexts.

* Data access using JDBC or an ORM tool. This can include such things as the correctness of SQL
statements, Hibernate queries, JPA entity mappings, and so forth.

The Spring Framework provides first-class support for integration testing in the spring-test
module. The name of the actual JAR file might include the release version and might also be in the
long org.springframework.test form, depending on where you get it from (see the section on
Dependency Management for an explanation). This library includes the org.springframework.test
package, which contains valuable classes for integration testing with a Spring container. This
testing does not rely on an application server or other deployment environment. Such tests are
slower to run than unit tests but much faster than the equivalent Selenium tests or remote tests
that rely on deployment to an application server.

Unit and integration testing support is provided in the form of the annotation-driven Spring
TestContext Framework. The TestContext framework is agnostic of the actual testing framework in
use, which allows instrumentation of tests in various environments, including JUnit, TestNG, and
others.

3.2. Goals of Integration Testing

Spring’s integration testing support has the following primary goals:

* To manage Spring IoC container caching between tests.
* To provide Dependency Injection of test fixture instances.

* To provide transaction management appropriate to integration testing.

To supply Spring-specific base classes that assist developers in writing integration tests.

core.pdf#dependency-management
core.pdf#dependency-management

The next few sections describe each goal and provide links to implementation and configuration
details.

3.2.1. Context Management and Caching

The Spring TestContext Framework provides consistent loading of Spring ApplicationContext
instances and WebApplicationContext instances as well as caching of those contexts. Support for the
caching of loaded contexts is important, because startup time can become an issue — not because of
the overhead of Spring itself, but because the objects instantiated by the Spring container take time
to instantiate. For example, a project with 50 to 100 Hibernate mapping files might take 10 to 20
seconds to load the mapping files, and incurring that cost before running every test in every test
fixture leads to slower overall test runs that reduce developer productivity.

Test classes typically declare either an array of resource locations for XML or Groovy configuration
metadata — often in the classpath —or an array of component classes that is used to configure the
application. These locations or classes are the same as or similar to those specified in web.xml or
other configuration files for production deployments.

By default, once loaded, the configured ApplicationContext is reused for each test. Thus, the setup
cost is incurred only once per test suite, and subsequent test execution is much faster. In this
context, the term “test suite” means all tests run in the same JVM — for example, all tests run from
an Ant, Maven, or Gradle build for a given project or module. In the unlikely case that a test
corrupts the application context and requires reloading (for example, by modifying a bean
definition or the state of an application object) the TestContext framework can be configured to
reload the configuration and rebuild the application context before executing the next test.

See Context Management and Context Caching with the TestContext framework.

3.2.2. Dependency Injection of Test Fixtures

When the TestContext framework loads your application context, it can optionally configure
instances of your test classes by using Dependency Injection. This provides a convenient
mechanism for setting up test fixtures by using preconfigured beans from your application context.
A strong benefit here is that you can reuse application contexts across various testing scenarios (for
example, for configuring Spring-managed object graphs, transactional proxies, DataSource
instances, and others), thus avoiding the need to duplicate complex test fixture setup for individual
test cases.

As an example, consider a scenario where we have a class (HibernateTitleRepository) that
implements data access logic for a Title domain entity. We want to write integration tests that test
the following areas:

* The Spring configuration: Basically, is everything related to the configuration of the
HibernateTitleRepository bean correct and present?

* The Hibernate mapping file configuration: Is everything mapped correctly and are the correct
lazy-loading settings in place?

* The logic of the HibernateTitleRepository: Does the configured instance of this class perform as
anticipated?

See dependency injection of test fixtures with the TestContext framework.

3.2.3. Transaction Management

One common issue in tests that access a real database is their effect on the state of the persistence
store. Even when you use a development database, changes to the state may affect future tests. Also,
many operations—such as inserting or modifying persistent data—cannot be performed (or
verified) outside of a transaction.

The TestContext framework addresses this issue. By default, the framework creates and rolls back a
transaction for each test. You can write code that can assume the existence of a transaction. If you
call transactionally proxied objects in your tests, they behave correctly, according to their
configured transactional semantics. In addition, if a test method deletes the contents of selected
tables while running within the transaction managed for the test, the transaction rolls back by
default, and the database returns to its state prior to execution of the test. Transactional support is
provided to a test by using a PlatformTransactionManager bean defined in the test’s application
context.

If you want a transaction to commit (unusual, but occasionally useful when you want a particular
test to populate or modify the database), you can tell the TestContext framework to cause the
transaction to commit instead of roll back by using the @Commit annotation.

See transaction management with the TestContext framework.

3.2.4. Support Classes for Integration Testing

The Spring TestContext Framework provides several abstract support classes that simplify the
writing of integration tests. These base test classes provide well-defined hooks into the testing
framework as well as convenient instance variables and methods, which let you access:

» The ApplicationContext, for performing explicit bean lookups or testing the state of the context
as a whole.

* A JdbcTemplate, for executing SQL statements to query the database. You can use such queries to
confirm database state both before and after execution of database-related application code,
and Spring ensures that such queries run in the scope of the same transaction as the application
code. When used in conjunction with an ORM tool, be sure to avoid false positives.

In addition, you may want to create your own custom, application-wide superclass with instance
variables and methods specific to your project.

See support classes for the TestContext framework.

3.3. JDBC Testing Support

The org.springframework.test.jdbc package contains JdbcTestUtils, which is a collection of JDBC-
related utility functions intended to simplify standard database testing scenarios. Specifically,
JdbcTestUt1ils provides the following static utility methods.

 countRowsInTable(..): Counts the number of rows in the given table.

» countRowsInTableWhere(..): Counts the number of rows in the given table by using the provided
WHERE clause.

deleteFromTables(..): Deletes all rows from the specified tables.

deleteFromTablelWhere(..): Deletes rows from the given table by using the provided WHERE clause.

dropTables(..): Drops the specified tables.

AbstractTransactionalJUnit4SpringContextTests and
AbstractTransactionalTestNGSpringContextTests provide convenience methods that
delegate to the aforementioned methods in JdbcTestUtils.

w The spring-jdbc module provides support for configuring and launching an
embedded database, which you can use in integration tests that interact with a
database. For details, see Embedded Database Support and Testing Data Access
Logic with an Embedded Database.

3.4. Annotations

This section covers annotations that you can use when you test Spring applications. It includes the
following topics:

» Spring Testing Annotations

« Standard Annotation Support

» Spring JUnit 4 Testing Annotations

* Spring JUnit Jupiter Testing Annotations

* Meta-Annotation Support for Testing

3.4.1. Spring Testing Annotations

The Spring Framework provides the following set of Spring-specific annotations that you can use in
your unit and integration tests in conjunction with the TestContext framework. See the
corresponding javadoc for further information, including default attribute values, attribute aliases,
and other details.

Spring’s testing annotations include the following:

* @BootstrapWith

» @ContextConfiguration
» @WebAppConfiguration

» @ContextHierarchy

* @ActiveProfiles

» @TestPropertySource

* @DynamicPropertySource

e @DirtiesContext

data-access.pdf#jdbc-embedded-database-support
data-access.pdf#jdbc-embedded-database-dao-testing
data-access.pdf#jdbc-embedded-database-dao-testing

» @TestExecutionListeners
* @RecordApplicationEvents
* @Commit

* @Rollback

* @BeforeTransaction

* @AfterTransaction

* @5ql

* @5qlConfig

* @5qLlMergeMode

* @5SqlGroup

@BootstrapWith

@BootstrapWith is a class-level annotation that you can use to configure how the Spring TestContext
Framework is bootstrapped. Specifically, you can use @BootstrapWith to specify a custom
TestContextBootstrapper. See the section on bootstrapping the TestContext framework for further
details.

@ContextConfiguration

@ContextConfiguration defines class-level metadata that is used to determine how to load and
configure an ApplicationContext for integration tests. Specifically, @ContextConfiguration declares
the application context resource locations or the component classes used to load the context.

Resource locations are typically XML configuration files or Groovy scripts located in the classpath,
while component classes are typically @Configuration classes. However, resource locations can also
refer to files and scripts in the file system, and component classes can be @Component classes,
@Service classes, and so on. See Component Classes for further details.

The following example shows a @ContextConfiguration annotation that refers to an XML file:

Java

@ContextConfiguration("/test-config.xml") @
class XmlApplicationContextTests {

// class body...
}

@ Referring to an XML file.

Kotlin

@ContextConfiguration("/test-config.xml") @
class XmlApplicationContextTests {

// class body...
¥

10

@ Referring to an XML file.

The following example shows a @ContextConfiguration annotation that refers to a class:

Java

@ContextConfiguration(classes = TestConfig.class) @
class ConfigClassApplicationContextTests {
// class body...

}

@ Referring to a class.

Kotlin

@ContextConfiguration(classes = [TestConfig::class]) @
class ConfigClassApplicationContextTests {
// class body...

}

@ Referring to a class.

As an alternative or in addition to declaring resource locations or component classes, you can use

@ContextConfiguration to declare ApplicationContextInitializer classes. The following example
shows such a case:

Java

@ContextConfiguration(initializers = CustomContextIntializer.class) @
class ContextInitializerTests {

// class body...
}

@ Declaring an initializer class.

Kotlin

@ContextConfiguration(initializers = [CustomContextIntializer::class]) @
class ContextInitializerTests {

// class body...
}

@ Declaring an initializer class.

You can optionally use @ContextConfiguration to declare the ContextlLoader strategy as well. Note,

however, that you typically do not need to explicitly configure the loader, since the default loader
supports initializers and either resource locations or component classes.

The following example uses both a location and a loader:

11

Java

@ContextConfiguration(locations = "/test-context.xml", loader =
CustomContextLoader.class) @
class CustomLoaderXmlApplicationContextTests {
// class body...
+

@ Configuring both a location and a custom loader.

Kotlin

@ContextConfiguration("/test-context.xml", loader = CustomContextlLoader::class) @
class CustomLoaderXmlApplicationContextTests {

// class body...
+

@ Configuring both a location and a custom loader.

@ContextConfiguration provides support for inheriting resource locations or
o configuration classes as well as context initializers that are declared by
superclasses or enclosing classes.

See Context Management, @Nested test class configuration, and the @ContextConfiguration javadocs
for further details.

@WebAppConfiguration

@WebAppConfiguration is a class-level annotation that you can use to declare that the
ApplicationContext loaded for an integration test should be a WebApplicationContext. The mere
presence of @WebAppConfiguration on a test class ensures that a WebApplicationContext is loaded for
the test, using the default value of "file:src/main/webapp” for the path to the root of the web
application (that is, the resource base path). The resource base path is used behind the scenes to
create a MockServletContext, which serves as the ServletContext for the test’s WebApplicationContext.

The following example shows how to use the @WebAppConfiguration annotation:

Java

@ContextConfiguration
@WebAppConfiguration @M
class WebAppTests {

// class body...
by

12

Kotlin

@ContextConfiguration
@WebAppConfiguration @M
class WebAppTests {

// class body...
¥

® The @WebAppConfiguration annotation.

To override the default, you can specify a different base resource path by using the implicit value
attribute. Both classpath: and file: resource prefixes are supported. If no resource prefix is
supplied, the path is assumed to be a file system resource. The following example shows how to
specify a classpath resource:

Java

@ContextConfiquration
@WebAppConfiguration("classpath:test-web-resources") @
class WebAppTests {

// class body...
¥

@ Specifying a classpath resource.

Kotlin

@ContextConfiguration
@WebAppConfiguration("classpath:test-web-resources") @
class WebAppTests {

// class body...
}

@ Specifying a classpath resource.

Note that @WebAppConfiguration must be used in conjunction with @ContextConfiguration, either
within a single test class or within a test class hierarchy. See the @WebAppConfiguration javadoc for
further details.

@ContextHierarchy

@ContextHierarchy is a class-level annotation that is used to define a hierarchy of ApplicationContext
instances for integration tests. @ContextHierarchy should be declared with a list of one or more
@ContextConfiguration instances, each of which defines a level in the context hierarchy. The
following examples demonstrate the use of @ContextHierarchy within a single test class
(eContextHierarchy can also be used within a test class hierarchy):

13

https://docs.spring.io/spring-framework/docs/6.0.0-M2/javadoc-api/org/springframework/test/context/web/WebAppConfiguration.html

Java

@ContextHierarchy({
@ContextConfiguration("/parent-config.xml"),
@ContextConfiguration("/child-config.xml")

b

class ContextHierarchyTests {

// class body...

}

Kotlin

@ContextHierarchy(
ContextConfiguration("/parent-config.xml"),
ContextConfiguration("/child-config.xml"))

class ContextHierarchyTests {
// class body...

+
Java
@WebAppConfiguration
@ContextHierarchy({
@ContextConfiguration(classes = AppConfig.class),
@ContextConfiguration(classes = WebConfig.class)
1)

class WebIntegrationTests {
// class body...
}

Kotlin

@WebAppConfiguration
@ContextHierarchy(
ContextConfiguration(classes
ContextConfiguration(classes
class WebIntegrationTests {
// class body...

[AppConfig::class]),
[WebConfig::class]))

}

If you need to merge or override the configuration for a given level of the context hierarchy within
a test class hierarchy, you must explicitly name that level by supplying the same value to the name
attribute in @ContextConfiguration at each corresponding level in the class hierarchy. See Context
Hierarchies and the @ContextHierarchy javadoc for further examples.

@ActiveProfiles

@ActiveProfiles is a class-level annotation that is used to declare which bean definition profiles
should be active when loading an ApplicationContext for an integration test.

14

https://docs.spring.io/spring-framework/docs/6.0.0-M2/javadoc-api/org/springframework/test/context/ContextHierarchy.html

The following example indicates that the dev profile should be active:

Java

@ContextConfiguration
@ActiveProfiles("dev") @
class DeveloperTests {

// class body...
}

@ Indicate that the dev profile should be active.

Kotlin

@ContextConfiguration
@ActiveProfiles("dev") @
class DeveloperTests {

// class body...
}

@ Indicate that the dev profile should be active.

The following example indicates that both the dev and the integration profiles should be active:

Java

@ContextConfiguration
@ActiveProfiles({"dev", "integration"}) ®
class DeveloperIntegrationTests {

// class body...
}

® Indicate that the dev and integration profiles should be active.

Kotlin

@ContextConfiguration
@ActiveProfiles(["dev", "integration"]) ®
class DeveloperIntegrationTests {

// class body...
}

@ Indicate that the dev and integration profiles should be active.

@ActiveProfiles provides support for inheriting active bean definition profiles
declared by superclasses and enclosing classes by default. You can also resolve

o active bean definition profiles programmatically by implementing a custom
ActiveProfilesResolver and registering it by using the resolver attribute of
@ActiveProfiles.

15

See Context Configuration with Environment Profiles, @Nested test class configuration, and the
@ActiveProfiles javadoc for examples and further details.

@TestPropertySource

@TestPropertySource is a class-level annotation that you can use to configure the locations of
properties files and inlined properties to be added to the set of PropertySources in the Environment
for an ApplicationContext loaded for an integration test.

The following example demonstrates how to declare a properties file from the classpath:

Java

@ContextConfiguration
@TestPropertySource("/test.properties") @
class MyIntegrationTests {

// class body...
}

@ Get properties from test.properties in the root of the classpath.

Kotlin

@ContextConfiguration
@TestPropertySource("/test.properties") @
class MyIntegrationTests {

// class body...
}

@ Get properties from test.properties in the root of the classpath.
The following example demonstrates how to declare inlined properties:

Java

@ContextConfiguration
@TestPropertySource(properties = { "timezone = GMT", "port: 4242" }) @
class MyIntegrationTests {
// class body...
}

@ Declare timezone and port properties.

Kotlin

@ContextConfiguration
@TestPropertySource(properties = ["timezone = GMT", "port: 4242"]) @
class MyIntegrationTests {
// class body...
}

16

https://docs.spring.io/spring-framework/docs/6.0.0-M2/javadoc-api/org/springframework/test/context/ActiveProfiles.html

@ Declare timezone and port properties.

See Context Configuration with Test Property Sources for examples and further details.

@DynamicPropertySource

@DynamicPropertySource is a method-level annotation that you can use to register dynamic properties
to be added to the set of PropertySources in the Environment for an ApplicationContext loaded for an
integration test. Dynamic properties are useful when you do not know the value of the properties
upfront - for example, if the properties are managed by an external resource such as for a

container managed by the Testcontainers project.
The following example demonstrates how to register a dynamic property:

Java

@ContextConfiguration
class MyIntegrationTests {

static MyExternalServer server = // ...
@DynamicPropertySource @
static void dynamicProperties(DynamicPropertyRegistry registry) { @

registry.add("server.port", server::getPort); ®

}

// tests ...

@ Annotate a static method with @DynamicPropertySource.

@ Accept a DynamicPropertyRegistry as an argument.

® Register a dynamic server.port property to be retrieved lazily from the server.

17

https://www.testcontainers.org/

Kotlin

@ContextConfiguration
class MyIntegrationTests {

companion object {

@JvmStatic
val server: MyExternalServer = // ...

@DynamicPropertySource @

@JvmStatic

fun dynamicProperties(registry: DynamicPropertyRegistry) { @
registry.add("server.port", server::getPort) ®

}

// tests ...

@ Annotate a static method with @DynamicPropertySource.
@ Accept a DynamicPropertyRegistry as an argument.

® Register a dynamic server.port property to be retrieved lazily from the server.

See Context Configuration with Dynamic Property Sources for further details.

@DirtiesContext

@DirtiesContext indicates that the underlying Spring ApplicationContext has been dirtied during the
execution of a test (that is, the test modified or corrupted it in some manner —for example, by
changing the state of a singleton bean) and should be closed. When an application context is
marked as dirty, it is removed from the testing framework’s cache and closed. As a consequence,
the underlying Spring container is rebuilt for any subsequent test that requires a context with the
same configuration metadata.

You can use @irtiesContext as both a class-level and a method-level annotation within the same
class or class hierarchy. In such scenarios, the ApplicationContext is marked as dirty before or after
any such annotated method as well as before or after the current test class, depending on the
configured methodMode and classMode.

The following examples explain when the context would be dirtied for various configuration
scenarios:

» Before the current test class, when declared on a class with class mode set to BEFORE_CLASS.

18

Java

@DirtiesContext(classMode = BEFORE_CLASS) @
class FreshContextTests {
// some tests that require a new Spring container

}

@ Dirty the context before the current test class.

Kotlin

@DirtiesContext(classMode = BEFORE_CLASS) @
class FreshContextTests {
// some tests that require a new Spring container

}

@ Dirty the context before the current test class.

o After the current test class, when declared on a class with class mode set to AFTER_CLASS (i.e., the
default class mode).

Java

@irtiesContext @
class ContextDirtyingTests {
// some tests that result in the Spring container being dirtied

}

@ Dirty the context after the current test class.

Kotlin

@DirtiesContext M
class ContextDirtyingTests {
// some tests that result in the Spring container being dirtied

}

@ Dirty the context after the current test class.

» Before each test method in the current test class, when declared on a class with class mode set
to BEFORE_EACH_TEST_METHOD.

Java
@irtiesContext(classMode = BEFORE_EACH_TEST_METHOD) @

class FreshContextTests {
// some tests that require a new Spring container

}

@ Dirty the context before each test method.

19

Kotlin

@DirtiesContext(classMode = BEFORE_EACH _TEST_METHOD) @
class FreshContextTests {
// some tests that require a new Spring container

}

@ Dirty the context before each test method.

o After each test method in the current test class, when declared on a class with class mode set to
AFTER_EACH_TEST_METHOD.

Java

@DirtiesContext(classMode = AFTER_EACH_TEST_METHOD) @
class ContextDirtyingTests {
// some tests that result in the Spring container being dirtied

}

@ Dirty the context after each test method.

Kotlin

@DirtiesContext(classMode = AFTER_EACH_TEST_METHOD) @
class ContextDirtyingTests {
// some tests that result in the Spring container being dirtied

}

@ Dirty the context after each test method.

» Before the current test, when declared on a method with the method mode set to BEFORE_METHOD.

Java

@DirtiesContext(methodMode = BEFORE_METHOD) ™
@Test
void testProcessWhichRequiresFreshAppCtx() {
// some logic that requires a new Spring container

}

@ Dirty the context before the current test method.

Kotlin

@DirtiesContext(methodMode = BEFORE_METHOD) @™
@Test
fun testProcessWhichRequiresFreshAppCtx() {
// some logic that requires a new Spring container

}

@ Dirty the context before the current test method.

20

o After the current test, when declared on a method with the method mode set to AFTER_METHOD
(i.e., the default method mode).

Java

@irtiesContext @
@Test
void testProcessWhichDirtiesAppCtx() {
// some logic that results in the Spring container being dirtied

}

@ Dirty the context after the current test method.

Kotlin

@DirtiesContext M
@Test
fun testProcessWhichDirtiesAppCtx() {
// some logic that results in the Spring container being dirtied

}

@ Dirty the context after the current test method.

If you use @DirtiesContext in a test whose context is configured as part of a context hierarchy with
@ContextHierarchy, you can use the hierarchyMode flag to control how the context cache is cleared. By
default, an exhaustive algorithm is used to clear the context cache, including not only the current
level but also all other context hierarchies that share an ancestor context common to the current
test. All ApplicationContext instances that reside in a sub-hierarchy of the common ancestor context
are removed from the context cache and closed. If the exhaustive algorithm is overkill for a
particular use case, you can specify the simpler current level algorithm, as the following example
shows.

21

Java

@ContextHierarchy({
@ContextConfiguration("/parent-config.xml"),
@ContextConfiguration("/child-config.xml")

3]

class BaseTests {
// class body...
}

class ExtendedTests extends BaseTests {

@Test
@DirtiesContext(hierarchyMode = CURRENT_LEVEL) @
void test() {
// some logic that results in the child context being dirtied

}

@ Use the current-level algorithm.

Kotlin

@ContextHierarchy(
ContextConfiguration("/parent-config.xml"),
ContextConfiguration("/child-config.xml"))

open class BaseTests {
// class body...

}

class ExtendedTests : BaseTests() {

@Test
@DirtiesContext(hierarchyMode = CURRENT_LEVEL) @
fun test() {
// some logic that results in the child context being dirtied
}

@ Use the current-level algorithm.

For further details regarding the EXHAUSTIVE and CURRENT_LEVEL algorithms, see the
DirtiesContext.HierarchyMode javadoc.

@TestExecutionListeners

@TestExecutionlListeners defines class-level metadata for configuring the TestExecutionListener
implementations that should be registered with the TestContextManager. Typically,
@TestExecutionListeners is used in conjunction with @ContextConfiguration

The following example shows how to register two TestExecutionlListener implementations:

22

https://docs.spring.io/spring-framework/docs/6.0.0-M2/javadoc-api/org/springframework/test/annotation/DirtiesContext.HierarchyMode.html

Java

@ContextConfiguration
@TestExecutionListeners({CustomTestExecutionlListener.class,
AnotherTestExecutionlListener.class}) @
class CustomTestExecutionlListenerTests {

// class body...

@ Register two TestExecutionListener implementations.

Kotlin

@ContextConfiguration
@TestExecutionListeners(CustomTestExecutionlistener::class,
AnotherTestExecutionlListener::class) @
class CustomTestExecutionListenerTests {

// class body...

@ Register two TestExecutionListener implementations.

By default, @TestExecutionListeners provides support for inheriting listeners from superclasses or
enclosing classes. See @Nested test class configuration and the @TestExecutionListeners javadoc for
an example and further details.

@RecordApplicationEvents

@RecordApplicationEvents is a class-level annotation that is used to instruct the Spring TestContext
Framework to record all application events that are published in the ApplicationContext during the
execution of a single test.

The recorded events can be accessed via the ApplicationEvents API within tests.

See Application Events and the @RecordApplicationEvents javadoc for an example and further
details.

@Commit

@Commit indicates that the transaction for a transactional test method should be committed after the
test method has completed. You can use @Commit as a direct replacement for @Rollback(false) to
more explicitly convey the intent of the code. Analogous to @Rol1back, @Commit can also be declared
as a class-level or method-level annotation.

The following example shows how to use the @Commit annotation:

23

https://docs.spring.io/spring-framework/docs/6.0.0-M2/javadoc-api/org/springframework/test/context/TestExecutionListeners.html
https://docs.spring.io/spring-framework/docs/6.0.0-M2/javadoc-api/org/springframework/test/context/TestExecutionListeners.html
https://docs.spring.io/spring-framework/docs/6.0.0-M2/javadoc-api/org/springframework/test/context/event/RecordApplicationEvents.html
https://docs.spring.io/spring-framework/docs/6.0.0-M2/javadoc-api/org/springframework/test/context/event/RecordApplicationEvents.html

Java

@Commit @D

@Test

void testProcessWithoutRollback() {
/] ...

+

@ Commit the result of the test to the database.

Kotlin

@Commit @

@Test

fun testProcessWithoutRollback() {
/] ...

}

@ Commit the result of the test to the database.

@Rollback

@Rollback indicates whether the transaction for a transactional test method should be rolled back
after the test method has completed. If true, the transaction is rolled back. Otherwise, the
transaction is committed (see also @Commit). Rollback for integration tests in the Spring TestContext
Framework defaults to true even if @Rol1back is not explicitly declared.

When declared as a class-level annotation, @Rol1lback defines the default rollback semantics for all
test methods within the test class hierarchy. When declared as a method-level annotation, @Rol1back
defines rollback semantics for the specific test method, potentially overriding class-level @Rol1lback
or @Commit semantics.

The following example causes a test method’s result to not be rolled back (that is, the result is
committed to the database):

Java

@Rollback(false) @

@Test

void testProcessWithoutRollback() {
/] ...

}

@ Do not roll back the result.

24

Kotlin

@Rollback(false) @

@Test

fun testProcessWithoutRollback() {
/] ...

@ Do not roll back the result.

@BeforeTransaction

@BeforeTransaction indicates that the annotated void method should be run before a transaction is
started, for test methods that have been configured to run within a transaction by using Spring’s
@Transactional annotation. @BeforeTransaction methods are not required to be public and may be
declared on Java 8-based interface default methods.

The following example shows how to use the @BeforeTransaction annotation:

Java

@BeforeTransaction @
void beforeTransaction() {
// logic to be run before a transaction is started

@ Run this method before a transaction.

Kotlin

@BeforeTransaction @
fun beforeTransaction() {
// logic to be run before a transaction is started

@ Run this method before a transaction.

@AfterTransaction

@AfterTransaction indicates that the annotated void method should be run after a transaction is
ended, for test methods that have been configured to run within a transaction by using Spring’s
@Transactional annotation. @AfterTransaction methods are not required to be public and may be
declared on Java 8-based interface default methods.

Java
@AfterTransaction @

void afterTransaction() {
// logic to be run after a transaction has ended

25

@ Run this method after a transaction.

Kotlin

@AfterTransaction @
fun afterTransaction() {
// logic to be run after a transaction has ended

}

@ Run this method after a transaction.

@5q1

@Sql is used to annotate a test class or test method to configure SQL scripts to be run against a given
database during integration tests. The following example shows how to use it:

Java

@Test
@Sql({"/test-schema.sql", "/test-user-data.sql"}) @®
void userTest() {
// run code that relies on the test schema and test data

}

@ Run two scripts for this test.

Kotlin

@Test
@Sq1l("/test-schema.sql", "/test-user-data.sql") @
fun userTest() {
// run code that relies on the test schema and test data

}

@ Run two scripts for this test.
See Executing SQL scripts declaratively with @Sql for further details.

@5SqlConfig

@SqlConfig defines metadata that is used to determine how to parse and run SQL scripts configured
with the @Sql annotation. The following example shows how to use it:

26

Java

@Test
@5q1(

scripts = "/test-user-data.sql"”,

config = @SqlConfig(commentPrefix = "'", separator = "@@") @®
)

void userTest() {
// run code that relies on the test data

}

@ Set the comment prefix and the separator in SQL scripts.

Kotlin

@Test
@Sql("/test-user-data.sql", config = SqlConfig(commentPrefix = "*'", separator = "@@"))

©)
fun userTest() {
// run code that relies on the test data

}

@ Set the comment prefix and the separator in SQL scripts.

@SqLMergeMode

@SqlMergeMode is used to annotate a test class or test method to configure whether method-level @5q1l
declarations are merged with class-level @5ql declarations. If @SqlMergeMode is not declared on a test
class or test method, the OVERRIDE merge mode will be used by default. With the OVERRIDE mode,
method-level @Sql declarations will effectively override class-level @5ql declarations.

Note that a method-level @SqlMergeMode declaration overrides a class-level declaration.
The following example shows how to use @5qlMergeMode at the class level.

Java

@SpringJUnitConfig(TestConfig.class)
@Sql("/test-schema.sql")
@Sq1lMergeMode (MERGE) @D

class UserTests {

@Test
@Sql("/user-test-data-001.sql")
void standardUserProfile() {
// run code that relies on test data set 001

}

@ Set the @5q1 merge mode to MERGE for all test methods in the class.

27

Kotlin

@SpringJUnitConfig(TestConfig::class)
@Sql("/test-schema.sql")
@SqlMergeMode (MERGE) D

class UserTests {

@Test
@Sql("/user-test-data-001.sql")
fun standardUserProfile() {
// run code that relies on test data set 001
}

@ Set the @5q1 merge mode to MERGE for all test methods in the class.

The following example shows how to use @SqlMergeMode at the method level.

Java

@SpringJUnitConfig(TestConfig.class)
@Sql("/test-schema.sql")
class UserTests {

@Test
@5q1("/user-test-data-001.sql")
@Sq1lMergeMode (MERGE) @
void standardUserProfile() {
// run code that relies on test data set 001
}

@ Set the @5q1 merge mode to MERGE for a specific test method.

Kotlin

@SpringJUnitConfig(TestConfig::class)
@Sql("/test-schema.sql")
class UserTests {

@Test
@Sql("/user-test-data-001.sql")
@SqlMergeMode (MERGE) @
fun standardUserProfile() {
// run code that relies on test data set 001
}

@ Set the @5Sq1 merge mode to MERGE for a specific test method.

28

@5qlGroup

@SqlGroup is a container annotation that aggregates several @5q1l annotations. You can use @5qlGroup
natively to declare several nested @5q1l annotations, or you can use it in conjunction with Java 8’s
support for repeatable annotations, where @5ql can be declared several times on the same class or
method, implicitly generating this container annotation. The following example shows how to
declare an SQL group:

Java

@Test

@SqlGroup({ @
@Sql(scripts = "/test-schema.sql", config = @SqlConfig(commentPrefix = "*")),
@Sql("/test-user-data.sql")

)}

void userTest() {
// run code that uses the test schema and test data

}

@ Declare a group of SQL scripts.

Kotlin

@Test

@SqlGroup(@
Sql("/test-schema.sql", config = SqlConfig(commentPrefix = "*")),
Sql("/test-user-data.sql"))

fun userTest() {
// run code that uses the test schema and test data

}

@ Declare a group of SQL scripts.

3.4.2. Standard Annotation Support

The following annotations are supported with standard semantics for all configurations of the
Spring TestContext Framework. Note that these annotations are not specific to tests and can be used
anywhere in the Spring Framework.

* @Autowired

e @Qualifier

* @Value

* @Resource (jakarta.annotation) if JSR-250 is present

* @ManagedBean (jakarta.annotation) if JSR-250 is present

* @Inject (jakarta.inject) if JSR-330 is present

* @Named (jakarta.inject) if JSR-330 is present

» @PersistenceContext (jakarta.persistence) if JPA is present

29

» @PersistenceUnit (jakarta.persistence) if JPA is present
* @Required

* @Transactional (org.springframework.transaction.annotation) with limited attribute support

JSR-250 Lifecycle Annotations

In the Spring TestContext Framework, you can use @PostConstruct and @PreDestroy
with standard semantics on any application components configured in the
ApplicationContext. However, these lifecycle annotations have limited usage
within an actual test class.

o If a method within a test class is annotated with @PostConstruct, that method runs
before any before methods of the underlying test framework (for example,
methods annotated with JUnit Jupiter’s @BeforeEach), and that applies for every test
method in the test class. On the other hand, if a method within a test class is
annotated with @PreDestroy, that method never runs. Therefore, within a test class,
we recommend that you use test lifecycle callbacks from the underlying test
framework instead of @PostConstruct and @PreDestroy.

3.4.3. Spring JUnit 4 Testing Annotations

The following annotations are supported only when used in conjunction with the SpringRunner,
Spring’s JUnit 4 rules, or Spring’s JUnit 4 support classes:

e @IfProfileValue

* @ProfileValueSourceConfiguration

e @Timed

* @Repeat

@IfProfileValue

@IfProfileValue indicates that the annotated test is enabled for a specific testing environment. If the
configured ProfileValueSource returns a matching value for the provided name, the test is enabled.
Otherwise, the test is disabled and, effectively, ignored.

You can apply @IfProfileValue at the class level, the method level, or both. Class-level usage of
@IfProfileValue takes precedence over method-level usage for any methods within that class or its
subclasses. Specifically, a test is enabled if it is enabled both at the class level and at the method
level. The absence of @IfProfileValue means the test is implicitly enabled. This is analogous to the
semantics of JUnit 4’s @Ignore annotation, except that the presence of @Ignore always disables a test.

The following example shows a test that has an @IfProfileValue annotation:

30

Java

@IfProfileValue(name="java.vendor", value="Oracle Corporation") @
@Test
public void testProcessWhichRunsOnlyOnOraclelvm() {
// some logic that should run only on Java VMs from Oracle Corporation

}

@ Run this test only when the Java vendor is "Oracle Corporation".

Kotlin

@IfProfileValue(name="java.vendor", value="Oracle Corporation") @
@Test
fun testProcessWhichRunsOnlyOnOraclelvm() {
// some logic that should run only on Java VMs from Oracle Corporation

}

® Run this test only when the Java vendor is "Oracle Corporation".

Alternatively, you can configure @IfProfileValue with a list of values (with OR semantics) to achieve
TestNG-like support for test groups in a JUnit 4 environment. Consider the following example:

Java

@IfProfileValue(name="test-groups", values={"unit-tests", "integration-tests"}) @
@Test
public void testProcessWhichRunsForUnitOrIntegrationTestGroups() {

// some logic that should run only for unit and integration test groups

}

@ Run this test for unit tests and integration tests.

Kotlin

@IfProfileValue(name="test-groups", values=["unit-tests", "integration-tests"]) @
@Test
fun testProcessWhichRunsForUnitOrIntegrationTestGroups() {

// some logic that should run only for unit and integration test groups

}

@ Run this test for unit tests and integration tests.

@ProfileValueSourceConfiguration

@ProfileValueSourceConfiguration is a class-level annotation that specifies what type of
ProfileValueSource to use when retrieving profile values configured through the @IfProfileValue
annotation. If @ProfileValueSourceConfiguration is not declared for a test, SystemProfileValueSource
is used by default. The following example shows how to use @ProfileValueSourceConfiguration:

31

Java

@ProfileValueSourceConfiguration(CustomProfileValueSource.class) @
public class CustomProfileValueSourceTests {

// class body...
+

@ Use a custom profile value source.

Kotlin

@ProfileValueSourceConfiguration(CustomProfileValueSource::class) @D
class CustomProfileValueSourceTests {

// class body...
}

@ Use a custom profile value source.

@Timed

@Timed indicates that the annotated test method must finish execution in a specified time period (in
milliseconds). If the text execution time exceeds the specified time period, the test fails.

The time period includes running the test method itself, any repetitions of the test (see @Repeat), as
well as any setting up or tearing down of the test fixture. The following example shows how to use
it:

Java

@Timed(millis = 1000) @
public void testProcessWithOneSecondTimeout() {
// some logic that should not take longer than 1 second to run

}

@ Set the time period for the test to one second.

Kotlin

@Timed(millis = 1000) @
fun testProcessWithOneSecondTimeout() {
// some logic that should not take longer than 1 second to run

}

@ Set the time period for the test to one second.

Spring’s @Timed annotation has different semantics than JUnit 4’s @Test(timeout='--) support.
Specifically, due to the manner in which JUnit 4 handles test execution timeouts (that is, by
executing the test method in a separate Thread), @Test(timeout='-) preemptively fails the test if the
test takes too long. Spring’s @Timed, on the other hand, does not preemptively fail the test but rather
waits for the test to complete before failing.

32

@Repeat

@Repeat indicates that the annotated test method must be run repeatedly. The number of times that
the test method is to be run is specified in the annotation.

The scope of execution to be repeated includes execution of the test method itself as well as any
setting up or tearing down of the test fixture. When used with the SpringMethodRule, the scope
additionally includes preparation of the test instance by TestExecutionListener implementations.
The following example shows how to use the @Repeat annotation:

Java

@Repeat(10) @
@Test

public void testProcessRepeatedly() {
/] ...
+

@ Repeat this test ten times.

Kotlin

@Repeat(10) @

@Test

fun testProcessRepeatedly() {
/] ...

}

@ Repeat this test ten times.

3.4.4. Spring JUnit Jupiter Testing Annotations

The following annotations are supported when used in conjunction with the SpringExtension and
JUnit Jupiter (that is, the programming model in JUnit 5):

@SpringJUnitConfig

@SpringJUnitWebConfig

@TestConstructor

* @NestedTestConfiguration

@EnabledIf

@DisabledIf

@SpringlUnitConfig

@SpringJUnitConfig is a composed annotation that combines @ExtendWith(SpringExtension.class)
from JUnit Jupiter with @ContextConfiguration from the Spring TestContext Framework. It can be
used at the class level as a drop-in replacement for @ContextConfiguration. With regard to
configuration options, the only difference between @ContextConfiguration and @SpringJUnitConfig is
that component classes may be declared with the value attribute in @SpringJUnitConfig.

33

The following example shows how to use the @SpringJUnitConfig annotation to specify a
configuration class:

Java

@SpringJUnitConfig(TestConfig.class) @

class ConfigurationClassJUnitJupiterSpringTests {
// class body...

}

@ Specify the configuration class.

Kotlin

@SpringJUnitConfig(TestConfig::class) M
class ConfigurationClassJUnitJupiterSpringTests {
// class body...

}

@ Specify the configuration class.

The following example shows how to use the @SpringJUnitConfig annotation to specify the location
of a configuration file:

Java

@SpringJUnitConfig(locations = "/test-config.xml") @
class XmlJUnitJupiterSpringTests {

// class body...
}

@ Specify the location of a configuration file.

Kotlin

@SpringJUnitConfig(locations = ["/test-config.xml"]) @D
class XmlJUnitJupiterSpringTests {

// class body...
}

@ Specify the location of a configuration file.

See Context Management as well as the javadoc for @SpringJUnitConfig and @ContextConfiguration
for further details.

@SpringJUnitWebConfig

@SpringJUnitWebConfig is a composed annotation that combines @ExtendWith(SpringExtension.class)
from JUnit Jupiter with @ContextConfiguration and @WebAppConfiguration from the Spring
TestContext Framework. You can use it at the class level as a drop-in replacement for
@ContextConfiguration and @WebAppConfiguration. With regard to configuration options, the only

34

https://docs.spring.io/spring-framework/docs/6.0.0-M2/javadoc-api/org/springframework/test/context/junit/jupiter/SpringJUnitConfig.html

difference between @ContextConfiguration and @SpringJUnitWebConfig is that you can declare
component classes by using the value attribute in @SpringJUnitWebConfig. In addition, you can
override the value attribute from @WebAppConfiguration only by using the resourcePath attribute in
@SpringJUnitWebConfig.

The following example shows how to use the @SpringJUnitWebConfig annotation to specify a
configuration class:

Java

@SpringJUnitWebConfig(TestConfig.class) @

class ConfigurationClassJUnitJupiterSpringWebTests {
// class body...

}

@ Specify the configuration class.

Kotlin

@SpringJUnitWebConfig(TestConfig::class) @D
class ConfigurationClassJUnitJupiterSpringWebTests {
// class body...

}

@ Specify the configuration class.

The following example shows how to use the @SpringlUnitWebConfig annotation to specify the
location of a configuration file:

Java

@SpringJUnitWebConfig(locations = "/test-config.xml") @
class XmlJUnitJupiterSpringWebTests {

// class body...
}

@ Specify the location of a configuration file.

Kotlin

@SpringJUnitWebConfig(locations = ["/test-config.xml"]) @D
class XmLJUnitJupiterSpringWebTests {

// class body...
}

@ Specify the location of a configuration file.

See Context Management as well as the javadoc for @SpringJUnitWebConfig, @ContextConfiguration,
and @WebAppConfiguration for further details.

35

https://docs.spring.io/spring-framework/docs/6.0.0-M2/javadoc-api/org/springframework/test/context/junit/jupiter/web/SpringJUnitWebConfig.html
https://docs.spring.io/spring-framework/docs/6.0.0-M2/javadoc-api/org/springframework/test/context/ContextConfiguration.html
https://docs.spring.io/spring-framework/docs/6.0.0-M2/javadoc-api/org/springframework/test/context/web/WebAppConfiguration.html

@TestConstructor

@TestConstructor is a type-level annotation that is used to configure how the parameters of a test
class constructor are autowired from components in the test’s ApplicationContext.

If eTestConstructor is not present or meta-present on a test class, the default test constructor
autowire mode will be used. See the tip below for details on how to change the default mode. Note,
however, that a local declaration of @Autowired on a constructor takes precedence over both
@TestConstructor and the default mode.

Changing the default test constructor autowire mode

The default test constructor autowire mode can be changed by setting the
spring.test.constructor.autowire.mode JVM system property to all. Alternatively,
the default mode may be set via the SpringProperties mechanism.

- As of Spring Framework 5.3, the default mode may also be configured as a JUnit
Platform configuration parameter.

If the spring.test.constructor.autowire.mode property is not set, test class
constructors will not be automatically autowired.

As of Spring Framework 5.2, @TestConstructor is only supported in conjunction
with the SpringExtension for use with JUnit Jupiter. Note that the SpringExtension is

o often automatically registered for you - for example, when using annotations such
as @SpringJUnitConfig and @SpringJUnitWebConfig or various test-related
annotations from Spring Boot Test.

@NestedTestConfiguration

@NestedTestConfiguration is a type-level annotation that is used to configure how Spring test
configuration annotations are processed within enclosing class hierarchies for inner test classes.

If @NestedTestConfiguration is not present or meta-present on a test class, in its super type
hierarchy, or in its enclosing class hierarchy, the default enclosing configuration inheritance mode
will be used. See the tip below for details on how to change the default mode.

Changing the default enclosing configuration inheritance mode

The default enclosing configuration inheritance mode is INHERIT, but it can be

7

Q changed by setting the spring.test.enclosing.configuration JVM system property
to OVERRIDE. Alternatively, the default mode may be set via the SpringProperties
mechanism.

The Spring TestContext Framework honors @NestedTestConfiguration semantics for the following
annotations.

* @BootstrapWith
* @ContextConfiguration

* @WebAppConfiguration

36

appendix.pdf#appendix-spring-properties
https://junit.org/junit5/docs/current/user-guide/#running-tests-config-params
https://junit.org/junit5/docs/current/user-guide/#running-tests-config-params
appendix.pdf#appendix-spring-properties

» @ContextHierarchy

* @ActiveProfiles

* @TestPropertySource

» @DynamicPropertySource
* @DirtiesContext

» @TestExecutionListeners
» @RecordApplicationEvents
* @Transactional

* @Commit

* @Rollback

* @5ql

* @5qlConfig

* @5qlMergeMode

e @TestConstructor

The use of @NestedTestConfiguration typically only makes sense in conjunction

o with @Nested test classes in JUnit Jupiter; however, there may be other testing
frameworks with support for Spring and nested test classes that make use of this
annotation.

See @Nested test class configuration for an example and further details.

@EnabledIf

@EnabledIf is used to signal that the annotated JUnit Jupiter test class or test method is enabled and
should be run if the supplied expression evaluates to true. Specifically, if the expression evaluates to
Boolean.TRUE or a String equal to true (ignoring case), the test is enabled. When applied at the class
level, all test methods within that class are automatically enabled by default as well.

Expressions can be any of the following:
* Spring Expression Language (SpEL) expression. For example:

@EnabledIf("#{systemProperties['os.name'].toLowerCase().contains('mac')}")

* Placeholder for a property available in the Spring Environment. For example:
@EnabledIf("${smoke.tests.enabled}")

 Text literal. For example: @EnabledIf("true")

Note, however, that a text literal that is not the result of dynamic resolution of a property
placeholder is of zero practical value, since @EnabledIf("false") is equivalent to @Disabled and
@EnabledIf("true") is logically meaningless.

You can use @EnabledIf as a meta-annotation to create custom composed annotations. For example,
you can create a custom @EnabledOnMac annotation as follows:

37

core.pdf#expressions
core.pdf#beans-environment

Java

@Target({ElementType.TYPE, ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
@EnabledIf(
expression = "#{systemProperties['os.name'].toLowerCase().contains('mac")}",
reason = "Enabled on Mac 0S"

)
public @interface EnabledOnMac {}

Kotlin

@Target(AnnotationTarget.TYPE, AnnotationTarget.FUNCTION)
@Retention(AnnotationRetention.RUNTIME)
@EnabledIf(
expression = "#{systemProperties['os.name'].tolLowerCase().contains('mac')}",
reason = "Enabled on Mac 0S"

)

annotation class EnabledOnMac {}

@DisabledIf

@DisabledIf is used to signal that the annotated JUnit Jupiter test class or test method is disabled
and should not be run if the supplied expression evaluates to true. Specifically, if the expression
evaluates to Boolean.TRUE or a String equal to true (ignoring case), the test is disabled. When applied
at the class level, all test methods within that class are automatically disabled as well.

Expressions can be any of the following:
* Spring Expression Language (SpEL) expression. For example:

@DisabledIf("#{systemProperties['os.name'].tolLowerCase().contains('mac')}")

* Placeholder for a property available in the Spring Environment. For example:
@DisabledIf("${smoke.tests.disabled}")

 Text literal. For example: @DisabledIf("true")

Note, however, that a text literal that is not the result of dynamic resolution of a property
placeholder is of zero practical value, since @DisabledIf("true") is equivalent to @Disabled and
@DisabledIf("false") is logically meaningless.

You can use @DisabledIf as a meta-annotation to create custom composed annotations. For example,
you can create a custom @DisabledOnMac annotation as follows:

38

core.pdf#expressions
core.pdf#beans-environment

Java

@Target({ElementType.TYPE, ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
@DisabledIf(
expression = "#{systemProperties['os.name'].toLowerCase().contains('mac")}",
reason = "Disabled on Mac 0S"

)
public @interface DisabledOnMac {}

Kotlin

@Target(AnnotationTarget.TYPE, AnnotationTarget.FUNCTION)
@Retention(AnnotationRetention.RUNTIME)
@DisabledIf(
expression = "#{systemProperties['os.name'].tolLowerCase().contains('mac')}",
reason = "Disabled on Mac 0S"

)

annotation class DisabledOnMac {}

3.4.5. Meta-Annotation Support for Testing

You can use most test-related annotations as meta-annotations to create custom composed
annotations and reduce configuration duplication across a test suite.

You can use each of the following as a meta-annotation in conjunction with the TestContext
framework.

* @BootstrapWith

* @ContextConfiguration

» @ContextHierarchy

* @ActiveProfiles

* @TestPropertySource

* @DirtiesContext

» @WebAppConfiguration

* @TestExecutionlListeners

* @Transactional

* @BeforeTransaction

* @AfterTransaction

» @Commit

* @Rollback

* @Sql

* @5qlConfig

39

core.pdf#beans-meta-annotations

* @5qLlMergeMode

* @SqlGroup

* @Repeat (only supported on JUnit 4)

» @Timed (only supported on JUnit 4)

* @IfProfileValue (only supported on JUnit 4)

* @ProfileValueSourceConfiguration (only supported on JUnit 4)
» @SpringJUnitConfig (only supported on JUnit Jupiter)

» @SpringJUnitWebConfig (only supported on JUnit Jupiter)

» @TestConstructor (only supported on JUnit Jupiter)

» @NestedTestConfiguration (only supported on JUnit Jupiter)
* @EnabledIf (only supported on JUnit Jupiter)

» @DisabledIf (only supported on JUnit Jupiter)

Consider the following example:

Java

@RunWith(SpringRunner.class)

@ContextConfiguration({"/app-config.xml", "/test-data-access-config.xml"})
@ActiveProfiles("dev")

@Transactional

public class OrderRepositoryTests { }

@RunWith(SpringRunner.class)

@ContextConfiguration({"/app-config.xml", "/test-data-access-config.xml"})
@ActiveProfiles("dev")

@Transactional

public class UserRepositoryTests { }

Kotlin

@RunWith(SpringRunner::class)

@ContextConfiguration("/app-config.xml", "/test-data-access-config.xml")
@ActiveProfiles("dev")

@Transactional

class OrderRepositoryTests { }

@RunWith(SpringRunner::class)

@ContextConfiguration("/app-config.xml", "/test-data-access-config.xml")
@ActiveProfiles("dev")

@Transactional

class UserRepositoryTests { }

If we discover that we are repeating the preceding configuration across our JUnit 4-based test suite,
we can reduce the duplication by introducing a custom composed annotation that centralizes the

40

common test configuration for Spring, as follows:

Java

@Target(ElementType.TYPE)

@Retention(RetentionPolicy.RUNTIME)
@ContextConfiguration({"/app-config.xml", "/test-data-access-config.xml"})
@ActiveProfiles("dev")

@Transactional

public @interface TransactionalDevTestConfig { }

Kotlin

@Target(AnnotationTarget.TYPE)

@Retention(AnnotationRetention.RUNTIME)
@ContextConfiguration("/app-config.xml", "/test-data-access-config.xml")
@ActiveProfiles("dev")

@Transactional

annotation class TransactionalDevTestConfig { }

Then we can use our custom @TransactionalDevTestConfig annotation to simplify the configuration
of individual JUnit 4 based test classes, as follows:

Java

@RunWith(SpringRunner.class)
@TransactionalDevTestConfig
public class OrderRepositoryTests { }

@RunWith(SpringRunner.class)
@TransactionalDevTestConfig
public class UserRepositoryTests { }

Kotlin

@RunWith(SpringRunner::class)
@TransactionalDevTestConfig
class OrderRepositoryTests

@RunWith(SpringRunner::class)

@TransactionalDevTestConfig
class UserRepositoryTests

If we write tests that use JUnit Jupiter, we can reduce code duplication even further, since
annotations in JUnit 5 can also be used as meta-annotations. Consider the following example:

41

Java

@ExtendWith(SpringExtension.class)
@ContextConfiguration({"/app-config.xml", "/test-data-access-config.xml"})
@ActiveProfiles("dev")

@Transactional

class OrderRepositoryTests { }

@ExtendWith(SpringExtension.class)
@ContextConfiguration({"/app-config.xml", "/test-data-access-config.xml"})
@ActiveProfiles("dev")

@Transactional

class UserRepositoryTests { }

Kotlin

If

@ExtendWith(SpringExtension::class)
@ContextConfiguration("/app-config.xml", "/test-data-access-config.xml")
@ActiveProfiles("dev")

@Transactional

class OrderRepositoryTests { }

@ExtendWith(SpringExtension::class)
@ContextConfiguration("/app-config.xml", "/test-data-access-config.xml")
@ActiveProfiles("dev")

@Transactional

class UserRepositoryTests { }

we discover that we are repeating the preceding configuration across our JUnit Jupiter-based test

suite, we can reduce the duplication by introducing a custom composed annotation that centralizes

th

e common test configuration for Spring and JUnit Jupiter, as follows:

Java

42

@Target(ElementType.TYPE)

@Retention(RetentionPolicy.RUNTIME)

@ExtendWith(SpringExtension.class)
@ContextConfiguration({"/app-config.xml", "/test-data-access-config.xml"})
@ActiveProfiles("dev")

@Transactional

public @interface TransactionalDevTestConfig { }

Kotlin

@Target(AnnotationTarget.TYPE)

@Retention(AnnotationRetention.RUNTIME)
@ExtendWith(SpringExtension::class)
@ContextConfiguration("/app-config.xml", "/test-data-access-config.xml")
@ActiveProfiles("dev")

@Transactional

annotation class TransactionalDevTestConfig { }

Then we can use our custom @TransactionalDevTestConfig annotation to simplify the configuration
of individual JUnit Jupiter based test classes, as follows:

Java

@TransactionalDevTestConfig
class OrderRepositoryTests { }

@TransactionalDevTestConfig
class UserRepositoryTests { }

Kotlin

@TransactionalDevTestConfig
class OrderRepositoryTests { }

@TransactionalDevTestConfig
class UserRepositoryTests { }

Since JUnit Jupiter supports the use of @Test, @RepeatedTest, ParameterizedTest, and others as meta-
annotations, you can also create custom composed annotations at the test method level. For
example, if we wish to create a composed annotation that combines the @Test and @Tag annotations
from JUnit Jupiter with the @Transactional annotation from Spring, we could create an
@TransactionallntegrationTest annotation, as follows:

Java

@Target(ElementType.METHOD)
@Retention(RetentionPolicy.RUNTIME)

@Transactional

@Tag("integration-test") // org.junit.jupiter.api.Tag
@Test // org.junit.jupiter.api.Test

public @interface TransactionallntegrationTest { }

43

Kotlin

@Target(AnnotationTarget.TYPE)
@Retention(AnnotationRetention.RUNTIME)
@Transactional

@Tag("integration-test") // org.junit.jupiter.api.Tag
@Test // org.junit.jupiter.api.Test

annotation class TransactionallntegrationTest { }

Then we can use our custom @TransactionallntegrationTest annotation to simplify the
configuration of individual JUnit Jupiter based test methods, as follows:

Java

@TransactionallntegrationTest
void saveOrder() { }

@TransactionallntegrationTest
void deleteOrder() { }

Kotlin

@TransactionallntegrationTest
fun saveOrder() { }

@TransactionallntegrationTest
fun deleteOrder() { }

For further details, see the Spring Annotation Programming Model wiki page.

3.5. Spring TestContext Framework

The Spring TestContext Framework (located in the org.springframework.test.context package)
provides generic, annotation-driven unit and integration testing support that is agnostic of the
testing framework in use. The TestContext framework also places a great deal of importance on
convention over configuration, with reasonable defaults that you can override through annotation-
based configuration.

In addition to generic testing infrastructure, the TestContext framework provides explicit support
for JUnit 4, JUnit Jupiter (AKA JUnit 5), and TestNG. For JUnit 4 and TestNG, Spring provides abstract
support classes. Furthermore, Spring provides a custom JUnit Runner and custom JUnit Rules for
JUnit 4 and a custom Extension for JUnit Jupiter that let you write so-called POJO test classes. POJO
test classes are not required to extend a particular class hierarchy, such as the abstract support
classes.

The following section provides an overview of the internals of the TestContext framework. If you
are interested only in using the framework and are not interested in extending it with your own
custom listeners or custom loaders, feel free to go directly to the configuration (context

44

https://github.com/spring-projects/spring-framework/wiki/Spring-Annotation-Programming-Model

management, dependency injection, transaction management), support classes, and annotation
support sections.

3.5.1. Key Abstractions

The core of the framework consists of the TestContextManager class and the TestContext,
TestExecutionListener, and SmartContextlLoader interfaces. A TestContextManager is created for each
test class (for example, for the execution of all test methods within a single test class in JUnit
Jupiter). The TestContextManager, in turn, manages a TestContext that holds the context of the
current test. The TestContextManager also updates the state of the TestContext as the test progresses
and delegates to TestExecutionlListener implementations, which instrument the actual test
execution by providing dependency injection, managing transactions, and so on. A
SmartContextLoader is responsible for loading an ApplicationContext for a given test class. See the
javadoc and the Spring test suite for further information and examples of various implementations.

TestContext

TestContext encapsulates the context in which a test is run (agnostic of the actual testing framework
in use) and provides context management and caching support for the test instance for which it is
responsible. The TestContext also delegates to a SmartContextLoader to load an ApplicationContext if
requested.

TestContextManager

TestContextManager is the main entry point into the Spring TestContext Framework and is
responsible for managing a single TestContext and signaling events to each registered
TestExecutionListener at well-defined test execution points:

* Prior to any “before class” or “before all” methods of a particular testing framework.

 Test instance post-processing.

* Prior to any “before” or “before each” methods of a particular testing framework.

* Immediately before execution of the test method but after test setup.

Immediately after execution of the test method but before test tear down.
 After any “after” or “after each” methods of a particular testing framework.

» After any “after class” or “after all” methods of a particular testing framework.

TestExecutionListener
TestExecutionListener defines the API for reacting to test-execution events published by the

TestContextManager with which the listener is registered. See TestExecutionListener Configuration.

Context Loaders

ContextLoader is a strategy interface for loading an ApplicationContext for an integration test
managed by the Spring TestContext Framework. You should implement SmartContextLoader instead
of this interface to provide support for component classes, active bean definition profiles, test
property sources, context hierarchies, and WebApplicationContext support.

45

https://docs.spring.io/spring-framework/docs/6.0.0-M2/javadoc-api/org/springframework/test/context/package-summary.html

SmartContextLoader is an extension of the ContextlLoader interface that supersedes the original
minimal ContextlLoader SPI. Specifically, a SmartContextlLoader can choose to process resource
locations, component classes, or context initializers. Furthermore, a SmartContextLoader can set
active bean definition profiles and test property sources in the context that it loads.

Spring provides the following implementations:

* DelegatingSmartContextLoader: One of two default loaders, it delegates internally to an
AnnotationConfigContextlLoader, a GenericXmlContextlLoader, or a GenericGroovyXmlContextLoader,
depending either on the configuration declared for the test class or on the presence of default
locations or default configuration classes. Groovy support is enabled only if Groovy is on the
classpath.

* WebDelegatingSmartContextLoader: One of two default loaders, it delegates internally to an
AnnotationConfigWebContextLoader, a GenericXmlWebContextlLoader, or a
GenericGroovyXmlWebContextlLoader, depending either on the configuration declared for the test
class or on the presence of default locations or default configuration classes. A web
ContextlLoader is used only if @WebAppConfiguration is present on the test class. Groovy support is
enabled only if Groovy is on the classpath.

* AnnotationConfigContextLoader: Loads a standard ApplicationContext from component classes.
* AnnotationConfigWebContextLoader: Loads a WebApplicationContext from component classes.

* GenericGroovyXmlContextLoader: Loads a standard ApplicationContext from resource locations
that are either Groovy scripts or XML configuration files.

e GenericGroovyXmlWebContextlLoader: Loads a WebApplicationContext from resource locations that
are either Groovy scripts or XML configuration files.

» GenericXmlContextlLoader: Loads a standard ApplicationContext from XML resource locations.

» GenericXmlWebContextLoader: Loads a WebApplicationContext from XML resource locations.

3.5.2. Bootstrapping the TestContext Framework

The default configuration for the internals of the Spring TestContext Framework is sufficient for all
common use cases. However, there are times when a development team or third party framework
would like to change the default ContextLoader, implement a custom TestContext or ContextCache,
augment the default sets of ContextCustomizerFactory and TestExecutionlListener implementations,
and so on. For such low-level control over how the TestContext framework operates, Spring
provides a bootstrapping strategy.

TestContextBootstrapper defines the SPI for bootstrapping the TestContext framework. A
TestContextBootstrapper is used by the TestContextManager to load the TestExecutionListener
implementations for the current test and to build the TestContext that it manages. You can
configure a custom bootstrapping strategy for a test class (or test class hierarchy) by using
@BootstrapWith, either directly or as a meta-annotation. If a bootstrapper is not explicitly configured
by using @BootstrapWith, either the DefaultTestContextBootstrapper or the
WebTestContextBootstrapper is used, depending on the presence of @WebAppConfiguration.

Since the TestContextBootstrapper SPI is likely to change in the future (to accommodate new
requirements), we strongly encourage implementers not to implement this interface directly but

46

rather to extend AbstractTestContextBootstrapper or one of its concrete subclasses instead.

3.5.3. TestExecutionListener Configuration

Spring provides the following TestExecutionlListener implementations that are registered by
default, exactly in the following order:

» ServletTestExecutionListener: Configures Servlet API mocks for a WebApplicationContext.

e DirtiesContextBeforeModesTestExecutionListener: Handles the @DirtiesContext annotation for
“before” modes.

» ApplicationEventsTestExecutionListener: Provides support for ApplicationEvents.
» DependencyInjectionTestExecutionListener: Provides dependency injection for the test instance.
* DirtiesContextTestExecutionListener: Handles the @DirtiesContext annotation for “after” modes.

e TransactionalTestExecutionlListener: Provides transactional test execution with default rollback
semantics.

* SqlScriptsTestExecutionListener: Runs SQL scripts configured by using the @5Sql annotation.

* EventPublishingTestExecutionListener: Publishes test execution events to the test’s
ApplicationContext (see Test Execution Events).

Registering TestExecutionListener Implementations

You can register TestExecutionlListener implementations for a test class and its subclasses by using
the @TestExecutionlListeners annotation. See annotation support and the javadoc for
@TestExecutionListeners for details and examples.

Automatic Discovery of Default TestExecutionListener Implementations

Registering TestExecutionListener implementations by using @TestExecutionListeners is suitable for
custom listeners that are used in limited testing scenarios. However, it can become cumbersome if
a custom listener needs to be used across an entire test suite. This issue is addressed through
support for automatic discovery of default TestExecutionListener implementations through the
SpringFactoriesLoader mechanism.

Specifically, the spring-test module declares all core default TestExecutionListener
implementations under the org.springframework.test.context.TestExecutionListener key in its
META-INF/spring.factories properties file. Third-party frameworks and developers can contribute
their own TestExecutionListener implementations to the list of default listeners in the same manner
through their own META-INF/spring.factories properties file.

Ordering TestExecutionlListener Implementations

When the TestContext framework discovers default TestExecutionlListener implementations
through the aforementioned SpringFactoriesLoader mechanism, the instantiated listeners are
sorted by using Spring’s AnnotationAwareOrderComparator, which honors Spring’s Ordered interface
and @Order annotation for ordering. AbstractTestExecutionListener and all default
TestExecutionListener implementations provided by Spring implement Ordered with appropriate
values. Third-party frameworks and developers should therefore make sure that their default

47

https://docs.spring.io/spring-framework/docs/6.0.0-M2/javadoc-api/org/springframework/test/context/TestExecutionListeners.html

TestExecutionListener implementations are registered in the proper order by implementing Ordered
or declaring @Order. See the javadoc for the getOrder() methods of the core default
TestExecutionListener implementations for details on what values are assigned to each core
listener.

Merging TestExecutionlListener Implementations

If a custom TestExecutionListener is registered via @TestExecutionListeners, the default listeners are
not registered. In most common testing scenarios, this effectively forces the developer to manually
declare all default listeners in addition to any custom listeners. The following listing demonstrates
this style of configuration:

Java

@ContextConfiguration

@TestExecutionListeners({
MyCustomTestExecutionListener.class,
ServletTestExecutionlListener.class,
DirtiesContextBeforeModesTestExecutionlListener.class,
DependencyInjectionTestExecutionlListener.class,
DirtiesContextTestExecutionlListener.class,
TransactionalTestExecutionlistener.class,
SqlScriptsTestExecutionListener.class

b

class MyTest {
// class body...

}

Kotlin

@ContextConfiguration

@TestExecutionListeners(
MyCustomTestExecutionListener::class,
ServletTestExecutionListener::class,
DirtiesContextBeforeModesTestExecutionListener::class,
DependencyInjectionTestExecutionlListener::class,
DirtiesContextTestExecutionlListener::class,
TransactionalTestExecutionlistener::class,
SqlScriptsTestExecutionListener::class

)

class MyTest {
// class body...

}

The challenge with this approach is that it requires that the developer know exactly which listeners
are registered by default. Moreover, the set of default listeners can change from release to
release —for example, SqlScriptsTestExecutionlListener was introduced in Spring Framework 4.1,
and DirtiesContextBeforeModesTestExecutionlListener was introduced in Spring Framework 4.2.
Furthermore, third-party frameworks like Spring Boot and Spring Security register their own

48

default TestExecutionListener implementations by using the aforementioned automatic discovery
mechanism.

To avoid having to be aware of and re-declare all default listeners, you can set the mergelMode
attribute of @TestExecutionListeners to MergeMode.MERGE_WITH_DEFAULTS. MERGE_WITH_DEFAULTS
indicates that locally declared listeners should be merged with the default listeners. The merging
algorithm ensures that duplicates are removed from the list and that the resulting set of merged
listeners is sorted according to the semantics of AnnotationAwareOrderComparator, as described in
Ordering TestExecutionListener Implementations. If a listener implements Ordered or is annotated
with @0rder, it can influence the position in which it is merged with the defaults. Otherwise, locally
declared listeners are appended to the list of default listeners when merged.

For example, if the MyCustomTestExecutionListener class in the previous example configures its order
value (for example, 500) to be less than the order of the ServletTestExecutionListener (which
happens to be 1000), the MyCustomTestExecutionListener can then be automatically merged with the
list of defaults in front of the ServletTestExecutionListener, and the previous example could be
replaced with the following:

Java

@ContextConfiguration

@TestExecutionListeners(
listeners = MyCustomTestExecutionListener.class,
mergeMode = MERGE_WITH_DEFAULTS

)

class MyTest {
// class body...

}

Kotlin

@ContextConfiguration

@TestExecutionlListeners(
listeners = [MyCustomTestExecutionListener::class],
mergeMode = MERGE_WITH_DEFAULTS

)
class MyTest {

// class body...
}

3.5.4. Application Events

Since Spring Framework 5.3.3, the TestContext framework provides support for recording
application events published in the ApplicationContext so that assertions can be performed against
those events within tests. All events published during the execution of a single test are made
available via the ApplicationEvents API which allows you to process the events as a
java.util.Stream.

To use ApplicationEvents in your tests, do the following.

49

core.pdf#context-functionality-events

* Ensure that your test class is annotated or meta-annotated with @RecordApplicationEvents.

* Ensure that the ApplicationEventsTestExecutionListener is registered. Note, however, that
ApplicationEventsTestExecutionListener is registered by default and only needs to be manually
registered if you have custom configuration via @TestExecutionListeners that does not include
the default listeners.

* Annotate a field of type ApplicationEvents with @Autowired and use that instance of
ApplicationEvents in your test and lifecycle methods (such as @BeforeEach and @AfterEach
methods in JUnit Jupiter).

o When using the SpringExtension for JUnit Jupiter, you may declare a method parameter of
type ApplicationEvents in a test or lifecycle method as an alternative to an @Autowired field in
the test class.

The following test class uses the SpringExtension for JUnit Jupiter and Assert] to assert the types of
application events published while invoking a method in a Spring-managed component:

Java

@SpringJUnitConfig(/* ... */)
@RecordApplicationEvents @M
class OrderServiceTests {

@Autowired
OrderService orderService;

@Autowired
ApplicationEvents events; @

@Test

void submitOrder() {
// Invoke method in OrderService that publishes an event
orderService.submitOrder(new Order(/* ... */));
// Verify that an OrderSubmitted event was published
long numEvents = events.stream(OrderSubmitted.class).count(); @
assertThat(numEvents).isEqualTo(1);

@ Annotate the test class with @RecordApplicationEvents.
@ Inject the ApplicationEvents instance for the current test.

® Use the ApplicationEvents API to count how many OrderSubmitted events were published.

50

https://assertj.github.io/doc/

Kotlin

@SpringJUnitConfig(/* ... */)
@RecordApplicationEvents @
class OrderServiceTests {

@Autowired
lateinit var orderService: OrderService

@Autowired
lateinit var events: ApplicationEvents @

@Test

fun submitOrder() {
// Invoke method in OrderService that publishes an event
orderService.submitOrder(Order(/* ... */))
// Verify that an OrderSubmitted event was published
val numEvents = events.stream(OrderSubmitted::class).count() ®
assertThat(numEvents).isEqualTo(1)

@ Annotate the test class with @RecordApplicationEvents.
@ Inject the ApplicationEvents instance for the current test.

® Use the ApplicationEvents API to count how many OrderSubmitted events were published.

See the ApplicationEvents javadoc for further details regarding the ApplicationEvents APL

3.5.5. Test Execution Events

The EventPublishingTestExecutionlListener introduced in Spring Framework 5.2 offers an
alternative approach to implementing a custom TestExecutionlListener. Components in the test’s
ApplicationContext can listen to the following events published by the
EventPublishingTestExecutionListener, each of which corresponds to a method in the
TestExecutionListener APL

BeforeTest(lassEvent

* PrepareTestInstanceEvent

BeforeTestMethodEvent

BeforeTestExecutionEvent

e AfterTestExecutionEvent

AfterTestMethodEvent

AfterTestClassEvent

o These events are only published if the ApplicationContext has already been loaded.

31

https://docs.spring.io/spring-framework/docs/6.0.0-M2/javadoc-api/org/springframework/test/context/event/ApplicationEvents.html
https://docs.spring.io/spring-framework/docs/6.0.0-M2/javadoc-api/org/springframework/test/context/event/ApplicationEvents.html

These events may be consumed for various reasons, such as resetting mock beans or tracing test
execution. One advantage of consuming test execution events rather than implementing a custom
TestExecutionListener is that test execution events may be consumed by any Spring bean registered
in the test ApplicationContext, and such beans may benefit directly from dependency injection and
other features of the ApplicationContext. In contrast, a TestExecutionListener is not a bean in the
ApplicationContext.

In order to listen to test execution events, a Spring bean may choose to implement the
org.springframework.context.ApplicationListener interface. Alternatively, listener methods can be
annotated with @EventListener and configured to listen to one of the particular event types listed
above (see Annotation-based Event Listeners). Due to the popularity of this approach, Spring
provides the following dedicated @EventListener annotations to simplify registration of test
execution event listeners. These annotations reside in the
org.springframework.test.context.event.annotation package.

e @BeforeTestClass

* @PrepareTestInstance

@BeforeTestMethod

e @BeforeTestExecution

@AfterTestExecution
e @AfterTestMethod

@AfterTestClass

Exception Handling

By default, if a test execution event listener throws an exception while consuming an event, that
exception will propagate to the underlying testing framework in use (such as JUnit or TestNG). For
example, if the consumption of a BeforeTestMethodEvent results in an exception, the corresponding
test method will fail as a result of the exception. In contrast, if an asynchronous test execution
event listener throws an exception, the exception will not propagate to the underlying testing
framework. For further details on asynchronous exception handling, consult the class-level javadoc
for @EventListener.

Asynchronous Listeners

If you want a particular test execution event listener to process events asynchronously, you can use
Spring’s regular @Async support. For further details, consult the class-level javadoc for
@EventListener.

3.5.6. Context Management

Each TestContext provides context management and caching support for the test instance for which
it is responsible. Test instances do not automatically receive access to the configured
ApplicationContext. However, if a test class implements the ApplicationContextAware interface, a
reference to the ApplicationContext is supplied to the test instance. Note that
AbstractJUnit4SpringContextTests and AbstractTestNGSpringContextTests implement
ApplicationContextAware and, therefore, provide access to the ApplicationContext automatically.

32

core.pdf#context-functionality-events-annotation
integration.pdf#scheduling-annotation-support-async
integration.pdf#scheduling-annotation-support-async
integration.pdf#scheduling-annotation-support-async

@Autowired ApplicationContext

As an alternative to implementing the ApplicationContextAware interface, you can
inject the application context for your test class through the @Autowired annotation
on either a field or setter method, as the following example shows:

Java

@SpringJUnitConfig
class MyTest {

@Autowired @
ApplicationContext applicationContext;

// class body...

@ Injecting the ApplicationContext.

Kotlin

@SpringJUnitConfig
class MyTest {

@Autowired @
lateinit var applicationContext: ApplicationContext

// class body...

@ Injecting the ApplicationContext.

Similarly, if your test is configured to load a WebApplicationContext, you can inject
the web application context into your test, as follows:

Java

@SpringJUnitWebConfig M
class MyWebAppTest {

@Autowired @
WebApplicationContext wac;

// class body...

@ Configuring the WebApplicationContext.
@ Injecting the WebApplicationContext.

33

Kotlin

@SpringJUnitWebConfig @
class MyWebAppTest {

@Autowired @

lateinit var wac: WebApplicationContext

// class body...

@ Configuring the WebApplicationContext.
@ Injecting the WebApplicationContext.

Dependency injection by using @Autowired

is

provided by the

DependencyInjectionTestExecutionListener, which is configured by default (see

Dependency Injection of Test Fixtures).

Test classes that use the TestContext framework do not need to extend any particular class or
implement a specific interface to configure their application context. Instead, configuration is
achieved by declaring the @ContextConfiguration annotation at the class level. If your test class does
not explicitly declare application context resource locations or component classes, the configured
ContextLoader determines how to load a context from a default location or default configuration
classes. In addition to context resource locations and component classes, an application context can

also be configured through application context initializers.

The following sections explain how to use Spring’s @ContextConfiguration annotation to configure a
test ApplicationContext by using XML configuration files, Groovy scripts, component classes
(typically @Configuration classes), or context initializers. Alternatively, you can implement and
configure your own custom SmartContextLoader for advanced use cases.

54

Context Configuration with XML resources

Context Configuration with Groovy Scripts

Context Configuration with Component Classes
Mixing XML, Groovy Scripts, and Component Classes
Context Configuration with Context Initializers
Context Configuration Inheritance

Context Configuration with Environment Profiles
Context Configuration with Test Property Sources
Context Configuration with Dynamic Property Sources
Loading a WebApplicationContext

Context Caching

Context Hierarchies

Context Configuration with XML resources

To load an ApplicationContext for your tests by using XML configuration files, annotate your test
class with @ContextConfiguration and configure the locations attribute with an array that contains
the resource locations of XML configuration metadata. A plain or relative path (for example,
context.xml) is treated as a classpath resource that is relative to the package in which the test class
is defined. A path starting with a slash is treated as an absolute classpath location (for example,
/org/example/config.xml). A path that represents a resource URL (i.e., a path prefixed with
classpath:, file:, http:, etc.) is used as is.

Java

@ExtendWith(SpringExtension.class)
// ApplicationContext will be loaded from "/app-config.xml" and
// "/test-config.xml" in the root of the classpath
@ContextConfiguration(locations={"/app-config.xml", "/test-config.xml1"}) @®
class MyTest {

// class body...
}

@ Setting the locations attribute to a list of XML files.

Kotlin

@ExtendWith(SpringExtension::class)
// ApplicationContext will be loaded from "/app-config.xml" and
// "/test-config.xml" in the root of the classpath
@ContextConfiguration("/app-config.xml", "/test-config.xml") @
class MyTest {

// class body...
}

@ Setting the locations attribute to a list of XML files.

@ContextConfiguration supports an alias for the locations attribute through the standard Java value
attribute. Thus, if you do not need to declare additional attributes in @ContextConfiguration, you can
omit the declaration of the locations attribute name and declare the resource locations by using the
shorthand format demonstrated in the following example:

Java

@ExtendWith(SpringExtension.class)
@ContextConfiguration({"/app-config.xml", "/test-config.xml"}) @®
class MyTest {

// class body...
}

@ Specifying XML files without using the location attribute.

55

Kotlin

@ExtendWith(SpringExtension::class)
@ContextConfiguration("/app-config.xml", "/test-config.xml") @
class MyTest {

// class body...
}

@ Specifying XML files without using the location attribute.

If you omit both the locations and the value attributes from the @ContextConfiguration annotation,
the TestContext framework tries to detect a default XML resource location. Specifically,
GenericXmlContextLoader and GenericXmlWebContextLoader detect a default location based on the
name of the test class. If your class is named com.example.MyTest, GenericXmlContextLoader loads
your application context from "classpath:com/example/MyTest-context.xml". The following example
shows how to do so:

Java

@ExtendWith(SpringExtension.class)
// ApplicationContext will be loaded from
// "classpath:com/example/MyTest-context.xml"
@ContextConfiguration @M
class MyTest {
// class body...
}

@ Loading configuration from the default location.

Kotlin

@ExtendWith(SpringExtension::class)
// ApplicationContext will be loaded from
// "classpath:com/example/MyTest-context.xml"
@ContextConfiguration @M
class MyTest {
// class body...
}

@ Loading configuration from the default location.

Context Configuration with Groovy Scripts

To load an ApplicationContext for your tests by using Groovy scripts that use the Groovy Bean
Definition DSL, you can annotate your test class with @ContextConfiguration and configure the
locations or value attribute with an array that contains the resource locations of Groovy scripts.
Resource lookup semantics for Groovy scripts are the same as those described for XML
configuration files.

36

core.pdf#groovy-bean-definition-dsl
core.pdf#groovy-bean-definition-dsl

Enabling Groovy script support

Support for using Groovy scripts to load an ApplicationContext in the Spring
TestContext Framework is enabled automatically if Groovy is on the classpath.

The following example shows how to specify Groovy configuration files:

Java

@ExtendWith(SpringExtension.class)
// ApplicationContext will be loaded from "/AppConfig.groovy" and
// "/TestConfig.groovy" in the root of the classpath
@ContextConfiguration({"/AppConfig.groovy", "/TestConfig.Groovy"}) @
class MyTest {

// class body...
}

Kotlin

@ExtendWith(SpringExtension::class)
// ApplicationContext will be loaded from "/AppConfig.groovy" and
// "/TestConfig.groovy" in the root of the classpath
@ContextConfiguration("/AppConfig.groovy"”, "/TestConfig.Groovy") @
class MyTest {

// class body...

}

@ Specifying the location of Groovy configuration files.

If you omit both the locations and value attributes from the @ContextConfiguration annotation, the
TestContext framework tries to detect a default Groovy script. Specifically,
GenericGroovyXmlContextLoader and GenericGroovyXmlWebContextlLoader detect a default location
based on the name of the test class. If your class is named com.example.MyTest, the Groovy context
loader loads your application context from "classpath:com/example/MyTestContext.groovy". The
following example shows how to use the default:

Java

@ExtendWith(SpringExtension.class)
// ApplicationContext will be loaded from
// "classpath:com/example/MyTestContext.groovy"
@ContextConfiguration M
class MyTest {
// class body...

}

@ Loading configuration from the default location.

57

Kotlin

@ExtendWith(SpringExtension::class)
// ApplicationContext will be loaded from
// "classpath:com/example/MyTestContext.groovy"
@ContextConfiguration @M
class MyTest {
// class body...
¥

@ Loading configuration from the default location.

Declaring XML configuration and Groovy scripts simultaneously

You can declare both XML configuration files and Groovy scripts simultaneously
by using the locations or value attribute of @ContextConfiguration. If the path to a
configured resource location ends with .xml, it is loaded by using an
Xm1BeanDefinitionReader. Otherwise, it is loaded by using a
GroovyBeanDefinitionReader.

The following listing shows how to combine both in an integration test:

Java

@ExtendWith(SpringExtension.class)
// ApplicationContext will be loaded from
// "/app-config.xml" and "/TestConfig.groovy"
@ @ContextConfiguration({ "/app-config.xml", "/TestConfig.groovy" })
class MyTest {
// class body...
¥

Kotlin

@ExtendWith(SpringExtension::class)
// ApplicationContext will be loaded from
// "/app-config.xml" and "/TestConfig.groovy"
@ContextConfiguration("/app-config.xml", "/TestConfig.groovy")
class MyTest {

// class body...
¥

Context Configuration with Component Classes

To load an ApplicationContext for your tests by using component classes (see Java-based container
configuration), you can annotate your test class with @ContextConfiguration and configure the
classes attribute with an array that contains references to component classes. The following
example shows how to do so:

38

core.pdf#beans-java
core.pdf#beans-java

Java

@ExtendWith(SpringExtension.class)
// ApplicationContext will be loaded from AppConfig and TestConfig
@ContextConfiguration(classes = {AppConfig.class, TestConfig.class}) @

class MyTest {

// class body...

}

@ Specifying component classes.

Kotlin

@ExtendWith(SpringExtension::class)
// ApplicationContext will be loaded from AppConfig and TestConfig
@ContextConfiguration(classes = [AppConfig::class, TestConfig::class]) @

class MyTest {

// class body...

}

@ Specifying component classes.

Component Classes

The term “component class” can refer to any of the following:

A class annotated with @Configuration.

A component (that is, a class annotated with @Component, @Service, @Repository,
or other stereotype annotations).

A JSR-330 compliant class that is annotated with jakarta.inject annotations.
Any class that contains @Bean-methods.

Any other class that is intended to be registered as a Spring component (i.e., a
Spring bean in the ApplicationContext), potentially taking advantage of
automatic autowiring of a single constructor without the use of Spring
annotations.

See the javadoc of @Configuration and @Bean for further information regarding the
configuration and semantics of component classes, paying special attention to the
discussion of @Bean Lite Mode.

If you omit the classes attribute from the @ContextConfiguration annotation, the TestContext

framework tries

to detect the presence of default configuration classes. Specifically,

AnnotationConfigContextLoader and AnnotationConfigWebContextLoader detect all static nested
classes of the test class that meet the requirements for configuration class implementations, as
specified in the @Configuration javadoc. Note that the name of the configuration class is arbitrary. In
addition, a test class can contain more than one static nested configuration class if desired. In the
following example, the OrderServiceTest class declares a static nested configuration class named
Config that is automatically used to load the ApplicationContext for the test class:

39

https://docs.spring.io/spring-framework/docs/6.0.0-M2/javadoc-api/org/springframework/context/annotation/Configuration.html
https://docs.spring.io/spring-framework/docs/6.0.0-M2/javadoc-api/org/springframework/context/annotation/Bean.html
https://docs.spring.io/spring-framework/docs/6.0.0-M2/javadoc-api/org/springframework/context/annotation/Configuration.html

Java

@SpringJUnitConfig @

// ApplicationContext will be loaded from the
// static nested Config class

class OrderServiceTest {

@Configuration
static class Config {

// this bean will be injected into the OrderServiceTest class
@Bean
OrderService orderService() {

OrderService orderService = new OrderServiceImpl();

// set properties, etc.

return orderService;

}

@Autowired
OrderService orderService;

@Test
void testOrderService() {

// test the orderService

}

@ Loading configuration information from the nested Config class.

60

Kotlin

@SpringlUnitConfig @
// ApplicationContext will be loaded from the nested Config class
class OrderServiceTest {

@Autowired
lateinit var orderService: OrderService

@Configuration
class Config {

// this bean will be injected into the OrderServiceTest class
@Bean
fun orderService(): OrderService {

// set properties, etc.

return OrderServiceImpl()

@Test
fun testOrderService() {
// test the orderService

@ Loading configuration information from the nested Config class.

Mixing XML, Groovy Scripts, and Component Classes

It may sometimes be desirable to mix XML configuration files, Groovy scripts, and component
classes (typically @Configuration classes) to configure an ApplicationContext for your tests. For
example, if you use XML configuration in production, you may decide that you want to use
@Configuration classes to configure specific Spring-managed components for your tests, or vice
versa.

Furthermore, some third-party frameworks (such as Spring Boot) provide first-class support for
loading an ApplicationContext from different types of resources simultaneously (for example, XML
configuration files, Groovy scripts, and @Configuration classes). The Spring Framework, historically,
has not supported this for standard deployments. Consequently, most of the SmartContextlLoader
implementations that the Spring Framework delivers in the spring-test module support only one
resource type for each test context. However, this does not mean that you cannot use both. One
exception to the general rule is that the GenericGroovyXmlContextLoader and
GenericGroovyXmlWebContextLoader support both XML configuration files and Groovy scripts
simultaneously. Furthermore, third-party frameworks may choose to support the declaration of
both locations and classes through @ContextConfiguration, and, with the standard testing support
in the TestContext framework, you have the following options.

If you want to use resource locations (for example, XML or Groovy) and @Configuration classes to
configure your tests, you must pick one as the entry point, and that one must include or import the

61

other. For example, in XML or Groovy scripts, you can include @Configuration classes by using
component scanning or defining them as normal Spring beans, whereas, in a @Configuration class,
you can use @ImportResource to import XML configuration files or Groovy scripts. Note that this
behavior is semantically equivalent to how you configure your application in production: In
production configuration, you define either a set of XML or Groovy resource locations or a set of
@Configuration classes from which your production ApplicationContext is loaded, but you still have
the freedom to include or import the other type of configuration.

Context Configuration with Context Initializers

To configure an ApplicationContext for your tests by using context initializers, annotate your test
class with @ContextConfiguration and configure the initializers attribute with an array that
contains references to classes that implement ApplicationContextInitializer. The declared context
initializers are then used to initialize the ConfigurableApplicationContext that is loaded for your
tests. Note that the concrete ConfigurableApplicationContext type supported by each declared
initializer must be compatible with the type of ApplicationContext created by the
SmartContextLoader in use (typically a GenericApplicationContext). Furthermore, the order in which
the initializers are invoked depends on whether they implement Spring’s Ordered interface or are
annotated with Spring’s @0rder annotation or the standard @Priority annotation. The following
example shows how to use initializers:

Java

@ExtendWith(SpringExtension.class)
// ApplicationContext will be loaded from TestConfig
// and initialized by TestAppCtxInitializer
@ContextConfiguration(

classes = TestConfig.class,

initializers = TestAppCtxInitializer.class) @
class MyTest {

// class body...
¥

@ Specifying configuration by using a configuration class and an initializer.

Kotlin

@ExtendWith(SpringExtension::class)
// ApplicationContext will be loaded from TestConfig
// and initialized by TestAppCtxInitializer
@ContextConfiguration(
classes = [TestConfig::class],
initializers = [TestAppCtxInitializer::class]) @®
class MyTest {
// class body...
+

@ Specifying configuration by using a configuration class and an initializer.

You can also omit the declaration of XML configuration files, Groovy scripts, or component classes

62

in @ContextConfiguration entirely and instead declare only ApplicationContextInitializer classes,
which are then responsible for registering beans in the context—for example, by
programmatically loading bean definitions from XML files or configuration classes. The following
example shows how to do so:

Java

@ExtendWith(SpringExtension.class)
// ApplicationContext will be initialized by EntireAppInitializer
// which presumably registers beans in the context
@ContextConfiguration(initializers = EntireAppInitializer.class) @
class MyTest {

// class body...
}

@ Specifying configuration by using only an initializer.

Kotlin

@ExtendWith(SpringExtension::class)
// ApplicationContext will be initialized by EntireAppInitializer
// which presumably registers beans in the context
@ContextConfiguration(initializers = [EntireAppInitializer::class]) @
class MyTest {

// class body...

}
@ Specifying configuration by using only an initializer.

Context Configuration Inheritance

@ContextConfiguration supports boolean inheritLocations and inheritInitializers attributes that
denote whether resource locations or component classes and context initializers declared by
superclasses should be inherited. The default value for both flags is true. This means that a test
class inherits the resource locations or component classes as well as the context initializers
declared by any superclasses. Specifically, the resource locations or component classes for a test
class are appended to the list of resource locations or annotated classes declared by superclasses.
Similarly, the initializers for a given test class are added to the set of initializers defined by test
superclasses. Thus, subclasses have the option of extending the resource locations, component
classes, or context initializers.

If the inheritLocations or inheritInitializers attribute in @ContextConfiguration is set to false, the
resource locations or component classes and the context initializers, respectively, for the test class
shadow and effectively replace the configuration defined by superclasses.

o As of Spring Framework 5.3, test configuration may also be inherited from
enclosing classes. See @Nested test class configuration for details.

In the next example, which uses XML resource locations, the ApplicationContext for ExtendedTest is
loaded from base-config.xml and extended-config.xml, in that order. Beans defined in extended-

63

config.xml can, therefore, override (that is, replace) those defined in base-config.xml. The following
example shows how one class can extend another and use both its own configuration file and the
superclass’s configuration file:

Java

@ExtendWith(SpringExtension.class)
// ApplicationContext will be loaded from "/base-config.xml"
// in the root of the classpath
@ContextConfiguration("/base-config.xml") @
class BaseTest {

// class body...
}

// ApplicationContext will be loaded from "/base-config.xml" and
// "/extended-config.xml" in the root of the classpath
@ContextConfiguration("/extended-config.xml") @
class ExtendedTest extends BaseTest {

// class body...
by

@ Configuration file defined in the superclass.

@ Configuration file defined in the subclass.

Kotlin

@ExtendWith(SpringExtension::class)
// ApplicationContext will be loaded from "/base-config.xml"
// in the root of the classpath
@ContextConfiguration("/base-config.xml") @
open class BaseTest {

// class body...
+

// ApplicationContext will be loaded from "/base-config.xml" and
// "/extended-config.xml" in the root of the classpath
@ContextConfiguration("/extended-config.xml") @
class ExtendedTest : BaseTest() {

// class body...

@ Configuration file defined in the superclass.

@ Configuration file defined in the subclass.

Similarly, in the next example, which uses component classes, the ApplicationContext for
ExtendedTest is loaded from the BaseConfig and ExtendedConfig classes, in that order. Beans defined
in ExtendedConfig can, therefore, override (that is, replace) those defined in BaseConfig. The
following example shows how one class can extend another and use both its own configuration
class and the superclass’s configuration class:

64

Java

// ApplicationContext will be loaded from BaseConfig
@SpringJUnitConfig(BaseConfig.class) @
class BaseTest {
// class body...
}

// ApplicationContext will be loaded from BaseConfig and ExtendedConfig
@SpringlUnitConfig(ExtendedConfig.class) @
class ExtendedTest extends BaseTest {
// class body...
}

@ Configuration class defined in the superclass.

@ Configuration class defined in the subclass.

Kotlin

// ApplicationContext will be loaded from BaseConfig
@SpringJUnitConfig(BaseConfig::class) @
open class BaseTest {
// class body...
}

// ApplicationContext will be loaded from BaseConfig and ExtendedConfig
@SpringlUnitConfig(ExtendedConfig::class) @
class ExtendedTest : BaseTest() {

// class body...

@ Configuration class defined in the superclass.

@ Configuration class defined in the subclass.

In the next example, which uses context initializers, the ApplicationContext for ExtendedTest is
initialized by using BaselInitializer and ExtendedInitializer. Note, however, that the order in
which the initializers are invoked depends on whether they implement Spring’s Ordered interface
or are annotated with Spring’s @0rder annotation or the standard @Priority annotation. The
following example shows how one class can extend another and use both its own initializer and the
superclass’s initializer:

65

Java

// ApplicationContext will be initialized by Baselnitializer
@SpringJUnitConfig(initializers = BaseInitializer.class) @
class BaseTest {

// class body...
¥

// ApplicationContext will be initialized by Baselnitializer
// and ExtendedInitializer
@SpringJUnitConfig(initializers = ExtendedInitializer.class) @
class ExtendedTest extends BaseTest {
// class body...
}

@ Initializer defined in the superclass.

@ Initializer defined in the subclass.

Kotlin

// ApplicationContext will be initialized by Baselnitializer
@SpringJUnitConfig(initializers = [BaseInitializer::class]) @
open class BaseTest {

// class body...

}

// ApplicationContext will be initialized by BaseInitializer
// and ExtendedInitializer
@SpringlUnitConfig(initializers = [ExtendedInitializer::class]) @
class ExtendedTest : BaseTest() {
// class body...

@ Initializer defined in the superclass.

@ Initializer defined in the subclass.

Context Configuration with Environment Profiles

The Spring Framework has first-class support for the notion of environments and profiles (AKA
"bean definition profiles"), and integration tests can be configured to activate particular bean
definition profiles for various testing scenarios. This is achieved by annotating a test class with the
@ActiveProfiles annotation and supplying a list of profiles that should be activated when loading
the ApplicationContext for the test.

You can use @ActiveProfiles with any implementation of the SmartContextLoader
o SPI, but @ActiveProfiles is not supported with implementations of the older
ContextLoader SPI.

Consider two examples with XML configuration and @Configuration classes:

66

<!-- app-config.xml -->

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:jdbe="http://www.springframework.org/schema/jdbc"
xmlns:jee="http://www.springframework.org/schema/jee"
xsi:schemalocation="...">

<bean id="transferService"
class="com.bank.service.internal.DefaultTransferService">
<constructor-arg ref="accountRepository"/>
<constructor-arg ref="feePolicy"/>
</bean>

<bean id="accountRepository"
class="com.bank.repository.internal.JdbcAccountRepository">
<constructor-arg ref="dataSource"/>
</bean>

<bean id="feePolicy"
class="com.bank.service.internal.ZeroFeePolicy"/>

<beans profile="dev">
<jdbc:embedded-database id="dataSource">
<jdbec:script
location="classpath:com/bank/config/sql/schema.sql"/>
<jdbec:script
location="classpath:com/bank/config/sql/test-data.sql"/>
</jdbc:embedded-database>
</beans>

<beans profile="production">
<jee:jndi-lookup id="dataSource" jndi-name="java:comp/env/jdbc/datasource"/>
</beans>

<beans profile="default">
<jdbc:embedded-database id="dataSource">
<jdbc:script
location="classpath:com/bank/config/sql/schema.sql"/>
</jdbc:embedded-database>
</beans>

</beans>

Java

@ExtendWith(SpringExtension.class)

// ApplicationContext will be loaded from "classpath:/app-config.xml"
@ContextConfiguration("/app-config.xml")

@ActiveProfiles("dev")

class TransferServiceTest {

@Autowired
TransferService transferService;

@Test
void testTransferService() {
// test the transferService

}

Kotlin

@ExtendWith(SpringExtension::class)

// ApplicationContext will be loaded from "classpath:/app-config.xml"
@ContextConfiguration("/app-config.xml")

@ActiveProfiles("dev")

class TransferServiceTest {

@Autowired
lateinit var transferService: TransferService

@Test
fun testTransferService() {
// test the transferService

}

When TransferServiceTest is run, its ApplicationContext is loaded from the app-config.xml
configuration file in the root of the classpath. If you inspect app-config.xml, you can see that the
accountRepository bean has a dependency on a dataSource bean. However, dataSource is not defined
as a top-level bean. Instead, dataSource is defined three times: in the production profile, in the dev
profile, and in the default profile.

By annotating TransferServiceTest with @ActiveProfiles("dev"), we instruct the Spring TestContext
Framework to load the ApplicationContext with the active profiles set to {"dev"}. As a result, an
embedded database is created and populated with test data, and the accountRepository bean is
wired with a reference to the development DataSource. That is likely what we want in an integration
test.

It is sometimes useful to assign beans to a default profile. Beans within the default profile are
included only when no other profile is specifically activated. You can use this to define “fallback”
beans to be used in the application’s default state. For example, you may explicitly provide a data

68

source for dev and production profiles, but define an in-memory data source as a default when
neither of these is active.

The following code listings demonstrate how to implement the same configuration and integration
test with @Configuration classes instead of XML:

Java

@Configuration
@Profile("dev")
public class StandaloneDataConfig {

@Bean
public DataSource dataSource() {
return new EmbeddedDatabaseBuilder()
.setType(EmbeddedDatabaseType.HSQL)
.addScript("classpath:com/bank/config/sql/schema.sql")
.addScript("classpath:com/bank/config/sql/test-data.sql")

.build();
}
}
Kotlin
@Configuration

@Profile("dev")
class StandaloneDataConfig {

@Bean
fun dataSource(): DataSource {
return EmbeddedDatabaseBuilder()
.setType(EmbeddedDatabaseType.HSQL)
.addScript("classpath:com/bank/config/sql/schema.sql")
.addScript("classpath:com/bank/config/sql/test-data.sql")
.build()

69

Java

@Configuration
@Profile("production")
public class JndiDataConfig {

@Bean(destroyMethod="")
public DataSource dataSource() throws Exception {
Context ctx = new InitialContext();
return (DataSource) ctx.lookup("java:comp/env/jdbc/datasource");

Kotlin

@Configuration
@Profile("production")
class JndiDataConfig {

@Bean(destroyMethod = "")
fun dataSource(): DataSource {
val ctx = InitialContext()
return ctx.lookup("java:comp/env/jdbc/datasource") as DataSource

}
}
Java
@Configuration

@Profile("default")
public class DefaultDataConfig {

@Bean
public DataSource dataSource() {
return new EmbeddedDatabaseBuilder()
.setType(EmbeddedDatabaseType.HSQL)
.addScript("classpath:com/bank/config/sql/schema.sql")
.build();

70

Kotlin

@Configuration
@Profile("default")
class DefaultDataConfig {

@Bean
fun dataSource(): DataSource {
return EmbeddedDatabaseBuilder()
.setType(EmbeddedDatabaseType.HSQL)
.addScript("classpath:com/bank/config/sql/schema.sql")

.build()
}
}
Java
@Configuration

public class TransferServiceConfig {
@Autowired DataSource dataSource;

@Bean
public TransferService transferService() {
return new DefaultTransferService(accountRepository(), feePolicy());

}

@Bean
public AccountRepository accountRepository() {
return new JdbcAccountRepository(dataSource);

}

@Bean
public FeePolicy feePolicy() {
return new ZeroFeePolicy();

}

71

Kotlin

@Configuration
class TransferServiceConfig {

@Autowired
lateinit var dataSource: DataSource

@Bean
fun transferService(): TransferService {
return DefaultTransferService(accountRepository(), feePolicy())

}

@Bean
fun accountRepository(): AccountRepository {
return JdbcAccountRepository(dataSource)

}

@Bean
fun feePolicy(): FeePolicy {
return ZeroFeePolicy()

}
}
Java
@SpringJUnitConfig({

TransferServiceConfig.class,
StandaloneDataConfig.class,
JndiDataConfig.class,
DefaultDataConfig.class})
@ActiveProfiles("dev")
class TransferServiceTest {

@Autowired
TransferService transferService;

@Test
void testTransferService() {
// test the transferService

}

72

Kotlin

@SpringJUnitConfig(
TransferServiceConfig::class,
StandaloneDataConfig::class,
JndiDataConfig::class,
DefaultDataConfig::class)

@ActiveProfiles("dev")

class TransferServiceTest {

@Autowired
lateinit var transferService: TransferService

@Test
fun testTransferService() {
// test the transferService

In this variation, we have split the XML configuration into four independent @Configuration classes:

* TransferServiceConfig: Acquires a dataSource through dependency injection by using @Autowired.

» StandaloneDataConfig: Defines a dataSource for an embedded database suitable for developer
tests.

* JndiDataConfig: Defines a dataSource that is retrieved from JNDI in a production environment.

* DefaultDataConfig: Defines a dataSource for a default embedded database, in case no profile is
active.

As with the XML-based configuration example, we still annotate TransferServiceTest with
@ActiveProfiles("dev"), but this time we specify all four configuration classes by using the
@ContextConfiguration annotation. The body of the test class itself remains completely unchanged.

It is often the case that a single set of profiles is used across multiple test classes within a given
project. Thus, to avoid duplicate declarations of the @ActiveProfiles annotation, you can declare
@ActiveProfiles once on a base class, and subclasses automatically inherit the @ActiveProfiles
configuration from the base class. In the following example, the declaration of @ActiveProfiles (as
well as other annotations) has been moved to an abstract superclass, AbstractIntegrationTest:

o As of Spring Framework 5.3, test configuration may also be inherited from
enclosing classes. See @Nested test class configuration for details.

73

Java

@SpringJUnitConfig({
TransferServiceConfig.class,
StandaloneDataConfig.class,
JndiDataConfig.class,
DefaultDataConfig.class})

@ActiveProfiles("dev")

abstract class AbstractIntegrationTest {

}

Kotlin

@SpringJUnitConfig(
TransferServiceConfig::class,
StandaloneDataConfig::class,
JndiDataConfig::class,
DefaultDataConfig::class)

@ActiveProfiles("dev")

abstract class AbstractIntegrationTest {

}

Java

// "dev" profile inherited from superclass
class TransferServiceTest extends AbstractIntegrationTest {

@Autowired
TransferService transferService;

@Test
void testTransferService() {
// test the transferService

}

74

Kotlin

// "dev" profile inherited from superclass
class TransferServiceTest : AbstractIntegrationTest() {

@Autowired
lateinit var transferService: TransferService

@Test
fun testTransferService() {
// test the transferService

@ActiveProfiles also supports an inheritProfiles attribute that can be used to disable the
inheritance of active profiles, as the following example shows:

Java

// "dev" profile overridden with "production"
@ActiveProfiles(profiles = "production”, inheritProfiles = false)
class ProductionTransferServiceTest extends AbstractIntegrationTest {

}

// test body

Kotlin

// "dev" profile overridden with "production”
@ActiveProfiles("production”, inheritProfiles = false)
class ProductionTransferServiceTest : AbstractIntegrationTest() {

}

// test body

Furthermore, it is sometimes necessary to resolve active profiles for tests programmatically instead
of declaratively — for example, based on:

To

The current operating system.

Whether tests are being run on a continuous integration build server.
The presence of certain environment variables.

The presence of custom class-level annotations.

Other concerns.

resolve active bean definition profiles programmatically, you can implement a custom

ActiveProfilesResolver and register it by using the resolver attribute of @ActiveProfiles. For further
information, see the corresponding javadoc. The following example demonstrates how to
implement and register a custom OperatingSystemActiveProfilesResolver:

75

https://docs.spring.io/spring-framework/docs/6.0.0-M2/javadoc-api/org/springframework/test/context/ActiveProfilesResolver.html

Java

// "dev" profile overridden programmatically via a custom resolver
@ActiveProfiles(
resolver = OperatingSystemActiveProfilesResolver.class,
inheritProfiles = false)
class TransferServiceTest extends AbstractIntegrationTest {
// test body
b

Kotlin

// "dev" profile overridden programmatically via a custom resolver
@ActiveProfiles(
resolver = OperatingSystemActiveProfilesResolver::class,
inheritProfiles = false)
class TransferServiceTest : AbstractIntegrationTest() {
// test body
}

Java

public class OperatingSystemActiveProfilesResolver implements ActiveProfilesResolver {

@0verride
public String[] resolve(Class<?> testClass) {
String profile = ...;

// determine the value of profile based on the operating system
return new String[] {profile};

Kotlin
class OperatingSystemActiveProfilesResolver : ActiveProfilesResolver {

override fun resolve(testClass: Class<*>): Array<String> {
val profile: String = ...
// determine the value of profile based on the operating system
return arrayOf(profile)

Context Configuration with Test Property Sources

The Spring Framework has first-class support for the notion of an environment with a hierarchy of
property sources, and you can configure integration tests with test-specific property sources. In
contrast to the @PropertySource annotation used on @Configuration classes, you can declare the

76

@TestPropertySource annotation on a test class to declare resource locations for test properties files
or inlined properties. These test property sources are added to the set of PropertySources in the
Environment for the ApplicationContext loaded for the annotated integration test.

You can use @TestPropertySource with any implementation of the
SmartContextLoader SPI, but @TestPropertySource is mnot supported with
o implementations of the older ContextLoader SPI.

Implementations of SmartContextLoader gain access to merged test property source
values through the getPropertySourcelocations() and
getPropertySourceProperties() methods in MergedContextConfiguration.

Declaring Test Property Sources

You can configure test properties files by wusing the locations or value attribute of
@TestPropertySource.

Both traditional and XML-based properties file formats are supported—for example,
"classpath:/com/example/test.properties” or "file:///path/to/file.xml".

Each path is interpreted as a Spring Resource. A plain path (for example, "test.properties") is
treated as a classpath resource that is relative to the package in which the test class is defined. A
path starting with a slash is treated as an absolute classpath resource (for example:
"/org/example/test.xml"). A path that references a URL (for example, a path prefixed with
classpath:, file:, or http:) is loaded by using the specified resource protocol. Resource location
wildcards (such as */.properties) are not permitted: Each location must evaluate to exactly one
.properties or .xml resource.

The following example uses a test properties file:

Java

@ContextConfiguration
@TestPropertySource("/test.properties") @
class MyIntegrationTests {

// class body...
}

@ Specifying a properties file with an absolute path.

Kotlin

@ContextConfiquration
@TestPropertySource("/test.properties") ®
class MyIntegrationTests {

// class body...
}

@ Specifying a properties file with an absolute path.

77

You can configure inlined properties in the form of key-value pairs by using the properties
attribute of @TestPropertySource, as shown in the next example. All key-value pairs are added to the
enclosing Environment as a single test PropertySource with the highest precedence.

The supported syntax for key-value pairs is the same as the syntax defined for entries in a Java
properties file:

* key=value
* key:value

* key value
The following example sets two inlined properties:

Java

@ContextConfiguration
@TestPropertySource(properties = {"timezone = GMT", "port: 4242"}) @
class MyIntegrationTests {
// class body...
¥

@ Setting two properties by using two variations of the key-value syntax.

Kotlin

@ContextConfiguration
@TestPropertySource(properties = ["timezone = GMT", "port: 4242"]) @
class MyIntegrationTests {

// class body...

}
@ Setting two properties by using two variations of the key-value syntax.

As of Spring Framework 5.2, @TestPropertySource can be used as repeatable
annotation. That means that you can have multiple declarations of
@TestPropertySource on a single test class, with the locations and properties from
later @TestPropertySource annotations overriding those from previous
@TestPropertySource annotations.

In addition, you may declare multiple composed annotations on a test class that
o are each meta-annotated with @TestPropertySource, and all of those
@TestPropertySource declarations will contribute to your test property sources.

Directly present @TestPropertySource annotations always take precedence over
meta-present @TestPropertySource annotations. In other words, locations and
properties from a directly present @TestPropertySource annotation will override
the locations and properties from a @TestPropertySource annotation used as a
meta-annotation.

78

Default Properties File Detection

If @TestPropertySource is declared as an empty annotation (that is, without explicit values for the
locations or properties attributes), an attempt is made to detect a default properties file relative to
the class that declared the annotation. For example, if the annotated test class is com.example.MyTest,
the corresponding default properties file is classpath:com/example/MyTest.properties. If the default
cannot be detected, an I1legalStateException is thrown.

Precedence

Test properties have higher precedence than those defined in the operating system’s environment,
Java system properties, or property sources added by the application declaratively by using
@PropertySource or programmatically. Thus, test properties can be used to selectively override
properties loaded from system and application property sources. Furthermore, inlined properties
have higher precedence than properties loaded from resource locations. Note, however, that
properties registered via @DynamicPropertySource have higher precedence than those loaded via
@TestPropertySource.

In the next example, the timezone and port properties and any properties defined in
"/test.properties" override any properties of the same name that are defined in system and
application property sources. Furthermore, if the "/test.properties” file defines entries for the
timezone and port properties those are overridden by the inlined properties declared by using the
properties attribute. The following example shows how to specify properties both in a file and
inline:

Java

@ContextConfiquration
@TestPropertySource(
locations = "/test.properties”,
properties = {"timezone = GMT", "port: 4242"}
)
class MyIntegrationTests {
// class body...
}

Kotlin

@ContextConfiquration
@TestPropertySource("/test.properties",

properties = ["timezone = GMT", "port: 4242"]
)
class MyIntegrationTests {

// class body...
}

Inheriting and Overriding Test Property Sources

@TestPropertySource supports boolean inheritLocations and inheritProperties attributes that
denote whether resource locations for properties files and inlined properties declared by

79

superclasses should be inherited. The default value for both flags is true. This means that a test
class inherits the locations and inlined properties declared by any superclasses. Specifically, the
locations and inlined properties for a test class are appended to the locations and inlined properties
declared by superclasses. Thus, subclasses have the option of extending the locations and inlined
properties. Note that properties that appear later shadow (that is, override) properties of the same
name that appear earlier. In addition, the aforementioned precedence rules apply for inherited test
property sources as well.

If the inheritlLocations or inheritProperties attribute in @TestPropertySource is set to false, the
locations or inlined properties, respectively, for the test class shadow and effectively replace the
configuration defined by superclasses.

o As of Spring Framework 5.3, test configuration may also be inherited from
enclosing classes. See @Nested test class configuration for details.

In the next example, the ApplicationContext for BaseTest is loaded by using only the base.properties
file as a test property source. In contrast, the ApplicationContext for ExtendedTest is loaded by using
the base.properties and extended.properties files as test property source locations. The following
example shows how to define properties in both a subclass and its superclass by using properties
files:

Java

@TestPropertySource("base.properties")
@ContextConfiguration
class BaseTest {
/] ...
}

@TestPropertySource("extended.properties")
@ContextConfiguration
class ExtendedTest extends BaseTest {
/] ...
}

Kotlin

@TestPropertySource("base.properties")
@ContextConfiguration
open class BaseTest {
/] ...
}

@TestPropertySource("extended.properties")
@ContextConfiguration
class ExtendedTest : BaseTest() {

/] ...

80

In the next example, the ApplicationContext for BaseTest is loaded by using only the inlined key1
property. In contrast, the ApplicationContext for ExtendedTest is loaded by using the inlined key1
and key2 properties. The following example shows how to define properties in both a subclass and
its superclass by using inline properties:

Java

@TestPropertySource(properties = "key1l = valuel")
@ContextConfiguration
class BaseTest {

/] ...

value2")

@TestPropertySource(properties

@ContextConfiguration

class ExtendedTest extends BaseTest {
/..

"key2

Kotlin

valuel"])

@TestPropertySource(properties
@ContextConfiquration
open class BaseTest {

/...

["keyT

}

value2"])

@TestPropertySource(properties

@ContextConfiguration

class ExtendedTest : BaseTest() {
/...

["key2

Context Configuration with Dynamic Property Sources

As of Spring Framework 5.2.5, the TestContext framework provides support for dynamic properties
via the @DynamicPropertySource annotation. This annotation can be used in integration tests that
need to add properties with dynamic values to the set of PropertySources in the Environment for the
ApplicationContext loaded for the integration test.

The @DynamicPropertySource annotation and its supporting infrastructure were
originally designed to allow properties from Testcontainers based tests to be

o exposed easily to Spring integration tests. However, this feature may also be used
with any form of external resource whose lifecycle is maintained outside the test’s
ApplicationContext.

In contrast to the @TestPropertySource annotation that is applied at the class level,

@DynamicPropertySource must be applied to a static method that accepts a single
DynamicPropertyRegistry argument which is used to add name-value pairs to the Environment. Values

81

https://www.testcontainers.org/

are dynamic and provided via a Supplier which is only invoked when the property is resolved.
Typically, method references are used to supply values, as can be seen in the following example
which uses the Testcontainers project to manage a Redis container outside of the Spring
ApplicationContext. The IP address and port of the managed Redis container are made available to
components within the test’s ApplicationContext via the redis.host and redis.port properties. These
properties can be accessed via Spring’s Environment abstraction or injected directly into Spring-
managed components — for example, via @Value("${redis.host}") and @Value("${redis.port}"),
respectively.

If you use @DynamicPropertySource in a base class and discover that tests in
O subclasses fail because the dynamic properties change between subclasses, you
- may need to annotate your base class with @DirtiesContext to ensure that each

subclass gets its own ApplicationContext with the correct dynamic properties.

Java

@SpringJUnitConfig(/* ... */)
@Testcontainers
class ExampleIntegrationTests {

@Container
static RedisContainer redis = new RedisContainer();

@DynamicPropertySource
static void redisProperties(DynamicPropertyRegistry registry) {

registry.add("redis.host", redis::getContainerIpAddress);
registry.add("redis.port", redis::qgetMappedPort);

// tests ...

82

Kotlin

@SpringJUnitConfig(/* ... */)
@Testcontainers
class ExampleIntegrationTests {

companion object {

@Container
@JvmStatic
val redis: RedisContainer = RedisContainer()

@DynamicPropertySource

@JvmStatic

fun redisProperties(registry: DynamicPropertyRegistry) {
registry.add("redis.host", redis::getContainerIpAddress)
registry.add("redis.port", redis::getMappedPort)

}
}
// tests ...
}
Precedence

Dynamic properties have higher precedence than those loaded from @TestPropertySource, the
operating system’s environment, Java system properties, or property sources added by the
application declaratively by using @PropertySource or programmatically. Thus, dynamic properties
can be used to selectively override properties loaded via @TestPropertySource, system property
sources, and application property sources.

Loading a WebApplicationContext

To instruct the TestContext framework to load a WebApplicationContext instead of a standard
ApplicationContext, you can annotate the respective test class with @WebAppConfiguration.

The presence of eWebAppConfiguration on your test class instructs the TestContext framework (TCF)
that a WebApplicationContext (WAC) should be loaded for your integration tests. In the background,
the TCF makes sure that a MockServletContext is created and supplied to your test’s WAC. By default,
the base resource path for your MockServletContext is set to src/main/webapp. This is interpreted as a
path relative to the root of your JVM (normally the path to your project). If you are familiar with the
directory structure of a web application in a Maven project, you know that src/main/webapp is the
default location for the root of your WAR. If you need to override this default, you can provide an
alternate path to the @WebAppConfiguration annotation (for example,
@WebAppConfiguration("src/test/webapp")). If you wish to reference a base resource path from the
classpath instead of the file system, you can use Spring’s classpath: prefix.

Note that Spring’s testing support for WebApplicationContext implementations is on par with its
support for standard ApplicationContext implementations. When testing with a

83

WebApplicationContext, you are free to declare XML configuration files, Groovy scripts, or
@Configuration classes by using @ContextConfiguration. You are also free to use any other test
annotations, such as @ActiveProfiles, @TestExecutionlListeners, @5ql, @Rol1lback, and others.

The remaining examples in this section show some of the various configuration options for loading
a WebApplicationContext. The following example shows the TestContext framework’s support for
convention over configuration:

Java
@ExtendWith(SpringExtension.class)

// defaults to "file:src/main/webapp"
@WebAppConfiguration

// detects "WacTests-context.xml" in the same package
// or static nested @Configuration classes
@ContextConfiquration
class WacTests {

//...

Kotlin
@ExtendWith(SpringExtension::class)

// defaults to "file:src/main/webapp"
@WebAppConfiguration

// detects "WacTests-context.xml" in the same package
// or static nested @Configuration classes
@ContextConfiguration
class WacTests {

/...

If you annotate a test class with @WebAppConfiguration without specifying a resource base path, the
resource path effectively defaults to file:src/main/webapp. Similarly, if you declare
@ContextConfiguration without specifying resource locations, component classes, or context
initializers, Spring tries to detect the presence of your configuration by using conventions (that is,
WacTests-context.xml in the same package as the WacTests class or static nested @Configuration
classes).

The following example shows how to explicitly declare a resource base path with
@WebAppConfiguration and an XML resource location with @ContextConfiguration:

84

Java
@ExtendWith(SpringExtension.class)

// file system resource
@WebAppConfiguration("webapp")

// classpath resource
@ContextConfiguration("/spring/test-servlet-config.xml")
class WacTests {

/...
}

Kotlin
@ExtendWith(SpringExtension::class)

// file system resource
@WebAppConfiguration("webapp")

// classpath resource
@ContextConfiguration("/spring/test-servlet-config.xml")
class WacTests {

/...
}

The important thing to note here is the different semantics for paths with these two annotations. By
default, @WebAppConfiguration resource paths are file system based, whereas @ContextConfiguration
resource locations are classpath based.

The following example shows that we can override the default resource semantics for both
annotations by specifying a Spring resource prefix:

Java
@ExtendWith(SpringExtension.class)

// classpath resource
@WebAppConfiguration("classpath:test-web-resources")

// file system resource
@ContextConfiquration("file:src/main/webapp/WEB-INF/serviet-config.xml")
class WacTests {

//...
¥

85

Kotlin
@ExtendWith(SpringExtension::class)

// classpath resource
@WebAppConfiguration("classpath:test-web-resources")

// file system resource
@ContextConfiguration("file:src/main/webapp/WEB-INF/servlet-config.xml")
class WacTests {

//...

Contrast the comments in this example with the previous example.

Working with Web Mocks

To provide comprehensive web testing support, the TestContext framework has a
ServletTestExecutionListener that 1is enabled by default. When testing against a
WebApplicationContext, this TestExecutionListener sets up default thread-local state by using Spring
Web’s RequestContextHolder before each test method and creates a MockHttpServletRequest, a
MockHttpServletResponse, and a ServletWebRequest based on the base resource path configured with
@WebAppConfiguration. ServletTestExecutionListener also ensures that the MockHttpServletResponse
and ServletWebRequest can be injected into the test instance, and, once the test is complete, it cleans
up thread-local state.

Once you have a WebApplicationContext loaded for your test, you might find that you need to
interact with the web mocks — for example, to set up your test fixture or to perform assertions
after invoking your web component. The following example shows which mocks can be autowired
into your test instance. Note that the WebApplicationContext and MockServletContext are both cached
across the test suite, whereas the other mocks are managed per test method by the
ServletTestExecutionListener.

86

Java

@SpringJUnitWebConfig
class WacTests {

@Autowired
WebApplicationContext wac; // cached

@Autowired
MockServletContext servletContext; // cached

@Autowired
MockHttpSession session;

@Autowired
MockHttpServletRequest request;

@Autowired
MockHttpServletResponse response;

@Autowired
ServletWebRequest webRequest;

//...

87

Kotlin

@SpringJUnitWebConfig
class WacTests {

@Autowired
lateinit var wac: WebApplicationContext // cached

@Autowired
lateinit var servletContext: MockServletContext // cached

@Autowired
lateinit var session: MockHttpSession

@Autowired
lateinit var request: MockHttpServletRequest

@Autowired
lateinit var response: MockHttpServletResponse

@Autowired
lateinit var webRequest: ServletWebRequest

//...

Context Caching

Once the TestContext framework loads an ApplicationContext (or WebApplicationContext) for a test,
that context is cached and reused for all subsequent tests that declare the same unique context
configuration within the same test suite. To understand how caching works, it is important to
understand what is meant by “unique” and “test suite.”

An ApplicationContext can be uniquely identified by the combination of configuration parameters
that is used to load it. Consequently, the unique combination of configuration parameters is used to
generate a key under which the context is cached. The TestContext framework uses the following
configuration parameters to build the context cache key:

* locations (from @ContextConfiguration)

 classes (from @ContextConfiguration)

» contextInitializerClasses (from @ContextConfiguration)

» contextCustomizers (from ContextCustomizerFactory) — this includes @DynamicPropertySource
methods as well as various features from Spring Boot’s testing support such as @MockBean and
@SpyBean.

» contextlLoader (from @ContextConfiguration)
 parent (from @ContextHierarchy)

e activeProfiles (from @ActiveProfiles)

88

e propertySourcelocations (from @TestPropertySource)
» propertySourceProperties (from @TestPropertySource)

* resourceBasePath (from @WebAppConfiguration)

For example, if TestClassA specifies {"app-config.xml", "test-config.xml"} for the locations (or
value) attribute of @ContextConfiguration, the TestContext framework loads the corresponding
ApplicationContext and stores it in a static context cache under a key that is based solely on those
locations. So, if TestClassB also defines {"app-config.xml", "test-config.xml"} for its locations
(either explicitly or implicitly through inheritance) but does not define @WebAppConfiguration, a
different ContextlLoader, different active profiles, different context initializers, different test
property sources, or a different parent context, then the same ApplicationContext is shared by both
test classes. This means that the setup cost for loading an application context is incurred only once
(per test suite), and subsequent test execution is much faster.

Test suites and forked processes

The Spring TestContext framework stores application contexts in a static cache.
This means that the context is literally stored in a static variable. In other words,
if tests run in separate processes, the static cache is cleared between each test
execution, which effectively disables the caching mechanism.

o To benefit from the caching mechanism, all tests must run within the same process
or test suite. This can be achieved by executing all tests as a group within an IDE.
Similarly, when executing tests with a build framework such as Ant, Maven, or
Gradle, it is important to make sure that the build framework does not fork
between tests. For example, if the forkMode for the Maven Surefire plug-in is set to
always or pertest, the TestContext framework cannot cache application contexts
between test classes, and the build process runs significantly more slowly as a
result.

The size of the context cache is bounded with a default maximum size of 32. Whenever the
maximum size is reached, a least recently used (LRU) eviction policy is used to evict and close stale
contexts. You can configure the maximum size from the command line or a build script by setting a
JVM system property named spring.test.context.cache.maxSize. As an alternative, you can set the
same property via the SpringProperties mechanism.

Since having a large number of application contexts loaded within a given test suite can cause the
suite to take an unnecessarily long time to run, it is often beneficial to know exactly how many
contexts have been loaded and cached. To view the statistics for the underlying context cache, you
can set the log level for the org.springframework.test.context.cache logging category to DEBUG.

In the unlikely case that a test corrupts the application context and requires reloading (for example,
by modifying a bean definition or the state of an application object), you can annotate your test
class or test method with @DirtiesContext (see the discussion of @DirtiesContext in Spring Testing
Annotations). This instructs Spring to remove the context from the cache and rebuild the
application context before running the next test that requires the same application context. Note
that support for the @DirtiesContext annotation is provided by the
DirtiesContextBeforeModesTestExecutionListener and the DirtiesContextTestExecutionlListener,
which are enabled by default.

89

https://maven.apache.org/plugins/maven-surefire-plugin/test-mojo.html#forkMode
appendix.pdf#appendix-spring-properties

ApplicationContext lifecycle and console logging

When you need to debug a test executed with the Spring TestContext Framework,
it can be useful to analyze the console output (that is, output to the SYSOUT and
SYSERR streams). Some build tools and IDEs are able to associate console output
with a given test; however, some console output cannot be easily associated with a
given test.

With regard to console logging triggered by the Spring Framework itself or by
components registered in the ApplicationContext, it is important to understand the
lifecycle of an ApplicationContext that has been loaded by the Spring TestContext
Framework within a test suite.

The ApplicationContext for a test is typically loaded when an instance of the test
class is being prepared —for example, to perform dependency injection into
@Autowired fields of the test instance. This means that any console logging triggered
during the initialization of the ApplicationContext typically cannot be associated
with an individual test method. However, if the context is closed immediately
before the execution of a test method according to @DirtiesContext semantics, a
new instance of the context will be loaded just prior to execution of the test
method. In the latter scenario, an IDE or build tool may potentially associate
console logging with the individual test method.

o The ApplicationContext for a test can be closed via one of the following scenarios.

* The context is closed according to @DirtiesContext semantics.

* The context is closed because it has been automatically evicted from the cache
according to the LRU eviction policy.

* The context is closed via a JVM shutdown hook when the JVM for the test suite
terminates.

If the context is closed according to @DirtiesContext semantics after a particular
test method, an IDE or build tool may potentially associate console logging with the
individual test method. If the context is closed according to @DirtiesContext
semantics after a test class, any console logging triggered during the shutdown of
the ApplicationContext cannot be associated with an individual test method.
Similarly, any console logging triggered during the shutdown phase via a JVM
shutdown hook cannot be associated with an individual test method.

When a Spring ApplicationContext is closed via a JVM shutdown hook, callbacks
executed during the shutdown phase are executed on a thread named
SpringContextShutdownHook. So, if you wish to disable console logging triggered
when the ApplicationContext is closed via a JVM shutdown hook, you may be able
to register a custom filter with your logging framework that allows you to ignore
any logging initiated by that thread.

Context Hierarchies

When writing integration tests that rely on a loaded Spring ApplicationContext, it is often sufficient

90

to test against a single context. However, there are times when it is beneficial or even necessary to
test against a hierarchy of ApplicationContext instances. For example, if you are developing a
Spring MVC web application, you typically have a root WebApplicationContext loaded by Spring’s
ContextlLoaderListener and a child WebApplicationContext loaded by Spring’s DispatcherServlet. This
results in a parent-child context hierarchy where shared components and infrastructure
configuration are declared in the root context and consumed in the child context by web-specific
components. Another use case can be found in Spring Batch applications, where you often have a
parent context that provides configuration for shared batch infrastructure and a child context for
the configuration of a specific batch job.

You can write integration tests that use context hierarchies by declaring context configuration with
the @ContextHierarchy annotation, either on an individual test class or within a test class hierarchy.
If a context hierarchy is declared on multiple classes within a test class hierarchy, you can also
merge or override the context configuration for a specific, named level in the context hierarchy.
When merging configuration for a given level in the hierarchy, the configuration resource type
(that is, XML configuration files or component classes) must be consistent. Otherwise, it is perfectly
acceptable to have different levels in a context hierarchy configured using different resource types.

The remaining JUnit Jupiter based examples in this section show common configuration scenarios
for integration tests that require the use of context hierarchies.

Single test class with context hierarchy

ControllerIntegrationTests represents a typical integration testing scenario for a Spring MVC web
application by declaring a context hierarchy that consists of two levels, one for the root
WebApplicationContext (loaded by using the TestAppConfig @Configuration class) and one for the
dispatcher servlet WebApplicationContext (loaded by using the WebConfig @Configuration class). The
WebApplicationContext that is autowired into the test instance is the one for the child context (that is,
the lowest context in the hierarchy). The following listing shows this configuration scenario:

Java

@ExtendWith(SpringExtension.class)

@WebAppConfiguration

@ContextHierarchy({
@ContextConfiguration(classes
@ContextConfiguration(classes

TestAppConfig.class),
WebConfig.class)

1))

class ControllerIntegrationTests {

@Autowired
WebApplicationContext wac;

/...

91

Kotlin

@ExtendWith(SpringExtension::class)
@WebAppConfiguration
@ContextHierarchy(
ContextConfiguration(classes = [TestAppConfig::class]),
ContextConfiguration(classes = [WebConfig::class]))
class ControllerIntegrationTests {

@Autowired
lateinit var wac: WebApplicationContext

/] ...

Class hierarchy with implicit parent context

The test classes in this example define a context hierarchy within a test class hierarchy.
AbstractWebTests declares the configuration for a root WebApplicationContext in a Spring-powered
web application. Note, however, that AbstractWebTests does not declare @ContextHierarchy.
Consequently, subclasses of AbstractWebTests can optionally participate in a context hierarchy or
follow the standard semantics for @ContextConfiguration. SoapWebServiceTests and
RestWebServiceTests both extend AbstractWebTests and define a context hierarchy by using
@ContextHierarchy. The result is that three application contexts are loaded (one for each declaration
of @ContextConfiguration), and the application context loaded based on the configuration in
AbstractWebTests is set as the parent context for each of the contexts loaded for the concrete
subclasses. The following listing shows this configuration scenario:

Java

@ExtendWith(SpringExtension.class)

@WebAppConfiguration
@ContextConfiguration("file:src/main/webapp/WEB-INF/applicationContext.xml")
public abstract class AbstractWebTests {}

@ContextHierarchy(@ContextConfiguration("/spring/soap-ws-config.xml"))
public class SoapWebServiceTests extends AbstractWebTests {}

@ContextHierarchy(@ContextConfiguration("/spring/rest-ws-config.xml"))
public class RestWebServiceTests extends AbstractWebTests {}

92

Kotlin

@ExtendWith(SpringExtension::class)

@WebAppConfiguration
@ContextConfiguration("file:src/main/webapp/WEB-INF/applicationContext.xml")
abstract class AbstractWebTests

@ContextHierarchy(ContextConfiguration("/spring/soap-ws-config.xml"))
class SoapWebServiceTests : AbstractWebTests()

@ContextHierarchy(ContextConfiguration("/spring/rest-ws-config.xml"))
class RestWebServiceTests : AbstractWebTests()

Class hierarchy with merged context hierarchy configuration

The classes in this example show the use of named hierarchy levels in order to merge the
configuration for specific levels in a context hierarchy. BaseTests defines two levels in the hierarchy,
parent and child. ExtendedTests extends BaseTests and instructs the Spring TestContext Framework
to merge the context configuration for the child hierarchy level, by ensuring that the names
declared in the name attribute in @ContextConfiguration are both child. The result is that three
application contexts are loaded: one for /app-config.xml, one for /user-config.xml, and one for
{"/user-config.xml", "/order-config.xml"}. As with the previous example, the application context
loaded from /app-config.xml is set as the parent context for the contexts loaded from /user-
config.xml and {"/user-config.xml", "/order-config.xml"}. The following listing shows this
configuration scenario:

Java

@ExtendWith(SpringExtension.class)

@ContextHierarchy({
@ContextConfiguration(name
@ContextConfiguration(name

"parent", locations = "/app-config.xml"),
"child", locations = "/user-config.xml")

1))

class BaseTests {}

@ContextHierarchy(
@ContextConfiguration(name

"child", locations = "/order-config.xml")

)

class ExtendedTests extends BaseTests {}

93

Kotlin

@ExtendWith(SpringExtension::class)
@ContextHierarchy(
ContextConfiguration(name
ContextConfiguration(name
open class BaseTests {}

@ContextHierarchy(
ContextConfiguration(name

)
class ExtendedTests : BaseTests() {}

"parent", locations
"child", locations

"child", locations

= ["/app-config.xml"]),
= ["/user-config.xml"]))

= ["/order-config.xml"])

Class hierarchy with overridden context hierarchy configuration

In contrast to the previous example, this example demonstrates how to override the configuration
for a given named level in a context hierarchy by setting the inheritlLocations flag in
@ContextConfiguration to false. Consequently, the application context for ExtendedTests is loaded
only from /test-user-config.xml and has its parent set to the context loaded from /app-config.xml.

The following listing shows this configuration scenario:

Java

94

@ExtendWith(SpringExtension.class)

@ContextHierarchy({
@ContextConfiguration(name
@ContextConfiguration(name

1))

class BaseTests {}

@ContextHierarchy(
@ContextConfiguration(
name = "child",

locations = "/test-user-config.xml",

inheritlLocations = false

))

class ExtendedTests extends BaseTests {}

"parent", locations = "/app-config.xml"),
"child", locations

= "/user-config.xml")

Kotlin

@ExtendWith(SpringExtension::class)
@ContextHierarchy(
ContextConfiguration(name
ContextConfiguration(name
open class BaseTests {}

"parent", locations = ["/app-config.xml"]),
"child", locations = ["/user-config.xml"]))

@ContextHierarchy(
ContextConfiguration(
name = "child",
locations = ["/test-user-config.xml"],
inheritLocations = false

)
class ExtendedTests : BaseTests() {}

Dirtying a context within a context hierarchy

If you use @DirtiesContext in a test whose context is configured as part of a context

o hierarchy, you can use the hierarchyMode flag to control how the context cache is
cleared. For further details, see the discussion of @DirtiesContext in Spring Testing
Annotations and the @DirtiesContext javadoc.

3.5.7. Dependency Injection of Test Fixtures

When you use the DependencyInjectionTestExecutionListener (which is configured by default), the
dependencies of your test instances are injected from beans in the application context that you
configured with @ContextConfiguration or related annotations. You may use setter injection, field
injection, or both, depending on which annotations you choose and whether you place them on
setter methods or fields. If you are using JUnit Jupiter you may also optionally use constructor
injection (see Dependency Injection with SpringExtension). For consistency with Spring’s
annotation-based injection support, you may also use Spring’s @Autowired annotation or the @Inject
annotation from JSR-330 for field and setter injection.

For testing frameworks other than JUnit Jupiter, the TestContext framework does
O not participate in instantiation of the test class. Thus, the use of @Autowired or
- :

@Inject for constructors has no effect for test classes.

Although field injection is discouraged in production code, field injection is

o actually quite natural in test code. The rationale for the difference is that you will
never instantiate your test class directly. Consequently, there is no need to be able
to invoke a public constructor or setter method on your test class.

Because @Autowired is used to perform autowiring by type, if you have multiple bean definitions of
the same type, you cannot rely on this approach for those particular beans. In that case, you can
use @Autowired in conjunction with @Qualifier. You can also choose to use @Inject in conjunction
with @Named. Alternatively, if your test class has access to its ApplicationContext, you can perform an
explicit lookup by using (for example) a call to applicationContext.getBean("titleRepository”,

95

https://docs.spring.io/spring-framework/docs/6.0.0-M2/javadoc-api/org/springframework/test/annotation/DirtiesContext.html
core.pdf#beans-factory-autowire

TitleRepository.class).

If you do not want dependency injection applied to your test instances, do not annotate fields or
setter methods with @Autowired or @Inject. Alternatively, you can disable dependency injection
altogether by explicitly configuring your class with @TestExecutionlListeners and omitting
DependencyInjectionTestExecutionListener.class from the list of listeners.

Consider the scenario of testing a HibernateTitleRepository class, as outlined in the Goals section.
The next two code listings demonstrate the use of @Autowired on fields and setter methods. The
application context configuration is presented after all sample code listings.

The dependency injection behavior in the following code listings is not specific to
JUnit Jupiter. The same DI techniques can be used in conjunction with any
supported testing framework.

o The following examples make calls to static assertion methods, such as
assertNotNull(), but without prepending the call with Assertions. In such cases,
assume that the method was properly imported through an import static
declaration that is not shown in the example.

The first code listing shows a JUnit Jupiter based implementation of the test class that uses
@Autowired for field injection:

Java

@ExtendWith(SpringExtension.class)

// specifies the Spring configuration to load for this test fixture
@ContextConfiguration("repository-config.xml")

class HibernateTitleRepositoryTests {

// this instance will be dependency injected by type
@Autowired
HibernateTitleRepository titleRepository;

@Test

void findById() {
Title title = titleRepository.findById(new Long(10));
assertNotNull(title);

96

Kotlin

@ExtendWith(SpringExtension::class)

// specifies the Spring configuration to load for this test fixture
@ContextConfiguration("repository-config.xml")

class HibernateTitleRepositoryTests {

// this instance will be dependency injected by type
@Autowired
lateinit var titleRepository: HibernateTitleRepository

@Test

fun findById() {
val title = titleRepository.findById(10)
assertNotNull(title)

Alternatively, you can configure the class to use @Autowired for setter injection, as follows:

Java

@ExtendWith(SpringExtension.class)

// specifies the Spring configuration to load for this test fixture
@ContextConfiguration("repository-config.xml")

class HibernateTitleRepositoryTests {

// this instance will be dependency injected by type
HibernateTitleRepository titleRepository;

@Autowired

void setTitleRepository(HibernateTitleRepository titleRepository) {
this.titleRepository = titleRepository;

}

@Test

void findById() {
Title title = titleRepository.findById(new Long(10));
assertNotNull(title);

97

Kotlin

@ExtendWith(SpringExtension::class)

// specifies the Spring configuration to load for this test fixture
@ContextConfiguration("repository-config.xml")

class HibernateTitleRepositoryTests {

// this instance will be dependency injected by type
lateinit var titleRepository: HibernateTitleRepository

@Autowired
fun setTitleRepository(titleRepository: HibernateTitleRepository) {
this.titleRepository = titleRepository

}

@Test

fun findById() {
val title = titleRepository.findById(10)
assertNotNull(title)

The preceding code listings use the same XML context file referenced by the @ContextConfiguration
annotation (that is, repository-config.xml). The following shows this configuration:

<?xml version="1.0" encoding="UTF-8"7>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd">

<!-- this bean will be injected into the HibernateTitleRepositoryTests class -->
<bean id="titleRepository"
class="com.foo.repository.hibernate.HibernateTitleRepository">
<property name="sessionFactory" ref="sessionFactory"/>
</bean>

<bean id="sessionFactory"
class="org.springframework.orm.hibernate5.LocalSessionFactoryBean">
<!-- confiquration elided for brevity -->
</bean>

</beans>

98

If you are extending from a Spring-provided test base class that happens to use
@Autowired on one of its setter methods, you might have multiple beans of the
affected type defined in your application context (for example, multiple DataSource
beans). In such a case, you can override the setter method and use the @Qualifier
annotation to indicate a specific target bean, as follows (but make sure to delegate
to the overridden method in the superclass as well):

Java
/] ...

@Autowired
@0verride
public void setDataSource(@Qualifier("myDataSource") DataSource
dataSource) {
super.setDataSource(dataSource);

}
/...
Kotlin
/] ...
@Autowired

override fun setDataSource(@Qualifier("myDataSource") dataSource:
DataSource) {
super.setDataSource(dataSource)

/e

The specified qualifier value indicates the specific DataSource bean to inject,
narrowing the set of type matches to a specific bean. Its value is matched against
<qualifier> declarations within the corresponding <bean> definitions. The bean
name is used as a fallback qualifier value, so you can effectively also point to a
specific bean by name there (as shown earlier, assuming that myDataSource is the
bean 1id).

3.5.8. Testing Request- and Session-scoped Beans

Spring has supported Request- and session-scoped beans since the early years, and you can test
your request-scoped and session-scoped beans by following these steps:

* Ensure that a WebApplicationContext is loaded for your test by annotating your test class with
@WebAppConfiguration.

* Inject the mock request or session into your test instance and prepare your test fixture as
appropriate.

99

core.pdf#beans-factory-scopes-other

* Invoke your web component that you retrieved from the configured WebApplicationContext
(with dependency injection).

* Perform assertions against the mocks.

The next code snippet shows the XML configuration for a login use case. Note that the userService
bean has a dependency on a request-scoped loginAction bean. Also, the LoginAction is instantiated
by using SpEL expressions that retrieve the username and password from the current HTTP
request. In our test, we want to configure these request parameters through the mock managed by
the TestContext framework. The following listing shows the configuration for this use case:

Request-scoped bean configuration
<beans>

<bean id="userService" class="com.example.SimpleUserService"
c:loginAction-ref="1loginAction"/>

<bean id="1loginAction" class="com.example.LoginAction"
c:username="#{request.getParameter('user")}"
c:password="#{request.getParameter('pswd')}"
scope="request">
<aop:scoped-proxy/>
</bean>

</beans>

In RequestScopedBeanTests, we inject both the UserService (that is, the subject under test) and the
MockHttpServletRequest into our test instance. Within our requestScope() test method, we set up our
test fixture by setting request parameters in the provided MockHttpServletRequest. When the
loginUser() method is invoked on our userService, we are assured that the user service has access
to the request-scoped loginAction for the current MockHttpServletRequest (that is, the one in which
we just set parameters). We can then perform assertions against the results based on the known
inputs for the username and password. The following listing shows how to do so:

100

core.pdf#expressions

Java

@SpringJUnitWebConfig
class RequestScopedBeanTests {

@Autowired UserService userService;
@Autowired MockHttpServletRequest request;

@Test

void requestScope() {
request.setParameter("user", "enigma");
request.setParameter ("pswd", "$pring");

LoginResults results = userService.loginUser();
// assert results

Kotlin

@SpringJUnitWebConfig
class RequestScopedBeanTests {

@Autowired lateinit var userService: UserService
@Autowired lateinit var request: MockHttpServletRequest

@Test

fun requestScope() {
request.setParameter("user", "enigma")
request.setParameter ("pswd", "\$pr!ing")

val results = userService.loginUser()
// assert results

The following code snippet is similar to the one we saw earlier for a request-scoped bean. However,
this time, the userService bean has a dependency on a session-scoped userPreferences bean. Note
that the UserPreferences bean is instantiated by using a SpEL expression that retrieves the theme
from the current HTTP session. In our test, we need to configure a theme in the mock session
managed by the TestContext framework. The following example shows how to do so:

101

Session-scoped bean configuration
<beans>

<bean id="userService" class="com.example.SimpleUserService"
c:userPreferences-ref="userPreferences" />

<bean id="userPreferences" class="com.example.UserPreferences"
c:theme="#{session.getAttribute('theme")}"
scope="session">
<aop:scoped-proxy/>
</bean>

</beans>

In SessionScopedBeanTests, we inject the UserService and the MockHttpSession into our test instance.
Within our sessionScope() test method, we set up our test fixture by setting the expected theme
attribute in the provided MockHttpSession. When the processUserPreferences() method is invoked on
our userService, we are assured that the user service has access to the session-scoped
userPreferences for the current MockHttpSession, and we can perform assertions against the results
based on the configured theme. The following example shows how to do so:

Java

@SpringJUnitWebConfig
class SessionScopedBeanTests {

@Autowired UserService userService;
@Autowired MockHttpSession session;

@Test
void sessionScope() throws Exception {

session.setAttribute("theme", "blue");

Results results = userService.processUserPreferences();
// assert results

102

Kotlin

@SpringJUnitWebConfig
class SessionScopedBeanTests {

@Autowired lateinit var userService: UserService
@Autowired lateinit var session: MockHttpSession

@Test
fun sessionScope() {
session.setAttribute("theme", "blue")

val results = userService.processUserPreferences()
// assert results

3.5.9. Transaction Management

In the TestContext framework, transactions are managed by the
TransactionalTestExecutionListener, which is configured by default, even if you do not explicitly
declare @TestExecutionListeners on your test class. To enable support for transactions, however,
you must configure a PlatformTransactionManager bean in the ApplicationContext that is loaded with
@ContextConfiguration semantics (further details are provided later). In addition, you must declare
Spring’s @Transactional annotation either at the class or the method level for your tests.

Test-managed Transactions

Test-managed transactions are transactions that are managed declaratively by using the
TransactionalTestExecutionlListener or programmatically by using TestTransaction (described later).
You should not confuse such transactions with Spring-managed transactions (those managed
directly by Spring within the ApplicationContext loaded for tests) or application-managed
transactions (those managed programmatically within application code that is invoked by tests).
Spring-managed and application-managed transactions typically participate in test-managed
transactions. However, you should use caution if Spring-managed or application-managed
transactions are configured with any propagation type other than REQUIRED or SUPPORTS (see the
discussion on transaction propagation for details).

103

data-access.pdf#tx-propagation

Preemptive timeouts and test-managed transactions

Caution must be taken when using any form of preemptive timeouts from a testing
framework in conjunction with Spring’s test-managed transactions.

Specifically, Spring’s testing support binds transaction state to the current thread
(via a java.lang.ThreadlLocal variable) before the current test method is invoked. If
a testing framework invokes the current test method in a new thread in order to
support a preemptive timeout, any actions performed within the current test
method will not be invoked within the test-managed transaction. Consequently, the
result of any such actions will not be rolled back with the test-managed

A transaction. On the contrary, such actions will be committed to the persistent
store —for example, a relational database—even though the test-managed
transaction is properly rolled back by Spring.

Situations in which this can occur include but are not limited to the following.

* JUnit 4’s @Test(timeout = --) support and TimeOut rule

¢ JUnit Jupiter’s assertTimeoutPreemptively(::+) methods in the
org.junit.jupiter.api.Assertions class

* TestNG’s @Test(timeQut = -++) support

Enabling and Disabling Transactions

Annotating a test method with @Transactional causes the test to be run within a transaction that is,
by default, automatically rolled back after completion of the test. If a test class is annotated with
@Transactional, each test method within that class hierarchy runs within a transaction. Test
methods that are not annotated with @Transactional (at the class or method level) are not run
within a transaction. Note that @Transactional is not supported on test lifecycle methods — for
example, methods annotated with JUnit Jupiter’s @BeforeAll, @BeforeEach, etc. Furthermore, tests
that are annotated with @Transactional but have the propagation attribute set to NOT_SUPPORTED or
NEVER are not run within a transaction.

Table 1. @Transactional attribute support

Attribute Supported for test-managed transactions

value and transactionManager yes

propagation only Propagation.NOT_SUPPORTED and
Propagation.NEVER are supported

isolation no

timeout no

readOnly no

rollbackFor and rollbackForClassName no: use TestTransaction.flagForRollback()
instead

noRollbackFor and noRollbackForClassName no: use TestTransaction.flagForCommit() instead

104

Method-level lifecycle methods — for example, methods annotated with JUnit

Jupiter’s @BeforeEach or @AfterEach — are run within a test-managed transaction.

On the other hand, suite-level and class-level lifecycle methods — for example,

methods annotated with JUnit Jupiter’s @BeforeAll or @EAfterAll and methods

annotated with TestNG’s @BeforeSuite, @AfterSuite, @BeforeClass, or @AfterClass —
(;) are not run within a test-managed transaction.

If you need to run code in a suite-level or class-level lifecycle method within a
transaction, you may wish to inject a corresponding PlatformTransactionManager
into your test class and then use that with a TransactionTemplate for programmatic
transaction management.

Note that AbstractTransactionallUnit4SpringContextTests and
AbstractTransactionalTestNGSpringContextTests are preconfigured for transactional support at the
class level.

The following example demonstrates a common scenario for writing an integration test for a
Hibernate-based UserRepository:

105

Java

@SpringJUnitConfig(TestConfig.class)
@Transactional
class HibernateUserRepositoryTests {

@Autowired
HibernateUserRepository repository;

@Autowired
SessionFactory sessionFactory;

JdbcTemplate jdbcTemplate;

@Autowired

void setDataSource(DataSource dataSource) {
this.jdbcTemplate = new JdbcTemplate(dataSource);

}

@Test

void createlUser() {
// track initial state in test database:
final int count = countRowsInTable("user");

User user = new User(...);
repository.save(user);

// Manual flush is required to avoid false positive in test
sessionFactory.getCurrentSession().flush();
assertNumUsers(count + 1);

}

private int countRowsInTable(String tableName) {
return JdbcTestUtils.countRowsInTable(this.jdbcTemplate, tableName);
}

private void assertNumUsers(int expected) {
assertEquals("Number of rows in the [user] table.", expected,
countRowsInTable("user"));
}
}

106

Kotlin

@SpringJUnitConfig(TestConfig::class)
@Transactional
class HibernateUserRepositoryTests {

@Autowired
lateinit var repository: HibernateUserRepository

@Autowired
lateinit var sessionFactory: SessionFactory

lateinit var jdbcTemplate: JdbcTemplate

@Autowired

fun setDataSource(dataSource: DataSource) {
this.jdbcTemplate = JdbcTemplate(dataSource)

}

@Test

fun createUser() {
// track initial state in test database:
val count = countRowsInTable("user")

val user = User()
repository.save(user)

// Manual flush is required to avoid false positive in test
sessionFactory.getCurrentSession().flush()
assertNumUsers(count + 1)

}

private fun countRowsInTable(tableName: String): Int {
return JdbcTestUtils.countRowsInTable(jdbcTemplate, tableName)
}

private fun assertNumUsers(expected: Int) {
assertEquals("Number of rows in the [user] table.", expected,
countRowsInTable("user"))

}
}

As explained in Transaction Rollback and Commit Behavior, there is no need to clean up the
database after the createUser() method runs, since any changes made to the database are
automatically rolled back by the TransactionalTestExecutionListener.

Transaction Rollback and Commit Behavior

By default, test transactions will be automatically rolled back after completion of the test; however,
transactional commit and rollback behavior can be configured declaratively via the @Commit and

107

@Rollback annotations. See the corresponding entries in the annotation support section for further
details.

Programmatic Transaction Management

You can interact with test-managed transactions programmatically by using the static methods in
TestTransaction. For example, you can use TestTransaction within test methods, before methods,
and after methods to start or end the current test-managed transaction or to configure the current
test-managed transaction for rollback or commit. Support for TestTransaction is automatically
available whenever the TransactionalTestExecutionListener is enabled.

The following example demonstrates some of the features of TestTransaction. See the javadoc for
TestTransaction for further details.

Java

@ContextConfiguration(classes = TestConfig.class)
public class ProgrammaticTransactionManagementTests extends
AbstractTransactionallUnit4SpringContextTests {

@Test

public void transactionalTest() {
// assert initial state in test database:
assertNumUsers(2);

deleteFromTables("user");

// changes to the database will be committed!
TestTransaction.flagForCommit();
TestTransaction.end();
assertFalse(TestTransaction.isActive());
assertNumUsers(0);

TestTransaction.start();
// perform other actions against the database that will
// be automatically rolled back after the test completes...

protected void assertNumUsers(int expected) {
assertEquals("Number of rows in the [user] table.", expected,
countRowsInTable("user"));

}

108

https://docs.spring.io/spring-framework/docs/6.0.0-M2/javadoc-api/org/springframework/test/context/transaction/TestTransaction.html

Kotlin

@ContextConfiguration(classes = [TestConfig::class])
class ProgrammaticTransactionManagementTests :
AbstractTransactionallUnit4SpringContextTests() {

@Test

fun transactionalTest() {
// assert initial state in test database:
assertNumUsers(2)

deleteFromTables("user")

// changes to the database will be committed!
TestTransaction.flagForCommit()
TestTransaction.end()
assertFalse(TestTransaction.isActive())
assertNumUsers(0)

TestTransaction.start()
// perform other actions against the database that will
// be automatically rolled back after the test completes...

protected fun assertNumUsers(expected: Int) {
assertEquals("Number of rows in the [user] table.", expected,
countRowsInTable("user"))

}

Running Code Outside of a Transaction

Occasionally, you may need to run certain code before or after a transactional test method but
outside the transactional context — for example, to verify the initial database state prior to running
your test or to verify expected transactional commit behavior after your test runs (if the test was
configured to commit the transaction). TransactionalTestExecutionlListener supports the
@BeforeTransaction and @AfterTransaction annotations for exactly such scenarios. You can annotate
any void method in a test class or any void default method in a test interface with one of these
annotations, and the TransactionalTestExecutionListener ensures that your before transaction
method or after transaction method runs at the appropriate time.

Any before methods (such as methods annotated with JUnit Jupiter’s @BeforeEach)
and any after methods (such as methods annotated with JUnit Jupiter’s @AfterEach)

@ are run within a transaction. In addition, methods annotated with
@BeforeTransaction or @AfterTransaction are not run for test methods that are not
configured to run within a transaction.

109

Configuring a Transaction Manager

TransactionalTestExecutionListener expects a PlatformTransactionManager bean to be defined in the
Spring ApplicationContext for the test. If there are multiple instances of PlatformTransactionManager
within the test’s ApplicationContext, you can declare a qualifier by using @Transactional("myTxMgr")
or @Transactional(transactionManager = "myTxMgr"), or TransactionManagementConfigurer can be
implemented by an @Configuration class. Consult the javadoc for
TestContextTransactionUtils.retrieveTransactionManager() for details on the algorithm used to look
up a transaction manager in the test’s ApplicationContext.

Demonstration of All Transaction-related Annotations

The following JUnit Jupiter based example displays a fictitious integration testing scenario that
highlights all transaction-related annotations. The example is not intended to demonstrate best
practices but rather to demonstrate how these annotations can be used. See the annotation support
section for further information and configuration examples. Transaction management for @Sql
contains an additional example that uses @5ql for declarative SQL script execution with default
transaction rollback semantics. The following example shows the relevant annotations:

110

https://docs.spring.io/spring-framework/docs/6.0.0-M2/javadoc-api/org/springframework/test/context/transaction/TestContextTransactionUtils.html#retrieveTransactionManager-org.springframework.test.context.TestContext-java.lang.String-
https://docs.spring.io/spring-framework/docs/6.0.0-M2/javadoc-api/org/springframework/test/context/transaction/TestContextTransactionUtils.html#retrieveTransactionManager-org.springframework.test.context.TestContext-java.lang.String-

Java

@SpringJUnitConfig
@Transactional(transactionManager = "txMgr")
@Commit

class FictitiousTransactionalTest {

@BeforeTransaction
void verifyInitialDatabaseState() {

// logic to verify the initial state before a transaction is started

}

@BeforeEach
void setUpTestDataWithinTransaction() {
// set up test data within the transaction

}

@Test
// overrides the class-level @Commit setting
@Rol1lback
void modifyDatabaseWithinTransaction() {
// logic which uses the test data and modifies database state

}

@AfterEach
void tearDownWithinTransaction() {
// run "tear down" logic within the transaction

}

@AfterTransaction
void verifyFinalDatabaseState() {

// logic to verify the final state after transaction has rolled back

}

111

Kotlin

@SpringJUnitConfig
@Transactional(transactionManager = "txMgr")
@Commit

class FictitiousTransactionalTest {

@BeforeTransaction
fun verifyInitialDatabaseState() {
// logic to verify the initial state before a transaction is started

}

@BeforeEach
fun setUpTestDataWithinTransaction() {
// set up test data within the transaction

}

@Test
// overrides the class-level @Commit setting
@Rol1lback
fun modifyDatabaseWithinTransaction() {
// logic which uses the test data and modifies database state

}

@AfterEach
fun tearDownWithinTransaction() {
// run "tear down" logic within the transaction

}

@AfterTransaction
fun verifyFinalDatabaseState() {
// logic to verify the final state after transaction has rolled back

}

Avoid false positives when testing ORM code

When you test application code that manipulates the state of a Hibernate session
or JPA persistence context, make sure to flush the underlying unit of work within
test methods that run that code. Failing to flush the underlying unit of work can
produce false positives: Your test passes, but the same code throws an exception in
a live, production environment. Note that this applies to any ORM framework that

o maintains an in-memory unit of work. In the following Hibernate-based example
test case, one method demonstrates a false positive, and the other method
correctly exposes the results of flushing the session:

112

Java
/]

@Autowired
SessionFactory sessionFactory;

@Transactional

@Test // no expected exception!

public void falsePositive() {
updateEntityInHibernateSession();
// False positive: an exception will be thrown once the Hibernate
// Session is finally flushed (i.e., in production code)

}

@Transactional

@Test(expected = ...)

public void updateWithSessionFlush() {
updateEntityInHibernateSession();
// Manual flush is required to avoid false positive in test
sessionFactory.getCurrentSession().flush();

/] ...

Kotlin

/] ...

@Autowired
lateinit var sessionFactory: SessionFactory

@Transactional

@Test // no expected exception!

fun falsePositive() {
updateEntityInHibernateSession()
// False positive: an exception will be thrown once the Hibernate
// Session is finally flushed (i.e., in production code)

}

@Transactional

@Test(expected = ...)

fun updateWithSessionFlush() {
updateEntityInHibernateSession()
// Manual flush is required to avoid false positive in test
sessionFactory.getCurrentSession().flush()

/] ...

113

The following example shows matching methods for JPA:

Java

/...

@PersistenceContext
EntityManager entityManager;

@Transactional

@Test // no expected exception!

public void falsePositive() {
updateEntityInJpaPersistenceContext();
// False positive: an exception will be thrown once the JPA
// EntityManager is finally flushed (i.e., in production code)

}

@Transactional

@Test(expected = ...)

public void updateWithEntityManagerFlush() {
updateEntityIn]paPersistenceContext();
// Manual flush is required to avoid false positive in test
entityManager.flush();

I ooo

114

Kotlin

/] ...

@PersistenceContext
lateinit var entityManager:EntityManager

@Transactional
@Test // no expected exception!
fun falsePositive() {
updateEntityIn]paPersistenceContext()
// False positive: an exception will be thrown once the JPA
// EntityManager is finally flushed (i.e., in production code)
}

@Transactional

@Test(expected = ...)

void updateWithEntityManagerFlush() {
updateEntityInJpaPersistenceContext()
// Manual flush is required to avoid false positive in test
entityManager.flush()

/] ...

3.5.10. Executing SQL Scripts

When writing integration tests against a relational database, it is often beneficial to run SQL scripts
to modify the database schema or insert test data into tables. The spring-jdbc module provides
support for initializing an embedded or existing database by executing SQL scripts when the Spring
ApplicationContext is loaded. See Embedded database support and Testing data access logic with an
embedded database for details.

Although it is very useful to initialize a database for testing once when the ApplicationContext is
loaded, sometimes it is essential to be able to modify the database during integration tests. The
following sections explain how to run SQL scripts programmatically and declaratively during
integration tests.

Executing SQL scripts programmatically

Spring provides the following options for executing SQL scripts programmatically within
integration test methods.

* org.springframework.jdbc.datasource.init.ScriptUtils

* org.springframework.jdbc.datasource.init.ResourceDatabasePopulator

» org.springframework.test.context.junit4.AbstractTransactionallUnit4SpringContextTests

* org.springframework.test.context.testng.AbstractTransactionalTestNGSpringContextTests

115

data-access.pdf#jdbc-embedded-database-support
data-access.pdf#jdbc-embedded-database-dao-testing
data-access.pdf#jdbc-embedded-database-dao-testing

SceriptUtils provides a collection of static utility methods for working with SQL scripts and is
mainly intended for internal use within the framework. However, if you require full control over
how SQL scripts are parsed and run, ScriptUtils may suit your needs better than some of the other
alternatives described later. See the javadoc for individual methods in ScriptUtils for further
details.

ResourceDatabasePopulator provides an object-based API for programmatically populating,
initializing, or cleaning up a database by using SQL scripts defined in external resources.
ResourceDatabasePopulator provides options for configuring the character encoding, statement
separator, comment delimiters, and error handling flags used when parsing and running the
scripts. Each of the configuration options has a reasonable default value. See the javadoc for details
on default values. To run the scripts configured in a ResourceDatabasePopulator, you can invoke
either the populate(Connection) method to run the populator against a java.sql.Connection or the
execute(DataSource) method to run the populator against a javax.sql.DataSource. The following
example specifies SQL scripts for a test schema and test data, sets the statement separator to @@, and
run the scripts against a DataSource:

Java

@Test
void databaseTest() {
ResourceDatabasePopulator populator = new ResourceDatabasePopulator();
populator.addScripts(
new ClassPathResource("test-schema.sql"),
new ClassPathResource("test-data.sql"));
populator.setSeparator("@@");
populator.execute(this.dataSource);
// run code that uses the test schema and data

Kotlin

@Test
fun databaseTest() {
val populator = ResourceDatabasePopulator()
populator.addScripts(
ClassPathResource("test-schema.sql"),
(lassPathResource("test-data.sql"))
populator.setSeparator("@@")
populator.execute(dataSource)
// run code that uses the test schema and data

Note that ResourceDatabasePopulator internally delegates to ScriptUtils for parsing and running
SQL scripts. Similarly, the executeSqlScript(..) methods in
AbstractTransactionalJUnit4SpringContextTests and AbstractTransactionalTestNGSpringContextTests
internally use a ResourceDatabasePopulator to run SQL scripts. See the Javadoc for the various
executeSqlScript(..) methods for further details.

116

https://docs.spring.io/spring-framework/docs/6.0.0-M2/javadoc-api/org/springframework/jdbc/datasource/init/ScriptUtils.html
https://docs.spring.io/spring-framework/docs/6.0.0-M2/javadoc-api/org/springframework/jdbc/datasource/init/ResourceDatabasePopulator.html

Executing SQL scripts declaratively with @Sql

In addition to the aforementioned mechanisms for running SQL scripts programmatically, you can
declaratively configure SQL scripts in the Spring TestContext Framework. Specifically, you can
declare the @Sql annotation on a test class or test method to configure individual SQL statements or
the resource paths to SQL scripts that should be run against a given database before or after an
integration test method. Support for @5ql is provided by the SqlScriptsTestExecutionListener, which
is enabled by default.

Method-level @5ql declarations override class-level declarations by default. As of

o Spring Framework 5.2, however, this behavior may be configured per test class or
per test method via @5SqlMergeMode. See Merging and Overriding Configuration with
@SqlMergeMode for further details.

Path Resource Semantics

Each path is interpreted as a Spring Resource. A plain path (for example, "schema.sql") is treated as
a classpath resource that is relative to the package in which the test class is defined. A path starting
with a slash is treated as an absolute classpath resource (for example, "/org/example/schema.sql"). A
path that references a URL (for example, a path prefixed with classpath:, file:, http:) is loaded by
using the specified resource protocol.

The following example shows how to use @Sql at the class level and at the method level within a
JUnit Jupiter based integration test class:

Java

@SpringJUnitConfig
@Sql("/test-schema.sql")
class DatabaseTests {

@Test
void emptySchemaTest() {
// run code that uses the test schema without any test data

}

@Test
@Sql({"/test-schema.sql", "/test-user-data.sql"})
void userTest() {
// run code that uses the test schema and test data

}

117

Kotlin

@SpringJUnitConfig
@Sql("/test-schema.sql")
class DatabaseTests {

@Test
fun emptySchemaTest() {
// run code that uses the test schema without any test data

}

@Test
@Sql("/test-schema.sql", "/test-user-data.sql")
fun userTest() {
// run code that uses the test schema and test data

}

Default Script Detection

If no SQL scripts or statements are specified, an attempt is made to detect a default script,
depending on where @S5ql is declared. If a default cannot be detected, an IllegalStateException is
thrown.

* Class-level declaration: If the annotated test class is com.example.MyTest, the corresponding
default script is classpath:com/example/MyTest.sql.

* Method-level declaration: If the annotated test method is named testMethod() and is defined in
the class com.example.MyTest, the corresponding default script is
classpath:com/example/MyTest.testMethod.sql.

Declaring Multiple @Sql Sets

If you need to configure multiple sets of SQL scripts for a given test class or test method but with
different syntax configuration, different error handling rules, or different execution phases per set,
you can declare multiple instances of @Sql. With Java 8, you can use @Sql as a repeatable
annotation. Otherwise, you can use the @5qlGroup annotation as an explicit container for declaring
multiple instances of @5ql.

The following example shows how to use @5ql as a repeatable annotation with Java 8:

Java

@Test
@Sql(scripts = "/test-schema.sql", config = @SqlConfig(commentPrefix = "*"))
@Sql("/test-user-data.sql")
void userTest() {
// run code that uses the test schema and test data

}

118

Kotlin

// Repeatable annotations with non-SOURCE retention are not yet supported by Kotlin

In the scenario presented in the preceding example, the test-schema.sql script uses a different
syntax for single-line comments.

The following example is identical to the preceding example, except that the @Sql declarations are
grouped together within @5qlGroup. With Java 8 and above, the use of @5qlGroup is optional, but you
may need to use @5qlGroup for compatibility with other JVM languages such as Kotlin.

Java
@Test
@SqlGroup({
@Sql(scripts = "/test-schema.sql", config = @SqlConfig(commentPrefix = "*")),
@Sql("/test-user-data.sql")
)}

void userTest() {
// run code that uses the test schema and test data

}

Kotlin

@Test

@SqlGroup(
Sql("/test-schema.sql", config = SqlConfig(commentPrefix = "*")),
Sql("/test-user-data.sql"))

fun userTest() {
// Run code that uses the test schema and test data

}

Script Execution Phases

By default, SQL scripts are run before the corresponding test method. However, if you need to run a
particular set of scripts after the test method (for example, to clean up database state), you can use
the executionPhase attribute in @5q1, as the following example shows:

119

Java

@Test
@Sq1(
scripts = "create-test-data.sql",

config = @SqlConfig(transactionMode = ISOLATED)
)
@Sql(
scripts = "delete-test-data.sql",
config = @SqlConfig(transactionMode = ISOLATED),
executionPhase = AFTER_TEST_METHOD
)

void userTest() {
// run code that needs the test data to be committed
// to the database outside of the test's transaction

}
Kotlin
@Test
@SqlGroup(
Sql("create-test-data.sql",
config = SqlConfig(transactionMode = ISOLATED)),
Sql("delete-test-data.sql",
config = SqlConfig(transactionMode = ISOLATED),

executionPhase = AFTER_TEST _METHOD))
fun userTest() {
// run code that needs the test data to be committed
// to the database outside of the test's transaction

Note that ISOLATED and AFTER_TEST_METHOD are statically imported from Sql.TransactionMode and
Sql.ExecutionPhase, respectively.

Script Configuration with @SqlConfig

You can configure script parsing and error handling by using the @SqlConfig annotation. When
declared as a class-level annotation on an integration test class, @SqlConfig serves as global
configuration for all SQL scripts within the test class hierarchy. When declared directly by using the
config attribute of the @Sql annotation, @SqlConfig serves as local configuration for the SQL scripts
declared within the enclosing @5ql annotation. Every attribute in @SqlConfig has an implicit default
value, which is documented in the javadoc of the corresponding attribute. Due to the rules defined
for annotation attributes in the Java Language Specification, it is, unfortunately, not possible to
assign a value of null to an annotation attribute. Thus, in order to support overrides of inherited
global configuration, @Sq1Config attributes have an explicit default value of either "" (for Strings), {}
(for arrays), or DEFAULT (for enumerations). This approach lets local declarations of @SqlConfig
selectively override individual attributes from global declarations of @SqlConfig by providing a
value other than "", {}, or DEFAULT. Global @SqlConfig attributes are inherited whenever local
@SqlConfig attributes do not supply an explicit value other than "", {}, or DEFAULT. Explicit local

120

configuration, therefore, overrides global configuration.

The configuration options provided by @Sql and @SqlConfig are equivalent to those supported by
ScriptUtils and ResourceDatabasePopulator but are a superset of those provided by the
<jdbc:initialize-database/> XML namespace element. See the javadoc of individual attributes in
@Sql and @SqlConfig for details.

Transaction management for @5ql

By default, the SqlScriptsTestExecutionListener infers the desired transaction semantics for scripts
configured by using @Sql. Specifically, SQL scripts are run without a transaction, within an existing
Spring-managed transaction (for example, a transaction managed by the
TransactionalTestExecutionListener for a test annotated with @Transactional), or within an isolated
transaction, depending on the configured value of the transactionMode attribute in @SqlConfig and
the presence of a PlatformTransactionManager in the test’s ApplicationContext. As a bare minimum,
however, a javax.sql.DataSource must be present in the test’s ApplicationContext.

If the algorithms wused by SqlScriptsTestExecutionlListener to detect a DataSource and
PlatformTransactionManager and infer the transaction semantics do not suit your needs, you can
specify explicit names by setting the dataSource and transactionManager attributes of @SqlConfig.
Furthermore, you can control the transaction propagation behavior by setting the transactionMode
attribute of @SqlConfig (for example, whether scripts should be run in an isolated transaction).
Although a thorough discussion of all supported options for transaction management with @Sql is
beyond the scope of this reference manual, the javadoc for @SqlConfig and
SqlScriptsTestExecutionListener provide detailed information, and the following example shows a
typical testing scenario that uses JUnit Jupiter and transactional tests with @5Sql:

121

https://docs.spring.io/spring-framework/docs/6.0.0-M2/javadoc-api/org/springframework/test/context/jdbc/Sql.html
https://docs.spring.io/spring-framework/docs/6.0.0-M2/javadoc-api/org/springframework/test/context/jdbc/SqlConfig.html
https://docs.spring.io/spring-framework/docs/6.0.0-M2/javadoc-api/org/springframework/test/context/jdbc/SqlConfig.html
https://docs.spring.io/spring-framework/docs/6.0.0-M2/javadoc-api/org/springframework/test/context/jdbc/SqlScriptsTestExecutionListener.html

Java

@SpringJUnitConfig(TestDatabaseConfig.class)
@Transactional
class TransactionalSqlScriptsTests {

final JdbcTemplate jdbcTemplate;

@Autowired
TransactionalSqlScriptsTests(DataSource dataSource) {
this.jdbcTemplate = new JdbcTemplate(dataSource);

}

@Test

@Sql("/test-data.sql")

void usersTest() {
// verify state in test database:
assertNumUsers(2);
// run code that uses the test data...

}

int countRowsInTable(String tableName) {
return JdbcTestUtils.countRowsInTable(this.jdbcTemplate, tableName);

}

void assertNumUsers(int expected) {
assertEquals(expected, countRowsInTable("user"),
"Number of rows in the [user] table.");

122

Kotlin

@SpringJUnitConfig(TestDatabaseConfig::class)
@Transactional
class TransactionalSqlScriptsTests @Autowired constructor(dataSource: DataSource) {

val jdbcTemplate: JdbcTemplate = JdbcTemplate(dataSource)

@Test

@Sql("/test-data.sql")

fun usersTest() {
// verify state in test database:
assertNumUsers(2)
// run code that uses the test data...

}

fun countRowsInTable(tableName: String): Int {
return JdbcTestUtils.countRowsInTable(jdbcTemplate, tableName)
}

fun assertNumUsers(expected: Int) {
assertEquals(expected, countRowsInTable("user"),
"Number of rows in the [user] table.")

Note that there is no need to clean up the database after the usersTest() method is run, since any
changes made to the database (either within the test method or within the /test-data.sql script)
are automatically rolled back by the TransactionalTestExecutionListener (see transaction
management for details).

Merging and Overriding Configuration with @SqlMergeMode

As of Spring Framework 5.2, it is possible to merge method-level @5ql declarations with class-level
declarations. For example, this allows you to provide the configuration for a database schema or
some common test data once per test class and then provide additional, use case specific test data
per test method. To enable @5ql merging, annotate either your test class or test method with
@SqlMergeMode (MERGE). To disable merging for a specific test method (or specific test subclass), you
can switch back to the default mode via @SqlMergeMode(OVERRIDE). Consult the @SqlMergeMode
annotation documentation section for examples and further details.

3.5.11. Parallel Test Execution

Spring Framework 5.0 introduced basic support for executing tests in parallel within a single JVM
when using the Spring TestContext Framework. In general, this means that most test classes or test
methods can be run in parallel without any changes to test code or configuration.

(r) For details on how to set up parallel test execution, see the documentation for your
™ testing framework, build tool, or IDE.

123

Keep in mind that the introduction of concurrency into your test suite can result in unexpected side
effects, strange runtime behavior, and tests that fail intermittently or seemingly randomly. The
Spring Team therefore provides the following general guidelines for when not to run tests in
parallel.

Do not run tests in parallel if the tests:

» Use Spring Framework’s @DirtiesContext support.
* Use Spring Boot’s @MockBean or @SpyBean support.

* Use JUnit 4’s @FixMethodOrder support or any testing framework feature that is designed to
ensure that test methods run in a particular order. Note, however, that this does not apply if
entire test classes are run in parallel.

* Change the state of shared services or systems such as a database, message broker, filesystem,
and others. This applies to both embedded and external systems.

If parallel test execution fails with an exception stating that the ApplicationContext
for the current test is no longer active, this typically means that the
ApplicationContext was removed from the ContextCache in a different thread.

(’) This may be due to the use of @DirtiesContext or due to automatic eviction from
the ContextCache. If @DirtiesContext is the culprit, you either need to find a way to
avoid using @DirtiesContext or exclude such tests from parallel execution. If the
maximum size of the ContextCache has been exceeded, you can increase the
maximum size of the cache. See the discussion on context caching for details.

Parallel test execution in the Spring TestContext Framework is only possible if the
underlying TestContext implementation provides a copy constructor, as explained

A in the javadoc for TestContext. The DefaultTestContext used in Spring provides
such a constructor. However, if you use a third-party library that provides a
custom TestContext implementation, you need to verify that it is suitable for
parallel test execution.

3.5.12. TestContext Framework Support Classes

This section describes the various classes that support the Spring TestContext Framework.

Spring JUnit 4 Runner

The Spring TestContext Framework offers full integration with JUnit 4 through a custom runner
(supported on JUnit 4.12 or higher). By annotating test classes with
@RunWith(SpringJUnit4ClassRunner.class) or the shorter @RunWith(SpringRunner.class) variant,
developers can implement standard JUnit 4-based unit and integration tests and simultaneously
reap the benefits of the TestContext framework, such as support for loading application contexts,
dependency injection of test instances, transactional test method execution, and so on. If you want
to use the Spring TestContext Framework with an alternative runner (such as JUnit 4’s
Parameterized runner) or third-party runners (such as the MockitoJUnitRunner), you can, optionally,
use Spring’s support for JUnit rules instead.

124

https://docs.spring.io/spring-framework/docs/6.0.0-M2/javadoc-api/org/springframework/test/context/TestContext.html

The following code listing shows the minimal requirements for configuring a test class to run with
the custom Spring Runner:

Java

@RunWith(SpringRunner.class)
@TestExecutionListeners({})
public class SimpleTest {

@Test

public void testMethod() {
// test logic...

}

Kotlin

@RunWith(SpringRunner::class)
@TestExecutionListeners
class SimpleTest {

@Test

fun testMethod() {
// test logic...

}

In the preceding example, @TestExecutionListeners is configured with an empty list, to disable the
default listeners, which otherwise would require an ApplicationContext to be configured through
@ContextConfiguration.

Spring JUnit 4 Rules

The org.springframework.test.context.junit4.rules package provides the following JUnit 4 rules
(supported on JUnit 4.12 or higher):

* Spring(ClassRule
» SpringMethodRule
SpringClassRule is a JUnit TestRule that supports class-level features of the Spring TestContext

Framework, whereas SpringMethodRule is a JUnit MethodRule that supports instance-level and
method-level features of the Spring TestContext Framework.

In contrast to the SpringRunner, Spring’s rule-based JUnit support has the advantage of being
independent of any org.junit.runner.Runner implementation and can, therefore, be combined with
existing alternative runners (such as JUnit 4’s Parameterized) or third-party runners (such as the
MockitoJUnitRunner).

To support the full functionality of the TestContext framework, you must combine a

125

Spring(ClassRule with a SpringMethodRule. The following example shows the proper way to declare
these rules in an integration test:

Java

// Optionally specify a non-Spring Runner via @RunWith(...)
@ContextConfiguration
public class IntegrationTest {

@ClassRule
public static final SpringClassRule springClassRule = new SpringClassRule();

@Rule
public final SpringMethodRule springMethodRule = new SpringMethodRule();

@Test

public void testMethod() {
// test logic...

}

Kotlin

// Optionally specify a non-Spring Runner via @RunWith(...)
@ContextConfiguration
class IntegrationTest {

@Rule
val springMethodRule = SpringMethodRule()

@Test

fun testMethod() {
// test logic...

}

companion object {
@ClassRule
val springClassRule = SpringClassRule()

JUnit 4 Support Classes

The org.springframework.test.context.junit4 package provides the following support classes for
JUnit 4-based test cases (supported on JUnit 4.12 or higher):

o AbstractJUnit4SpringContextTests

* AbstractTransactionalJUnit4SpringContextTests

126

AbstractJUnit4SpringContextTests is an abstract base test class that integrates the Spring
TestContext Framework with explicit ApplicationContext testing support in a JUnit 4 environment.
When you extend AbstractJUnit4SpringContextTests, you can access a protected applicationContext
instance variable that you can use to perform explicit bean lookups or to test the state of the
context as a whole.

AbstractTransactionallUnit4SpringContextTests is an abstract transactional extension of
AbstractJUnit4SpringContextTests that adds some convenience functionality for JDBC access. This
class expects a javax.sql.DataSource bean and a PlatformTransactionManager bean to be defined in
the ApplicationContext. When you extend AbstractTransactionalJUnit4SpringContextTests, you can
access a protected jdbcTemplate instance variable that you can use to run SQL statements to query
the database. You can use such queries to confirm database state both before and after running
database-related application code, and Spring ensures that such queries run in the scope of the
same transaction as the application code. When used in conjunction with an ORM tool, be sure to
avoid false positives. As mentioned in JDBC Testing Support,
AbstractTransactionallUnit4SpringContextTests also provides convenience methods that delegate to
methods in JdbcTestUtils by using the aforementioned jdbcTemplate. Furthermore,
AbstractTransactionallUnit4SpringContextTests provides an executeSqlScript(..) method for
running SQL scripts against the configured DataSource.

These classes are a convenience for extension. If you do not want your test classes
(2 . . e . .
O to be tied to a Spring-specific class hierarchy, you can configure your own custom
-
test classes by using @RunWith(SpringRunner.class) or Spring’s JUnit rules.

SpringExtension for JUnit Jupiter

The Spring TestContext Framework offers full integration with the JUnit Jupiter testing framework,
introduced in JUnit 5. By annotating test classes with @ExtendWith(SpringExtension.class), you can
implement standard JUnit Jupiter-based unit and integration tests and simultaneously reap the
benefits of the TestContext framework, such as support for loading application contexts,
dependency injection of test instances, transactional test method execution, and so on.

Furthermore, thanks to the rich extension API in JUnit Jupiter, Spring provides the following
features above and beyond the feature set that Spring supports for JUnit 4 and TestNG:

* Dependency injection for test constructors, test methods, and test lifecycle callback methods.
See Dependency Injection with SpringExtension for further details.

» Powerful support for conditional test execution based on SpEL expressions, environment
variables, system properties, and so on. See the documentation for @EnabledIf and @DisabledIf
in Spring JUnit Jupiter Testing Annotations for further details and examples.

* Custom composed annotations that combine annotations from Spring and JUnit Jupiter. See the
@TransactionalDevTestConfig and @TransactionallntegrationTest examples in Meta-Annotation
Support for Testing for further details.

The following code listing shows how to configure a test class to use the SpringExtension in
conjunction with @ContextConfiguration:

127

https://junit.org/junit5/docs/current/user-guide/#extensions-conditions

Java

// Instructs JUnit Jupiter to extend the test with Spring support.
@ExtendWith(SpringExtension.class)

// Instructs Spring to load an ApplicationContext from TestConfig.class
@ContextConfiguration(classes = TestConfig.class)

class SimpleTests {

@Test
void testMethod() {
// test logic...

}

Kotlin

// Instructs JUnit Jupiter to extend the test with Spring support.
@ExtendWith(SpringExtension::class)

// Instructs Spring to load an ApplicationContext from TestConfig::class
@ContextConfiguration(classes = [TestConfig::class])

class SimpleTests {

@Test
fun testMethod() {
// test logic...

}

Since you can also use annotations in JUnit 5 as meta-annotations, Spring provides the
@SpringJUnitConfig and @SpringJUnitWebConfig composed annotations to simplify the configuration
of the test ApplicationContext and JUnit Jupiter.

The following example uses @SpringJUnitConfig to reduce the amount of configuration used in the
previous example:

Java

// Instructs Spring to register the SpringExtension with JUnit
// Jupiter and load an ApplicationContext from TestConfig.class
@SpringJUnitConfig(TestConfig.class)

class SimpleTests {

@Test
void testMethod() {
// test logic...

}

128

Kotlin

// Instructs Spring to register the SpringExtension with JUnit
// Jupiter and load an ApplicationContext from TestConfig.class
@SpringJUnitConfig(TestConfig::class)

class SimpleTests {

@Test

fun testMethod() {
// test logic...

}

Similarly, the following example uses @SpringJUnitWebConfig to create a WebApplicationContext for
use with JUnit Jupiter:

Java

// Instructs Spring to register the SpringExtension with JUnit

// Jupiter and load a WebApplicationContext from TestWebConfig.class
@SpringJUnitWebConfig(TestWebConfig.class)

class SimpleWebTests {

@Test

void testMethod() {
// test logic...

}

Kotlin

// Instructs Spring to register the SpringExtension with JUnit

// Jupiter and load a WebApplicationContext from TestWebConfig::class
@SpringJUnitWebConfig(TestWebConfig::class)

class SimpleWebTests {

@Test

fun testMethod() {
// test logic...

}

See the documentation for @SpringJUnitConfig and @SpringJUnitWebConfig in Spring JUnit Jupiter
Testing Annotations for further details.

Dependency Injection with SpringExtension

SpringExtension implements the ParameterResolver extension API from JUnit Jupiter, which lets
Spring provide dependency injection for test constructors, test methods, and test lifecycle callback

129

https://junit.org/junit5/docs/current/user-guide/#extensions-parameter-resolution

methods.

Specifically, SpringExtension can inject dependencies from the test’s ApplicationContext into test
constructors and methods that are annotated with @BeforeAll, @AfterAll, @BeforeEach, @AfterEach,
@Test, @RepeatedTest, @ParameterizedTest, and others.

Constructor Injection

If a specific parameter in a constructor for a JUnit Jupiter test class is of type ApplicationContext (or
a sub-type thereof) or is annotated or meta-annotated with @Autowired, @Qualifier, or @Value, Spring
injects the value for that specific parameter with the corresponding bean or value from the test’s
ApplicationContext.

Spring can also be configured to autowire all arguments for a test class constructor if the
constructor is considered to be autowirable. A constructor is considered to be autowirable if one of
the following conditions is met (in order of precedence).

¢ The constructor is annotated with @Autowired.

» @TestConstructor is present or meta-present on the test class with the autowireMode attribute set
to ALL.

* The default test constructor autowire mode has been changed to ALL.

See @TestConstructor for details on the use of @TestConstructor and how to change the global test
constructor autowire mode.

If the constructor for a test class is considered to be autowirable, Spring assumes

A the responsibility for resolving arguments for all parameters in the constructor.
Consequently, no other ParameterResolver registered with JUnit Jupiter can resolve
parameters for such a constructor.

Constructor injection for test classes must not be used in conjunction with JUnit
Jupiter’s @TestInstance(PER_CLASS) support if @DirtiesContext is used to close the
test’s ApplicationContext before or after test methods.

The reason is that @TestInstance(PER_CLASS) instructs JUnit Jupiter to cache the test
instance between test method invocations. Consequently, the test instance will
retain references to beans that were originally injected from an

A ApplicationContext that has been subsequently closed. Since the constructor for
the test class will only be invoked once in such scenarios, dependency injection
will not occur again, and subsequent tests will interact with beans from the closed
ApplicationContext which may result in errors.

To use @DirtiesContext with "before test method" or "after test method" modes in
conjunction with @TestInstance(PER_CLASS), one must configure dependencies
from Spring to be supplied via field or setter injection so that they can be re-
injected between test method invocations.

In the following example, Spring injects the OrderService bean from the ApplicationContext loaded

130

from TestConfig.class into the OrderServicelntegrationTests constructor.

Java

@SpringJUnitConfig(TestConfig.class)
class OrderServicelntegrationTests {

private final OrderService orderService;

@Autowired
OrderServiceIntegrationTests(OrderService orderService) {
this.orderService = orderService;

}

// tests that use the injected OrderService

Kotlin

@SpringJUnitConfig(TestConfig::class)
class OrderServicelntegrationTests @Autowired constructor(private val orderService:
OrderService){

// tests that use the injected OrderService

}

Note that this feature lets test dependencies be final and therefore immutable.

If the spring.test.constructor.autowire.mode property is to all (see @TestConstructor), we can omit
the declaration of @Autowired on the constructor in the previous example, resulting in the following.

Java

@SpringJUnitConfig(TestConfig.class)
class OrderServicelntegrationTests {

private final OrderService orderService;

OrderServicelntegrationTests(OrderService orderService) {
this.orderService = orderService;

}

// tests that use the injected OrderService

131

Kotlin

@SpringJUnitConfig(TestConfig::class)
class OrderServicelntegrationTests(val orderService:0OrderService) {
// tests that use the injected OrderService

}

Method Injection

If a parameter in a JUnit Jupiter test method or test lifecycle callback method is of type
ApplicationContext (or a sub-type thereof) or is annotated or meta-annotated with @Autowired,
@Qualifier, or @Value, Spring injects the value for that specific parameter with the corresponding
bean from the test’s ApplicationContext.

In the following example, Spring injects the OrderService from the ApplicationContext loaded from
TestConfig.class into the deleteOrder() test method:

Java

@SpringJUnitConfig(TestConfig.class)
class OrderServicelntegrationTests {

@Test
void deleteOrder(@Autowired OrderService orderService) {
// use orderService from the test's ApplicationContext

}

Kotlin

@SpringJUnitConfig(TestConfig::class)
class OrderServicelntegrationTests {

@Test
fun deleteOrder(@Autowired orderService: OrderService) {
// use orderService from the test's ApplicationContext

}

Due to the robustness of the ParameterResolver support in JUnit Jupiter, you can also have multiple
dependencies injected into a single method, not only from Spring but also from JUnit Jupiter itself
or other third-party extensions.

The following example shows how to have both Spring and JUnit Jupiter inject dependencies into
the placeOrderRepeatedly() test method simultaneously.

132

Java

@SpringJUnitConfig(TestConfig.class)
class OrderServicelntegrationTests {

@RepeatedTest(10)
void placeOrderRepeatedly(RepetitionInfo repetitionInfo,
@Autowired OrderService orderService) {

// use orderService from the test's ApplicationContext
// and repetitionInfo from JUnit Jupiter

Kotlin

@SpringJUnitConfig(TestConfig::class)
class OrderServicelntegrationTests {

@RepeatedTest(10)
fun placeOrderRepeatedly(repetitionInfo:RepetitionInfo, @Autowired
orderService:0rderService) {

// use orderService from the test's ApplicationContext
// and repetitionInfo from JUnit Jupiter

Note that the use of @ERepeatedTest from JUnit Jupiter lets the test method gain access to the
RepetitionInfo

@Nested test class configuration

The Spring TestContext Framework has supported the use of test-related annotations on @Nested test
classes in JUnit Jupiter since Spring Framework 5.0; however, until Spring Framework 5.3 class-
level test configuration annotations were not inherited from enclosing classes like they are from
superclasses.

Spring Framework 5.3 introduces first-class support for inheriting test class configuration from
enclosing classes, and such configuration will be inherited by default. To change from the default
INHERIT mode to OVERRIDE mode, you may annotate an individual @Nested test class with
@NestedTestConfiguration(EnclosingConfiguration.OVERRIDE). An explicit @NestedTestConfiguration
declaration will apply to the annotated test class as well as any of its subclasses and nested classes.
Thus, you may annotate a top-level test class with @NestedTestConfiguration, and that will apply to
all of its nested test classes recursively.

In order to allow development teams to change the default to OVERRIDE - for example, for
compatibility with Spring Framework 5.0 through 5.2 — the default mode can be changed globally
via a JVM system property or a spring.properties file in the root of the classpath. See the "Changing

133

the default enclosing configuration inheritance mode" note for details.

Although the following "Hello World" example is very simplistic, it shows how to declare common
configuration on a top-level class that is inherited by its @Nested test classes. In this particular
example, only the TestConfig configuration class is inherited. Each nested test class provides its
own set of active profiles, resulting in a distinct ApplicationContext for each nested test class (see
Context Caching for details). Consult the list of supported annotations to see which annotations can
be inherited in @Nested test classes.

Java

@SpringJUnitConfig(TestConfig.class)
class GreetingServiceTests {

@Nested
@ActiveProfiles("lang_en")
class EnglishGreetings {

@Test
void hello(@Autowired GreetingService service) {
assertThat(service.greetWor1ld()).isEqualTo("Hello World");
}
}

@Nested
@ActiveProfiles("lang_de")
class GermanGreetings {

@Test
void hello(@Autowired GreetingService service) {
assertThat(service.greetWor1ld()).isEqualTo("Hallo Welt");

}

134

Kotlin

@SpringJUnitConfig(TestConfig::class)
class GreetingServiceTests {

@Nested
@ActiveProfiles("lang_en")
inner class EnglishGreetings {

@Test
fun hello(@Autowired service:GreetingService) {
assertThat(service.greetWor1ld()).isEqualTo("Hello World")

}

@Nested
@ActiveProfiles("lang_de")
inner class GermanGreetings {

@Test
fun hello(@Autowired service:GreetingService) {
assertThat(service.greetWor1ld()).isEqualTo("Hallo Welt")

}

TestNG Support Classes

The org.springframework.test.context.testng package provides the following support classes for
TestNG based test cases:

* AbstractTestNGSpringContextTests

* AbstractTransactionalTestNGSpringContextTests

AbstractTestNGSpringContextTests is an abstract base test class that integrates the Spring
TestContext Framework with explicit ApplicationContext testing support in a TestNG environment.
When you extend AbstractTestNGSpringContextTests, you can access a protected applicationContext
instance variable that you can use to perform explicit bean lookups or to test the state of the
context as a whole.

AbstractTransactionalTestNGSpringContextTests is an abstract transactional extension of
AbstractTestNGSpringContextTests that adds some convenience functionality for JDBC access. This
class expects a javax.sql.DataSource bean and a PlatformTransactionManager bean to be defined in
the ApplicationContext. When you extend AbstractTransactionalTestNGSpringContextTests, you can
access a protected jdbcTemplate instance variable that you can use to run SQL statements to query
the database. You can use such queries to confirm database state both before and after running
database-related application code, and Spring ensures that such queries run in the scope of the
same transaction as the application code. When used in conjunction with an ORM tool, be sure to
avoid false positives. As mentioned in JDBC Testing Support,

135

AbstractTransactionalTestNGSpringContextTests also provides convenience methods that delegate to
methods in JdbcTestUtils by wusing the aforementioned jdbcTemplate. Furthermore,
AbstractTransactionalTestNGSpringContextTests provides an executeSqlScript(..) method for
running SQL scripts against the configured DataSource.

These classes are a convenience for extension. If you do not want your test classes

to be tied to a Spring-specific class hierarchy, you can configure your own custom

(r) test classes by using @ContextConfiguration, @TestExecutionListeners, and so on and

- by manually instrumenting your test class with a TestContextManager. See the

source code of AbstractTestNGSpringContextTests for an example of how to
instrument your test class.

3.6. WebTestClient

WebTestClient is an HTTP client designed for testing server applications. It wraps Spring’s WebClient
and uses it to perform requests but exposes a testing facade for verifying responses. WebTestClient
can be used to perform end-to-end HTTP tests. It can also be used to test Spring MVC and Spring
WebFlux applications without a running server via mock server request and response objects.

(r) Kotlin users: See this section related to use of the WebTestClient.
-
3.6.1. Setup

To set up a WebTest(Client you need to choose a server setup to bind to. This can be one of several
mock server setup choices or a connection to a live server.

Bind to Controller

This setup allows you to test specific controller(s) via mock request and response objects, without a
running server.

For WebFlux applications, use the following which loads infrastructure equivalent to the WebFlux
Java config, registers the given controller(s), and creates a WebHandler chain to handle requests:

Java

WebTestClient client =
WebTestClient.bindToController (new TestController()).build();

Kotlin

val client = WebTestClient.bindToController(TestController()).build()

For Spring MVC, use the following which delegates to the StandaloneMockMvcBuilder to load
infrastructure equivalent to the WebMvc Java config, registers the given controller(s), and creates
an instance of MockMvc to handle requests:

136

web-reactive.pdf#webflux-client
languages.pdf#kotlin-webtestclient-issue
web-reactive.pdf#webflux-config
web-reactive.pdf#webflux-config
web-reactive.pdf#webflux-web-handler-api
https://docs.spring.io/spring-framework/docs/6.0.0-M2/javadoc-api/org/springframework/test/web/servlet/setup/StandaloneMockMvcBuilder.html
web.pdf#mvc-config

Java

WebTestClient client =
MockMvcWebTestClient.bindToController(new TestController()).build();

Kotlin

val client = MockMvcWebTestClient.bindToController(TestController()).build()

Bind to ApplicationContext

This setup allows you to load Spring configuration with Spring MVC or Spring WebFlux
infrastructure and controller declarations and use it to handle requests via mock request and
response objects, without a running server.

For WebFlux, use the following where the Spring ApplicationContext 1is passed to
WebHttpHandlerBuilder to create the WebHandler chain to handle requests:

Java

@SpringJUnitConfig(WebConfig.class) M
class MyTests {

WebTestClient client;

@BeforeEach
void setUp(ApplicationContext context) { @

client = WebTestClient.bindToApplicationContext(context).build(); @
}

@ Specify the configuration to load
@ Inject the configuration

@ Create the WebTestClient

Kotlin

@SpringJUnitConfig(WebConfig::class) @
class MyTests {

lateinit var client: WebTestClient

@BeforeEach
fun setUp(context: ApplicationContext) { @

client = WebTestClient.bindToApplicationContext(context).build() ®
}

137

https://docs.spring.io/spring-framework/docs/6.0.0-M2/javadoc-api/org/springframework/web/server/adapter/WebHttpHandlerBuilder.html#applicationContext-org.springframework.context.ApplicationContext-
web-reactive.pdf#webflux-web-handler-api

@ Specify the configuration to load
@ Inject the configuration

@ Create the WebTestClient

For Spring MVC, use the following where the Spring ApplicationContext is passed to
MockMvcBuilders.webAppContextSetup to create a MockMvc instance to handle requests:

Java

@ExtendWith(SpringExtension.class)
@WebAppConfiguration("classpath:META-INF/web-resources") @
@ContextHierarchy({
@ContextConfiguration(classes = RootConfig.class),
@ContextConfiguration(classes = WebConfig.class)

1)
class MyTests {

@Autowired
WebApplicationContext wac; @

WebTestClient client;

@BeforeEach
void setUp() {

client = MockMvcWebTestClient.bindToApplicationContext(this.wac).build(); ®
}

@ Specify the configuration to load
@ Inject the configuration

@ Create the WebTestClient

138

https://docs.spring.io/spring-framework/docs/6.0.0-M2/javadoc-api/org/springframework/test/web/servlet/setup/MockMvcBuilders.html#webAppContextSetup-org.springframework.web.context.WebApplicationContext-

Kotlin

@ExtendWith(SpringExtension.class)

@WebAppConfiguration("classpath:META-INF/web-resources") @

@ContextHierarchy({
@ContextConfiguration(classes
@ContextConfiguration(classes

RootConfig.class),
WebConfig.class)

3]
class MyTests {

@Autowired
lateinit var wac: WebApplicationContext; @

lateinit var client: WebTestClient

@BeforeEach
fun setUp() { @
client = MockMvcWebTestClient.bindToApplicationContext(wac).build() ®

}

@ Specify the configuration to load
@ Inject the configuration

® Create the WebTestClient

Bind to Router Function

This setup allows you to test functional endpoints via mock request and response objects, without a
running server.

For WebFlux, use the following which delegates to RouterFunctions.tollebHandler to create a server
setup to handle requests:

Java

RouterFunction<?> route = ...
client = WebTestClient.bindToRouterFunction(route).build();

Kotlin

val route: RouterFunction<*> = ...
val client = WebTestClient.bindToRouterFunction(route).build()

For Spring MVC there are currently no options to test WebMvc functional endpoints.

Bind to Server

This setup connects to a running server to perform full, end-to-end HTTP tests:

139

web-reactive.pdf#webflux-fn
web.pdf#webmvc-fn

Java

client = WebTestClient.bindToServer().baseUr1("http://localhost:8080").build();

Kotlin
client = WebTestClient.bindToServer().baseUr1("http://1localhost:8080").build()
Client Config

In addition to the server setup options described earlier, you can also configure client options,
including base URL, default headers, client filters, and others. These options are readily available
following bindToServer(). For all other configuration options, you need to use configureClient() to
transition from server to client configuration, as follows:

Java
client = WebTestClient.bindToController(new TestController())
.configureClient()
.baseUr1("/test")
.build();
Kotlin

client = WebTestClient.bindToController(TestController())
.configureClient()
.baseUr1("/test")
.build()

3.6.2. Writing Tests

WebTestClient provides an API identical to WebClient up to the point of performing a request by
using exchange(). See the WebClient documentation for examples on how to prepare a request with
any content including form data, multipart data, and more.

After the call to exchange(), WebTestClient diverges from the WebClient and instead continues with a
workflow to verify responses.

To assert the response status and headers, use the following:

Java

client.get().uri("/persons/1")
.accept(MediaType.APPLICATION_JSON)
.exchange()
.expectStatus().is0k()
.expectHeader().contentType(MediaType.APPLICATION_JSON);

140

web-reactive.pdf#webflux-client
web-reactive.pdf#webflux-client-body

Kotlin

client.get().uri("/persons/1")
.accept(MediaType.APPLICATION_JSON)
.exchange()
.expectStatus().is0k()
.expectHeader().contentType(MediaType.APPLICATION_JSON)

If you would like for all expectations to be asserted even if one of them fails, you can use
expectAll(..) instead of multiple chained expect*(..) calls. This feature is similar to the soft
assertions support in Assert] and the assertAl1() support in JUnit Jupiter.

Java

client.get().uri("/persons/1")
.accept(MediaType.APPLICATION_JSON)
.exchange()
.expectAl1(
spec -> spec.expectStatus().is0k(),
spec -> spec.expectHeader().contentType(MediaType.APPLICATION_JSON)
)i

You can then choose to decode the response body through one of the following:

» expectBody(Class<T>): Decode to single object.
» expectBodyList(Class<T>): Decode and collect objects to List<T>.

* expectBody(): Decode to byte[] for JSON Content or an empty body.
And perform assertions on the resulting higher level Object(s):

Java

client.get().uri("/persons")
.exchange()
.expectStatus().is0k()
.expectBodyList(Person.class).hasSize(3).contains(person);

Kotlin

import org.springframework.test.web.reactive.server.expectBodylList

client.get().uri("/persons")
.exchange()
.expectStatus().is0k()
.expectBodyList<Person>().hasSize(3).contains(person)

If the built-in assertions are insufficient, you can consume the object instead and perform any other
assertions:

141

Java
import org.springframework.test.web.reactive.server.expectBody

client.get().uri("/persons/1")
.exchange()
.expectStatus().is0k()
.expectBody(Person.class)
.consumeWith(result -> {
// custom assertions (e.g. Assert])...

1

Kotlin

client.get().uri("/persons/1")
.exchange()
.expectStatus().is0k()
.expectBody<Person>()
.consumeWith {
// custom assertions (e.g. Assert])...

Or you can exit the workflow and obtain an EntityExchangeResult:

Java
EntityExchangeResult<Person> result = client.get().uri("/persons/1")
.exchange()
.expectStatus().is0k()

.expectBody(Person.class)
.returnResult();

Kotlin
import org.springframework.test.web.reactive.server.expectBody

val result = client.get().uri("/persons/1")

.exchange()
.expectStatus().is0k
.expectBody<Person>()
.returnResult()
(r) When you need to decode to a target type with generics, look for the overloaded
- methods that accept ParameterizedTypeReference instead of Class<T>.
No Content

If the response is not expected to have content, you can assert that as follows:

142

https://docs.spring.io/spring-framework/docs/6.0.0-M2/javadoc-api/org/springframework/core/ParameterizedTypeReference.html

Java

client.post().uri("/persons")
.body(personMono, Person.class)
.exchange()
.expectStatus().isCreated()
.expectBody().isEmpty();

Kotlin

client.post().uri("/persons")
.bodyValue(person)
.exchange()
.expectStatus().isCreated()
.expectBody().isEmpty()

If you want to ignore the response content, the following releases the content without any
assertions:

Java

client.get().uri("/persons/123")
.exchange()
.expectStatus().isNotFound()
.expectBody(Void.class);

Kotlin

client.get().uri("/persons/123")
.exchange()
.expectStatus().isNotFound
.expectBody<Unit>()

JSON Content

You can use expectBody() without a target type to perform assertions on the raw content rather
than through higher level Object(s).

To verify the full JSON content with JSONAssert:

Java

client.get().uri("/persons/1")
.exchange()
.expectStatus().is0k()
.expectBody()
.json("{\"name\":\"Jane\"}")

143

https://jsonassert.skyscreamer.org

Kotlin

client.get().uri("/persons/1")
.exchange()
.expectStatus().is0k()
.expectBody()
.json("{\"name\":\"Jane\"}")

To verify JSON content with [SONPath:

Java

client.get().uri("/persons")
.exchange()
.expectStatus().is0k()
.expectBody()
.jsonPath("$[0].name").isEqualTo("Jane")
.jsonPath("$[1].name").isEqualTo("Jason");

Kotlin

client.get().uri("/persons")
.exchange()
.expectStatus().is0k()
.expectBody()
.jsonPath("$[0].name").1isEqualTo("Jane")
.jsonPath("$[1].name").isEqualTo("Jason")

Streaming Responses

To test potentially infinite streams such as "text/event-stream" or "application/x-ndjson", start by
verifying the response status and headers, and then obtain a FluxExchangeResult:

Java

FluxExchangeResult<MyEvent> result = client.get().uri("/events")
.accept(TEXT_EVENT_STREAM)
.exchange()
.expectStatus().is0k()
.returnResult(MyEvent.class);

144

https://github.com/jayway/JsonPath

Kotlin

import org.springframework.test.web.reactive.server.returnResult

val result = client.get().uri("/events")
.accept(TEXT_EVENT_STREAM)
.exchange()
.expectStatus().is0k()
.returnResult<MyEvent>()

Now you’re ready to consume the response stream with StepVerifier from reactor-test:

Java
Flux<Event> eventFlux = result.getResponseBody();

StepVerifier.create(eventFlux)
.expectNext(person)
.expectNextCount(4)
.consumeNextWith(p -> ...)
.thenCancel()
verify();

Kotlin

val eventFlux = result.getResponseBody()

StepVerifier.create(eventFlux)
.expectNext(person)
.expectNextCount(4)
.consumeNextWith { p -> ... }
.thenCancel()
verify()

MockMvc Assertions

WebTestClient is an HTTP client and as such it can only verify what is in the client response
including status, headers, and body.

When testing a Spring MVC application with a MockMvc server setup, you have the extra choice to
perform further assertions on the server response. To do that start by obtaining an ExchangeResult
after asserting the body:

145

Java

// For a response with a body
EntityExchangeResult<Person> result = client.get().uri("/persons/1")
.exchange()
.expectStatus().is0k()
.expectBody(Person.class)
.returnResult();

// For a response without a body

EntityExchangeResult<Void> result = client.get().uri("/path")
.exchange()
.expectBody().isEmpty();

Kotlin

// For a response with a body

val result = client.get().uri("/persons/1")
.exchange()
.expectStatus().is0k()
.expectBody(Person.class)
.returnResult();

// For a response without a body

val result = client.get().uri("/path")
.exchange()
.expectBody().isEmpty();

Then switch to MockMvc server response assertions:

Java

MockMvcWebTestClient.resultActionsFor(result)
.andExpect(model().attribute("integer", 3))
.andExpect(model().attribute("string", "a string value"));

Kotlin

MockMvcWebTestClient.resultActionsFor(result)
.andExpect(model().attribute("integer", 3))
.andExpect(model().attribute("string", "a string value"));

3.7. MockMvc

The Spring MVC Test framework, also known as MockMvc, provides support for testing Spring MVC
applications. It performs full Spring MVC request handling but via mock request and response
objects instead of a running server.

146

MockMvc can be used on its own to perform requests and verify responses. It can also be used
through the WebTestClient where MockMuvc is plugged in as the server to handle requests with. The
advantage of WebTestClient is the option to work with higher level objects instead of raw data as
well as the ability to switch to full, end-to-end HTTP tests against a live server and use the same test
APL

3.7.1. Overview

You can write plain unit tests for Spring MVC by instantiating a controller, injecting it with
dependencies, and calling its methods. However such tests do not verify request mappings, data
binding, message conversion, type conversion, validation, and nor do they involve any of the
supporting @InitBinder, @ModelAttribute, or @ExceptionHandler methods.

The Spring MVC Test framework, also known as MockMvc, aims to provide more complete testing for
Spring MVC controllers without a running server. It does that by invoking the DispacherServlet and
passing “mock” implementations of the Servlet API from the spring-test module which replicates
the full Spring MVC request handling without a running server.

MockMvec is a server side test framework that lets you verify most of the functionality of a Spring
MVC application using lightweight and targeted tests. You can use it on its own to perform requests
and to verify responses, or you can also use it through the WebTestClient API with MockMvc
plugged in as the server to handle requests with.

Static Imports

When using MockMvc directly to perform requests, you’ll need static imports for:

e MockMvcBuilders.*

MockMvcRequestBuilders.*
* MockMvcResultMatchers.*

e MockMvcResultHandlers.*

An easy way to remember that is search for MockMvc*. If using Eclipse be sure to also add the above
as “favorite static members” in the Eclipse preferences.

When using MockMvc through the WebTestClient you do not need static imports. The WebTestClient
provides a fluent API without static imports.

Setup Choices

MockMvc can be setup in one of two ways. One is to point directly to the controllers you want to
test and programmatically configure Spring MVC infrastructure. The second is to point to Spring
configuration with Spring MVC and controller infrastructure in it.

To set up MockMvc for testing a specific controller, use the following:

147

Java
class MyWebTests {
MockMve mockMve;
@BeforeEach
void setup() {

this.mockMve = MockMvcBuilders.standaloneSetup(new
AccountController()).build();

}

/] ...

Kotlin

class MyWebTests {
lateinit var mockMve : MockMvc
@BeforeEach

fun setup() {
mockMvc = MockMvcBuilders.standaloneSetup(AccountController()).build()

}

/] ...

Or you can also use this setup when testing through the WebTestClient which delegates to the same
builder as shown above.

To set up MockMvc through Spring configuration, use the following:

148

Java

@SpringJUnitWebConfig(locations = "my-servlet-context.xml")
class MyWebTests {

MockMve mockMve;

@BeforeEach
void setup(WebApplicationContext wac) {
this.mockMve = MockMvcBuilders.webAppContextSetup(this.wac).build();

}

/] ...

Kotlin

eSpringJUnitWebConfig(locations = ["my-servlet-context.xml"])
class MyWebTests {

lateinit var mockMvc: MockMvc

@BeforeEach
fun setup(wac: WebApplicationContext) {
mockMve = MockMvcBuilders.webAppContextSetup(wac).build()

}

I wo

Or you can also use this setup when testing through the WebTestClient which delegates to the same
builder as shown above.

Which setup option should you use?

The webAppContextSetup loads your actual Spring MVC configuration, resulting in a more complete
integration test. Since the TestContext framework caches the loaded Spring configuration, it helps
keep tests running fast, even as you introduce more tests in your test suite. Furthermore, you can
inject mock services into controllers through Spring configuration to remain focused on testing the
web layer. The following example declares a mock service with Mockito:

<bean id="accountService" class="org.mockito.Mockito" factory-method="mock">
<constructor-arg value="org.example.AccountService"/>
</bean>

You can then inject the mock service into the test to set up and verify your expectations, as the

149

following example shows:

Java

@SpringJUnitWebConfig(locations = "test-servlet-context.xml")
class AccountTests {

@Autowired
AccountService accountService;

MockMve mockMvc;

@BeforeEach
void setup(WebApplicationContext wac) {
this.mockMve = MockMvcBuilders.webAppContextSetup(wac).build();

}

/] ...

Kotlin

@SpringJUnitWebConfig(locations = ["test-servlet-context.xml"])
class AccountTests {

@Autowired
lateinit var accountService: AccountService

lateinit mockMvec: MockMvc

@BeforeEach
fun setup(wac: WebApplicationContext) {

mockMve = MockMvcBuilders.webAppContextSetup(wac).build()
}

/.

The standaloneSetup, on the other hand, is a little closer to a unit test. It tests one controller at a
time. You can manually inject the controller with mock dependencies, and it does not involve
loading Spring configuration. Such tests are more focused on style and make it easier to see which
controller is being tested, whether any specific Spring MVC configuration is required to work, and
so on. The standaloneSetup is also a very convenient way to write ad-hoc tests to verify specific
behavior or to debug an issue.

As with most “integration versus unit testing” debates, there is no right or wrong answer. However,
using the standaloneSetup does imply the need for additional webAppContextSetup tests in order to

150

verify your Spring MVC configuration. Alternatively, you can write all your tests with
webAppContextSetup, in order to always test against your actual Spring MVC configuration.

Setup Features

No matter which MockMvc builder you use, all MockMvcBuilder implementations provide some
common and very useful features. For example, you can declare an Accept header for all requests
and expect a status of 200 as well as a Content-Type header in all responses, as follows:

Java
// static import of MockMvcBuilders.standaloneSetup
MockMvc mockMve = standaloneSetup(new MusicController())
.defaultRequest(get("/").accept(MediaType.APPLICATION_JSON))
.alwaysExpect(status().is0k())

.alwaysExpect(content().contentType("application/json;charset=UTF-8"))
.build();

Kotlin

// Not possible in Kotlin until https://youtrack.jetbrains.com/issue/KT-22208 is fixed

In addition, third-party frameworks (and applications) can pre-package setup instructions, such as
those in a MockMvcConfigurer. The Spring Framework has one such built-in implementation that
helps to save and re-use the HTTP session across requests. You can use it as follows:

Java

// static import of SharedHttpSessionConfigurer.sharedHttpSession
MockMve mockMvc = MockMvcBuilders.standaloneSetup(new TestController())
.apply(sharedHttpSession())
.build();

// Use mockMvc to perform requests...

Kotlin

// Not possible in Kotlin until https://youtrack.jetbrains.com/issue/KT-22208 is fixed

See the javadoc for ConfigurableMockMvcBuilder for a list of all MockMvc builder features or use the
IDE to explore the available options.

Performing Requests

This section shows how to use MockMvc on its own to perform requests and verify responses. If
using MockMvc through the WebTestClient please see the corresponding section on Writing Tests

151

https://docs.spring.io/spring-framework/docs/6.0.0-M2/javadoc-api/org/springframework/test/web/servlet/setup/ConfigurableMockMvcBuilder.html

instead.

To perform requests that use any HTTP method, as the following example shows:

Java
// static import of MockMvcRequestBuilders.*

mockMve.perform(post("/hotels/{id}", 42).accept(MediaType.APPLICATION_JSON));

Kotlin

import org.springframework.test.web.servlet.post
mockMvec.post("/hotels/{id}", 42) {

accept = MediaType.APPLICATION_JSON
}

You can also perform file upload requests that internally use MockMultipartHttpServletRequest so
that there is no actual parsing of a multipart request. Rather, you have to set it up to be similar to
the following example:

Java

mockMve.perform(multipart("/doc").file("a1", "ABC".getBytes("UTF-8")));

Kotlin

import org.springframework.test.web.servlet.multipart

mockMvc.multipart("/doc") {
file("a1", "ABC".toByteArray(charset("UTF8")))
}

You can specify query parameters in URI template style, as the following example shows:

Java

mockMvec.perform(get("/hotels?thing={thing}", "somewhere"));

Kotlin

mockMve.get("/hotels?thing={thing}", "somewhere")

You can also add Servlet request parameters that represent either query or form parameters, as the
following example shows:

152

Java

mockMvc.perform(get("/hotels").param("thing", "somewhere"));

Kotlin

import org.springframework.test.web.servlet.get

mockMvc.get("/hotels") {
param("thing", "somewhere")

}

If application code relies on Servlet request parameters and does not check the query string
explicitly (as is most often the case), it does not matter which option you use. Keep in mind,
however, that query parameters provided with the URI template are decoded while request
parameters provided through the param(:-*) method are expected to already be decoded.

In most cases, it is preferable to leave the context path and the Servlet path out of the request URL
If you must test with the full request URIL be sure to set the contextPath and servletPath accordingly
so that request mappings work, as the following example shows:

Java

mockMvec.perform(get("/app/main/hotels/{id}").contextPath("/app").servietPath("/main"))

Kotlin

import org.springframework.test.web.servlet.get

mockMvec.get("/app/main/hotels/{id}") {
contextPath = "/app"
servletPath = "/main"

In the preceding example, it would be cumbersome to set the contextPath and servletPath with
every performed request. Instead, you can set up default request properties, as the following
example shows:

153

Java
class MyWebTests {
MockMve mockMve;

@BeforeEach
void setup() {
mockMve = standaloneSetup(new AccountController())
.defaultRequest(get("/")
.contextPath("/app").servletPath("/main")
.accept(MediaType.APPLICATION_JSON)).build();

Kotlin

// Not possible in Kotlin until https://youtrack.jetbrains.com/issue/KT-22208 is fixed

The preceding properties affect every request performed through the MockMvc instance. If the same
property is also specified on a given request, it overrides the default value. That is why the HTTP
method and URI in the default request do not matter, since they must be specified on every request.

Defining Expectations

You can define expectations by appending one or more andExpect(..) calls after performing a
request, as the following example shows. As soon as one expectation fails, no other expectations
will be asserted.

Java
// static import of MockMvcRequestBuilders.* and MockMvcResultMatchers.*

mockMvc.perform(get("/accounts/1")).andExpect(status().is0k());

Kotlin
import org.springframework.test.web.servlet.get
mockMvc.get("/accounts/1").andExpect {

status().is0k()
}

You can define multiple expectations by appending andExpectAll(..) after performing a request, as
the following example shows. In contrast to andExpect(..), andExpectAll(..) guarantees that all
supplied expectations will be asserted and that all failures will be tracked and reported.

154

Java
// static import of MockMvcRequestBuilders.* and MockMvcResultMatchers.*

mockMvc.perform(get("/accounts/1")).andExpectAll(
status().is0k(),
content().contentType("application/json;charset=UTF-8"));

MockMvcResultMatchers.* provides a number of expectations, some of which are further nested with
more detailed expectations.

Expectations fall in two general categories. The first category of assertions verifies properties of the
response (for example, the response status, headers, and content). These are the most important
results to assert.

The second category of assertions goes beyond the response. These assertions let you inspect Spring
MVC specific aspects, such as which controller method processed the request, whether an exception
was raised and handled, what the content of the model is, what view was selected, what flash
attributes were added, and so on. They also let you inspect Servlet specific aspects, such as request
and session attributes.

The following test asserts that binding or validation failed:

Java

mockMvc.perform(post("/persons"))
.andExpect(status().is0k())
.andExpect(model().attributeHasErrors("person"));

Kotlin
import org.springframework.test.web.servlet.post

mockMvec.post("/persons").andExpect {
status().is0k()
model {
attributeHasErrors("person")

}

Many times, when writing tests, it is useful to dump the results of the performed request. You can
do so as follows, where print() is a static import from MockMvcResultHandlers:

155

Java

mockMvc.perform(post("/persons"))
.andDo(print())
.andExpect(status().is0k())
.andExpect(model().attributeHasErrors("person"));

Kotlin
import org.springframework.test.web.servlet.post

mockMve.post("/persons").andDo {
print()
}.andExpect {
status().is0k()
model {
attributeHasErrors("person")

}

As long as request processing does not cause an unhandled exception, the print() method prints all
the available result data to System.out. There is also a 1og() method and two additional variants of
the print() method, one that accepts an OutputStream and one that accepts a Writer. For example,
invoking print(System.err) prints the result data to System.err, while invoking print(myWriter)
prints the result data to a custom writer. If you want to have the result data logged instead of
printed, you can invoke the log() method, which logs the result data as a single DEBUG message
under the org.springframework.test.web.servlet.result logging category.

In some cases, you may want to get direct access to the result and verify something that cannot be
verified otherwise. This can be achieved by appending .andReturn() after all other expectations, as
the following example shows:

Java

MvcResult mvcResult =
mockMve.perform(post("/persons")).andExpect(status().is0k()).andReturn();
/] ...

Kotlin

var mvcResult = mockMvc.post("/persons").andExpect { status().isOk() }.andReturn()
/] ...

If all tests repeat the same expectations, you can set up common expectations once when building
the MockMvc instance, as the following example shows:

156

Java

standaloneSetup(new SimpleController())
.alwaysExpect(status().is0k())

.alwaysExpect(content().contentType("application/json;charset=UTF-8"))
.build()

Kotlin

// Not possible in Kotlin until https://youtrack.jetbrains.com/issue/KT-22208 is fixed

Note that common expectations are always applied and cannot be overridden without creating a
separate MockMvc instance.

When a JSON response content contains hypermedia links created with Spring HATEOAS, you can
verify the resulting links by using JsonPath expressions, as the following example shows:

Java

mockMvec.perform(get("/people").accept(MediaType.APPLICATION_JSON))
.andExpect(jsonPath("$.1links[?(@.rel ==
‘self')].href").value("http://localhost:8080/people”));

Kotlin

mockMvc.get("/people") {
accept(MediaType.APPLICATION_JSON)
}.andExpect {
jsonPath("$.1links[?(@.rel == 'self')].href") {
value("http://1localhost:8080/people”)
}

When XML response content contains hypermedia links created with Spring HATEOAS, you can
verify the resulting links by using XPath expressions:

Java

Map<String, String> ns = Collections.singletonMap("ns",
"http://www.w3.0rg/2005/Atom");
mockMvc.perform(get("/handle").accept(MediaType.APPLICATION_XML))
.andExpect(xpath("/person/ns:link[@rel="self']/@href",
ns).string("http://localhost:8080/people"));

157

https://github.com/spring-projects/spring-hateoas
https://github.com/spring-projects/spring-hateoas

Kotlin

val ns = map0f("ns" to "http://www.w3.0rg/2005/Atom")
mockMve.get("/handle") {
accept(MediaType.APPLICATION_XML)
}.andExpect {
xpath("/person/ns:link[@rel="self']/@href", ns) {
string("http://localhost:8080/people”)
}

Async Requests

This section shows how to use MockMvc on its own to test asynchronous request handling. If using
MockMvc through the WebTestClient, there is nothing special to do to make asynchronous requests
work as the WebTestClient automatically does what is described in this section.

Servlet asynchronous requests, supported in Spring MVC, work by exiting the Servlet container
thread and allowing the application to compute the response asynchronously, after which an async
dispatch is made to complete processing on a Servlet container thread.

In Spring MVC Test, async requests can be tested by asserting the produced async value first, then
manually performing the async dispatch, and finally verifying the response. Below is an example
test for controller methods that return DeferredResult, Callable, or reactive type such as Reactor
Mono:

Java
// static import of MockMvcRequestBuilders.* and MockMvcResultMatchers.*

@Test
void test() throws Exception {

MvcResult mvcResult = this.mockMvc.perform(get("/path"))
.andExpect(status().is0k()) @
.andExpect(request().asyncStarted()) @
.andExpect(request().asyncResult("body")) ®
.andReturn();

this.mockMvc.perform(asyncDispatch(mvcResult)) @
.andExpect(status().is0k()) ®
.andExpect(content().string("body"));

@ Check response status is still unchanged

@ Async processing must have started

3 Wait and assert the async result

@ Manually perform an ASYNC dispatch (as there is no running container)

® Verify the final response

158

web.pdf#mvc-ann-async

Kotlin

@Test
fun test() {
var mvcResult = mockMve.get("/path").andExpect {
status().isOk() @
request { asyncStarted() } @
// TODO Remove unused generic parameter
request { asyncResult<Nothing>("body") } ®
}.andReturn()

mockMvc.perform(asyncDispatch(mvcResult)) @
.andExpect {
status().is0k() ®
content().string("body")

@ Check response status is still unchanged

@ Async processing must have started

(® Wait and assert the async result

@ Manually perform an ASYNC dispatch (as there is no running container)

® Verify the final response

Streaming Responses

The best way to test streaming responses such as Server-Sent Events is through the WebTestClient
which can be used as a test client to connect to a MockMve instance to perform tests on Spring MVC
controllers without a running server. For example:

159

Java

WebTestClient client = MockMvcWebTestClient.bindToController(new
SseController()).build();

FluxExchangeResult<Person> exchangeResult = client.get()
.uri("/persons")
.exchange()
.expectStatus().is0k()
.expectHeader().contentType("text/event-stream")
.returnResult(Person.class);

// Use StepVerifier from Project Reactor to test the streaming response

StepVerifier.create(exchangeResult.getResponseBody())
.expectNext(new Person("N@"), new Person("N1"), new Person("N2"))
.expectNextCount(4)
.consumeNextWith(person -> assertThat(person.getName()).endsWith("7"))
.thenCancel()
verify();

WebTestClient can also connect to a live server and perform full end-to-end integration tests. This is
also supported in Spring Boot where you can test a running server.

Filter Registrations

When setting up a MockMvc instance, you can register one or more Servlet Filter instances, as the
following example shows:

Java

mockMvc = standaloneSetup(new PersonController()).addFilters(new
CharacterEncodingFilter()).build();

Kotlin

// Not possible in Kotlin until https://youtrack.jetbrains.com/issue/KT-22208 is fixed

Registered filters are invoked through the MockFilterChain from spring-test, and the last filter
delegates to the DispatcherServlet.

MockMvc vs End-to-End Tests

MockMVec is built on Servlet API mock implementations from the spring-test module and does not
rely on a running container. Therefore, there are some differences when compared to full end-to-
end integration tests with an actual client and a live server running.

The easiest way to think about this is by starting with a blank MockHttpServletRequest. Whatever
you add to it is what the request becomes. Things that may catch you by surprise are that there is

160

https://docs.spring.io/spring-boot/docs/current/reference/html/spring-boot-features.html#boot-features-testing-spring-boot-applications-testing-with-running-server

no context path by default; no jsessionid cookie; no forwarding, error, or async dispatches; and,
therefore, no actual JSP rendering. Instead, “forwarded” and “redirected” URLs are saved in the
MockHttpServletResponse and can be asserted with expectations.

This means that, if you use JSPs, you can verify the JSP page to which the request was forwarded,
but no HTML is rendered. In other words, the JSP is not invoked. Note, however, that all other
rendering technologies that do not rely on forwarding, such as Thymeleaf and Freemarker, render
HTML to the response body as expected. The same is true for rendering JSON, XML, and other
formats through @ResponseBody methods.

Alternatively, you may consider the full end-to-end integration testing support from Spring Boot
with @SpringBootTest. See the Spring Boot Reference Guide.

There are pros and cons for each approach. The options provided in Spring MVC Test are different
stops on the scale from classic unit testing to full integration testing. To be certain, none of the
options in Spring MVC Test fall under the category of classic unit testing, but they are a little closer
to it. For example, you can isolate the web layer by injecting mocked services into controllers, in
which case you are testing the web layer only through the DispatcherServlet but with actual Spring
configuration, as you might test the data access layer in isolation from the layers above it. Also, you
can use the stand-alone setup, focusing on one controller at a time and manually providing the
configuration required to make it work.

Another important distinction when using Spring MVC Test is that, conceptually, such tests are the
server-side, so you can check what handler was used, if an exception was handled with a
HandlerExceptionResolver, what the content of the model is, what binding errors there were, and
other details. That means that it is easier to write expectations, since the server is not an opaque
box, as it is when testing it through an actual HTTP client. This is generally an advantage of classic
unit testing: It is easier to write, reason about, and debug but does not replace the need for full
integration tests. At the same time, it is important not to lose sight of the fact that the response is
the most important thing to check. In short, there is room here for multiple styles and strategies of
testing even within the same project.

Further Examples

The framework’s own tests include many sample tests intended to show how to use MockMvc on
its own or through the WebTestClient. Browse these examples for further ideas.

3.7.2. HtmlUnit Integration

Spring provides integration between MockMvc and HtmlUnit. This simplifies performing end-to-
end testing when using HTML-based views. This integration lets you:

Easily test HTML pages by using tools such as HtmlUnit, WebDriver, and Geb without the need
to deploy to a Servlet container.

Test JavaScript within pages.

Optionally, test using mock services to speed up testing.

* Share logic between in-container end-to-end tests and out-of-container integration tests.

161

https://docs.spring.io/spring-boot/docs/current/reference/html/spring-boot-features.html#boot-features-testing
https://github.com/spring-projects/spring-framework/tree/main/spring-test/src/test/java/org/springframework/test/web/servlet/samples
https://github.com/spring-projects/spring-framework/tree/main/spring-test/src/test/java/org/springframework/test/web/servlet/samples/client
http://htmlunit.sourceforge.net/
http://htmlunit.sourceforge.net/
https://www.seleniumhq.org
http://www.gebish.org/manual/current/#spock-junit-testng

MockMvc works with templating technologies that do not rely on a Servlet
Container (for example, Thymeleaf, FreeMarker, and others), but it does not work
with JSPs, since they rely on the Servlet container.

Why HtmlUnit Integration?

The most obvious question that comes to mind is “Why do I need this?” The answer is best found by
exploring a very basic sample application. Assume you have a Spring MVC web application that
supports CRUD operations on a Message object. The application also supports paging through all
messages. How would you go about testing it?

With Spring MVC Test, we can easily test if we are able to create a Message, as follows:

Java

MockHttpServletRequestBuilder createMessage = post("/messages/")
.param("summary", "Spring Rocks")
.param("text", "In case you didn't know, Spring Rocks!");

mockMvec.perform(createMessage)
.andExpect(status().is3xxRedirection())
.andExpect(redirectedUr1("/messages/123"));

Kotlin

@Test
fun test() {
mockMvc.post("/messages/") {
param("“summary", "Spring Rocks")
param("text", "In case you didn't know, Spring Rocks!")
}.andExpect {
status().is3xxRedirection()
redirectedUr1("/messages/123")

What if we want to test the form view that lets us create the message? For example, assume our
form looks like the following snippet:

162

<form id="messageForm" action="/messages/" method="post">
<div class="pull-right">Messages</div>

<label for="summary">Summary</label>
<input type="text" class="required" id="summary" name="summary" value="" />

<label for="text">Message</label>
<textarea id="text" name="text"></textarea>

<div class="form-actions">
<input type="submit" value="Create" />
</div>
</form>

How do we ensure that our form produce the correct request to create a new message? A naive
attempt might resemble the following:

Java

mockMvec.perform(get("/messages/form"))
.andExpect(xpath("//input[@name="summary']").exists())
.andExpect(xpath("//textarea[@name="text"']").exists());

Kotlin

mockMvec.get("/messages/form").andExpect {
xpath("//input[@name="summary']") { exists() }
xpath("//textarea[@name="text"']") { exists() }

This test has some obvious drawbacks. If we update our controller to use the parameter message
instead of text, our form test continues to pass, even though the HTML form is out of synch with the
controller. To resolve this we can combine our two tests, as follows:

163

Java

String summaryParamName = "summary";

String textParamName = "text";

mockMvc.perform(get("/messages/form"))
.andExpect(xpath("//input[@name="
.andExpect(xpath("//textarea[@name=

+ summaryParamName + "']").exists())
'"" + textParamName + "']").exists());

MockHttpServletRequestBuilder createMessage = post("/messages/")
.param(summaryParamName, "Spring Rocks")
.param(textParamName, "In case you didn't know, Spring Rocks!");

mockMvc.perform(createMessage)
.andExpect(status().is3xxRedirection())
.andExpect(redirectedUr1("/messages/123"));

Kotlin

val summaryParamName = "summary";

val textParamName = "text";

mockMvc.get("/messages/form").andExpect {
xpath("//input[@name="$summaryParamName']") { exists() }
xpath("//textarea[@name="$textParamName']") { exists() }

}

mockMvc.post("/messages/") {

param(summaryParamName, "Spring Rocks")

param(textParamName, "In case you didn't know, Spring Rocks!")
}.andExpect {

status().is3xxRedirection()

redirectedUr1("/messages/123")

This would reduce the risk of our test incorrectly passing, but there are still some problems:

* What if we have multiple forms on our page? Admittedly, we could update our XPath
expressions, but they get more complicated as we take more factors into account: Are the fields
the correct type? Are the fields enabled? And so on.

* Another issue is that we are doing double the work we would expect. We must first verify the
view, and then we submit the view with the same parameters we just verified. Ideally, this could
be done all at once.

* Finally, we still cannot account for some things. For example, what if the form has JavaScript
validation that we wish to test as well?

The overall problem is that testing a web page does not involve a single interaction. Instead, it is a
combination of how the user interacts with a web page and how that web page interacts with other
resources. For example, the result of a form view is used as the input to a user for creating a
message. In addition, our form view can potentially use additional resources that impact the
behavior of the page, such as JavaScript validation.

164

Integration Testing to the Rescue?

To resolve the issues mentioned earlier, we could perform end-to-end integration testing, but this
has some drawbacks. Consider testing the view that lets us page through the messages. We might
need the following tests:

* Does our page display a notification to the user to indicate that no results are available when
the messages are empty?

* Does our page properly display a single message?

* Does our page properly support paging?

To set up these tests, we need to ensure our database contains the proper messages. This leads to a
number of additional challenges:

* Ensuring the proper messages are in the database can be tedious. (Consider foreign key
constraints.)

* Testing can become slow, since each test would need to ensure that the database is in the
correct state.

* Since our database needs to be in a specific state, we cannot run tests in parallel.
* Performing assertions on such items as auto-generated ids, timestamps, and others can be

difficult.

These challenges do not mean that we should abandon end-to-end integration testing altogether.
Instead, we can reduce the number of end-to-end integration tests by refactoring our detailed tests
to use mock services that run much faster, more reliably, and without side effects. We can then
implement a small number of true end-to-end integration tests that validate simple workflows to
ensure that everything works together properly.

Enter HtmlUnit Integration

So how can we achieve a balance between testing the interactions of our pages and still retain good
performance within our test suite? The answer is: “By integrating MockMvc with HtmlUnit.”

HtmlUnit Integration Options
You have a number of options when you want to integrate MockMvc with HtmlUnit:

* MockMvc and HtmlUnit: Use this option if you want to use the raw HtmlUnit libraries.

* MockMvc and WebDriver: Use this option to ease development and reuse code between
integration and end-to-end testing.

* MockMvc and Geb: Use this option if you want to use Groovy for testing, ease development, and
reuse code between integration and end-to-end testing.

MockMvc and HtmlUnit

This section describes how to integrate MockMvc and HtmlUnit. Use this option if you want to use
the raw HtmlUnit libraries.

165

MockMvc and HtmlUnit Setup

First, make sure that you have included a test dependency on net.sourceforge.htmlunit:htmlunit. In
order to use HtmlUnit with Apache HttpComponents 4.5+, you need to use HtmlUnit 2.18 or higher.

We can easily create an HtmlUnit WebClient that integrates with MockMvc by using the
MockMvcWebClientBuilder, as follows:

Java
WebClient webClient;

@BeforeEach
void setup(WebApplicationContext context) {
webClient = MockMvcWebClientBuilder
.webAppContextSetup(context)
.build();

Kotlin
lateinit var webClient: WebClient

@BeforeEach
fun setup(context: WebApplicationContext) {
webClient = MockMvcWebClientBuilder
.webAppContextSetup(context)
.build()

o This is a simple example of using MockMvcWebClientBuilder. For advanced usage, see
Advanced MockMvcWebClientBuilder.

This ensures that any URL that references localhost as the server is directed to our MockMvc instance
without the need for a real HTTP connection. Any other URL is requested by using a network
connection, as normal. This lets us easily test the use of CDNs.

MockMvc and HtmlUnit Usage

Now we can use HtmlUnit as we normally would but without the need to deploy our application to
a Servlet container. For example, we can request the view to create a message with the following:

Java

HtmlPage createMsgFormPage = webClient.getPage("http://1localhost/messages/form");

166

Kotlin

val createMsgFormPage = webClient.getPage("http://localhost/messages/form")

o The default context path is "". Alternatively, we can specify the context path, a
described in Advanced MockMvcWebClientBuilder.

S

Once we have a reference to the HtmlPage, we can then fill out the form and submit it to create a

message, as the following example shows:

Java

HtmlForm form = createMsgFormPage.getHtmlElementById("messageForm");

HtmlTextInput summaryInput = createMsgFormPage.getHtmlElementById("summary");
summaryInput.setValueAttribute("Spring Rocks");

HtmlTextArea textInput = createMsgFormPage.getHtmlElementById("text");
textInput.setText("In case you didn't know, Spring Rocks!");

Htm1SubmitInput submit = form.getOneHtmlElementByAttribute("input", "type", "submit");
HtmlPage newMessagePage = submit.click();

Kotlin

val form = createMsgFormPage.getHtmlElementById("messageForm")

val summaryInput = createMsgFormPage.getHtmlElementById("summary")
summaryInput.setValueAttribute("Spring Rocks")

val textInput = createMsgFormPage.getHtmlElementById("text")
textInput.setText("In case you didn't know, Spring Rocks!")

val submit = form.getOneHtmlElementByAttribute("input", "type", "submit")
val newMessagePage = submit.click()

Finally, we can verify that a new message was created successfully. The following assertions use
Assert] library:

Java

assertThat(newMessagePage.getUr1().toString()).endsWith("/messages/123");
String id = newMessagePage.getHtmlElementById("id").getTextContent();
assertThat(id).isEqualTo("123");

String summary = newMessagePage.getHtmlElementById("summary").getTextContent();
assertThat(summary).isEqualTo("Spring Rocks");

String text = newMessagePage.getHtmlElementById("text").getTextContent();
assertThat(text).isEqualTo("In case you didn't know, Spring Rocks!");

the

167

https://assertj.github.io/doc/

Kotlin

assertThat(newMessagePage.getUr1().toString()).endsWith("/messages/123")
val id = newMessagePage.getHtmlElementById("id").getTextContent()
assertThat(id).isEqualTo("123")

val summary = newMessagePage.getHtmlElementById("summary").getTextContent()
assertThat(summary).isEqualTo("Spring Rocks")

val text = newMessagePage.getHtmlElementById("text").getTextContent()
assertThat(text).isEqualTo("In case you didn't know, Spring Rocks!")

The preceding code improves on our MockMvc test in a number of ways. First, we no longer have to
explicitly verify our form and then create a request that looks like the form. Instead, we request the
form, fill it out, and submit it, thereby significantly reducing the overhead.

Another important factor is that HtmlUnit uses the Mozilla Rhino engine to evaluate JavaScript.
This means that we can also test the behavior of JavaScript within our pages.

See the HtmlUnit documentation for additional information about using HtmlUnit.

Advanced MockMvcWebClientBuilder

In the examples so far, we have used MockMvcWebClientBuilder in the simplest way possible, by
building a WebClient based on the WebApplicationContext loaded for us by the Spring TestContext
Framework. This approach is repeated in the following example:

Java
WebClient webClient;

@BeforeEach
void setup(WebApplicationContext context) {
webClient = MockMvcWebClientBuilder
.webAppContextSetup(context)
.build();

Kotlin
lateinit var webClient: WebClient
@BeforeEach
fun setup(context: WebApplicationContext) {
webClient = MockMvcWebClientBuilder

.webAppContextSetup(context)
.build()

We can also specify additional configuration options, as the following example shows:

168

http://htmlunit.sourceforge.net/javascript.html
http://htmlunit.sourceforge.net/gettingStarted.html

Java
WebClient webClient;

@BeforeEach
void setup() {
webClient = MockMvcWebClientBuilder

// demonstrates applying a MockMvcConfigurer (Spring Security)
.webAppContextSetup(context, springSecurity())
// for illustration only - defaults to ""
.contextPath("")
// By default MockMvc is used for localhost only;
// the following will use MockMvc for example.com and example.org as well

.useMockMvcForHosts("example.com", "example.org")
.build();

Kotlin
lateinit var webClient: WebClient

@BeforeEach
fun setup() {
webClient = MockMvcWebClientBuilder

// demonstrates applying a MockMvcConfigurer (Spring Security)
.webAppContextSetup(context, springSecurity())
// for illustration only - defaults to ""
.contextPath("")
// By default MockMvc is used for localhost only;
// the following will use MockMvc for example.com and example.org as well
.useMockMvcForHosts("example.com", "example.org")

.build()

As an alternative, we can perform the exact same setup by configuring the MockMvc instance
separately and supplying it to the MockMvcWeb(ClientBuilder, as follows:

169

Java

MockMve mockMve = MockMvcBuilders
.webAppContextSetup(context)
.apply(springSecurity())
.build();

webClient = MockMvcWebClientBuilder
.mockMvcSetup(mockMvc)
// for illustration only - defaults to ""
.contextPath("")
// By default MockMvc is used for localhost only;
// the following will use MockMvc for example.com and example.org as well

.useMockMvcForHosts("example.com", "example.org")
.build();

Kotlin

// Not possible in Kotlin until https://youtrack.jetbrains.com/issue/KT-22208 is fixed

This is more verbose, but, by building the WebClient with a MockMvc instance, we have the full power
of MockMvc at our fingertips.

O For additional information on creating a MockMvc instance, see Setup Choices.
w
MockMvc and WebDriver

In the previous sections, we have seen how to use MockMvc in conjunction with the raw HtmlUnit
APIs. In this section, we use additional abstractions within the Selenium WebDriver to make things
even easier.

Why WebDriver and MockMvc?

We can already use HtmlUnit and MockMvc, so why would we want to use WebDriver? The
Selenium WebDriver provides a very elegant API that lets us easily organize our code. To better
show how it works, we explore an example in this section.

o Despite being a part of Selenium, WebDriver does not require a Selenium Server to
run your tests.

Suppose we need to ensure that a message is created properly. The tests involve finding the HTML
form input elements, filling them out, and making various assertions.

This approach results in numerous separate tests because we want to test error conditions as well.
For example, we want to ensure that we get an error if we fill out only part of the form. If we fill out
the entire form, the newly created message should be displayed afterwards.

If one of the fields were named “summary”, we might have something that resembles the following
repeated in multiple places within our tests:

170

https://docs.seleniumhq.org/projects/webdriver/
https://docs.seleniumhq.org/

Java

HtmlTextInput summaryInput = currentPage.getHtmlElementById("summary");
summaryInput.setValueAttribute(summary);

Kotlin

val summaryInput = currentPage.getHtmlElementById("summary")
summaryInput.setValueAttribute(summary)

So what happens if we change the id to smmry? Doing so would force us to update all of our tests to

incorporate this change. This violates the DRY principle, so we should ideally extract this code into
its own method, as follows:

Java

public HtmlPage createMessage(HtmlPage currentPage, String summary, String text) {
setSummary(currentPage, summary);
/] ...

}

public void setSummary(HtmlPage currentPage, String summary) {
HtmlTextInput summaryInput = currentPage.getHtmlElementById("summary");
summaryInput.setValueAttribute(summary);

Kotlin

fun createMessage(currentPage: HtmlPage, summary:String, text:String) :HtmlPage{
setSummary(currentPage, summary);
/] ...

}

fun setSummary(currentPage:HtmlPage , summary: String) {
val summaryInput = currentPage.getHtmlElementById("summary")
summaryInput.setValueAttribute(summary)

Doing so ensures that we do not have to update all of our tests if we change the UL

We might even take this a step further and place this logic within an Object that represents the
HtmlPage we are currently on, as the following example shows:

171

Java
public class CreateMessagePage {
final HtmlPage currentPage;
final HtmlTextInput summaryInput;
final HtmlSubmitInput submit;

public CreateMessagePage(HtmlPage currentPage) {
this.currentPage = currentPage;
this.summaryInput = currentPage.getHtmlElementById("summary");
this.submit = currentPage.getHtmlElementById("submit");

}

public <T> T createMessage(String summary, String text) throws Exception {
setSummary(summary);

HtmlPage result = submit.click();
boolean error = CreateMessagePage.at(result);

return (T) (error ? new CreateMessagePage(result) : new
ViewMessagePage(result));

}

public void setSummary(String summary) throws Exception {
summaryInput.setValueAttribute(summary);

}

public static boolean at(HtmlPage page) {
return "Create Message".equals(page.getTitleText());
}

172

Kotlin

class CreateMessagePage(private val currentPage: HtmlPage) {

val

val

fun

as T
}
fun
}
fun
}

}
}

summaryInput: HtmlTextInput = currentPage.getHtmlElementById("summary")
submit: HtmlSubmitInput = currentPage.getHtmlElementById("submit")

<T> createMessage(summary: String, text: String): T {
setSummary(summary)

val result = submit.click()
val error = at(result)

return (if (error) CreateMessagePage(result) else ViewMessagePage(result))

setSummary(summary: String) {
summaryInput.setValueAttribute(summary)

at(page: HtmlPage): Boolean {
return "Create Message" == page.getTitleText()

Formerly, this pattern was known as the Page Object Pattern. While we can certainly do this with
HtmlUnit, WebDriver provides some tools that we explore in the following sections to make this
pattern much easier to implement.

MockMvc and WebDriver Setup

To use Selenium WebDriver with the Spring MVC Test framework, make sure that your project
includes a test dependency on org.seleniumhq.selenium:selenium-htmlunit-driver.

We can easily create a Selenium WebDriver that integrates with MockMvc by using the
MockMvcHtmlUnitDriverBuilder as the following example shows:

Java

WebDriver driver;

@BeforeEach

void setup(WebApplicationContext context) {
driver = MockMvcHtmlUnitDriverBuilder

.webAppContextSetup(context)
.build();

173

https://github.com/SeleniumHQ/selenium/wiki/PageObjects

Kotlin
lateinit var driver: WebDriver
@BeforeEach
fun setup(context: WebApplicationContext) {
driver = MockMvcHtmlUnitDriverBuilder

.webAppContextSetup(context)
.build()

o This is a simple example of using MockMvcHtmlUnitDriverBuilder. For more
advanced usage, see Advanced MockMveHtmlUnitDriverBuilder.

The preceding example ensures that any URL that references localhost as the server is directed to
our MockMve instance without the need for a real HTTP connection. Any other URL is requested by
using a network connection, as normal. This lets us easily test the use of CDNs.

MockMvc and WebDriver Usage

Now we can use WebDriver as we normally would but without the need to deploy our application
to a Servlet container. For example, we can request the view to create a message with the following:

Java

CreateMessagePage page = (CreateMessagePage.to(driver);

Kotlin

val page = CreateMessagePage.to(driver)

We can then fill out the form and submit it to create a message, as follows:

Java

ViewMessagePage viewMessagePage =
page.createMessage(ViewMessagePage.class, expectedSummary, expectedText);

Kotlin

val viewMessagePage =
page.createMessage(ViewMessagePage::class, expectedSummary, expectedText)

This improves on the design of our HtmlUnit test by leveraging the Page Object Pattern. As we
mentioned in Why WebDriver and MockMvc?, we can use the Page Object Pattern with HtmlUnit,
but it is much easier with WebDriver. Consider the following CreateMessagePage implementation:

174

Java

public class CreateMessagePage
extends AbstractPage { @

@

private WebElement summary;
private WebElement text;

©)
@FindBy(css = "input[type=submit]")
private WebElement submit;

public CreateMessagePage(WebDriver driver) {
super(driver);

}

public <T> T createMessage(Class<T> resultPage, String summary, String details) {
this.summary.sendKeys(summary);
this.text.sendKeys(details);
this.submit.click();
return PageFactory.initElements(driver, resultPage);

}

public static CreateMessagePage to(WebDriver driver) {
driver.get("http://localhost:9990/mail/messages/form");
return PageFactory.initElements(driver, CreateMessagePage.class);

@ CreateMessagePage extends the AbstractPage. We do not go over the details of AbstractPage, but, in
summary, it contains common functionality for all of our pages. For example, if our application
has a navigational bar, global error messages, and other features, we can place this logic in a
shared location.

@ We have a member variable for each of the parts of the HTML page in which we are interested.
These are of type WebElement. WebDriver’s PageFactory lets us remove a lot of code from the
HtmlUnit version of CreateMessagePage by automatically resolving each WebElement. The
PageFactory#initElements(WebDriver,Class<T>) method automatically resolves each WebElement
by using the field name and looking it up by the id or name of the element within the HTML page.

(3 We can use the @FindBy annotation to override the default lookup behavior. Our example shows
how to use the @FindBy annotation to look up our submit button with a css selector
(input[type=submit]).

175

https://github.com/SeleniumHQ/selenium/wiki/PageFactory
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/PageFactory.html#initElements-org.openqa.selenium.WebDriver-java.lang.Class-
https://github.com/SeleniumHQ/selenium/wiki/PageFactory#making-the-example-work-using-annotations
https://github.com/SeleniumHQ/selenium/wiki/PageFactory#making-the-example-work-using-annotations

Kotlin

class CreateMessagePage(private val driver: WebDriver) : AbstractPage(driver) { @

@
private lateinit var summary: WebElement
private lateinit var text: WebElement

®
@FindBy(css = "input[type=submit]")
private lateinit var submit: WebElement

fun <T> createMessage(resultPage: (Class<T>, summary: String, details: String): T {
this.summary.sendKeys(summary)
text.sendKeys(details)
submit.click()
return PageFactory.initElements(driver, resultPage)

}

companion object {
fun to(driver: WebDriver): CreateMessagePage {
driver.get("http://localhost:9990/mail/messages/form")
return PageFactory.initElements(driver, CreateMessagePage::class.java)

@ CreateMessagePage extends the AbstractPage. We do not go over the details of AbstractPage, but, in
summary, it contains common functionality for all of our pages. For example, if our application
has a navigational bar, global error messages, and other features, we can place this logic in a
shared location.

@ We have a member variable for each of the parts of the HTML page in which we are interested.
These are of type WebElement. WebDriver’s PageFactory lets us remove a lot of code from the
HtmlUnit version of CreateMessagePage by automatically resolving each WebElement. The
PageFactory#initElements(WebDriver,Class<T>) method automatically resolves each WebElement
by using the field name and looking it up by the id or name of the element within the HTML page.

(3 We can use the @FindBy annotation to override the default lookup behavior. Our example shows
how to use the @FindBy annotation to look up our submit button with a css selector
(input[type=submit]).

Finally, we can verify that a new message was created successfully. The following assertions use the
Assert] assertion library:

Java

assertThat(viewMessagePage.getMessage()).isEqualTo(expectedMessage);
assertThat(viewMessagePage.getSuccess()).isEqualTo("Successfully created a new
message");

176

https://github.com/SeleniumHQ/selenium/wiki/PageFactory
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/PageFactory.html#initElements-org.openqa.selenium.WebDriver-java.lang.Class-
https://github.com/SeleniumHQ/selenium/wiki/PageFactory#making-the-example-work-using-annotations
https://github.com/SeleniumHQ/selenium/wiki/PageFactory#making-the-example-work-using-annotations
https://assertj.github.io/doc/

Kotlin

assertThat(viewMessagePage.message).isEqualTo(expectedMessage)
assertThat(viewMessagePage.success).isEqualTo("Successfully created a new message")

We can see that our ViewMessagePage lets us interact with our custom domain model. For example, it
exposes a method that returns a Message object:

Java

public Message getMessage() throws ParseException {
Message message = new Message();
message.setId(getId());
message.setCreated(getCreated());
message.setSummary(getSummary());
message.setText(getText());
return message,

Kotlin

fun getMessage() = Message(getId(), getCreated(), getSummary(), getText())

We can then use the rich domain objects in our assertions.

Lastly, we must not forget to close the WebDriver instance when the test is complete, as follows:

Java

@AfterEach
void destroy() {
if (driver !'= null) {
driver.close();

}

Kotlin

@AfterEach
fun destroy() {
if (driver !'= null) {
driver.close()

}

For additional information on using WebDriver, see the Selenium WebDriver documentation.

177

https://github.com/SeleniumHQ/selenium/wiki/Getting-Started

Advanced MockMvcHtmlUnitDriverBuilder

In the examples so far, we have used MockMvcHtmlUnitDriverBuilder in the simplest way possible, by
building a WebDriver based on the WebApplicationContext loaded for us by the Spring TestContext
Framework. This approach is repeated here, as follows:

Java

WebDriver driver;

@BeforeEach
void setup(WebApplicationContext context) {
driver = MockMvcHtmlUnitDriverBuilder
.webAppContextSetup(context)
.build();

Kotlin

lateinit var driver: WebDriver

@BeforeEach
fun setup(context: WebApplicationContext) {
driver = MockMvcHtmlUnitDriverBuilder
.webAppContextSetup(context)
.build()

We can also specify additional configuration options, as follows:

Java

WebDriver driver;

@BeforeEach
void setup() {
driver = MockMvcHtmlUnitDriverBuilder

// demonstrates applying a MockMvcConfigurer (Spring Security)
.webAppContextSetup(context, springSecurity())
// for illustration only - defaults to ""
.contextPath("")
// By default MockMvc is used for localhost only;
// the following will use MockMvc for example.com and example.org as well
.useMockMvcForHosts("example.com", "example.org")
.build();

178

Kotlin

lateinit var driver: WebDriver

@BeforeEach
fun setup() {
driver = MockMvcHtmlUnitDriverBuilder

// demonstrates applying a MockMvcConfigurer (Spring Security)
.webAppContextSetup(context, springSecurity())
// for illustration only - defaults to ""
.contextPath("")
// By default MockMvc is used for localhost only;
// the following will use MockMvc for example.com and example.org as well

.useMockMvcForHosts("example.com", "example.org")
.build()

As an alternative, we can perform the exact same setup by configuring the MockMvc instance
separately and supplying it to the MockMvcHtmlUnitDriverBuilder, as follows:

Java

MockMve mockMvc = MockMvcBuilders
.webAppContextSetup(context)
.apply(springSecurity())
.build();

driver = MockMvcHtmlUnitDriverBuilder
.mockMvcSetup(mockMvc)
// for illustration only - defaults to ""
.contextPath("")
// By default MockMvc is used for localhost only;
// the following will use MockMvc for example.com and example.org as well

.useMockMvcForHosts("example.com","example.org")
.build();

Kotlin

// Not possible in Kotlin until https://youtrack.jetbrains.com/issue/KT-22208 is fixed

This is more verbose, but, by building the WebDriver with a MockMvc instance, we have the full power
of MockMvc at our fingertips.

O For additional information on creating a MockMvc instance, see Setup Choices.
-
MockMvc and Geb

In the previous section, we saw how to use MockMvc with WebDriver. In this section, we use Geb to
make our tests even Groovy-er.

179

http://www.gebish.org/

Why Geb and MockMvc?

Geb is backed by WebDriver, so it offers many of the same benefits that we get from WebDriver.
However, Geb makes things even easier by taking care of some of the boilerplate code for us.

MockMvc and Geb Setup

We can easily initialize a Geb Browser with a Selenium WebDriver that uses MockMvc, as follows:

def setup() {
browser.driver = MockMvcHtmlUnitDriverBuilder

.webAppContextSetup(context)
.build()

o This is a simple example of using MockMvcHtmlUnitDriverBuilder. For more
advanced usage, see Advanced MockMveHtmlUnitDriverBuilder.

This ensures that any URL referencing localhost as the server is directed to our MockMvc instance
without the need for a real HTTP connection. Any other URL is requested by using a network
connection as normal. This lets us easily test the use of CDNs.

MockMvc and Geb Usage

Now we can use Geb as we normally would but without the need to deploy our application to a
Servlet container. For example, we can request the view to create a message with the following:

to CreateMessagePage
We can then fill out the form and submit it to create a message, as follows:

when:

form.summary = expectedSummary
form.text = expectedMessage
submit.click(ViewMessagePage)

Any unrecognized method calls or property accesses or references that are not found are
forwarded to the current page object. This removes a lot of the boilerplate code we needed when
using WebDriver directly.

As with direct WebDriver usage, this improves on the design of our HtmlUnit test by using the Page
Object Pattern. As mentioned previously, we can use the Page Object Pattern with HtmlUnit and
WebDriver, but it is even easier with Geb. Consider our new Groovy-based (CreateMessagePage
implementation:

180

class CreateMessagePage extends Page {
static url = 'messages/form'
static at = { assert title == 'Messages : Create'; true }
static content = {
submit { $("input[type=submit]"') }
form { $('form') }
errors(required:false) { $('label.error, .alert-error')?.text() }

Our CreateMessagePage extends Page. We do not go over the details of Page, but, in summary, it
contains common functionality for all of our pages. We define a URL in which this page can be
found. This lets us navigate to the page, as follows:

to CreateMessagePage

We also have an at closure that determines if we are at the specified page. It should return true if
we are on the correct page. This is why we can assert that we are on the correct page, as follows:

then:
at CreateMessagePage
errors.contains('This field is required.")

o We use an assertion in the closure so that we can determine where things went
wrong if we were at the wrong page.

Next, we create a content closure that specifies all the areas of interest within the page. We can use
a jQuery-ish Navigator API to select the content in which we are interested.

Finally, we can verify that a new message was created successfully, as follows:

then:

at ViewMessagePage

success == 'Successfully created a new message'
id

date

summary == expectedSummary
message == expectedMessage

For further details on how to get the most out of Geb, see The Book of Geb user’s manual.

3.8. Testing Client Applications

You can use client-side tests to test code that internally uses the RestTemplate. The idea is to declare
expected requests and to provide “stub” responses so that you can focus on testing the code in

181

http://www.gebish.org/manual/current/#the-jquery-ish-navigator-api
http://www.gebish.org/manual/current/

isolation (that is, without running a server). The following example shows how to do so:

Java
RestTemplate restTemplate = new RestTemplate();

MockRestServiceServer mockServer = MockRestServiceServer.bindTo(restTemplate).build();
mockServer.expect(requestTo("/greeting")).andRespond(withSuccess());

// Test code that uses the above RestTemplate ...

mockServer.verify();

Kotlin
val restTemplate = RestTemplate()

val mockServer = MockRestServiceServer.bindTo(restTemplate).build()
mockServer.expect(requestTo("/greeting")).andRespond(withSuccess())

// Test code that uses the above RestTemplate ...

mockServer.verify()

In the preceding example, MockRestServiceServer (the central class for client-side REST tests)
configures the RestTemplate with a custom ClientHttpRequestFactory that asserts actual requests
against expectations and returns “stub” responses. In this case, we expect a request to /greeting
and want to return a 200 response with text/plain content. We can define additional expected
requests and stub responses as needed. When we define expected requests and stub responses, the
RestTemplate can be used in client-side code as usual. At the end of testing, mockServer.verify() can
be used to verify that all expectations have been satisfied.

By default, requests are expected in the order in which expectations were declared. You can set the
ignoreExpectOrder option when building the server, in which case all expectations are checked (in
order) to find a match for a given request. That means requests are allowed to come in any order.
The following example uses ignoreExpectOrder:

Java

server = MockRestServiceServer.bindTo(restTemplate).ignoreExpectOrder(true).build();
Kotlin

server = MockRestServiceServer.bindTo(restTemplate).ignoreExpectOrder(true).build()

Even with unordered requests by default, each request is allowed to run once only. The expect
method provides an overloaded variant that accepts an ExpectedCount argument that specifies a
count range (for example, once, manyTimes, max, min, between, and so on). The following example uses

182

times:

Java
RestTemplate restTemplate = new RestTemplate();

MockRestServiceServer mockServer = MockRestServiceServer.bindTo(restTemplate).build();
mockServer.expect(times(2), requestTo("/something")).andRespond(withSuccess());
mockServer.expect(times(3), requestTo("/somewhere")).andRespond(withSuccess());

/] ...

mockServer.verify();

Kotlin
val restTemplate = RestTemplate()

val mockServer = MockRestServiceServer.bindTo(restTemplate).build()
mockServer.expect(times(2), requestTo("/something")).andRespond(withSuccess())
mockServer.expect(times(3), requestTo("/somewhere")).andRespond(withSuccess())

/] ...

mockServer.verify()

Note that, when ignoreExpectOrder is not set (the default), and, therefore, requests are expected in
order of declaration, then that order applies only to the first of any expected request. For example if
"/something" is expected two times followed by "/somewhere" three times, then there should be a
request to "/something" before there is a request to "/somewhere", but, aside from that subsequent
"/something" and "/somewhere", requests can come at any time.

As an alternative to all of the above, the client-side test support also provides a
(lientHttpRequestFactory implementation that you can configure into a RestTemplate to bind it to a
MockMvc instance. That allows processing requests using actual server-side logic but without running
a server. The following example shows how to do so:

Java

MockMve mockMve = MockMvcBuilders.webAppContextSetup(this.wac).build();
this.restTemplate = new RestTemplate(new MockMvcClientHttpRequestFactory(mockMve));

// Test code that uses the above RestTemplate ...

183

Kotlin

val mockMve = MockMvcBuilders.webAppContextSetup(this.wac).build()
restTemplate = RestTemplate(MockMvcClientHttpRequestFactory(mockMvc))

// Test code that uses the above RestTemplate ...

3.8.1. Static Imports

As with server-side tests, the fluent API for client-side tests requires a few static imports. Those are
easy to find by searching for MockRest*. Eclipse users should add MockRestRequestMatchers.* and
MockRestResponseCreators.* as “favorite static members” in the Eclipse preferences under Java -
Editor — Content Assist — Favorites. That allows using content assist after typing the first character
of the static method name. Other IDEs (such Intelli]) may not require any additional configuration.
Check for the support for code completion on static members.

3.8.2. Further Examples of Client-side REST Tests

Spring MVC Test’s own tests include example tests of client-side REST tests.

184

https://github.com/spring-projects/spring-framework/tree/main/spring-test/src/test/java/org/springframework/test/web/client/samples

Chapter 4. Further Resources

See the following resources for more information about testing:
* JUnit: “A programmer-friendly testing framework for Java”. Used by the Spring Framework in
its test suite and supported in the Spring TestContext Framework.

* TestNG: A testing framework inspired by JUnit with added support for test groups, data-driven
testing, distributed testing, and other features. Supported in the Spring TestContext Framework

» Assert]: “Fluent assertions for Java”, including support for Java 8 lambdas, streams, and other
features.

» Mock Objects: Article in Wikipedia.

* MockODbjects.com: Web site dedicated to mock objects, a technique for improving the design of
code within test-driven development.

* Mockito: Java mock library based on the Test Spy pattern. Used by the Spring Framework in its
test suite.

» EasyMock: Java library “that provides Mock Objects for interfaces (and objects through the class
extension) by generating them on the fly using Java’s proxy mechanism.”

* JMock: Library that supports test-driven development of Java code with mock objects.

* DbUnit: JUnit extension (also usable with Ant and Maven) that is targeted at database-driven
projects and, among other things, puts your database into a known state between test runs.

» Testcontainers: Java library that supports JUnit tests, providing lightweight, throwaway
instances of common databases, Selenium web browsers, or anything else that can run in a
Docker container.

* The Grinder: Java load testing framework.

» SpringMockK: Support for Spring Boot integration tests written in Kotlin using MockK instead of
MocKkito.

185

https://www.junit.org/
https://testng.org/
https://assertj.github.io/doc/
https://en.wikipedia.org/wiki/Mock_Object
http://www.mockobjects.com/
https://mockito.github.io
http://xunitpatterns.com/Test%20Spy.html
https://easymock.org/
https://jmock.org/
https://www.dbunit.org/
https://www.testcontainers.org/
https://sourceforge.net/projects/grinder/
https://github.com/Ninja-Squad/springmockk
https://mockk.io/

	Testing
	Table of Contents
	Chapter 1. Introduction to Spring Testing
	Chapter 2. Unit Testing
	2.1. Mock Objects
	2.1.1. Environment
	2.1.2. JNDI
	2.1.3. Servlet API
	2.1.4. Spring Web Reactive

	2.2. Unit Testing Support Classes
	2.2.1. General Testing Utilities
	2.2.2. Spring MVC Testing Utilities

	Chapter 3. Integration Testing
	3.1. Overview
	3.2. Goals of Integration Testing
	3.2.1. Context Management and Caching
	3.2.2. Dependency Injection of Test Fixtures
	3.2.3. Transaction Management
	3.2.4. Support Classes for Integration Testing

	3.3. JDBC Testing Support
	3.4. Annotations
	3.4.1. Spring Testing Annotations
	@BootstrapWith
	@ContextConfiguration
	@WebAppConfiguration
	@ContextHierarchy
	@ActiveProfiles
	@TestPropertySource
	@DynamicPropertySource
	@DirtiesContext
	@TestExecutionListeners
	@RecordApplicationEvents
	@Commit
	@Rollback
	@BeforeTransaction
	@AfterTransaction
	@Sql
	@SqlConfig
	@SqlMergeMode
	@SqlGroup

	3.4.2. Standard Annotation Support
	3.4.3. Spring JUnit 4 Testing Annotations
	@IfProfileValue
	@ProfileValueSourceConfiguration
	@Timed
	@Repeat

	3.4.4. Spring JUnit Jupiter Testing Annotations
	@SpringJUnitConfig
	@SpringJUnitWebConfig
	@TestConstructor
	@NestedTestConfiguration
	@EnabledIf
	@DisabledIf

	3.4.5. Meta-Annotation Support for Testing

	3.5. Spring TestContext Framework
	3.5.1. Key Abstractions
	TestContext
	TestContextManager
	TestExecutionListener
	Context Loaders

	3.5.2. Bootstrapping the TestContext Framework
	3.5.3. TestExecutionListener Configuration
	Registering TestExecutionListener Implementations
	Automatic Discovery of Default TestExecutionListener Implementations
	Ordering TestExecutionListener Implementations
	Merging TestExecutionListener Implementations

	3.5.4. Application Events
	3.5.5. Test Execution Events
	Exception Handling
	Asynchronous Listeners

	3.5.6. Context Management
	Context Configuration with XML resources
	Context Configuration with Groovy Scripts
	Context Configuration with Component Classes
	Mixing XML, Groovy Scripts, and Component Classes
	Context Configuration with Context Initializers
	Context Configuration Inheritance
	Context Configuration with Environment Profiles
	Context Configuration with Test Property Sources
	Context Configuration with Dynamic Property Sources
	Loading a WebApplicationContext
	Context Caching
	Context Hierarchies

	3.5.7. Dependency Injection of Test Fixtures
	3.5.8. Testing Request- and Session-scoped Beans
	3.5.9. Transaction Management
	Test-managed Transactions
	Enabling and Disabling Transactions
	Transaction Rollback and Commit Behavior
	Programmatic Transaction Management
	Running Code Outside of a Transaction
	Configuring a Transaction Manager
	Demonstration of All Transaction-related Annotations

	3.5.10. Executing SQL Scripts
	Executing SQL scripts programmatically
	Executing SQL scripts declaratively with @Sql

	3.5.11. Parallel Test Execution
	3.5.12. TestContext Framework Support Classes
	Spring JUnit 4 Runner
	Spring JUnit 4 Rules
	JUnit 4 Support Classes
	SpringExtension for JUnit Jupiter
	Dependency Injection with SpringExtension
	@Nested test class configuration
	TestNG Support Classes

	3.6. WebTestClient
	3.6.1. Setup
	Bind to Controller
	Bind to ApplicationContext
	Bind to Router Function
	Bind to Server
	Client Config

	3.6.2. Writing Tests
	No Content
	JSON Content
	Streaming Responses
	MockMvc Assertions

	3.7. MockMvc
	3.7.1. Overview
	Static Imports
	Setup Choices
	Setup Features
	Performing Requests
	Defining Expectations
	Async Requests
	Streaming Responses
	Filter Registrations
	MockMvc vs End-to-End Tests
	Further Examples

	3.7.2. HtmlUnit Integration
	Why HtmlUnit Integration?
	MockMvc and HtmlUnit
	MockMvc and WebDriver
	MockMvc and Geb

	3.8. Testing Client Applications
	3.8.1. Static Imports
	3.8.2. Further Examples of Client-side REST Tests

	Chapter 4. Further Resources

